]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame_incremental - mm/swap.c
block/switching-sched.txt: Update to blk-mq schedulers
[thirdparty/kernel/stable.git] / mm / swap.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/sysctl/vm.txt.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17#include <linux/mm.h>
18#include <linux/sched.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/pagevec.h>
24#include <linux/init.h>
25#include <linux/export.h>
26#include <linux/mm_inline.h>
27#include <linux/percpu_counter.h>
28#include <linux/memremap.h>
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
32#include <linux/backing-dev.h>
33#include <linux/memcontrol.h>
34#include <linux/gfp.h>
35#include <linux/uio.h>
36#include <linux/hugetlb.h>
37#include <linux/page_idle.h>
38
39#include "internal.h"
40
41#define CREATE_TRACE_POINTS
42#include <trace/events/pagemap.h>
43
44/* How many pages do we try to swap or page in/out together? */
45int page_cluster;
46
47static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
48static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
49static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
50static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs);
51#ifdef CONFIG_SMP
52static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
53#endif
54
55/*
56 * This path almost never happens for VM activity - pages are normally
57 * freed via pagevecs. But it gets used by networking.
58 */
59static void __page_cache_release(struct page *page)
60{
61 if (PageLRU(page)) {
62 pg_data_t *pgdat = page_pgdat(page);
63 struct lruvec *lruvec;
64 unsigned long flags;
65
66 spin_lock_irqsave(&pgdat->lru_lock, flags);
67 lruvec = mem_cgroup_page_lruvec(page, pgdat);
68 VM_BUG_ON_PAGE(!PageLRU(page), page);
69 __ClearPageLRU(page);
70 del_page_from_lru_list(page, lruvec, page_off_lru(page));
71 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
72 }
73 __ClearPageWaiters(page);
74 mem_cgroup_uncharge(page);
75}
76
77static void __put_single_page(struct page *page)
78{
79 __page_cache_release(page);
80 free_unref_page(page);
81}
82
83static void __put_compound_page(struct page *page)
84{
85 compound_page_dtor *dtor;
86
87 /*
88 * __page_cache_release() is supposed to be called for thp, not for
89 * hugetlb. This is because hugetlb page does never have PageLRU set
90 * (it's never listed to any LRU lists) and no memcg routines should
91 * be called for hugetlb (it has a separate hugetlb_cgroup.)
92 */
93 if (!PageHuge(page))
94 __page_cache_release(page);
95 dtor = get_compound_page_dtor(page);
96 (*dtor)(page);
97}
98
99void __put_page(struct page *page)
100{
101 if (is_zone_device_page(page)) {
102 put_dev_pagemap(page->pgmap);
103
104 /*
105 * The page belongs to the device that created pgmap. Do
106 * not return it to page allocator.
107 */
108 return;
109 }
110
111 if (unlikely(PageCompound(page)))
112 __put_compound_page(page);
113 else
114 __put_single_page(page);
115}
116EXPORT_SYMBOL(__put_page);
117
118/**
119 * put_pages_list() - release a list of pages
120 * @pages: list of pages threaded on page->lru
121 *
122 * Release a list of pages which are strung together on page.lru. Currently
123 * used by read_cache_pages() and related error recovery code.
124 */
125void put_pages_list(struct list_head *pages)
126{
127 while (!list_empty(pages)) {
128 struct page *victim;
129
130 victim = lru_to_page(pages);
131 list_del(&victim->lru);
132 put_page(victim);
133 }
134}
135EXPORT_SYMBOL(put_pages_list);
136
137/*
138 * get_kernel_pages() - pin kernel pages in memory
139 * @kiov: An array of struct kvec structures
140 * @nr_segs: number of segments to pin
141 * @write: pinning for read/write, currently ignored
142 * @pages: array that receives pointers to the pages pinned.
143 * Should be at least nr_segs long.
144 *
145 * Returns number of pages pinned. This may be fewer than the number
146 * requested. If nr_pages is 0 or negative, returns 0. If no pages
147 * were pinned, returns -errno. Each page returned must be released
148 * with a put_page() call when it is finished with.
149 */
150int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
151 struct page **pages)
152{
153 int seg;
154
155 for (seg = 0; seg < nr_segs; seg++) {
156 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
157 return seg;
158
159 pages[seg] = kmap_to_page(kiov[seg].iov_base);
160 get_page(pages[seg]);
161 }
162
163 return seg;
164}
165EXPORT_SYMBOL_GPL(get_kernel_pages);
166
167/*
168 * get_kernel_page() - pin a kernel page in memory
169 * @start: starting kernel address
170 * @write: pinning for read/write, currently ignored
171 * @pages: array that receives pointer to the page pinned.
