]>
Commit | Line | Data |
---|---|---|
1 | // SPDX-License-Identifier: GPL-2.0-only | |
2 | /* | |
3 | * Copyright (C) 1993 Linus Torvalds | |
4 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
5 | * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 | |
6 | * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 | |
7 | * Numa awareness, Christoph Lameter, SGI, June 2005 | |
8 | * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 | |
9 | */ | |
10 | ||
11 | #include <linux/vmalloc.h> | |
12 | #include <linux/mm.h> | |
13 | #include <linux/module.h> | |
14 | #include <linux/highmem.h> | |
15 | #include <linux/sched/signal.h> | |
16 | #include <linux/slab.h> | |
17 | #include <linux/spinlock.h> | |
18 | #include <linux/interrupt.h> | |
19 | #include <linux/proc_fs.h> | |
20 | #include <linux/seq_file.h> | |
21 | #include <linux/set_memory.h> | |
22 | #include <linux/debugobjects.h> | |
23 | #include <linux/kallsyms.h> | |
24 | #include <linux/list.h> | |
25 | #include <linux/notifier.h> | |
26 | #include <linux/rbtree.h> | |
27 | #include <linux/xarray.h> | |
28 | #include <linux/io.h> | |
29 | #include <linux/rcupdate.h> | |
30 | #include <linux/pfn.h> | |
31 | #include <linux/kmemleak.h> | |
32 | #include <linux/atomic.h> | |
33 | #include <linux/compiler.h> | |
34 | #include <linux/memcontrol.h> | |
35 | #include <linux/llist.h> | |
36 | #include <linux/uio.h> | |
37 | #include <linux/bitops.h> | |
38 | #include <linux/rbtree_augmented.h> | |
39 | #include <linux/overflow.h> | |
40 | #include <linux/pgtable.h> | |
41 | #include <linux/hugetlb.h> | |
42 | #include <linux/sched/mm.h> | |
43 | #include <asm/tlbflush.h> | |
44 | #include <asm/shmparam.h> | |
45 | #include <linux/page_owner.h> | |
46 | ||
47 | #define CREATE_TRACE_POINTS | |
48 | #include <trace/events/vmalloc.h> | |
49 | ||
50 | #include "internal.h" | |
51 | #include "pgalloc-track.h" | |
52 | ||
53 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP | |
54 | static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; | |
55 | ||
56 | static int __init set_nohugeiomap(char *str) | |
57 | { | |
58 | ioremap_max_page_shift = PAGE_SHIFT; | |
59 | return 0; | |
60 | } | |
61 | early_param("nohugeiomap", set_nohugeiomap); | |
62 | #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ | |
63 | static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; | |
64 | #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ | |
65 | ||
66 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC | |
67 | static bool __ro_after_init vmap_allow_huge = true; | |
68 | ||
69 | static int __init set_nohugevmalloc(char *str) | |
70 | { | |
71 | vmap_allow_huge = false; | |
72 | return 0; | |
73 | } | |
74 | early_param("nohugevmalloc", set_nohugevmalloc); | |
75 | #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ | |
76 | static const bool vmap_allow_huge = false; | |
77 | #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ | |
78 | ||
79 | bool is_vmalloc_addr(const void *x) | |
80 | { | |
81 | unsigned long addr = (unsigned long)kasan_reset_tag(x); | |
82 | ||
83 | return addr >= VMALLOC_START && addr < VMALLOC_END; | |
84 | } | |
85 | EXPORT_SYMBOL(is_vmalloc_addr); | |
86 | ||
87 | struct vfree_deferred { | |
88 | struct llist_head list; | |
89 | struct work_struct wq; | |
90 | }; | |
91 | static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); | |
92 | ||
93 | /*** Page table manipulation functions ***/ | |
94 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, | |
95 | phys_addr_t phys_addr, pgprot_t prot, | |
96 | unsigned int max_page_shift, pgtbl_mod_mask *mask) | |
97 | { | |
98 | pte_t *pte; | |
99 | u64 pfn; | |
100 | struct page *page; | |
101 | unsigned long size = PAGE_SIZE; | |
102 | ||
103 | pfn = phys_addr >> PAGE_SHIFT; | |
104 | pte = pte_alloc_kernel_track(pmd, addr, mask); | |
105 | if (!pte) | |
106 | return -ENOMEM; | |
107 | ||
108 | arch_enter_lazy_mmu_mode(); | |
109 | ||
110 | do { | |
111 | if (unlikely(!pte_none(ptep_get(pte)))) { | |
112 | if (pfn_valid(pfn)) { | |
113 | page = pfn_to_page(pfn); | |
114 | dump_page(page, "remapping already mapped page"); | |
115 | } | |
116 | BUG(); | |
117 | } | |
118 | ||
119 | #ifdef CONFIG_HUGETLB_PAGE | |
120 | size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); | |
121 | if (size != PAGE_SIZE) { | |
122 | pte_t entry = pfn_pte(pfn, prot); | |
123 | ||
124 | entry = arch_make_huge_pte(entry, ilog2(size), 0); | |
125 | set_huge_pte_at(&init_mm, addr, pte, entry, size); | |
126 | pfn += PFN_DOWN(size); | |
127 | continue; | |
128 | } | |
129 | #endif | |
130 | set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); | |
131 | pfn++; | |
132 | } while (pte += PFN_DOWN(size), addr += size, addr != end); | |
133 | ||
134 | arch_leave_lazy_mmu_mode(); | |
135 | *mask |= PGTBL_PTE_MODIFIED; | |
136 | return 0; | |
137 | } | |
138 | ||
139 | static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, | |
140 | phys_addr_t phys_addr, pgprot_t prot, | |
141 | unsigned int max_page_shift) | |
142 | { | |
143 | if (max_page_shift < PMD_SHIFT) | |
144 | return 0; | |
145 | ||
146 | if (!arch_vmap_pmd_supported(prot)) | |
147 | return 0; | |
148 | ||
149 | if ((end - addr) != PMD_SIZE) | |
150 | return 0; | |
151 | ||
152 | if (!IS_ALIGNED(addr, PMD_SIZE)) | |
153 | return 0; | |
154 | ||
155 | if (!IS_ALIGNED(phys_addr, PMD_SIZE)) | |
156 | return 0; | |
157 | ||
158 | if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) | |
159 | return 0; | |
160 | ||
161 | return pmd_set_huge(pmd, phys_addr, prot); | |
162 | } | |
163 | ||
164 | static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, | |
165 | phys_addr_t phys_addr, pgprot_t prot, | |
166 | unsigned int max_page_shift, pgtbl_mod_mask *mask) | |
167 | { | |
168 | pmd_t *pmd; | |
169 | unsigned long next; | |
170 | ||
171 | pmd = pmd_alloc_track(&init_mm, pud, addr, mask); | |
172 | if (!pmd) | |
173 | return -ENOMEM; | |
174 | do { | |
175 | next = pmd_addr_end(addr, end); | |
176 | ||
177 | if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, | |
178 | max_page_shift)) { | |
179 | *mask |= PGTBL_PMD_MODIFIED; | |
180 | continue; | |
181 | } | |
182 | ||
183 | if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) | |
184 | return -ENOMEM; | |
185 | } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); | |
186 | return 0; | |
187 | } | |
188 | ||
189 | static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, | |
190 | phys_addr_t phys_addr, pgprot_t prot, | |
191 | unsigned int max_page_shift) | |
192 | { | |
193 | if (max_page_shift < PUD_SHIFT) | |
194 | return 0; | |
195 | ||
196 | if (!arch_vmap_pud_supported(prot)) | |
197 | return 0; | |
198 | ||
199 | if ((end - addr) != PUD_SIZE) | |
200 | return 0; | |
201 | ||
202 | if (!IS_ALIGNED(addr, PUD_SIZE)) | |
203 | return 0; | |
204 | ||
205 | if (!IS_ALIGNED(phys_addr, PUD_SIZE)) | |
206 | return 0; | |
207 | ||
208 | if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) | |
209 | return 0; | |
210 | ||
211 | return pud_set_huge(pud, phys_addr, prot); | |
212 | } | |
213 | ||
214 | static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, | |
215 | phys_addr_t phys_addr, pgprot_t prot, | |
216 | unsigned int max_page_shift, pgtbl_mod_mask *mask) | |
217 | { | |
218 | pud_t *pud; | |
219 | unsigned long next; | |
220 | ||
221 | pud = pud_alloc_track(&init_mm, p4d, addr, mask); | |
222 | if (!pud) | |
223 | return -ENOMEM; | |
224 | do { | |
225 | next = pud_addr_end(addr, end); | |
226 | ||
227 | if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, | |
228 | max_page_shift)) { | |
229 | *mask |= PGTBL_PUD_MODIFIED; | |
230 | continue; | |
231 | } | |
232 | ||
233 | if (vmap_pmd_range(pud, addr, next, phys_addr, prot, | |
234 | max_page_shift, mask)) | |
235 | return -ENOMEM; | |
236 | } while (pud++, phys_addr += (next - addr), addr = next, addr != end); | |
237 | return 0; | |
238 | } | |
239 | ||
240 | static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, | |
241 | phys_addr_t phys_addr, pgprot_t prot, | |
242 | unsigned int max_page_shift) | |
243 | { | |
244 | if (max_page_shift < P4D_SHIFT) | |
245 | return 0; | |
246 | ||
247 | if (!arch_vmap_p4d_supported(prot)) | |
248 | return 0; | |
249 | ||
250 | if ((end - addr) != P4D_SIZE) | |
251 | return 0; | |
252 | ||
253 | if (!IS_ALIGNED(addr, P4D_SIZE)) | |
254 | return 0; | |
255 | ||
256 | if (!IS_ALIGNED(phys_addr, P4D_SIZE)) | |
257 | return 0; | |
258 | ||
259 | if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) | |
260 | return 0; | |
261 | ||
262 | return p4d_set_huge(p4d, phys_addr, prot); | |
263 | } | |
264 | ||
265 | static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, | |
266 | phys_addr_t phys_addr, pgprot_t prot, | |
267 | unsigned int max_page_shift, pgtbl_mod_mask *mask) | |
268 | { | |
269 | p4d_t *p4d; | |
270 | unsigned long next; | |
271 | ||
272 | p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); | |
273 | if (!p4d) | |
274 | return -ENOMEM; | |
275 | do { | |
276 | next = p4d_addr_end(addr, end); | |
277 | ||
278 | if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, | |
279 | max_page_shift)) { | |
280 | *mask |= PGTBL_P4D_MODIFIED; | |
281 | continue; | |
282 | } | |
283 | ||
284 | if (vmap_pud_range(p4d, addr, next, phys_addr, prot, | |
285 | max_page_shift, mask)) | |
286 | return -ENOMEM; | |
287 | } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); | |
288 | return 0; | |
289 | } | |
290 | ||
291 | static int vmap_range_noflush(unsigned long addr, unsigned long end, | |
292 | phys_addr_t phys_addr, pgprot_t prot, | |
293 | unsigned int max_page_shift) | |
294 | { | |
295 | pgd_t *pgd; | |
296 | unsigned long start; | |
297 | unsigned long next; | |
298 | int err; | |
299 | pgtbl_mod_mask mask = 0; | |
300 | ||
301 | might_sleep(); | |
302 | BUG_ON(addr >= end); | |
303 | ||
304 | start = addr; | |
305 | pgd = pgd_offset_k(addr); | |
306 | do { | |
307 | next = pgd_addr_end(addr, end); | |
308 | err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, | |
309 | max_page_shift, &mask); | |
310 | if (err) | |
311 | break; | |
312 | } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); | |
313 | ||
314 | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) | |
315 | arch_sync_kernel_mappings(start, end); | |
316 | ||
317 | return err; | |
318 | } | |
319 | ||
320 | int vmap_page_range(unsigned long addr, unsigned long end, | |
321 | phys_addr_t phys_addr, pgprot_t prot) | |
322 | { | |
323 | int err; | |
324 | ||
325 | err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), | |
326 | ioremap_max_page_shift); | |
327 | flush_cache_vmap(addr, end); | |
328 | if (!err) | |
329 | err = kmsan_ioremap_page_range(addr, end, phys_addr, prot, | |
330 | ioremap_max_page_shift); | |
331 | return err; | |
332 | } | |
333 | ||
334 | int ioremap_page_range(unsigned long addr, unsigned long end, | |
335 | phys_addr_t phys_addr, pgprot_t prot) | |
336 | { | |
337 | struct vm_struct *area; | |
338 | ||
339 | area = find_vm_area((void *)addr); | |
340 | if (!area || !(area->flags & VM_IOREMAP)) { | |
341 | WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr); | |
342 | return -EINVAL; | |
343 | } | |
344 | if (addr != (unsigned long)area->addr || | |
345 | (void *)end != area->addr + get_vm_area_size(area)) { | |
346 | WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n", | |
347 | addr, end, (long)area->addr, | |
348 | (long)area->addr + get_vm_area_size(area)); | |
349 | return -ERANGE; | |
350 | } | |
351 | return vmap_page_range(addr, end, phys_addr, prot); | |
352 | } | |
353 | ||
354 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, | |
355 | pgtbl_mod_mask *mask) | |
356 | { | |
357 | pte_t *pte; | |
358 | pte_t ptent; | |
359 | unsigned long size = PAGE_SIZE; | |
360 | ||
361 | pte = pte_offset_kernel(pmd, addr); | |
362 | arch_enter_lazy_mmu_mode(); | |
363 | ||
364 | do { | |
365 | #ifdef CONFIG_HUGETLB_PAGE | |
366 | size = arch_vmap_pte_range_unmap_size(addr, pte); | |
367 | if (size != PAGE_SIZE) { | |
368 | if (WARN_ON(!IS_ALIGNED(addr, size))) { | |
369 | addr = ALIGN_DOWN(addr, size); | |
370 | pte = PTR_ALIGN_DOWN(pte, sizeof(*pte) * (size >> PAGE_SHIFT)); | |
371 | } | |
372 | ptent = huge_ptep_get_and_clear(&init_mm, addr, pte, size); | |
373 | if (WARN_ON(end - addr < size)) | |
374 | size = end - addr; | |
375 | } else | |
376 | #endif | |
377 | ptent = ptep_get_and_clear(&init_mm, addr, pte); | |
378 | WARN_ON(!pte_none(ptent) && !pte_present(ptent)); | |
379 | } while (pte += (size >> PAGE_SHIFT), addr += size, addr != end); | |
380 | ||
381 | arch_leave_lazy_mmu_mode(); | |
382 | *mask |= PGTBL_PTE_MODIFIED; | |
383 | } | |
384 | ||
385 | static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, | |
386 | pgtbl_mod_mask *mask) | |
387 | { | |
388 | pmd_t *pmd; | |
389 | unsigned long next; | |
390 | int cleared; | |
391 | ||
392 | pmd = pmd_offset(pud, addr); | |
393 | do { | |
394 | next = pmd_addr_end(addr, end); | |
395 | ||
396 | cleared = pmd_clear_huge(pmd); | |
397 | if (cleared || pmd_bad(*pmd)) | |
398 | *mask |= PGTBL_PMD_MODIFIED; | |
399 | ||
400 | if (cleared) { | |
401 | WARN_ON(next - addr < PMD_SIZE); | |
402 | continue; | |
403 | } | |
404 | if (pmd_none_or_clear_bad(pmd)) | |
405 | continue; | |
406 | vunmap_pte_range(pmd, addr, next, mask); | |
407 | ||
408 | cond_resched(); | |
409 | } while (pmd++, addr = next, addr != end); | |
410 | } | |
411 | ||
412 | static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, | |
413 | pgtbl_mod_mask *mask) | |
414 | { | |
415 | pud_t *pud; | |
416 | unsigned long next; | |
417 | int cleared; | |
418 | ||
419 | pud = pud_offset(p4d, addr); | |
420 | do { | |
421 | next = pud_addr_end(addr, end); | |
422 | ||
423 | cleared = pud_clear_huge(pud); | |
424 | if (cleared || pud_bad(*pud)) | |
425 | *mask |= PGTBL_PUD_MODIFIED; | |
426 | ||
427 | if (cleared) { | |
428 | WARN_ON(next - addr < PUD_SIZE); | |
429 | continue; | |
430 | } | |
431 | if (pud_none_or_clear_bad(pud)) | |
432 | continue; | |
433 | vunmap_pmd_range(pud, addr, next, mask); | |
434 | } while (pud++, addr = next, addr != end); | |
435 | } | |
436 | ||
437 | static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, | |
438 | pgtbl_mod_mask *mask) | |
439 | { | |
440 | p4d_t *p4d; | |
441 | unsigned long next; | |
442 | ||
443 | p4d = p4d_offset(pgd, addr); | |
444 | do { | |
