]>
Commit | Line | Data |
---|---|---|
1 | // SPDX-License-Identifier: GPL-2.0 | |
2 | /* | |
3 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
4 | * objects in per cpu and per node lists. | |
5 | * | |
6 | * The allocator synchronizes using per slab locks or atomic operations | |
7 | * and only uses a centralized lock to manage a pool of partial slabs. | |
8 | * | |
9 | * (C) 2007 SGI, Christoph Lameter | |
10 | * (C) 2011 Linux Foundation, Christoph Lameter | |
11 | */ | |
12 | ||
13 | #include <linux/mm.h> | |
14 | #include <linux/swap.h> /* mm_account_reclaimed_pages() */ | |
15 | #include <linux/module.h> | |
16 | #include <linux/bit_spinlock.h> | |
17 | #include <linux/interrupt.h> | |
18 | #include <linux/swab.h> | |
19 | #include <linux/bitops.h> | |
20 | #include <linux/slab.h> | |
21 | #include "slab.h" | |
22 | #include <linux/vmalloc.h> | |
23 | #include <linux/proc_fs.h> | |
24 | #include <linux/seq_file.h> | |
25 | #include <linux/kasan.h> | |
26 | #include <linux/kmsan.h> | |
27 | #include <linux/cpu.h> | |
28 | #include <linux/cpuset.h> | |
29 | #include <linux/mempolicy.h> | |
30 | #include <linux/ctype.h> | |
31 | #include <linux/stackdepot.h> | |
32 | #include <linux/debugobjects.h> | |
33 | #include <linux/kallsyms.h> | |
34 | #include <linux/kfence.h> | |
35 | #include <linux/memory.h> | |
36 | #include <linux/math64.h> | |
37 | #include <linux/fault-inject.h> | |
38 | #include <linux/kmemleak.h> | |
39 | #include <linux/stacktrace.h> | |
40 | #include <linux/prefetch.h> | |
41 | #include <linux/memcontrol.h> | |
42 | #include <linux/random.h> | |
43 | #include <kunit/test.h> | |
44 | #include <kunit/test-bug.h> | |
45 | #include <linux/sort.h> | |
46 | ||
47 | #include <linux/debugfs.h> | |
48 | #include <trace/events/kmem.h> | |
49 | ||
50 | #include "internal.h" | |
51 | ||
52 | /* | |
53 | * Lock order: | |
54 | * 1. slab_mutex (Global Mutex) | |
55 | * 2. node->list_lock (Spinlock) | |
56 | * 3. kmem_cache->cpu_slab->lock (Local lock) | |
57 | * 4. slab_lock(slab) (Only on some arches) | |
58 | * 5. object_map_lock (Only for debugging) | |
59 | * | |
60 | * slab_mutex | |
61 | * | |
62 | * The role of the slab_mutex is to protect the list of all the slabs | |
63 | * and to synchronize major metadata changes to slab cache structures. | |
64 | * Also synchronizes memory hotplug callbacks. | |
65 | * | |
66 | * slab_lock | |
67 | * | |
68 | * The slab_lock is a wrapper around the page lock, thus it is a bit | |
69 | * spinlock. | |
70 | * | |
71 | * The slab_lock is only used on arches that do not have the ability | |
72 | * to do a cmpxchg_double. It only protects: | |
73 | * | |
74 | * A. slab->freelist -> List of free objects in a slab | |
75 | * B. slab->inuse -> Number of objects in use | |
76 | * C. slab->objects -> Number of objects in slab | |
77 | * D. slab->frozen -> frozen state | |
78 | * | |
79 | * Frozen slabs | |
80 | * | |
81 | * If a slab is frozen then it is exempt from list management. It is | |
82 | * the cpu slab which is actively allocated from by the processor that | |
83 | * froze it and it is not on any list. The processor that froze the | |
84 | * slab is the one who can perform list operations on the slab. Other | |
85 | * processors may put objects onto the freelist but the processor that | |
86 | * froze the slab is the only one that can retrieve the objects from the | |
87 | * slab's freelist. | |
88 | * | |
89 | * CPU partial slabs | |
90 | * | |
91 | * The partially empty slabs cached on the CPU partial list are used | |
92 | * for performance reasons, which speeds up the allocation process. | |
93 | * These slabs are not frozen, but are also exempt from list management, | |
94 | * by clearing the PG_workingset flag when moving out of the node | |
95 | * partial list. Please see __slab_free() for more details. | |
96 | * | |
97 | * To sum up, the current scheme is: | |
98 | * - node partial slab: PG_Workingset && !frozen | |
99 | * - cpu partial slab: !PG_Workingset && !frozen | |
100 | * - cpu slab: !PG_Workingset && frozen | |
101 | * - full slab: !PG_Workingset && !frozen | |
102 | * | |
103 | * list_lock | |
104 | * | |
105 | * The list_lock protects the partial and full list on each node and | |
106 | * the partial slab counter. If taken then no new slabs may be added or | |
107 | * removed from the lists nor make the number of partial slabs be modified. | |
108 | * (Note that the total number of slabs is an atomic value that may be | |
109 | * modified without taking the list lock). | |
110 | * | |
111 | * The list_lock is a centralized lock and thus we avoid taking it as | |
112 | * much as possible. As long as SLUB does not have to handle partial | |
113 | * slabs, operations can continue without any centralized lock. F.e. | |
114 | * allocating a long series of objects that fill up slabs does not require | |
115 | * the list lock. | |
116 | * | |
117 | * For debug caches, all allocations are forced to go through a list_lock | |
118 | * protected region to serialize against concurrent validation. | |
119 | * | |
120 | * cpu_slab->lock local lock | |
121 | * | |
122 | * This locks protect slowpath manipulation of all kmem_cache_cpu fields | |
123 | * except the stat counters. This is a percpu structure manipulated only by | |
124 | * the local cpu, so the lock protects against being preempted or interrupted | |
125 | * by an irq. Fast path operations rely on lockless operations instead. | |
126 | * | |
127 | * On PREEMPT_RT, the local lock neither disables interrupts nor preemption | |
128 | * which means the lockless fastpath cannot be used as it might interfere with | |
129 | * an in-progress slow path operations. In this case the local lock is always | |
130 | * taken but it still utilizes the freelist for the common operations. | |
131 | * | |
132 | * lockless fastpaths | |
133 | * | |
134 | * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) | |
135 | * are fully lockless when satisfied from the percpu slab (and when | |
136 | * cmpxchg_double is possible to use, otherwise slab_lock is taken). | |
137 | * They also don't disable preemption or migration or irqs. They rely on | |
138 | * the transaction id (tid) field to detect being preempted or moved to | |
139 | * another cpu. | |
140 | * | |
141 | * irq, preemption, migration considerations | |
142 | * | |
143 | * Interrupts are disabled as part of list_lock or local_lock operations, or | |
144 | * around the slab_lock operation, in order to make the slab allocator safe | |
145 | * to use in the context of an irq. | |
146 | * | |
147 | * In addition, preemption (or migration on PREEMPT_RT) is disabled in the | |
148 | * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the | |
149 | * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer | |
150 | * doesn't have to be revalidated in each section protected by the local lock. | |
151 | * | |
152 | * SLUB assigns one slab for allocation to each processor. | |
153 | * Allocations only occur from these slabs called cpu slabs. | |
154 | * | |
155 | * Slabs with free elements are kept on a partial list and during regular | |
156 | * operations no list for full slabs is used. If an object in a full slab is | |
157 | * freed then the slab will show up again on the partial lists. | |
158 | * We track full slabs for debugging purposes though because otherwise we | |
159 | * cannot scan all objects. | |
160 | * | |
161 | * Slabs are freed when they become empty. Teardown and setup is | |
162 | * minimal so we rely on the page allocators per cpu caches for | |
163 | * fast frees and allocs. | |
164 | * | |
165 | * slab->frozen The slab is frozen and exempt from list processing. | |
166 | * This means that the slab is dedicated to a purpose | |
167 | * such as satisfying allocations for a specific | |
168 | * processor. Objects may be freed in the slab while | |
169 | * it is frozen but slab_free will then skip the usual | |
170 | * list operations. It is up to the processor holding | |
171 | * the slab to integrate the slab into the slab lists | |
172 | * when the slab is no longer needed. | |
173 | * | |
174 | * One use of this flag is to mark slabs that are | |
175 | * used for allocations. Then such a slab becomes a cpu | |
176 | * slab. The cpu slab may be equipped with an additional | |
177 | * freelist that allows lockless access to | |
178 | * free objects in addition to the regular freelist | |
179 | * that requires the slab lock. | |
180 | * | |
181 | * SLAB_DEBUG_FLAGS Slab requires special handling due to debug | |
182 | * options set. This moves slab handling out of | |
183 | * the fast path and disables lockless freelists. | |
184 | */ | |
185 | ||
186 | /* | |
187 | * We could simply use migrate_disable()/enable() but as long as it's a | |
188 | * function call even on !PREEMPT_RT, use inline preempt_disable() there. | |
189 | */ | |
190 | #ifndef CONFIG_PREEMPT_RT | |
191 | #define slub_get_cpu_ptr(var) get_cpu_ptr(var) | |
192 | #define slub_put_cpu_ptr(var) put_cpu_ptr(var) | |
193 | #define USE_LOCKLESS_FAST_PATH() (true) | |
194 | #else | |
195 | #define slub_get_cpu_ptr(var) \ | |
196 | ({ \ | |
197 | migrate_disable(); \ | |
198 | this_cpu_ptr(var); \ | |
199 | }) | |
200 | #define slub_put_cpu_ptr(var) \ | |
201 | do { \ | |
202 | (void)(var); \ | |
203 | migrate_enable(); \ | |
204 | } while (0) | |
205 | #define USE_LOCKLESS_FAST_PATH() (false) | |
206 | #endif | |
207 | ||
208 | #ifndef CONFIG_SLUB_TINY | |
209 | #define __fastpath_inline __always_inline | |
210 | #else | |
211 | #define __fastpath_inline | |
212 | #endif | |
213 | ||
214 | #ifdef CONFIG_SLUB_DEBUG | |
215 | #ifdef CONFIG_SLUB_DEBUG_ON | |
216 | DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); | |
217 | #else | |
218 | DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); | |
219 | #endif | |
220 | #endif /* CONFIG_SLUB_DEBUG */ | |
221 | ||
222 | #ifdef CONFIG_NUMA | |
223 | static DEFINE_STATIC_KEY_FALSE(strict_numa); | |
224 | #endif | |
225 | ||
226 | /* Structure holding parameters for get_partial() call chain */ | |
227 | struct partial_context { | |
228 | gfp_t flags; | |
229 | unsigned int orig_size; | |
230 | void *object; | |
231 | }; | |
232 | ||
233 | static inline bool kmem_cache_debug(struct kmem_cache *s) | |
234 | { | |
235 | return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); | |
236 | } | |
237 | ||
238 | void *fixup_red_left(struct kmem_cache *s, void *p) | |
239 | { | |
240 | if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) | |
241 | p += s->red_left_pad; | |
242 | ||
243 | return p; | |
244 | } | |
245 | ||
246 | static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) | |
247 | { | |
248 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
249 | return !kmem_cache_debug(s); | |
250 | #else | |
251 | return false; | |
252 | #endif | |
253 | } | |
254 | ||
255 | /* | |
256 | * Issues still to be resolved: | |
257 | * | |
258 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. | |
259 | * | |
260 | * - Variable sizing of the per node arrays | |
261 | */ | |
262 | ||
263 | /* Enable to log cmpxchg failures */ | |
264 | #undef SLUB_DEBUG_CMPXCHG | |
265 | ||
266 | #ifndef CONFIG_SLUB_TINY | |
267 | /* | |
268 | * Minimum number of partial slabs. These will be left on the partial | |
269 | * lists even if they are empty. kmem_cache_shrink may reclaim them. | |
270 | */ | |
271 | #define MIN_PARTIAL 5 | |
272 | ||
273 | /* | |
274 | * Maximum number of desirable partial slabs. | |
275 | * The existence of more partial slabs makes kmem_cache_shrink | |
276 | * sort the partial list by the number of objects in use. | |
277 | */ | |
278 | #define MAX_PARTIAL 10 | |
279 | #else | |
280 | #define MIN_PARTIAL 0 | |
281 | #define MAX_PARTIAL 0 | |
282 | #endif | |
283 | ||
284 | #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ | |
285 | SLAB_POISON | SLAB_STORE_USER) | |
286 | ||
287 | /* | |
288 | * These debug flags cannot use CMPXCHG because there might be consistency | |
289 | * issues when checking or reading debug information | |
290 | */ | |
291 | #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ | |
292 | SLAB_TRACE) | |
293 | ||
294 | ||
295 | /* | |
296 | * Debugging flags that require metadata to be stored in the slab. These get | |
297 | * disabled when slab_debug=O is used and a cache's min order increases with | |
298 | * metadata. | |
299 | */ | |
300 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) | |
301 | ||
302 | #define OO_SHIFT 16 | |
303 | #define OO_MASK ((1 << OO_SHIFT) - 1) | |
304 | #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ | |
305 | ||
306 | /* Internal SLUB flags */ | |
307 | /* Poison object */ | |
308 | #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) | |
309 | /* Use cmpxchg_double */ | |
310 | ||
311 | #ifdef system_has_freelist_aba | |
312 | #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) | |
313 | #else | |
314 | #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED | |
315 | #endif | |
316 | ||
317 | /* | |
318 | * Tracking user of a slab. | |
319 | */ | |
320 | #define TRACK_ADDRS_COUNT 16 | |
321 | struct track { | |
322 | unsigned long addr; /* Called from address */ | |
323 | #ifdef CONFIG_STACKDEPOT | |
324 | depot_stack_handle_t handle; | |
325 | #endif | |
326 | int cpu; /* Was running on cpu */ | |
327 | int pid; /* Pid context */ | |
328 | unsigned long when; /* When did the operation occur */ | |
329 | }; | |
330 | ||
331 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
332 | ||
333 | #ifdef SLAB_SUPPORTS_SYSFS | |
334 | static int sysfs_slab_add(struct kmem_cache *); | |
335 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
336 | #else | |
337 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } | |
338 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
339 | { return 0; } | |
340 | #endif | |
341 | ||
342 | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) | |
343 | static void debugfs_slab_add(struct kmem_cache *); | |
344 | #else | |
345 | static inline void debugfs_slab_add(struct kmem_cache *s) { } | |
346 | #endif | |
347 | ||
348 | enum stat_item { | |
349 | ALLOC_FASTPATH, /* Allocation from cpu slab */ | |
350 | ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ | |
351 | FREE_FASTPATH, /* Free to cpu slab */ | |
352 | FREE_SLOWPATH, /* Freeing not to cpu slab */ | |
353 | FREE_FROZEN, /* Freeing to frozen slab */ | |
354 | FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ | |
355 | FREE_REMOVE_PARTIAL, /* Freeing removes last object */ | |
356 | ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ | |
357 | ALLOC_SLAB, /* Cpu slab acquired from page allocator */ | |
358 | ALLOC_REFILL, /* Refill cpu slab from slab freelist */ | |
359 | ALLOC_NODE_MISMATCH, /* Switching cpu slab */ | |
360 | FREE_SLAB, /* Slab freed to the page allocator */ | |
361 | CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ | |
362 | DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ | |
363 | DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ | |
364 | DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ | |
365 | DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ | |
366 | DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ | |
367 | DEACTIVATE_BYPASS, /* Implicit deactivation */ | |
368 | ORDER_FALLBACK, /* Number of times fallback was necessary */ | |
369 | CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ | |
370 | CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ | |
371 | CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ | |
372 | CPU_PARTIAL_FREE, /* Refill cpu partial on free */ | |
373 | CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ | |
374 | CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ | |
375 | NR_SLUB_STAT_ITEMS | |
376 | }; | |
377 | ||
378 | #ifndef CONFIG_SLUB_TINY | |
379 | /* | |
380 | * When changing the layout, make sure freelist and tid are still compatible | |
381 | * with this_cpu_cmpxchg_double() alignment requirements. | |
382 | */ | |
383 | struct kmem_cache_cpu { | |
384 | union { | |
385 | struct { | |
386 | void **freelist; /* Pointer to next available object */ | |
387 | unsigned long tid; /* Globally unique transaction id */ | |
388 | }; | |
389 | freelist_aba_t freelist_tid; | |
390 | }; | |
391 | struct slab *slab; /* The slab from which we are allocating */ | |
392 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
393 | struct slab *partial; /* Partially allocated slabs */ | |
394 | #endif | |
395 | local_lock_t lock; /* Protects the fields above */ | |
396 | #ifdef CONFIG_SLUB_STATS | |
397 | unsigned int stat[NR_SLUB_STAT_ITEMS]; | |
398 | #endif | |
399 | }; | |
400 | #endif /* CONFIG_SLUB_TINY */ | |
401 | ||
402 | static inline void stat(const struct kmem_cache *s, enum stat_item si) | |
403 | { | |
404 | #ifdef CONFIG_SLUB_STATS | |
405 | /* | |
406 | * The rmw is racy on a preemptible kernel but this is acceptable, so | |
407 | * avoid this_cpu_add()'s irq-disable overhead. | |
408 | */ | |
409 | raw_cpu_inc(s->cpu_slab->stat[si]); | |
410 | #endif | |
411 | } | |
412 | ||
413 | static inline | |
414 | void stat_add(const struct kmem_cache *s, enum stat_item si, int v) | |
415 | { | |
416 | #ifdef CONFIG_SLUB_STATS | |
417 | raw_cpu_add(s->cpu_slab->stat[si], v); | |
418 | #endif | |
419 | } | |
420 | ||
421 | /* | |
422 | * The slab lists for all objects. | |
423 | */ | |
424 | struct kmem_cache_node { | |
425 | spinlock_t list_lock; | |
426 | unsigned long nr_partial; | |
427 | struct list_head partial; | |
428 | #ifdef CONFIG_SLUB_DEBUG | |
429 | atomic_long_t nr_slabs; | |
430 | atomic_long_t total_objects; | |
431 | struct list_head full; | |
432 | #endif | |
433 | }; | |
434 | ||
435 | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) | |
436 | { | |
437 | return s->node[node]; | |
438 | } | |
439 | ||
440 | /* | |
441 | * Iterator over all nodes. The body will be executed for each node that has | |
442 | * a kmem_cache_node structure allocated (which is true for all online nodes) | |
443 | */ | |
444 | #define for_each_kmem_cache_node(__s, __node, __n) \ | |
445 | for (__node = 0; __node < nr_node_ids; __node++) \ | |
446 | if ((__n = get_node(__s, __node))) | |
447 | ||
448 | /* | |
449 | * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. | |
450 | * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily | |
451 | * differ during memory hotplug/hotremove operations. | |
452 | * Protected by slab_mutex. | |
453 | */ | |
454 | static nodemask_t slab_nodes; | |
455 | ||
456 | #ifndef CONFIG_SLUB_TINY | |
457 | /* | |
458 | * Workqueue used for flush_cpu_slab(). | |
459 | */ | |
460 | static struct workqueue_struct *flushwq; | |
461 | #endif | |
462 | ||
463 | /******************************************************************** | |
464 | * Core slab cache functions | |
465 | *******************************************************************/ | |
466 | ||
467 | /* | |
468 | * Returns freelist pointer (ptr). With hardening, this is obfuscated | |
469 | * with an XOR of the address where the pointer is held and a per-cache | |
470 | * random number. | |
471 | */ | |
472 | static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, | |
473 | void *ptr, unsigned long ptr_addr) | |
474 | { | |
475 | unsigned long encoded; | |
476 | ||
477 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | |
478 | encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); | |
479 | #else | |
480 | encoded = (unsigned long)ptr; | |
481 | #endif | |
482 | return (freeptr_t){.v = encoded}; | |
483 | } | |
484 | ||
485 | static inline void *freelist_ptr_decode(const struct kmem_cache *s, | |
486 | freeptr_t ptr, unsigned long ptr_addr) | |
487 | { | |
488 | void *decoded; | |
489 | ||
490 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | |
491 | decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); | |
492 | #else | |
493 | decoded = (void *)ptr.v; | |
494 | #endif | |
495 | return decoded; | |
496 | } | |
497 | ||
498 | static inline void *get_freepointer(struct kmem_cache *s, void *object) | |
499 | { | |
500 | unsigned long ptr_addr; | |
501 | freeptr_t p; | |
502 | ||
503 | object = kasan_reset_tag(object); | |
504 | ptr_addr = (unsigned long)object + s->offset; | |
505 | p = *(freeptr_t *)(ptr_addr); | |
506 | return freelist_ptr_decode(s, p, ptr_addr); | |
507 | } | |
508 | ||
509 | #ifndef CONFIG_SLUB_TINY | |
510 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) | |
511 | { | |
512 | prefetchw(object + s->offset); | |
513 | } | |
514 | #endif | |
515 | ||
516 | /* | |
517 | * When running under KMSAN, get_freepointer_safe() may return an uninitialized | |
518 | * pointer value in the case the current thread loses the race for the next | |
519 | * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in | |
520 | * slab_alloc_node() will fail, so the uninitialized value won't be used, but | |
521 | * KMSAN will still check all arguments of cmpxchg because of imperfect | |
522 | * handling of inline assembly. | |
523 | * To work around this problem, we apply __no_kmsan_checks to ensure that | |
524 | * get_freepointer_safe() returns initialized memory. | |
525 | */ | |
526 | __no_kmsan_checks | |
527 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) | |
528 | { | |
529 | unsigned long freepointer_addr; | |
530 | freeptr_t p; | |
531 | ||
532 | if (!debug_pagealloc_enabled_static()) | |
533 | return get_freepointer(s, object); | |
534 | ||
535 | object = kasan_reset_tag(object); | |
536 | freepointer_addr = (unsigned long)object + s->offset; | |
537 | copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); | |
538 | return freelist_ptr_decode(s, p, freepointer_addr); | |
539 | } | |
540 | ||
541 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) | |
542 | { | |
543 | unsigned long freeptr_addr = (unsigned long)object + s->offset; | |
544 | ||
545 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | |
546 | BUG_ON(object == fp); /* naive detection of double free or corruption */ | |
547 | #endif | |
548 | ||
549 | freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); | |
550 | *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); | |
551 | } | |
552 | ||
553 | /* | |
554 | * See comment in calculate_sizes(). | |
555 | */ | |
556 | static inline bool freeptr_outside_object(struct kmem_cache *s) | |
557 | { | |
558 | return s->offset >= s->inuse; | |
559 | } | |
560 | ||
561 | /* | |
562 | * Return offset of the end of info block which is inuse + free pointer if | |
563 | * not overlapping with object. | |
564 | */ | |
565 | static inline unsigned int get_info_end(struct kmem_cache *s) | |
566 | { | |
567 | if (freeptr_outside_object(s)) | |
568 | return s->inuse + sizeof(void *); | |
569 | else | |
570 | return s->inuse; | |
571 | } | |
572 | ||
573 | /* Loop over all objects in a slab */ | |
574 | #define for_each_object(__p, __s, __addr, __objects) \ | |
575 | for (__p = fixup_red_left(__s, __addr); \ | |
576 | __p < (__addr) + (__objects) * (__s)->size; \ | |
577 | __p += (__s)->size) | |
578 | ||
579 | static inline unsigned int order_objects(unsigned int order, unsigned int size) | |
580 | { | |
581 | return ((unsigned int)PAGE_SIZE << order) / size; | |
582 | } | |
583 | ||
584 | static inline struct kmem_cache_order_objects oo_make(unsigned int order, | |
585 | unsigned int size) | |
586 | { | |
587 | struct kmem_cache_order_objects x = { | |
588 | (order << OO_SHIFT) + order_objects(order, size) | |
589 | }; | |
590 | ||
591 | return x; | |
592 | } | |
593 | ||
594 | static inline unsigned int oo_order(struct kmem_cache_order_objects x) | |
595 | { | |
596 | return x.x >> OO_SHIFT; | |
597 | } | |
598 | ||
599 | static inline unsigned int oo_objects(struct kmem_cache_order_objects x) | |
600 | { | |
601 | return x.x & OO_MASK; | |
602 | } | |
603 | ||
604 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
605 | static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) | |
606 | { | |
607 | unsigned int nr_slabs; | |
608 | ||
609 | s->cpu_partial = nr_objects; | |
610 | ||
611 | /* | |
612 | * We take the number of objects but actually limit the number of | |
613 | * slabs on the per cpu partial list, in order to limit excessive | |
614 | * growth of the list. For simplicity we assume that the slabs will | |
615 | * be half-full. | |
616 | */ | |
617 | nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); | |
618 | s->cpu_partial_slabs = nr_slabs; | |
619 | } | |
620 | ||
621 | static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) | |
622 | { | |
623 | return s->cpu_partial_slabs; | |
624 | } | |
625 | #else | |
626 | static inline void | |
627 | slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) | |
628 | { | |
629 | } | |
630 | ||
631 | static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) | |
632 | { | |
633 | return 0; | |
634 | } | |
635 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ | |
636 | ||
637 | /* | |
638 | * Per slab locking using the pagelock | |
639 | */ | |
640 | static __always_inline void slab_lock(struct slab *slab) | |
641 | { | |
642 | bit_spin_lock(PG_locked, &slab->__page_flags); | |
643 | } | |
644 | ||
645 | static __always_inline void slab_unlock(struct slab *slab) | |
646 | { | |
647 | bit_spin_unlock(PG_locked, &slab->__page_flags); | |
648 | } | |
649 | ||
650 | static inline bool | |
651 | __update_freelist_fast(struct slab *slab, | |
652 | void *freelist_old, unsigned long counters_old, | |
653 | void *freelist_new, unsigned long counters_new) | |
654 | { | |
655 | #ifdef system_has_freelist_aba | |
656 | freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; | |
657 | freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; | |
658 | ||
659 | return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); | |
660 | #else | |
661 | return false; | |
662 | #endif | |
663 | } | |
664 | ||
665 | static inline bool | |
666 | __update_freelist_slow(struct slab *slab, | |
667 | void *freelist_old, unsigned long counters_old, | |
668 | void *freelist_new, unsigned long counters_new) | |
669 | { | |
670 | bool ret = false; | |
671 | ||
672 | slab_lock(slab); | |
673 | if (slab->freelist == freelist_old && | |
674 | slab->counters == counters_old) { | |
675 | slab->freelist = freelist_new; | |
676 | slab->counters = counters_new; | |
677 | ret = true; | |
678 | } | |
679 | slab_unlock(slab); | |
680 | ||
681 | return ret; | |
682 | } | |
683 | ||
684 | /* | |
685 | * Interrupts must be disabled (for the fallback code to work right), typically | |
686 | * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is | |
687 | * part of bit_spin_lock(), is sufficient because the policy is not to allow any | |
688 | * allocation/ free operation in hardirq context. Therefore nothing can | |
689 | * interrupt the operation. | |
690 | */ | |
691 | static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, | |
692 | void *freelist_old, unsigned long counters_old, | |
693 | void *freelist_new, unsigned long counters_new, | |
694 | const char *n) | |
695 | { | |
696 | bool ret; | |
697 | ||
698 | if (USE_LOCKLESS_FAST_PATH()) | |
699 | lockdep_assert_irqs_disabled(); | |
700 | ||
701 | if (s->flags & __CMPXCHG_DOUBLE) { | |
702 | ret = __update_freelist_fast(slab, freelist_old, counters_old, | |
703 | freelist_new, counters_new); | |
704 | } else { | |
705 | ret = __update_freelist_slow(slab, freelist_old, counters_old, | |
706 | freelist_new, counters_new); | |
707 | } | |
708 | if (likely(ret)) | |
709 | return true; | |
710 | ||
711 | cpu_relax(); | |
712 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
713 | ||
714 | #ifdef SLUB_DEBUG_CMPXCHG | |
715 | pr_info("%s %s: cmpxchg double redo ", n, s->name); | |
716 | #endif | |
717 | ||
718 | return false; | |
719 | } | |
720 | ||
721 | static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, | |
722 | void *freelist_old, unsigned long counters_old, | |
723 | void *freelist_new, unsigned long counters_new, | |
724 | const char *n) | |
725 | { | |
726 | bool ret; | |
727 | ||
728 | if (s->flags & __CMPXCHG_DOUBLE) { | |
729 | ret = __update_freelist_fast(slab, freelist_old, counters_old, | |
730 | freelist_new, counters_new); | |
731 | } else { | |
732 | unsigned long flags; | |
733 | ||
734 | local_irq_save(flags); | |
735 | ret = __update_freelist_slow(slab, freelist_old, counters_old, | |
736 | freelist_new, counters_new); | |
737 | local_irq_restore(flags); | |
738 | } | |
739 | if (likely(ret)) | |
740 | return true; | |
741 | ||
742 | cpu_relax(); | |
743 | stat(s, CMPXCHG_DOUBLE_FAIL); | |
744 | ||
745 | #ifdef SLUB_DEBUG_CMPXCHG | |
746 | pr_info("%s %s: cmpxchg double redo ", n, s->name); | |
747 | #endif | |
748 | ||
749 | return false; | |
750 | } | |
751 | ||
752 | /* | |
753 | * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API | |
754 | * family will round up the real request size to these fixed ones, so | |
755 | * there could be an extra area than what is requested. Save the original | |
756 | * request size in the meta data area, for better debug and sanity check. | |
757 | */ | |
758 | static inline void set_orig_size(struct kmem_cache *s, | |
759 | void *object, unsigned int orig_size) | |
760 | { | |
761 | void *p = kasan_reset_tag(object); | |
762 | ||
763 | if (!slub_debug_orig_size(s)) | |
764 | return; | |
765 | ||
766 | p += get_info_end(s); | |
767 | p += sizeof(struct track) * 2; | |
768 | ||
769 | *(unsigned int *)p = orig_size; | |
770 | } | |
771 | ||
772 | static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) | |
773 | { | |
774 | void *p = kasan_reset_tag(object); | |
775 | ||
776 | if (is_kfence_address(object)) | |
777 | return kfence_ksize(object); | |
778 | ||
779 | if (!slub_debug_orig_size(s)) | |
780 | return s->object_size; | |
781 | ||
782 | p += get_info_end(s); | |
783 | p += sizeof(struct track) * 2; | |
784 | ||
785 | return *(unsigned int *)p; | |
786 | } | |
787 | ||
788 | #ifdef CONFIG_SLUB_DEBUG | |
789 | static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; | |
790 | static DEFINE_SPINLOCK(object_map_lock); | |
791 | ||
792 | static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, | |
793 | struct slab *slab) | |
794 | { | |
795 | void *addr = slab_address(slab); | |
796 | void *p; | |
797 | ||
798 | bitmap_zero(obj_map, slab->objects); | |
799 | ||
800 | for (p = slab->freelist; p; p = get_freepointer(s, p)) | |
801 | set_bit(__obj_to_index(s, addr, p), obj_map); | |
802 | } | |
803 | ||
804 | #if IS_ENABLED(CONFIG_KUNIT) | |
805 | static bool slab_add_kunit_errors(void) | |
806 | { | |
807 | struct kunit_resource *resource; | |
808 | ||
809 | if (!kunit_get_current_test()) | |
810 | return false; | |
811 | ||
812 | resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); | |
813 | if (!resource) | |
814 | return false; | |
815 | ||
816 | (*(int *)resource->data)++; | |
817 | kunit_put_resource(resource); | |
818 | return true; | |
819 | } | |
820 | ||
821 | bool slab_in_kunit_test(void) | |
822 | { | |
823 | struct kunit_resource *resource; | |
824 | ||
825 | if (!kunit_get_current_test()) | |
826 | return false; | |
827 | ||
828 | resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); | |
829 | if (!resource) | |
830 | return false; | |
831 | ||
832 | kunit_put_resource(resource); | |
833 | return true; | |
834 | } | |
835 | #else | |
836 | static inline bool slab_add_kunit_errors(void) { return false; } | |
837 | #endif | |
838 | ||
839 | static inline unsigned int size_from_object(struct kmem_cache *s) | |
840 | { | |
841 | if (s->flags & SLAB_RED_ZONE) | |
842 | return s->size - s->red_left_pad; | |
843 | ||
844 | return s->size; | |
845 | } | |
846 | ||
847 | static inline void *restore_red_left(struct kmem_cache *s, void *p) | |
848 | { | |
849 | if (s->flags & SLAB_RED_ZONE) | |
850 | p -= s->red_left_pad; | |
851 | ||
852 | return p; | |
853 | } | |
854 | ||
855 | /* | |
856 | * Debug settings: | |
857 | */ | |
858 | #if defined(CONFIG_SLUB_DEBUG_ON) | |
859 | static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; | |
860 | #else | |
861 | static slab_flags_t slub_debug; | |
862 | #endif | |
863 | ||
864 | static char *slub_debug_string; | |
865 | static int disable_higher_order_debug; | |
866 | ||
867 | /* | |
868 | * slub is about to manipulate internal object metadata. This memory lies | |
869 | * outside the range of the allocated object, so accessing it would normally | |
870 | * be reported by kasan as a bounds error. metadata_access_enable() is used | |
871 | * to tell kasan that these accesses are OK. | |
872 | */ | |
873 | static inline void metadata_access_enable(void) | |
874 | { | |
875 | kasan_disable_current(); | |
876 | kmsan_disable_current(); | |
877 | } | |
878 | ||
879 | static inline void metadata_access_disable(void) | |
880 | { | |
881 | kmsan_enable_current(); | |
882 | kasan_enable_current(); | |
883 | } | |
884 | ||
885 | /* | |
886 | * Object debugging | |
887 | */ | |
888 | ||
889 | /* Verify that a pointer has an address that is valid within a slab page */ | |
890 | static inline int check_valid_pointer(struct kmem_cache *s, | |
891 | struct slab *slab, void *object) | |
892 | { | |
893 | void *base; | |
894 | ||
895 | if (!object) | |
896 | return 1; | |
897 | ||
898 | base = slab_address(slab); | |
899 | object = kasan_reset_tag(object); | |
900 | object = restore_red_left(s, object); | |
901 | if (object < base || object >= base + slab->objects * s->size || | |
902 | (object - base) % s->size) { | |
903 | return 0; | |
904 | } | |
905 | ||
906 | return 1; | |
907 | } | |
908 | ||
909 | static void print_section(char *level, char *text, u8 *addr, | |
910 | unsigned int length) | |
911 | { | |
912 | metadata_access_enable(); | |
913 | print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, | |
914 | 16, 1, kasan_reset_tag((void *)addr), length, 1); | |
915 | metadata_access_disable(); | |
916 | } | |
917 | ||
918 | static struct track *get_track(struct kmem_cache *s, void *object, | |
919 | enum track_item alloc) | |
920 | { | |
921 | struct track *p; | |