172 * Must be at least nr_segs long.
173 *
174 * Returns 1 if page is pinned. If the page was not pinned, returns
175 * -errno. The page returned must be released with a put_page() call
176 * when it is finished with.
177 */
178int get_kernel_page(unsigned long start, int write, struct page **pages)
179{
180 const struct kvec kiov = {
181 .iov_base = (void *)start,
182 .iov_len = PAGE_SIZE
183 };
184
185 return get_kernel_pages(&kiov, 1, write, pages);
186}
187EXPORT_SYMBOL_GPL(get_kernel_page);
188
189static void pagevec_lru_move_fn(struct pagevec *pvec,
190 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
191 void *arg)
192{
193 int i;
194 struct pglist_data *pgdat = NULL;
195 struct lruvec *lruvec;
196 unsigned long flags = 0;
197
198 for (i = 0; i < pagevec_count(pvec); i++) {
199 struct page *page = pvec->pages[i];
200 struct pglist_data *pagepgdat = page_pgdat(page);
201
202 if (pagepgdat != pgdat) {
203 if (pgdat)
204 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
205 pgdat = pagepgdat;
206 spin_lock_irqsave(&pgdat->lru_lock, flags);
207 }
208
209 lruvec = mem_cgroup_page_lruvec(page, pgdat);
210 (*move_fn)(page, lruvec, arg);
211 }
212 if (pgdat)
213 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
214 release_pages(pvec->pages, pvec->nr);
215 pagevec_reinit(pvec);
216}
217
218static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
219 void *arg)
220{
221 int *pgmoved = arg;
222
223 if (PageLRU(page) && !PageUnevictable(page)) {
224 del_page_from_lru_list(page, lruvec, page_lru(page));
225 ClearPageActive(page);
226 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
227 (*pgmoved)++;
228 }
229}
230
231/*
232 * pagevec_move_tail() must be called with IRQ disabled.
233 * Otherwise this may cause nasty races.
234 */
235static void pagevec_move_tail(struct pagevec *pvec)
236{
237 int pgmoved = 0;
238
239 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
240 __count_vm_events(PGROTATED, pgmoved);
241}
242
243/*
244 * Writeback is about to end against a page which has been marked for immediate
245 * reclaim. If it still appears to be reclaimable, move it to the tail of the
246 * inactive list.
247 */
248void rotate_reclaimable_page(struct page *page)
249{
250 if (!PageLocked(page) && !PageDirty(page) &&
251 !PageUnevictable(page) && PageLRU(page)) {
252 struct pagevec *pvec;
253 unsigned long flags;
254
255 get_page(page);
256 local_irq_save(flags);
257 pvec = this_cpu_ptr(&lru_rotate_pvecs);
258 if (!pagevec_add(pvec, page) || PageCompound(page))
259 pagevec_move_tail(pvec);
260 local_irq_restore(flags);
261 }
262}
263
264static void update_page_reclaim_stat(struct lruvec *lruvec,
265 int file, int rotated)
266{
267 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
268
269 reclaim_stat->recent_scanned[file]++;
270 if (rotated)
271 reclaim_stat->recent_rotated[file]++;
272}
273
274static void __activate_page(struct page *page, struct lruvec *lruvec,
275 void *arg)
276{
277 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
278 int file = page_is_file_cache(page);
279 int lru = page_lru_base_type(page);
280
281 del_page_from_lru_list(page, lruvec, lru);
282 SetPageActive(page);
283 lru += LRU_ACTIVE;
284 add_page_to_lru_list(page, lruvec, lru);
285 trace_mm_lru_activate(page);
286
287 __count_vm_event(PGACTIVATE);
288 update_page_reclaim_stat(lruvec, file, 1);
289 }
290}
291
292#ifdef CONFIG_SMP
293static void activate_page_drain(int cpu)
294{
295 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
296
297 if (pagevec_count(pvec))
298 pagevec_lru_move_fn(pvec, __activate_page, NULL);
299}
300
301static bool need_activate_page_drain(int cpu)
302{
303 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
304}
305
306void activate_page(struct page *page)
307{
308 page = compound_head(page);
309 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
310 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
311
312 get_page(page);
313 if (!pagevec_add(pvec, page) || PageCompound(page))
314 pagevec_lru_move_fn(pvec, __activate_page, NULL);
315 put_cpu_var(activate_page_pvecs);
316 }
317}
318
319#else
320static inline void activate_page_drain(int cpu)
321{
322}
323
324void activate_page(struct page *page)
325{
326 pg_data_t *pgdat = page_pgdat(page);
327
328 page = compound_head(page);
329 spin_lock_irq(&pgdat->lru_lock);
330 __activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
331 spin_unlock_irq(&pgdat->lru_lock);
332}
333#endif
334
335static void __lru_cache_activate_page(struct page *page)
336{
337 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
338 int i;
339
340 /*
341 * Search backwards on the optimistic assumption that the page being
342 * activated has just been added to this pagevec. Note that only
343 * the local pagevec is examined as a !PageLRU page could be in the
344 * process of being released, reclaimed, migrated or on a remote
345 * pagevec that is currently being drained. Furthermore, marking
346 * a remote pagevec's page PageActive potentially hits a race where
347 * a page is marked PageActive just after it is added to the inactive
348 * list causing accounting errors and BUG_ON checks to trigger.