445 | next = p4d_addr_end(addr, end); | |
446 | ||
447 | p4d_clear_huge(p4d); | |
448 | if (p4d_bad(*p4d)) | |
449 | *mask |= PGTBL_P4D_MODIFIED; | |
450 | ||
451 | if (p4d_none_or_clear_bad(p4d)) | |
452 | continue; | |
453 | vunmap_pud_range(p4d, addr, next, mask); | |
454 | } while (p4d++, addr = next, addr != end); | |
455 | } | |
456 | ||
457 | /* | |
458 | * vunmap_range_noflush is similar to vunmap_range, but does not | |
459 | * flush caches or TLBs. | |
460 | * | |
461 | * The caller is responsible for calling flush_cache_vmap() before calling | |
462 | * this function, and flush_tlb_kernel_range after it has returned | |
463 | * successfully (and before the addresses are expected to cause a page fault | |
464 | * or be re-mapped for something else, if TLB flushes are being delayed or | |
465 | * coalesced). | |
466 | * | |
467 | * This is an internal function only. Do not use outside mm/. | |
468 | */ | |
469 | void __vunmap_range_noflush(unsigned long start, unsigned long end) | |
470 | { | |
471 | unsigned long next; | |
472 | pgd_t *pgd; | |
473 | unsigned long addr = start; | |
474 | pgtbl_mod_mask mask = 0; | |
475 | ||
476 | BUG_ON(addr >= end); | |
477 | pgd = pgd_offset_k(addr); | |
478 | do { | |
479 | next = pgd_addr_end(addr, end); | |
480 | if (pgd_bad(*pgd)) | |
481 | mask |= PGTBL_PGD_MODIFIED; | |
482 | if (pgd_none_or_clear_bad(pgd)) | |
483 | continue; | |
484 | vunmap_p4d_range(pgd, addr, next, &mask); | |
485 | } while (pgd++, addr = next, addr != end); | |
486 | ||
487 | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) | |
488 | arch_sync_kernel_mappings(start, end); | |
489 | } | |
490 | ||
491 | void vunmap_range_noflush(unsigned long start, unsigned long end) | |
492 | { | |
493 | kmsan_vunmap_range_noflush(start, end); | |
494 | __vunmap_range_noflush(start, end); | |
495 | } | |
496 | ||
497 | /** | |
498 | * vunmap_range - unmap kernel virtual addresses | |
499 | * @addr: start of the VM area to unmap | |
500 | * @end: end of the VM area to unmap (non-inclusive) | |
501 | * | |
502 | * Clears any present PTEs in the virtual address range, flushes TLBs and | |
503 | * caches. Any subsequent access to the address before it has been re-mapped | |
504 | * is a kernel bug. | |
505 | */ | |
506 | void vunmap_range(unsigned long addr, unsigned long end) | |
507 | { | |
508 | flush_cache_vunmap(addr, end); | |
509 | vunmap_range_noflush(addr, end); | |
510 | flush_tlb_kernel_range(addr, end); | |
511 | } | |
512 | ||
513 | static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, | |
514 | unsigned long end, pgprot_t prot, struct page **pages, int *nr, | |
515 | pgtbl_mod_mask *mask) | |
516 | { | |
517 | pte_t *pte; | |
518 | ||
519 | /* | |
520 | * nr is a running index into the array which helps higher level | |
521 | * callers keep track of where we're up to. | |
522 | */ | |
523 | ||
524 | pte = pte_alloc_kernel_track(pmd, addr, mask); | |
525 | if (!pte) | |
526 | return -ENOMEM; | |
527 | ||
528 | arch_enter_lazy_mmu_mode(); | |
529 | ||
530 | do { | |
531 | struct page *page = pages[*nr]; | |
532 | ||
533 | if (WARN_ON(!pte_none(ptep_get(pte)))) | |
534 | return -EBUSY; | |
535 | if (WARN_ON(!page)) | |
536 | return -ENOMEM; | |
537 | if (WARN_ON(!pfn_valid(page_to_pfn(page)))) | |
538 | return -EINVAL; | |
539 | ||
540 | set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); | |
541 | (*nr)++; | |
542 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
543 | ||
544 | arch_leave_lazy_mmu_mode(); | |
545 | *mask |= PGTBL_PTE_MODIFIED; | |
546 | return 0; | |
547 | } | |
548 | ||
549 | static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, | |
550 | unsigned long end, pgprot_t prot, struct page **pages, int *nr, | |
551 | pgtbl_mod_mask *mask) | |
552 | { | |
553 | pmd_t *pmd; | |
554 | unsigned long next; | |
555 | ||
556 | pmd = pmd_alloc_track(&init_mm, pud, addr, mask); | |
557 | if (!pmd) | |
558 | return -ENOMEM; | |
559 | do { | |
560 | next = pmd_addr_end(addr, end); | |
561 | if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) | |
562 | return -ENOMEM; | |
563 | } while (pmd++, addr = next, addr != end); | |
564 | return 0; | |
565 | } | |
566 | ||
567 | static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, | |
568 | unsigned long end, pgprot_t prot, struct page **pages, int *nr, | |
569 | pgtbl_mod_mask *mask) | |
570 | { | |
571 | pud_t *pud; | |
572 | unsigned long next; | |
573 | ||
574 | pud = pud_alloc_track(&init_mm, p4d, addr, mask); | |
575 | if (!pud) | |
576 | return -ENOMEM; | |
577 | do { | |
578 | next = pud_addr_end(addr, end); | |
579 | if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) | |
580 | return -ENOMEM; | |
581 | } while (pud++, addr = next, addr != end); | |
582 | return 0; | |
583 | } | |
584 | ||
585 | static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, | |
586 | unsigned long end, pgprot_t prot, struct page **pages, int *nr, | |
587 | pgtbl_mod_mask *mask) | |
588 | { | |
589 | p4d_t *p4d; | |
590 | unsigned long next; | |
591 | ||
592 | p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); | |
593 | if (!p4d) | |
594 | return -ENOMEM; | |
595 | do { | |
596 | next = p4d_addr_end(addr, end); | |
597 | if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) | |
598 | return -ENOMEM; | |
599 | } while (p4d++, addr = next, addr != end); | |
600 | return 0; | |
601 | } | |
602 | ||
603 | static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, | |
604 | pgprot_t prot, struct page **pages) | |
605 | { | |
606 | unsigned long start = addr; | |
607 | pgd_t *pgd; | |
608 | unsigned long next; | |
609 | int err = 0; | |
610 | int nr = 0; | |
611 | pgtbl_mod_mask mask = 0; | |
612 | ||
613 | BUG_ON(addr >= end); | |
614 | pgd = pgd_offset_k(addr); | |
615 | do { | |
616 | next = pgd_addr_end(addr, end); | |
617 | if (pgd_bad(*pgd)) | |
618 | mask |= PGTBL_PGD_MODIFIED; | |
619 | err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); | |
620 | if (err) | |
621 | break; | |
622 | } while (pgd++, addr = next, addr != end); | |
623 | ||
624 | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) | |
625 | arch_sync_kernel_mappings(start, end); | |
626 | ||
627 | return err; | |
628 | } | |
629 | ||
630 | /* | |
631 | * vmap_pages_range_noflush is similar to vmap_pages_range, but does not | |
632 | * flush caches. | |
633 | * | |
634 | * The caller is responsible for calling flush_cache_vmap() after this | |
635 | * function returns successfully and before the addresses are accessed. | |
636 | * | |
637 | * This is an internal function only. Do not use outside mm/. | |
638 | */ | |
639 | int __vmap_pages_range_noflush(unsigned long addr, unsigned long end, | |
640 | pgprot_t prot, struct page **pages, unsigned int page_shift) | |
641 | { | |
642 | unsigned int i, nr = (end - addr) >> PAGE_SHIFT; | |
643 | ||
644 | WARN_ON(page_shift < PAGE_SHIFT); | |
645 | ||
646 | if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || | |
647 | page_shift == PAGE_SHIFT) | |
648 | return vmap_small_pages_range_noflush(addr, end, prot, pages); | |
649 | ||
650 | for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { | |
651 | int err; | |
652 | ||
653 | err = vmap_range_noflush(addr, addr + (1UL << page_shift), | |
654 | page_to_phys(pages[i]), prot, | |
655 | page_shift); | |
656 | if (err) | |
657 | return err; | |
658 | ||
659 | addr += 1UL << page_shift; | |
660 | } | |
661 | ||
662 | return 0; | |
663 | } | |
664 | ||
665 | int vmap_pages_range_noflush(unsigned long addr, unsigned long end, | |
666 | pgprot_t prot, struct page **pages, unsigned int page_shift) | |
667 | { | |
668 | int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages, | |
669 | page_shift); | |
670 | ||
671 | if (ret) | |
672 | return ret; | |
673 | return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift); | |
674 | } | |
675 | ||
676 | /** | |
677 | * vmap_pages_range - map pages to a kernel virtual address | |
678 | * @addr: start of the VM area to map | |
679 | * @end: end of the VM area to map (non-inclusive) | |
680 | * @prot: page protection flags to use | |
681 | * @pages: pages to map (always PAGE_SIZE pages) | |
682 | * @page_shift: maximum shift that the pages may be mapped with, @pages must | |
683 | * be aligned and contiguous up to at least this shift. | |
684 | * | |
685 | * RETURNS: | |
686 | * 0 on success, -errno on failure. | |
687 | */ | |
688 | int vmap_pages_range(unsigned long addr, unsigned long end, | |
689 | pgprot_t prot, struct page **pages, unsigned int page_shift) | |
690 | { | |
691 | int err; | |
692 | ||
693 | err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); | |
694 | flush_cache_vmap(addr, end); | |
695 | return err; | |
696 | } | |
697 | ||
698 | static int check_sparse_vm_area(struct vm_struct *area, unsigned long start, | |
699 | unsigned long end) | |
700 | { | |
701 | might_sleep(); | |
702 | if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS)) | |
703 | return -EINVAL; | |
704 | if (WARN_ON_ONCE(area->flags & VM_NO_GUARD)) | |
705 | return -EINVAL; | |
706 | if (WARN_ON_ONCE(!(area->flags & VM_SPARSE))) | |
707 | return -EINVAL; | |
708 | if ((end - start) >> PAGE_SHIFT > totalram_pages()) | |
709 | return -E2BIG; | |
710 | if (start < (unsigned long)area->addr || | |
711 | (void *)end > area->addr + get_vm_area_size(area)) | |
712 | return -ERANGE; | |
713 | return 0; | |
714 | } | |
715 | ||
716 | /** | |
717 | * vm_area_map_pages - map pages inside given sparse vm_area | |
718 | * @area: vm_area | |
719 | * @start: start address inside vm_area | |
720 | * @end: end address inside vm_area | |
721 | * @pages: pages to map (always PAGE_SIZE pages) | |
722 | */ | |
723 | int vm_area_map_pages(struct vm_struct *area, unsigned long start, | |
724 | unsigned long end, struct page **pages) | |
725 | { | |
726 | int err; | |
727 | ||
728 | err = check_sparse_vm_area(area, start, end); | |
729 | if (err) | |
730 | return err; | |
731 | ||
732 | return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT); | |
733 | } | |
734 | ||
735 | /** | |
736 | * vm_area_unmap_pages - unmap pages inside given sparse vm_area | |
737 | * @area: vm_area | |
738 | * @start: start address inside vm_area | |
739 | * @end: end address inside vm_area | |
740 | */ | |
741 | void vm_area_unmap_pages(struct vm_struct *area, unsigned long start, | |
742 | unsigned long end) | |
743 | { | |
744 | if (check_sparse_vm_area(area, start, end)) | |
745 | return; | |
746 | ||
747 | vunmap_range(start, end); | |
748 | } | |
749 | ||
750 | int is_vmalloc_or_module_addr(const void *x) | |
751 | { | |
752 | /* | |
753 | * ARM, x86-64 and sparc64 put modules in a special place, | |
754 | * and fall back on vmalloc() if that fails. Others | |
755 | * just put it in the vmalloc space. | |
756 | */ | |
757 | #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR) | |
758 | unsigned long addr = (unsigned long)kasan_reset_tag(x); | |
759 | if (addr >= MODULES_VADDR && addr < MODULES_END) | |
760 | return 1; | |
761 | #endif | |
762 | return is_vmalloc_addr(x); | |
763 | } | |
764 | EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr); | |
765 | ||
766 | /* | |
767 | * Walk a vmap address to the struct page it maps. Huge vmap mappings will | |
768 | * return the tail page that corresponds to the base page address, which | |
769 | * matches small vmap mappings. | |
770 | */ | |
771 | struct page *vmalloc_to_page(const void *vmalloc_addr) | |
772 | { | |
773 | unsigned long addr = (unsigned long) vmalloc_addr; | |
774 | struct page *page = NULL; | |
775 | pgd_t *pgd = pgd_offset_k(addr); | |
776 | p4d_t *p4d; | |
777 | pud_t *pud; | |
778 | pmd_t *pmd; | |
779 | pte_t *ptep, pte; | |
780 | ||
781 | /* | |
782 | * XXX we might need to change this if we add VIRTUAL_BUG_ON for | |
783 | * architectures that do not vmalloc module space | |
784 | */ | |
785 | VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); | |
786 | ||
787 | if (pgd_none(*pgd)) | |
788 | return NULL; | |
789 | if (WARN_ON_ONCE(pgd_leaf(*pgd))) | |
790 | return NULL; /* XXX: no allowance for huge pgd */ | |
791 | if (WARN_ON_ONCE(pgd_bad(*pgd))) | |
792 | return NULL; | |
793 | ||
794 | p4d = p4d_offset(pgd, addr); | |
795 | if (p4d_none(*p4d)) | |
796 | return NULL; | |
797 | if (p4d_leaf(*p4d)) | |
798 | return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); | |
799 | if (WARN_ON_ONCE(p4d_bad(*p4d))) | |
800 | return NULL; | |
801 | ||
802 | pud = pud_offset(p4d, addr); | |
803 | if (pud_none(*pud)) | |
804 | return NULL; | |
805 | if (pud_leaf(*pud)) | |
806 | return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | |
807 | if (WARN_ON_ONCE(pud_bad(*pud))) | |
808 | return NULL; | |
809 | ||
810 | pmd = pmd_offset(pud, addr); | |
811 | if (pmd_none(*pmd)) | |
812 | return NULL; | |
813 | if (pmd_leaf(*pmd)) | |
814 | return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | |
815 | if (WARN_ON_ONCE(pmd_bad(*pmd))) | |
816 | return NULL; | |
817 | ||
818 | ptep = pte_offset_kernel(pmd, addr); | |
819 | pte = ptep_get(ptep); | |
820 | if (pte_present(pte)) | |
821 | page = pte_page(pte); | |
822 | ||
823 | return page; | |
824 | } | |
825 | EXPORT_SYMBOL(vmalloc_to_page); | |
826 | ||
827 | /* | |
828 | * Map a vmalloc()-space virtual address to the physical page frame number. | |
829 | */ | |
830 | unsigned long vmalloc_to_pfn(const void *vmalloc_addr) | |
831 | { | |
832 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); | |
833 | } | |
834 | EXPORT_SYMBOL(vmalloc_to_pfn); | |
835 | ||
836 | ||
837 | /*** Global kva allocator ***/ | |
838 | ||
839 | #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 | |
840 | #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 | |
841 | ||
842 | ||
843 | static DEFINE_SPINLOCK(free_vmap_area_lock); | |
844 | static bool vmap_initialized __read_mostly; | |
845 | ||
846 | /* | |
847 | * This kmem_cache is used for vmap_area objects. Instead of | |
848 | * allocating from slab we reuse an object from this cache to | |
849 | * make things faster. Especially in "no edge" splitting of | |
850 | * free block. | |
851 | */ | |
852 | static struct kmem_cache *vmap_area_cachep; | |
853 | ||
854 | /* | |
855 | * This linked list is used in pair with free_vmap_area_root. | |
856 | * It gives O(1) access to prev/next to perform fast coalescing. | |
857 | */ | |
858 | static LIST_HEAD(free_vmap_area_list); | |