922 | ||
923 | p = object + get_info_end(s); | |
924 | ||
925 | return kasan_reset_tag(p + alloc); | |
926 | } | |
927 | ||
928 | #ifdef CONFIG_STACKDEPOT | |
929 | static noinline depot_stack_handle_t set_track_prepare(void) | |
930 | { | |
931 | depot_stack_handle_t handle; | |
932 | unsigned long entries[TRACK_ADDRS_COUNT]; | |
933 | unsigned int nr_entries; | |
934 | ||
935 | nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); | |
936 | handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); | |
937 | ||
938 | return handle; | |
939 | } | |
940 | #else | |
941 | static inline depot_stack_handle_t set_track_prepare(void) | |
942 | { | |
943 | return 0; | |
944 | } | |
945 | #endif | |
946 | ||
947 | static void set_track_update(struct kmem_cache *s, void *object, | |
948 | enum track_item alloc, unsigned long addr, | |
949 | depot_stack_handle_t handle) | |
950 | { | |
951 | struct track *p = get_track(s, object, alloc); | |
952 | ||
953 | #ifdef CONFIG_STACKDEPOT | |
954 | p->handle = handle; | |
955 | #endif | |
956 | p->addr = addr; | |
957 | p->cpu = smp_processor_id(); | |
958 | p->pid = current->pid; | |
959 | p->when = jiffies; | |
960 | } | |
961 | ||
962 | static __always_inline void set_track(struct kmem_cache *s, void *object, | |
963 | enum track_item alloc, unsigned long addr) | |
964 | { | |
965 | depot_stack_handle_t handle = set_track_prepare(); | |
966 | ||
967 | set_track_update(s, object, alloc, addr, handle); | |
968 | } | |
969 | ||
970 | static void init_tracking(struct kmem_cache *s, void *object) | |
971 | { | |
972 | struct track *p; | |
973 | ||
974 | if (!(s->flags & SLAB_STORE_USER)) | |
975 | return; | |
976 | ||
977 | p = get_track(s, object, TRACK_ALLOC); | |
978 | memset(p, 0, 2*sizeof(struct track)); | |
979 | } | |
980 | ||
981 | static void print_track(const char *s, struct track *t, unsigned long pr_time) | |
982 | { | |
983 | depot_stack_handle_t handle __maybe_unused; | |
984 | ||
985 | if (!t->addr) | |
986 | return; | |
987 | ||
988 | pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", | |
989 | s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); | |
990 | #ifdef CONFIG_STACKDEPOT | |
991 | handle = READ_ONCE(t->handle); | |
992 | if (handle) | |
993 | stack_depot_print(handle); | |
994 | else | |
995 | pr_err("object allocation/free stack trace missing\n"); | |
996 | #endif | |
997 | } | |
998 | ||
999 | void print_tracking(struct kmem_cache *s, void *object) | |
1000 | { | |
1001 | unsigned long pr_time = jiffies; | |
1002 | if (!(s->flags & SLAB_STORE_USER)) | |
1003 | return; | |
1004 | ||
1005 | print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); | |
1006 | print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); | |
1007 | } | |
1008 | ||
1009 | static void print_slab_info(const struct slab *slab) | |
1010 | { | |
1011 | pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", | |
1012 | slab, slab->objects, slab->inuse, slab->freelist, | |
1013 | &slab->__page_flags); | |
1014 | } | |
1015 | ||
1016 | void skip_orig_size_check(struct kmem_cache *s, const void *object) | |
1017 | { | |
1018 | set_orig_size(s, (void *)object, s->object_size); | |
1019 | } | |
1020 | ||
1021 | static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp) | |
1022 | { | |
1023 | struct va_format vaf; | |
1024 | va_list args; | |
1025 | ||
1026 | va_copy(args, argsp); | |
1027 | vaf.fmt = fmt; | |
1028 | vaf.va = &args; | |
1029 | pr_err("=============================================================================\n"); | |
1030 | pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf); | |
1031 | pr_err("-----------------------------------------------------------------------------\n\n"); | |
1032 | va_end(args); | |
1033 | } | |
1034 | ||
1035 | static void slab_bug(struct kmem_cache *s, const char *fmt, ...) | |
1036 | { | |
1037 | va_list args; | |
1038 | ||
1039 | va_start(args, fmt); | |
1040 | __slab_bug(s, fmt, args); | |
1041 | va_end(args); | |
1042 | } | |
1043 | ||
1044 | __printf(2, 3) | |
1045 | static void slab_fix(struct kmem_cache *s, const char *fmt, ...) | |
1046 | { | |
1047 | struct va_format vaf; | |
1048 | va_list args; | |
1049 | ||
1050 | if (slab_add_kunit_errors()) | |
1051 | return; | |
1052 | ||
1053 | va_start(args, fmt); | |
1054 | vaf.fmt = fmt; | |
1055 | vaf.va = &args; | |
1056 | pr_err("FIX %s: %pV\n", s->name, &vaf); | |
1057 | va_end(args); | |
1058 | } | |
1059 | ||
1060 | static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) | |
1061 | { | |
1062 | unsigned int off; /* Offset of last byte */ | |
1063 | u8 *addr = slab_address(slab); | |
1064 | ||
1065 | print_tracking(s, p); | |
1066 | ||
1067 | print_slab_info(slab); | |
1068 | ||
1069 | pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", | |
1070 | p, p - addr, get_freepointer(s, p)); | |
1071 | ||
1072 | if (s->flags & SLAB_RED_ZONE) | |
1073 | print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, | |
1074 | s->red_left_pad); | |
1075 | else if (p > addr + 16) | |
1076 | print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); | |
1077 | ||
1078 | print_section(KERN_ERR, "Object ", p, | |
1079 | min_t(unsigned int, s->object_size, PAGE_SIZE)); | |
1080 | if (s->flags & SLAB_RED_ZONE) | |
1081 | print_section(KERN_ERR, "Redzone ", p + s->object_size, | |
1082 | s->inuse - s->object_size); | |
1083 | ||
1084 | off = get_info_end(s); | |
1085 | ||
1086 | if (s->flags & SLAB_STORE_USER) | |
1087 | off += 2 * sizeof(struct track); | |
1088 | ||
1089 | if (slub_debug_orig_size(s)) | |
1090 | off += sizeof(unsigned int); | |
1091 | ||
1092 | off += kasan_metadata_size(s, false); | |
1093 | ||
1094 | if (off != size_from_object(s)) | |
1095 | /* Beginning of the filler is the free pointer */ | |
1096 | print_section(KERN_ERR, "Padding ", p + off, | |
1097 | size_from_object(s) - off); | |
1098 | } | |
1099 | ||
1100 | static void object_err(struct kmem_cache *s, struct slab *slab, | |
1101 | u8 *object, const char *reason) | |
1102 | { | |
1103 | if (slab_add_kunit_errors()) | |
1104 | return; | |
1105 | ||
1106 | slab_bug(s, reason); | |
1107 | print_trailer(s, slab, object); | |
1108 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | |
1109 | ||
1110 | WARN_ON(1); | |
1111 | } | |
1112 | ||
1113 | static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, | |
1114 | void **freelist, void *nextfree) | |
1115 | { | |
1116 | if ((s->flags & SLAB_CONSISTENCY_CHECKS) && | |
1117 | !check_valid_pointer(s, slab, nextfree) && freelist) { | |
1118 | object_err(s, slab, *freelist, "Freechain corrupt"); | |
1119 | *freelist = NULL; | |
1120 | slab_fix(s, "Isolate corrupted freechain"); | |
1121 | return true; | |
1122 | } | |
1123 | ||
1124 | return false; | |
1125 | } | |
1126 | ||
1127 | static void __slab_err(struct slab *slab) | |
1128 | { | |
1129 | if (slab_in_kunit_test()) | |
1130 | return; | |
1131 | ||
1132 | print_slab_info(slab); | |
1133 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | |
1134 | ||
1135 | WARN_ON(1); | |
1136 | } | |
1137 | ||
1138 | static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, | |
1139 | const char *fmt, ...) | |
1140 | { | |
1141 | va_list args; | |
1142 | ||
1143 | if (slab_add_kunit_errors()) | |
1144 | return; | |
1145 | ||
1146 | va_start(args, fmt); | |
1147 | __slab_bug(s, fmt, args); | |
1148 | va_end(args); | |
1149 | ||
1150 | __slab_err(slab); | |
1151 | } | |
1152 | ||
1153 | static void init_object(struct kmem_cache *s, void *object, u8 val) | |
1154 | { | |
1155 | u8 *p = kasan_reset_tag(object); | |
1156 | unsigned int poison_size = s->object_size; | |
1157 | ||
1158 | if (s->flags & SLAB_RED_ZONE) { | |
1159 | /* | |
1160 | * Here and below, avoid overwriting the KMSAN shadow. Keeping | |
1161 | * the shadow makes it possible to distinguish uninit-value | |
1162 | * from use-after-free. | |
1163 | */ | |
1164 | memset_no_sanitize_memory(p - s->red_left_pad, val, | |
1165 | s->red_left_pad); | |
1166 | ||
1167 | if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { | |
1168 | /* | |
1169 | * Redzone the extra allocated space by kmalloc than | |
1170 | * requested, and the poison size will be limited to | |
1171 | * the original request size accordingly. | |
1172 | */ | |
1173 | poison_size = get_orig_size(s, object); | |
1174 | } | |
1175 | } | |
1176 | ||
1177 | if (s->flags & __OBJECT_POISON) { | |
1178 | memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1); | |
1179 | memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1); | |
1180 | } | |
1181 | ||
1182 | if (s->flags & SLAB_RED_ZONE) | |
1183 | memset_no_sanitize_memory(p + poison_size, val, | |
1184 | s->inuse - poison_size); | |
1185 | } | |
1186 | ||
1187 | static void restore_bytes(struct kmem_cache *s, const char *message, u8 data, | |
1188 | void *from, void *to) | |
1189 | { | |
1190 | slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); | |
1191 | memset(from, data, to - from); | |
1192 | } | |
1193 | ||
1194 | #ifdef CONFIG_KMSAN | |
1195 | #define pad_check_attributes noinline __no_kmsan_checks | |
1196 | #else | |
1197 | #define pad_check_attributes | |
1198 | #endif | |
1199 | ||
1200 | static pad_check_attributes int | |
1201 | check_bytes_and_report(struct kmem_cache *s, struct slab *slab, | |
1202 | u8 *object, const char *what, u8 *start, unsigned int value, | |
1203 | unsigned int bytes, bool slab_obj_print) | |
1204 | { | |
1205 | u8 *fault; | |
1206 | u8 *end; | |
1207 | u8 *addr = slab_address(slab); | |
1208 | ||
1209 | metadata_access_enable(); | |
1210 | fault = memchr_inv(kasan_reset_tag(start), value, bytes); | |
1211 | metadata_access_disable(); | |
1212 | if (!fault) | |
1213 | return 1; | |
1214 | ||
1215 | end = start + bytes; | |
1216 | while (end > fault && end[-1] == value) | |
1217 | end--; | |
1218 | ||
1219 | if (slab_add_kunit_errors()) | |
1220 | goto skip_bug_print; | |
1221 | ||
1222 | pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", | |
1223 | what, fault, end - 1, fault - addr, fault[0], value); | |
1224 | ||
1225 | if (slab_obj_print) | |
1226 | object_err(s, slab, object, "Object corrupt"); | |
1227 | ||
1228 | skip_bug_print: | |
1229 | restore_bytes(s, what, value, fault, end); | |
1230 | return 0; | |
1231 | } | |
1232 | ||
1233 | /* | |
1234 | * Object layout: | |
1235 | * | |
1236 | * object address | |
1237 | * Bytes of the object to be managed. | |
1238 | * If the freepointer may overlay the object then the free | |
1239 | * pointer is at the middle of the object. | |
1240 | * | |
1241 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is | |
1242 | * 0xa5 (POISON_END) | |
1243 | * | |
1244 | * object + s->object_size | |
1245 | * Padding to reach word boundary. This is also used for Redzoning. | |
1246 | * Padding is extended by another word if Redzoning is enabled and | |
1247 | * object_size == inuse. | |
1248 | * | |
1249 | * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with | |
1250 | * 0xcc (SLUB_RED_ACTIVE) for objects in use. | |
1251 | * | |
1252 | * object + s->inuse | |
1253 | * Meta data starts here. | |
1254 | * | |
1255 | * A. Free pointer (if we cannot overwrite object on free) | |
1256 | * B. Tracking data for SLAB_STORE_USER | |
1257 | * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) | |
1258 | * D. Padding to reach required alignment boundary or at minimum | |
1259 | * one word if debugging is on to be able to detect writes | |
1260 | * before the word boundary. | |
1261 | * | |
1262 | * Padding is done using 0x5a (POISON_INUSE) | |
1263 | * | |
1264 | * object + s->size | |
1265 | * Nothing is used beyond s->size. | |
1266 | * | |
1267 | * If slabcaches are merged then the object_size and inuse boundaries are mostly | |
1268 | * ignored. And therefore no slab options that rely on these boundaries | |
1269 | * may be used with merged slabcaches. | |
1270 | */ | |
1271 | ||
1272 | static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) | |
1273 | { | |
1274 | unsigned long off = get_info_end(s); /* The end of info */ | |
1275 | ||
1276 | if (s->flags & SLAB_STORE_USER) { | |
1277 | /* We also have user information there */ | |
1278 | off += 2 * sizeof(struct track); | |
1279 | ||
1280 | if (s->flags & SLAB_KMALLOC) | |
1281 | off += sizeof(unsigned int); | |
1282 | } | |
1283 | ||
1284 | off += kasan_metadata_size(s, false); | |
1285 | ||
1286 | if (size_from_object(s) == off) | |
1287 | return 1; | |
1288 | ||
1289 | return check_bytes_and_report(s, slab, p, "Object padding", | |
1290 | p + off, POISON_INUSE, size_from_object(s) - off, true); | |
1291 | } | |
1292 | ||
1293 | /* Check the pad bytes at the end of a slab page */ | |
1294 | static pad_check_attributes void | |
1295 | slab_pad_check(struct kmem_cache *s, struct slab *slab) | |
1296 | { | |
1297 | u8 *start; | |
1298 | u8 *fault; | |
1299 | u8 *end; | |
1300 | u8 *pad; | |
1301 | int length; | |
1302 | int remainder; | |
1303 | ||
1304 | if (!(s->flags & SLAB_POISON)) | |
1305 | return; | |
1306 | ||
1307 | start = slab_address(slab); | |
1308 | length = slab_size(slab); | |
1309 | end = start + length; | |
1310 | remainder = length % s->size; | |
1311 | if (!remainder) | |
1312 | return; | |
1313 | ||
1314 | pad = end - remainder; | |
1315 | metadata_access_enable(); | |
1316 | fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); | |
1317 | metadata_access_disable(); | |
1318 | if (!fault) | |
1319 | return; | |
1320 | while (end > fault && end[-1] == POISON_INUSE) | |
1321 | end--; | |
1322 | ||
1323 | slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu", | |
1324 | fault, end - 1, fault - start); | |
1325 | print_section(KERN_ERR, "Padding ", pad, remainder); | |
1326 | __slab_err(slab); | |
1327 | ||
1328 | restore_bytes(s, "slab padding", POISON_INUSE, fault, end); | |
1329 | } | |
1330 | ||
1331 | static int check_object(struct kmem_cache *s, struct slab *slab, | |
1332 | void *object, u8 val) | |
1333 | { | |
1334 | u8 *p = object; | |
1335 | u8 *endobject = object + s->object_size; | |
1336 | unsigned int orig_size, kasan_meta_size; | |
1337 | int ret = 1; | |
1338 | ||
1339 | if (s->flags & SLAB_RED_ZONE) { | |
1340 | if (!check_bytes_and_report(s, slab, object, "Left Redzone", | |
1341 | object - s->red_left_pad, val, s->red_left_pad, ret)) | |
1342 | ret = 0; | |
1343 | ||
1344 | if (!check_bytes_and_report(s, slab, object, "Right Redzone", | |
1345 | endobject, val, s->inuse - s->object_size, ret)) | |
1346 | ret = 0; | |
1347 | ||
1348 | if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { | |
1349 | orig_size = get_orig_size(s, object); | |
1350 | ||
1351 | if (s->object_size > orig_size && | |
1352 | !check_bytes_and_report(s, slab, object, | |
1353 | "kmalloc Redzone", p + orig_size, | |
1354 | val, s->object_size - orig_size, ret)) { | |
1355 | ret = 0; | |
1356 | } | |
1357 | } | |
1358 | } else { | |
1359 | if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { | |
1360 | if (!check_bytes_and_report(s, slab, p, "Alignment padding", | |
1361 | endobject, POISON_INUSE, | |
1362 | s->inuse - s->object_size, ret)) | |
1363 | ret = 0; | |
1364 | } | |
1365 | } | |
1366 | ||
1367 | if (s->flags & SLAB_POISON) { | |
1368 | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { | |
1369 | /* | |
1370 | * KASAN can save its free meta data inside of the | |
1371 | * object at offset 0. Thus, skip checking the part of | |
1372 | * the redzone that overlaps with the meta data. | |
1373 | */ | |
1374 | kasan_meta_size = kasan_metadata_size(s, true); | |
1375 | if (kasan_meta_size < s->object_size - 1 && | |
1376 | !check_bytes_and_report(s, slab, p, "Poison", | |
1377 | p + kasan_meta_size, POISON_FREE, | |
1378 | s->object_size - kasan_meta_size - 1, ret)) | |
1379 | ret = 0; | |
1380 | if (kasan_meta_size < s->object_size && | |
1381 | !check_bytes_and_report(s, slab, p, "End Poison", | |
1382 | p + s->object_size - 1, POISON_END, 1, ret)) | |
1383 | ret = 0; | |
1384 | } | |
1385 | /* | |
1386 | * check_pad_bytes cleans up on its own. | |
1387 | */ | |
1388 | if (!check_pad_bytes(s, slab, p)) | |
1389 | ret = 0; | |
1390 | } | |
1391 | ||
1392 | /* | |
1393 | * Cannot check freepointer while object is allocated if | |
1394 | * object and freepointer overlap. | |
1395 | */ | |
1396 | if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) && | |
1397 | !check_valid_pointer(s, slab, get_freepointer(s, p))) { | |
1398 | object_err(s, slab, p, "Freepointer corrupt"); | |
1399 | /* | |
1400 | * No choice but to zap it and thus lose the remainder | |
1401 | * of the free objects in this slab. May cause | |
1402 | * another error because the object count is now wrong. | |
1403 | */ | |
1404 | set_freepointer(s, p, NULL); | |
1405 | ret = 0; | |
1406 | } | |
1407 | ||
1408 | return ret; | |
1409 | } | |
1410 | ||
1411 | static int check_slab(struct kmem_cache *s, struct slab *slab) | |
1412 | { | |
1413 | int maxobj; | |
1414 | ||
1415 | if (!folio_test_slab(slab_folio(slab))) { | |
1416 | slab_err(s, slab, "Not a valid slab page"); | |
1417 | return 0; | |
1418 | } | |
1419 | ||
1420 | maxobj = order_objects(slab_order(slab), s->size); | |
1421 | if (slab->objects > maxobj) { | |
1422 | slab_err(s, slab, "objects %u > max %u", | |
1423 | slab->objects, maxobj); | |
1424 | return 0; | |
1425 | } | |
1426 | if (slab->inuse > slab->objects) { | |
1427 | slab_err(s, slab, "inuse %u > max %u", | |
1428 | slab->inuse, slab->objects); | |
1429 | return 0; | |
1430 | } | |
1431 | if (slab->frozen) { | |
1432 | slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed"); | |
1433 | return 0; | |
1434 | } | |
1435 | ||
1436 | /* Slab_pad_check fixes things up after itself */ | |
1437 | slab_pad_check(s, slab); | |
1438 | return 1; | |
1439 | } | |
1440 | ||
1441 | /* | |
1442 | * Determine if a certain object in a slab is on the freelist. Must hold the | |
1443 | * slab lock to guarantee that the chains are in a consistent state. | |
1444 | */ | |
1445 | static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search) | |
1446 | { | |
1447 | int nr = 0; | |
1448 | void *fp; | |
1449 | void *object = NULL; | |
1450 | int max_objects; | |
1451 | ||
1452 | fp = slab->freelist; | |
1453 | while (fp && nr <= slab->objects) { | |
1454 | if (fp == search) | |
1455 | return true; | |
1456 | if (!check_valid_pointer(s, slab, fp)) { | |
1457 | if (object) { | |
1458 | object_err(s, slab, object, | |
1459 | "Freechain corrupt"); | |
1460 | set_freepointer(s, object, NULL); | |
1461 | break; | |
1462 | } else { | |
1463 | slab_err(s, slab, "Freepointer corrupt"); | |
1464 | slab->freelist = NULL; | |
1465 | slab->inuse = slab->objects; | |
1466 | slab_fix(s, "Freelist cleared"); | |
1467 | return false; | |
1468 | } | |
1469 | } | |
1470 | object = fp; | |
1471 | fp = get_freepointer(s, object); | |
1472 | nr++; | |
1473 | } | |
1474 | ||
1475 | if (nr > slab->objects) { | |
1476 | slab_err(s, slab, "Freelist cycle detected"); | |
1477 | slab->freelist = NULL; | |
1478 | slab->inuse = slab->objects; | |
1479 | slab_fix(s, "Freelist cleared"); | |
1480 | return false; | |
1481 | } | |
1482 | ||
1483 | max_objects = order_objects(slab_order(slab), s->size); | |
1484 | if (max_objects > MAX_OBJS_PER_PAGE) | |
1485 | max_objects = MAX_OBJS_PER_PAGE; | |
1486 | ||
1487 | if (slab->objects != max_objects) { | |
1488 | slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", | |
1489 | slab->objects, max_objects); | |
1490 | slab->objects = max_objects; | |
1491 | slab_fix(s, "Number of objects adjusted"); | |
1492 | } | |
1493 | if (slab->inuse != slab->objects - nr) { | |
1494 | slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", | |
1495 | slab->inuse, slab->objects - nr); | |
1496 | slab->inuse = slab->objects - nr; | |
1497 | slab_fix(s, "Object count adjusted"); | |
1498 | } | |
1499 | return search == NULL; | |
1500 | } | |
1501 | ||
1502 | static void trace(struct kmem_cache *s, struct slab *slab, void *object, | |
1503 | int alloc) | |
1504 | { | |
1505 | if (s->flags & SLAB_TRACE) { | |
1506 | pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", | |
1507 | s->name, | |
1508 | alloc ? "alloc" : "free", | |
1509 | object, slab->inuse, | |
1510 | slab->freelist); | |
1511 | ||
1512 | if (!alloc) | |
1513 | print_section(KERN_INFO, "Object ", (void *)object, | |
1514 | s->object_size); | |
1515 | ||
1516 | dump_stack(); | |
1517 | } | |
1518 | } | |
1519 | ||
1520 | /* | |
1521 | * Tracking of fully allocated slabs for debugging purposes. | |
1522 | */ | |
1523 | static void add_full(struct kmem_cache *s, | |
1524 | struct kmem_cache_node *n, struct slab *slab) | |
1525 | { | |
1526 | if (!(s->flags & SLAB_STORE_USER)) | |
1527 | return; | |
1528 | ||
1529 | lockdep_assert_held(&n->list_lock); | |
1530 | list_add(&slab->slab_list, &n->full); | |
1531 | } | |
1532 | ||
1533 | static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) | |
1534 | { | |
1535 | if (!(s->flags & SLAB_STORE_USER)) | |
1536 | return; | |
1537 | ||
1538 | lockdep_assert_held(&n->list_lock); | |
1539 | list_del(&slab->slab_list); | |
1540 | } | |
1541 | ||
1542 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) | |
1543 | { | |
1544 | return atomic_long_read(&n->nr_slabs); | |
1545 | } | |
1546 | ||
1547 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) | |
1548 | { | |
1549 | struct kmem_cache_node *n = get_node(s, node); | |
1550 | ||
1551 | atomic_long_inc(&n->nr_slabs); | |
1552 | atomic_long_add(objects, &n->total_objects); | |
1553 | } | |
1554 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) | |
1555 | { | |
1556 | struct kmem_cache_node *n = get_node(s, node); | |
1557 | ||
1558 | atomic_long_dec(&n->nr_slabs); | |
1559 | atomic_long_sub(objects, &n->total_objects); | |
1560 | } | |
1561 | ||
1562 | /* Object debug checks for alloc/free paths */ | |
1563 | static void setup_object_debug(struct kmem_cache *s, void *object) | |
1564 | { | |
1565 | if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) | |
1566 | return; | |
1567 | ||
1568 | init_object(s, object, SLUB_RED_INACTIVE); | |
1569 | init_tracking(s, object); | |
1570 | } | |
1571 | ||
1572 | static | |
1573 | void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) | |
1574 | { | |
1575 | if (!kmem_cache_debug_flags(s, SLAB_POISON)) | |
1576 | return; | |
1577 | ||
1578 | metadata_access_enable(); | |
1579 | memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); | |
1580 | metadata_access_disable(); | |
1581 | } | |
1582 | ||
1583 | static inline int alloc_consistency_checks(struct kmem_cache *s, | |
1584 | struct slab *slab, void *object) | |
1585 | { | |
1586 | if (!check_slab(s, slab)) | |
1587 | return 0; | |
1588 | ||
1589 | if (!check_valid_pointer(s, slab, object)) { | |
1590 | object_err(s, slab, object, "Freelist Pointer check fails"); | |
1591 | return 0; | |
1592 | } | |
1593 | ||
1594 | if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) | |
1595 | return 0; | |
1596 | ||
1597 | return 1; | |
1598 | } | |
1599 | ||
1600 | static noinline bool alloc_debug_processing(struct kmem_cache *s, | |
1601 | struct slab *slab, void *object, int orig_size) | |
1602 | { | |
1603 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
1604 | if (!alloc_consistency_checks(s, slab, object)) | |
1605 | goto bad; | |
1606 | } | |
1607 | ||
1608 | /* Success. Perform special debug activities for allocs */ | |
1609 | trace(s, slab, object, 1); | |
1610 | set_orig_size(s, object, orig_size); | |
1611 | init_object(s, object, SLUB_RED_ACTIVE); | |
1612 | return true; | |
1613 | ||
1614 | bad: | |
1615 | if (folio_test_slab(slab_folio(slab))) { | |
1616 | /* | |
1617 | * If this is a slab page then lets do the best we can | |
1618 | * to avoid issues in the future. Marking all objects | |
1619 | * as used avoids touching the remaining objects. | |
1620 | */ | |
1621 | slab_fix(s, "Marking all objects used"); | |
1622 | slab->inuse = slab->objects; | |
1623 | slab->freelist = NULL; | |
1624 | slab->frozen = 1; /* mark consistency-failed slab as frozen */ | |
1625 | } | |
1626 | return false; | |
1627 | } | |
1628 | ||
1629 | static inline int free_consistency_checks(struct kmem_cache *s, | |
1630 | struct slab *slab, void *object, unsigned long addr) | |
1631 | { | |
1632 | if (!check_valid_pointer(s, slab, object)) { | |
1633 | slab_err(s, slab, "Invalid object pointer 0x%p", object); | |
1634 | return 0; | |
1635 | } | |
1636 | ||
1637 | if (on_freelist(s, slab, object)) { | |
1638 | object_err(s, slab, object, "Object already free"); | |
1639 | return 0; | |
1640 | } | |
1641 | ||
1642 | if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) | |
1643 | return 0; | |
1644 | ||
1645 | if (unlikely(s != slab->slab_cache)) { | |
1646 | if (!folio_test_slab(slab_folio(slab))) { | |
1647 | slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", | |
1648 | object); | |
1649 | } else if (!slab->slab_cache) { | |
1650 | slab_err(NULL, slab, "No slab cache for object 0x%p", | |
1651 | object); | |
1652 | } else { | |
1653 | object_err(s, slab, object, | |
1654 | "page slab pointer corrupt."); | |
1655 | } | |
1656 | return 0; | |
1657 | } | |
1658 | return 1; | |
1659 | } | |
1660 | ||
1661 | /* | |
1662 | * Parse a block of slab_debug options. Blocks are delimited by ';' | |
1663 | * | |
1664 | * @str: start of block | |
1665 | * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified | |
1666 | * @slabs: return start of list of slabs, or NULL when there's no list | |
1667 | * @init: assume this is initial parsing and not per-kmem-create parsing | |
1668 | * | |
1669 | * returns the start of next block if there's any, or NULL | |
1670 | */ | |
1671 | static char * | |
1672 | parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) | |
1673 | { | |
1674 | bool higher_order_disable = false; | |
1675 | ||
1676 | /* Skip any completely empty blocks */ | |
1677 | while (*str && *str == ';') | |
1678 | str++; | |
1679 | ||
1680 | if (*str == ',') { | |
1681 | /* | |
1682 | * No options but restriction on slabs. This means full | |
1683 | * debugging for slabs matching a pattern. | |
1684 | */ | |
1685 | *flags = DEBUG_DEFAULT_FLAGS; | |
1686 | goto check_slabs; | |
1687 | } | |
1688 | *flags = 0; | |
1689 | ||
1690 | /* Determine which debug features should be switched on */ | |
1691 | for (; *str && *str != ',' && *str != ';'; str++) { | |
1692 | switch (tolower(*str)) { | |
1693 | case '-': | |
1694 | *flags = 0; | |
1695 | break; | |
1696 | case 'f': | |
1697 | *flags |= SLAB_CONSISTENCY_CHECKS; | |
1698 | break; | |
1699 | case 'z': | |
1700 | *flags |= SLAB_RED_ZONE; | |
1701 | break; | |
1702 | case 'p': | |
1703 | *flags |= SLAB_POISON; | |
1704 | break; | |
1705 | case 'u': | |
1706 | *flags |= SLAB_STORE_USER; | |
1707 | break; | |
1708 | case 't': | |
1709 | *flags |= SLAB_TRACE; | |
1710 | break; | |
1711 | case 'a': | |
1712 | *flags |= SLAB_FAILSLAB; | |
1713 | break; | |
1714 | case 'o': | |
1715 | /* | |
1716 | * Avoid enabling debugging on caches if its minimum | |
1717 | * order would increase as a result. | |
1718 | */ | |
1719 | higher_order_disable = true; | |
1720 | break; | |
1721 | default: | |
1722 | if (init) | |
1723 | pr_err("slab_debug option '%c' unknown. skipped\n", *str); | |
1724 | } | |
1725 | } | |
1726 | check_slabs: | |
1727 | if (*str == ',') | |
1728 | *slabs = ++str; | |
1729 | else | |
1730 | *slabs = NULL; | |
1731 | ||
1732 | /* Skip over the slab list */ | |
1733 | while (*str && *str != ';') | |
1734 | str++; | |
1735 | ||
1736 | /* Skip any completely empty blocks */ | |
1737 | while (*str && *str == ';') | |
1738 | str++; | |
1739 | ||
1740 | if (init && higher_order_disable) | |
1741 | disable_higher_order_debug = 1; | |
1742 | ||
1743 | if (*str) | |
1744 | return str; | |
1745 | else | |
1746 | return NULL; | |
1747 | } | |
1748 | ||
1749 | static int __init setup_slub_debug(char *str) | |
1750 | { | |
1751 | slab_flags_t flags; | |
1752 | slab_flags_t global_flags; | |
1753 | char *saved_str; | |
1754 | char *slab_list; | |
1755 | bool global_slub_debug_changed = false; | |
1756 | bool slab_list_specified = false; | |
1757 | ||
1758 | global_flags = DEBUG_DEFAULT_FLAGS; | |
1759 | if (*str++ != '=' || !*str) | |
1760 | /* | |
1761 | * No options specified. Switch on full debugging. | |
1762 | */ | |
1763 | goto out; | |
1764 | ||
1765 | saved_str = str; | |
1766 | while (str) { | |
1767 | str = parse_slub_debug_flags(str, &flags, &slab_list, true); | |
1768 | ||
1769 | if (!slab_list) { | |
1770 | global_flags = flags; | |
1771 | global_slub_debug_changed = true; | |
1772 | } else { | |
1773 | slab_list_specified = true; | |
1774 | if (flags & SLAB_STORE_USER) | |
1775 | stack_depot_request_early_init(); | |
1776 | } | |
1777 | } | |
1778 | ||
1779 | /* | |
1780 | * For backwards compatibility, a single list of flags with list of | |
1781 | * slabs means debugging is only changed for those slabs, so the global | |
1782 | * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending | |
1783 | * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as | |
1784 | * long as there is no option specifying flags without a slab list. | |
1785 | */ | |
1786 | if (slab_list_specified) { | |
1787 | if (!global_slub_debug_changed) | |
1788 | global_flags = slub_debug; | |
1789 | slub_debug_string = saved_str; | |
1790 | } | |
1791 | out: | |
1792 | slub_debug = global_flags; | |
1793 | if (slub_debug & SLAB_STORE_USER) | |
1794 | stack_depot_request_early_init(); | |
1795 | if (slub_debug != 0 || slub_debug_string) | |
1796 | static_branch_enable(&slub_debug_enabled); | |
1797 | else | |
1798 | static_branch_disable(&slub_debug_enabled); | |
1799 | if ((static_branch_unlikely(&init_on_alloc) || | |
1800 | static_branch_unlikely(&init_on_free)) && | |
1801 | (slub_debug & SLAB_POISON)) | |
1802 | pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); | |
1803 | return 1; | |
1804 | } | |
1805 | ||
1806 | __setup("slab_debug", setup_slub_debug); | |
1807 | __setup_param("slub_debug", slub_debug, setup_slub_debug, 0); | |
1808 | ||
1809 | /* | |
1810 | * kmem_cache_flags - apply debugging options to the cache | |
1811 | * @flags: flags to set | |
1812 | * @name: name of the cache | |
1813 | * | |
1814 | * Debug option(s) are applied to @flags. In addition to the debug | |
1815 | * option(s), if a slab name (or multiple) is specified i.e. | |
1816 | * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... | |
1817 | * then only the select slabs will receive the debug option(s). | |
1818 | */ | |
1819 | slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) | |
1820 | { | |
1821 | char *iter; | |
1822 | size_t len; | |
1823 | char *next_block; | |
1824 | slab_flags_t block_flags; | |
1825 | slab_flags_t slub_debug_local = slub_debug; | |
1826 | ||
1827 | if (flags & SLAB_NO_USER_FLAGS) | |
1828 | return flags; | |
1829 | ||
1830 | /* | |
1831 | * If the slab cache is for debugging (e.g. kmemleak) then | |
1832 | * don't store user (stack trace) information by default, | |
1833 | * but let the user enable it via the command line below. | |
1834 | */ | |
1835 | if (flags & SLAB_NOLEAKTRACE) | |
1836 | slub_debug_local &= ~SLAB_STORE_USER; | |
1837 | ||
1838 | len = strlen(name); | |
1839 | next_block = slub_debug_string; | |
1840 | /* Go through all blocks of debug options, see if any matches our slab's name */ | |
1841 | while (next_block) { | |
1842 | next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); | |
1843 | if (!iter) | |
1844 | continue; | |
1845 | /* Found a block that has a slab list, search it */ | |
1846 | while (*iter) { | |
1847 | char *end, *glob; | |
1848 | size_t cmplen; | |
1849 | ||
1850 | end = strchrnul(iter, ','); | |
1851 | if (next_block && next_block < end) | |
1852 | end = next_block - 1; | |
1853 | ||
1854 | glob = strnchr(iter, end - iter, '*'); | |
1855 | if (glob) | |
1856 | cmplen = glob - iter; | |
1857 | else | |
1858 | cmplen = max_t(size_t, len, (end - iter)); | |
1859 | ||
1860 | if (!strncmp(name, iter, cmplen)) { | |
1861 | flags |= block_flags; | |
1862 | return flags; | |
1863 | } | |
1864 | ||
1865 | if (!*end || *end == ';') | |
1866 | break; | |
1867 | iter = end + 1; | |
1868 | } | |
1869 | } | |
1870 | ||
1871 | return flags | slub_debug_local; | |
1872 | } | |
1873 | #else /* !CONFIG_SLUB_DEBUG */ | |
1874 | static inline void setup_object_debug(struct kmem_cache *s, void *object) {} | |
1875 | static inline | |
1876 | void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} | |
1877 | ||
1878 | static inline bool alloc_debug_processing(struct kmem_cache *s, | |
1879 | struct slab *slab, void *object, int orig_size) { return true; } | |
1880 | ||
1881 | static inline bool free_debug_processing(struct kmem_cache *s, | |
1882 | struct slab *slab, void *head, void *tail, int *bulk_cnt, | |
1883 | unsigned long addr, depot_stack_handle_t handle) { return true; } | |
1884 | ||
1885 | static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} | |
1886 | static inline int check_object(struct kmem_cache *s, struct slab *slab, | |
1887 | void *object, u8 val) { return 1; } | |
1888 | static inline depot_stack_handle_t set_track_prepare(void) { return 0; } | |
1889 | static inline void set_track(struct kmem_cache *s, void *object, | |
1890 | enum track_item alloc, unsigned long addr) {} | |
1891 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, | |
1892 | struct slab *slab) {} | |
1893 | static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, | |
1894 | struct slab *slab) {} | |
1895 | slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) | |
1896 | { | |
1897 | return flags; | |
1898 | } | |
1899 | #define slub_debug 0 | |
1900 | ||
1901 | #define disable_higher_order_debug 0 | |
1902 | ||
1903 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) | |
1904 | { return 0; } | |
1905 | static inline void inc_slabs_node(struct kmem_cache *s, int node, | |
1906 | int objects) {} | |
1907 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | |
1908 | int objects) {} | |
1909 | #ifndef CONFIG_SLUB_TINY | |