349 */
350 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
351 struct page *pagevec_page = pvec->pages[i];
352
353 if (pagevec_page == page) {
354 SetPageActive(page);
355 break;
356 }
357 }
358
359 put_cpu_var(lru_add_pvec);
360}
361
362/*
363 * Mark a page as having seen activity.
364 *
365 * inactive,unreferenced -> inactive,referenced
366 * inactive,referenced -> active,unreferenced
367 * active,unreferenced -> active,referenced
368 *
369 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
370 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
371 */
372void mark_page_accessed(struct page *page)
373{
374 page = compound_head(page);
375 if (!PageActive(page) && !PageUnevictable(page) &&
376 PageReferenced(page)) {
377
378 /*
379 * If the page is on the LRU, queue it for activation via
380 * activate_page_pvecs. Otherwise, assume the page is on a
381 * pagevec, mark it active and it'll be moved to the active
382 * LRU on the next drain.
383 */
384 if (PageLRU(page))
385 activate_page(page);
386 else
387 __lru_cache_activate_page(page);
388 ClearPageReferenced(page);
389 if (page_is_file_cache(page))
390 workingset_activation(page);
391 } else if (!PageReferenced(page)) {
392 SetPageReferenced(page);
393 }
394 if (page_is_idle(page))
395 clear_page_idle(page);
396}
397EXPORT_SYMBOL(mark_page_accessed);
398
399static void __lru_cache_add(struct page *page)
400{
401 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
402
403 get_page(page);
404 if (!pagevec_add(pvec, page) || PageCompound(page))
405 __pagevec_lru_add(pvec);
406 put_cpu_var(lru_add_pvec);
407}
408
409/**
410 * lru_cache_add_anon - add a page to the page lists
411 * @page: the page to add
412 */
413void lru_cache_add_anon(struct page *page)
414{
415 if (PageActive(page))
416 ClearPageActive(page);
417 __lru_cache_add(page);
418}
419
420void lru_cache_add_file(struct page *page)
421{
422 if (PageActive(page))
423 ClearPageActive(page);
424 __lru_cache_add(page);
425}
426EXPORT_SYMBOL(lru_cache_add_file);
427
428/**
429 * lru_cache_add - add a page to a page list
430 * @page: the page to be added to the LRU.
431 *
432 * Queue the page for addition to the LRU via pagevec. The decision on whether
433 * to add the page to the [in]active [file|anon] list is deferred until the
434 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
435 * have the page added to the active list using mark_page_accessed().
436 */
437void lru_cache_add(struct page *page)
438{
439 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
440 VM_BUG_ON_PAGE(PageLRU(page), page);
441 __lru_cache_add(page);
442}
443
444/**
445 * lru_cache_add_active_or_unevictable
446 * @page: the page to be added to LRU
447 * @vma: vma in which page is mapped for determining reclaimability
448 *
449 * Place @page on the active or unevictable LRU list, depending on its
450 * evictability. Note that if the page is not evictable, it goes
451 * directly back onto it's zone's unevictable list, it does NOT use a
452 * per cpu pagevec.