859 | ||
860 | /* | |
861 | * This augment red-black tree represents the free vmap space. | |
862 | * All vmap_area objects in this tree are sorted by va->va_start | |
863 | * address. It is used for allocation and merging when a vmap | |
864 | * object is released. | |
865 | * | |
866 | * Each vmap_area node contains a maximum available free block | |
867 | * of its sub-tree, right or left. Therefore it is possible to | |
868 | * find a lowest match of free area. | |
869 | */ | |
870 | static struct rb_root free_vmap_area_root = RB_ROOT; | |
871 | ||
872 | /* | |
873 | * Preload a CPU with one object for "no edge" split case. The | |
874 | * aim is to get rid of allocations from the atomic context, thus | |
875 | * to use more permissive allocation masks. | |
876 | */ | |
877 | static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); | |
878 | ||
879 | /* | |
880 | * This structure defines a single, solid model where a list and | |
881 | * rb-tree are part of one entity protected by the lock. Nodes are | |
882 | * sorted in ascending order, thus for O(1) access to left/right | |
883 | * neighbors a list is used as well as for sequential traversal. | |
884 | */ | |
885 | struct rb_list { | |
886 | struct rb_root root; | |
887 | struct list_head head; | |
888 | spinlock_t lock; | |
889 | }; | |
890 | ||
891 | /* | |
892 | * A fast size storage contains VAs up to 1M size. A pool consists | |
893 | * of linked between each other ready to go VAs of certain sizes. | |
894 | * An index in the pool-array corresponds to number of pages + 1. | |
895 | */ | |
896 | #define MAX_VA_SIZE_PAGES 256 | |
897 | ||
898 | struct vmap_pool { | |
899 | struct list_head head; | |
900 | unsigned long len; | |
901 | }; | |
902 | ||
903 | /* | |
904 | * An effective vmap-node logic. Users make use of nodes instead | |
905 | * of a global heap. It allows to balance an access and mitigate | |
906 | * contention. | |
907 | */ | |
908 | static struct vmap_node { | |
909 | /* Simple size segregated storage. */ | |
910 | struct vmap_pool pool[MAX_VA_SIZE_PAGES]; | |
911 | spinlock_t pool_lock; | |
912 | bool skip_populate; | |
913 | ||
914 | /* Bookkeeping data of this node. */ | |
915 | struct rb_list busy; | |
916 | struct rb_list lazy; | |
917 | ||
918 | /* | |
919 | * Ready-to-free areas. | |
920 | */ | |
921 | struct list_head purge_list; | |
922 | struct work_struct purge_work; | |
923 | unsigned long nr_purged; | |
924 | } single; | |
925 | ||
926 | /* | |
927 | * Initial setup consists of one single node, i.e. a balancing | |
928 | * is fully disabled. Later on, after vmap is initialized these | |
929 | * parameters are updated based on a system capacity. | |
930 | */ | |
931 | static struct vmap_node *vmap_nodes = &single; | |
932 | static __read_mostly unsigned int nr_vmap_nodes = 1; | |
933 | static __read_mostly unsigned int vmap_zone_size = 1; | |
934 | ||
935 | /* A simple iterator over all vmap-nodes. */ | |
936 | #define for_each_vmap_node(vn) \ | |
937 | for ((vn) = &vmap_nodes[0]; \ | |
938 | (vn) < &vmap_nodes[nr_vmap_nodes]; (vn)++) | |
939 | ||
940 | static inline unsigned int | |
941 | addr_to_node_id(unsigned long addr) | |
942 | { | |
943 | return (addr / vmap_zone_size) % nr_vmap_nodes; | |
944 | } | |
945 | ||
946 | static inline struct vmap_node * | |
947 | addr_to_node(unsigned long addr) | |
948 | { | |
949 | return &vmap_nodes[addr_to_node_id(addr)]; | |
950 | } | |
951 | ||
952 | static inline struct vmap_node * | |
953 | id_to_node(unsigned int id) | |
954 | { | |
955 | return &vmap_nodes[id % nr_vmap_nodes]; | |
956 | } | |
957 | ||
958 | static inline unsigned int | |
959 | node_to_id(struct vmap_node *node) | |
960 | { | |
961 | /* Pointer arithmetic. */ | |
962 | unsigned int id = node - vmap_nodes; | |
963 | ||
964 | if (likely(id < nr_vmap_nodes)) | |
965 | return id; | |
966 | ||
967 | WARN_ONCE(1, "An address 0x%p is out-of-bounds.\n", node); | |
968 | return 0; | |
969 | } | |
970 | ||
971 | /* | |
972 | * We use the value 0 to represent "no node", that is why | |
973 | * an encoded value will be the node-id incremented by 1. | |
974 | * It is always greater then 0. A valid node_id which can | |
975 | * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id | |
976 | * is not valid 0 is returned. | |
977 | */ | |
978 | static unsigned int | |
979 | encode_vn_id(unsigned int node_id) | |
980 | { | |
981 | /* Can store U8_MAX [0:254] nodes. */ | |
982 | if (node_id < nr_vmap_nodes) | |
983 | return (node_id + 1) << BITS_PER_BYTE; | |
984 | ||
985 | /* Warn and no node encoded. */ | |
986 | WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id); | |
987 | return 0; | |
988 | } | |
989 | ||
990 | /* | |
991 | * Returns an encoded node-id, the valid range is within | |
992 | * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is | |
993 | * returned if extracted data is wrong. | |
994 | */ | |
995 | static unsigned int | |
996 | decode_vn_id(unsigned int val) | |
997 | { | |
998 | unsigned int node_id = (val >> BITS_PER_BYTE) - 1; | |
999 | ||
1000 | /* Can store U8_MAX [0:254] nodes. */ | |
1001 | if (node_id < nr_vmap_nodes) | |
1002 | return node_id; | |
1003 | ||
1004 | /* If it was _not_ zero, warn. */ | |
1005 | WARN_ONCE(node_id != UINT_MAX, | |
1006 | "Decode wrong node id (%d)\n", node_id); | |
1007 | ||
1008 | return nr_vmap_nodes; | |
1009 | } | |
1010 | ||
1011 | static bool | |
1012 | is_vn_id_valid(unsigned int node_id) | |
1013 | { | |
1014 | if (node_id < nr_vmap_nodes) | |
1015 | return true; | |
1016 | ||
1017 | return false; | |
1018 | } | |
1019 | ||
1020 | static __always_inline unsigned long | |
1021 | va_size(struct vmap_area *va) | |
1022 | { | |
1023 | return (va->va_end - va->va_start); | |
1024 | } | |
1025 | ||
1026 | static __always_inline unsigned long | |
1027 | get_subtree_max_size(struct rb_node *node) | |
1028 | { | |
1029 | struct vmap_area *va; | |
1030 | ||
1031 | va = rb_entry_safe(node, struct vmap_area, rb_node); | |
1032 | return va ? va->subtree_max_size : 0; | |
1033 | } | |
1034 | ||
1035 | RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, | |
1036 | struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) | |
1037 | ||
1038 | static void reclaim_and_purge_vmap_areas(void); | |
1039 | static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); | |
1040 | static void drain_vmap_area_work(struct work_struct *work); | |
1041 | static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); | |
1042 | ||
1043 | static __cacheline_aligned_in_smp atomic_long_t nr_vmalloc_pages; | |
1044 | static __cacheline_aligned_in_smp atomic_long_t vmap_lazy_nr; | |
1045 | ||
1046 | unsigned long vmalloc_nr_pages(void) | |
1047 | { | |
1048 | return atomic_long_read(&nr_vmalloc_pages); | |
1049 | } | |
1050 | ||
1051 | static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) | |
1052 | { | |
1053 | struct rb_node *n = root->rb_node; | |
1054 | ||
1055 | addr = (unsigned long)kasan_reset_tag((void *)addr); | |
1056 | ||
1057 | while (n) { | |
1058 | struct vmap_area *va; | |
1059 | ||
1060 | va = rb_entry(n, struct vmap_area, rb_node); | |
1061 | if (addr < va->va_start) | |
1062 | n = n->rb_left; | |
1063 | else if (addr >= va->va_end) | |
1064 | n = n->rb_right; | |
1065 | else | |
1066 | return va; | |
1067 | } | |
1068 | ||
1069 | return NULL; | |
1070 | } | |
1071 | ||
1072 | /* Look up the first VA which satisfies addr < va_end, NULL if none. */ | |
1073 | static struct vmap_area * | |
1074 | __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root) | |
1075 | { | |
1076 | struct vmap_area *va = NULL; | |
1077 | struct rb_node *n = root->rb_node; | |
1078 | ||
1079 | addr = (unsigned long)kasan_reset_tag((void *)addr); | |
1080 | ||
1081 | while (n) { | |
1082 | struct vmap_area *tmp; | |
1083 | ||
1084 | tmp = rb_entry(n, struct vmap_area, rb_node); | |
1085 | if (tmp->va_end > addr) { | |
1086 | va = tmp; | |
1087 | if (tmp->va_start <= addr) | |
1088 | break; | |
1089 | ||
1090 | n = n->rb_left; | |
1091 | } else | |
1092 | n = n->rb_right; | |
1093 | } | |
1094 | ||
1095 | return va; | |
1096 | } | |
1097 | ||
1098 | /* | |
1099 | * Returns a node where a first VA, that satisfies addr < va_end, resides. | |
1100 | * If success, a node is locked. A user is responsible to unlock it when a | |
1101 | * VA is no longer needed to be accessed. | |
1102 | * | |
1103 | * Returns NULL if nothing found. | |
1104 | */ | |
1105 | static struct vmap_node * | |
1106 | find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va) | |
1107 | { | |
1108 | unsigned long va_start_lowest; | |
1109 | struct vmap_node *vn; | |
1110 | ||
1111 | repeat: | |
1112 | va_start_lowest = 0; | |
1113 | ||
1114 | for_each_vmap_node(vn) { | |
1115 | spin_lock(&vn->busy.lock); | |
1116 | *va = __find_vmap_area_exceed_addr(addr, &vn->busy.root); | |
1117 | ||
1118 | if (*va) | |
1119 | if (!va_start_lowest || (*va)->va_start < va_start_lowest) | |
1120 | va_start_lowest = (*va)->va_start; | |
1121 | spin_unlock(&vn->busy.lock); | |
1122 | } | |
1123 | ||
1124 | /* | |
1125 | * Check if found VA exists, it might have gone away. In this case we | |
1126 | * repeat the search because a VA has been removed concurrently and we | |
1127 | * need to proceed to the next one, which is a rare case. | |
1128 | */ | |
1129 | if (va_start_lowest) { | |
1130 | vn = addr_to_node(va_start_lowest); | |
1131 | ||
1132 | spin_lock(&vn->busy.lock); | |
1133 | *va = __find_vmap_area(va_start_lowest, &vn->busy.root); | |
1134 | ||
1135 | if (*va) | |
1136 | return vn; | |
1137 | ||
1138 | spin_unlock(&vn->busy.lock); | |
1139 | goto repeat; | |
1140 | } | |
1141 | ||
1142 | return NULL; | |
1143 | } | |
1144 | ||
1145 | /* | |
1146 | * This function returns back addresses of parent node | |
1147 | * and its left or right link for further processing. | |
1148 | * | |
1149 | * Otherwise NULL is returned. In that case all further | |
1150 | * steps regarding inserting of conflicting overlap range | |
1151 | * have to be declined and actually considered as a bug. | |
1152 | */ | |
1153 | static __always_inline struct rb_node ** | |
1154 | find_va_links(struct vmap_area *va, | |
1155 | struct rb_root *root, struct rb_node *from, | |
1156 | struct rb_node **parent) | |
1157 | { | |
1158 | struct vmap_area *tmp_va; | |
1159 | struct rb_node **link; | |
1160 | ||
1161 | if (root) { | |
1162 | link = &root->rb_node; | |
1163 | if (unlikely(!*link)) { | |
1164 | *parent = NULL; | |
1165 | return link; | |
1166 | } | |
1167 | } else { | |
1168 | link = &from; | |
1169 | } | |
1170 | ||
1171 | /* | |
1172 | * Go to the bottom of the tree. When we hit the last point | |
1173 | * we end up with parent rb_node and correct direction, i name | |
1174 | * it link, where the new va->rb_node will be attached to. | |
1175 | */ | |
1176 | do { | |
1177 | tmp_va = rb_entry(*link, struct vmap_area, rb_node); | |
1178 | ||
1179 | /* | |
1180 | * During the traversal we also do some sanity check. | |
1181 | * Trigger the BUG() if there are sides(left/right) | |
1182 | * or full overlaps. | |
1183 | */ | |
1184 | if (va->va_end <= tmp_va->va_start) | |
1185 | link = &(*link)->rb_left; | |
1186 | else if (va->va_start >= tmp_va->va_end) | |
1187 | link = &(*link)->rb_right; | |
1188 | else { | |
1189 | WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", | |
1190 | va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); | |
1191 | ||
1192 | return NULL; | |
1193 | } | |
1194 | } while (*link); | |
1195 | ||
1196 | *parent = &tmp_va->rb_node; | |
1197 | return link; | |
1198 | } | |
1199 | ||
1200 | static __always_inline struct list_head * | |
1201 | get_va_next_sibling(struct rb_node *parent, struct rb_node **link) | |
1202 | { | |
1203 | struct list_head *list; | |
1204 | ||
1205 | if (unlikely(!parent)) | |
1206 | /* | |
1207 | * The red-black tree where we try to find VA neighbors | |
1208 | * before merging or inserting is empty, i.e. it means | |
1209 | * there is no free vmap space. Normally it does not | |
1210 | * happen but we handle this case anyway. | |
1211 | */ | |
1212 | return NULL; | |
1213 | ||
1214 | list = &rb_entry(parent, struct vmap_area, rb_node)->list; | |
1215 | return (&parent->rb_right == link ? list->next : list); | |
1216 | } | |
1217 | ||
1218 | static __always_inline void | |
1219 | __link_va(struct vmap_area *va, struct rb_root *root, | |
1220 | struct rb_node *parent, struct rb_node **link, | |
1221 | struct list_head *head, bool augment) | |
1222 | { | |
1223 | /* | |
1224 | * VA is still not in the list, but we can | |
1225 | * identify its future previous list_head node. | |
1226 | */ | |
1227 | if (likely(parent)) { | |
1228 | head = &rb_entry(parent, struct vmap_area, rb_node)->list; | |
1229 | if (&parent->rb_right != link) | |
1230 | head = head->prev; | |
1231 | } | |
1232 | ||
1233 | /* Insert to the rb-tree */ | |
1234 | rb_link_node(&va->rb_node, parent, link); | |
1235 | if (augment) { | |
1236 | /* | |
1237 | * Some explanation here. Just perform simple insertion | |
1238 | * to the tree. We do not set va->subtree_max_size to | |
1239 | * its current size before calling rb_insert_augmented(). | |
1240 | * It is because we populate the tree from the bottom | |
1241 | * to parent levels when the node _is_ in the tree. | |
1242 | * | |
1243 | * Therefore we set subtree_max_size to zero after insertion, | |
1244 | * to let __augment_tree_propagate_from() puts everything to | |
1245 | * the correct order later on. | |
1246 | */ | |
1247 | rb_insert_augmented(&va->rb_node, | |
1248 | root, &free_vmap_area_rb_augment_cb); | |
1249 | va->subtree_max_size = 0; | |
1250 | } else { | |
1251 | rb_insert_color(&va->rb_node, root); | |
1252 | } | |
1253 | ||
1254 | /* Address-sort this list */ | |
1255 | list_add(&va->list, head); | |
1256 | } | |
1257 | ||
1258 | static __always_inline void | |
1259 | link_va(struct vmap_area *va, struct rb_root *root, | |
1260 | struct rb_node *parent, struct rb_node **link, | |
1261 | struct list_head *head) | |
1262 | { | |
1263 | __link_va(va, root, parent, link, head, false); | |
1264 | } | |
1265 | ||
1266 | static __always_inline void | |
1267 | link_va_augment(struct vmap_area *va, struct rb_root *root, | |
1268 | struct rb_node *parent, struct rb_node **link, | |
1269 | struct list_head *head) | |
1270 | { | |
1271 | __link_va(va, root, parent, link, head, true); | |