1910 | static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, | |
1911 | void **freelist, void *nextfree) | |
1912 | { | |
1913 | return false; | |
1914 | } | |
1915 | #endif | |
1916 | #endif /* CONFIG_SLUB_DEBUG */ | |
1917 | ||
1918 | #ifdef CONFIG_SLAB_OBJ_EXT | |
1919 | ||
1920 | #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG | |
1921 | ||
1922 | static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) | |
1923 | { | |
1924 | struct slabobj_ext *slab_exts; | |
1925 | struct slab *obj_exts_slab; | |
1926 | ||
1927 | obj_exts_slab = virt_to_slab(obj_exts); | |
1928 | slab_exts = slab_obj_exts(obj_exts_slab); | |
1929 | if (slab_exts) { | |
1930 | unsigned int offs = obj_to_index(obj_exts_slab->slab_cache, | |
1931 | obj_exts_slab, obj_exts); | |
1932 | /* codetag should be NULL */ | |
1933 | WARN_ON(slab_exts[offs].ref.ct); | |
1934 | set_codetag_empty(&slab_exts[offs].ref); | |
1935 | } | |
1936 | } | |
1937 | ||
1938 | static inline void mark_failed_objexts_alloc(struct slab *slab) | |
1939 | { | |
1940 | slab->obj_exts = OBJEXTS_ALLOC_FAIL; | |
1941 | } | |
1942 | ||
1943 | static inline void handle_failed_objexts_alloc(unsigned long obj_exts, | |
1944 | struct slabobj_ext *vec, unsigned int objects) | |
1945 | { | |
1946 | /* | |
1947 | * If vector previously failed to allocate then we have live | |
1948 | * objects with no tag reference. Mark all references in this | |
1949 | * vector as empty to avoid warnings later on. | |
1950 | */ | |
1951 | if (obj_exts & OBJEXTS_ALLOC_FAIL) { | |
1952 | unsigned int i; | |
1953 | ||
1954 | for (i = 0; i < objects; i++) | |
1955 | set_codetag_empty(&vec[i].ref); | |
1956 | } | |
1957 | } | |
1958 | ||
1959 | #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ | |
1960 | ||
1961 | static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {} | |
1962 | static inline void mark_failed_objexts_alloc(struct slab *slab) {} | |
1963 | static inline void handle_failed_objexts_alloc(unsigned long obj_exts, | |
1964 | struct slabobj_ext *vec, unsigned int objects) {} | |
1965 | ||
1966 | #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ | |
1967 | ||
1968 | /* | |
1969 | * The allocated objcg pointers array is not accounted directly. | |
1970 | * Moreover, it should not come from DMA buffer and is not readily | |
1971 | * reclaimable. So those GFP bits should be masked off. | |
1972 | */ | |
1973 | #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ | |
1974 | __GFP_ACCOUNT | __GFP_NOFAIL) | |
1975 | ||
1976 | static inline void init_slab_obj_exts(struct slab *slab) | |
1977 | { | |
1978 | slab->obj_exts = 0; | |
1979 | } | |
1980 | ||
1981 | int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, | |
1982 | gfp_t gfp, bool new_slab) | |
1983 | { | |
1984 | unsigned int objects = objs_per_slab(s, slab); | |
1985 | unsigned long new_exts; | |
1986 | unsigned long old_exts; | |
1987 | struct slabobj_ext *vec; | |
1988 | ||
1989 | gfp &= ~OBJCGS_CLEAR_MASK; | |
1990 | /* Prevent recursive extension vector allocation */ | |
1991 | gfp |= __GFP_NO_OBJ_EXT; | |
1992 | vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp, | |
1993 | slab_nid(slab)); | |
1994 | if (!vec) { | |
1995 | /* Mark vectors which failed to allocate */ | |
1996 | if (new_slab) | |
1997 | mark_failed_objexts_alloc(slab); | |
1998 | ||
1999 | return -ENOMEM; | |
2000 | } | |
2001 | ||
2002 | new_exts = (unsigned long)vec; | |
2003 | #ifdef CONFIG_MEMCG | |
2004 | new_exts |= MEMCG_DATA_OBJEXTS; | |
2005 | #endif | |
2006 | old_exts = READ_ONCE(slab->obj_exts); | |
2007 | handle_failed_objexts_alloc(old_exts, vec, objects); | |
2008 | if (new_slab) { | |
2009 | /* | |
2010 | * If the slab is brand new and nobody can yet access its | |
2011 | * obj_exts, no synchronization is required and obj_exts can | |
2012 | * be simply assigned. | |
2013 | */ | |
2014 | slab->obj_exts = new_exts; | |
2015 | } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) || | |
2016 | cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) { | |
2017 | /* | |
2018 | * If the slab is already in use, somebody can allocate and | |
2019 | * assign slabobj_exts in parallel. In this case the existing | |
2020 | * objcg vector should be reused. | |
2021 | */ | |
2022 | mark_objexts_empty(vec); | |
2023 | kfree(vec); | |
2024 | return 0; | |
2025 | } | |
2026 | ||
2027 | kmemleak_not_leak(vec); | |
2028 | return 0; | |
2029 | } | |
2030 | ||
2031 | static inline void free_slab_obj_exts(struct slab *slab) | |
2032 | { | |
2033 | struct slabobj_ext *obj_exts; | |
2034 | ||
2035 | obj_exts = slab_obj_exts(slab); | |
2036 | if (!obj_exts) | |
2037 | return; | |
2038 | ||
2039 | /* | |
2040 | * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its | |
2041 | * corresponding extension will be NULL. alloc_tag_sub() will throw a | |
2042 | * warning if slab has extensions but the extension of an object is | |
2043 | * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that | |
2044 | * the extension for obj_exts is expected to be NULL. | |
2045 | */ | |
2046 | mark_objexts_empty(obj_exts); | |
2047 | kfree(obj_exts); | |
2048 | slab->obj_exts = 0; | |
2049 | } | |
2050 | ||
2051 | #else /* CONFIG_SLAB_OBJ_EXT */ | |
2052 | ||
2053 | static inline void init_slab_obj_exts(struct slab *slab) | |
2054 | { | |
2055 | } | |
2056 | ||
2057 | static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, | |
2058 | gfp_t gfp, bool new_slab) | |
2059 | { | |
2060 | return 0; | |
2061 | } | |
2062 | ||
2063 | static inline void free_slab_obj_exts(struct slab *slab) | |
2064 | { | |
2065 | } | |
2066 | ||
2067 | #endif /* CONFIG_SLAB_OBJ_EXT */ | |
2068 | ||
2069 | #ifdef CONFIG_MEM_ALLOC_PROFILING | |
2070 | ||
2071 | static inline struct slabobj_ext * | |
2072 | prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p) | |
2073 | { | |
2074 | struct slab *slab; | |
2075 | ||
2076 | if (!p) | |
2077 | return NULL; | |
2078 | ||
2079 | if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) | |
2080 | return NULL; | |
2081 | ||
2082 | if (flags & __GFP_NO_OBJ_EXT) | |
2083 | return NULL; | |
2084 | ||
2085 | slab = virt_to_slab(p); | |
2086 | if (!slab_obj_exts(slab) && | |
2087 | alloc_slab_obj_exts(slab, s, flags, false)) { | |
2088 | pr_warn_once("%s, %s: Failed to create slab extension vector!\n", | |
2089 | __func__, s->name); | |
2090 | return NULL; | |
2091 | } | |
2092 | ||
2093 | return slab_obj_exts(slab) + obj_to_index(s, slab, p); | |
2094 | } | |
2095 | ||
2096 | /* Should be called only if mem_alloc_profiling_enabled() */ | |
2097 | static noinline void | |
2098 | __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) | |
2099 | { | |
2100 | struct slabobj_ext *obj_exts; | |
2101 | ||
2102 | obj_exts = prepare_slab_obj_exts_hook(s, flags, object); | |
2103 | /* | |
2104 | * Currently obj_exts is used only for allocation profiling. | |
2105 | * If other users appear then mem_alloc_profiling_enabled() | |
2106 | * check should be added before alloc_tag_add(). | |
2107 | */ | |
2108 | if (likely(obj_exts)) | |
2109 | alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size); | |
2110 | } | |
2111 | ||
2112 | static inline void | |
2113 | alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) | |
2114 | { | |
2115 | if (mem_alloc_profiling_enabled()) | |
2116 | __alloc_tagging_slab_alloc_hook(s, object, flags); | |
2117 | } | |
2118 | ||
2119 | /* Should be called only if mem_alloc_profiling_enabled() */ | |
2120 | static noinline void | |
2121 | __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, | |
2122 | int objects) | |
2123 | { | |
2124 | struct slabobj_ext *obj_exts; | |
2125 | int i; | |
2126 | ||
2127 | /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */ | |
2128 | if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) | |
2129 | return; | |
2130 | ||
2131 | obj_exts = slab_obj_exts(slab); | |
2132 | if (!obj_exts) | |
2133 | return; | |
2134 | ||
2135 | for (i = 0; i < objects; i++) { | |
2136 | unsigned int off = obj_to_index(s, slab, p[i]); | |
2137 | ||
2138 | alloc_tag_sub(&obj_exts[off].ref, s->size); | |
2139 | } | |
2140 | } | |
2141 | ||
2142 | static inline void | |
2143 | alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, | |
2144 | int objects) | |
2145 | { | |
2146 | if (mem_alloc_profiling_enabled()) | |
2147 | __alloc_tagging_slab_free_hook(s, slab, p, objects); | |
2148 | } | |
2149 | ||
2150 | #else /* CONFIG_MEM_ALLOC_PROFILING */ | |
2151 | ||
2152 | static inline void | |
2153 | alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) | |
2154 | { | |
2155 | } | |
2156 | ||
2157 | static inline void | |
2158 | alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, | |
2159 | int objects) | |
2160 | { | |
2161 | } | |
2162 | ||
2163 | #endif /* CONFIG_MEM_ALLOC_PROFILING */ | |
2164 | ||
2165 | ||
2166 | #ifdef CONFIG_MEMCG | |
2167 | ||
2168 | static void memcg_alloc_abort_single(struct kmem_cache *s, void *object); | |
2169 | ||
2170 | static __fastpath_inline | |
2171 | bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, | |
2172 | gfp_t flags, size_t size, void **p) | |
2173 | { | |
2174 | if (likely(!memcg_kmem_online())) | |
2175 | return true; | |
2176 | ||
2177 | if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) | |
2178 | return true; | |
2179 | ||
2180 | if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p))) | |
2181 | return true; | |
2182 | ||
2183 | if (likely(size == 1)) { | |
2184 | memcg_alloc_abort_single(s, *p); | |
2185 | *p = NULL; | |
2186 | } else { | |
2187 | kmem_cache_free_bulk(s, size, p); | |
2188 | } | |
2189 | ||
2190 | return false; | |
2191 | } | |
2192 | ||
2193 | static __fastpath_inline | |
2194 | void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, | |
2195 | int objects) | |
2196 | { | |
2197 | struct slabobj_ext *obj_exts; | |
2198 | ||
2199 | if (!memcg_kmem_online()) | |
2200 | return; | |
2201 | ||
2202 | obj_exts = slab_obj_exts(slab); | |
2203 | if (likely(!obj_exts)) | |
2204 | return; | |
2205 | ||
2206 | __memcg_slab_free_hook(s, slab, p, objects, obj_exts); | |
2207 | } | |
2208 | ||
2209 | static __fastpath_inline | |
2210 | bool memcg_slab_post_charge(void *p, gfp_t flags) | |
2211 | { | |
2212 | struct slabobj_ext *slab_exts; | |
2213 | struct kmem_cache *s; | |
2214 | struct folio *folio; | |
2215 | struct slab *slab; | |
2216 | unsigned long off; | |
2217 | ||
2218 | folio = virt_to_folio(p); | |
2219 | if (!folio_test_slab(folio)) { | |
2220 | int size; | |
2221 | ||
2222 | if (folio_memcg_kmem(folio)) | |
2223 | return true; | |
2224 | ||
2225 | if (__memcg_kmem_charge_page(folio_page(folio, 0), flags, | |
2226 | folio_order(folio))) | |
2227 | return false; | |
2228 | ||
2229 | /* | |
2230 | * This folio has already been accounted in the global stats but | |
2231 | * not in the memcg stats. So, subtract from the global and use | |
2232 | * the interface which adds to both global and memcg stats. | |
2233 | */ | |
2234 | size = folio_size(folio); | |
2235 | node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size); | |
2236 | lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size); | |
2237 | return true; | |
2238 | } | |
2239 | ||
2240 | slab = folio_slab(folio); | |
2241 | s = slab->slab_cache; | |
2242 | ||
2243 | /* | |
2244 | * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency | |
2245 | * of slab_obj_exts being allocated from the same slab and thus the slab | |
2246 | * becoming effectively unfreeable. | |
2247 | */ | |
2248 | if (is_kmalloc_normal(s)) | |
2249 | return true; | |
2250 | ||
2251 | /* Ignore already charged objects. */ | |
2252 | slab_exts = slab_obj_exts(slab); | |
2253 | if (slab_exts) { | |
2254 | off = obj_to_index(s, slab, p); | |
2255 | if (unlikely(slab_exts[off].objcg)) | |
2256 | return true; | |
2257 | } | |
2258 | ||
2259 | return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p); | |
2260 | } | |
2261 | ||
2262 | #else /* CONFIG_MEMCG */ | |
2263 | static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s, | |
2264 | struct list_lru *lru, | |
2265 | gfp_t flags, size_t size, | |
2266 | void **p) | |
2267 | { | |
2268 | return true; | |
2269 | } | |
2270 | ||
2271 | static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, | |
2272 | void **p, int objects) | |
2273 | { | |
2274 | } | |
2275 | ||
2276 | static inline bool memcg_slab_post_charge(void *p, gfp_t flags) | |
2277 | { | |
2278 | return true; | |
2279 | } | |
2280 | #endif /* CONFIG_MEMCG */ | |
2281 | ||
2282 | #ifdef CONFIG_SLUB_RCU_DEBUG | |
2283 | static void slab_free_after_rcu_debug(struct rcu_head *rcu_head); | |
2284 | ||
2285 | struct rcu_delayed_free { | |
2286 | struct rcu_head head; | |
2287 | void *object; | |
2288 | }; | |
2289 | #endif | |
2290 | ||
2291 | /* | |
2292 | * Hooks for other subsystems that check memory allocations. In a typical | |
2293 | * production configuration these hooks all should produce no code at all. | |
2294 | * | |
2295 | * Returns true if freeing of the object can proceed, false if its reuse | |
2296 | * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned | |
2297 | * to KFENCE. | |
2298 | */ | |
2299 | static __always_inline | |
2300 | bool slab_free_hook(struct kmem_cache *s, void *x, bool init, | |
2301 | bool after_rcu_delay) | |
2302 | { | |
2303 | /* Are the object contents still accessible? */ | |
2304 | bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay; | |
2305 | ||
2306 | kmemleak_free_recursive(x, s->flags); | |
2307 | kmsan_slab_free(s, x); | |
2308 | ||
2309 | debug_check_no_locks_freed(x, s->object_size); | |
2310 | ||
2311 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) | |
2312 | debug_check_no_obj_freed(x, s->object_size); | |
2313 | ||
2314 | /* Use KCSAN to help debug racy use-after-free. */ | |
2315 | if (!still_accessible) | |
2316 | __kcsan_check_access(x, s->object_size, | |
2317 | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); | |
2318 | ||
2319 | if (kfence_free(x)) | |
2320 | return false; | |
2321 | ||
2322 | /* | |
2323 | * Give KASAN a chance to notice an invalid free operation before we | |
2324 | * modify the object. | |
2325 | */ | |
2326 | if (kasan_slab_pre_free(s, x)) | |
2327 | return false; | |
2328 | ||
2329 | #ifdef CONFIG_SLUB_RCU_DEBUG | |
2330 | if (still_accessible) { | |
2331 | struct rcu_delayed_free *delayed_free; | |
2332 | ||
2333 | delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT); | |
2334 | if (delayed_free) { | |
2335 | /* | |
2336 | * Let KASAN track our call stack as a "related work | |
2337 | * creation", just like if the object had been freed | |
2338 | * normally via kfree_rcu(). | |
2339 | * We have to do this manually because the rcu_head is | |
2340 | * not located inside the object. | |
2341 | */ | |
2342 | kasan_record_aux_stack(x); | |
2343 | ||
2344 | delayed_free->object = x; | |
2345 | call_rcu(&delayed_free->head, slab_free_after_rcu_debug); | |
2346 | return false; | |
2347 | } | |
2348 | } | |
2349 | #endif /* CONFIG_SLUB_RCU_DEBUG */ | |
2350 | ||
2351 | /* | |
2352 | * As memory initialization might be integrated into KASAN, | |
2353 | * kasan_slab_free and initialization memset's must be | |
2354 | * kept together to avoid discrepancies in behavior. | |
2355 | * | |
2356 | * The initialization memset's clear the object and the metadata, | |
2357 | * but don't touch the SLAB redzone. | |
2358 | * | |
2359 | * The object's freepointer is also avoided if stored outside the | |
2360 | * object. | |
2361 | */ | |
2362 | if (unlikely(init)) { | |
2363 | int rsize; | |
2364 | unsigned int inuse, orig_size; | |
2365 | ||
2366 | inuse = get_info_end(s); | |
2367 | orig_size = get_orig_size(s, x); | |
2368 | if (!kasan_has_integrated_init()) | |
2369 | memset(kasan_reset_tag(x), 0, orig_size); | |
2370 | rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; | |
2371 | memset((char *)kasan_reset_tag(x) + inuse, 0, | |
2372 | s->size - inuse - rsize); | |
2373 | /* | |
2374 | * Restore orig_size, otherwize kmalloc redzone overwritten | |
2375 | * would be reported | |
2376 | */ | |
2377 | set_orig_size(s, x, orig_size); | |
2378 | ||
2379 | } | |
2380 | /* KASAN might put x into memory quarantine, delaying its reuse. */ | |
2381 | return !kasan_slab_free(s, x, init, still_accessible); | |
2382 | } | |
2383 | ||
2384 | static __fastpath_inline | |
2385 | bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail, | |
2386 | int *cnt) | |
2387 | { | |
2388 | ||
2389 | void *object; | |
2390 | void *next = *head; | |
2391 | void *old_tail = *tail; | |
2392 | bool init; | |
2393 | ||
2394 | if (is_kfence_address(next)) { | |
2395 | slab_free_hook(s, next, false, false); | |
2396 | return false; | |
2397 | } | |
2398 | ||
2399 | /* Head and tail of the reconstructed freelist */ | |
2400 | *head = NULL; | |
2401 | *tail = NULL; | |
2402 | ||
2403 | init = slab_want_init_on_free(s); | |
2404 | ||
2405 | do { | |
2406 | object = next; | |
2407 | next = get_freepointer(s, object); | |
2408 | ||
2409 | /* If object's reuse doesn't have to be delayed */ | |
2410 | if (likely(slab_free_hook(s, object, init, false))) { | |
2411 | /* Move object to the new freelist */ | |
2412 | set_freepointer(s, object, *head); | |
2413 | *head = object; | |
2414 | if (!*tail) | |
2415 | *tail = object; | |
2416 | } else { | |
2417 | /* | |
2418 | * Adjust the reconstructed freelist depth | |
2419 | * accordingly if object's reuse is delayed. | |
2420 | */ | |
2421 | --(*cnt); | |
2422 | } | |
2423 | } while (object != old_tail); | |
2424 | ||
2425 | return *head != NULL; | |
2426 | } | |
2427 | ||
2428 | static void *setup_object(struct kmem_cache *s, void *object) | |
2429 | { | |
2430 | setup_object_debug(s, object); | |
2431 | object = kasan_init_slab_obj(s, object); | |
2432 | if (unlikely(s->ctor)) { | |
2433 | kasan_unpoison_new_object(s, object); | |
2434 | s->ctor(object); | |
2435 | kasan_poison_new_object(s, object); | |
2436 | } | |
2437 | return object; | |
2438 | } | |
2439 | ||
2440 | /* | |
2441 | * Slab allocation and freeing | |
2442 | */ | |
2443 | static inline struct slab *alloc_slab_page(gfp_t flags, int node, | |
2444 | struct kmem_cache_order_objects oo) | |
2445 | { | |
2446 | struct folio *folio; | |
2447 | struct slab *slab; | |
2448 | unsigned int order = oo_order(oo); | |
2449 | ||
2450 | if (node == NUMA_NO_NODE) | |
2451 | folio = (struct folio *)alloc_frozen_pages(flags, order); | |
2452 | else | |
2453 | folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL); | |
2454 | ||
2455 | if (!folio) | |
2456 | return NULL; | |
2457 | ||
2458 | slab = folio_slab(folio); | |
2459 | __folio_set_slab(folio); | |
2460 | if (folio_is_pfmemalloc(folio)) | |
2461 | slab_set_pfmemalloc(slab); | |
2462 | ||
2463 | return slab; | |
2464 | } | |
2465 | ||
2466 | #ifdef CONFIG_SLAB_FREELIST_RANDOM | |
2467 | /* Pre-initialize the random sequence cache */ | |
2468 | static int init_cache_random_seq(struct kmem_cache *s) | |
2469 | { | |
2470 | unsigned int count = oo_objects(s->oo); | |
2471 | int err; | |
2472 | ||
2473 | /* Bailout if already initialised */ | |
2474 | if (s->random_seq) | |
2475 | return 0; | |
2476 | ||
2477 | err = cache_random_seq_create(s, count, GFP_KERNEL); | |
2478 | if (err) { | |
2479 | pr_err("SLUB: Unable to initialize free list for %s\n", | |
2480 | s->name); | |
2481 | return err; | |
2482 | } | |
2483 | ||
2484 | /* Transform to an offset on the set of pages */ | |
2485 | if (s->random_seq) { | |
2486 | unsigned int i; | |
2487 | ||
2488 | for (i = 0; i < count; i++) | |
2489 | s->random_seq[i] *= s->size; | |
2490 | } | |
2491 | return 0; | |
2492 | } | |
2493 | ||
2494 | /* Initialize each random sequence freelist per cache */ | |
2495 | static void __init init_freelist_randomization(void) | |
2496 | { | |
2497 | struct kmem_cache *s; | |
2498 | ||
2499 | mutex_lock(&slab_mutex); | |
2500 | ||
2501 | list_for_each_entry(s, &slab_caches, list) | |
2502 | init_cache_random_seq(s); | |
2503 | ||
2504 | mutex_unlock(&slab_mutex); | |
2505 | } | |
2506 | ||
2507 | /* Get the next entry on the pre-computed freelist randomized */ | |
2508 | static void *next_freelist_entry(struct kmem_cache *s, | |
2509 | unsigned long *pos, void *start, | |
2510 | unsigned long page_limit, | |
2511 | unsigned long freelist_count) | |
2512 | { | |
2513 | unsigned int idx; | |
2514 | ||
2515 | /* | |
2516 | * If the target page allocation failed, the number of objects on the | |
2517 | * page might be smaller than the usual size defined by the cache. | |
2518 | */ | |
2519 | do { | |
2520 | idx = s->random_seq[*pos]; | |
2521 | *pos += 1; | |
2522 | if (*pos >= freelist_count) | |
2523 | *pos = 0; | |
2524 | } while (unlikely(idx >= page_limit)); | |
2525 | ||
2526 | return (char *)start + idx; | |
2527 | } | |
2528 | ||
2529 | /* Shuffle the single linked freelist based on a random pre-computed sequence */ | |
2530 | static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) | |
2531 | { | |
2532 | void *start; | |
2533 | void *cur; | |
2534 | void *next; | |
2535 | unsigned long idx, pos, page_limit, freelist_count; | |
2536 | ||
2537 | if (slab->objects < 2 || !s->random_seq) | |
2538 | return false; | |
2539 | ||
2540 | freelist_count = oo_objects(s->oo); | |
2541 | pos = get_random_u32_below(freelist_count); | |
2542 | ||
2543 | page_limit = slab->objects * s->size; | |
2544 | start = fixup_red_left(s, slab_address(slab)); | |
2545 | ||
2546 | /* First entry is used as the base of the freelist */ | |
2547 | cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); | |
2548 | cur = setup_object(s, cur); | |
2549 | slab->freelist = cur; | |
2550 | ||
2551 | for (idx = 1; idx < slab->objects; idx++) { | |
2552 | next = next_freelist_entry(s, &pos, start, page_limit, | |
2553 | freelist_count); | |
2554 | next = setup_object(s, next); | |
2555 | set_freepointer(s, cur, next); | |
2556 | cur = next; | |
2557 | } | |
2558 | set_freepointer(s, cur, NULL); | |
2559 | ||
2560 | return true; | |
2561 | } | |
2562 | #else | |
2563 | static inline int init_cache_random_seq(struct kmem_cache *s) | |
2564 | { | |
2565 | return 0; | |
2566 | } | |
2567 | static inline void init_freelist_randomization(void) { } | |
2568 | static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) | |
2569 | { | |
2570 | return false; | |
2571 | } | |
2572 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
2573 | ||
2574 | static __always_inline void account_slab(struct slab *slab, int order, | |
2575 | struct kmem_cache *s, gfp_t gfp) | |
2576 | { | |
2577 | if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) | |
2578 | alloc_slab_obj_exts(slab, s, gfp, true); | |
2579 | ||
2580 | mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), | |
2581 | PAGE_SIZE << order); | |
2582 | } | |
2583 | ||
2584 | static __always_inline void unaccount_slab(struct slab *slab, int order, | |
2585 | struct kmem_cache *s) | |
2586 | { | |
2587 | /* | |
2588 | * The slab object extensions should now be freed regardless of | |
2589 | * whether mem_alloc_profiling_enabled() or not because profiling | |
2590 | * might have been disabled after slab->obj_exts got allocated. | |
2591 | */ | |
2592 | free_slab_obj_exts(slab); | |
2593 | ||
2594 | mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), | |
2595 | -(PAGE_SIZE << order)); | |
2596 | } | |
2597 | ||
2598 | static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) | |
2599 | { | |
2600 | struct slab *slab; | |
2601 | struct kmem_cache_order_objects oo = s->oo; | |
2602 | gfp_t alloc_gfp; | |
2603 | void *start, *p, *next; | |
2604 | int idx; | |
2605 | bool shuffle; | |
2606 | ||
2607 | flags &= gfp_allowed_mask; | |
2608 | ||
2609 | flags |= s->allocflags; | |
2610 | ||
2611 | /* | |
2612 | * Let the initial higher-order allocation fail under memory pressure | |
2613 | * so we fall-back to the minimum order allocation. | |
2614 | */ | |
2615 | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | |
2616 | if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) | |
2617 | alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; | |
2618 | ||
2619 | slab = alloc_slab_page(alloc_gfp, node, oo); | |
2620 | if (unlikely(!slab)) { | |
2621 | oo = s->min; | |
2622 | alloc_gfp = flags; | |
2623 | /* | |
2624 | * Allocation may have failed due to fragmentation. | |
2625 | * Try a lower order alloc if possible | |
2626 | */ | |
2627 | slab = alloc_slab_page(alloc_gfp, node, oo); | |
2628 | if (unlikely(!slab)) | |
2629 | return NULL; | |
2630 | stat(s, ORDER_FALLBACK); | |
2631 | } | |
2632 | ||
2633 | slab->objects = oo_objects(oo); | |
2634 | slab->inuse = 0; | |
2635 | slab->frozen = 0; | |
2636 | init_slab_obj_exts(slab); | |
2637 | ||
2638 | account_slab(slab, oo_order(oo), s, flags); | |
2639 | ||
2640 | slab->slab_cache = s; | |
2641 | ||
2642 | kasan_poison_slab(slab); | |
2643 | ||
2644 | start = slab_address(slab); | |
2645 | ||
2646 | setup_slab_debug(s, slab, start); | |
2647 | ||
2648 | shuffle = shuffle_freelist(s, slab); | |
2649 | ||
2650 | if (!shuffle) { | |
2651 | start = fixup_red_left(s, start); | |
2652 | start = setup_object(s, start); | |
2653 | slab->freelist = start; | |
2654 | for (idx = 0, p = start; idx < slab->objects - 1; idx++) { | |
2655 | next = p + s->size; | |
2656 | next = setup_object(s, next); | |
2657 | set_freepointer(s, p, next); | |
2658 | p = next; | |
2659 | } | |
2660 | set_freepointer(s, p, NULL); | |
2661 | } | |
2662 | ||
2663 | return slab; | |
2664 | } | |
2665 | ||
2666 | static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) | |
2667 | { | |
2668 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) | |
2669 | flags = kmalloc_fix_flags(flags); | |
2670 | ||
2671 | WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); | |
2672 | ||
2673 | return allocate_slab(s, | |
2674 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
2675 | } | |
2676 | ||
2677 | static void __free_slab(struct kmem_cache *s, struct slab *slab) | |
2678 | { | |
2679 | struct folio *folio = slab_folio(slab); | |
2680 | int order = folio_order(folio); | |
2681 | int pages = 1 << order; | |
2682 | ||
2683 | __slab_clear_pfmemalloc(slab); | |
2684 | folio->mapping = NULL; | |
2685 | __folio_clear_slab(folio); | |
2686 | mm_account_reclaimed_pages(pages); | |
2687 | unaccount_slab(slab, order, s); | |
2688 | free_frozen_pages(&folio->page, order); | |
2689 | } | |
2690 | ||
2691 | static void rcu_free_slab(struct rcu_head *h) | |
2692 | { | |
2693 | struct slab *slab = container_of(h, struct slab, rcu_head); | |
2694 | ||
2695 | __free_slab(slab->slab_cache, slab); | |
2696 | } | |
2697 | ||
2698 | static void free_slab(struct kmem_cache *s, struct slab *slab) | |
2699 | { | |
2700 | if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { | |
2701 | void *p; | |
2702 | ||
2703 | slab_pad_check(s, slab); | |
2704 | for_each_object(p, s, slab_address(slab), slab->objects) | |
2705 | check_object(s, slab, p, SLUB_RED_INACTIVE); | |
2706 | } | |
2707 | ||
2708 | if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) | |
2709 | call_rcu(&slab->rcu_head, rcu_free_slab); | |
2710 | else | |
2711 | __free_slab(s, slab); | |
2712 | } | |
2713 | ||
2714 | static void discard_slab(struct kmem_cache *s, struct slab *slab) | |
2715 | { | |
2716 | dec_slabs_node(s, slab_nid(slab), slab->objects); | |
2717 | free_slab(s, slab); | |
2718 | } | |
2719 | ||
2720 | /* | |
2721 | * SLUB reuses PG_workingset bit to keep track of whether it's on | |
2722 | * the per-node partial list. | |
2723 | */ | |
2724 | static inline bool slab_test_node_partial(const struct slab *slab) | |
2725 | { | |
2726 | return folio_test_workingset(slab_folio(slab)); | |
2727 | } | |
2728 | ||
2729 | static inline void slab_set_node_partial(struct slab *slab) | |
2730 | { | |
2731 | set_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); | |
2732 | } | |
2733 | ||
2734 | static inline void slab_clear_node_partial(struct slab *slab) | |
2735 | { | |
2736 | clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); | |
2737 | } | |
2738 | ||
2739 | /* | |
2740 | * Management of partially allocated slabs. | |
2741 | */ | |
2742 | static inline void | |
2743 | __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) | |
2744 | { | |
2745 | n->nr_partial++; | |
2746 | if (tail == DEACTIVATE_TO_TAIL) | |
2747 | list_add_tail(&slab->slab_list, &n->partial); | |
2748 | else | |
2749 | list_add(&slab->slab_list, &n->partial); | |
2750 | slab_set_node_partial(slab); | |
2751 | } | |
2752 | ||
2753 | static inline void add_partial(struct kmem_cache_node *n, | |
2754 | struct slab *slab, int tail) | |
2755 | { | |
2756 | lockdep_assert_held(&n->list_lock); | |
2757 | __add_partial(n, slab, tail); | |
2758 | } | |
2759 | ||
2760 | static inline void remove_partial(struct kmem_cache_node *n, | |
2761 | struct slab *slab) | |
2762 | { | |
2763 | lockdep_assert_held(&n->list_lock); | |
2764 | list_del(&slab->slab_list); | |
2765 | slab_clear_node_partial(slab); | |
2766 | n->nr_partial--; | |
2767 | } | |
2768 | ||
2769 | /* | |
2770 | * Called only for kmem_cache_debug() caches instead of remove_partial(), with a | |
2771 | * slab from the n->partial list. Remove only a single object from the slab, do | |
2772 | * the alloc_debug_processing() checks and leave the slab on the list, or move | |
2773 | * it to full list if it was the last free object. | |
2774 | */ | |
2775 | static void *alloc_single_from_partial(struct kmem_cache *s, | |
2776 | struct kmem_cache_node *n, struct slab *slab, int orig_size) | |
2777 | { | |
2778 | void *object; | |
2779 | ||
2780 | lockdep_assert_held(&n->list_lock); | |
2781 | ||
2782 | object = slab->freelist; | |
2783 | slab->freelist = get_freepointer(s, object); | |
2784 | slab->inuse++; | |
2785 | ||
2786 | if (!alloc_debug_processing(s, slab, object, orig_size)) { | |
2787 | if (folio_test_slab(slab_folio(slab))) | |
2788 | remove_partial(n, slab); | |
2789 | return NULL; | |
2790 | } | |
2791 | ||
2792 | if (slab->inuse == slab->objects) { | |
2793 | remove_partial(n, slab); | |
2794 | add_full(s, n, slab); | |
2795 | } | |
2796 | ||
2797 | return object; | |
2798 | } | |
2799 | ||
2800 | /* | |
2801 | * Called only for kmem_cache_debug() caches to allocate from a freshly | |
2802 | * allocated slab. Allocate a single object instead of whole freelist | |
2803 | * and put the slab to the partial (or full) list. | |
2804 | */ | |
2805 | static void *alloc_single_from_new_slab(struct kmem_cache *s, | |
2806 | struct slab *slab, int orig_size) | |
2807 | { | |
2808 | int nid = slab_nid(slab); | |
2809 | struct kmem_cache_node *n = get_node(s, nid); | |
2810 | unsigned long flags; | |
2811 | void *object; | |
2812 | ||
2813 | ||
2814 | object = slab->freelist; | |
2815 | slab->freelist = get_freepointer(s, object); | |
2816 | slab->inuse = 1; | |
2817 | ||
2818 | if (!alloc_debug_processing(s, slab, object, orig_size)) | |
2819 | /* | |
2820 | * It's not really expected that this would fail on a | |
2821 | * freshly allocated slab, but a concurrent memory | |
2822 | * corruption in theory could cause that. | |
2823 | */ | |
2824 | return NULL; | |
2825 | ||
2826 | spin_lock_irqsave(&n->list_lock, flags); | |
2827 | ||
2828 | if (slab->inuse == slab->objects) | |
2829 | add_full(s, n, slab); | |
2830 | else | |
2831 | add_partial(n, slab, DEACTIVATE_TO_HEAD); | |
2832 | ||
2833 | inc_slabs_node(s, nid, slab->objects); | |
2834 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2835 | ||
2836 | return object; | |
2837 | } | |
2838 | ||
2839 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
2840 | static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); | |
2841 | #else | |
2842 | static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, | |
2843 | int drain) { } | |
2844 | #endif | |
2845 | static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); | |
2846 | ||
2847 | /* | |
2848 | * Try to allocate a partial slab from a specific node. | |
2849 | */ | |
2850 | static struct slab *get_partial_node(struct kmem_cache *s, | |
2851 | struct kmem_cache_node *n, | |
2852 | struct partial_context *pc) | |
2853 | { | |
2854 | struct slab *slab, *slab2, *partial = NULL; | |
2855 | unsigned long flags; | |
2856 | unsigned int partial_slabs = 0; | |
2857 | ||
2858 | /* | |
2859 | * Racy check. If we mistakenly see no partial slabs then we | |
2860 | * just allocate an empty slab. If we mistakenly try to get a | |
2861 | * partial slab and there is none available then get_partial() | |
2862 | * will return NULL. | |
2863 | */ | |
2864 | if (!n || !n->nr_partial) | |
2865 | return NULL; | |
2866 | ||
2867 | spin_lock_irqsave(&n->list_lock, flags); | |
2868 | list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { | |
2869 | if (!pfmemalloc_match(slab, pc->flags)) | |
2870 | continue; | |
2871 | ||
2872 | if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { | |
2873 | void *object = alloc_single_from_partial(s, n, slab, | |
2874 | pc->orig_size); | |
2875 | if (object) { | |
2876 | partial = slab; | |
2877 | pc->object = object; | |
2878 | break; | |
2879 | } | |
2880 | continue; | |
2881 | } | |
2882 | ||
2883 | remove_partial(n, slab); | |
2884 | ||
2885 | if (!partial) { | |
2886 | partial = slab; | |
2887 | stat(s, ALLOC_FROM_PARTIAL); | |
2888 | ||
2889 | if ((slub_get_cpu_partial(s) == 0)) { | |
2890 | break; | |
2891 | } | |
2892 | } else { | |
2893 | put_cpu_partial(s, slab, 0); | |
2894 | stat(s, CPU_PARTIAL_NODE); | |
2895 | ||
2896 | if (++partial_slabs > slub_get_cpu_partial(s) / 2) { | |
2897 | break; | |
2898 | } | |
2899 | } | |
2900 | } | |
2901 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2902 | return partial; | |
2903 | } | |
2904 | ||
2905 | /* | |
2906 | * Get a slab from somewhere. Search in increasing NUMA distances. | |
2907 | */ | |
2908 | static struct slab *get_any_partial(struct kmem_cache *s, | |
2909 | struct partial_context *pc) | |
2910 | { | |
2911 | #ifdef CONFIG_NUMA | |
2912 | struct zonelist *zonelist; | |
2913 | struct zoneref *z; | |
2914 | struct zone *zone; | |