453 */
454void lru_cache_add_active_or_unevictable(struct page *page,
455 struct vm_area_struct *vma)
456{
457 VM_BUG_ON_PAGE(PageLRU(page), page);
458
459 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
460 SetPageActive(page);
461 else if (!TestSetPageMlocked(page)) {
462 /*
463 * We use the irq-unsafe __mod_zone_page_stat because this
464 * counter is not modified from interrupt context, and the pte
465 * lock is held(spinlock), which implies preemption disabled.
466 */
467 __mod_zone_page_state(page_zone(page), NR_MLOCK,
468 hpage_nr_pages(page));
469 count_vm_event(UNEVICTABLE_PGMLOCKED);
470 }
471 lru_cache_add(page);
472}
473
474/*
475 * If the page can not be invalidated, it is moved to the
476 * inactive list to speed up its reclaim. It is moved to the
477 * head of the list, rather than the tail, to give the flusher
478 * threads some time to write it out, as this is much more
479 * effective than the single-page writeout from reclaim.
480 *
481 * If the page isn't page_mapped and dirty/writeback, the page
482 * could reclaim asap using PG_reclaim.
483 *
484 * 1. active, mapped page -> none
485 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
486 * 3. inactive, mapped page -> none
487 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
488 * 5. inactive, clean -> inactive, tail
489 * 6. Others -> none
490 *
491 * In 4, why it moves inactive's head, the VM expects the page would
492 * be write it out by flusher threads as this is much more effective
493 * than the single-page writeout from reclaim.
494 */
495static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
496 void *arg)
497{
498 int lru, file;
499 bool active;
500
501 if (!PageLRU(page))
502 return;
503
504 if (PageUnevictable(page))
505 return;
506
507 /* Some processes are using the page */
508 if (page_mapped(page))
509 return;
510
511 active = PageActive(page);
512 file = page_is_file_cache(page);
513 lru = page_lru_base_type(page);
514
515 del_page_from_lru_list(page, lruvec, lru + active);
516 ClearPageActive(page);
517 ClearPageReferenced(page);
518 add_page_to_lru_list(page, lruvec, lru);
519
520 if (PageWriteback(page) || PageDirty(page)) {
521 /*
522 * PG_reclaim could be raced with end_page_writeback
523 * It can make readahead confusing. But race window
524 * is _really_ small and it's non-critical problem.
525 */
526 SetPageReclaim(page);
527 } else {
528 /*
529 * The page's writeback ends up during pagevec
530 * We moves tha page into tail of inactive.
531 */
532 list_move_tail(&page->lru, &lruvec->lists[lru]);
533 __count_vm_event(PGROTATED);
534 }
535
536 if (active)
537 __count_vm_event(PGDEACTIVATE);
538 update_page_reclaim_stat(lruvec, file, 0);
539}
540
541
542static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
543 void *arg)
544{
545 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
546 !PageSwapCache(page) && !PageUnevictable(page)) {
547 bool active = PageActive(page);
548
549 del_page_from_lru_list(page, lruvec,
550 LRU_INACTIVE_ANON + active);
551 ClearPageActive(page);
552 ClearPageReferenced(page);
553 /*
554 * lazyfree pages are clean anonymous pages. They have
555 * SwapBacked flag cleared to distinguish normal anonymous
556 * pages
557 */
558 ClearPageSwapBacked(page);
559 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
560
561 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
562 count_memcg_page_event(page, PGLAZYFREE);
563 update_page_reclaim_stat(lruvec, 1, 0);
564 }
565}
566
567/*
568 * Drain pages out of the cpu's pagevecs.
569 * Either "cpu" is the current CPU, and preemption has already been
570 * disabled; or "cpu" is being hot-unplugged, and is already dead.
571 */
572void lru_add_drain_cpu(int cpu)
573{
574 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
575
576 if (pagevec_count(pvec))
577 __pagevec_lru_add(pvec);
578
579 pvec = &per_cpu(lru_rotate_pvecs, cpu);
580 if (pagevec_count(pvec)) {
581 unsigned long flags;
582
583 /* No harm done if a racing interrupt already did this */
584 local_irq_save(flags);
585 pagevec_move_tail(pvec);
586 local_irq_restore(flags);
587 }
588
589 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
590 if (pagevec_count(pvec))
591 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
592
593 pvec = &per_cpu(lru_lazyfree_pvecs, cpu);
594 if (pagevec_count(pvec))
595 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
596
597 activate_page_drain(cpu);
598}
599
600/**
601 * deactivate_file_page - forcefully deactivate a file page
602 * @page: page to deactivate
603 *
604 * This function hints the VM that @page is a good reclaim candidate,
605 * for example if its invalidation fails due to the page being dirty
606 * or under writeback.