1272 | } | |
1273 | ||
1274 | static __always_inline void | |
1275 | __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) | |
1276 | { | |
1277 | if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) | |
1278 | return; | |
1279 | ||
1280 | if (augment) | |
1281 | rb_erase_augmented(&va->rb_node, | |
1282 | root, &free_vmap_area_rb_augment_cb); | |
1283 | else | |
1284 | rb_erase(&va->rb_node, root); | |
1285 | ||
1286 | list_del_init(&va->list); | |
1287 | RB_CLEAR_NODE(&va->rb_node); | |
1288 | } | |
1289 | ||
1290 | static __always_inline void | |
1291 | unlink_va(struct vmap_area *va, struct rb_root *root) | |
1292 | { | |
1293 | __unlink_va(va, root, false); | |
1294 | } | |
1295 | ||
1296 | static __always_inline void | |
1297 | unlink_va_augment(struct vmap_area *va, struct rb_root *root) | |
1298 | { | |
1299 | __unlink_va(va, root, true); | |
1300 | } | |
1301 | ||
1302 | #if DEBUG_AUGMENT_PROPAGATE_CHECK | |
1303 | /* | |
1304 | * Gets called when remove the node and rotate. | |
1305 | */ | |
1306 | static __always_inline unsigned long | |
1307 | compute_subtree_max_size(struct vmap_area *va) | |
1308 | { | |
1309 | return max3(va_size(va), | |
1310 | get_subtree_max_size(va->rb_node.rb_left), | |
1311 | get_subtree_max_size(va->rb_node.rb_right)); | |
1312 | } | |
1313 | ||
1314 | static void | |
1315 | augment_tree_propagate_check(void) | |
1316 | { | |
1317 | struct vmap_area *va; | |
1318 | unsigned long computed_size; | |
1319 | ||
1320 | list_for_each_entry(va, &free_vmap_area_list, list) { | |
1321 | computed_size = compute_subtree_max_size(va); | |
1322 | if (computed_size != va->subtree_max_size) | |
1323 | pr_emerg("tree is corrupted: %lu, %lu\n", | |
1324 | va_size(va), va->subtree_max_size); | |
1325 | } | |
1326 | } | |
1327 | #endif | |
1328 | ||
1329 | /* | |
1330 | * This function populates subtree_max_size from bottom to upper | |
1331 | * levels starting from VA point. The propagation must be done | |
1332 | * when VA size is modified by changing its va_start/va_end. Or | |
1333 | * in case of newly inserting of VA to the tree. | |
1334 | * | |
1335 | * It means that __augment_tree_propagate_from() must be called: | |
1336 | * - After VA has been inserted to the tree(free path); | |
1337 | * - After VA has been shrunk(allocation path); | |
1338 | * - After VA has been increased(merging path). | |
1339 | * | |
1340 | * Please note that, it does not mean that upper parent nodes | |
1341 | * and their subtree_max_size are recalculated all the time up | |
1342 | * to the root node. | |
1343 | * | |
1344 | * 4--8 | |
1345 | * /\ | |
1346 | * / \ | |
1347 | * / \ | |
1348 | * 2--2 8--8 | |
1349 | * | |
1350 | * For example if we modify the node 4, shrinking it to 2, then | |
1351 | * no any modification is required. If we shrink the node 2 to 1 | |
1352 | * its subtree_max_size is updated only, and set to 1. If we shrink | |
1353 | * the node 8 to 6, then its subtree_max_size is set to 6 and parent | |
1354 | * node becomes 4--6. | |
1355 | */ | |
1356 | static __always_inline void | |
1357 | augment_tree_propagate_from(struct vmap_area *va) | |
1358 | { | |
1359 | /* | |
1360 | * Populate the tree from bottom towards the root until | |
1361 | * the calculated maximum available size of checked node | |
1362 | * is equal to its current one. | |
1363 | */ | |
1364 | free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); | |
1365 | ||
1366 | #if DEBUG_AUGMENT_PROPAGATE_CHECK | |
1367 | augment_tree_propagate_check(); | |
1368 | #endif | |
1369 | } | |
1370 | ||
1371 | static void | |
1372 | insert_vmap_area(struct vmap_area *va, | |
1373 | struct rb_root *root, struct list_head *head) | |
1374 | { | |
1375 | struct rb_node **link; | |
1376 | struct rb_node *parent; | |
1377 | ||
1378 | link = find_va_links(va, root, NULL, &parent); | |
1379 | if (link) | |
1380 | link_va(va, root, parent, link, head); | |
1381 | } | |
1382 | ||
1383 | static void | |
1384 | insert_vmap_area_augment(struct vmap_area *va, | |
1385 | struct rb_node *from, struct rb_root *root, | |
1386 | struct list_head *head) | |
1387 | { | |
1388 | struct rb_node **link; | |
1389 | struct rb_node *parent; | |
1390 | ||
1391 | if (from) | |
1392 | link = find_va_links(va, NULL, from, &parent); | |
1393 | else | |
1394 | link = find_va_links(va, root, NULL, &parent); | |
1395 | ||
1396 | if (link) { | |
1397 | link_va_augment(va, root, parent, link, head); | |
1398 | augment_tree_propagate_from(va); | |
1399 | } | |
1400 | } | |
1401 | ||
1402 | /* | |
1403 | * Merge de-allocated chunk of VA memory with previous | |
1404 | * and next free blocks. If coalesce is not done a new | |
1405 | * free area is inserted. If VA has been merged, it is | |
1406 | * freed. | |
1407 | * | |
1408 | * Please note, it can return NULL in case of overlap | |
1409 | * ranges, followed by WARN() report. Despite it is a | |
1410 | * buggy behaviour, a system can be alive and keep | |
1411 | * ongoing. | |
1412 | */ | |
1413 | static __always_inline struct vmap_area * | |
1414 | __merge_or_add_vmap_area(struct vmap_area *va, | |
1415 | struct rb_root *root, struct list_head *head, bool augment) | |
1416 | { | |
1417 | struct vmap_area *sibling; | |
1418 | struct list_head *next; | |
1419 | struct rb_node **link; | |
1420 | struct rb_node *parent; | |
1421 | bool merged = false; | |
1422 | ||
1423 | /* | |
1424 | * Find a place in the tree where VA potentially will be | |
1425 | * inserted, unless it is merged with its sibling/siblings. | |
1426 | */ | |
1427 | link = find_va_links(va, root, NULL, &parent); | |
1428 | if (!link) | |
1429 | return NULL; | |
1430 | ||
1431 | /* | |
1432 | * Get next node of VA to check if merging can be done. | |
1433 | */ | |
1434 | next = get_va_next_sibling(parent, link); | |
1435 | if (unlikely(next == NULL)) | |
1436 | goto insert; | |
1437 | ||
1438 | /* | |
1439 | * start end | |
1440 | * | | | |
1441 | * |<------VA------>|<-----Next----->| | |
1442 | * | | | |
1443 | * start end | |
1444 | */ | |
1445 | if (next != head) { | |
1446 | sibling = list_entry(next, struct vmap_area, list); | |
1447 | if (sibling->va_start == va->va_end) { | |
1448 | sibling->va_start = va->va_start; | |
1449 | ||
1450 | /* Free vmap_area object. */ | |
1451 | kmem_cache_free(vmap_area_cachep, va); | |
1452 | ||
1453 | /* Point to the new merged area. */ | |
1454 | va = sibling; | |
1455 | merged = true; | |
1456 | } | |
1457 | } | |
1458 | ||
1459 | /* | |
1460 | * start end | |
1461 | * | | | |
1462 | * |<-----Prev----->|<------VA------>| | |
1463 | * | | | |
1464 | * start end | |
1465 | */ | |
1466 | if (next->prev != head) { | |
1467 | sibling = list_entry(next->prev, struct vmap_area, list); | |
1468 | if (sibling->va_end == va->va_start) { | |
1469 | /* | |
1470 | * If both neighbors are coalesced, it is important | |
1471 | * to unlink the "next" node first, followed by merging | |
1472 | * with "previous" one. Otherwise the tree might not be | |
1473 | * fully populated if a sibling's augmented value is | |
1474 | * "normalized" because of rotation operations. | |
1475 | */ | |
1476 | if (merged) | |
1477 | __unlink_va(va, root, augment); | |
1478 | ||
1479 | sibling->va_end = va->va_end; | |
1480 | ||
1481 | /* Free vmap_area object. */ | |
1482 | kmem_cache_free(vmap_area_cachep, va); | |
1483 | ||
1484 | /* Point to the new merged area. */ | |
1485 | va = sibling; | |
1486 | merged = true; | |
1487 | } | |
1488 | } | |
1489 | ||
1490 | insert: | |
1491 | if (!merged) | |
1492 | __link_va(va, root, parent, link, head, augment); | |
1493 | ||
1494 | return va; | |
1495 | } | |
1496 | ||
1497 | static __always_inline struct vmap_area * | |
1498 | merge_or_add_vmap_area(struct vmap_area *va, | |
1499 | struct rb_root *root, struct list_head *head) | |
1500 | { | |
1501 | return __merge_or_add_vmap_area(va, root, head, false); | |
1502 | } | |
1503 | ||
1504 | static __always_inline struct vmap_area * | |
1505 | merge_or_add_vmap_area_augment(struct vmap_area *va, | |
1506 | struct rb_root *root, struct list_head *head) | |
1507 | { | |
1508 | va = __merge_or_add_vmap_area(va, root, head, true); | |
1509 | if (va) | |
1510 | augment_tree_propagate_from(va); | |
1511 | ||
1512 | return va; | |
1513 | } | |
1514 | ||
1515 | static __always_inline bool | |
1516 | is_within_this_va(struct vmap_area *va, unsigned long size, | |
1517 | unsigned long align, unsigned long vstart) | |
1518 | { | |
1519 | unsigned long nva_start_addr; | |
1520 | ||
1521 | if (va->va_start > vstart) | |
1522 | nva_start_addr = ALIGN(va->va_start, align); | |
1523 | else | |
1524 | nva_start_addr = ALIGN(vstart, align); | |
1525 | ||
1526 | /* Can be overflowed due to big size or alignment. */ | |
1527 | if (nva_start_addr + size < nva_start_addr || | |
1528 | nva_start_addr < vstart) | |
1529 | return false; | |
1530 | ||
1531 | return (nva_start_addr + size <= va->va_end); | |
1532 | } | |
1533 | ||
1534 | /* | |
1535 | * Find the first free block(lowest start address) in the tree, | |
1536 | * that will accomplish the request corresponding to passing | |
1537 | * parameters. Please note, with an alignment bigger than PAGE_SIZE, | |
1538 | * a search length is adjusted to account for worst case alignment | |
1539 | * overhead. | |
1540 | */ | |
1541 | static __always_inline struct vmap_area * | |
1542 | find_vmap_lowest_match(struct rb_root *root, unsigned long size, | |
1543 | unsigned long align, unsigned long vstart, bool adjust_search_size) | |
1544 | { | |
1545 | struct vmap_area *va; | |
1546 | struct rb_node *node; | |
1547 | unsigned long length; | |
1548 | ||
1549 | /* Start from the root. */ | |
1550 | node = root->rb_node; | |
1551 | ||
1552 | /* Adjust the search size for alignment overhead. */ | |
1553 | length = adjust_search_size ? size + align - 1 : size; | |
1554 | ||
1555 | while (node) { | |
1556 | va = rb_entry(node, struct vmap_area, rb_node); | |
1557 | ||
1558 | if (get_subtree_max_size(node->rb_left) >= length && | |
1559 | vstart < va->va_start) { | |
1560 | node = node->rb_left; | |
1561 | } else { | |
1562 | if (is_within_this_va(va, size, align, vstart)) | |
1563 | return va; | |
1564 | ||
1565 | /* | |
1566 | * Does not make sense to go deeper towards the right | |
1567 | * sub-tree if it does not have a free block that is | |
1568 | * equal or bigger to the requested search length. | |
1569 | */ | |
1570 | if (get_subtree_max_size(node->rb_right) >= length) { | |
1571 | node = node->rb_right; | |
1572 | continue; | |
1573 | } | |
1574 | ||
1575 | /* | |
1576 | * OK. We roll back and find the first right sub-tree, | |
1577 | * that will satisfy the search criteria. It can happen | |
1578 | * due to "vstart" restriction or an alignment overhead | |
1579 | * that is bigger then PAGE_SIZE. | |
1580 | */ | |
1581 | while ((node = rb_parent(node))) { | |
1582 | va = rb_entry(node, struct vmap_area, rb_node); | |
1583 | if (is_within_this_va(va, size, align, vstart)) | |
1584 | return va; | |
1585 | ||
1586 | if (get_subtree_max_size(node->rb_right) >= length && | |
1587 | vstart <= va->va_start) { | |
1588 | /* | |
1589 | * Shift the vstart forward. Please note, we update it with | |
1590 | * parent's start address adding "1" because we do not want | |
1591 | * to enter same sub-tree after it has already been checked | |
1592 | * and no suitable free block found there. | |
1593 | */ | |
1594 | vstart = va->va_start + 1; | |
1595 | node = node->rb_right; | |
1596 | break; | |
1597 | } | |
1598 | } | |
1599 | } | |
1600 | } | |
1601 | ||
1602 | return NULL; | |
1603 | } | |
1604 | ||
1605 | #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK | |
1606 | #include <linux/random.h> | |
1607 | ||
1608 | static struct vmap_area * | |
1609 | find_vmap_lowest_linear_match(struct list_head *head, unsigned long size, | |
1610 | unsigned long align, unsigned long vstart) | |
1611 | { | |
1612 | struct vmap_area *va; | |
1613 | ||
1614 | list_for_each_entry(va, head, list) { | |
1615 | if (!is_within_this_va(va, size, align, vstart)) | |
1616 | continue; | |
1617 | ||
1618 | return va; | |
1619 | } | |
1620 | ||
1621 | return NULL; | |
1622 | } | |
1623 | ||
1624 | static void | |
1625 | find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head, | |
1626 | unsigned long size, unsigned long align) | |
1627 | { | |
1628 | struct vmap_area *va_1, *va_2; | |
1629 | unsigned long vstart; | |
1630 | unsigned int rnd; | |
1631 | ||
1632 | get_random_bytes(&rnd, sizeof(rnd)); | |
1633 | vstart = VMALLOC_START + rnd; | |
1634 | ||
1635 | va_1 = find_vmap_lowest_match(root, size, align, vstart, false); | |
1636 | va_2 = find_vmap_lowest_linear_match(head, size, align, vstart); | |
1637 | ||
1638 | if (va_1 != va_2) | |
1639 | pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", | |
1640 | va_1, va_2, vstart); | |
1641 | } | |
1642 | #endif | |
1643 | ||
1644 | enum fit_type { | |
1645 | NOTHING_FIT = 0, | |
1646 | FL_FIT_TYPE = 1, /* full fit */ | |
1647 | LE_FIT_TYPE = 2, /* left edge fit */ | |
1648 | RE_FIT_TYPE = 3, /* right edge fit */ | |
1649 | NE_FIT_TYPE = 4 /* no edge fit */ | |
1650 | }; | |
1651 | ||
1652 | static __always_inline enum fit_type | |
1653 | classify_va_fit_type(struct vmap_area *va, | |
1654 | unsigned long nva_start_addr, unsigned long size) | |
1655 | { | |
1656 | enum fit_type type; | |
1657 | ||
1658 | /* Check if it is within VA. */ | |
1659 | if (nva_start_addr < va->va_start || | |
1660 | nva_start_addr + size > va->va_end) | |
1661 | return NOTHING_FIT; | |
1662 | ||
1663 | /* Now classify. */ | |
1664 | if (va->va_start == nva_start_addr) { | |
1665 | if (va->va_end == nva_start_addr + size) | |
1666 | type = FL_FIT_TYPE; | |
1667 | else | |
1668 | type = LE_FIT_TYPE; | |
1669 | } else if (va->va_end == nva_start_addr + size) { | |
1670 | type = RE_FIT_TYPE; | |
1671 | } else { | |
1672 | type = NE_FIT_TYPE; | |
1673 | } | |
1674 | ||
1675 | return type; | |
1676 | } | |
1677 | ||
1678 | static __always_inline int | |
1679 | va_clip(struct rb_root *root, struct list_head *head, | |
1680 | struct vmap_area *va, unsigned long nva_start_addr, | |
1681 | unsigned long size) | |
1682 | { | |
1683 | struct vmap_area *lva = NULL; | |
1684 | enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); | |
1685 | ||
1686 | if (type == FL_FIT_TYPE) { | |
1687 | /* | |
1688 | * No need to split VA, it fully fits. | |