2915 | enum zone_type highest_zoneidx = gfp_zone(pc->flags); | |
2916 | struct slab *slab; | |
2917 | unsigned int cpuset_mems_cookie; | |
2918 | ||
2919 | /* | |
2920 | * The defrag ratio allows a configuration of the tradeoffs between | |
2921 | * inter node defragmentation and node local allocations. A lower | |
2922 | * defrag_ratio increases the tendency to do local allocations | |
2923 | * instead of attempting to obtain partial slabs from other nodes. | |
2924 | * | |
2925 | * If the defrag_ratio is set to 0 then kmalloc() always | |
2926 | * returns node local objects. If the ratio is higher then kmalloc() | |
2927 | * may return off node objects because partial slabs are obtained | |
2928 | * from other nodes and filled up. | |
2929 | * | |
2930 | * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 | |
2931 | * (which makes defrag_ratio = 1000) then every (well almost) | |
2932 | * allocation will first attempt to defrag slab caches on other nodes. | |
2933 | * This means scanning over all nodes to look for partial slabs which | |
2934 | * may be expensive if we do it every time we are trying to find a slab | |
2935 | * with available objects. | |
2936 | */ | |
2937 | if (!s->remote_node_defrag_ratio || | |
2938 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | |
2939 | return NULL; | |
2940 | ||
2941 | do { | |
2942 | cpuset_mems_cookie = read_mems_allowed_begin(); | |
2943 | zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); | |
2944 | for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { | |
2945 | struct kmem_cache_node *n; | |
2946 | ||
2947 | n = get_node(s, zone_to_nid(zone)); | |
2948 | ||
2949 | if (n && cpuset_zone_allowed(zone, pc->flags) && | |
2950 | n->nr_partial > s->min_partial) { | |
2951 | slab = get_partial_node(s, n, pc); | |
2952 | if (slab) { | |
2953 | /* | |
2954 | * Don't check read_mems_allowed_retry() | |
2955 | * here - if mems_allowed was updated in | |
2956 | * parallel, that was a harmless race | |
2957 | * between allocation and the cpuset | |
2958 | * update | |
2959 | */ | |
2960 | return slab; | |
2961 | } | |
2962 | } | |
2963 | } | |
2964 | } while (read_mems_allowed_retry(cpuset_mems_cookie)); | |
2965 | #endif /* CONFIG_NUMA */ | |
2966 | return NULL; | |
2967 | } | |
2968 | ||
2969 | /* | |
2970 | * Get a partial slab, lock it and return it. | |
2971 | */ | |
2972 | static struct slab *get_partial(struct kmem_cache *s, int node, | |
2973 | struct partial_context *pc) | |
2974 | { | |
2975 | struct slab *slab; | |
2976 | int searchnode = node; | |
2977 | ||
2978 | if (node == NUMA_NO_NODE) | |
2979 | searchnode = numa_mem_id(); | |
2980 | ||
2981 | slab = get_partial_node(s, get_node(s, searchnode), pc); | |
2982 | if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE))) | |
2983 | return slab; | |
2984 | ||
2985 | return get_any_partial(s, pc); | |
2986 | } | |
2987 | ||
2988 | #ifndef CONFIG_SLUB_TINY | |
2989 | ||
2990 | #ifdef CONFIG_PREEMPTION | |
2991 | /* | |
2992 | * Calculate the next globally unique transaction for disambiguation | |
2993 | * during cmpxchg. The transactions start with the cpu number and are then | |
2994 | * incremented by CONFIG_NR_CPUS. | |
2995 | */ | |
2996 | #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) | |
2997 | #else | |
2998 | /* | |
2999 | * No preemption supported therefore also no need to check for | |
3000 | * different cpus. | |
3001 | */ | |
3002 | #define TID_STEP 1 | |
3003 | #endif /* CONFIG_PREEMPTION */ | |
3004 | ||
3005 | static inline unsigned long next_tid(unsigned long tid) | |
3006 | { | |
3007 | return tid + TID_STEP; | |
3008 | } | |
3009 | ||
3010 | #ifdef SLUB_DEBUG_CMPXCHG | |
3011 | static inline unsigned int tid_to_cpu(unsigned long tid) | |
3012 | { | |
3013 | return tid % TID_STEP; | |
3014 | } | |
3015 | ||
3016 | static inline unsigned long tid_to_event(unsigned long tid) | |
3017 | { | |
3018 | return tid / TID_STEP; | |
3019 | } | |
3020 | #endif | |
3021 | ||
3022 | static inline unsigned int init_tid(int cpu) | |
3023 | { | |
3024 | return cpu; | |
3025 | } | |
3026 | ||
3027 | static inline void note_cmpxchg_failure(const char *n, | |
3028 | const struct kmem_cache *s, unsigned long tid) | |
3029 | { | |
3030 | #ifdef SLUB_DEBUG_CMPXCHG | |
3031 | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | |
3032 | ||
3033 | pr_info("%s %s: cmpxchg redo ", n, s->name); | |
3034 | ||
3035 | #ifdef CONFIG_PREEMPTION | |
3036 | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) | |
3037 | pr_warn("due to cpu change %d -> %d\n", | |
3038 | tid_to_cpu(tid), tid_to_cpu(actual_tid)); | |
3039 | else | |
3040 | #endif | |
3041 | if (tid_to_event(tid) != tid_to_event(actual_tid)) | |
3042 | pr_warn("due to cpu running other code. Event %ld->%ld\n", | |
3043 | tid_to_event(tid), tid_to_event(actual_tid)); | |
3044 | else | |
3045 | pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", | |
3046 | actual_tid, tid, next_tid(tid)); | |
3047 | #endif | |
3048 | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); | |
3049 | } | |
3050 | ||
3051 | static void init_kmem_cache_cpus(struct kmem_cache *s) | |
3052 | { | |
3053 | int cpu; | |
3054 | struct kmem_cache_cpu *c; | |
3055 | ||
3056 | for_each_possible_cpu(cpu) { | |
3057 | c = per_cpu_ptr(s->cpu_slab, cpu); | |
3058 | local_lock_init(&c->lock); | |
3059 | c->tid = init_tid(cpu); | |
3060 | } | |
3061 | } | |
3062 | ||
3063 | /* | |
3064 | * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, | |
3065 | * unfreezes the slabs and puts it on the proper list. | |
3066 | * Assumes the slab has been already safely taken away from kmem_cache_cpu | |
3067 | * by the caller. | |
3068 | */ | |
3069 | static void deactivate_slab(struct kmem_cache *s, struct slab *slab, | |
3070 | void *freelist) | |
3071 | { | |
3072 | struct kmem_cache_node *n = get_node(s, slab_nid(slab)); | |
3073 | int free_delta = 0; | |
3074 | void *nextfree, *freelist_iter, *freelist_tail; | |
3075 | int tail = DEACTIVATE_TO_HEAD; | |
3076 | unsigned long flags = 0; | |
3077 | struct slab new; | |
3078 | struct slab old; | |
3079 | ||
3080 | if (READ_ONCE(slab->freelist)) { | |
3081 | stat(s, DEACTIVATE_REMOTE_FREES); | |
3082 | tail = DEACTIVATE_TO_TAIL; | |
3083 | } | |
3084 | ||
3085 | /* | |
3086 | * Stage one: Count the objects on cpu's freelist as free_delta and | |
3087 | * remember the last object in freelist_tail for later splicing. | |
3088 | */ | |
3089 | freelist_tail = NULL; | |
3090 | freelist_iter = freelist; | |
3091 | while (freelist_iter) { | |
3092 | nextfree = get_freepointer(s, freelist_iter); | |
3093 | ||
3094 | /* | |
3095 | * If 'nextfree' is invalid, it is possible that the object at | |
3096 | * 'freelist_iter' is already corrupted. So isolate all objects | |
3097 | * starting at 'freelist_iter' by skipping them. | |
3098 | */ | |
3099 | if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) | |
3100 | break; | |
3101 | ||
3102 | freelist_tail = freelist_iter; | |
3103 | free_delta++; | |
3104 | ||
3105 | freelist_iter = nextfree; | |
3106 | } | |
3107 | ||
3108 | /* | |
3109 | * Stage two: Unfreeze the slab while splicing the per-cpu | |
3110 | * freelist to the head of slab's freelist. | |
3111 | */ | |
3112 | do { | |
3113 | old.freelist = READ_ONCE(slab->freelist); | |
3114 | old.counters = READ_ONCE(slab->counters); | |
3115 | VM_BUG_ON(!old.frozen); | |
3116 | ||
3117 | /* Determine target state of the slab */ | |
3118 | new.counters = old.counters; | |
3119 | new.frozen = 0; | |
3120 | if (freelist_tail) { | |
3121 | new.inuse -= free_delta; | |
3122 | set_freepointer(s, freelist_tail, old.freelist); | |
3123 | new.freelist = freelist; | |
3124 | } else { | |
3125 | new.freelist = old.freelist; | |
3126 | } | |
3127 | } while (!slab_update_freelist(s, slab, | |
3128 | old.freelist, old.counters, | |
3129 | new.freelist, new.counters, | |
3130 | "unfreezing slab")); | |
3131 | ||
3132 | /* | |
3133 | * Stage three: Manipulate the slab list based on the updated state. | |
3134 | */ | |
3135 | if (!new.inuse && n->nr_partial >= s->min_partial) { | |
3136 | stat(s, DEACTIVATE_EMPTY); | |
3137 | discard_slab(s, slab); | |
3138 | stat(s, FREE_SLAB); | |
3139 | } else if (new.freelist) { | |
3140 | spin_lock_irqsave(&n->list_lock, flags); | |
3141 | add_partial(n, slab, tail); | |
3142 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3143 | stat(s, tail); | |
3144 | } else { | |
3145 | stat(s, DEACTIVATE_FULL); | |
3146 | } | |
3147 | } | |
3148 | ||
3149 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
3150 | static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) | |
3151 | { | |
3152 | struct kmem_cache_node *n = NULL, *n2 = NULL; | |
3153 | struct slab *slab, *slab_to_discard = NULL; | |
3154 | unsigned long flags = 0; | |
3155 | ||
3156 | while (partial_slab) { | |
3157 | slab = partial_slab; | |
3158 | partial_slab = slab->next; | |
3159 | ||
3160 | n2 = get_node(s, slab_nid(slab)); | |
3161 | if (n != n2) { | |
3162 | if (n) | |
3163 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3164 | ||
3165 | n = n2; | |
3166 | spin_lock_irqsave(&n->list_lock, flags); | |
3167 | } | |
3168 | ||
3169 | if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { | |
3170 | slab->next = slab_to_discard; | |
3171 | slab_to_discard = slab; | |
3172 | } else { | |
3173 | add_partial(n, slab, DEACTIVATE_TO_TAIL); | |
3174 | stat(s, FREE_ADD_PARTIAL); | |
3175 | } | |
3176 | } | |
3177 | ||
3178 | if (n) | |
3179 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3180 | ||
3181 | while (slab_to_discard) { | |
3182 | slab = slab_to_discard; | |
3183 | slab_to_discard = slab_to_discard->next; | |
3184 | ||
3185 | stat(s, DEACTIVATE_EMPTY); | |
3186 | discard_slab(s, slab); | |
3187 | stat(s, FREE_SLAB); | |
3188 | } | |
3189 | } | |
3190 | ||
3191 | /* | |
3192 | * Put all the cpu partial slabs to the node partial list. | |
3193 | */ | |
3194 | static void put_partials(struct kmem_cache *s) | |
3195 | { | |
3196 | struct slab *partial_slab; | |
3197 | unsigned long flags; | |
3198 | ||
3199 | local_lock_irqsave(&s->cpu_slab->lock, flags); | |
3200 | partial_slab = this_cpu_read(s->cpu_slab->partial); | |
3201 | this_cpu_write(s->cpu_slab->partial, NULL); | |
3202 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); | |
3203 | ||
3204 | if (partial_slab) | |
3205 | __put_partials(s, partial_slab); | |
3206 | } | |
3207 | ||
3208 | static void put_partials_cpu(struct kmem_cache *s, | |
3209 | struct kmem_cache_cpu *c) | |
3210 | { | |
3211 | struct slab *partial_slab; | |
3212 | ||
3213 | partial_slab = slub_percpu_partial(c); | |
3214 | c->partial = NULL; | |
3215 | ||
3216 | if (partial_slab) | |
3217 | __put_partials(s, partial_slab); | |
3218 | } | |
3219 | ||
3220 | /* | |
3221 | * Put a slab into a partial slab slot if available. | |
3222 | * | |
3223 | * If we did not find a slot then simply move all the partials to the | |
3224 | * per node partial list. | |
3225 | */ | |
3226 | static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) | |
3227 | { | |
3228 | struct slab *oldslab; | |
3229 | struct slab *slab_to_put = NULL; | |
3230 | unsigned long flags; | |
3231 | int slabs = 0; | |
3232 | ||
3233 | local_lock_irqsave(&s->cpu_slab->lock, flags); | |
3234 | ||
3235 | oldslab = this_cpu_read(s->cpu_slab->partial); | |
3236 | ||
3237 | if (oldslab) { | |
3238 | if (drain && oldslab->slabs >= s->cpu_partial_slabs) { | |
3239 | /* | |
3240 | * Partial array is full. Move the existing set to the | |
3241 | * per node partial list. Postpone the actual unfreezing | |
3242 | * outside of the critical section. | |
3243 | */ | |
3244 | slab_to_put = oldslab; | |
3245 | oldslab = NULL; | |
3246 | } else { | |
3247 | slabs = oldslab->slabs; | |
3248 | } | |
3249 | } | |
3250 | ||
3251 | slabs++; | |
3252 | ||
3253 | slab->slabs = slabs; | |
3254 | slab->next = oldslab; | |
3255 | ||
3256 | this_cpu_write(s->cpu_slab->partial, slab); | |
3257 | ||
3258 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); | |
3259 | ||
3260 | if (slab_to_put) { | |
3261 | __put_partials(s, slab_to_put); | |
3262 | stat(s, CPU_PARTIAL_DRAIN); | |
3263 | } | |
3264 | } | |
3265 | ||
3266 | #else /* CONFIG_SLUB_CPU_PARTIAL */ | |
3267 | ||
3268 | static inline void put_partials(struct kmem_cache *s) { } | |
3269 | static inline void put_partials_cpu(struct kmem_cache *s, | |
3270 | struct kmem_cache_cpu *c) { } | |
3271 | ||
3272 | #endif /* CONFIG_SLUB_CPU_PARTIAL */ | |
3273 | ||
3274 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) | |
3275 | { | |
3276 | unsigned long flags; | |
3277 | struct slab *slab; | |
3278 | void *freelist; | |
3279 | ||
3280 | local_lock_irqsave(&s->cpu_slab->lock, flags); | |
3281 | ||
3282 | slab = c->slab; | |
3283 | freelist = c->freelist; | |
3284 | ||
3285 | c->slab = NULL; | |
3286 | c->freelist = NULL; | |
3287 | c->tid = next_tid(c->tid); | |
3288 | ||
3289 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); | |
3290 | ||
3291 | if (slab) { | |
3292 | deactivate_slab(s, slab, freelist); | |
3293 | stat(s, CPUSLAB_FLUSH); | |
3294 | } | |
3295 | } | |
3296 | ||
3297 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) | |
3298 | { | |
3299 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | |
3300 | void *freelist = c->freelist; | |
3301 | struct slab *slab = c->slab; | |
3302 | ||
3303 | c->slab = NULL; | |
3304 | c->freelist = NULL; | |
3305 | c->tid = next_tid(c->tid); | |
3306 | ||
3307 | if (slab) { | |
3308 | deactivate_slab(s, slab, freelist); | |
3309 | stat(s, CPUSLAB_FLUSH); | |
3310 | } | |
3311 | ||
3312 | put_partials_cpu(s, c); | |
3313 | } | |
3314 | ||
3315 | struct slub_flush_work { | |
3316 | struct work_struct work; | |
3317 | struct kmem_cache *s; | |
3318 | bool skip; | |
3319 | }; | |
3320 | ||
3321 | /* | |
3322 | * Flush cpu slab. | |
3323 | * | |
3324 | * Called from CPU work handler with migration disabled. | |
3325 | */ | |
3326 | static void flush_cpu_slab(struct work_struct *w) | |
3327 | { | |
3328 | struct kmem_cache *s; | |
3329 | struct kmem_cache_cpu *c; | |
3330 | struct slub_flush_work *sfw; | |
3331 | ||
3332 | sfw = container_of(w, struct slub_flush_work, work); | |
3333 | ||
3334 | s = sfw->s; | |
3335 | c = this_cpu_ptr(s->cpu_slab); | |
3336 | ||
3337 | if (c->slab) | |
3338 | flush_slab(s, c); | |
3339 | ||
3340 | put_partials(s); | |
3341 | } | |
3342 | ||
3343 | static bool has_cpu_slab(int cpu, struct kmem_cache *s) | |
3344 | { | |
3345 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | |
3346 | ||
3347 | return c->slab || slub_percpu_partial(c); | |
3348 | } | |
3349 | ||
3350 | static DEFINE_MUTEX(flush_lock); | |
3351 | static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); | |
3352 | ||
3353 | static void flush_all_cpus_locked(struct kmem_cache *s) | |
3354 | { | |
3355 | struct slub_flush_work *sfw; | |
3356 | unsigned int cpu; | |
3357 | ||
3358 | lockdep_assert_cpus_held(); | |
3359 | mutex_lock(&flush_lock); | |
3360 | ||
3361 | for_each_online_cpu(cpu) { | |
3362 | sfw = &per_cpu(slub_flush, cpu); | |
3363 | if (!has_cpu_slab(cpu, s)) { | |
3364 | sfw->skip = true; | |
3365 | continue; | |
3366 | } | |
3367 | INIT_WORK(&sfw->work, flush_cpu_slab); | |
3368 | sfw->skip = false; | |
3369 | sfw->s = s; | |
3370 | queue_work_on(cpu, flushwq, &sfw->work); | |
3371 | } | |
3372 | ||
3373 | for_each_online_cpu(cpu) { | |
3374 | sfw = &per_cpu(slub_flush, cpu); | |
3375 | if (sfw->skip) | |
3376 | continue; | |
3377 | flush_work(&sfw->work); | |
3378 | } | |
3379 | ||
3380 | mutex_unlock(&flush_lock); | |
3381 | } | |
3382 | ||
3383 | static void flush_all(struct kmem_cache *s) | |
3384 | { | |
3385 | cpus_read_lock(); | |
3386 | flush_all_cpus_locked(s); | |
3387 | cpus_read_unlock(); | |
3388 | } | |
3389 | ||
3390 | /* | |
3391 | * Use the cpu notifier to insure that the cpu slabs are flushed when | |
3392 | * necessary. | |
3393 | */ | |
3394 | static int slub_cpu_dead(unsigned int cpu) | |
3395 | { | |
3396 | struct kmem_cache *s; | |
3397 | ||
3398 | mutex_lock(&slab_mutex); | |
3399 | list_for_each_entry(s, &slab_caches, list) | |
3400 | __flush_cpu_slab(s, cpu); | |
3401 | mutex_unlock(&slab_mutex); | |
3402 | return 0; | |
3403 | } | |
3404 | ||
3405 | #else /* CONFIG_SLUB_TINY */ | |
3406 | static inline void flush_all_cpus_locked(struct kmem_cache *s) { } | |
3407 | static inline void flush_all(struct kmem_cache *s) { } | |
3408 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } | |
3409 | static inline int slub_cpu_dead(unsigned int cpu) { return 0; } | |
3410 | #endif /* CONFIG_SLUB_TINY */ | |
3411 | ||
3412 | /* | |
3413 | * Check if the objects in a per cpu structure fit numa | |
3414 | * locality expectations. | |
3415 | */ | |
3416 | static inline int node_match(struct slab *slab, int node) | |
3417 | { | |
3418 | #ifdef CONFIG_NUMA | |
3419 | if (node != NUMA_NO_NODE && slab_nid(slab) != node) | |
3420 | return 0; | |
3421 | #endif | |
3422 | return 1; | |
3423 | } | |
3424 | ||
3425 | #ifdef CONFIG_SLUB_DEBUG | |
3426 | static int count_free(struct slab *slab) | |
3427 | { | |
3428 | return slab->objects - slab->inuse; | |
3429 | } | |
3430 | ||
3431 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) | |
3432 | { | |
3433 | return atomic_long_read(&n->total_objects); | |
3434 | } | |
3435 | ||
3436 | /* Supports checking bulk free of a constructed freelist */ | |
3437 | static inline bool free_debug_processing(struct kmem_cache *s, | |
3438 | struct slab *slab, void *head, void *tail, int *bulk_cnt, | |
3439 | unsigned long addr, depot_stack_handle_t handle) | |
3440 | { | |
3441 | bool checks_ok = false; | |
3442 | void *object = head; | |
3443 | int cnt = 0; | |
3444 | ||
3445 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
3446 | if (!check_slab(s, slab)) | |
3447 | goto out; | |
3448 | } | |
3449 | ||
3450 | if (slab->inuse < *bulk_cnt) { | |
3451 | slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", | |
3452 | slab->inuse, *bulk_cnt); | |
3453 | goto out; | |
3454 | } | |
3455 | ||
3456 | next_object: | |
3457 | ||
3458 | if (++cnt > *bulk_cnt) | |
3459 | goto out_cnt; | |
3460 | ||
3461 | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | |
3462 | if (!free_consistency_checks(s, slab, object, addr)) | |
3463 | goto out; | |
3464 | } | |
3465 | ||
3466 | if (s->flags & SLAB_STORE_USER) | |
3467 | set_track_update(s, object, TRACK_FREE, addr, handle); | |
3468 | trace(s, slab, object, 0); | |
3469 | /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ | |
3470 | init_object(s, object, SLUB_RED_INACTIVE); | |
3471 | ||
3472 | /* Reached end of constructed freelist yet? */ | |
3473 | if (object != tail) { | |
3474 | object = get_freepointer(s, object); | |
3475 | goto next_object; | |
3476 | } | |
3477 | checks_ok = true; | |
3478 | ||
3479 | out_cnt: | |
3480 | if (cnt != *bulk_cnt) { | |
3481 | slab_err(s, slab, "Bulk free expected %d objects but found %d\n", | |
3482 | *bulk_cnt, cnt); | |
3483 | *bulk_cnt = cnt; | |
3484 | } | |
3485 | ||
3486 | out: | |
3487 | ||
3488 | if (!checks_ok) | |
3489 | slab_fix(s, "Object at 0x%p not freed", object); | |
3490 | ||
3491 | return checks_ok; | |
3492 | } | |
3493 | #endif /* CONFIG_SLUB_DEBUG */ | |
3494 | ||
3495 | #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) | |
3496 | static unsigned long count_partial(struct kmem_cache_node *n, | |
3497 | int (*get_count)(struct slab *)) | |
3498 | { | |
3499 | unsigned long flags; | |
3500 | unsigned long x = 0; | |
3501 | struct slab *slab; | |
3502 | ||
3503 | spin_lock_irqsave(&n->list_lock, flags); | |
3504 | list_for_each_entry(slab, &n->partial, slab_list) | |
3505 | x += get_count(slab); | |
3506 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3507 | return x; | |
3508 | } | |
3509 | #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ | |
3510 | ||
3511 | #ifdef CONFIG_SLUB_DEBUG | |
3512 | #define MAX_PARTIAL_TO_SCAN 10000 | |
3513 | ||
3514 | static unsigned long count_partial_free_approx(struct kmem_cache_node *n) | |
3515 | { | |
3516 | unsigned long flags; | |
3517 | unsigned long x = 0; | |
3518 | struct slab *slab; | |
3519 | ||
3520 | spin_lock_irqsave(&n->list_lock, flags); | |
3521 | if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) { | |
3522 | list_for_each_entry(slab, &n->partial, slab_list) | |
3523 | x += slab->objects - slab->inuse; | |
3524 | } else { | |
3525 | /* | |
3526 | * For a long list, approximate the total count of objects in | |
3527 | * it to meet the limit on the number of slabs to scan. | |
3528 | * Scan from both the list's head and tail for better accuracy. | |
3529 | */ | |
3530 | unsigned long scanned = 0; | |
3531 | ||
3532 | list_for_each_entry(slab, &n->partial, slab_list) { | |
3533 | x += slab->objects - slab->inuse; | |
3534 | if (++scanned == MAX_PARTIAL_TO_SCAN / 2) | |
3535 | break; | |
3536 | } | |
3537 | list_for_each_entry_reverse(slab, &n->partial, slab_list) { | |
3538 | x += slab->objects - slab->inuse; | |
3539 | if (++scanned == MAX_PARTIAL_TO_SCAN) | |
3540 | break; | |
3541 | } | |
3542 | x = mult_frac(x, n->nr_partial, scanned); | |
3543 | x = min(x, node_nr_objs(n)); | |
3544 | } | |
3545 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3546 | return x; | |
3547 | } | |
3548 | ||
3549 | static noinline void | |
3550 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | |
3551 | { | |
3552 | static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, | |
3553 | DEFAULT_RATELIMIT_BURST); | |
3554 | int cpu = raw_smp_processor_id(); | |
3555 | int node; | |
3556 | struct kmem_cache_node *n; | |
3557 | ||
3558 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) | |
3559 | return; | |
3560 | ||
3561 | pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n", | |
3562 | cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags); | |
3563 | pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", | |
3564 | s->name, s->object_size, s->size, oo_order(s->oo), | |
3565 | oo_order(s->min)); | |
3566 | ||
3567 | if (oo_order(s->min) > get_order(s->object_size)) | |
3568 | pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", | |
3569 | s->name); | |
3570 | ||
3571 | for_each_kmem_cache_node(s, node, n) { | |
3572 | unsigned long nr_slabs; | |
3573 | unsigned long nr_objs; | |
3574 | unsigned long nr_free; | |
3575 | ||
3576 | nr_free = count_partial_free_approx(n); | |
3577 | nr_slabs = node_nr_slabs(n); | |
3578 | nr_objs = node_nr_objs(n); | |
3579 | ||
3580 | pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", | |
3581 | node, nr_slabs, nr_objs, nr_free); | |
3582 | } | |
3583 | } | |
3584 | #else /* CONFIG_SLUB_DEBUG */ | |
3585 | static inline void | |
3586 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } | |
3587 | #endif | |
3588 | ||
3589 | static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) | |
3590 | { | |
3591 | if (unlikely(slab_test_pfmemalloc(slab))) | |
3592 | return gfp_pfmemalloc_allowed(gfpflags); | |
3593 | ||
3594 | return true; | |
3595 | } | |
3596 | ||
3597 | #ifndef CONFIG_SLUB_TINY | |
3598 | static inline bool | |
3599 | __update_cpu_freelist_fast(struct kmem_cache *s, | |
3600 | void *freelist_old, void *freelist_new, | |
3601 | unsigned long tid) | |
3602 | { | |
3603 | freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; | |
3604 | freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; | |
3605 | ||
3606 | return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, | |
3607 | &old.full, new.full); | |
3608 | } | |
3609 | ||
3610 | /* | |
3611 | * Check the slab->freelist and either transfer the freelist to the | |
3612 | * per cpu freelist or deactivate the slab. | |
3613 | * | |
3614 | * The slab is still frozen if the return value is not NULL. | |
3615 | * | |
3616 | * If this function returns NULL then the slab has been unfrozen. | |
3617 | */ | |
3618 | static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) | |
3619 | { | |
3620 | struct slab new; | |
3621 | unsigned long counters; | |
3622 | void *freelist; | |
3623 | ||
3624 | lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); | |
3625 | ||
3626 | do { | |
3627 | freelist = slab->freelist; | |
3628 | counters = slab->counters; | |
3629 | ||
3630 | new.counters = counters; | |
3631 | ||
3632 | new.inuse = slab->objects; | |
3633 | new.frozen = freelist != NULL; | |
3634 | ||
3635 | } while (!__slab_update_freelist(s, slab, | |
3636 | freelist, counters, | |
3637 | NULL, new.counters, | |
3638 | "get_freelist")); | |
3639 | ||
3640 | return freelist; | |
3641 | } | |
3642 | ||
3643 | /* | |
3644 | * Freeze the partial slab and return the pointer to the freelist. | |
3645 | */ | |
3646 | static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) | |
3647 | { | |
3648 | struct slab new; | |
3649 | unsigned long counters; | |
3650 | void *freelist; | |
3651 | ||
3652 | do { | |
3653 | freelist = slab->freelist; | |
3654 | counters = slab->counters; | |
3655 | ||
3656 | new.counters = counters; | |
3657 | VM_BUG_ON(new.frozen); | |
3658 | ||
3659 | new.inuse = slab->objects; | |
3660 | new.frozen = 1; | |
3661 | ||
3662 | } while (!slab_update_freelist(s, slab, | |
3663 | freelist, counters, | |
3664 | NULL, new.counters, | |
3665 | "freeze_slab")); | |
3666 | ||
3667 | return freelist; | |
3668 | } | |
3669 | ||
3670 | /* | |
3671 | * Slow path. The lockless freelist is empty or we need to perform | |
3672 | * debugging duties. | |
3673 | * | |
3674 | * Processing is still very fast if new objects have been freed to the | |
3675 | * regular freelist. In that case we simply take over the regular freelist | |
3676 | * as the lockless freelist and zap the regular freelist. | |
3677 | * | |
3678 | * If that is not working then we fall back to the partial lists. We take the | |
3679 | * first element of the freelist as the object to allocate now and move the | |
3680 | * rest of the freelist to the lockless freelist. | |
3681 | * | |
3682 | * And if we were unable to get a new slab from the partial slab lists then | |
3683 | * we need to allocate a new slab. This is the slowest path since it involves | |
3684 | * a call to the page allocator and the setup of a new slab. | |
3685 | * | |
3686 | * Version of __slab_alloc to use when we know that preemption is | |
3687 | * already disabled (which is the case for bulk allocation). | |
3688 | */ | |
3689 | static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | |
3690 | unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) | |
3691 | { | |
3692 | void *freelist; | |
3693 | struct slab *slab; | |
3694 | unsigned long flags; | |
3695 | struct partial_context pc; | |
3696 | bool try_thisnode = true; | |
3697 | ||
3698 | stat(s, ALLOC_SLOWPATH); | |
3699 | ||
3700 | reread_slab: | |
3701 | ||
3702 | slab = READ_ONCE(c->slab); | |
3703 | if (!slab) { | |
3704 | /* | |
3705 | * if the node is not online or has no normal memory, just | |
3706 | * ignore the node constraint | |
3707 | */ | |
3708 | if (unlikely(node != NUMA_NO_NODE && | |
3709 | !node_isset(node, slab_nodes))) | |
3710 | node = NUMA_NO_NODE; | |
3711 | goto new_slab; | |
3712 | } | |
3713 | ||
3714 | if (unlikely(!node_match(slab, node))) { | |
3715 | /* | |
3716 | * same as above but node_match() being false already | |
3717 | * implies node != NUMA_NO_NODE | |
3718 | */ | |
3719 | if (!node_isset(node, slab_nodes)) { | |
3720 | node = NUMA_NO_NODE; | |
3721 | } else { | |
3722 | stat(s, ALLOC_NODE_MISMATCH); | |
3723 | goto deactivate_slab; | |
3724 | } | |
3725 | } | |
3726 | ||
3727 | /* | |
3728 | * By rights, we should be searching for a slab page that was | |
3729 | * PFMEMALLOC but right now, we are losing the pfmemalloc | |
3730 | * information when the page leaves the per-cpu allocator | |
3731 | */ | |
3732 | if (unlikely(!pfmemalloc_match(slab, gfpflags))) | |
3733 | goto deactivate_slab; | |
3734 | ||
3735 | /* must check again c->slab in case we got preempted and it changed */ | |
3736 | local_lock_irqsave(&s->cpu_slab->lock, flags); | |
3737 | if (unlikely(slab != c->slab)) { | |
3738 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); | |
3739 | goto reread_slab; | |
3740 | } | |
3741 | freelist = c->freelist; | |
3742 | if (freelist) | |
3743 | goto load_freelist; | |
3744 | ||
3745 | freelist = get_freelist(s, slab); | |
3746 | ||
3747 | if (!freelist) { | |
3748 | c->slab = NULL; | |
3749 | c->tid = next_tid(c->tid); | |
3750 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); | |
3751 | stat(s, DEACTIVATE_BYPASS); | |
3752 | goto new_slab; | |
3753 | } | |
3754 | ||
3755 | stat(s, ALLOC_REFILL); | |
3756 | ||
3757 | load_freelist: | |
3758 | ||
3759 | lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); | |
3760 | ||
3761 | /* | |
3762 | * freelist is pointing to the list of objects to be used. | |
3763 | * slab is pointing to the slab from which the objects are obtained. | |
3764 | * That slab must be frozen for per cpu allocations to work. | |
3765 | */ | |
3766 | VM_BUG_ON(!c->slab->frozen); | |
3767 | c->freelist = get_freepointer(s, freelist); | |
3768 | c->tid = next_tid(c->tid); | |
3769 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); | |
3770 | return freelist; | |
3771 | ||
3772 | deactivate_slab: | |
3773 | ||
3774 | local_lock_irqsave(&s->cpu_slab->lock, flags); | |
3775 | if (slab != c->slab) { | |
3776 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); | |
3777 | goto reread_slab; | |
3778 | } | |
3779 | freelist = c->freelist; | |
3780 | c->slab = NULL; | |
3781 | c->freelist = NULL; | |
3782 | c->tid = next_tid(c->tid); | |
3783 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); | |
3784 | deactivate_slab(s, slab, freelist); | |
3785 | ||
3786 | new_slab: | |
3787 | ||
3788 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
3789 | while (slub_percpu_partial(c)) { | |
3790 | local_lock_irqsave(&s->cpu_slab->lock, flags); | |
3791 | if (unlikely(c->slab)) { | |
3792 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); | |
3793 | goto reread_slab; | |
3794 | } | |
3795 | if (unlikely(!slub_percpu_partial(c))) { | |
3796 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); | |
3797 | /* we were preempted and partial list got empty */ | |
3798 | goto new_objects; | |
3799 | } | |
3800 | ||
3801 | slab = slub_percpu_partial(c); | |
3802 | slub_set_percpu_partial(c, slab); | |
3803 | ||
3804 | if (likely(node_match(slab, node) && | |
3805 | pfmemalloc_match(slab, gfpflags))) { | |
3806 | c->slab = slab; | |
3807 | freelist = get_freelist(s, slab); | |
3808 | VM_BUG_ON(!freelist); | |
3809 | stat(s, CPU_PARTIAL_ALLOC); | |
3810 | goto load_freelist; | |
3811 | } | |
3812 | ||
3813 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); | |
3814 | ||
3815 | slab->next = NULL; | |
3816 | __put_partials(s, slab); | |
3817 | } | |
3818 | #endif | |
3819 | ||
3820 | new_objects: | |
3821 | ||
3822 | pc.flags = gfpflags; | |
3823 | /* | |
3824 | * When a preferred node is indicated but no __GFP_THISNODE | |
3825 | * | |
3826 | * 1) try to get a partial slab from target node only by having | |
3827 | * __GFP_THISNODE in pc.flags for get_partial() | |
3828 | * 2) if 1) failed, try to allocate a new slab from target node with | |
3829 | * GPF_NOWAIT | __GFP_THISNODE opportunistically | |
3830 | * 3) if 2) failed, retry with original gfpflags which will allow | |
3831 | * get_partial() try partial lists of other nodes before potentially | |
3832 | * allocating new page from other nodes | |
3833 | */ | |
3834 | if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) | |
3835 | && try_thisnode)) | |
3836 | pc.flags = GFP_NOWAIT | __GFP_THISNODE; | |
3837 | ||
3838 | pc.orig_size = orig_size; | |
3839 | slab = get_partial(s, node, &pc); | |
3840 | if (slab) { | |
3841 | if (kmem_cache_debug(s)) { | |
3842 | freelist = pc.object; | |
3843 | /* | |
3844 | * For debug caches here we had to go through | |
3845 | * alloc_single_from_partial() so just store the | |
3846 | * tracking info and return the object. | |
3847 | */ | |
3848 | if (s->flags & SLAB_STORE_USER) | |
3849 | set_track(s, freelist, TRACK_ALLOC, addr); | |
3850 | ||
3851 | return freelist; | |
3852 | } | |
3853 | ||
3854 | freelist = freeze_slab(s, slab); | |
3855 | goto retry_load_slab; | |
3856 | } | |
3857 | ||
3858 | slub_put_cpu_ptr(s->cpu_slab); | |
3859 | slab = new_slab(s, pc.flags, node); | |
3860 | c = slub_get_cpu_ptr(s->cpu_slab); | |
3861 | ||
3862 | if (unlikely(!slab)) { | |
3863 | if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) | |
3864 | && try_thisnode) { | |
3865 | try_thisnode = false; | |
3866 | goto new_objects; | |
3867 | } | |
3868 | slab_out_of_memory(s, gfpflags, node); | |
3869 | return NULL; | |
3870 | } | |
3871 | ||
3872 | stat(s, ALLOC_SLAB); | |
3873 | ||
3874 | if (kmem_cache_debug(s)) { | |
3875 | freelist = alloc_single_from_new_slab(s, slab, orig_size); | |
3876 | ||
3877 | if (unlikely(!freelist)) | |
3878 | goto new_objects; | |
3879 | ||
3880 | if (s->flags & SLAB_STORE_USER) | |
3881 | set_track(s, freelist, TRACK_ALLOC, addr); | |
3882 | ||
3883 | return freelist; | |
3884 | } | |
3885 | ||
3886 | /* | |
3887 | * No other reference to the slab yet so we can | |
3888 | * muck around with it freely without cmpxchg | |
3889 | */ | |
3890 | freelist = slab->freelist; | |
3891 | slab->freelist = NULL; | |
3892 | slab->inuse = slab->objects; | |
3893 | slab->frozen = 1; | |
3894 | ||
3895 | inc_slabs_node(s, slab_nid(slab), slab->objects); | |
3896 | ||
3897 | if (unlikely(!pfmemalloc_match(slab, gfpflags))) { | |
3898 | /* | |
3899 | * For !pfmemalloc_match() case we don't load freelist so that | |
3900 | * we don't make further mismatched allocations easier. | |
3901 | */ | |
3902 | deactivate_slab(s, slab, get_freepointer(s, freelist)); | |
3903 | return freelist; | |
3904 | } | |
3905 | ||
3906 | retry_load_slab: | |
3907 | ||
3908 | local_lock_irqsave(&s->cpu_slab->lock, flags); | |
3909 | if (unlikely(c->slab)) { | |
3910 | void *flush_freelist = c->freelist; | |
3911 | struct slab *flush_slab = c->slab; | |
3912 | ||
3913 | c->slab = NULL; | |