607 */
608void deactivate_file_page(struct page *page)
609{
610 /*
611 * In a workload with many unevictable page such as mprotect,
612 * unevictable page deactivation for accelerating reclaim is pointless.
613 */
614 if (PageUnevictable(page))
615 return;
616
617 if (likely(get_page_unless_zero(page))) {
618 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
619
620 if (!pagevec_add(pvec, page) || PageCompound(page))
621 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
622 put_cpu_var(lru_deactivate_file_pvecs);
623 }
624}
625
626/**
627 * mark_page_lazyfree - make an anon page lazyfree
628 * @page: page to deactivate
629 *
630 * mark_page_lazyfree() moves @page to the inactive file list.
631 * This is done to accelerate the reclaim of @page.
632 */
633void mark_page_lazyfree(struct page *page)
634{
635 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
636 !PageSwapCache(page) && !PageUnevictable(page)) {
637 struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs);
638
639 get_page(page);
640 if (!pagevec_add(pvec, page) || PageCompound(page))
641 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
642 put_cpu_var(lru_lazyfree_pvecs);
643 }
644}
645
646void lru_add_drain(void)
647{
648 lru_add_drain_cpu(get_cpu());
649 put_cpu();
650}
651
652#ifdef CONFIG_SMP
653
654static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
655
656static void lru_add_drain_per_cpu(struct work_struct *dummy)
657{
658 lru_add_drain();
659}
660
661/*
662 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
663 * kworkers being shut down before our page_alloc_cpu_dead callback is
664 * executed on the offlined cpu.
665 * Calling this function with cpu hotplug locks held can actually lead
666 * to obscure indirect dependencies via WQ context.
667 */
668void lru_add_drain_all(void)
669{
670 static DEFINE_MUTEX(lock);
671 static struct cpumask has_work;
672 int cpu;
673
674 /*
675 * Make sure nobody triggers this path before mm_percpu_wq is fully
676 * initialized.
677 */
678 if (WARN_ON(!mm_percpu_wq))
679 return;
680
681 mutex_lock(&lock);
682 cpumask_clear(&has_work);
683
684 for_each_online_cpu(cpu) {
685 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
686
687 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
688 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
689 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
690 pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) ||
691 need_activate_page_drain(cpu)) {
692 INIT_WORK(work, lru_add_drain_per_cpu);
693 queue_work_on(cpu, mm_percpu_wq, work);
694 cpumask_set_cpu(cpu, &has_work);
695 }
696 }
697
698 for_each_cpu(cpu, &has_work)
699 flush_work(&per_cpu(lru_add_drain_work, cpu));
700
701 mutex_unlock(&lock);
702}
703#else
704void lru_add_drain_all(void)
705{
706 lru_add_drain();
707}
708#endif
709
710/**
711 * release_pages - batched put_page()
712 * @pages: array of pages to release
713 * @nr: number of pages
714 *
715 * Decrement the reference count on all the pages in @pages. If it
716 * fell to zero, remove the page from the LRU and free it.
717 */
718void release_pages(struct page **pages, int nr)
719{
720 int i;
721 LIST_HEAD(pages_to_free);
722 struct pglist_data *locked_pgdat = NULL;
723 struct lruvec *lruvec;
724 unsigned long uninitialized_var(flags);
725 unsigned int uninitialized_var(lock_batch);
726
727 for (i = 0; i < nr; i++) {
728 struct page *page = pages[i];
729
730 /*
731 * Make sure the IRQ-safe lock-holding time does not get
732 * excessive with a continuous string of pages from the
733 * same pgdat. The lock is held only if pgdat != NULL.