1689 | * | |
1690 | * | | | |
1691 | * V NVA V | |
1692 | * |---------------| | |
1693 | */ | |
1694 | unlink_va_augment(va, root); | |
1695 | kmem_cache_free(vmap_area_cachep, va); | |
1696 | } else if (type == LE_FIT_TYPE) { | |
1697 | /* | |
1698 | * Split left edge of fit VA. | |
1699 | * | |
1700 | * | | | |
1701 | * V NVA V R | |
1702 | * |-------|-------| | |
1703 | */ | |
1704 | va->va_start += size; | |
1705 | } else if (type == RE_FIT_TYPE) { | |
1706 | /* | |
1707 | * Split right edge of fit VA. | |
1708 | * | |
1709 | * | | | |
1710 | * L V NVA V | |
1711 | * |-------|-------| | |
1712 | */ | |
1713 | va->va_end = nva_start_addr; | |
1714 | } else if (type == NE_FIT_TYPE) { | |
1715 | /* | |
1716 | * Split no edge of fit VA. | |
1717 | * | |
1718 | * | | | |
1719 | * L V NVA V R | |
1720 | * |---|-------|---| | |
1721 | */ | |
1722 | lva = __this_cpu_xchg(ne_fit_preload_node, NULL); | |
1723 | if (unlikely(!lva)) { | |
1724 | /* | |
1725 | * For percpu allocator we do not do any pre-allocation | |
1726 | * and leave it as it is. The reason is it most likely | |
1727 | * never ends up with NE_FIT_TYPE splitting. In case of | |
1728 | * percpu allocations offsets and sizes are aligned to | |
1729 | * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE | |
1730 | * are its main fitting cases. | |
1731 | * | |
1732 | * There are a few exceptions though, as an example it is | |
1733 | * a first allocation (early boot up) when we have "one" | |
1734 | * big free space that has to be split. | |
1735 | * | |
1736 | * Also we can hit this path in case of regular "vmap" | |
1737 | * allocations, if "this" current CPU was not preloaded. | |
1738 | * See the comment in alloc_vmap_area() why. If so, then | |
1739 | * GFP_NOWAIT is used instead to get an extra object for | |
1740 | * split purpose. That is rare and most time does not | |
1741 | * occur. | |
1742 | * | |
1743 | * What happens if an allocation gets failed. Basically, | |
1744 | * an "overflow" path is triggered to purge lazily freed | |
1745 | * areas to free some memory, then, the "retry" path is | |
1746 | * triggered to repeat one more time. See more details | |
1747 | * in alloc_vmap_area() function. | |
1748 | */ | |
1749 | lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); | |
1750 | if (!lva) | |
1751 | return -ENOMEM; | |
1752 | } | |
1753 | ||
1754 | /* | |
1755 | * Build the remainder. | |
1756 | */ | |
1757 | lva->va_start = va->va_start; | |
1758 | lva->va_end = nva_start_addr; | |
1759 | ||
1760 | /* | |
1761 | * Shrink this VA to remaining size. | |
1762 | */ | |
1763 | va->va_start = nva_start_addr + size; | |
1764 | } else { | |
1765 | return -EINVAL; | |
1766 | } | |
1767 | ||
1768 | if (type != FL_FIT_TYPE) { | |
1769 | augment_tree_propagate_from(va); | |
1770 | ||
1771 | if (lva) /* type == NE_FIT_TYPE */ | |
1772 | insert_vmap_area_augment(lva, &va->rb_node, root, head); | |
1773 | } | |
1774 | ||
1775 | return 0; | |
1776 | } | |
1777 | ||
1778 | static unsigned long | |
1779 | va_alloc(struct vmap_area *va, | |
1780 | struct rb_root *root, struct list_head *head, | |
1781 | unsigned long size, unsigned long align, | |
1782 | unsigned long vstart, unsigned long vend) | |
1783 | { | |
1784 | unsigned long nva_start_addr; | |
1785 | int ret; | |
1786 | ||
1787 | if (va->va_start > vstart) | |
1788 | nva_start_addr = ALIGN(va->va_start, align); | |
1789 | else | |
1790 | nva_start_addr = ALIGN(vstart, align); | |
1791 | ||
1792 | /* Check the "vend" restriction. */ | |
1793 | if (nva_start_addr + size > vend) | |
1794 | return -ERANGE; | |
1795 | ||
1796 | /* Update the free vmap_area. */ | |
1797 | ret = va_clip(root, head, va, nva_start_addr, size); | |
1798 | if (WARN_ON_ONCE(ret)) | |
1799 | return ret; | |
1800 | ||
1801 | return nva_start_addr; | |
1802 | } | |
1803 | ||
1804 | /* | |
1805 | * Returns a start address of the newly allocated area, if success. | |
1806 | * Otherwise an error value is returned that indicates failure. | |
1807 | */ | |
1808 | static __always_inline unsigned long | |
1809 | __alloc_vmap_area(struct rb_root *root, struct list_head *head, | |
1810 | unsigned long size, unsigned long align, | |
1811 | unsigned long vstart, unsigned long vend) | |
1812 | { | |
1813 | bool adjust_search_size = true; | |
1814 | unsigned long nva_start_addr; | |
1815 | struct vmap_area *va; | |
1816 | ||
1817 | /* | |
1818 | * Do not adjust when: | |
1819 | * a) align <= PAGE_SIZE, because it does not make any sense. | |
1820 | * All blocks(their start addresses) are at least PAGE_SIZE | |
1821 | * aligned anyway; | |
1822 | * b) a short range where a requested size corresponds to exactly | |
1823 | * specified [vstart:vend] interval and an alignment > PAGE_SIZE. | |
1824 | * With adjusted search length an allocation would not succeed. | |
1825 | */ | |
1826 | if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) | |
1827 | adjust_search_size = false; | |
1828 | ||
1829 | va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); | |
1830 | if (unlikely(!va)) | |
1831 | return -ENOENT; | |
1832 | ||
1833 | nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend); | |
1834 | ||
1835 | #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK | |
1836 | if (!IS_ERR_VALUE(nva_start_addr)) | |
1837 | find_vmap_lowest_match_check(root, head, size, align); | |
1838 | #endif | |
1839 | ||
1840 | return nva_start_addr; | |
1841 | } | |
1842 | ||
1843 | /* | |
1844 | * Free a region of KVA allocated by alloc_vmap_area | |
1845 | */ | |
1846 | static void free_vmap_area(struct vmap_area *va) | |
1847 | { | |
1848 | struct vmap_node *vn = addr_to_node(va->va_start); | |
1849 | ||
1850 | /* | |
1851 | * Remove from the busy tree/list. | |
1852 | */ | |
1853 | spin_lock(&vn->busy.lock); | |
1854 | unlink_va(va, &vn->busy.root); | |
1855 | spin_unlock(&vn->busy.lock); | |
1856 | ||
1857 | /* | |
1858 | * Insert/Merge it back to the free tree/list. | |
1859 | */ | |
1860 | spin_lock(&free_vmap_area_lock); | |
1861 | merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); | |
1862 | spin_unlock(&free_vmap_area_lock); | |
1863 | } | |
1864 | ||
1865 | static inline void | |
1866 | preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) | |
1867 | { | |
1868 | struct vmap_area *va = NULL, *tmp; | |
1869 | ||
1870 | /* | |
1871 | * Preload this CPU with one extra vmap_area object. It is used | |
1872 | * when fit type of free area is NE_FIT_TYPE. It guarantees that | |
1873 | * a CPU that does an allocation is preloaded. | |
1874 | * | |
1875 | * We do it in non-atomic context, thus it allows us to use more | |
1876 | * permissive allocation masks to be more stable under low memory | |
1877 | * condition and high memory pressure. | |
1878 | */ | |
1879 | if (!this_cpu_read(ne_fit_preload_node)) | |
1880 | va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); | |
1881 | ||
1882 | spin_lock(lock); | |
1883 | ||
1884 | tmp = NULL; | |
1885 | if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va)) | |
1886 | kmem_cache_free(vmap_area_cachep, va); | |
1887 | } | |
1888 | ||
1889 | static struct vmap_pool * | |
1890 | size_to_va_pool(struct vmap_node *vn, unsigned long size) | |
1891 | { | |
1892 | unsigned int idx = (size - 1) / PAGE_SIZE; | |
1893 | ||
1894 | if (idx < MAX_VA_SIZE_PAGES) | |
1895 | return &vn->pool[idx]; | |
1896 | ||
1897 | return NULL; | |
1898 | } | |
1899 | ||
1900 | static bool | |
1901 | node_pool_add_va(struct vmap_node *n, struct vmap_area *va) | |
1902 | { | |
1903 | struct vmap_pool *vp; | |
1904 | ||
1905 | vp = size_to_va_pool(n, va_size(va)); | |
1906 | if (!vp) | |
1907 | return false; | |
1908 | ||
1909 | spin_lock(&n->pool_lock); | |
1910 | list_add(&va->list, &vp->head); | |
1911 | WRITE_ONCE(vp->len, vp->len + 1); | |
1912 | spin_unlock(&n->pool_lock); | |
1913 | ||
1914 | return true; | |
1915 | } | |
1916 | ||
1917 | static struct vmap_area * | |
1918 | node_pool_del_va(struct vmap_node *vn, unsigned long size, | |
1919 | unsigned long align, unsigned long vstart, | |
1920 | unsigned long vend) | |
1921 | { | |
1922 | struct vmap_area *va = NULL; | |
1923 | struct vmap_pool *vp; | |
1924 | int err = 0; | |
1925 | ||
1926 | vp = size_to_va_pool(vn, size); | |
1927 | if (!vp || list_empty(&vp->head)) | |
1928 | return NULL; | |
1929 | ||
1930 | spin_lock(&vn->pool_lock); | |
1931 | if (!list_empty(&vp->head)) { | |
1932 | va = list_first_entry(&vp->head, struct vmap_area, list); | |
1933 | ||
1934 | if (IS_ALIGNED(va->va_start, align)) { | |
1935 | /* | |
1936 | * Do some sanity check and emit a warning | |
1937 | * if one of below checks detects an error. | |
1938 | */ | |
1939 | err |= (va_size(va) != size); | |
1940 | err |= (va->va_start < vstart); | |
1941 | err |= (va->va_end > vend); | |
1942 | ||
1943 | if (!WARN_ON_ONCE(err)) { | |
1944 | list_del_init(&va->list); | |
1945 | WRITE_ONCE(vp->len, vp->len - 1); | |
1946 | } else { | |
1947 | va = NULL; | |
1948 | } | |
1949 | } else { | |
1950 | list_move_tail(&va->list, &vp->head); | |
1951 | va = NULL; | |
1952 | } | |
1953 | } | |
1954 | spin_unlock(&vn->pool_lock); | |
1955 | ||
1956 | return va; | |
1957 | } | |
1958 | ||
1959 | static struct vmap_area * | |
1960 | node_alloc(unsigned long size, unsigned long align, | |
1961 | unsigned long vstart, unsigned long vend, | |
1962 | unsigned long *addr, unsigned int *vn_id) | |
1963 | { | |
1964 | struct vmap_area *va; | |
1965 | ||
1966 | *vn_id = 0; | |
1967 | *addr = -EINVAL; | |
1968 | ||
1969 | /* | |
1970 | * Fallback to a global heap if not vmalloc or there | |
1971 | * is only one node. | |
1972 | */ | |
1973 | if (vstart != VMALLOC_START || vend != VMALLOC_END || | |
1974 | nr_vmap_nodes == 1) | |
1975 | return NULL; | |
1976 | ||
1977 | *vn_id = raw_smp_processor_id() % nr_vmap_nodes; | |
1978 | va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend); | |
1979 | *vn_id = encode_vn_id(*vn_id); | |
1980 | ||
1981 | if (va) | |
1982 | *addr = va->va_start; | |
1983 | ||
1984 | return va; | |
1985 | } | |
1986 | ||
1987 | static inline void setup_vmalloc_vm(struct vm_struct *vm, | |
1988 | struct vmap_area *va, unsigned long flags, const void *caller) | |
1989 | { | |
1990 | vm->flags = flags; | |
1991 | vm->addr = (void *)va->va_start; | |
1992 | vm->size = vm->requested_size = va_size(va); | |
1993 | vm->caller = caller; | |
1994 | va->vm = vm; | |
1995 | } | |
1996 | ||
1997 | /* | |
1998 | * Allocate a region of KVA of the specified size and alignment, within the | |
1999 | * vstart and vend. If vm is passed in, the two will also be bound. | |
2000 | */ | |
2001 | static struct vmap_area *alloc_vmap_area(unsigned long size, | |
2002 | unsigned long align, | |
2003 | unsigned long vstart, unsigned long vend, | |
2004 | int node, gfp_t gfp_mask, | |
2005 | unsigned long va_flags, struct vm_struct *vm) | |
2006 | { | |
2007 | struct vmap_node *vn; | |
2008 | struct vmap_area *va; | |
2009 | unsigned long freed; | |
2010 | unsigned long addr; | |
2011 | unsigned int vn_id; | |
2012 | int purged = 0; | |
2013 | int ret; | |
2014 | ||
2015 | if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align))) | |
2016 | return ERR_PTR(-EINVAL); | |
2017 | ||
2018 | if (unlikely(!vmap_initialized)) | |
2019 | return ERR_PTR(-EBUSY); | |
2020 | ||
2021 | might_sleep(); | |
2022 | ||
2023 | /* | |
2024 | * If a VA is obtained from a global heap(if it fails here) | |
2025 | * it is anyway marked with this "vn_id" so it is returned | |
2026 | * to this pool's node later. Such way gives a possibility | |
2027 | * to populate pools based on users demand. | |
2028 | * | |
2029 | * On success a ready to go VA is returned. | |
2030 | */ | |
2031 | va = node_alloc(size, align, vstart, vend, &addr, &vn_id); | |
2032 | if (!va) { | |
2033 | gfp_mask = gfp_mask & GFP_RECLAIM_MASK; | |
2034 | ||
2035 | va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); | |
2036 | if (unlikely(!va)) | |
2037 | return ERR_PTR(-ENOMEM); | |
2038 | ||
2039 | /* | |
2040 | * Only scan the relevant parts containing pointers to other objects | |
2041 | * to avoid false negatives. | |
2042 | */ | |
2043 | kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); | |
2044 | } | |
2045 | ||
2046 | retry: | |
2047 | if (IS_ERR_VALUE(addr)) { | |
2048 | preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); | |
2049 | addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, | |
2050 | size, align, vstart, vend); | |
2051 | spin_unlock(&free_vmap_area_lock); | |
2052 | } | |
2053 | ||
2054 | trace_alloc_vmap_area(addr, size, align, vstart, vend, IS_ERR_VALUE(addr)); | |
2055 | ||
2056 | /* | |
2057 | * If an allocation fails, the error value is | |
2058 | * returned. Therefore trigger the overflow path. | |
2059 | */ | |
2060 | if (IS_ERR_VALUE(addr)) | |
2061 | goto overflow; | |
2062 | ||
2063 | va->va_start = addr; | |
2064 | va->va_end = addr + size; | |
2065 | va->vm = NULL; | |
2066 | va->flags = (va_flags | vn_id); | |
2067 | ||
2068 | if (vm) { | |
2069 | vm->addr = (void *)va->va_start; | |
2070 | vm->size = va_size(va); | |
2071 | va->vm = vm; | |
2072 | } | |
2073 | ||
2074 | vn = addr_to_node(va->va_start); | |
2075 | ||
2076 | spin_lock(&vn->busy.lock); | |
2077 | insert_vmap_area(va, &vn->busy.root, &vn->busy.head); | |
2078 | spin_unlock(&vn->busy.lock); | |
2079 | ||
2080 | BUG_ON(!IS_ALIGNED(va->va_start, align)); | |
2081 | BUG_ON(va->va_start < vstart); | |
2082 | BUG_ON(va->va_end > vend); | |
2083 | ||
2084 | ret = kasan_populate_vmalloc(addr, size); | |
2085 | if (ret) { | |
2086 | free_vmap_area(va); | |
2087 | return ERR_PTR(ret); | |
2088 | } | |
2089 | ||
2090 | return va; | |
2091 | ||
2092 | overflow: | |
2093 | if (!purged) { | |
2094 | reclaim_and_purge_vmap_areas(); | |
2095 | purged = 1; | |
2096 | goto retry; | |
2097 | } | |
2098 | ||
2099 | freed = 0; | |
2100 | blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); | |
2101 | ||
2102 | if (freed > 0) { | |
2103 | purged = 0; | |
2104 | goto retry; | |
2105 | } | |
2106 | ||
2107 | if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) | |
2108 | pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n", | |
2109 | size, vstart, vend); | |
2110 | ||
2111 | kmem_cache_free(vmap_area_cachep, va); | |
2112 | return ERR_PTR(-EBUSY); | |
2113 | } | |
2114 | ||
2115 | int register_vmap_purge_notifier(struct notifier_block *nb) | |