3914 | c->freelist = NULL; | |
3915 | c->tid = next_tid(c->tid); | |
3916 | ||
3917 | local_unlock_irqrestore(&s->cpu_slab->lock, flags); | |
3918 | ||
3919 | deactivate_slab(s, flush_slab, flush_freelist); | |
3920 | ||
3921 | stat(s, CPUSLAB_FLUSH); | |
3922 | ||
3923 | goto retry_load_slab; | |
3924 | } | |
3925 | c->slab = slab; | |
3926 | ||
3927 | goto load_freelist; | |
3928 | } | |
3929 | ||
3930 | /* | |
3931 | * A wrapper for ___slab_alloc() for contexts where preemption is not yet | |
3932 | * disabled. Compensates for possible cpu changes by refetching the per cpu area | |
3933 | * pointer. | |
3934 | */ | |
3935 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | |
3936 | unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) | |
3937 | { | |
3938 | void *p; | |
3939 | ||
3940 | #ifdef CONFIG_PREEMPT_COUNT | |
3941 | /* | |
3942 | * We may have been preempted and rescheduled on a different | |
3943 | * cpu before disabling preemption. Need to reload cpu area | |
3944 | * pointer. | |
3945 | */ | |
3946 | c = slub_get_cpu_ptr(s->cpu_slab); | |
3947 | #endif | |
3948 | ||
3949 | p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); | |
3950 | #ifdef CONFIG_PREEMPT_COUNT | |
3951 | slub_put_cpu_ptr(s->cpu_slab); | |
3952 | #endif | |
3953 | return p; | |
3954 | } | |
3955 | ||
3956 | static __always_inline void *__slab_alloc_node(struct kmem_cache *s, | |
3957 | gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) | |
3958 | { | |
3959 | struct kmem_cache_cpu *c; | |
3960 | struct slab *slab; | |
3961 | unsigned long tid; | |
3962 | void *object; | |
3963 | ||
3964 | redo: | |
3965 | /* | |
3966 | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | |
3967 | * enabled. We may switch back and forth between cpus while | |
3968 | * reading from one cpu area. That does not matter as long | |
3969 | * as we end up on the original cpu again when doing the cmpxchg. | |
3970 | * | |
3971 | * We must guarantee that tid and kmem_cache_cpu are retrieved on the | |
3972 | * same cpu. We read first the kmem_cache_cpu pointer and use it to read | |
3973 | * the tid. If we are preempted and switched to another cpu between the | |
3974 | * two reads, it's OK as the two are still associated with the same cpu | |
3975 | * and cmpxchg later will validate the cpu. | |
3976 | */ | |
3977 | c = raw_cpu_ptr(s->cpu_slab); | |
3978 | tid = READ_ONCE(c->tid); | |
3979 | ||
3980 | /* | |
3981 | * Irqless object alloc/free algorithm used here depends on sequence | |
3982 | * of fetching cpu_slab's data. tid should be fetched before anything | |
3983 | * on c to guarantee that object and slab associated with previous tid | |
3984 | * won't be used with current tid. If we fetch tid first, object and | |
3985 | * slab could be one associated with next tid and our alloc/free | |
3986 | * request will be failed. In this case, we will retry. So, no problem. | |
3987 | */ | |
3988 | barrier(); | |
3989 | ||
3990 | /* | |
3991 | * The transaction ids are globally unique per cpu and per operation on | |
3992 | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | |
3993 | * occurs on the right processor and that there was no operation on the | |
3994 | * linked list in between. | |
3995 | */ | |
3996 | ||
3997 | object = c->freelist; | |
3998 | slab = c->slab; | |
3999 | ||
4000 | #ifdef CONFIG_NUMA | |
4001 | if (static_branch_unlikely(&strict_numa) && | |
4002 | node == NUMA_NO_NODE) { | |
4003 | ||
4004 | struct mempolicy *mpol = current->mempolicy; | |
4005 | ||
4006 | if (mpol) { | |
4007 | /* | |
4008 | * Special BIND rule support. If existing slab | |
4009 | * is in permitted set then do not redirect | |
4010 | * to a particular node. | |
4011 | * Otherwise we apply the memory policy to get | |
4012 | * the node we need to allocate on. | |
4013 | */ | |
4014 | if (mpol->mode != MPOL_BIND || !slab || | |
4015 | !node_isset(slab_nid(slab), mpol->nodes)) | |
4016 | ||
4017 | node = mempolicy_slab_node(); | |
4018 | } | |
4019 | } | |
4020 | #endif | |
4021 | ||
4022 | if (!USE_LOCKLESS_FAST_PATH() || | |
4023 | unlikely(!object || !slab || !node_match(slab, node))) { | |
4024 | object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); | |
4025 | } else { | |
4026 | void *next_object = get_freepointer_safe(s, object); | |
4027 | ||
4028 | /* | |
4029 | * The cmpxchg will only match if there was no additional | |
4030 | * operation and if we are on the right processor. | |
4031 | * | |
4032 | * The cmpxchg does the following atomically (without lock | |
4033 | * semantics!) | |
4034 | * 1. Relocate first pointer to the current per cpu area. | |
4035 | * 2. Verify that tid and freelist have not been changed | |
4036 | * 3. If they were not changed replace tid and freelist | |
4037 | * | |
4038 | * Since this is without lock semantics the protection is only | |
4039 | * against code executing on this cpu *not* from access by | |
4040 | * other cpus. | |
4041 | */ | |
4042 | if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { | |
4043 | note_cmpxchg_failure("slab_alloc", s, tid); | |
4044 | goto redo; | |
4045 | } | |
4046 | prefetch_freepointer(s, next_object); | |
4047 | stat(s, ALLOC_FASTPATH); | |
4048 | } | |
4049 | ||
4050 | return object; | |
4051 | } | |
4052 | #else /* CONFIG_SLUB_TINY */ | |
4053 | static void *__slab_alloc_node(struct kmem_cache *s, | |
4054 | gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) | |
4055 | { | |
4056 | struct partial_context pc; | |
4057 | struct slab *slab; | |
4058 | void *object; | |
4059 | ||
4060 | pc.flags = gfpflags; | |
4061 | pc.orig_size = orig_size; | |
4062 | slab = get_partial(s, node, &pc); | |
4063 | ||
4064 | if (slab) | |
4065 | return pc.object; | |
4066 | ||
4067 | slab = new_slab(s, gfpflags, node); | |
4068 | if (unlikely(!slab)) { | |
4069 | slab_out_of_memory(s, gfpflags, node); | |
4070 | return NULL; | |
4071 | } | |
4072 | ||
4073 | object = alloc_single_from_new_slab(s, slab, orig_size); | |
4074 | ||
4075 | return object; | |
4076 | } | |
4077 | #endif /* CONFIG_SLUB_TINY */ | |
4078 | ||
4079 | /* | |
4080 | * If the object has been wiped upon free, make sure it's fully initialized by | |
4081 | * zeroing out freelist pointer. | |
4082 | * | |
4083 | * Note that we also wipe custom freelist pointers. | |
4084 | */ | |
4085 | static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, | |
4086 | void *obj) | |
4087 | { | |
4088 | if (unlikely(slab_want_init_on_free(s)) && obj && | |
4089 | !freeptr_outside_object(s)) | |
4090 | memset((void *)((char *)kasan_reset_tag(obj) + s->offset), | |
4091 | 0, sizeof(void *)); | |
4092 | } | |
4093 | ||
4094 | static __fastpath_inline | |
4095 | struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) | |
4096 | { | |
4097 | flags &= gfp_allowed_mask; | |
4098 | ||
4099 | might_alloc(flags); | |
4100 | ||
4101 | if (unlikely(should_failslab(s, flags))) | |
4102 | return NULL; | |
4103 | ||
4104 | return s; | |
4105 | } | |
4106 | ||
4107 | static __fastpath_inline | |
4108 | bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, | |
4109 | gfp_t flags, size_t size, void **p, bool init, | |
4110 | unsigned int orig_size) | |
4111 | { | |
4112 | unsigned int zero_size = s->object_size; | |
4113 | bool kasan_init = init; | |
4114 | size_t i; | |
4115 | gfp_t init_flags = flags & gfp_allowed_mask; | |
4116 | ||
4117 | /* | |
4118 | * For kmalloc object, the allocated memory size(object_size) is likely | |
4119 | * larger than the requested size(orig_size). If redzone check is | |
4120 | * enabled for the extra space, don't zero it, as it will be redzoned | |
4121 | * soon. The redzone operation for this extra space could be seen as a | |
4122 | * replacement of current poisoning under certain debug option, and | |
4123 | * won't break other sanity checks. | |
4124 | */ | |
4125 | if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && | |
4126 | (s->flags & SLAB_KMALLOC)) | |
4127 | zero_size = orig_size; | |
4128 | ||
4129 | /* | |
4130 | * When slab_debug is enabled, avoid memory initialization integrated | |
4131 | * into KASAN and instead zero out the memory via the memset below with | |
4132 | * the proper size. Otherwise, KASAN might overwrite SLUB redzones and | |
4133 | * cause false-positive reports. This does not lead to a performance | |
4134 | * penalty on production builds, as slab_debug is not intended to be | |
4135 | * enabled there. | |
4136 | */ | |
4137 | if (__slub_debug_enabled()) | |
4138 | kasan_init = false; | |
4139 | ||
4140 | /* | |
4141 | * As memory initialization might be integrated into KASAN, | |
4142 | * kasan_slab_alloc and initialization memset must be | |
4143 | * kept together to avoid discrepancies in behavior. | |
4144 | * | |
4145 | * As p[i] might get tagged, memset and kmemleak hook come after KASAN. | |
4146 | */ | |
4147 | for (i = 0; i < size; i++) { | |
4148 | p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); | |
4149 | if (p[i] && init && (!kasan_init || | |
4150 | !kasan_has_integrated_init())) | |
4151 | memset(p[i], 0, zero_size); | |
4152 | kmemleak_alloc_recursive(p[i], s->object_size, 1, | |
4153 | s->flags, init_flags); | |
4154 | kmsan_slab_alloc(s, p[i], init_flags); | |
4155 | alloc_tagging_slab_alloc_hook(s, p[i], flags); | |
4156 | } | |
4157 | ||
4158 | return memcg_slab_post_alloc_hook(s, lru, flags, size, p); | |
4159 | } | |
4160 | ||
4161 | /* | |
4162 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
4163 | * have the fastpath folded into their functions. So no function call | |
4164 | * overhead for requests that can be satisfied on the fastpath. | |
4165 | * | |
4166 | * The fastpath works by first checking if the lockless freelist can be used. | |
4167 | * If not then __slab_alloc is called for slow processing. | |
4168 | * | |
4169 | * Otherwise we can simply pick the next object from the lockless free list. | |
4170 | */ | |
4171 | static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, | |
4172 | gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) | |
4173 | { | |
4174 | void *object; | |
4175 | bool init = false; | |
4176 | ||
4177 | s = slab_pre_alloc_hook(s, gfpflags); | |
4178 | if (unlikely(!s)) | |
4179 | return NULL; | |
4180 | ||
4181 | object = kfence_alloc(s, orig_size, gfpflags); | |
4182 | if (unlikely(object)) | |
4183 | goto out; | |
4184 | ||
4185 | object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); | |
4186 | ||
4187 | maybe_wipe_obj_freeptr(s, object); | |
4188 | init = slab_want_init_on_alloc(gfpflags, s); | |
4189 | ||
4190 | out: | |
4191 | /* | |
4192 | * When init equals 'true', like for kzalloc() family, only | |
4193 | * @orig_size bytes might be zeroed instead of s->object_size | |
4194 | * In case this fails due to memcg_slab_post_alloc_hook(), | |
4195 | * object is set to NULL | |
4196 | */ | |
4197 | slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size); | |
4198 | ||
4199 | return object; | |
4200 | } | |
4201 | ||
4202 | void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags) | |
4203 | { | |
4204 | void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, | |
4205 | s->object_size); | |
4206 | ||
4207 | trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); | |
4208 | ||
4209 | return ret; | |
4210 | } | |
4211 | EXPORT_SYMBOL(kmem_cache_alloc_noprof); | |
4212 | ||
4213 | void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, | |
4214 | gfp_t gfpflags) | |
4215 | { | |
4216 | void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, | |
4217 | s->object_size); | |
4218 | ||
4219 | trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); | |
4220 | ||
4221 | return ret; | |
4222 | } | |
4223 | EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof); | |
4224 | ||
4225 | bool kmem_cache_charge(void *objp, gfp_t gfpflags) | |
4226 | { | |
4227 | if (!memcg_kmem_online()) | |
4228 | return true; | |
4229 | ||
4230 | return memcg_slab_post_charge(objp, gfpflags); | |
4231 | } | |
4232 | EXPORT_SYMBOL(kmem_cache_charge); | |
4233 | ||
4234 | /** | |
4235 | * kmem_cache_alloc_node - Allocate an object on the specified node | |
4236 | * @s: The cache to allocate from. | |
4237 | * @gfpflags: See kmalloc(). | |
4238 | * @node: node number of the target node. | |
4239 | * | |
4240 | * Identical to kmem_cache_alloc but it will allocate memory on the given | |
4241 | * node, which can improve the performance for cpu bound structures. | |
4242 | * | |
4243 | * Fallback to other node is possible if __GFP_THISNODE is not set. | |
4244 | * | |
4245 | * Return: pointer to the new object or %NULL in case of error | |
4246 | */ | |
4247 | void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node) | |
4248 | { | |
4249 | void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); | |
4250 | ||
4251 | trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); | |
4252 | ||
4253 | return ret; | |
4254 | } | |
4255 | EXPORT_SYMBOL(kmem_cache_alloc_node_noprof); | |
4256 | ||
4257 | /* | |
4258 | * To avoid unnecessary overhead, we pass through large allocation requests | |
4259 | * directly to the page allocator. We use __GFP_COMP, because we will need to | |
4260 | * know the allocation order to free the pages properly in kfree. | |
4261 | */ | |
4262 | static void *___kmalloc_large_node(size_t size, gfp_t flags, int node) | |
4263 | { | |
4264 | struct folio *folio; | |
4265 | void *ptr = NULL; | |
4266 | unsigned int order = get_order(size); | |
4267 | ||
4268 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) | |
4269 | flags = kmalloc_fix_flags(flags); | |
4270 | ||
4271 | flags |= __GFP_COMP; | |
4272 | folio = (struct folio *)alloc_pages_node_noprof(node, flags, order); | |
4273 | if (folio) { | |
4274 | ptr = folio_address(folio); | |
4275 | lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, | |
4276 | PAGE_SIZE << order); | |
4277 | __folio_set_large_kmalloc(folio); | |
4278 | } | |
4279 | ||
4280 | ptr = kasan_kmalloc_large(ptr, size, flags); | |
4281 | /* As ptr might get tagged, call kmemleak hook after KASAN. */ | |
4282 | kmemleak_alloc(ptr, size, 1, flags); | |
4283 | kmsan_kmalloc_large(ptr, size, flags); | |
4284 | ||
4285 | return ptr; | |
4286 | } | |
4287 | ||
4288 | void *__kmalloc_large_noprof(size_t size, gfp_t flags) | |
4289 | { | |
4290 | void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE); | |
4291 | ||
4292 | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), | |
4293 | flags, NUMA_NO_NODE); | |
4294 | return ret; | |
4295 | } | |
4296 | EXPORT_SYMBOL(__kmalloc_large_noprof); | |
4297 | ||
4298 | void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) | |
4299 | { | |
4300 | void *ret = ___kmalloc_large_node(size, flags, node); | |
4301 | ||
4302 | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), | |
4303 | flags, node); | |
4304 | return ret; | |
4305 | } | |
4306 | EXPORT_SYMBOL(__kmalloc_large_node_noprof); | |
4307 | ||
4308 | static __always_inline | |
4309 | void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node, | |
4310 | unsigned long caller) | |
4311 | { | |
4312 | struct kmem_cache *s; | |
4313 | void *ret; | |
4314 | ||
4315 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { | |
4316 | ret = __kmalloc_large_node_noprof(size, flags, node); | |
4317 | trace_kmalloc(caller, ret, size, | |
4318 | PAGE_SIZE << get_order(size), flags, node); | |
4319 | return ret; | |
4320 | } | |
4321 | ||
4322 | if (unlikely(!size)) | |
4323 | return ZERO_SIZE_PTR; | |
4324 | ||
4325 | s = kmalloc_slab(size, b, flags, caller); | |
4326 | ||
4327 | ret = slab_alloc_node(s, NULL, flags, node, caller, size); | |
4328 | ret = kasan_kmalloc(s, ret, size, flags); | |
4329 | trace_kmalloc(caller, ret, size, s->size, flags, node); | |
4330 | return ret; | |
4331 | } | |
4332 | void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) | |
4333 | { | |
4334 | return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_); | |
4335 | } | |
4336 | EXPORT_SYMBOL(__kmalloc_node_noprof); | |
4337 | ||
4338 | void *__kmalloc_noprof(size_t size, gfp_t flags) | |
4339 | { | |
4340 | return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_); | |
4341 | } | |
4342 | EXPORT_SYMBOL(__kmalloc_noprof); | |
4343 | ||
4344 | void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, | |
4345 | int node, unsigned long caller) | |
4346 | { | |
4347 | return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller); | |
4348 | ||
4349 | } | |
4350 | EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof); | |
4351 | ||
4352 | void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size) | |
4353 | { | |
4354 | void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, | |
4355 | _RET_IP_, size); | |
4356 | ||
4357 | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); | |
4358 | ||
4359 | ret = kasan_kmalloc(s, ret, size, gfpflags); | |
4360 | return ret; | |
4361 | } | |
4362 | EXPORT_SYMBOL(__kmalloc_cache_noprof); | |
4363 | ||
4364 | void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, | |
4365 | int node, size_t size) | |
4366 | { | |
4367 | void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); | |
4368 | ||
4369 | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); | |
4370 | ||
4371 | ret = kasan_kmalloc(s, ret, size, gfpflags); | |
4372 | return ret; | |
4373 | } | |
4374 | EXPORT_SYMBOL(__kmalloc_cache_node_noprof); | |
4375 | ||
4376 | static noinline void free_to_partial_list( | |
4377 | struct kmem_cache *s, struct slab *slab, | |
4378 | void *head, void *tail, int bulk_cnt, | |
4379 | unsigned long addr) | |
4380 | { | |
4381 | struct kmem_cache_node *n = get_node(s, slab_nid(slab)); | |
4382 | struct slab *slab_free = NULL; | |
4383 | int cnt = bulk_cnt; | |
4384 | unsigned long flags; | |
4385 | depot_stack_handle_t handle = 0; | |
4386 | ||
4387 | if (s->flags & SLAB_STORE_USER) | |
4388 | handle = set_track_prepare(); | |
4389 | ||
4390 | spin_lock_irqsave(&n->list_lock, flags); | |
4391 | ||
4392 | if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { | |
4393 | void *prior = slab->freelist; | |
4394 | ||
4395 | /* Perform the actual freeing while we still hold the locks */ | |
4396 | slab->inuse -= cnt; | |
4397 | set_freepointer(s, tail, prior); | |
4398 | slab->freelist = head; | |
4399 | ||
4400 | /* | |
4401 | * If the slab is empty, and node's partial list is full, | |
4402 | * it should be discarded anyway no matter it's on full or | |
4403 | * partial list. | |
4404 | */ | |
4405 | if (slab->inuse == 0 && n->nr_partial >= s->min_partial) | |
4406 | slab_free = slab; | |
4407 | ||
4408 | if (!prior) { | |
4409 | /* was on full list */ | |
4410 | remove_full(s, n, slab); | |
4411 | if (!slab_free) { | |
4412 | add_partial(n, slab, DEACTIVATE_TO_TAIL); | |
4413 | stat(s, FREE_ADD_PARTIAL); | |
4414 | } | |
4415 | } else if (slab_free) { | |
4416 | remove_partial(n, slab); | |
4417 | stat(s, FREE_REMOVE_PARTIAL); | |
4418 | } | |
4419 | } | |
4420 | ||
4421 | if (slab_free) { | |
4422 | /* | |
4423 | * Update the counters while still holding n->list_lock to | |
4424 | * prevent spurious validation warnings | |
4425 | */ | |
4426 | dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); | |
4427 | } | |
4428 | ||
4429 | spin_unlock_irqrestore(&n->list_lock, flags); | |
4430 | ||
4431 | if (slab_free) { | |
4432 | stat(s, FREE_SLAB); | |
4433 | free_slab(s, slab_free); | |
4434 | } | |
4435 | } | |
4436 | ||
4437 | /* | |
4438 | * Slow path handling. This may still be called frequently since objects | |
4439 | * have a longer lifetime than the cpu slabs in most processing loads. | |
4440 | * | |
4441 | * So we still attempt to reduce cache line usage. Just take the slab | |
4442 | * lock and free the item. If there is no additional partial slab | |
4443 | * handling required then we can return immediately. | |
4444 | */ | |
4445 | static void __slab_free(struct kmem_cache *s, struct slab *slab, | |
4446 | void *head, void *tail, int cnt, | |
4447 | unsigned long addr) | |
4448 | ||
4449 | { | |
4450 | void *prior; | |
4451 | int was_frozen; | |
4452 | struct slab new; | |
4453 | unsigned long counters; | |
4454 | struct kmem_cache_node *n = NULL; | |
4455 | unsigned long flags; | |
4456 | bool on_node_partial; | |
4457 | ||
4458 | stat(s, FREE_SLOWPATH); | |
4459 | ||
4460 | if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { | |
4461 | free_to_partial_list(s, slab, head, tail, cnt, addr); | |
4462 | return; | |
4463 | } | |
4464 | ||
4465 | do { | |
4466 | if (unlikely(n)) { | |
4467 | spin_unlock_irqrestore(&n->list_lock, flags); | |
4468 | n = NULL; | |
4469 | } | |
4470 | prior = slab->freelist; | |
4471 | counters = slab->counters; | |
4472 | set_freepointer(s, tail, prior); | |
4473 | new.counters = counters; | |
4474 | was_frozen = new.frozen; | |
4475 | new.inuse -= cnt; | |
4476 | if ((!new.inuse || !prior) && !was_frozen) { | |
4477 | /* Needs to be taken off a list */ | |
4478 | if (!kmem_cache_has_cpu_partial(s) || prior) { | |
4479 | ||
4480 | n = get_node(s, slab_nid(slab)); | |
4481 | /* | |
4482 | * Speculatively acquire the list_lock. | |
4483 | * If the cmpxchg does not succeed then we may | |
4484 | * drop the list_lock without any processing. | |
4485 | * | |
4486 | * Otherwise the list_lock will synchronize with | |
4487 | * other processors updating the list of slabs. | |
4488 | */ | |
4489 | spin_lock_irqsave(&n->list_lock, flags); | |
4490 | ||
4491 | on_node_partial = slab_test_node_partial(slab); | |
4492 | } | |
4493 | } | |
4494 | ||
4495 | } while (!slab_update_freelist(s, slab, | |
4496 | prior, counters, | |
4497 | head, new.counters, | |
4498 | "__slab_free")); | |
4499 | ||
4500 | if (likely(!n)) { | |
4501 | ||
4502 | if (likely(was_frozen)) { | |
4503 | /* | |
4504 | * The list lock was not taken therefore no list | |
4505 | * activity can be necessary. | |
4506 | */ | |
4507 | stat(s, FREE_FROZEN); | |
4508 | } else if (kmem_cache_has_cpu_partial(s) && !prior) { | |
4509 | /* | |
4510 | * If we started with a full slab then put it onto the | |
4511 | * per cpu partial list. | |
4512 | */ | |
4513 | put_cpu_partial(s, slab, 1); | |
4514 | stat(s, CPU_PARTIAL_FREE); | |
4515 | } | |
4516 | ||
4517 | return; | |
4518 | } | |
4519 | ||
4520 | /* | |
4521 | * This slab was partially empty but not on the per-node partial list, | |
4522 | * in which case we shouldn't manipulate its list, just return. | |
4523 | */ | |
4524 | if (prior && !on_node_partial) { | |
4525 | spin_unlock_irqrestore(&n->list_lock, flags); | |
4526 | return; | |
4527 | } | |
4528 | ||
4529 | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) | |
4530 | goto slab_empty; | |
4531 | ||
4532 | /* | |
4533 | * Objects left in the slab. If it was not on the partial list before | |
4534 | * then add it. | |
4535 | */ | |
4536 | if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { | |
4537 | add_partial(n, slab, DEACTIVATE_TO_TAIL); | |
4538 | stat(s, FREE_ADD_PARTIAL); | |
4539 | } | |
4540 | spin_unlock_irqrestore(&n->list_lock, flags); | |
4541 | return; | |
4542 | ||
4543 | slab_empty: | |
4544 | if (prior) { | |
4545 | /* | |
4546 | * Slab on the partial list. | |
4547 | */ | |
4548 | remove_partial(n, slab); | |
4549 | stat(s, FREE_REMOVE_PARTIAL); | |
4550 | } | |
4551 | ||
4552 | spin_unlock_irqrestore(&n->list_lock, flags); | |
4553 | stat(s, FREE_SLAB); | |
4554 | discard_slab(s, slab); | |
4555 | } | |
4556 | ||
4557 | #ifndef CONFIG_SLUB_TINY | |
4558 | /* | |
4559 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
4560 | * can perform fastpath freeing without additional function calls. | |
4561 | * | |
4562 | * The fastpath is only possible if we are freeing to the current cpu slab | |
4563 | * of this processor. This typically the case if we have just allocated | |
4564 | * the item before. | |
4565 | * | |
4566 | * If fastpath is not possible then fall back to __slab_free where we deal | |
4567 | * with all sorts of special processing. | |
4568 | * | |
4569 | * Bulk free of a freelist with several objects (all pointing to the | |
4570 | * same slab) possible by specifying head and tail ptr, plus objects | |
4571 | * count (cnt). Bulk free indicated by tail pointer being set. | |
4572 | */ | |
4573 | static __always_inline void do_slab_free(struct kmem_cache *s, | |
4574 | struct slab *slab, void *head, void *tail, | |
4575 | int cnt, unsigned long addr) | |
4576 | { | |
4577 | struct kmem_cache_cpu *c; | |
4578 | unsigned long tid; | |
4579 | void **freelist; | |
4580 | ||
4581 | redo: | |
4582 | /* | |
4583 | * Determine the currently cpus per cpu slab. | |
4584 | * The cpu may change afterward. However that does not matter since | |
4585 | * data is retrieved via this pointer. If we are on the same cpu | |
4586 | * during the cmpxchg then the free will succeed. | |
4587 | */ | |
4588 | c = raw_cpu_ptr(s->cpu_slab); | |
4589 | tid = READ_ONCE(c->tid); | |
4590 | ||
4591 | /* Same with comment on barrier() in __slab_alloc_node() */ | |
4592 | barrier(); | |
4593 | ||
4594 | if (unlikely(slab != c->slab)) { | |
4595 | __slab_free(s, slab, head, tail, cnt, addr); | |
4596 | return; | |
4597 | } | |
4598 | ||
4599 | if (USE_LOCKLESS_FAST_PATH()) { | |
4600 | freelist = READ_ONCE(c->freelist); | |
4601 | ||
4602 | set_freepointer(s, tail, freelist); | |
4603 | ||
4604 | if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { | |
4605 | note_cmpxchg_failure("slab_free", s, tid); | |
4606 | goto redo; | |
4607 | } | |
4608 | } else { | |
4609 | /* Update the free list under the local lock */ | |
4610 | local_lock(&s->cpu_slab->lock); | |
4611 | c = this_cpu_ptr(s->cpu_slab); | |
4612 | if (unlikely(slab != c->slab)) { | |
4613 | local_unlock(&s->cpu_slab->lock); | |
4614 | goto redo; | |
4615 | } | |
4616 | tid = c->tid; | |
4617 | freelist = c->freelist; | |
4618 | ||
4619 | set_freepointer(s, tail, freelist); | |
4620 | c->freelist = head; | |
4621 | c->tid = next_tid(tid); | |
4622 | ||
4623 | local_unlock(&s->cpu_slab->lock); | |
4624 | } | |
4625 | stat_add(s, FREE_FASTPATH, cnt); | |
4626 | } | |
4627 | #else /* CONFIG_SLUB_TINY */ | |
4628 | static void do_slab_free(struct kmem_cache *s, | |
4629 | struct slab *slab, void *head, void *tail, | |
4630 | int cnt, unsigned long addr) | |
4631 | { | |
4632 | __slab_free(s, slab, head, tail, cnt, addr); | |
4633 | } | |
4634 | #endif /* CONFIG_SLUB_TINY */ | |
4635 | ||
4636 | static __fastpath_inline | |
4637 | void slab_free(struct kmem_cache *s, struct slab *slab, void *object, | |
4638 | unsigned long addr) | |
4639 | { | |
4640 | memcg_slab_free_hook(s, slab, &object, 1); | |
4641 | alloc_tagging_slab_free_hook(s, slab, &object, 1); | |
4642 | ||
4643 | if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false))) | |
4644 | do_slab_free(s, slab, object, object, 1, addr); | |
4645 | } | |
4646 | ||
4647 | #ifdef CONFIG_MEMCG | |
4648 | /* Do not inline the rare memcg charging failed path into the allocation path */ | |
4649 | static noinline | |
4650 | void memcg_alloc_abort_single(struct kmem_cache *s, void *object) | |
4651 | { | |
4652 | if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false))) | |
4653 | do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_); | |
4654 | } | |
4655 | #endif | |
4656 | ||
4657 | static __fastpath_inline | |
4658 | void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, | |
4659 | void *tail, void **p, int cnt, unsigned long addr) | |
4660 | { | |
4661 | memcg_slab_free_hook(s, slab, p, cnt); | |
4662 | alloc_tagging_slab_free_hook(s, slab, p, cnt); | |
4663 | /* | |
4664 | * With KASAN enabled slab_free_freelist_hook modifies the freelist | |
4665 | * to remove objects, whose reuse must be delayed. | |
4666 | */ | |
4667 | if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) | |
4668 | do_slab_free(s, slab, head, tail, cnt, addr); | |
4669 | } | |
4670 | ||
4671 | #ifdef CONFIG_SLUB_RCU_DEBUG | |
4672 | static void slab_free_after_rcu_debug(struct rcu_head *rcu_head) | |
4673 | { | |
4674 | struct rcu_delayed_free *delayed_free = | |
4675 | container_of(rcu_head, struct rcu_delayed_free, head); | |
4676 | void *object = delayed_free->object; | |
4677 | struct slab *slab = virt_to_slab(object); | |
4678 | struct kmem_cache *s; | |
4679 | ||
4680 | kfree(delayed_free); | |
4681 | ||
4682 | if (WARN_ON(is_kfence_address(object))) | |
4683 | return; | |
4684 | ||
4685 | /* find the object and the cache again */ | |
4686 | if (WARN_ON(!slab)) | |
4687 | return; | |
4688 | s = slab->slab_cache; | |
4689 | if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU))) | |
4690 | return; | |
4691 | ||
4692 | /* resume freeing */ | |
4693 | if (slab_free_hook(s, object, slab_want_init_on_free(s), true)) | |
4694 | do_slab_free(s, slab, object, object, 1, _THIS_IP_); | |
4695 | } | |
4696 | #endif /* CONFIG_SLUB_RCU_DEBUG */ | |
4697 | ||
4698 | #ifdef CONFIG_KASAN_GENERIC | |
4699 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) | |
4700 | { | |
4701 | do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); | |
4702 | } | |
4703 | #endif | |
4704 | ||
4705 | static inline struct kmem_cache *virt_to_cache(const void *obj) | |
4706 | { | |
4707 | struct slab *slab; | |
4708 | ||
4709 | slab = virt_to_slab(obj); | |
4710 | if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) | |
4711 | return NULL; | |
4712 | return slab->slab_cache; | |
4713 | } | |
4714 | ||
4715 | static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) | |
4716 | { | |
4717 | struct kmem_cache *cachep; | |
4718 | ||
4719 | if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && | |
4720 | !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) | |
4721 | return s; | |
4722 | ||
4723 | cachep = virt_to_cache(x); | |
4724 | if (WARN(cachep && cachep != s, | |
4725 | "%s: Wrong slab cache. %s but object is from %s\n", | |
4726 | __func__, s->name, cachep->name)) | |
4727 | print_tracking(cachep, x); | |
4728 | return cachep; | |
4729 | } | |
4730 | ||
4731 | /** | |
4732 | * kmem_cache_free - Deallocate an object | |
4733 | * @s: The cache the allocation was from. | |
4734 | * @x: The previously allocated object. | |
4735 | * | |
4736 | * Free an object which was previously allocated from this | |
4737 | * cache. | |
4738 | */ | |
4739 | void kmem_cache_free(struct kmem_cache *s, void *x) | |
4740 | { | |
4741 | s = cache_from_obj(s, x); | |
4742 | if (!s) | |
4743 | return; | |
4744 | trace_kmem_cache_free(_RET_IP_, x, s); | |
4745 | slab_free(s, virt_to_slab(x), x, _RET_IP_); | |
4746 | } | |
4747 | EXPORT_SYMBOL(kmem_cache_free); | |
4748 | ||
4749 | static void free_large_kmalloc(struct folio *folio, void *object) | |
4750 | { | |
4751 | unsigned int order = folio_order(folio); | |
4752 | ||
4753 | if (WARN_ON_ONCE(!folio_test_large_kmalloc(folio))) { | |
4754 | dump_page(&folio->page, "Not a kmalloc allocation"); | |
4755 | return; | |
4756 | } | |
4757 | ||
4758 | if (WARN_ON_ONCE(order == 0)) | |
4759 | pr_warn_once("object pointer: 0x%p\n", object); | |
4760 | ||
4761 | kmemleak_free(object); | |
4762 | kasan_kfree_large(object); | |
4763 | kmsan_kfree_large(object); | |
4764 | ||
4765 | lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, | |
4766 | -(PAGE_SIZE << order)); | |
4767 | __folio_clear_large_kmalloc(folio); | |
4768 | folio_put(folio); | |
4769 | } | |
4770 | ||
4771 | /* | |
4772 | * Given an rcu_head embedded within an object obtained from kvmalloc at an | |
4773 | * offset < 4k, free the object in question. | |
4774 | */ | |
4775 | void kvfree_rcu_cb(struct rcu_head *head) | |
4776 | { | |
4777 | void *obj = head; | |
4778 | struct folio *folio; | |
4779 | struct slab *slab; | |
4780 | struct kmem_cache *s; | |
4781 | void *slab_addr; | |
4782 | ||
4783 | if (is_vmalloc_addr(obj)) { | |
4784 | obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj); | |
4785 | vfree(obj); | |
4786 | return; | |
4787 | } | |
4788 | ||
4789 | folio = virt_to_folio(obj); | |
4790 | if (!folio_test_slab(folio)) { | |
4791 | /* | |
4792 | * rcu_head offset can be only less than page size so no need to | |
4793 | * consider folio order | |
4794 | */ | |
4795 | obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj); | |
4796 | free_large_kmalloc(folio, obj); | |
4797 | return; | |
4798 | } | |
4799 | ||
4800 | slab = folio_slab(folio); | |
4801 | s = slab->slab_cache; | |
4802 | slab_addr = folio_address(folio); | |
4803 | ||
4804 | if (is_kfence_address(obj)) { | |
4805 | obj = kfence_object_start(obj); | |
4806 | } else { | |
4807 | unsigned int idx = __obj_to_index(s, slab_addr, obj); | |
4808 | ||
4809 | obj = slab_addr + s->size * idx; | |
4810 | obj = fixup_red_left(s, obj); | |
4811 | } | |
4812 | ||
4813 | slab_free(s, slab, obj, _RET_IP_); | |
4814 | } | |
4815 | ||
4816 | /** | |
4817 | * kfree - free previously allocated memory | |
4818 | * @object: pointer returned by kmalloc() or kmem_cache_alloc() | |
4819 | * | |
4820 | * If @object is NULL, no operation is performed. | |
4821 | */ | |
4822 | void kfree(const void *object) | |
4823 | { | |
4824 | struct folio *folio; | |
4825 | struct slab *slab; | |
4826 | struct kmem_cache *s; | |
4827 | void *x = (void *)object; | |
4828 | ||
4829 | trace_kfree(_RET_IP_, object); | |
4830 | ||
4831 | if (unlikely(ZERO_OR_NULL_PTR(object))) | |
4832 | return; | |
4833 | ||
4834 | folio = virt_to_folio(object); | |
4835 | if (unlikely(!folio_test_slab(folio))) { | |
4836 | free_large_kmalloc(folio, (void *)object); | |
4837 | return; | |
4838 | } | |
4839 | ||
4840 | slab = folio_slab(folio); | |
4841 | s = slab->slab_cache; | |
4842 | slab_free(s, slab, x, _RET_IP_); | |
4843 | } | |
4844 | EXPORT_SYMBOL(kfree); | |
4845 | ||
4846 | static __always_inline __realloc_size(2) void * | |
4847 | __do_krealloc(const void *p, size_t new_size, gfp_t flags) | |
4848 | { | |
4849 | void *ret; | |
4850 | size_t ks = 0; | |
4851 | int orig_size = 0; | |
4852 | struct kmem_cache *s = NULL; | |
4853 | ||
4854 | if (unlikely(ZERO_OR_NULL_PTR(p))) | |
4855 | goto alloc_new; | |
4856 | ||
4857 | /* Check for double-free. */ | |
4858 | if (!kasan_check_byte(p)) | |