734 */
735 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
736 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
737 locked_pgdat = NULL;
738 }
739
740 if (is_huge_zero_page(page))
741 continue;
742
743 /* Device public page can not be huge page */
744 if (is_device_public_page(page)) {
745 if (locked_pgdat) {
746 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
747 flags);
748 locked_pgdat = NULL;
749 }
750 put_devmap_managed_page(page);
751 continue;
752 }
753
754 page = compound_head(page);
755 if (!put_page_testzero(page))
756 continue;
757
758 if (PageCompound(page)) {
759 if (locked_pgdat) {
760 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
761 locked_pgdat = NULL;
762 }
763 __put_compound_page(page);
764 continue;
765 }
766
767 if (PageLRU(page)) {
768 struct pglist_data *pgdat = page_pgdat(page);
769
770 if (pgdat != locked_pgdat) {
771 if (locked_pgdat)
772 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
773 flags);
774 lock_batch = 0;
775 locked_pgdat = pgdat;
776 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
777 }
778
779 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
780 VM_BUG_ON_PAGE(!PageLRU(page), page);
781 __ClearPageLRU(page);
782 del_page_from_lru_list(page, lruvec, page_off_lru(page));
783 }
784
785 /* Clear Active bit in case of parallel mark_page_accessed */
786 __ClearPageActive(page);
787 __ClearPageWaiters(page);
788
789 list_add(&page->lru, &pages_to_free);
790 }
791 if (locked_pgdat)
792 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
793
794 mem_cgroup_uncharge_list(&pages_to_free);
795 free_unref_page_list(&pages_to_free);
796}
797EXPORT_SYMBOL(release_pages);
798
799/*
800 * The pages which we're about to release may be in the deferred lru-addition
801 * queues. That would prevent them from really being freed right now. That's
802 * OK from a correctness point of view but is inefficient - those pages may be
803 * cache-warm and we want to give them back to the page allocator ASAP.
804 *
805 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
806 * and __pagevec_lru_add_active() call release_pages() directly to avoid
807 * mutual recursion.
808 */
809void __pagevec_release(struct pagevec *pvec)
810{
811 if (!pvec->percpu_pvec_drained) {
812 lru_add_drain();
813 pvec->percpu_pvec_drained = true;
814 }
815 release_pages(pvec->pages, pagevec_count(pvec));
816 pagevec_reinit(pvec);
817}
818EXPORT_SYMBOL(__pagevec_release);
819
820#ifdef CONFIG_TRANSPARENT_HUGEPAGE
821/* used by __split_huge_page_refcount() */
822void lru_add_page_tail(struct page *page, struct page *page_tail,
823 struct lruvec *lruvec, struct list_head *list)
824{
825 const int file = 0;
826
827 VM_BUG_ON_PAGE(!PageHead(page), page);
828 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
829 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
830 lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
831
832 if (!list)
833 SetPageLRU(page_tail);
834
835 if (likely(PageLRU(page)))
836 list_add_tail(&page_tail->lru, &page->lru);
837 else if (list) {
838 /* page reclaim is reclaiming a huge page */
839 get_page(page_tail);
840 list_add_tail(&page_tail->lru, list);
841 } else {
842 struct list_head *list_head;
843 /*
844 * Head page has not yet been counted, as an hpage,
845 * so we must account for each subpage individually.
846 *
847 * Use the standard add function to put page_tail on the list,
848 * but then correct its position so they all end up in order.
849 */
850 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
851 list_head = page_tail->lru.prev;
852 list_move_tail(&page_tail->lru, list_head);
853 }
854
855 if (!PageUnevictable(page))
856 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
857}
858#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
859
860static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
861 void *arg)
862{
863 enum lru_list lru;
864 int was_unevictable = TestClearPageUnevictable(page);
865
866 VM_BUG_ON_PAGE(PageLRU(page), page);
867
868 SetPageLRU(page);
869 /*
870 * Page becomes evictable in two ways:
871 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
872 * 2) Before acquiring LRU lock to put the page to correct LRU and then
873 * a) do PageLRU check with lock [check_move_unevictable_pages]
874 * b) do PageLRU check before lock [clear_page_mlock]
875 *
876 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
877 * following strict ordering:
878 *
879 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
880 *
881 * SetPageLRU() TestClearPageMlocked()
882 * smp_mb() // explicit ordering // above provides strict
883 * // ordering
884 * PageMlocked() PageLRU()
885 *
886 *
887 * if '#1' does not observe setting of PG_lru by '#0' and fails
888 * isolation, the explicit barrier will make sure that page_evictable
889 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
890 * can be reordered after PageMlocked check and can make '#1' to fail
891 * the isolation of the page whose Mlocked bit is cleared (#0 is also
892 * looking at the same page) and the evictable page will be stranded
893 * in an unevictable LRU.