2116 | { | |
2117 | return blocking_notifier_chain_register(&vmap_notify_list, nb); | |
2118 | } | |
2119 | EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); | |
2120 | ||
2121 | int unregister_vmap_purge_notifier(struct notifier_block *nb) | |
2122 | { | |
2123 | return blocking_notifier_chain_unregister(&vmap_notify_list, nb); | |
2124 | } | |
2125 | EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); | |
2126 | ||
2127 | /* | |
2128 | * lazy_max_pages is the maximum amount of virtual address space we gather up | |
2129 | * before attempting to purge with a TLB flush. | |
2130 | * | |
2131 | * There is a tradeoff here: a larger number will cover more kernel page tables | |
2132 | * and take slightly longer to purge, but it will linearly reduce the number of | |
2133 | * global TLB flushes that must be performed. It would seem natural to scale | |
2134 | * this number up linearly with the number of CPUs (because vmapping activity | |
2135 | * could also scale linearly with the number of CPUs), however it is likely | |
2136 | * that in practice, workloads might be constrained in other ways that mean | |
2137 | * vmap activity will not scale linearly with CPUs. Also, I want to be | |
2138 | * conservative and not introduce a big latency on huge systems, so go with | |
2139 | * a less aggressive log scale. It will still be an improvement over the old | |
2140 | * code, and it will be simple to change the scale factor if we find that it | |
2141 | * becomes a problem on bigger systems. | |
2142 | */ | |
2143 | static unsigned long lazy_max_pages(void) | |
2144 | { | |
2145 | unsigned int log; | |
2146 | ||
2147 | log = fls(num_online_cpus()); | |
2148 | ||
2149 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); | |
2150 | } | |
2151 | ||
2152 | /* | |
2153 | * Serialize vmap purging. There is no actual critical section protected | |
2154 | * by this lock, but we want to avoid concurrent calls for performance | |
2155 | * reasons and to make the pcpu_get_vm_areas more deterministic. | |
2156 | */ | |
2157 | static DEFINE_MUTEX(vmap_purge_lock); | |
2158 | ||
2159 | /* for per-CPU blocks */ | |
2160 | static void purge_fragmented_blocks_allcpus(void); | |
2161 | ||
2162 | static void | |
2163 | reclaim_list_global(struct list_head *head) | |
2164 | { | |
2165 | struct vmap_area *va, *n; | |
2166 | ||
2167 | if (list_empty(head)) | |
2168 | return; | |
2169 | ||
2170 | spin_lock(&free_vmap_area_lock); | |
2171 | list_for_each_entry_safe(va, n, head, list) | |
2172 | merge_or_add_vmap_area_augment(va, | |
2173 | &free_vmap_area_root, &free_vmap_area_list); | |
2174 | spin_unlock(&free_vmap_area_lock); | |
2175 | } | |
2176 | ||
2177 | static void | |
2178 | decay_va_pool_node(struct vmap_node *vn, bool full_decay) | |
2179 | { | |
2180 | LIST_HEAD(decay_list); | |
2181 | struct rb_root decay_root = RB_ROOT; | |
2182 | struct vmap_area *va, *nva; | |
2183 | unsigned long n_decay, pool_len; | |
2184 | int i; | |
2185 | ||
2186 | for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { | |
2187 | LIST_HEAD(tmp_list); | |
2188 | ||
2189 | if (list_empty(&vn->pool[i].head)) | |
2190 | continue; | |
2191 | ||
2192 | /* Detach the pool, so no-one can access it. */ | |
2193 | spin_lock(&vn->pool_lock); | |
2194 | list_replace_init(&vn->pool[i].head, &tmp_list); | |
2195 | spin_unlock(&vn->pool_lock); | |
2196 | ||
2197 | pool_len = n_decay = vn->pool[i].len; | |
2198 | WRITE_ONCE(vn->pool[i].len, 0); | |
2199 | ||
2200 | /* Decay a pool by ~25% out of left objects. */ | |
2201 | if (!full_decay) | |
2202 | n_decay >>= 2; | |
2203 | pool_len -= n_decay; | |
2204 | ||
2205 | list_for_each_entry_safe(va, nva, &tmp_list, list) { | |
2206 | if (!n_decay--) | |
2207 | break; | |
2208 | ||
2209 | list_del_init(&va->list); | |
2210 | merge_or_add_vmap_area(va, &decay_root, &decay_list); | |
2211 | } | |
2212 | ||
2213 | /* | |
2214 | * Attach the pool back if it has been partly decayed. | |
2215 | * Please note, it is supposed that nobody(other contexts) | |
2216 | * can populate the pool therefore a simple list replace | |
2217 | * operation takes place here. | |
2218 | */ | |
2219 | if (!list_empty(&tmp_list)) { | |
2220 | spin_lock(&vn->pool_lock); | |
2221 | list_replace_init(&tmp_list, &vn->pool[i].head); | |
2222 | WRITE_ONCE(vn->pool[i].len, pool_len); | |
2223 | spin_unlock(&vn->pool_lock); | |
2224 | } | |
2225 | } | |
2226 | ||
2227 | reclaim_list_global(&decay_list); | |
2228 | } | |
2229 | ||
2230 | static void | |
2231 | kasan_release_vmalloc_node(struct vmap_node *vn) | |
2232 | { | |
2233 | struct vmap_area *va; | |
2234 | unsigned long start, end; | |
2235 | ||
2236 | start = list_first_entry(&vn->purge_list, struct vmap_area, list)->va_start; | |
2237 | end = list_last_entry(&vn->purge_list, struct vmap_area, list)->va_end; | |
2238 | ||
2239 | list_for_each_entry(va, &vn->purge_list, list) { | |
2240 | if (is_vmalloc_or_module_addr((void *) va->va_start)) | |
2241 | kasan_release_vmalloc(va->va_start, va->va_end, | |
2242 | va->va_start, va->va_end, | |
2243 | KASAN_VMALLOC_PAGE_RANGE); | |
2244 | } | |
2245 | ||
2246 | kasan_release_vmalloc(start, end, start, end, KASAN_VMALLOC_TLB_FLUSH); | |
2247 | } | |
2248 | ||
2249 | static void purge_vmap_node(struct work_struct *work) | |
2250 | { | |
2251 | struct vmap_node *vn = container_of(work, | |
2252 | struct vmap_node, purge_work); | |
2253 | unsigned long nr_purged_pages = 0; | |
2254 | struct vmap_area *va, *n_va; | |
2255 | LIST_HEAD(local_list); | |
2256 | ||
2257 | if (IS_ENABLED(CONFIG_KASAN_VMALLOC)) | |
2258 | kasan_release_vmalloc_node(vn); | |
2259 | ||
2260 | vn->nr_purged = 0; | |
2261 | ||
2262 | list_for_each_entry_safe(va, n_va, &vn->purge_list, list) { | |
2263 | unsigned long nr = va_size(va) >> PAGE_SHIFT; | |
2264 | unsigned int vn_id = decode_vn_id(va->flags); | |
2265 | ||
2266 | list_del_init(&va->list); | |
2267 | ||
2268 | nr_purged_pages += nr; | |
2269 | vn->nr_purged++; | |
2270 | ||
2271 | if (is_vn_id_valid(vn_id) && !vn->skip_populate) | |
2272 | if (node_pool_add_va(vn, va)) | |
2273 | continue; | |
2274 | ||
2275 | /* Go back to global. */ | |
2276 | list_add(&va->list, &local_list); | |
2277 | } | |
2278 | ||
2279 | atomic_long_sub(nr_purged_pages, &vmap_lazy_nr); | |
2280 | ||
2281 | reclaim_list_global(&local_list); | |
2282 | } | |
2283 | ||
2284 | /* | |
2285 | * Purges all lazily-freed vmap areas. | |
2286 | */ | |
2287 | static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end, | |
2288 | bool full_pool_decay) | |
2289 | { | |
2290 | unsigned long nr_purged_areas = 0; | |
2291 | unsigned int nr_purge_helpers; | |
2292 | static cpumask_t purge_nodes; | |
2293 | unsigned int nr_purge_nodes; | |
2294 | struct vmap_node *vn; | |
2295 | int i; | |
2296 | ||
2297 | lockdep_assert_held(&vmap_purge_lock); | |
2298 | ||
2299 | /* | |
2300 | * Use cpumask to mark which node has to be processed. | |
2301 | */ | |
2302 | purge_nodes = CPU_MASK_NONE; | |
2303 | ||
2304 | for_each_vmap_node(vn) { | |
2305 | INIT_LIST_HEAD(&vn->purge_list); | |
2306 | vn->skip_populate = full_pool_decay; | |
2307 | decay_va_pool_node(vn, full_pool_decay); | |
2308 | ||
2309 | if (RB_EMPTY_ROOT(&vn->lazy.root)) | |
2310 | continue; | |
2311 | ||
2312 | spin_lock(&vn->lazy.lock); | |
2313 | WRITE_ONCE(vn->lazy.root.rb_node, NULL); | |
2314 | list_replace_init(&vn->lazy.head, &vn->purge_list); | |
2315 | spin_unlock(&vn->lazy.lock); | |
2316 | ||
2317 | start = min(start, list_first_entry(&vn->purge_list, | |
2318 | struct vmap_area, list)->va_start); | |
2319 | ||
2320 | end = max(end, list_last_entry(&vn->purge_list, | |
2321 | struct vmap_area, list)->va_end); | |
2322 | ||
2323 | cpumask_set_cpu(node_to_id(vn), &purge_nodes); | |
2324 | } | |
2325 | ||
2326 | nr_purge_nodes = cpumask_weight(&purge_nodes); | |
2327 | if (nr_purge_nodes > 0) { | |
2328 | flush_tlb_kernel_range(start, end); | |
2329 | ||
2330 | /* One extra worker is per a lazy_max_pages() full set minus one. */ | |
2331 | nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages(); | |
2332 | nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1; | |
2333 | ||
2334 | for_each_cpu(i, &purge_nodes) { | |
2335 | vn = &vmap_nodes[i]; | |
2336 | ||
2337 | if (nr_purge_helpers > 0) { | |
2338 | INIT_WORK(&vn->purge_work, purge_vmap_node); | |
2339 | ||
2340 | if (cpumask_test_cpu(i, cpu_online_mask)) | |
2341 | schedule_work_on(i, &vn->purge_work); | |
2342 | else | |
2343 | schedule_work(&vn->purge_work); | |
2344 | ||
2345 | nr_purge_helpers--; | |
2346 | } else { | |
2347 | vn->purge_work.func = NULL; | |
2348 | purge_vmap_node(&vn->purge_work); | |
2349 | nr_purged_areas += vn->nr_purged; | |
2350 | } | |
2351 | } | |
2352 | ||
2353 | for_each_cpu(i, &purge_nodes) { | |
2354 | vn = &vmap_nodes[i]; | |
2355 | ||
2356 | if (vn->purge_work.func) { | |
2357 | flush_work(&vn->purge_work); | |
2358 | nr_purged_areas += vn->nr_purged; | |
2359 | } | |
2360 | } | |
2361 | } | |
2362 | ||
2363 | trace_purge_vmap_area_lazy(start, end, nr_purged_areas); | |
2364 | return nr_purged_areas > 0; | |
2365 | } | |
2366 | ||
2367 | /* | |
2368 | * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list. | |
2369 | */ | |
2370 | static void reclaim_and_purge_vmap_areas(void) | |
2371 | ||
2372 | { | |
2373 | mutex_lock(&vmap_purge_lock); | |
2374 | purge_fragmented_blocks_allcpus(); | |
2375 | __purge_vmap_area_lazy(ULONG_MAX, 0, true); | |
2376 | mutex_unlock(&vmap_purge_lock); | |
2377 | } | |
2378 | ||
2379 | static void drain_vmap_area_work(struct work_struct *work) | |
2380 | { | |
2381 | mutex_lock(&vmap_purge_lock); | |
2382 | __purge_vmap_area_lazy(ULONG_MAX, 0, false); | |
2383 | mutex_unlock(&vmap_purge_lock); | |
2384 | } | |
2385 | ||
2386 | /* | |
2387 | * Free a vmap area, caller ensuring that the area has been unmapped, | |
2388 | * unlinked and flush_cache_vunmap had been called for the correct | |
2389 | * range previously. | |
2390 | */ | |
2391 | static void free_vmap_area_noflush(struct vmap_area *va) | |
2392 | { | |
2393 | unsigned long nr_lazy_max = lazy_max_pages(); | |
2394 | unsigned long va_start = va->va_start; | |
2395 | unsigned int vn_id = decode_vn_id(va->flags); | |
2396 | struct vmap_node *vn; | |
2397 | unsigned long nr_lazy; | |
2398 | ||
2399 | if (WARN_ON_ONCE(!list_empty(&va->list))) | |
2400 | return; | |
2401 | ||
2402 | nr_lazy = atomic_long_add_return_relaxed(va_size(va) >> PAGE_SHIFT, | |
2403 | &vmap_lazy_nr); | |
2404 | ||
2405 | /* | |
2406 | * If it was request by a certain node we would like to | |
2407 | * return it to that node, i.e. its pool for later reuse. | |
2408 | */ | |
2409 | vn = is_vn_id_valid(vn_id) ? | |
2410 | id_to_node(vn_id):addr_to_node(va->va_start); | |
2411 | ||
2412 | spin_lock(&vn->lazy.lock); | |
2413 | insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head); | |
2414 | spin_unlock(&vn->lazy.lock); | |
2415 | ||
2416 | trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max); | |
2417 | ||
2418 | /* After this point, we may free va at any time */ | |
2419 | if (unlikely(nr_lazy > nr_lazy_max)) | |
2420 | schedule_work(&drain_vmap_work); | |
2421 | } | |
2422 | ||
2423 | /* | |
2424 | * Free and unmap a vmap area | |
2425 | */ | |
2426 | static void free_unmap_vmap_area(struct vmap_area *va) | |
2427 | { | |
2428 | flush_cache_vunmap(va->va_start, va->va_end); | |
2429 | vunmap_range_noflush(va->va_start, va->va_end); | |
2430 | if (debug_pagealloc_enabled_static()) | |
2431 | flush_tlb_kernel_range(va->va_start, va->va_end); | |
2432 | ||
2433 | free_vmap_area_noflush(va); | |
2434 | } | |
2435 | ||
2436 | struct vmap_area *find_vmap_area(unsigned long addr) | |
2437 | { | |
2438 | struct vmap_node *vn; | |
2439 | struct vmap_area *va; | |
2440 | int i, j; | |
2441 | ||
2442 | if (unlikely(!vmap_initialized)) | |
2443 | return NULL; | |
2444 | ||
2445 | /* | |
2446 | * An addr_to_node_id(addr) converts an address to a node index | |
2447 | * where a VA is located. If VA spans several zones and passed | |
2448 | * addr is not the same as va->va_start, what is not common, we | |
2449 | * may need to scan extra nodes. See an example: | |
2450 | * | |
2451 | * <----va----> | |
2452 | * -|-----|-----|-----|-----|- | |
2453 | * 1 2 0 1 | |
2454 | * | |
2455 | * VA resides in node 1 whereas it spans 1, 2 an 0. If passed | |
2456 | * addr is within 2 or 0 nodes we should do extra work. | |
2457 | */ | |
2458 | i = j = addr_to_node_id(addr); | |
2459 | do { | |
2460 | vn = &vmap_nodes[i]; | |
2461 | ||
2462 | spin_lock(&vn->busy.lock); | |
2463 | va = __find_vmap_area(addr, &vn->busy.root); | |
2464 | spin_unlock(&vn->busy.lock); | |
2465 | ||
2466 | if (va) | |
2467 | return va; | |
2468 | } while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j); | |
2469 | ||
2470 | return NULL; | |
2471 | } | |
2472 | ||
2473 | static struct vmap_area *find_unlink_vmap_area(unsigned long addr) | |
2474 | { | |
2475 | struct vmap_node *vn; | |
2476 | struct vmap_area *va; | |
2477 | int i, j; | |
2478 | ||
2479 | /* | |
2480 | * Check the comment in the find_vmap_area() about the loop. | |
2481 | */ | |
2482 | i = j = addr_to_node_id(addr); | |
2483 | do { | |
2484 | vn = &vmap_nodes[i]; | |
2485 | ||
2486 | spin_lock(&vn->busy.lock); | |
2487 | va = __find_vmap_area(addr, &vn->busy.root); | |
2488 | if (va) | |
2489 | unlink_va(va, &vn->busy.root); | |
2490 | spin_unlock(&vn->busy.lock); | |
2491 | ||
2492 | if (va) | |
2493 | return va; | |
2494 | } while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j); | |
2495 | ||
2496 | return NULL; | |
2497 | } | |
2498 | ||
2499 | /*** Per cpu kva allocator ***/ | |
2500 | ||
2501 | /* | |
2502 | * vmap space is limited especially on 32 bit architectures. Ensure there is | |
2503 | * room for at least 16 percpu vmap blocks per CPU. | |
2504 | */ | |
2505 | /* | |
2506 | * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able | |
2507 | * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess | |
2508 | * instead (we just need a rough idea) | |
2509 | */ | |
2510 | #if BITS_PER_LONG == 32 | |
2511 | #define VMALLOC_SPACE (128UL*1024*1024) | |
2512 | #else | |
2513 | #define VMALLOC_SPACE (128UL*1024*1024*1024) | |
2514 | #endif | |
2515 | ||
2516 | #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) | |
2517 | #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ | |
2518 | #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ | |
2519 | #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) | |
2520 | #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ | |
2521 | #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ | |
2522 | #define VMAP_BBMAP_BITS \ | |
2523 | VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ | |
2524 | VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ | |
2525 | VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) | |
2526 | ||
2527 | #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) | |
2528 | ||
2529 | /* | |
2530 | * Purge threshold to prevent overeager purging of fragmented blocks for | |
2531 | * regular operations: Purge if vb->free is less than 1/4 of the capacity. | |
2532 | */ | |
2533 | #define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4) | |
2534 | ||
2535 | #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/ | |
2536 | #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/ | |
2537 | #define VMAP_FLAGS_MASK 0x3 | |
2538 | ||
2539 | struct vmap_block_queue { | |
2540 | spinlock_t lock; | |
2541 | struct list_head free; | |
2542 | ||
2543 | /* | |
2544 | * An xarray requires an extra memory dynamically to | |
2545 | * be allocated. If it is an issue, we can use rb-tree | |
2546 | * instead. | |
2547 | */ | |
2548 | struct xarray vmap_blocks; | |
2549 | }; | |
2550 | ||
2551 | struct vmap_block { | |
2552 | spinlock_t lock; | |
2553 | struct vmap_area *va; | |
2554 | unsigned long free, dirty; | |
2555 | DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS); | |
2556 | unsigned long dirty_min, dirty_max; /*< dirty range */ | |
2557 | struct list_head free_list; | |
2558 | struct rcu_head rcu_head; | |
2559 | struct list_head purge; | |
2560 | unsigned int cpu; | |
2561 | }; | |
2562 | ||
2563 | /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ | |
2564 | static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); | |
2565 | ||
2566 | /* | |
2567 | * In order to fast access to any "vmap_block" associated with a | |
2568 | * specific address, we use a hash. | |
2569 | * | |
2570 | * A per-cpu vmap_block_queue is used in both ways, to serialize | |
2571 | * an access to free block chains among CPUs(alloc path) and it | |
2572 | * also acts as a vmap_block hash(alloc/free paths). It means we | |
2573 | * overload it, since we already have the per-cpu array which is | |
2574 | * used as a hash table. When used as a hash a 'cpu' passed to | |
2575 | * per_cpu() is not actually a CPU but rather a hash index. | |
2576 | * | |
2577 | * A hash function is addr_to_vb_xa() which hashes any address | |
2578 | * to a specific index(in a hash) it belongs to. This then uses a | |
2579 | * per_cpu() macro to access an array with generated index. | |
2580 | * | |
2581 | * An example: | |
2582 | * | |
2583 | * CPU_1 CPU_2 CPU_0 | |
2584 | * | | | | |
2585 | * V V V | |
2586 | * 0 10 20 30 40 50 60 | |
2587 | * |------|------|------|------|------|------|...<vmap address space> | |
2588 | * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2 | |
2589 | * | |
2590 | * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus | |
2591 | * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock; | |
2592 | * | |
2593 | * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus | |
2594 | * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock; | |
2595 | * | |
2596 | * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus | |
2597 | * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock. | |
2598 | * | |
2599 | * This technique almost always avoids lock contention on insert/remove, | |
2600 | * however xarray spinlocks protect against any contention that remains. | |
2601 | */ | |
2602 | static struct xarray * | |
2603 | addr_to_vb_xa(unsigned long addr) | |
2604 | { | |
2605 | int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids; | |
2606 | ||
2607 | /* | |
2608 | * Please note, nr_cpu_ids points on a highest set | |
2609 | * possible bit, i.e. we never invoke cpumask_next() | |
2610 | * if an index points on it which is nr_cpu_ids - 1. | |
2611 | */ | |
2612 | if (!cpu_possible(index)) | |
2613 | index = cpumask_next(index, cpu_possible_mask); | |
2614 | ||
2615 | return &per_cpu(vmap_block_queue, index).vmap_blocks; | |
2616 | } | |
2617 | ||
2618 | /* | |
2619 | * We should probably have a fallback mechanism to allocate virtual memory | |
2620 | * out of partially filled vmap blocks. However vmap block sizing should be | |
2621 | * fairly reasonable according to the vmalloc size, so it shouldn't be a | |
2622 | * big problem. | |
2623 | */ | |
2624 | ||
2625 | static unsigned long addr_to_vb_idx(unsigned long addr) | |
2626 | { | |
2627 | addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); | |
2628 | addr /= VMAP_BLOCK_SIZE; | |
2629 | return addr; | |
2630 | } | |
2631 | ||
2632 | static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) | |
2633 | { | |
2634 | unsigned long addr; | |
2635 | ||
2636 | addr = va_start + (pages_off << PAGE_SHIFT); | |
2637 | BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); | |
2638 | return (void *)addr; | |
2639 | } | |
2640 | ||
2641 | /** | |
2642 | * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this | |
2643 | * block. Of course pages number can't exceed VMAP_BBMAP_BITS | |
2644 | * @order: how many 2^order pages should be occupied in newly allocated block | |
2645 | * @gfp_mask: flags for the page level allocator | |
2646 | * | |
2647 | * Return: virtual address in a newly allocated block or ERR_PTR(-errno) | |
2648 | */ | |
2649 | static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) | |
2650 | { | |
2651 | struct vmap_block_queue *vbq; | |
2652 | struct vmap_block *vb; | |
2653 | struct vmap_area *va; | |
2654 | struct xarray *xa; | |
2655 | unsigned long vb_idx; | |
2656 | int node, err; | |
2657 | void *vaddr; | |
2658 | ||
2659 | node = numa_node_id(); | |
2660 | ||
2661 | vb = kmalloc_node(sizeof(struct vmap_block), | |
2662 | gfp_mask & GFP_RECLAIM_MASK, node); | |
2663 | if (unlikely(!vb)) | |
2664 | return ERR_PTR(-ENOMEM); | |
2665 | ||
2666 | va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, | |
2667 | VMALLOC_START, VMALLOC_END, | |
2668 | node, gfp_mask, | |
2669 | VMAP_RAM|VMAP_BLOCK, NULL); | |
2670 | if (IS_ERR(va)) { | |
2671 | kfree(vb); | |
2672 | return ERR_CAST(va); | |
2673 | } | |
2674 | ||
2675 | vaddr = vmap_block_vaddr(va->va_start, 0); | |
2676 | spin_lock_init(&vb->lock); | |
2677 | vb->va = va; | |
2678 | /* At least something should be left free */ | |
2679 | BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); | |
2680 | bitmap_zero(vb->used_map, VMAP_BBMAP_BITS); | |
2681 | vb->free = VMAP_BBMAP_BITS - (1UL << order); | |
2682 | vb->dirty = 0; | |
2683 | vb->dirty_min = VMAP_BBMAP_BITS; | |
2684 | vb->dirty_max = 0; | |
2685 | bitmap_set(vb->used_map, 0, (1UL << order)); | |
2686 | INIT_LIST_HEAD(&vb->free_list); | |
2687 | vb->cpu = raw_smp_processor_id(); | |
2688 | ||
2689 | xa = addr_to_vb_xa(va->va_start); | |
2690 | vb_idx = addr_to_vb_idx(va->va_start); | |
2691 | err = xa_insert(xa, vb_idx, vb, gfp_mask); | |
2692 | if (err) { | |
2693 | kfree(vb); | |
2694 | free_vmap_area(va); | |
2695 | return ERR_PTR(err); | |
2696 | } | |
2697 | /* | |
2698 | * list_add_tail_rcu could happened in another core | |
2699 | * rather than vb->cpu due to task migration, which | |
2700 | * is safe as list_add_tail_rcu will ensure the list's | |
2701 | * integrity together with list_for_each_rcu from read | |
2702 | * side. | |
2703 | */ | |
2704 | vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu); | |
2705 | spin_lock(&vbq->lock); | |
2706 | list_add_tail_rcu(&vb->free_list, &vbq->free); | |
2707 | spin_unlock(&vbq->lock); | |
2708 | ||
2709 | return vaddr; | |
2710 | } | |
2711 | ||
2712 | static void free_vmap_block(struct vmap_block *vb) | |
2713 | { | |
2714 | struct vmap_node *vn; | |
2715 | struct vmap_block *tmp; | |
2716 | struct xarray *xa; | |
2717 | ||
2718 | xa = addr_to_vb_xa(vb->va->va_start); | |
2719 | tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start)); | |
2720 | BUG_ON(tmp != vb); | |
2721 | ||
2722 | vn = addr_to_node(vb->va->va_start); | |
2723 | spin_lock(&vn->busy.lock); | |
2724 | unlink_va(vb->va, &vn->busy.root); | |
2725 | spin_unlock(&vn->busy.lock); | |
2726 | ||
2727 | free_vmap_area_noflush(vb->va); | |
2728 | kfree_rcu(vb, rcu_head); | |
2729 | } | |
2730 | ||
2731 | static bool purge_fragmented_block(struct vmap_block *vb, | |
2732 | struct list_head *purge_list, bool force_purge) | |
2733 | { | |
2734 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu); | |
2735 | ||
2736 | if (vb->free + vb->dirty != VMAP_BBMAP_BITS || | |
2737 | vb->dirty == VMAP_BBMAP_BITS) | |
2738 | return false; | |
2739 | ||
2740 | /* Don't overeagerly purge usable blocks unless requested */ | |
2741 | if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD)) | |
2742 | return false; | |
2743 | ||
2744 | /* prevent further allocs after releasing lock */ | |
2745 | WRITE_ONCE(vb->free, 0); | |
2746 | /* prevent purging it again */ | |
2747 | WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS); | |
2748 | vb->dirty_min = 0; | |
2749 | vb->dirty_max = VMAP_BBMAP_BITS; | |
2750 | spin_lock(&vbq->lock); | |
2751 | list_del_rcu(&vb->free_list); | |
2752 | spin_unlock(&vbq->lock); | |
2753 | list_add_tail(&vb->purge, purge_list); | |
2754 | return true; | |
2755 | } | |
2756 | ||
2757 | static void free_purged_blocks(struct list_head *purge_list) | |
2758 | { | |
2759 | struct vmap_block *vb, *n_vb; | |
2760 | ||
2761 | list_for_each_entry_safe(vb, n_vb, purge_list, purge) { | |
2762 | list_del(&vb->purge); | |
2763 | free_vmap_block(vb); | |
2764 | } | |
2765 | } | |
2766 | ||
2767 | static void purge_fragmented_blocks(int cpu) | |
2768 | { | |
2769 | LIST_HEAD(purge); | |
2770 | struct vmap_block *vb; | |
2771 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
2772 | ||
2773 | rcu_read_lock(); | |
2774 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
2775 | unsigned long free = READ_ONCE(vb->free); | |
2776 | unsigned long dirty = READ_ONCE(vb->dirty); | |
2777 | ||
2778 | if (free + dirty != VMAP_BBMAP_BITS || | |
2779 | dirty == VMAP_BBMAP_BITS) | |
2780 | continue; | |
2781 | ||
2782 | spin_lock(&vb->lock); | |
2783 | purge_fragmented_block(vb, &purge, true); | |
2784 | spin_unlock(&vb->lock); | |
2785 | } | |
2786 | rcu_read_unlock(); | |
2787 | free_purged_blocks(&purge); | |
2788 | } | |
2789 | ||
2790 | static void purge_fragmented_blocks_allcpus(void) | |
2791 | { | |
2792 | int cpu; | |
2793 | ||
2794 | for_each_possible_cpu(cpu) | |
2795 | purge_fragmented_blocks(cpu); | |
2796 | } | |
2797 | ||
2798 | static void *vb_alloc(unsigned long size, gfp_t gfp_mask) | |
2799 | { | |
2800 | struct vmap_block_queue *vbq; | |
2801 | struct vmap_block *vb; | |
2802 | void *vaddr = NULL; | |
2803 | unsigned int order; | |
2804 | ||
2805 | BUG_ON(offset_in_page(size)); | |
2806 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | |
2807 | if (WARN_ON(size == 0)) { | |
2808 | /* | |
2809 | * Allocating 0 bytes isn't what caller wants since | |
2810 | * get_order(0) returns funny result. Just warn and terminate | |
2811 | * early. | |
2812 | */ | |
2813 | return ERR_PTR(-EINVAL); | |
2814 | } | |
2815 | order = get_order(size); | |
2816 | ||
2817 | rcu_read_lock(); | |
2818 | vbq = raw_cpu_ptr(&vmap_block_queue); | |
2819 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
2820 | unsigned long pages_off; | |
2821 | ||
2822 | if (READ_ONCE(vb->free) < (1UL << order)) | |
2823 | continue; | |
2824 | ||
2825 | spin_lock(&vb->lock); | |
2826 | if (vb->free < (1UL << order)) { | |
2827 | spin_unlock(&vb->lock); | |
2828 | continue; | |
2829 | } | |
2830 | ||
2831 | pages_off = VMAP_BBMAP_BITS - vb->free; | |
2832 | vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); | |
2833 | WRITE_ONCE(vb->free, vb->free - (1UL << order)); | |
2834 | bitmap_set(vb->used_map, pages_off, (1UL << order)); | |
2835 | if (vb->free == 0) { | |
2836 | spin_lock(&vbq->lock); | |
2837 | list_del_rcu(&vb->free_list); | |
2838 | spin_unlock(&vbq->lock); | |
2839 | } | |
2840 | ||
2841 | spin_unlock(&vb->lock); | |
2842 | break; | |
2843 | } | |
2844 | ||
2845 | rcu_read_unlock(); | |
2846 | ||
2847 | /* Allocate new block if nothing was found */ | |
2848 | if (!vaddr) | |
2849 | vaddr = new_vmap_block(order, gfp_mask); | |
2850 | ||
2851 | return vaddr; | |
2852 | } | |
2853 | ||
2854 | static void vb_free(unsigned long addr, unsigned long size) | |
2855 | { | |
2856 | unsigned long offset; | |
2857 | unsigned int order; | |
2858 | struct vmap_block *vb; | |
2859 | struct xarray *xa; | |
2860 | ||
2861 | BUG_ON(offset_in_page(size)); | |
2862 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | |
2863 | ||
2864 | flush_cache_vunmap(addr, addr + size); | |
2865 | ||
2866 | order = get_order(size); | |
2867 | offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; | |
2868 | ||
2869 | xa = addr_to_vb_xa(addr); | |
2870 | vb = xa_load(xa, addr_to_vb_idx(addr)); | |
2871 | ||
2872 | spin_lock(&vb->lock); | |
2873 | bitmap_clear(vb->used_map, offset, (1UL << order)); | |
2874 | spin_unlock(&vb->lock); | |
2875 | ||
2876 | vunmap_range_noflush(addr, addr + size); | |
2877 | ||
2878 | if (debug_pagealloc_enabled_static()) | |
2879 | flush_tlb_kernel_range(addr, addr + size); | |
2880 | ||
2881 | spin_lock(&vb->lock); | |
2882 | ||
2883 | /* Expand the not yet TLB flushed dirty range */ | |
2884 | vb->dirty_min = min(vb->dirty_min, offset); | |
2885 | vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); | |
2886 | ||
2887 | WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order)); | |
2888 | if (vb->dirty == VMAP_BBMAP_BITS) { | |
2889 | BUG_ON(vb->free); | |
2890 | spin_unlock(&vb->lock); | |
2891 | free_vmap_block(vb); | |
2892 | } else | |
2893 | spin_unlock(&vb->lock); | |
2894 | } | |
2895 | ||
2896 | static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) | |
2897 | { | |
2898 | LIST_HEAD(purge_list); | |
2899 | int cpu; | |
2900 | ||
2901 | if (unlikely(!vmap_initialized)) | |
2902 | return; | |
2903 | ||
2904 | mutex_lock(&vmap_purge_lock); | |
2905 | ||
2906 | for_each_possible_cpu(cpu) { | |
2907 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
2908 | struct vmap_block *vb; | |