4859 | return NULL; | |
4860 | ||
4861 | if (is_kfence_address(p)) { | |
4862 | ks = orig_size = kfence_ksize(p); | |
4863 | } else { | |
4864 | struct folio *folio; | |
4865 | ||
4866 | folio = virt_to_folio(p); | |
4867 | if (unlikely(!folio_test_slab(folio))) { | |
4868 | /* Big kmalloc object */ | |
4869 | WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE); | |
4870 | WARN_ON(p != folio_address(folio)); | |
4871 | ks = folio_size(folio); | |
4872 | } else { | |
4873 | s = folio_slab(folio)->slab_cache; | |
4874 | orig_size = get_orig_size(s, (void *)p); | |
4875 | ks = s->object_size; | |
4876 | } | |
4877 | } | |
4878 | ||
4879 | /* If the old object doesn't fit, allocate a bigger one */ | |
4880 | if (new_size > ks) | |
4881 | goto alloc_new; | |
4882 | ||
4883 | /* Zero out spare memory. */ | |
4884 | if (want_init_on_alloc(flags)) { | |
4885 | kasan_disable_current(); | |
4886 | if (orig_size && orig_size < new_size) | |
4887 | memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size); | |
4888 | else | |
4889 | memset(kasan_reset_tag(p) + new_size, 0, ks - new_size); | |
4890 | kasan_enable_current(); | |
4891 | } | |
4892 | ||
4893 | /* Setup kmalloc redzone when needed */ | |
4894 | if (s && slub_debug_orig_size(s)) { | |
4895 | set_orig_size(s, (void *)p, new_size); | |
4896 | if (s->flags & SLAB_RED_ZONE && new_size < ks) | |
4897 | memset_no_sanitize_memory(kasan_reset_tag(p) + new_size, | |
4898 | SLUB_RED_ACTIVE, ks - new_size); | |
4899 | } | |
4900 | ||
4901 | p = kasan_krealloc(p, new_size, flags); | |
4902 | return (void *)p; | |
4903 | ||
4904 | alloc_new: | |
4905 | ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_); | |
4906 | if (ret && p) { | |
4907 | /* Disable KASAN checks as the object's redzone is accessed. */ | |
4908 | kasan_disable_current(); | |
4909 | memcpy(ret, kasan_reset_tag(p), orig_size ?: ks); | |
4910 | kasan_enable_current(); | |
4911 | } | |
4912 | ||
4913 | return ret; | |
4914 | } | |
4915 | ||
4916 | /** | |
4917 | * krealloc - reallocate memory. The contents will remain unchanged. | |
4918 | * @p: object to reallocate memory for. | |
4919 | * @new_size: how many bytes of memory are required. | |
4920 | * @flags: the type of memory to allocate. | |
4921 | * | |
4922 | * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size | |
4923 | * is 0 and @p is not a %NULL pointer, the object pointed to is freed. | |
4924 | * | |
4925 | * If __GFP_ZERO logic is requested, callers must ensure that, starting with the | |
4926 | * initial memory allocation, every subsequent call to this API for the same | |
4927 | * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that | |
4928 | * __GFP_ZERO is not fully honored by this API. | |
4929 | * | |
4930 | * When slub_debug_orig_size() is off, krealloc() only knows about the bucket | |
4931 | * size of an allocation (but not the exact size it was allocated with) and | |
4932 | * hence implements the following semantics for shrinking and growing buffers | |
4933 | * with __GFP_ZERO. | |
4934 | * | |
4935 | * new bucket | |
4936 | * 0 size size | |
4937 | * |--------|----------------| | |
4938 | * | keep | zero | | |
4939 | * | |
4940 | * Otherwise, the original allocation size 'orig_size' could be used to | |
4941 | * precisely clear the requested size, and the new size will also be stored | |
4942 | * as the new 'orig_size'. | |
4943 | * | |
4944 | * In any case, the contents of the object pointed to are preserved up to the | |
4945 | * lesser of the new and old sizes. | |
4946 | * | |
4947 | * Return: pointer to the allocated memory or %NULL in case of error | |
4948 | */ | |
4949 | void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags) | |
4950 | { | |
4951 | void *ret; | |
4952 | ||
4953 | if (unlikely(!new_size)) { | |
4954 | kfree(p); | |
4955 | return ZERO_SIZE_PTR; | |
4956 | } | |
4957 | ||
4958 | ret = __do_krealloc(p, new_size, flags); | |
4959 | if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) | |
4960 | kfree(p); | |
4961 | ||
4962 | return ret; | |
4963 | } | |
4964 | EXPORT_SYMBOL(krealloc_noprof); | |
4965 | ||
4966 | static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size) | |
4967 | { | |
4968 | /* | |
4969 | * We want to attempt a large physically contiguous block first because | |
4970 | * it is less likely to fragment multiple larger blocks and therefore | |
4971 | * contribute to a long term fragmentation less than vmalloc fallback. | |
4972 | * However make sure that larger requests are not too disruptive - i.e. | |
4973 | * do not direct reclaim unless physically continuous memory is preferred | |
4974 | * (__GFP_RETRY_MAYFAIL mode). We still kick in kswapd/kcompactd to | |
4975 | * start working in the background | |
4976 | */ | |
4977 | if (size > PAGE_SIZE) { | |
4978 | flags |= __GFP_NOWARN; | |
4979 | ||
4980 | if (!(flags & __GFP_RETRY_MAYFAIL)) | |
4981 | flags &= ~__GFP_DIRECT_RECLAIM; | |
4982 | ||
4983 | /* nofail semantic is implemented by the vmalloc fallback */ | |
4984 | flags &= ~__GFP_NOFAIL; | |
4985 | } | |
4986 | ||
4987 | return flags; | |
4988 | } | |
4989 | ||
4990 | /** | |
4991 | * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon | |
4992 | * failure, fall back to non-contiguous (vmalloc) allocation. | |
4993 | * @size: size of the request. | |
4994 | * @b: which set of kmalloc buckets to allocate from. | |
4995 | * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. | |
4996 | * @node: numa node to allocate from | |
4997 | * | |
4998 | * Uses kmalloc to get the memory but if the allocation fails then falls back | |
4999 | * to the vmalloc allocator. Use kvfree for freeing the memory. | |
5000 | * | |
5001 | * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. | |
5002 | * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is | |
5003 | * preferable to the vmalloc fallback, due to visible performance drawbacks. | |
5004 | * | |
5005 | * Return: pointer to the allocated memory of %NULL in case of failure | |
5006 | */ | |
5007 | void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) | |
5008 | { | |
5009 | void *ret; | |
5010 | ||
5011 | /* | |
5012 | * It doesn't really make sense to fallback to vmalloc for sub page | |
5013 | * requests | |
5014 | */ | |
5015 | ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), | |
5016 | kmalloc_gfp_adjust(flags, size), | |
5017 | node, _RET_IP_); | |
5018 | if (ret || size <= PAGE_SIZE) | |
5019 | return ret; | |
5020 | ||
5021 | /* non-sleeping allocations are not supported by vmalloc */ | |
5022 | if (!gfpflags_allow_blocking(flags)) | |
5023 | return NULL; | |
5024 | ||
5025 | /* Don't even allow crazy sizes */ | |
5026 | if (unlikely(size > INT_MAX)) { | |
5027 | WARN_ON_ONCE(!(flags & __GFP_NOWARN)); | |
5028 | return NULL; | |
5029 | } | |
5030 | ||
5031 | /* | |
5032 | * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, | |
5033 | * since the callers already cannot assume anything | |
5034 | * about the resulting pointer, and cannot play | |
5035 | * protection games. | |
5036 | */ | |
5037 | return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, | |
5038 | flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, | |
5039 | node, __builtin_return_address(0)); | |
5040 | } | |
5041 | EXPORT_SYMBOL(__kvmalloc_node_noprof); | |
5042 | ||
5043 | /** | |
5044 | * kvfree() - Free memory. | |
5045 | * @addr: Pointer to allocated memory. | |
5046 | * | |
5047 | * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). | |
5048 | * It is slightly more efficient to use kfree() or vfree() if you are certain | |
5049 | * that you know which one to use. | |
5050 | * | |
5051 | * Context: Either preemptible task context or not-NMI interrupt. | |
5052 | */ | |
5053 | void kvfree(const void *addr) | |
5054 | { | |
5055 | if (is_vmalloc_addr(addr)) | |
5056 | vfree(addr); | |
5057 | else | |
5058 | kfree(addr); | |
5059 | } | |
5060 | EXPORT_SYMBOL(kvfree); | |
5061 | ||
5062 | /** | |
5063 | * kvfree_sensitive - Free a data object containing sensitive information. | |
5064 | * @addr: address of the data object to be freed. | |
5065 | * @len: length of the data object. | |
5066 | * | |
5067 | * Use the special memzero_explicit() function to clear the content of a | |
5068 | * kvmalloc'ed object containing sensitive data to make sure that the | |
5069 | * compiler won't optimize out the data clearing. | |
5070 | */ | |
5071 | void kvfree_sensitive(const void *addr, size_t len) | |
5072 | { | |
5073 | if (likely(!ZERO_OR_NULL_PTR(addr))) { | |
5074 | memzero_explicit((void *)addr, len); | |
5075 | kvfree(addr); | |
5076 | } | |
5077 | } | |
5078 | EXPORT_SYMBOL(kvfree_sensitive); | |
5079 | ||
5080 | /** | |
5081 | * kvrealloc - reallocate memory; contents remain unchanged | |
5082 | * @p: object to reallocate memory for | |
5083 | * @size: the size to reallocate | |
5084 | * @flags: the flags for the page level allocator | |
5085 | * | |
5086 | * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0 | |
5087 | * and @p is not a %NULL pointer, the object pointed to is freed. | |
5088 | * | |
5089 | * If __GFP_ZERO logic is requested, callers must ensure that, starting with the | |
5090 | * initial memory allocation, every subsequent call to this API for the same | |
5091 | * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that | |
5092 | * __GFP_ZERO is not fully honored by this API. | |
5093 | * | |
5094 | * In any case, the contents of the object pointed to are preserved up to the | |
5095 | * lesser of the new and old sizes. | |
5096 | * | |
5097 | * This function must not be called concurrently with itself or kvfree() for the | |
5098 | * same memory allocation. | |
5099 | * | |
5100 | * Return: pointer to the allocated memory or %NULL in case of error | |
5101 | */ | |
5102 | void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags) | |
5103 | { | |
5104 | void *n; | |
5105 | ||
5106 | if (is_vmalloc_addr(p)) | |
5107 | return vrealloc_noprof(p, size, flags); | |
5108 | ||
5109 | n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size)); | |
5110 | if (!n) { | |
5111 | /* We failed to krealloc(), fall back to kvmalloc(). */ | |
5112 | n = kvmalloc_noprof(size, flags); | |
5113 | if (!n) | |
5114 | return NULL; | |
5115 | ||
5116 | if (p) { | |
5117 | /* We already know that `p` is not a vmalloc address. */ | |
5118 | kasan_disable_current(); | |
5119 | memcpy(n, kasan_reset_tag(p), ksize(p)); | |
5120 | kasan_enable_current(); | |
5121 | ||
5122 | kfree(p); | |
5123 | } | |
5124 | } | |
5125 | ||
5126 | return n; | |
5127 | } | |
5128 | EXPORT_SYMBOL(kvrealloc_noprof); | |
5129 | ||
5130 | struct detached_freelist { | |
5131 | struct slab *slab; | |
5132 | void *tail; | |
5133 | void *freelist; | |
5134 | int cnt; | |
5135 | struct kmem_cache *s; | |
5136 | }; | |
5137 | ||
5138 | /* | |
5139 | * This function progressively scans the array with free objects (with | |
5140 | * a limited look ahead) and extract objects belonging to the same | |
5141 | * slab. It builds a detached freelist directly within the given | |
5142 | * slab/objects. This can happen without any need for | |
5143 | * synchronization, because the objects are owned by running process. | |
5144 | * The freelist is build up as a single linked list in the objects. | |
5145 | * The idea is, that this detached freelist can then be bulk | |
5146 | * transferred to the real freelist(s), but only requiring a single | |
5147 | * synchronization primitive. Look ahead in the array is limited due | |
5148 | * to performance reasons. | |
5149 | */ | |
5150 | static inline | |
5151 | int build_detached_freelist(struct kmem_cache *s, size_t size, | |
5152 | void **p, struct detached_freelist *df) | |
5153 | { | |
5154 | int lookahead = 3; | |
5155 | void *object; | |
5156 | struct folio *folio; | |
5157 | size_t same; | |
5158 | ||
5159 | object = p[--size]; | |
5160 | folio = virt_to_folio(object); | |
5161 | if (!s) { | |
5162 | /* Handle kalloc'ed objects */ | |
5163 | if (unlikely(!folio_test_slab(folio))) { | |
5164 | free_large_kmalloc(folio, object); | |
5165 | df->slab = NULL; | |
5166 | return size; | |
5167 | } | |
5168 | /* Derive kmem_cache from object */ | |
5169 | df->slab = folio_slab(folio); | |
5170 | df->s = df->slab->slab_cache; | |
5171 | } else { | |
5172 | df->slab = folio_slab(folio); | |
5173 | df->s = cache_from_obj(s, object); /* Support for memcg */ | |
5174 | } | |
5175 | ||
5176 | /* Start new detached freelist */ | |
5177 | df->tail = object; | |
5178 | df->freelist = object; | |
5179 | df->cnt = 1; | |
5180 | ||
5181 | if (is_kfence_address(object)) | |
5182 | return size; | |
5183 | ||
5184 | set_freepointer(df->s, object, NULL); | |
5185 | ||
5186 | same = size; | |
5187 | while (size) { | |
5188 | object = p[--size]; | |
5189 | /* df->slab is always set at this point */ | |
5190 | if (df->slab == virt_to_slab(object)) { | |
5191 | /* Opportunity build freelist */ | |
5192 | set_freepointer(df->s, object, df->freelist); | |
5193 | df->freelist = object; | |
5194 | df->cnt++; | |
5195 | same--; | |
5196 | if (size != same) | |
5197 | swap(p[size], p[same]); | |
5198 | continue; | |
5199 | } | |
5200 | ||
5201 | /* Limit look ahead search */ | |
5202 | if (!--lookahead) | |
5203 | break; | |
5204 | } | |
5205 | ||
5206 | return same; | |
5207 | } | |
5208 | ||
5209 | /* | |
5210 | * Internal bulk free of objects that were not initialised by the post alloc | |
5211 | * hooks and thus should not be processed by the free hooks | |
5212 | */ | |
5213 | static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) | |
5214 | { | |
5215 | if (!size) | |
5216 | return; | |
5217 | ||
5218 | do { | |
5219 | struct detached_freelist df; | |
5220 | ||
5221 | size = build_detached_freelist(s, size, p, &df); | |
5222 | if (!df.slab) | |
5223 | continue; | |
5224 | ||
5225 | if (kfence_free(df.freelist)) | |
5226 | continue; | |
5227 | ||
5228 | do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, | |
5229 | _RET_IP_); | |
5230 | } while (likely(size)); | |
5231 | } | |
5232 | ||
5233 | /* Note that interrupts must be enabled when calling this function. */ | |
5234 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) | |
5235 | { | |
5236 | if (!size) | |
5237 | return; | |
5238 | ||
5239 | do { | |
5240 | struct detached_freelist df; | |
5241 | ||
5242 | size = build_detached_freelist(s, size, p, &df); | |
5243 | if (!df.slab) | |
5244 | continue; | |
5245 | ||
5246 | slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], | |
5247 | df.cnt, _RET_IP_); | |
5248 | } while (likely(size)); | |
5249 | } | |
5250 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
5251 | ||
5252 | #ifndef CONFIG_SLUB_TINY | |
5253 | static inline | |
5254 | int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, | |
5255 | void **p) | |
5256 | { | |
5257 | struct kmem_cache_cpu *c; | |
5258 | unsigned long irqflags; | |
5259 | int i; | |
5260 | ||
5261 | /* | |
5262 | * Drain objects in the per cpu slab, while disabling local | |
5263 | * IRQs, which protects against PREEMPT and interrupts | |
5264 | * handlers invoking normal fastpath. | |
5265 | */ | |
5266 | c = slub_get_cpu_ptr(s->cpu_slab); | |
5267 | local_lock_irqsave(&s->cpu_slab->lock, irqflags); | |
5268 | ||
5269 | for (i = 0; i < size; i++) { | |
5270 | void *object = kfence_alloc(s, s->object_size, flags); | |
5271 | ||
5272 | if (unlikely(object)) { | |
5273 | p[i] = object; | |
5274 | continue; | |
5275 | } | |
5276 | ||
5277 | object = c->freelist; | |
5278 | if (unlikely(!object)) { | |
5279 | /* | |
5280 | * We may have removed an object from c->freelist using | |
5281 | * the fastpath in the previous iteration; in that case, | |
5282 | * c->tid has not been bumped yet. | |
5283 | * Since ___slab_alloc() may reenable interrupts while | |
5284 | * allocating memory, we should bump c->tid now. | |
5285 | */ | |
5286 | c->tid = next_tid(c->tid); | |
5287 | ||
5288 | local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); | |
5289 | ||
5290 | /* | |
5291 | * Invoking slow path likely have side-effect | |
5292 | * of re-populating per CPU c->freelist | |
5293 | */ | |
5294 | p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, | |
5295 | _RET_IP_, c, s->object_size); | |
5296 | if (unlikely(!p[i])) | |
5297 | goto error; | |
5298 | ||
5299 | c = this_cpu_ptr(s->cpu_slab); | |
5300 | maybe_wipe_obj_freeptr(s, p[i]); | |
5301 | ||
5302 | local_lock_irqsave(&s->cpu_slab->lock, irqflags); | |
5303 | ||
5304 | continue; /* goto for-loop */ | |
5305 | } | |
5306 | c->freelist = get_freepointer(s, object); | |
5307 | p[i] = object; | |
5308 | maybe_wipe_obj_freeptr(s, p[i]); | |
5309 | stat(s, ALLOC_FASTPATH); | |
5310 | } | |
5311 | c->tid = next_tid(c->tid); | |
5312 | local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); | |
5313 | slub_put_cpu_ptr(s->cpu_slab); | |
5314 | ||
5315 | return i; | |
5316 | ||
5317 | error: | |
5318 | slub_put_cpu_ptr(s->cpu_slab); | |
5319 | __kmem_cache_free_bulk(s, i, p); | |
5320 | return 0; | |
5321 | ||
5322 | } | |
5323 | #else /* CONFIG_SLUB_TINY */ | |
5324 | static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, | |
5325 | size_t size, void **p) | |
5326 | { | |
5327 | int i; | |
5328 | ||
5329 | for (i = 0; i < size; i++) { | |
5330 | void *object = kfence_alloc(s, s->object_size, flags); | |
5331 | ||
5332 | if (unlikely(object)) { | |
5333 | p[i] = object; | |
5334 | continue; | |
5335 | } | |
5336 | ||
5337 | p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, | |
5338 | _RET_IP_, s->object_size); | |
5339 | if (unlikely(!p[i])) | |
5340 | goto error; | |
5341 | ||
5342 | maybe_wipe_obj_freeptr(s, p[i]); | |
5343 | } | |
5344 | ||
5345 | return i; | |
5346 | ||
5347 | error: | |
5348 | __kmem_cache_free_bulk(s, i, p); | |
5349 | return 0; | |
5350 | } | |
5351 | #endif /* CONFIG_SLUB_TINY */ | |
5352 | ||
5353 | /* Note that interrupts must be enabled when calling this function. */ | |
5354 | int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, | |
5355 | void **p) | |
5356 | { | |
5357 | int i; | |
5358 | ||
5359 | if (!size) | |
5360 | return 0; | |
5361 | ||
5362 | s = slab_pre_alloc_hook(s, flags); | |
5363 | if (unlikely(!s)) | |
5364 | return 0; | |
5365 | ||
5366 | i = __kmem_cache_alloc_bulk(s, flags, size, p); | |
5367 | if (unlikely(i == 0)) | |
5368 | return 0; | |
5369 | ||
5370 | /* | |
5371 | * memcg and kmem_cache debug support and memory initialization. | |
5372 | * Done outside of the IRQ disabled fastpath loop. | |
5373 | */ | |
5374 | if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p, | |
5375 | slab_want_init_on_alloc(flags, s), s->object_size))) { | |
5376 | return 0; | |
5377 | } | |
5378 | return i; | |
5379 | } | |
5380 | EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof); | |
5381 | ||
5382 | ||
5383 | /* | |
5384 | * Object placement in a slab is made very easy because we always start at | |
5385 | * offset 0. If we tune the size of the object to the alignment then we can | |
5386 | * get the required alignment by putting one properly sized object after | |
5387 | * another. | |
5388 | * | |
5389 | * Notice that the allocation order determines the sizes of the per cpu | |
5390 | * caches. Each processor has always one slab available for allocations. | |
5391 | * Increasing the allocation order reduces the number of times that slabs | |
5392 | * must be moved on and off the partial lists and is therefore a factor in | |
5393 | * locking overhead. | |
5394 | */ | |
5395 | ||
5396 | /* | |
5397 | * Minimum / Maximum order of slab pages. This influences locking overhead | |
5398 | * and slab fragmentation. A higher order reduces the number of partial slabs | |
5399 | * and increases the number of allocations possible without having to | |
5400 | * take the list_lock. | |
5401 | */ | |
5402 | static unsigned int slub_min_order; | |
5403 | static unsigned int slub_max_order = | |
5404 | IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; | |
5405 | static unsigned int slub_min_objects; | |
5406 | ||
5407 | /* | |
5408 | * Calculate the order of allocation given an slab object size. | |
5409 | * | |
5410 | * The order of allocation has significant impact on performance and other | |
5411 | * system components. Generally order 0 allocations should be preferred since | |
5412 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
5413 | * be problematic to put into order 0 slabs because there may be too much | |
5414 | * unused space left. We go to a higher order if more than 1/16th of the slab | |
5415 | * would be wasted. | |
5416 | * | |
5417 | * In order to reach satisfactory performance we must ensure that a minimum | |
5418 | * number of objects is in one slab. Otherwise we may generate too much | |
5419 | * activity on the partial lists which requires taking the list_lock. This is | |
5420 | * less a concern for large slabs though which are rarely used. | |
5421 | * | |
5422 | * slab_max_order specifies the order where we begin to stop considering the | |
5423 | * number of objects in a slab as critical. If we reach slab_max_order then | |
5424 | * we try to keep the page order as low as possible. So we accept more waste | |
5425 | * of space in favor of a small page order. | |
5426 | * | |
5427 | * Higher order allocations also allow the placement of more objects in a | |
5428 | * slab and thereby reduce object handling overhead. If the user has | |
5429 | * requested a higher minimum order then we start with that one instead of | |
5430 | * the smallest order which will fit the object. | |
5431 | */ | |
5432 | static inline unsigned int calc_slab_order(unsigned int size, | |
5433 | unsigned int min_order, unsigned int max_order, | |
5434 | unsigned int fract_leftover) | |
5435 | { | |
5436 | unsigned int order; | |
5437 | ||
5438 | for (order = min_order; order <= max_order; order++) { | |
5439 | ||
5440 | unsigned int slab_size = (unsigned int)PAGE_SIZE << order; | |
5441 | unsigned int rem; | |
5442 | ||
5443 | rem = slab_size % size; | |
5444 | ||
5445 | if (rem <= slab_size / fract_leftover) | |
5446 | break; | |
5447 | } | |
5448 | ||
5449 | return order; | |
5450 | } | |
5451 | ||
5452 | static inline int calculate_order(unsigned int size) | |
5453 | { | |
5454 | unsigned int order; | |
5455 | unsigned int min_objects; | |
5456 | unsigned int max_objects; | |
5457 | unsigned int min_order; | |
5458 | ||
5459 | min_objects = slub_min_objects; | |
5460 | if (!min_objects) { | |
5461 | /* | |
5462 | * Some architectures will only update present cpus when | |
5463 | * onlining them, so don't trust the number if it's just 1. But | |
5464 | * we also don't want to use nr_cpu_ids always, as on some other | |
5465 | * architectures, there can be many possible cpus, but never | |
5466 | * onlined. Here we compromise between trying to avoid too high | |
5467 | * order on systems that appear larger than they are, and too | |
5468 | * low order on systems that appear smaller than they are. | |
5469 | */ | |
5470 | unsigned int nr_cpus = num_present_cpus(); | |
5471 | if (nr_cpus <= 1) | |
5472 | nr_cpus = nr_cpu_ids; | |
5473 | min_objects = 4 * (fls(nr_cpus) + 1); | |
5474 | } | |
5475 | /* min_objects can't be 0 because get_order(0) is undefined */ | |
5476 | max_objects = max(order_objects(slub_max_order, size), 1U); | |
5477 | min_objects = min(min_objects, max_objects); | |
5478 | ||
5479 | min_order = max_t(unsigned int, slub_min_order, | |
5480 | get_order(min_objects * size)); | |
5481 | if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) | |
5482 | return get_order(size * MAX_OBJS_PER_PAGE) - 1; | |
5483 | ||
5484 | /* | |
5485 | * Attempt to find best configuration for a slab. This works by first | |
5486 | * attempting to generate a layout with the best possible configuration | |
5487 | * and backing off gradually. | |
5488 | * | |
5489 | * We start with accepting at most 1/16 waste and try to find the | |
5490 | * smallest order from min_objects-derived/slab_min_order up to | |
5491 | * slab_max_order that will satisfy the constraint. Note that increasing | |
5492 | * the order can only result in same or less fractional waste, not more. | |
5493 | * | |
5494 | * If that fails, we increase the acceptable fraction of waste and try | |
5495 | * again. The last iteration with fraction of 1/2 would effectively | |
5496 | * accept any waste and give us the order determined by min_objects, as | |
5497 | * long as at least single object fits within slab_max_order. | |
5498 | */ | |
5499 | for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { | |
5500 | order = calc_slab_order(size, min_order, slub_max_order, | |
5501 | fraction); | |
5502 | if (order <= slub_max_order) | |
5503 | return order; | |
5504 | } | |
5505 | ||
5506 | /* | |
5507 | * Doh this slab cannot be placed using slab_max_order. | |
5508 | */ | |
5509 | order = get_order(size); | |
5510 | if (order <= MAX_PAGE_ORDER) | |
5511 | return order; | |
5512 | return -ENOSYS; | |
5513 | } | |
5514 | ||
5515 | static void | |
5516 | init_kmem_cache_node(struct kmem_cache_node *n) | |
5517 | { | |
5518 | n->nr_partial = 0; | |
5519 | spin_lock_init(&n->list_lock); | |
5520 | INIT_LIST_HEAD(&n->partial); | |
5521 | #ifdef CONFIG_SLUB_DEBUG | |
5522 | atomic_long_set(&n->nr_slabs, 0); | |
5523 | atomic_long_set(&n->total_objects, 0); | |
5524 | INIT_LIST_HEAD(&n->full); | |
5525 | #endif | |
5526 | } | |
5527 | ||
5528 | #ifndef CONFIG_SLUB_TINY | |
5529 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) | |
5530 | { | |
5531 | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < | |
5532 | NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * | |
5533 | sizeof(struct kmem_cache_cpu)); | |
5534 | ||
5535 | /* | |
5536 | * Must align to double word boundary for the double cmpxchg | |
5537 | * instructions to work; see __pcpu_double_call_return_bool(). | |
5538 | */ | |
5539 | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), | |
5540 | 2 * sizeof(void *)); | |
5541 | ||
5542 | if (!s->cpu_slab) | |
5543 | return 0; | |
5544 | ||
5545 | init_kmem_cache_cpus(s); | |
5546 | ||
5547 | return 1; | |
5548 | } | |
5549 | #else | |
5550 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) | |
5551 | { | |
5552 | return 1; | |
5553 | } | |
5554 | #endif /* CONFIG_SLUB_TINY */ | |
5555 | ||
5556 | static struct kmem_cache *kmem_cache_node; | |
5557 | ||
5558 | /* | |
5559 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
5560 | * slab on the node for this slabcache. There are no concurrent accesses | |
5561 | * possible. | |
5562 | * | |
5563 | * Note that this function only works on the kmem_cache_node | |
5564 | * when allocating for the kmem_cache_node. This is used for bootstrapping | |
5565 | * memory on a fresh node that has no slab structures yet. | |
5566 | */ | |
5567 | static void early_kmem_cache_node_alloc(int node) | |
5568 | { | |
5569 | struct slab *slab; | |
5570 | struct kmem_cache_node *n; | |
5571 | ||
5572 | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); | |
5573 | ||
5574 | slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); | |
5575 | ||
5576 | BUG_ON(!slab); | |
5577 | if (slab_nid(slab) != node) { | |
5578 | pr_err("SLUB: Unable to allocate memory from node %d\n", node); | |
5579 | pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); | |
5580 | } | |
5581 | ||
5582 | n = slab->freelist; | |
5583 | BUG_ON(!n); | |
5584 | #ifdef CONFIG_SLUB_DEBUG | |
5585 | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); | |
5586 | #endif | |
5587 | n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); | |
5588 | slab->freelist = get_freepointer(kmem_cache_node, n); | |
5589 | slab->inuse = 1; | |
5590 | kmem_cache_node->node[node] = n; | |
5591 | init_kmem_cache_node(n); | |
5592 | inc_slabs_node(kmem_cache_node, node, slab->objects); | |
5593 | ||
5594 | /* | |
5595 | * No locks need to be taken here as it has just been | |
5596 | * initialized and there is no concurrent access. | |
5597 | */ | |
5598 | __add_partial(n, slab, DEACTIVATE_TO_HEAD); | |
5599 | } | |
5600 | ||
5601 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
5602 | { | |
5603 | int node; | |
5604 | struct kmem_cache_node *n; | |
5605 | ||
5606 | for_each_kmem_cache_node(s, node, n) { | |
5607 | s->node[node] = NULL; | |
5608 | kmem_cache_free(kmem_cache_node, n); | |
5609 | } | |
5610 | } | |
5611 | ||
5612 | void __kmem_cache_release(struct kmem_cache *s) | |
5613 | { | |
5614 | cache_random_seq_destroy(s); | |
5615 | #ifndef CONFIG_SLUB_TINY | |
5616 | free_percpu(s->cpu_slab); | |
5617 | #endif | |
5618 | free_kmem_cache_nodes(s); | |
5619 | } | |
5620 | ||
5621 | static int init_kmem_cache_nodes(struct kmem_cache *s) | |
5622 | { | |
5623 | int node; | |
5624 | ||
5625 | for_each_node_mask(node, slab_nodes) { | |
5626 | struct kmem_cache_node *n; | |
5627 | ||
5628 | if (slab_state == DOWN) { | |
5629 | early_kmem_cache_node_alloc(node); | |
5630 | continue; | |
5631 | } | |
5632 | n = kmem_cache_alloc_node(kmem_cache_node, | |
5633 | GFP_KERNEL, node); | |
5634 | ||
5635 | if (!n) { | |
5636 | free_kmem_cache_nodes(s); | |
5637 | return 0; | |
5638 | } | |
5639 | ||
5640 | init_kmem_cache_node(n); | |
5641 | s->node[node] = n; | |
5642 | } | |
5643 | return 1; | |
5644 | } | |
5645 | ||
5646 | static void set_cpu_partial(struct kmem_cache *s) | |
5647 | { | |
5648 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
5649 | unsigned int nr_objects; | |
5650 | ||
5651 | /* | |
5652 | * cpu_partial determined the maximum number of objects kept in the | |
5653 | * per cpu partial lists of a processor. | |
5654 | * | |
5655 | * Per cpu partial lists mainly contain slabs that just have one | |
5656 | * object freed. If they are used for allocation then they can be | |
5657 | * filled up again with minimal effort. The slab will never hit the | |
5658 | * per node partial lists and therefore no locking will be required. | |
5659 | * | |
5660 | * For backwards compatibility reasons, this is determined as number | |
5661 | * of objects, even though we now limit maximum number of pages, see | |
5662 | * slub_set_cpu_partial() | |
5663 | */ | |
5664 | if (!kmem_cache_has_cpu_partial(s)) | |
5665 | nr_objects = 0; | |
5666 | else if (s->size >= PAGE_SIZE) | |
5667 | nr_objects = 6; | |
5668 | else if (s->size >= 1024) | |
5669 | nr_objects = 24; | |
5670 | else if (s->size >= 256) | |
5671 | nr_objects = 52; | |
5672 | else | |
5673 | nr_objects = 120; | |
5674 | ||
5675 | slub_set_cpu_partial(s, nr_objects); | |
5676 | #endif | |
5677 | } | |
5678 | ||
5679 | /* | |
5680 | * calculate_sizes() determines the order and the distribution of data within | |
5681 | * a slab object. | |
5682 | */ | |
5683 | static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s) | |
5684 | { | |
5685 | slab_flags_t flags = s->flags; | |
5686 | unsigned int size = s->object_size; | |
5687 | unsigned int order; | |
5688 | ||
5689 | /* | |
5690 | * Round up object size to the next word boundary. We can only | |
5691 | * place the free pointer at word boundaries and this determines | |
5692 | * the possible location of the free pointer. | |
5693 | */ | |
5694 | size = ALIGN(size, sizeof(void *)); | |
5695 | ||
5696 | #ifdef CONFIG_SLUB_DEBUG | |
5697 | /* | |
5698 | * Determine if we can poison the object itself. If the user of | |
5699 | * the slab may touch the object after free or before allocation | |
5700 | * then we should never poison the object itself. | |
5701 | */ | |
5702 | if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && | |
5703 | !s->ctor) | |
5704 | s->flags |= __OBJECT_POISON; | |
5705 | else | |
5706 | s->flags &= ~__OBJECT_POISON; | |
5707 | ||
5708 | ||
5709 | /* | |
5710 | * If we are Redzoning then check if there is some space between the | |
5711 | * end of the object and the free pointer. If not then add an | |
5712 | * additional word to have some bytes to store Redzone information. | |
5713 | */ | |
5714 | if ((flags & SLAB_RED_ZONE) && size == s->object_size) | |
5715 | size += sizeof(void *); | |
5716 | #endif | |
5717 | ||
5718 | /* | |
5719 | * With that we have determined the number of bytes in actual use | |
5720 | * by the object and redzoning. | |
5721 | */ | |
5722 | s->inuse = size; | |
5723 | ||
5724 | if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) || | |
5725 | (flags & SLAB_POISON) || s->ctor || | |
5726 | ((flags & SLAB_RED_ZONE) && | |
5727 | (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) { | |
5728 | /* | |
5729 | * Relocate free pointer after the object if it is not | |
5730 | * permitted to overwrite the first word of the object on | |
5731 | * kmem_cache_free. | |
5732 | * | |
5733 | * This is the case if we do RCU, have a constructor or | |
5734 | * destructor, are poisoning the objects, or are | |
5735 | * redzoning an object smaller than sizeof(void *) or are | |
5736 | * redzoning an object with slub_debug_orig_size() enabled, | |
5737 | * in which case the right redzone may be extended. | |
5738 | * | |
5739 | * The assumption that s->offset >= s->inuse means free | |
5740 | * pointer is outside of the object is used in the | |
5741 | * freeptr_outside_object() function. If that is no | |
5742 | * longer true, the function needs to be modified. | |
5743 | */ | |
5744 | s->offset = size; | |
5745 | size += sizeof(void *); | |
5746 | } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) { | |
5747 | s->offset = args->freeptr_offset; | |
5748 | } else { | |
5749 | /* | |
5750 | * Store freelist pointer near middle of object to keep | |
5751 | * it away from the edges of the object to avoid small | |
5752 | * sized over/underflows from neighboring allocations. | |
5753 | */ | |
5754 | s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); | |
5755 | } | |
5756 | ||
5757 | #ifdef CONFIG_SLUB_DEBUG | |
5758 | if (flags & SLAB_STORE_USER) { | |
5759 | /* | |
5760 | * Need to store information about allocs and frees after | |
5761 | * the object. | |
5762 | */ | |
5763 | size += 2 * sizeof(struct track); | |
5764 | ||