894 */
895 smp_mb();
896
897 if (page_evictable(page)) {
898 lru = page_lru(page);
899 update_page_reclaim_stat(lruvec, page_is_file_cache(page),
900 PageActive(page));
901 if (was_unevictable)
902 count_vm_event(UNEVICTABLE_PGRESCUED);
903 } else {
904 lru = LRU_UNEVICTABLE;
905 ClearPageActive(page);
906 SetPageUnevictable(page);
907 if (!was_unevictable)
908 count_vm_event(UNEVICTABLE_PGCULLED);
909 }
910
911 add_page_to_lru_list(page, lruvec, lru);
912 trace_mm_lru_insertion(page, lru);
913}
914
915/*
916 * Add the passed pages to the LRU, then drop the caller's refcount
917 * on them. Reinitialises the caller's pagevec.
918 */
919void __pagevec_lru_add(struct pagevec *pvec)
920{
921 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
922}
923EXPORT_SYMBOL(__pagevec_lru_add);
924
925/**
926 * pagevec_lookup_entries - gang pagecache lookup
927 * @pvec: Where the resulting entries are placed
928 * @mapping: The address_space to search
929 * @start: The starting entry index
930 * @nr_entries: The maximum number of pages
931 * @indices: The cache indices corresponding to the entries in @pvec
932 *
933 * pagevec_lookup_entries() will search for and return a group of up
934 * to @nr_pages pages and shadow entries in the mapping. All
935 * entries are placed in @pvec. pagevec_lookup_entries() takes a
936 * reference against actual pages in @pvec.
937 *
938 * The search returns a group of mapping-contiguous entries with
939 * ascending indexes. There may be holes in the indices due to
940 * not-present entries.
941 *
942 * pagevec_lookup_entries() returns the number of entries which were
943 * found.
944 */
945unsigned pagevec_lookup_entries(struct pagevec *pvec,
946 struct address_space *mapping,
947 pgoff_t start, unsigned nr_entries,
948 pgoff_t *indices)
949{
950 pvec->nr = find_get_entries(mapping, start, nr_entries,
951 pvec->pages, indices);
952 return pagevec_count(pvec);
953}
954
955/**
956 * pagevec_remove_exceptionals - pagevec exceptionals pruning
957 * @pvec: The pagevec to prune
958 *
959 * pagevec_lookup_entries() fills both pages and exceptional radix
960 * tree entries into the pagevec. This function prunes all
961 * exceptionals from @pvec without leaving holes, so that it can be
962 * passed on to page-only pagevec operations.
963 */
964void pagevec_remove_exceptionals(struct pagevec *pvec)
965{
966 int i, j;
967
968 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
969 struct page *page = pvec->pages[i];
970 if (!xa_is_value(page))
971 pvec->pages[j++] = page;
972 }
973 pvec->nr = j;
974}
975
976/**
977 * pagevec_lookup_range - gang pagecache lookup
978 * @pvec: Where the resulting pages are placed
979 * @mapping: The address_space to search
980 * @start: The starting page index
981 * @end: The final page index
982 *
983 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
984 * pages in the mapping starting from index @start and upto index @end
985 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
986 * reference against the pages in @pvec.
987 *
988 * The search returns a group of mapping-contiguous pages with ascending
989 * indexes. There may be holes in the indices due to not-present pages. We
990 * also update @start to index the next page for the traversal.
991 *
992 * pagevec_lookup_range() returns the number of pages which were found. If this
993 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
994 * reached.
995 */
996unsigned pagevec_lookup_range(struct pagevec *pvec,
997 struct address_space *mapping, pgoff_t *start, pgoff_t end)
998{
999 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1000 pvec->pages);
1001 return pagevec_count(pvec);
1002}
1003EXPORT_SYMBOL(pagevec_lookup_range);
1004
1005unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1006 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1007 xa_mark_t tag)
1008{
1009 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1010 PAGEVEC_SIZE, pvec->pages);
1011 return pagevec_count(pvec);
1012}
1013EXPORT_SYMBOL(pagevec_lookup_range_tag);
1014
1015unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1016 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1017 xa_mark_t tag, unsigned max_pages)
1018{
1019 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1020 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1021 return pagevec_count(pvec);
1022}
1023EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1024/*
1025 * Perform any setup for the swap system
1026 */
1027void __init swap_setup(void)
1028{
1029 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1030
1031 /* Use a smaller cluster for small-memory machines */
1032 if (megs < 16)
1033 page_cluster = 2;
1034 else
1035 page_cluster = 3;
1036 /*
1037 * Right now other parts of the system means that we
1038 * _really_ don't want to cluster much more
1039 */
1040}