5765 | /* Save the original kmalloc request size */ | |
5766 | if (flags & SLAB_KMALLOC) | |
5767 | size += sizeof(unsigned int); | |
5768 | } | |
5769 | #endif | |
5770 | ||
5771 | kasan_cache_create(s, &size, &s->flags); | |
5772 | #ifdef CONFIG_SLUB_DEBUG | |
5773 | if (flags & SLAB_RED_ZONE) { | |
5774 | /* | |
5775 | * Add some empty padding so that we can catch | |
5776 | * overwrites from earlier objects rather than let | |
5777 | * tracking information or the free pointer be | |
5778 | * corrupted if a user writes before the start | |
5779 | * of the object. | |
5780 | */ | |
5781 | size += sizeof(void *); | |
5782 | ||
5783 | s->red_left_pad = sizeof(void *); | |
5784 | s->red_left_pad = ALIGN(s->red_left_pad, s->align); | |
5785 | size += s->red_left_pad; | |
5786 | } | |
5787 | #endif | |
5788 | ||
5789 | /* | |
5790 | * SLUB stores one object immediately after another beginning from | |
5791 | * offset 0. In order to align the objects we have to simply size | |
5792 | * each object to conform to the alignment. | |
5793 | */ | |
5794 | size = ALIGN(size, s->align); | |
5795 | s->size = size; | |
5796 | s->reciprocal_size = reciprocal_value(size); | |
5797 | order = calculate_order(size); | |
5798 | ||
5799 | if ((int)order < 0) | |
5800 | return 0; | |
5801 | ||
5802 | s->allocflags = __GFP_COMP; | |
5803 | ||
5804 | if (s->flags & SLAB_CACHE_DMA) | |
5805 | s->allocflags |= GFP_DMA; | |
5806 | ||
5807 | if (s->flags & SLAB_CACHE_DMA32) | |
5808 | s->allocflags |= GFP_DMA32; | |
5809 | ||
5810 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
5811 | s->allocflags |= __GFP_RECLAIMABLE; | |
5812 | ||
5813 | /* | |
5814 | * Determine the number of objects per slab | |
5815 | */ | |
5816 | s->oo = oo_make(order, size); | |
5817 | s->min = oo_make(get_order(size), size); | |
5818 | ||
5819 | return !!oo_objects(s->oo); | |
5820 | } | |
5821 | ||
5822 | static void list_slab_objects(struct kmem_cache *s, struct slab *slab) | |
5823 | { | |
5824 | #ifdef CONFIG_SLUB_DEBUG | |
5825 | void *addr = slab_address(slab); | |
5826 | void *p; | |
5827 | ||
5828 | if (!slab_add_kunit_errors()) | |
5829 | slab_bug(s, "Objects remaining on __kmem_cache_shutdown()"); | |
5830 | ||
5831 | spin_lock(&object_map_lock); | |
5832 | __fill_map(object_map, s, slab); | |
5833 | ||
5834 | for_each_object(p, s, addr, slab->objects) { | |
5835 | ||
5836 | if (!test_bit(__obj_to_index(s, addr, p), object_map)) { | |
5837 | if (slab_add_kunit_errors()) | |
5838 | continue; | |
5839 | pr_err("Object 0x%p @offset=%tu\n", p, p - addr); | |
5840 | print_tracking(s, p); | |
5841 | } | |
5842 | } | |
5843 | spin_unlock(&object_map_lock); | |
5844 | ||
5845 | __slab_err(slab); | |
5846 | #endif | |
5847 | } | |
5848 | ||
5849 | /* | |
5850 | * Attempt to free all partial slabs on a node. | |
5851 | * This is called from __kmem_cache_shutdown(). We must take list_lock | |
5852 | * because sysfs file might still access partial list after the shutdowning. | |
5853 | */ | |
5854 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) | |
5855 | { | |
5856 | LIST_HEAD(discard); | |
5857 | struct slab *slab, *h; | |
5858 | ||
5859 | BUG_ON(irqs_disabled()); | |
5860 | spin_lock_irq(&n->list_lock); | |
5861 | list_for_each_entry_safe(slab, h, &n->partial, slab_list) { | |
5862 | if (!slab->inuse) { | |
5863 | remove_partial(n, slab); | |
5864 | list_add(&slab->slab_list, &discard); | |
5865 | } else { | |
5866 | list_slab_objects(s, slab); | |
5867 | } | |
5868 | } | |
5869 | spin_unlock_irq(&n->list_lock); | |
5870 | ||
5871 | list_for_each_entry_safe(slab, h, &discard, slab_list) | |
5872 | discard_slab(s, slab); | |
5873 | } | |
5874 | ||
5875 | bool __kmem_cache_empty(struct kmem_cache *s) | |
5876 | { | |
5877 | int node; | |
5878 | struct kmem_cache_node *n; | |
5879 | ||
5880 | for_each_kmem_cache_node(s, node, n) | |
5881 | if (n->nr_partial || node_nr_slabs(n)) | |
5882 | return false; | |
5883 | return true; | |
5884 | } | |
5885 | ||
5886 | /* | |
5887 | * Release all resources used by a slab cache. | |
5888 | */ | |
5889 | int __kmem_cache_shutdown(struct kmem_cache *s) | |
5890 | { | |
5891 | int node; | |
5892 | struct kmem_cache_node *n; | |
5893 | ||
5894 | flush_all_cpus_locked(s); | |
5895 | /* Attempt to free all objects */ | |
5896 | for_each_kmem_cache_node(s, node, n) { | |
5897 | free_partial(s, n); | |
5898 | if (n->nr_partial || node_nr_slabs(n)) | |
5899 | return 1; | |
5900 | } | |
5901 | return 0; | |
5902 | } | |
5903 | ||
5904 | #ifdef CONFIG_PRINTK | |
5905 | void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) | |
5906 | { | |
5907 | void *base; | |
5908 | int __maybe_unused i; | |
5909 | unsigned int objnr; | |
5910 | void *objp; | |
5911 | void *objp0; | |
5912 | struct kmem_cache *s = slab->slab_cache; | |
5913 | struct track __maybe_unused *trackp; | |
5914 | ||
5915 | kpp->kp_ptr = object; | |
5916 | kpp->kp_slab = slab; | |
5917 | kpp->kp_slab_cache = s; | |
5918 | base = slab_address(slab); | |
5919 | objp0 = kasan_reset_tag(object); | |
5920 | #ifdef CONFIG_SLUB_DEBUG | |
5921 | objp = restore_red_left(s, objp0); | |
5922 | #else | |
5923 | objp = objp0; | |
5924 | #endif | |
5925 | objnr = obj_to_index(s, slab, objp); | |
5926 | kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); | |
5927 | objp = base + s->size * objnr; | |
5928 | kpp->kp_objp = objp; | |
5929 | if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size | |
5930 | || (objp - base) % s->size) || | |
5931 | !(s->flags & SLAB_STORE_USER)) | |
5932 | return; | |
5933 | #ifdef CONFIG_SLUB_DEBUG | |
5934 | objp = fixup_red_left(s, objp); | |
5935 | trackp = get_track(s, objp, TRACK_ALLOC); | |
5936 | kpp->kp_ret = (void *)trackp->addr; | |
5937 | #ifdef CONFIG_STACKDEPOT | |
5938 | { | |
5939 | depot_stack_handle_t handle; | |
5940 | unsigned long *entries; | |
5941 | unsigned int nr_entries; | |
5942 | ||
5943 | handle = READ_ONCE(trackp->handle); | |
5944 | if (handle) { | |
5945 | nr_entries = stack_depot_fetch(handle, &entries); | |
5946 | for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) | |
5947 | kpp->kp_stack[i] = (void *)entries[i]; | |
5948 | } | |
5949 | ||
5950 | trackp = get_track(s, objp, TRACK_FREE); | |
5951 | handle = READ_ONCE(trackp->handle); | |
5952 | if (handle) { | |
5953 | nr_entries = stack_depot_fetch(handle, &entries); | |
5954 | for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) | |
5955 | kpp->kp_free_stack[i] = (void *)entries[i]; | |
5956 | } | |
5957 | } | |
5958 | #endif | |
5959 | #endif | |
5960 | } | |
5961 | #endif | |
5962 | ||
5963 | /******************************************************************** | |
5964 | * Kmalloc subsystem | |
5965 | *******************************************************************/ | |
5966 | ||
5967 | static int __init setup_slub_min_order(char *str) | |
5968 | { | |
5969 | get_option(&str, (int *)&slub_min_order); | |
5970 | ||
5971 | if (slub_min_order > slub_max_order) | |
5972 | slub_max_order = slub_min_order; | |
5973 | ||
5974 | return 1; | |
5975 | } | |
5976 | ||
5977 | __setup("slab_min_order=", setup_slub_min_order); | |
5978 | __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0); | |
5979 | ||
5980 | ||
5981 | static int __init setup_slub_max_order(char *str) | |
5982 | { | |
5983 | get_option(&str, (int *)&slub_max_order); | |
5984 | slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); | |
5985 | ||
5986 | if (slub_min_order > slub_max_order) | |
5987 | slub_min_order = slub_max_order; | |
5988 | ||
5989 | return 1; | |
5990 | } | |
5991 | ||
5992 | __setup("slab_max_order=", setup_slub_max_order); | |
5993 | __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0); | |
5994 | ||
5995 | static int __init setup_slub_min_objects(char *str) | |
5996 | { | |
5997 | get_option(&str, (int *)&slub_min_objects); | |
5998 | ||
5999 | return 1; | |
6000 | } | |
6001 | ||
6002 | __setup("slab_min_objects=", setup_slub_min_objects); | |
6003 | __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0); | |
6004 | ||
6005 | #ifdef CONFIG_NUMA | |
6006 | static int __init setup_slab_strict_numa(char *str) | |
6007 | { | |
6008 | if (nr_node_ids > 1) { | |
6009 | static_branch_enable(&strict_numa); | |
6010 | pr_info("SLUB: Strict NUMA enabled.\n"); | |
6011 | } else { | |
6012 | pr_warn("slab_strict_numa parameter set on non NUMA system.\n"); | |
6013 | } | |
6014 | ||
6015 | return 1; | |
6016 | } | |
6017 | ||
6018 | __setup("slab_strict_numa", setup_slab_strict_numa); | |
6019 | #endif | |
6020 | ||
6021 | ||
6022 | #ifdef CONFIG_HARDENED_USERCOPY | |
6023 | /* | |
6024 | * Rejects incorrectly sized objects and objects that are to be copied | |
6025 | * to/from userspace but do not fall entirely within the containing slab | |
6026 | * cache's usercopy region. | |
6027 | * | |
6028 | * Returns NULL if check passes, otherwise const char * to name of cache | |
6029 | * to indicate an error. | |
6030 | */ | |
6031 | void __check_heap_object(const void *ptr, unsigned long n, | |
6032 | const struct slab *slab, bool to_user) | |
6033 | { | |
6034 | struct kmem_cache *s; | |
6035 | unsigned int offset; | |
6036 | bool is_kfence = is_kfence_address(ptr); | |
6037 | ||
6038 | ptr = kasan_reset_tag(ptr); | |
6039 | ||
6040 | /* Find object and usable object size. */ | |
6041 | s = slab->slab_cache; | |
6042 | ||
6043 | /* Reject impossible pointers. */ | |
6044 | if (ptr < slab_address(slab)) | |
6045 | usercopy_abort("SLUB object not in SLUB page?!", NULL, | |
6046 | to_user, 0, n); | |
6047 | ||
6048 | /* Find offset within object. */ | |
6049 | if (is_kfence) | |
6050 | offset = ptr - kfence_object_start(ptr); | |
6051 | else | |
6052 | offset = (ptr - slab_address(slab)) % s->size; | |
6053 | ||
6054 | /* Adjust for redzone and reject if within the redzone. */ | |
6055 | if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { | |
6056 | if (offset < s->red_left_pad) | |
6057 | usercopy_abort("SLUB object in left red zone", | |
6058 | s->name, to_user, offset, n); | |
6059 | offset -= s->red_left_pad; | |
6060 | } | |
6061 | ||
6062 | /* Allow address range falling entirely within usercopy region. */ | |
6063 | if (offset >= s->useroffset && | |
6064 | offset - s->useroffset <= s->usersize && | |
6065 | n <= s->useroffset - offset + s->usersize) | |
6066 | return; | |
6067 | ||
6068 | usercopy_abort("SLUB object", s->name, to_user, offset, n); | |
6069 | } | |
6070 | #endif /* CONFIG_HARDENED_USERCOPY */ | |
6071 | ||
6072 | #define SHRINK_PROMOTE_MAX 32 | |
6073 | ||
6074 | /* | |
6075 | * kmem_cache_shrink discards empty slabs and promotes the slabs filled | |
6076 | * up most to the head of the partial lists. New allocations will then | |
6077 | * fill those up and thus they can be removed from the partial lists. | |
6078 | * | |
6079 | * The slabs with the least items are placed last. This results in them | |
6080 | * being allocated from last increasing the chance that the last objects | |
6081 | * are freed in them. | |
6082 | */ | |
6083 | static int __kmem_cache_do_shrink(struct kmem_cache *s) | |
6084 | { | |
6085 | int node; | |
6086 | int i; | |
6087 | struct kmem_cache_node *n; | |
6088 | struct slab *slab; | |
6089 | struct slab *t; | |
6090 | struct list_head discard; | |
6091 | struct list_head promote[SHRINK_PROMOTE_MAX]; | |
6092 | unsigned long flags; | |
6093 | int ret = 0; | |
6094 | ||
6095 | for_each_kmem_cache_node(s, node, n) { | |
6096 | INIT_LIST_HEAD(&discard); | |
6097 | for (i = 0; i < SHRINK_PROMOTE_MAX; i++) | |
6098 | INIT_LIST_HEAD(promote + i); | |
6099 | ||
6100 | spin_lock_irqsave(&n->list_lock, flags); | |
6101 | ||
6102 | /* | |
6103 | * Build lists of slabs to discard or promote. | |
6104 | * | |
6105 | * Note that concurrent frees may occur while we hold the | |
6106 | * list_lock. slab->inuse here is the upper limit. | |
6107 | */ | |
6108 | list_for_each_entry_safe(slab, t, &n->partial, slab_list) { | |
6109 | int free = slab->objects - slab->inuse; | |
6110 | ||
6111 | /* Do not reread slab->inuse */ | |
6112 | barrier(); | |
6113 | ||
6114 | /* We do not keep full slabs on the list */ | |
6115 | BUG_ON(free <= 0); | |
6116 | ||
6117 | if (free == slab->objects) { | |
6118 | list_move(&slab->slab_list, &discard); | |
6119 | slab_clear_node_partial(slab); | |
6120 | n->nr_partial--; | |
6121 | dec_slabs_node(s, node, slab->objects); | |
6122 | } else if (free <= SHRINK_PROMOTE_MAX) | |
6123 | list_move(&slab->slab_list, promote + free - 1); | |
6124 | } | |
6125 | ||
6126 | /* | |
6127 | * Promote the slabs filled up most to the head of the | |
6128 | * partial list. | |
6129 | */ | |
6130 | for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) | |
6131 | list_splice(promote + i, &n->partial); | |
6132 | ||
6133 | spin_unlock_irqrestore(&n->list_lock, flags); | |
6134 | ||
6135 | /* Release empty slabs */ | |
6136 | list_for_each_entry_safe(slab, t, &discard, slab_list) | |
6137 | free_slab(s, slab); | |
6138 | ||
6139 | if (node_nr_slabs(n)) | |
6140 | ret = 1; | |
6141 | } | |
6142 | ||
6143 | return ret; | |
6144 | } | |
6145 | ||
6146 | int __kmem_cache_shrink(struct kmem_cache *s) | |
6147 | { | |
6148 | flush_all(s); | |
6149 | return __kmem_cache_do_shrink(s); | |
6150 | } | |
6151 | ||
6152 | static int slab_mem_going_offline_callback(void *arg) | |
6153 | { | |
6154 | struct kmem_cache *s; | |
6155 | ||
6156 | mutex_lock(&slab_mutex); | |
6157 | list_for_each_entry(s, &slab_caches, list) { | |
6158 | flush_all_cpus_locked(s); | |
6159 | __kmem_cache_do_shrink(s); | |
6160 | } | |
6161 | mutex_unlock(&slab_mutex); | |
6162 | ||
6163 | return 0; | |
6164 | } | |
6165 | ||
6166 | static void slab_mem_offline_callback(void *arg) | |
6167 | { | |
6168 | struct memory_notify *marg = arg; | |
6169 | int offline_node; | |
6170 | ||
6171 | offline_node = marg->status_change_nid_normal; | |
6172 | ||
6173 | /* | |
6174 | * If the node still has available memory. we need kmem_cache_node | |
6175 | * for it yet. | |
6176 | */ | |
6177 | if (offline_node < 0) | |
6178 | return; | |
6179 | ||
6180 | mutex_lock(&slab_mutex); | |
6181 | node_clear(offline_node, slab_nodes); | |
6182 | /* | |
6183 | * We no longer free kmem_cache_node structures here, as it would be | |
6184 | * racy with all get_node() users, and infeasible to protect them with | |
6185 | * slab_mutex. | |
6186 | */ | |
6187 | mutex_unlock(&slab_mutex); | |
6188 | } | |
6189 | ||
6190 | static int slab_mem_going_online_callback(void *arg) | |
6191 | { | |
6192 | struct kmem_cache_node *n; | |
6193 | struct kmem_cache *s; | |
6194 | struct memory_notify *marg = arg; | |
6195 | int nid = marg->status_change_nid_normal; | |
6196 | int ret = 0; | |
6197 | ||
6198 | /* | |
6199 | * If the node's memory is already available, then kmem_cache_node is | |
6200 | * already created. Nothing to do. | |
6201 | */ | |
6202 | if (nid < 0) | |
6203 | return 0; | |
6204 | ||
6205 | /* | |
6206 | * We are bringing a node online. No memory is available yet. We must | |
6207 | * allocate a kmem_cache_node structure in order to bring the node | |
6208 | * online. | |
6209 | */ | |
6210 | mutex_lock(&slab_mutex); | |
6211 | list_for_each_entry(s, &slab_caches, list) { | |
6212 | /* | |
6213 | * The structure may already exist if the node was previously | |
6214 | * onlined and offlined. | |
6215 | */ | |
6216 | if (get_node(s, nid)) | |
6217 | continue; | |
6218 | /* | |
6219 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
6220 | * since memory is not yet available from the node that | |
6221 | * is brought up. | |
6222 | */ | |
6223 | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); | |
6224 | if (!n) { | |
6225 | ret = -ENOMEM; | |
6226 | goto out; | |
6227 | } | |
6228 | init_kmem_cache_node(n); | |
6229 | s->node[nid] = n; | |
6230 | } | |
6231 | /* | |
6232 | * Any cache created after this point will also have kmem_cache_node | |
6233 | * initialized for the new node. | |
6234 | */ | |
6235 | node_set(nid, slab_nodes); | |
6236 | out: | |
6237 | mutex_unlock(&slab_mutex); | |
6238 | return ret; | |
6239 | } | |
6240 | ||
6241 | static int slab_memory_callback(struct notifier_block *self, | |
6242 | unsigned long action, void *arg) | |
6243 | { | |
6244 | int ret = 0; | |
6245 | ||
6246 | switch (action) { | |
6247 | case MEM_GOING_ONLINE: | |
6248 | ret = slab_mem_going_online_callback(arg); | |
6249 | break; | |
6250 | case MEM_GOING_OFFLINE: | |
6251 | ret = slab_mem_going_offline_callback(arg); | |
6252 | break; | |
6253 | case MEM_OFFLINE: | |
6254 | case MEM_CANCEL_ONLINE: | |
6255 | slab_mem_offline_callback(arg); | |
6256 | break; | |
6257 | case MEM_ONLINE: | |
6258 | case MEM_CANCEL_OFFLINE: | |
6259 | break; | |
6260 | } | |
6261 | if (ret) | |
6262 | ret = notifier_from_errno(ret); | |
6263 | else | |
6264 | ret = NOTIFY_OK; | |
6265 | return ret; | |
6266 | } | |
6267 | ||
6268 | /******************************************************************** | |
6269 | * Basic setup of slabs | |
6270 | *******************************************************************/ | |
6271 | ||
6272 | /* | |
6273 | * Used for early kmem_cache structures that were allocated using | |
6274 | * the page allocator. Allocate them properly then fix up the pointers | |
6275 | * that may be pointing to the wrong kmem_cache structure. | |
6276 | */ | |
6277 | ||
6278 | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) | |
6279 | { | |
6280 | int node; | |
6281 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | |
6282 | struct kmem_cache_node *n; | |
6283 | ||
6284 | memcpy(s, static_cache, kmem_cache->object_size); | |
6285 | ||
6286 | /* | |
6287 | * This runs very early, and only the boot processor is supposed to be | |
6288 | * up. Even if it weren't true, IRQs are not up so we couldn't fire | |
6289 | * IPIs around. | |
6290 | */ | |
6291 | __flush_cpu_slab(s, smp_processor_id()); | |
6292 | for_each_kmem_cache_node(s, node, n) { | |
6293 | struct slab *p; | |
6294 | ||
6295 | list_for_each_entry(p, &n->partial, slab_list) | |
6296 | p->slab_cache = s; | |
6297 | ||
6298 | #ifdef CONFIG_SLUB_DEBUG | |
6299 | list_for_each_entry(p, &n->full, slab_list) | |
6300 | p->slab_cache = s; | |
6301 | #endif | |
6302 | } | |
6303 | list_add(&s->list, &slab_caches); | |
6304 | return s; | |
6305 | } | |
6306 | ||
6307 | void __init kmem_cache_init(void) | |
6308 | { | |
6309 | static __initdata struct kmem_cache boot_kmem_cache, | |
6310 | boot_kmem_cache_node; | |
6311 | int node; | |
6312 | ||
6313 | if (debug_guardpage_minorder()) | |
6314 | slub_max_order = 0; | |
6315 | ||
6316 | /* Print slub debugging pointers without hashing */ | |
6317 | if (__slub_debug_enabled()) | |
6318 | no_hash_pointers_enable(NULL); | |
6319 | ||
6320 | kmem_cache_node = &boot_kmem_cache_node; | |
6321 | kmem_cache = &boot_kmem_cache; | |
6322 | ||
6323 | /* | |
6324 | * Initialize the nodemask for which we will allocate per node | |
6325 | * structures. Here we don't need taking slab_mutex yet. | |
6326 | */ | |
6327 | for_each_node_state(node, N_NORMAL_MEMORY) | |
6328 | node_set(node, slab_nodes); | |
6329 | ||
6330 | create_boot_cache(kmem_cache_node, "kmem_cache_node", | |
6331 | sizeof(struct kmem_cache_node), | |
6332 | SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); | |
6333 | ||
6334 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | |
6335 | ||
6336 | /* Able to allocate the per node structures */ | |
6337 | slab_state = PARTIAL; | |
6338 | ||
6339 | create_boot_cache(kmem_cache, "kmem_cache", | |
6340 | offsetof(struct kmem_cache, node) + | |
6341 | nr_node_ids * sizeof(struct kmem_cache_node *), | |
6342 | SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); | |
6343 | ||
6344 | kmem_cache = bootstrap(&boot_kmem_cache); | |
6345 | kmem_cache_node = bootstrap(&boot_kmem_cache_node); | |
6346 | ||
6347 | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | |
6348 | setup_kmalloc_cache_index_table(); | |
6349 | create_kmalloc_caches(); | |
6350 | ||
6351 | /* Setup random freelists for each cache */ | |
6352 | init_freelist_randomization(); | |
6353 | ||
6354 | cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, | |
6355 | slub_cpu_dead); | |
6356 | ||
6357 | pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", | |
6358 | cache_line_size(), | |
6359 | slub_min_order, slub_max_order, slub_min_objects, | |
6360 | nr_cpu_ids, nr_node_ids); | |
6361 | } | |
6362 | ||
6363 | void __init kmem_cache_init_late(void) | |
6364 | { | |
6365 | #ifndef CONFIG_SLUB_TINY | |
6366 | flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); | |
6367 | WARN_ON(!flushwq); | |
6368 | #endif | |
6369 | } | |
6370 | ||
6371 | struct kmem_cache * | |
6372 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, | |
6373 | slab_flags_t flags, void (*ctor)(void *)) | |
6374 | { | |
6375 | struct kmem_cache *s; | |
6376 | ||
6377 | s = find_mergeable(size, align, flags, name, ctor); | |
6378 | if (s) { | |
6379 | if (sysfs_slab_alias(s, name)) | |
6380 | pr_err("SLUB: Unable to add cache alias %s to sysfs\n", | |
6381 | name); | |
6382 | ||
6383 | s->refcount++; | |
6384 | ||
6385 | /* | |
6386 | * Adjust the object sizes so that we clear | |
6387 | * the complete object on kzalloc. | |
6388 | */ | |
6389 | s->object_size = max(s->object_size, size); | |
6390 | s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); | |
6391 | } | |
6392 | ||
6393 | return s; | |
6394 | } | |
6395 | ||
6396 | int do_kmem_cache_create(struct kmem_cache *s, const char *name, | |
6397 | unsigned int size, struct kmem_cache_args *args, | |
6398 | slab_flags_t flags) | |
6399 | { | |
6400 | int err = -EINVAL; | |
6401 | ||
6402 | s->name = name; | |
6403 | s->size = s->object_size = size; | |
6404 | ||
6405 | s->flags = kmem_cache_flags(flags, s->name); | |
6406 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | |
6407 | s->random = get_random_long(); | |
6408 | #endif | |
6409 | s->align = args->align; | |
6410 | s->ctor = args->ctor; | |
6411 | #ifdef CONFIG_HARDENED_USERCOPY | |
6412 | s->useroffset = args->useroffset; | |
6413 | s->usersize = args->usersize; | |
6414 | #endif | |
6415 | ||
6416 | if (!calculate_sizes(args, s)) | |
6417 | goto out; | |
6418 | if (disable_higher_order_debug) { | |
6419 | /* | |
6420 | * Disable debugging flags that store metadata if the min slab | |
6421 | * order increased. | |
6422 | */ | |
6423 | if (get_order(s->size) > get_order(s->object_size)) { | |
6424 | s->flags &= ~DEBUG_METADATA_FLAGS; | |
6425 | s->offset = 0; | |
6426 | if (!calculate_sizes(args, s)) | |
6427 | goto out; | |
6428 | } | |
6429 | } | |
6430 | ||
6431 | #ifdef system_has_freelist_aba | |
6432 | if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { | |
6433 | /* Enable fast mode */ | |
6434 | s->flags |= __CMPXCHG_DOUBLE; | |
6435 | } | |
6436 | #endif | |
6437 | ||
6438 | /* | |
6439 | * The larger the object size is, the more slabs we want on the partial | |
6440 | * list to avoid pounding the page allocator excessively. | |
6441 | */ | |
6442 | s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); | |
6443 | s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); | |
6444 | ||
6445 | set_cpu_partial(s); | |
6446 | ||
6447 | #ifdef CONFIG_NUMA | |
6448 | s->remote_node_defrag_ratio = 1000; | |
6449 | #endif | |
6450 | ||
6451 | /* Initialize the pre-computed randomized freelist if slab is up */ | |
6452 | if (slab_state >= UP) { | |
6453 | if (init_cache_random_seq(s)) | |
6454 | goto out; | |
6455 | } | |
6456 | ||
6457 | if (!init_kmem_cache_nodes(s)) | |
6458 | goto out; | |
6459 | ||
6460 | if (!alloc_kmem_cache_cpus(s)) | |
6461 | goto out; | |
6462 | ||
6463 | err = 0; | |
6464 | ||
6465 | /* Mutex is not taken during early boot */ | |
6466 | if (slab_state <= UP) | |
6467 | goto out; | |
6468 | ||
6469 | /* | |
6470 | * Failing to create sysfs files is not critical to SLUB functionality. | |
6471 | * If it fails, proceed with cache creation without these files. | |
6472 | */ | |
6473 | if (sysfs_slab_add(s)) | |
6474 | pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name); | |
6475 | ||
6476 | if (s->flags & SLAB_STORE_USER) | |
6477 | debugfs_slab_add(s); | |
6478 | ||
6479 | out: | |
6480 | if (err) | |
6481 | __kmem_cache_release(s); | |
6482 | return err; | |
6483 | } | |
6484 | ||
6485 | #ifdef SLAB_SUPPORTS_SYSFS | |
6486 | static int count_inuse(struct slab *slab) | |
6487 | { | |
6488 | return slab->inuse; | |
6489 | } | |
6490 | ||
6491 | static int count_total(struct slab *slab) | |
6492 | { | |
6493 | return slab->objects; | |
6494 | } | |
6495 | #endif | |
6496 | ||
6497 | #ifdef CONFIG_SLUB_DEBUG | |
6498 | static void validate_slab(struct kmem_cache *s, struct slab *slab, | |
6499 | unsigned long *obj_map) | |
6500 | { | |
6501 | void *p; | |
6502 | void *addr = slab_address(slab); | |
6503 | ||
6504 | if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) | |
6505 | return; | |
6506 | ||
6507 | /* Now we know that a valid freelist exists */ | |
6508 | __fill_map(obj_map, s, slab); | |
6509 | for_each_object(p, s, addr, slab->objects) { | |
6510 | u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? | |
6511 | SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; | |
6512 | ||
6513 | if (!check_object(s, slab, p, val)) | |
6514 | break; | |
6515 | } | |
6516 | } | |
6517 | ||
6518 | static int validate_slab_node(struct kmem_cache *s, | |
6519 | struct kmem_cache_node *n, unsigned long *obj_map) | |
6520 | { | |
6521 | unsigned long count = 0; | |
6522 | struct slab *slab; | |
6523 | unsigned long flags; | |
6524 | ||
6525 | spin_lock_irqsave(&n->list_lock, flags); | |
6526 | ||
6527 | list_for_each_entry(slab, &n->partial, slab_list) { | |
6528 | validate_slab(s, slab, obj_map); | |
6529 | count++; | |
6530 | } | |
6531 | if (count != n->nr_partial) { | |
6532 | pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", | |
6533 | s->name, count, n->nr_partial); | |
6534 | slab_add_kunit_errors(); | |
6535 | } | |
6536 | ||
6537 | if (!(s->flags & SLAB_STORE_USER)) | |
6538 | goto out; | |
6539 | ||
6540 | list_for_each_entry(slab, &n->full, slab_list) { | |
6541 | validate_slab(s, slab, obj_map); | |
6542 | count++; | |
6543 | } | |
6544 | if (count != node_nr_slabs(n)) { | |
6545 | pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", | |
6546 | s->name, count, node_nr_slabs(n)); | |
6547 | slab_add_kunit_errors(); | |
6548 | } | |
6549 | ||
6550 | out: | |
6551 | spin_unlock_irqrestore(&n->list_lock, flags); | |
6552 | return count; | |
6553 | } | |
6554 | ||
6555 | long validate_slab_cache(struct kmem_cache *s) | |
6556 | { | |
6557 | int node; | |
6558 | unsigned long count = 0; | |
6559 | struct kmem_cache_node *n; | |
6560 | unsigned long *obj_map; | |
6561 | ||
6562 | obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); | |
6563 | if (!obj_map) | |
6564 | return -ENOMEM; | |
6565 | ||
6566 | flush_all(s); | |
6567 | for_each_kmem_cache_node(s, node, n) | |
6568 | count += validate_slab_node(s, n, obj_map); | |
6569 | ||
6570 | bitmap_free(obj_map); | |
6571 | ||
6572 | return count; | |
6573 | } | |
6574 | EXPORT_SYMBOL(validate_slab_cache); | |
6575 | ||
6576 | #ifdef CONFIG_DEBUG_FS | |
6577 | /* | |
6578 | * Generate lists of code addresses where slabcache objects are allocated | |
6579 | * and freed. | |
6580 | */ | |
6581 | ||
6582 | struct location { | |
6583 | depot_stack_handle_t handle; | |
6584 | unsigned long count; | |
6585 | unsigned long addr; | |
6586 | unsigned long waste; | |
6587 | long long sum_time; | |
6588 | long min_time; | |
6589 | long max_time; | |
6590 | long min_pid; | |
6591 | long max_pid; | |
6592 | DECLARE_BITMAP(cpus, NR_CPUS); | |
6593 | nodemask_t nodes; | |
6594 | }; | |
6595 | ||
6596 | struct loc_track { | |
6597 | unsigned long max; | |
6598 | unsigned long count; | |
6599 | struct location *loc; | |
6600 | loff_t idx; | |
6601 | }; | |
6602 | ||
6603 | static struct dentry *slab_debugfs_root; | |
6604 | ||
6605 | static void free_loc_track(struct loc_track *t) | |
6606 | { | |
6607 | if (t->max) | |
6608 | free_pages((unsigned long)t->loc, | |
6609 | get_order(sizeof(struct location) * t->max)); | |
6610 | } | |
6611 | ||
6612 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) | |
6613 | { | |
6614 | struct location *l; | |
6615 | int order; | |
6616 | ||
6617 | order = get_order(sizeof(struct location) * max); | |
6618 | ||
6619 | l = (void *)__get_free_pages(flags, order); | |
6620 | if (!l) | |
6621 | return 0; | |
6622 | ||
6623 | if (t->count) { | |
6624 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
6625 | free_loc_track(t); | |
6626 | } | |
6627 | t->max = max; | |
6628 | t->loc = l; | |
6629 | return 1; | |
6630 | } | |
6631 | ||
6632 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
6633 | const struct track *track, | |
6634 | unsigned int orig_size) | |
6635 | { | |
6636 | long start, end, pos; | |
6637 | struct location *l; | |
6638 | unsigned long caddr, chandle, cwaste; | |
6639 | unsigned long age = jiffies - track->when; | |
6640 | depot_stack_handle_t handle = 0; | |
6641 | unsigned int waste = s->object_size - orig_size; | |
6642 | ||
6643 | #ifdef CONFIG_STACKDEPOT | |
6644 | handle = READ_ONCE(track->handle); | |
6645 | #endif | |
6646 | start = -1; | |
6647 | end = t->count; | |
6648 | ||
6649 | for ( ; ; ) { | |
6650 | pos = start + (end - start + 1) / 2; | |
6651 | ||
6652 | /* | |
6653 | * There is nothing at "end". If we end up there | |
6654 | * we need to add something to before end. | |
6655 | */ | |
6656 | if (pos == end) | |
6657 | break; | |
6658 | ||
6659 | l = &t->loc[pos]; | |
6660 | caddr = l->addr; | |
6661 | chandle = l->handle; | |
6662 | cwaste = l->waste; | |
6663 | if ((track->addr == caddr) && (handle == chandle) && | |
6664 | (waste == cwaste)) { | |
6665 | ||
6666 | l->count++; | |
6667 | if (track->when) { | |
6668 | l->sum_time += age; | |
6669 | if (age < l->min_time) | |
6670 | l->min_time = age; | |
6671 | if (age > l->max_time) | |
6672 | l->max_time = age; | |
6673 | ||
6674 | if (track->pid < l->min_pid) | |
6675 | l->min_pid = track->pid; | |
6676 | if (track->pid > l->max_pid) | |
6677 | l->max_pid = track->pid; | |
6678 | ||
6679 | cpumask_set_cpu(track->cpu, | |
6680 | to_cpumask(l->cpus)); | |
6681 | } | |
6682 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
6683 | return 1; | |
6684 | } | |
6685 | ||
6686 | if (track->addr < caddr) | |
6687 | end = pos; | |
6688 | else if (track->addr == caddr && handle < chandle) | |
6689 | end = pos; | |
6690 | else if (track->addr == caddr && handle == chandle && | |
6691 | waste < cwaste) | |
6692 | end = pos; | |
6693 | else | |
6694 | start = pos; | |
6695 | } | |
6696 | ||
6697 | /* | |
6698 | * Not found. Insert new tracking element. | |
6699 | */ | |
6700 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) | |
6701 | return 0; | |
6702 | ||
6703 | l = t->loc + pos; | |
6704 | if (pos < t->count) | |
6705 | memmove(l + 1, l, | |
6706 | (t->count - pos) * sizeof(struct location)); | |
6707 | t->count++; | |
6708 | l->count = 1; | |
6709 | l->addr = track->addr; | |
6710 | l->sum_time = age; | |
6711 | l->min_time = age; | |
6712 | l->max_time = age; | |
6713 | l->min_pid = track->pid; | |
6714 | l->max_pid = track->pid; | |
6715 | l->handle = handle; | |
6716 | l->waste = waste; | |
6717 | cpumask_clear(to_cpumask(l->cpus)); | |
6718 | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | |
6719 | nodes_clear(l->nodes); | |
6720 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
6721 | return 1; | |
6722 | } | |
6723 | ||
6724 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
6725 | struct slab *slab, enum track_item alloc, | |
6726 | unsigned long *obj_map) | |
6727 | { | |
6728 | void *addr = slab_address(slab); | |
6729 | bool is_alloc = (alloc == TRACK_ALLOC); | |
6730 | void *p; | |
6731 | ||
6732 | __fill_map(obj_map, s, slab); | |
6733 | ||
6734 | for_each_object(p, s, addr, slab->objects) | |
6735 | if (!test_bit(__obj_to_index(s, addr, p), obj_map)) | |
6736 | add_location(t, s, get_track(s, p, alloc), | |
6737 | is_alloc ? get_orig_size(s, p) : | |
6738 | s->object_size); | |
6739 | } | |
6740 | #endif /* CONFIG_DEBUG_FS */ | |
6741 | #endif /* CONFIG_SLUB_DEBUG */ | |
6742 | ||
6743 | #ifdef SLAB_SUPPORTS_SYSFS | |
6744 | enum slab_stat_type { | |
6745 | SL_ALL, /* All slabs */ | |
6746 | SL_PARTIAL, /* Only partially allocated slabs */ | |
6747 | SL_CPU, /* Only slabs used for cpu caches */ | |
6748 | SL_OBJECTS, /* Determine allocated objects not slabs */ | |
6749 | SL_TOTAL /* Determine object capacity not slabs */ | |
6750 | }; | |
6751 | ||
6752 | #define SO_ALL (1 << SL_ALL) | |
6753 | #define SO_PARTIAL (1 << SL_PARTIAL) | |
6754 | #define SO_CPU (1 << SL_CPU) | |
6755 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
6756 | #define SO_TOTAL (1 << SL_TOTAL) | |
6757 | ||
6758 | static ssize_t show_slab_objects(struct kmem_cache *s, | |
6759 | char *buf, unsigned long flags) | |
6760 | { | |
6761 | unsigned long total = 0; | |
6762 | int node; | |
6763 | int x; | |
6764 | unsigned long *nodes; | |
6765 | int len = 0; | |
6766 | ||
6767 | nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); | |
6768 | if (!nodes) | |
6769 | return -ENOMEM; | |
6770 | ||
6771 | if (flags & SO_CPU) { | |
6772 | int cpu; | |
6773 | ||
6774 | for_each_possible_cpu(cpu) { | |
6775 | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, | |
6776 | cpu); | |
6777 | int node; | |
6778 | struct slab *slab; | |
6779 | ||
6780 | slab = READ_ONCE(c->slab); | |
6781 | if (!slab) | |
6782 | continue; | |
6783 | ||
6784 | node = slab_nid(slab); | |
6785 | if (flags & SO_TOTAL) | |
6786 | x = slab->objects; | |
6787 | else if (flags & SO_OBJECTS) | |
6788 | x = slab->inuse; | |
6789 | else | |
6790 | x = 1; | |
6791 | ||
6792 | total += x; | |
6793 | nodes[node] += x; | |
6794 | ||
6795 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
6796 | slab = slub_percpu_partial_read_once(c); | |
6797 | if (slab) { | |
6798 | node = slab_nid(slab); | |
6799 | if (flags & SO_TOTAL) | |
6800 | WARN_ON_ONCE(1); | |
6801 | else if (flags & SO_OBJECTS) | |
6802 | WARN_ON_ONCE(1); | |
6803 | else | |
6804 | x = data_race(slab->slabs); | |
6805 | total += x; | |
6806 | nodes[node] += x; | |
6807 | } | |
6808 | #endif | |
6809 | } | |
6810 | } | |
6811 | ||
6812 | /* | |
6813 | * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" | |
6814 | * already held which will conflict with an existing lock order: | |
6815 | * | |
6816 | * mem_hotplug_lock->slab_mutex->kernfs_mutex | |
6817 | * | |
6818 | * We don't really need mem_hotplug_lock (to hold off | |
6819 | * slab_mem_going_offline_callback) here because slab's memory hot | |
6820 | * unplug code doesn't destroy the kmem_cache->node[] data. | |
6821 | */ | |
6822 | ||
6823 | #ifdef CONFIG_SLUB_DEBUG | |
6824 | if (flags & SO_ALL) { | |
6825 | struct kmem_cache_node *n; | |
6826 | ||
6827 | for_each_kmem_cache_node(s, node, n) { | |
6828 | ||
6829 | if (flags & SO_TOTAL) | |
6830 | x = node_nr_objs(n); | |
6831 | else if (flags & SO_OBJECTS) | |
6832 | x = node_nr_objs(n) - count_partial(n, count_free); | |
6833 | else | |
6834 | x = node_nr_slabs(n); | |
6835 | total += x; | |
6836 | nodes[node] += x; | |
6837 | } | |
6838 | ||
6839 | } else | |
6840 | #endif | |
6841 | if (flags & SO_PARTIAL) { | |
6842 | struct kmem_cache_node *n; | |
6843 | ||
6844 | for_each_kmem_cache_node(s, node, n) { | |
6845 | if (flags & SO_TOTAL) | |
6846 | x = count_partial(n, count_total); | |
6847 | else if (flags & SO_OBJECTS) | |
6848 | x = count_partial(n, count_inuse); | |
6849 | else | |
6850 | x = n->nr_partial; | |
6851 | total += x; | |
6852 | nodes[node] += x; | |
6853 | } | |
6854 | } | |
6855 | ||
6856 | len += sysfs_emit_at(buf, len, "%lu", total); | |
6857 | #ifdef CONFIG_NUMA | |
6858 | for (node = 0; node < nr_node_ids; node++) { | |
6859 | if (nodes[node]) | |
6860 | len += sysfs_emit_at(buf, len, " N%d=%lu", | |
6861 | node, nodes[node]); | |
6862 | } | |
6863 | #endif | |
6864 | len += sysfs_emit_at(buf, len, "\n"); | |
6865 | kfree(nodes); | |
6866 | ||
6867 | return len; | |
6868 | } | |
6869 | ||
6870 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | |
6871 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) | |
6872 | ||
6873 | struct slab_attribute { | |
6874 | struct attribute attr; | |
6875 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
6876 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
6877 | }; | |
6878 | ||
6879 | #define SLAB_ATTR_RO(_name) \ | |
6880 | static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) | |
6881 | ||
6882 | #define SLAB_ATTR(_name) \ | |
6883 | static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) | |
6884 | ||
6885 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) | |
6886 | { | |
6887 | return sysfs_emit(buf, "%u\n", s->size); | |
6888 | } | |
6889 | SLAB_ATTR_RO(slab_size); | |
6890 | ||
6891 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
6892 | { | |
6893 | return sysfs_emit(buf, "%u\n", s->align); | |
6894 | } | |
6895 | SLAB_ATTR_RO(align); | |
6896 | ||
6897 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
6898 | { | |
6899 | return sysfs_emit(buf, "%u\n", s->object_size); | |
6900 | } | |
6901 | SLAB_ATTR_RO(object_size); | |
6902 | ||
6903 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
6904 | { | |
6905 | return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); | |
6906 | } | |
6907 | SLAB_ATTR_RO(objs_per_slab); | |
6908 | ||
6909 | static ssize_t order_show(struct kmem_cache *s, char *buf) | |
6910 | { | |
6911 | return sysfs_emit(buf, "%u\n", oo_order(s->oo)); | |
6912 | } | |
6913 | SLAB_ATTR_RO(order); | |
6914 | ||
6915 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) | |
6916 | { | |
6917 | return sysfs_emit(buf, "%lu\n", s->min_partial); | |
6918 | } | |
6919 | ||
6920 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | |
6921 | size_t length) | |
6922 | { | |
6923 | unsigned long min; | |
6924 | int err; | |
6925 | ||
6926 | err = kstrtoul(buf, 10, &min); | |
6927 | if (err) | |
6928 | return err; | |
6929 | ||
6930 | s->min_partial = min; | |
6931 | return length; | |
6932 | } | |
6933 | SLAB_ATTR(min_partial); | |
6934 | ||
6935 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) | |
6936 | { | |
6937 | unsigned int nr_partial = 0; | |
6938 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
6939 | nr_partial = s->cpu_partial; | |
6940 | #endif | |
6941 | ||
6942 | return sysfs_emit(buf, "%u\n", nr_partial); | |
6943 | } | |
6944 | ||
6945 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | |
6946 | size_t length) | |
6947 | { | |
6948 | unsigned int objects; | |
6949 | int err; | |
6950 | ||
6951 | err = kstrtouint(buf, 10, &objects); | |
6952 | if (err) | |
6953 | return err; | |
6954 | if (objects && !kmem_cache_has_cpu_partial(s)) | |
6955 | return -EINVAL; | |
6956 | ||
6957 | slub_set_cpu_partial(s, objects); | |
6958 | flush_all(s); | |
6959 | return length; | |
6960 | } | |
6961 | SLAB_ATTR(cpu_partial); | |
6962 | ||
6963 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) | |
6964 | { | |
6965 | if (!s->ctor) | |
6966 | return 0; | |
6967 | return sysfs_emit(buf, "%pS\n", s->ctor); | |
6968 | } | |
6969 | SLAB_ATTR_RO(ctor); | |
6970 | ||
6971 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) | |
6972 | { | |
6973 | return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); | |
6974 | } | |
6975 | SLAB_ATTR_RO(aliases); | |
6976 | ||
6977 | static ssize_t partial_show(struct kmem_cache *s, char *buf) | |
6978 | { | |
6979 | return show_slab_objects(s, buf, SO_PARTIAL); | |
6980 | } | |
6981 | SLAB_ATTR_RO(partial); | |
6982 | ||
6983 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
6984 | { | |
6985 | return show_slab_objects(s, buf, SO_CPU); | |
6986 | } | |
6987 | SLAB_ATTR_RO(cpu_slabs); | |
6988 | ||
6989 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) | |
6990 | { | |
6991 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | |
6992 | } | |
6993 | SLAB_ATTR_RO(objects_partial); | |
6994 | ||
6995 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) | |
6996 | { | |
6997 | int objects = 0; | |
6998 | int slabs = 0; | |
6999 | int cpu __maybe_unused; | |
7000 | int len = 0; | |
7001 | ||
7002 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
7003 | for_each_online_cpu(cpu) { | |
7004 | struct slab *slab; | |
7005 | ||
7006 | slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | |
7007 | ||
7008 | if (slab) | |
7009 | slabs += data_race(slab->slabs); | |
7010 | } | |
7011 | #endif | |
7012 | ||
7013 | /* Approximate half-full slabs, see slub_set_cpu_partial() */ | |
7014 | objects = (slabs * oo_objects(s->oo)) / 2; | |
7015 | len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); | |
7016 | ||
7017 | #ifdef CONFIG_SLUB_CPU_PARTIAL | |
7018 | for_each_online_cpu(cpu) { | |
7019 | struct slab *slab; | |
7020 | ||
7021 | slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | |
7022 | if (slab) { | |
7023 | slabs = data_race(slab->slabs); | |
7024 | objects = (slabs * oo_objects(s->oo)) / 2; | |
7025 | len += sysfs_emit_at(buf, len, " C%d=%d(%d)", | |
7026 | cpu, objects, slabs); | |
7027 | } | |
7028 | } | |
7029 | #endif | |
7030 | len += sysfs_emit_at(buf, len, "\n"); | |
7031 | ||
7032 | return len; | |
7033 | } | |
7034 | SLAB_ATTR_RO(slabs_cpu_partial); | |
7035 | ||
7036 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) | |
7037 | { | |
7038 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | |
7039 | } | |
7040 | SLAB_ATTR_RO(reclaim_account); | |
7041 | ||
7042 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
7043 | { | |
7044 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); | |
7045 | } | |
7046 | SLAB_ATTR_RO(hwcache_align); | |
7047 | ||
7048 | #ifdef CONFIG_ZONE_DMA | |
7049 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
7050 | { | |
7051 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | |
7052 | } | |
7053 | SLAB_ATTR_RO(cache_dma); | |
7054 | #endif | |
7055 | ||
7056 | #ifdef CONFIG_HARDENED_USERCOPY | |
7057 | static ssize_t usersize_show(struct kmem_cache *s, char *buf) | |
7058 | { | |
7059 | return sysfs_emit(buf, "%u\n", s->usersize); | |
7060 | } | |
7061 | SLAB_ATTR_RO(usersize); | |
7062 | #endif | |
7063 | ||
7064 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | |
7065 | { | |
7066 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); | |
7067 | } | |
7068 | SLAB_ATTR_RO(destroy_by_rcu); | |
7069 | ||
7070 | #ifdef CONFIG_SLUB_DEBUG | |
7071 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) | |
7072 | { | |
7073 | return show_slab_objects(s, buf, SO_ALL); | |
7074 | } | |
7075 | SLAB_ATTR_RO(slabs); | |
7076 | ||
7077 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) | |
7078 | { | |
7079 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | |
7080 | } | |
7081 | SLAB_ATTR_RO(total_objects); | |
7082 | ||
7083 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | |
7084 | { | |
7085 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); | |
7086 | } | |
7087 | SLAB_ATTR_RO(objects); | |
7088 | ||
7089 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) | |
7090 | { | |
7091 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); | |
7092 | } | |
7093 | SLAB_ATTR_RO(sanity_checks); | |
7094 | ||
7095 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
7096 | { | |
7097 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | |
7098 | } | |
7099 | SLAB_ATTR_RO(trace); | |
7100 | ||
7101 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) | |
7102 | { | |
7103 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | |
7104 | } | |
7105 | ||
7106 | SLAB_ATTR_RO(red_zone); | |
7107 | ||
7108 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
7109 | { | |
7110 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); | |
7111 | } | |
7112 | ||
7113 | SLAB_ATTR_RO(poison); | |
7114 | ||
7115 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
7116 | { | |
7117 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | |
7118 | } | |
7119 | ||
7120 | SLAB_ATTR_RO(store_user); | |
7121 | ||
7122 | static ssize_t validate_show(struct kmem_cache *s, char *buf) | |
7123 | { | |
7124 | return 0; | |
7125 | } | |
7126 | ||
7127 | static ssize_t validate_store(struct kmem_cache *s, | |
7128 | const char *buf, size_t length) | |
7129 | { | |
7130 | int ret = -EINVAL; | |
7131 | ||
7132 | if (buf[0] == '1' && kmem_cache_debug(s)) { | |
7133 | ret = validate_slab_cache(s); | |
7134 | if (ret >= 0) | |
7135 | ret = length; | |
7136 | } | |
7137 | return ret; | |
7138 | } | |
7139 | SLAB_ATTR(validate); | |
7140 | ||
7141 | #endif /* CONFIG_SLUB_DEBUG */ | |
7142 | ||
7143 | #ifdef CONFIG_FAILSLAB | |
7144 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | |
7145 | { | |
7146 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); | |
7147 | } | |
7148 | ||
7149 | static ssize_t failslab_store(struct kmem_cache *s, const char *buf, | |
7150 | size_t length) | |
7151 | { | |
7152 | if (s->refcount > 1) | |
7153 | return -EINVAL; | |
7154 | ||
7155 | if (buf[0] == '1') | |
7156 | WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); | |
7157 | else | |
7158 | WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); | |
7159 | ||
7160 | return length; | |
7161 | } | |
7162 | SLAB_ATTR(failslab); | |
7163 | #endif | |
7164 | ||
7165 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) | |
7166 | { | |
7167 | return 0; | |
7168 | } | |
7169 | ||
7170 | static ssize_t shrink_store(struct kmem_cache *s, | |
7171 | const char *buf, size_t length) | |
7172 | { | |
7173 | if (buf[0] == '1') | |
7174 | kmem_cache_shrink(s); | |
7175 | else | |
7176 | return -EINVAL; | |
7177 | return length; | |
7178 | } | |
7179 | SLAB_ATTR(shrink); | |
7180 | ||
7181 | #ifdef CONFIG_NUMA | |
7182 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) | |
7183 | { | |
7184 | return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); | |
7185 | } | |
7186 | ||
7187 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, | |
7188 | const char *buf, size_t length) | |
7189 | { | |
7190 | unsigned int ratio; | |
7191 | int err; | |
7192 | ||
7193 | err = kstrtouint(buf, 10, &ratio); | |
7194 | if (err) | |
7195 | return err; | |
7196 | if (ratio > 100) | |
7197 | return -ERANGE; | |
7198 | ||
7199 | s->remote_node_defrag_ratio = ratio * 10; | |
7200 | ||
7201 | return length; | |
7202 | } | |
7203 | SLAB_ATTR(remote_node_defrag_ratio); | |
7204 | #endif | |
7205 | ||
7206 | #ifdef CONFIG_SLUB_STATS | |
7207 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) | |
7208 | { | |
7209 | unsigned long sum = 0; | |
7210 | int cpu; | |
7211 | int len = 0; | |
7212 | int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); | |
7213 | ||
7214 | if (!data) | |
7215 | return -ENOMEM; | |
7216 | ||
7217 | for_each_online_cpu(cpu) { | |
7218 | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; | |
7219 | ||
7220 | data[cpu] = x; | |
7221 | sum += x; | |
7222 | } | |
7223 | ||
7224 | len += sysfs_emit_at(buf, len, "%lu", sum); | |
7225 | ||
7226 | #ifdef CONFIG_SMP | |
7227 | for_each_online_cpu(cpu) { | |
7228 | if (data[cpu]) | |
7229 | len += sysfs_emit_at(buf, len, " C%d=%u", | |
7230 | cpu, data[cpu]); | |
7231 | } | |
7232 | #endif | |
7233 | kfree(data); | |
7234 | len += sysfs_emit_at(buf, len, "\n"); | |
7235 | ||
7236 | return len; | |
7237 | } | |
7238 | ||
7239 | static void clear_stat(struct kmem_cache *s, enum stat_item si) | |
7240 | { | |
7241 | int cpu; | |
7242 | ||
7243 | for_each_online_cpu(cpu) | |
7244 | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; | |
7245 | } | |
7246 | ||
7247 | #define STAT_ATTR(si, text) \ | |
7248 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | |
7249 | { \ | |
7250 | return show_stat(s, buf, si); \ | |
7251 | } \ | |
7252 | static ssize_t text##_store(struct kmem_cache *s, \ | |
7253 | const char *buf, size_t length) \ | |
7254 | { \ | |
7255 | if (buf[0] != '0') \ | |
7256 | return -EINVAL; \ | |
7257 | clear_stat(s, si); \ | |
7258 | return length; \ | |
7259 | } \ | |
7260 | SLAB_ATTR(text); \ | |
7261 | ||
7262 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | |
7263 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | |
7264 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | |
7265 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | |
7266 | STAT_ATTR(FREE_FROZEN, free_frozen); | |
7267 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | |
7268 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | |
7269 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | |
7270 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | |
7271 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | |
7272 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); | |
7273 | STAT_ATTR(FREE_SLAB, free_slab); | |
7274 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | |
7275 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | |
7276 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | |
7277 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | |
7278 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | |
7279 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | |
7280 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); | |
7281 | STAT_ATTR(ORDER_FALLBACK, order_fallback); | |
7282 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); | |
7283 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | |
7284 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); | |
7285 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | |
7286 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); | |
7287 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | |
7288 | #endif /* CONFIG_SLUB_STATS */ | |
7289 | ||
7290 | #ifdef CONFIG_KFENCE | |
7291 | static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) | |
7292 | { | |
7293 | return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); | |
7294 | } | |
7295 | ||
7296 | static ssize_t skip_kfence_store(struct kmem_cache *s, | |
7297 | const char *buf, size_t length) | |
7298 | { | |
7299 | int ret = length; | |
7300 | ||
7301 | if (buf[0] == '0') | |
7302 | s->flags &= ~SLAB_SKIP_KFENCE; | |
7303 | else if (buf[0] == '1') | |
7304 | s->flags |= SLAB_SKIP_KFENCE; | |
7305 | else | |
7306 | ret = -EINVAL; | |
7307 | ||
7308 | return ret; | |
7309 | } | |
7310 | SLAB_ATTR(skip_kfence); | |
7311 | #endif | |
7312 | ||
7313 | static struct attribute *slab_attrs[] = { | |
7314 | &slab_size_attr.attr, | |
7315 | &object_size_attr.attr, | |
7316 | &objs_per_slab_attr.attr, | |
7317 | &order_attr.attr, | |
7318 | &min_partial_attr.attr, | |
7319 | &cpu_partial_attr.attr, | |
7320 | &objects_partial_attr.attr, | |
7321 | &partial_attr.attr, | |
7322 | &cpu_slabs_attr.attr, | |
7323 | &ctor_attr.attr, | |
7324 | &aliases_attr.attr, | |
7325 | &align_attr.attr, | |
7326 | &hwcache_align_attr.attr, | |
7327 | &reclaim_account_attr.attr, | |
7328 | &destroy_by_rcu_attr.attr, | |
7329 | &shrink_attr.attr, | |
7330 | &slabs_cpu_partial_attr.attr, | |
7331 | #ifdef CONFIG_SLUB_DEBUG | |
7332 | &total_objects_attr.attr, | |
7333 | &objects_attr.attr, | |
7334 | &slabs_attr.attr, | |
7335 | &sanity_checks_attr.attr, | |
7336 | &trace_attr.attr, | |
7337 | &red_zone_attr.attr, | |
7338 | &poison_attr.attr, | |
7339 | &store_user_attr.attr, | |
7340 | &validate_attr.attr, | |
7341 | #endif | |
7342 | #ifdef CONFIG_ZONE_DMA | |
7343 | &cache_dma_attr.attr, | |
7344 | #endif | |
7345 | #ifdef CONFIG_NUMA | |
7346 | &remote_node_defrag_ratio_attr.attr, | |
7347 | #endif | |
7348 | #ifdef CONFIG_SLUB_STATS | |
7349 | &alloc_fastpath_attr.attr, | |
7350 | &alloc_slowpath_attr.attr, | |
7351 | &free_fastpath_attr.attr, | |
7352 | &free_slowpath_attr.attr, | |
7353 | &free_frozen_attr.attr, | |
7354 | &free_add_partial_attr.attr, | |
7355 | &free_remove_partial_attr.attr, | |
7356 | &alloc_from_partial_attr.attr, | |
7357 | &alloc_slab_attr.attr, | |
7358 | &alloc_refill_attr.attr, | |
7359 | &alloc_node_mismatch_attr.attr, | |
7360 | &free_slab_attr.attr, | |
7361 | &cpuslab_flush_attr.attr, | |
7362 | &deactivate_full_attr.attr, | |
7363 | &deactivate_empty_attr.attr, | |
7364 | &deactivate_to_head_attr.attr, | |
7365 | &deactivate_to_tail_attr.attr, | |
7366 | &deactivate_remote_frees_attr.attr, | |
7367 | &deactivate_bypass_attr.attr, | |
7368 | &order_fallback_attr.attr, | |
7369 | &cmpxchg_double_fail_attr.attr, | |
7370 | &cmpxchg_double_cpu_fail_attr.attr, | |
7371 | &cpu_partial_alloc_attr.attr, | |
7372 | &cpu_partial_free_attr.attr, | |
7373 | &cpu_partial_node_attr.attr, | |
7374 | &cpu_partial_drain_attr.attr, | |
7375 | #endif | |
7376 | #ifdef CONFIG_FAILSLAB | |
7377 | &failslab_attr.attr, | |
7378 | #endif | |
7379 | #ifdef CONFIG_HARDENED_USERCOPY | |
7380 | &usersize_attr.attr, | |
7381 | #endif | |
7382 | #ifdef CONFIG_KFENCE | |
7383 | &skip_kfence_attr.attr, | |
7384 | #endif | |
7385 | ||
7386 | NULL | |
7387 | }; | |
7388 | ||
7389 | static const struct attribute_group slab_attr_group = { | |
7390 | .attrs = slab_attrs, | |
7391 | }; | |
7392 | ||
7393 | static ssize_t slab_attr_show(struct kobject *kobj, | |
7394 | struct attribute *attr, | |
7395 | char *buf) | |
7396 | { | |
7397 | struct slab_attribute *attribute; | |
7398 | struct kmem_cache *s; | |
7399 | ||
7400 | attribute = to_slab_attr(attr); | |
7401 | s = to_slab(kobj); | |
7402 | ||
7403 | if (!attribute->show) | |
7404 | return -EIO; | |
7405 | ||
7406 | return attribute->show(s, buf); | |
7407 | } | |
7408 | ||
7409 | static ssize_t slab_attr_store(struct kobject *kobj, | |
7410 | struct attribute *attr, | |
7411 | const char *buf, size_t len) | |
7412 | { | |
7413 | struct slab_attribute *attribute; | |
7414 | struct kmem_cache *s; | |
7415 | ||
7416 | attribute = to_slab_attr(attr); | |
7417 | s = to_slab(kobj); | |
7418 | ||
7419 | if (!attribute->store) | |
7420 | return -EIO; | |
7421 | ||
7422 | return attribute->store(s, buf, len); | |
7423 | } | |
7424 | ||
7425 | static void kmem_cache_release(struct kobject *k) | |
7426 | { | |
7427 | slab_kmem_cache_release(to_slab(k)); | |
7428 | } | |
7429 | ||
7430 | static const struct sysfs_ops slab_sysfs_ops = { | |
7431 | .show = slab_attr_show, | |
7432 | .store = slab_attr_store, | |
7433 | }; | |
7434 | ||
7435 | static const struct kobj_type slab_ktype = { | |
7436 | .sysfs_ops = &slab_sysfs_ops, | |
7437 | .release = kmem_cache_release, | |
7438 | }; | |
7439 | ||
7440 | static struct kset *slab_kset; | |
7441 | ||
7442 | static inline struct kset *cache_kset(struct kmem_cache *s) | |
7443 | { | |
7444 | return slab_kset; | |
7445 | } | |
7446 | ||
7447 | #define ID_STR_LENGTH 32 | |
7448 | ||
7449 | /* Create a unique string id for a slab cache: | |
7450 | * | |
7451 | * Format :[flags-]size | |
7452 | */ | |
7453 | static char *create_unique_id(struct kmem_cache *s) | |
7454 | { | |
7455 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
7456 | char *p = name; | |
7457 | ||
7458 | if (!name) | |
7459 | return ERR_PTR(-ENOMEM); | |
7460 | ||
7461 | *p++ = ':'; | |
7462 | /* | |
7463 | * First flags affecting slabcache operations. We will only | |
7464 | * get here for aliasable slabs so we do not need to support | |
7465 | * too many flags. The flags here must cover all flags that | |
7466 | * are matched during merging to guarantee that the id is | |
7467 | * unique. | |
7468 | */ | |
7469 | if (s->flags & SLAB_CACHE_DMA) | |
7470 | *p++ = 'd'; | |
7471 | if (s->flags & SLAB_CACHE_DMA32) | |
7472 | *p++ = 'D'; | |
7473 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
7474 | *p++ = 'a'; | |
7475 | if (s->flags & SLAB_CONSISTENCY_CHECKS) | |
7476 | *p++ = 'F'; | |
7477 | if (s->flags & SLAB_ACCOUNT) | |
7478 | *p++ = 'A'; | |
7479 | if (p != name + 1) | |
7480 | *p++ = '-'; | |
7481 | p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); | |
7482 | ||
7483 | if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { | |
7484 | kfree(name); | |
7485 | return ERR_PTR(-EINVAL); | |
7486 | } | |
7487 | kmsan_unpoison_memory(name, p - name); | |
7488 | return name; | |
7489 | } | |
7490 | ||
7491 | static int sysfs_slab_add(struct kmem_cache *s) | |
7492 | { | |
7493 | int err; | |
7494 | const char *name; | |
7495 | struct kset *kset = cache_kset(s); | |
7496 | int unmergeable = slab_unmergeable(s); | |
7497 | ||
7498 | if (!unmergeable && disable_higher_order_debug && | |
7499 | (slub_debug & DEBUG_METADATA_FLAGS)) | |
7500 | unmergeable = 1; | |
7501 | ||
7502 | if (unmergeable) { | |
7503 | /* | |
7504 | * Slabcache can never be merged so we can use the name proper. | |
7505 | * This is typically the case for debug situations. In that | |
7506 | * case we can catch duplicate names easily. | |
7507 | */ | |
7508 | sysfs_remove_link(&slab_kset->kobj, s->name); | |
7509 | name = s->name; | |
7510 | } else { | |
7511 | /* | |
7512 | * Create a unique name for the slab as a target | |
7513 | * for the symlinks. | |
7514 | */ | |
7515 | name = create_unique_id(s); | |
7516 | if (IS_ERR(name)) | |
7517 | return PTR_ERR(name); | |
7518 | } | |
7519 | ||
7520 | s->kobj.kset = kset; | |
7521 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); | |
7522 | if (err) | |
7523 | goto out; | |
7524 | ||
7525 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
7526 | if (err) | |
7527 | goto out_del_kobj; | |
7528 | ||
7529 | if (!unmergeable) { | |
7530 | /* Setup first alias */ | |
7531 | sysfs_slab_alias(s, s->name); | |
7532 | } | |
7533 | out: | |
7534 | if (!unmergeable) | |
7535 | kfree(name); | |
7536 | return err; | |
7537 | out_del_kobj: | |
7538 | kobject_del(&s->kobj); | |
7539 | goto out; | |
7540 | } | |
7541 | ||
7542 | void sysfs_slab_unlink(struct kmem_cache *s) | |
7543 | { | |
7544 | if (s->kobj.state_in_sysfs) | |
7545 | kobject_del(&s->kobj); | |
7546 | } | |
7547 | ||
7548 | void sysfs_slab_release(struct kmem_cache *s) | |
7549 | { | |
7550 | kobject_put(&s->kobj); | |
7551 | } | |
7552 | ||
7553 | /* | |
7554 | * Need to buffer aliases during bootup until sysfs becomes | |
7555 | * available lest we lose that information. | |
7556 | */ | |
7557 | struct saved_alias { | |
7558 | struct kmem_cache *s; | |
7559 | const char *name; | |
7560 | struct saved_alias *next; | |
7561 | }; | |
7562 | ||
7563 | static struct saved_alias *alias_list; | |
7564 | ||
7565 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
7566 | { | |
7567 | struct saved_alias *al; | |
7568 | ||
7569 | if (slab_state == FULL) { | |
7570 | /* | |
7571 | * If we have a leftover link then remove it. | |
7572 | */ | |
7573 | sysfs_remove_link(&slab_kset->kobj, name); | |
7574 | /* | |
7575 | * The original cache may have failed to generate sysfs file. | |
7576 | * In that case, sysfs_create_link() returns -ENOENT and | |
7577 | * symbolic link creation is skipped. | |
7578 | */ | |
7579 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | |
7580 | } | |
7581 | ||
7582 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
7583 | if (!al) | |
7584 | return -ENOMEM; | |
7585 | ||
7586 | al->s = s; | |
7587 | al->name = name; | |
7588 | al->next = alias_list; | |
7589 | alias_list = al; | |
7590 | kmsan_unpoison_memory(al, sizeof(*al)); | |
7591 | return 0; | |
7592 | } | |
7593 | ||
7594 | static int __init slab_sysfs_init(void) | |
7595 | { | |
7596 | struct kmem_cache *s; | |
7597 | int err; | |
7598 | ||
7599 | mutex_lock(&slab_mutex); | |
7600 | ||
7601 | slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); | |
7602 | if (!slab_kset) { | |
7603 | mutex_unlock(&slab_mutex); | |
7604 | pr_err("Cannot register slab subsystem.\n"); | |
7605 | return -ENOMEM; | |
7606 | } | |
7607 | ||
7608 | slab_state = FULL; | |
7609 | ||
7610 | list_for_each_entry(s, &slab_caches, list) { | |
7611 | err = sysfs_slab_add(s); | |
7612 | if (err) | |
7613 | pr_err("SLUB: Unable to add boot slab %s to sysfs\n", | |
7614 | s->name); | |
7615 | } | |
7616 | ||
7617 | while (alias_list) { | |
7618 | struct saved_alias *al = alias_list; | |
7619 | ||
7620 | alias_list = alias_list->next; | |
7621 | err = sysfs_slab_alias(al->s, al->name); | |
7622 | if (err) | |
7623 | pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", | |
7624 | al->name); | |
7625 | kfree(al); | |
7626 | } | |
7627 | ||
7628 | mutex_unlock(&slab_mutex); | |
7629 | return 0; | |
7630 | } | |
7631 | late_initcall(slab_sysfs_init); | |
7632 | #endif /* SLAB_SUPPORTS_SYSFS */ | |
7633 | ||
7634 | #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) | |
7635 | static int slab_debugfs_show(struct seq_file *seq, void *v) | |
7636 | { | |
7637 | struct loc_track *t = seq->private; | |
7638 | struct location *l; | |
7639 | unsigned long idx; | |
7640 | ||
7641 | idx = (unsigned long) t->idx; | |
7642 | if (idx < t->count) { | |
7643 | l = &t->loc[idx]; | |
7644 | ||
7645 | seq_printf(seq, "%7ld ", l->count); | |
7646 | ||
7647 | if (l->addr) | |
7648 | seq_printf(seq, "%pS", (void *)l->addr); | |
7649 | else | |
7650 | seq_puts(seq, "<not-available>"); | |
7651 | ||
7652 | if (l->waste) | |
7653 | seq_printf(seq, " waste=%lu/%lu", | |
7654 | l->count * l->waste, l->waste); | |
7655 | ||
7656 | if (l->sum_time != l->min_time) { | |
7657 | seq_printf(seq, " age=%ld/%llu/%ld", | |
7658 | l->min_time, div_u64(l->sum_time, l->count), | |
7659 | l->max_time); | |
7660 | } else | |
7661 | seq_printf(seq, " age=%ld", l->min_time); | |
7662 | ||
7663 | if (l->min_pid != l->max_pid) | |
7664 | seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); | |
7665 | else | |
7666 | seq_printf(seq, " pid=%ld", | |
7667 | l->min_pid); | |
7668 | ||
7669 | if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) | |
7670 | seq_printf(seq, " cpus=%*pbl", | |
7671 | cpumask_pr_args(to_cpumask(l->cpus))); | |
7672 | ||
7673 | if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) | |
7674 | seq_printf(seq, " nodes=%*pbl", | |
7675 | nodemask_pr_args(&l->nodes)); | |
7676 | ||
7677 | #ifdef CONFIG_STACKDEPOT | |
7678 | { | |
7679 | depot_stack_handle_t handle; | |
7680 | unsigned long *entries; | |
7681 | unsigned int nr_entries, j; | |
7682 | ||
7683 | handle = READ_ONCE(l->handle); | |
7684 | if (handle) { | |
7685 | nr_entries = stack_depot_fetch(handle, &entries); | |
7686 | seq_puts(seq, "\n"); | |
7687 | for (j = 0; j < nr_entries; j++) | |
7688 | seq_printf(seq, " %pS\n", (void *)entries[j]); | |
7689 | } | |
7690 | } | |
7691 | #endif | |
7692 | seq_puts(seq, "\n"); | |
7693 | } | |
7694 | ||
7695 | if (!idx && !t->count) | |
7696 | seq_puts(seq, "No data\n"); | |
7697 | ||
7698 | return 0; | |
7699 | } | |
7700 | ||
7701 | static void slab_debugfs_stop(struct seq_file *seq, void *v) | |
7702 | { | |
7703 | } | |
7704 | ||
7705 | static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) | |
7706 | { | |
7707 | struct loc_track *t = seq->private; | |
7708 | ||
7709 | t->idx = ++(*ppos); | |
7710 | if (*ppos <= t->count) | |
7711 | return ppos; | |
7712 | ||
7713 | return NULL; | |
7714 | } | |
7715 | ||
7716 | static int cmp_loc_by_count(const void *a, const void *b, const void *data) | |
7717 | { | |
7718 | struct location *loc1 = (struct location *)a; | |
7719 | struct location *loc2 = (struct location *)b; | |
7720 | ||
7721 | if (loc1->count > loc2->count) | |
7722 | return -1; | |
7723 | else | |
7724 | return 1; | |
7725 | } | |
7726 | ||
7727 | static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) | |
7728 | { | |
7729 | struct loc_track *t = seq->private; | |
7730 | ||
7731 | t->idx = *ppos; | |
7732 | return ppos; | |
7733 | } | |
7734 | ||
7735 | static const struct seq_operations slab_debugfs_sops = { | |
7736 | .start = slab_debugfs_start, | |
7737 | .next = slab_debugfs_next, | |
7738 | .stop = slab_debugfs_stop, | |
7739 | .show = slab_debugfs_show, | |
7740 | }; | |
7741 | ||
7742 | static int slab_debug_trace_open(struct inode *inode, struct file *filep) | |
7743 | { | |
7744 | ||
7745 | struct kmem_cache_node *n; | |
7746 | enum track_item alloc; | |
7747 | int node; | |
7748 | struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, | |
7749 | sizeof(struct loc_track)); | |
7750 | struct kmem_cache *s = file_inode(filep)->i_private; | |
7751 | unsigned long *obj_map; | |
7752 | ||
7753 | if (!t) | |
7754 | return -ENOMEM; | |
7755 | ||
7756 | obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); | |
7757 | if (!obj_map) { | |
7758 | seq_release_private(inode, filep); | |
7759 | return -ENOMEM; | |
7760 | } | |
7761 | ||
7762 | alloc = debugfs_get_aux_num(filep); | |
7763 | ||
7764 | if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { | |
7765 | bitmap_free(obj_map); | |
7766 | seq_release_private(inode, filep); | |
7767 | return -ENOMEM; | |
7768 | } | |
7769 | ||
7770 | for_each_kmem_cache_node(s, node, n) { | |
7771 | unsigned long flags; | |
7772 | struct slab *slab; | |
7773 | ||
7774 | if (!node_nr_slabs(n)) | |
7775 | continue; | |
7776 | ||
7777 | spin_lock_irqsave(&n->list_lock, flags); | |
7778 | list_for_each_entry(slab, &n->partial, slab_list) | |
7779 | process_slab(t, s, slab, alloc, obj_map); | |
7780 | list_for_each_entry(slab, &n->full, slab_list) | |
7781 | process_slab(t, s, slab, alloc, obj_map); | |
7782 | spin_unlock_irqrestore(&n->list_lock, flags); | |
7783 | } | |
7784 | ||
7785 | /* Sort locations by count */ | |
7786 | sort_r(t->loc, t->count, sizeof(struct location), | |
7787 | cmp_loc_by_count, NULL, NULL); | |
7788 | ||
7789 | bitmap_free(obj_map); | |
7790 | return 0; | |
7791 | } | |
7792 | ||
7793 | static int slab_debug_trace_release(struct inode *inode, struct file *file) | |
7794 | { | |
7795 | struct seq_file *seq = file->private_data; | |
7796 | struct loc_track *t = seq->private; | |
7797 | ||
7798 | free_loc_track(t); | |
7799 | return seq_release_private(inode, file); | |
7800 | } | |
7801 | ||
7802 | static const struct file_operations slab_debugfs_fops = { | |
7803 | .open = slab_debug_trace_open, | |
7804 | .read = seq_read, | |
7805 | .llseek = seq_lseek, | |
7806 | .release = slab_debug_trace_release, | |
7807 | }; | |
7808 | ||
7809 | static void debugfs_slab_add(struct kmem_cache *s) | |
7810 | { | |
7811 | struct dentry *slab_cache_dir; | |
7812 | ||
7813 | if (unlikely(!slab_debugfs_root)) | |
7814 | return; | |
7815 | ||
7816 | slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); | |
7817 | ||
7818 | debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s, | |
7819 | TRACK_ALLOC, &slab_debugfs_fops); | |
7820 | ||
7821 | debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s, | |
7822 | TRACK_FREE, &slab_debugfs_fops); | |
7823 | } | |
7824 | ||
7825 | void debugfs_slab_release(struct kmem_cache *s) | |
7826 | { | |
7827 | debugfs_lookup_and_remove(s->name, slab_debugfs_root); | |
7828 | } | |
7829 | ||
7830 | static int __init slab_debugfs_init(void) | |
7831 | { | |
7832 | struct kmem_cache *s; | |
7833 | ||
7834 | slab_debugfs_root = debugfs_create_dir("slab", NULL); | |
7835 | ||
7836 | list_for_each_entry(s, &slab_caches, list) | |
7837 | if (s->flags & SLAB_STORE_USER) | |
7838 | debugfs_slab_add(s); | |
7839 | ||
7840 | return 0; | |
7841 | ||
7842 | } | |
7843 | __initcall(slab_debugfs_init); | |
7844 | #endif | |
7845 | /* | |
7846 | * The /proc/slabinfo ABI | |
7847 | */ | |
7848 | #ifdef CONFIG_SLUB_DEBUG | |
7849 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) | |
7850 | { | |
7851 | unsigned long nr_slabs = 0; | |
7852 | unsigned long nr_objs = 0; | |
7853 | unsigned long nr_free = 0; | |
7854 | int node; | |
7855 | struct kmem_cache_node *n; | |
7856 | ||
7857 | for_each_kmem_cache_node(s, node, n) { | |
7858 | nr_slabs += node_nr_slabs(n); | |
7859 | nr_objs += node_nr_objs(n); | |
7860 | nr_free += count_partial_free_approx(n); | |
7861 | } | |
7862 | ||
7863 | sinfo->active_objs = nr_objs - nr_free; | |
7864 | sinfo->num_objs = nr_objs; | |
7865 | sinfo->active_slabs = nr_slabs; | |
7866 | sinfo->num_slabs = nr_slabs; | |
7867 | sinfo->objects_per_slab = oo_objects(s->oo); | |
7868 | sinfo->cache_order = oo_order(s->oo); | |
7869 | } | |
7870 | #endif /* CONFIG_SLUB_DEBUG */ |