2909 | unsigned long idx; | |
2910 | ||
2911 | rcu_read_lock(); | |
2912 | xa_for_each(&vbq->vmap_blocks, idx, vb) { | |
2913 | spin_lock(&vb->lock); | |
2914 | ||
2915 | /* | |
2916 | * Try to purge a fragmented block first. If it's | |
2917 | * not purgeable, check whether there is dirty | |
2918 | * space to be flushed. | |
2919 | */ | |
2920 | if (!purge_fragmented_block(vb, &purge_list, false) && | |
2921 | vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) { | |
2922 | unsigned long va_start = vb->va->va_start; | |
2923 | unsigned long s, e; | |
2924 | ||
2925 | s = va_start + (vb->dirty_min << PAGE_SHIFT); | |
2926 | e = va_start + (vb->dirty_max << PAGE_SHIFT); | |
2927 | ||
2928 | start = min(s, start); | |
2929 | end = max(e, end); | |
2930 | ||
2931 | /* Prevent that this is flushed again */ | |
2932 | vb->dirty_min = VMAP_BBMAP_BITS; | |
2933 | vb->dirty_max = 0; | |
2934 | ||
2935 | flush = 1; | |
2936 | } | |
2937 | spin_unlock(&vb->lock); | |
2938 | } | |
2939 | rcu_read_unlock(); | |
2940 | } | |
2941 | free_purged_blocks(&purge_list); | |
2942 | ||
2943 | if (!__purge_vmap_area_lazy(start, end, false) && flush) | |
2944 | flush_tlb_kernel_range(start, end); | |
2945 | mutex_unlock(&vmap_purge_lock); | |
2946 | } | |
2947 | ||
2948 | /** | |
2949 | * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer | |
2950 | * | |
2951 | * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily | |
2952 | * to amortize TLB flushing overheads. What this means is that any page you | |
2953 | * have now, may, in a former life, have been mapped into kernel virtual | |
2954 | * address by the vmap layer and so there might be some CPUs with TLB entries | |
2955 | * still referencing that page (additional to the regular 1:1 kernel mapping). | |
2956 | * | |
2957 | * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can | |
2958 | * be sure that none of the pages we have control over will have any aliases | |
2959 | * from the vmap layer. | |
2960 | */ | |
2961 | void vm_unmap_aliases(void) | |
2962 | { | |
2963 | _vm_unmap_aliases(ULONG_MAX, 0, 0); | |
2964 | } | |
2965 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); | |
2966 | ||
2967 | /** | |
2968 | * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram | |
2969 | * @mem: the pointer returned by vm_map_ram | |
2970 | * @count: the count passed to that vm_map_ram call (cannot unmap partial) | |
2971 | */ | |
2972 | void vm_unmap_ram(const void *mem, unsigned int count) | |
2973 | { | |
2974 | unsigned long size = (unsigned long)count << PAGE_SHIFT; | |
2975 | unsigned long addr = (unsigned long)kasan_reset_tag(mem); | |
2976 | struct vmap_area *va; | |
2977 | ||
2978 | might_sleep(); | |
2979 | BUG_ON(!addr); | |
2980 | BUG_ON(addr < VMALLOC_START); | |
2981 | BUG_ON(addr > VMALLOC_END); | |
2982 | BUG_ON(!PAGE_ALIGNED(addr)); | |
2983 | ||
2984 | kasan_poison_vmalloc(mem, size); | |
2985 | ||
2986 | if (likely(count <= VMAP_MAX_ALLOC)) { | |
2987 | debug_check_no_locks_freed(mem, size); | |
2988 | vb_free(addr, size); | |
2989 | return; | |
2990 | } | |
2991 | ||
2992 | va = find_unlink_vmap_area(addr); | |
2993 | if (WARN_ON_ONCE(!va)) | |
2994 | return; | |
2995 | ||
2996 | debug_check_no_locks_freed((void *)va->va_start, va_size(va)); | |
2997 | free_unmap_vmap_area(va); | |
2998 | } | |
2999 | EXPORT_SYMBOL(vm_unmap_ram); | |
3000 | ||
3001 | /** | |
3002 | * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) | |
3003 | * @pages: an array of pointers to the pages to be mapped | |
3004 | * @count: number of pages | |
3005 | * @node: prefer to allocate data structures on this node | |
3006 | * | |
3007 | * If you use this function for less than VMAP_MAX_ALLOC pages, it could be | |
3008 | * faster than vmap so it's good. But if you mix long-life and short-life | |
3009 | * objects with vm_map_ram(), it could consume lots of address space through | |
3010 | * fragmentation (especially on a 32bit machine). You could see failures in | |
3011 | * the end. Please use this function for short-lived objects. | |
3012 | * | |
3013 | * Returns: a pointer to the address that has been mapped, or %NULL on failure | |
3014 | */ | |
3015 | void *vm_map_ram(struct page **pages, unsigned int count, int node) | |
3016 | { | |
3017 | unsigned long size = (unsigned long)count << PAGE_SHIFT; | |
3018 | unsigned long addr; | |
3019 | void *mem; | |
3020 | ||
3021 | if (likely(count <= VMAP_MAX_ALLOC)) { | |
3022 | mem = vb_alloc(size, GFP_KERNEL); | |
3023 | if (IS_ERR(mem)) | |
3024 | return NULL; | |
3025 | addr = (unsigned long)mem; | |
3026 | } else { | |
3027 | struct vmap_area *va; | |
3028 | va = alloc_vmap_area(size, PAGE_SIZE, | |
3029 | VMALLOC_START, VMALLOC_END, | |
3030 | node, GFP_KERNEL, VMAP_RAM, | |
3031 | NULL); | |
3032 | if (IS_ERR(va)) | |
3033 | return NULL; | |
3034 | ||
3035 | addr = va->va_start; | |
3036 | mem = (void *)addr; | |
3037 | } | |
3038 | ||
3039 | if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, | |
3040 | pages, PAGE_SHIFT) < 0) { | |
3041 | vm_unmap_ram(mem, count); | |
3042 | return NULL; | |
3043 | } | |
3044 | ||
3045 | /* | |
3046 | * Mark the pages as accessible, now that they are mapped. | |
3047 | * With hardware tag-based KASAN, marking is skipped for | |
3048 | * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). | |
3049 | */ | |
3050 | mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); | |
3051 | ||
3052 | return mem; | |
3053 | } | |
3054 | EXPORT_SYMBOL(vm_map_ram); | |
3055 | ||
3056 | static struct vm_struct *vmlist __initdata; | |
3057 | ||
3058 | static inline unsigned int vm_area_page_order(struct vm_struct *vm) | |
3059 | { | |
3060 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC | |
3061 | return vm->page_order; | |
3062 | #else | |
3063 | return 0; | |
3064 | #endif | |
3065 | } | |
3066 | ||
3067 | unsigned int get_vm_area_page_order(struct vm_struct *vm) | |
3068 | { | |
3069 | return vm_area_page_order(vm); | |
3070 | } | |
3071 | ||
3072 | static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) | |
3073 | { | |
3074 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC | |
3075 | vm->page_order = order; | |
3076 | #else | |
3077 | BUG_ON(order != 0); | |
3078 | #endif | |
3079 | } | |
3080 | ||
3081 | /** | |
3082 | * vm_area_add_early - add vmap area early during boot | |
3083 | * @vm: vm_struct to add | |
3084 | * | |
3085 | * This function is used to add fixed kernel vm area to vmlist before | |
3086 | * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags | |
3087 | * should contain proper values and the other fields should be zero. | |
3088 | * | |
3089 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
3090 | */ | |
3091 | void __init vm_area_add_early(struct vm_struct *vm) | |
3092 | { | |
3093 | struct vm_struct *tmp, **p; | |
3094 | ||
3095 | BUG_ON(vmap_initialized); | |
3096 | for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | |
3097 | if (tmp->addr >= vm->addr) { | |
3098 | BUG_ON(tmp->addr < vm->addr + vm->size); | |
3099 | break; | |
3100 | } else | |
3101 | BUG_ON(tmp->addr + tmp->size > vm->addr); | |
3102 | } | |
3103 | vm->next = *p; | |
3104 | *p = vm; | |
3105 | } | |
3106 | ||
3107 | /** | |
3108 | * vm_area_register_early - register vmap area early during boot | |
3109 | * @vm: vm_struct to register | |
3110 | * @align: requested alignment | |
3111 | * | |
3112 | * This function is used to register kernel vm area before | |
3113 | * vmalloc_init() is called. @vm->size and @vm->flags should contain | |
3114 | * proper values on entry and other fields should be zero. On return, | |
3115 | * vm->addr contains the allocated address. | |
3116 | * | |
3117 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
3118 | */ | |
3119 | void __init vm_area_register_early(struct vm_struct *vm, size_t align) | |
3120 | { | |
3121 | unsigned long addr = ALIGN(VMALLOC_START, align); | |
3122 | struct vm_struct *cur, **p; | |
3123 | ||
3124 | BUG_ON(vmap_initialized); | |
3125 | ||
3126 | for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { | |
3127 | if ((unsigned long)cur->addr - addr >= vm->size) | |
3128 | break; | |
3129 | addr = ALIGN((unsigned long)cur->addr + cur->size, align); | |
3130 | } | |
3131 | ||
3132 | BUG_ON(addr > VMALLOC_END - vm->size); | |
3133 | vm->addr = (void *)addr; | |
3134 | vm->next = *p; | |
3135 | *p = vm; | |
3136 | kasan_populate_early_vm_area_shadow(vm->addr, vm->size); | |
3137 | } | |
3138 | ||
3139 | static void clear_vm_uninitialized_flag(struct vm_struct *vm) | |
3140 | { | |
3141 | /* | |
3142 | * Before removing VM_UNINITIALIZED, | |
3143 | * we should make sure that vm has proper values. | |
3144 | * Pair with smp_rmb() in vread_iter() and vmalloc_info_show(). | |
3145 | */ | |
3146 | smp_wmb(); | |
3147 | vm->flags &= ~VM_UNINITIALIZED; | |
3148 | } | |
3149 | ||
3150 | struct vm_struct *__get_vm_area_node(unsigned long size, | |
3151 | unsigned long align, unsigned long shift, unsigned long flags, | |
3152 | unsigned long start, unsigned long end, int node, | |
3153 | gfp_t gfp_mask, const void *caller) | |
3154 | { | |
3155 | struct vmap_area *va; | |
3156 | struct vm_struct *area; | |
3157 | unsigned long requested_size = size; | |
3158 | ||
3159 | BUG_ON(in_interrupt()); | |
3160 | size = ALIGN(size, 1ul << shift); | |
3161 | if (unlikely(!size)) | |
3162 | return NULL; | |
3163 | ||
3164 | if (flags & VM_IOREMAP) | |
3165 | align = 1ul << clamp_t(int, get_count_order_long(size), | |
3166 | PAGE_SHIFT, IOREMAP_MAX_ORDER); | |
3167 | ||
3168 | area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); | |
3169 | if (unlikely(!area)) | |
3170 | return NULL; | |
3171 | ||
3172 | if (!(flags & VM_NO_GUARD)) | |
3173 | size += PAGE_SIZE; | |
3174 | ||
3175 | area->flags = flags; | |
3176 | area->caller = caller; | |
3177 | area->requested_size = requested_size; | |
3178 | ||
3179 | va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area); | |
3180 | if (IS_ERR(va)) { | |
3181 | kfree(area); | |
3182 | return NULL; | |
3183 | } | |
3184 | ||
3185 | /* | |
3186 | * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a | |
3187 | * best-effort approach, as they can be mapped outside of vmalloc code. | |
3188 | * For VM_ALLOC mappings, the pages are marked as accessible after | |
3189 | * getting mapped in __vmalloc_node_range(). | |
3190 | * With hardware tag-based KASAN, marking is skipped for | |
3191 | * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). | |
3192 | */ | |
3193 | if (!(flags & VM_ALLOC)) | |
3194 | area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, | |
3195 | KASAN_VMALLOC_PROT_NORMAL); | |
3196 | ||
3197 | return area; | |
3198 | } | |
3199 | ||
3200 | struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, | |
3201 | unsigned long start, unsigned long end, | |
3202 | const void *caller) | |
3203 | { | |
3204 | return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, | |
3205 | NUMA_NO_NODE, GFP_KERNEL, caller); | |
3206 | } | |
3207 | ||
3208 | /** | |
3209 | * get_vm_area - reserve a contiguous kernel virtual area | |
3210 | * @size: size of the area | |
3211 | * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC | |
3212 | * | |
3213 | * Search an area of @size in the kernel virtual mapping area, | |
3214 | * and reserved it for out purposes. Returns the area descriptor | |
3215 | * on success or %NULL on failure. | |
3216 | * | |
3217 | * Return: the area descriptor on success or %NULL on failure. | |
3218 | */ | |
3219 | struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) | |
3220 | { | |
3221 | return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, | |
3222 | VMALLOC_START, VMALLOC_END, | |
3223 | NUMA_NO_NODE, GFP_KERNEL, | |
3224 | __builtin_return_address(0)); | |
3225 | } | |
3226 | ||
3227 | struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, | |
3228 | const void *caller) | |
3229 | { | |
3230 | return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, | |
3231 | VMALLOC_START, VMALLOC_END, | |
3232 | NUMA_NO_NODE, GFP_KERNEL, caller); | |
3233 | } | |
3234 | ||
3235 | /** | |
3236 | * find_vm_area - find a continuous kernel virtual area | |
3237 | * @addr: base address | |
3238 | * | |
3239 | * Search for the kernel VM area starting at @addr, and return it. | |
3240 | * It is up to the caller to do all required locking to keep the returned | |
3241 | * pointer valid. | |
3242 | * | |
3243 | * Return: the area descriptor on success or %NULL on failure. | |
3244 | */ | |
3245 | struct vm_struct *find_vm_area(const void *addr) | |
3246 | { | |
3247 | struct vmap_area *va; | |
3248 | ||
3249 | va = find_vmap_area((unsigned long)addr); | |
3250 | if (!va) | |
3251 | return NULL; | |
3252 | ||
3253 | return va->vm; | |
3254 | } | |
3255 | ||
3256 | /** | |
3257 | * remove_vm_area - find and remove a continuous kernel virtual area | |
3258 | * @addr: base address | |
3259 | * | |
3260 | * Search for the kernel VM area starting at @addr, and remove it. | |
3261 | * This function returns the found VM area, but using it is NOT safe | |
3262 | * on SMP machines, except for its size or flags. | |
3263 | * | |
3264 | * Return: the area descriptor on success or %NULL on failure. | |
3265 | */ | |
3266 | struct vm_struct *remove_vm_area(const void *addr) | |
3267 | { | |
3268 | struct vmap_area *va; | |
3269 | struct vm_struct *vm; | |
3270 | ||
3271 | might_sleep(); | |
3272 | ||
3273 | if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", | |
3274 | addr)) | |
3275 | return NULL; | |
3276 | ||
3277 | va = find_unlink_vmap_area((unsigned long)addr); | |
3278 | if (!va || !va->vm) | |
3279 | return NULL; | |
3280 | vm = va->vm; | |
3281 | ||
3282 | debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm)); | |
3283 | debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm)); | |
3284 | kasan_free_module_shadow(vm); | |
3285 | kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm)); | |
3286 | ||
3287 | free_unmap_vmap_area(va); | |
3288 | return vm; | |
3289 | } | |
3290 | ||
3291 | static inline void set_area_direct_map(const struct vm_struct *area, | |
3292 | int (*set_direct_map)(struct page *page)) | |
3293 | { | |
3294 | int i; | |
3295 | ||
3296 | /* HUGE_VMALLOC passes small pages to set_direct_map */ | |
3297 | for (i = 0; i < area->nr_pages; i++) | |
3298 | if (page_address(area->pages[i])) | |
3299 | set_direct_map(area->pages[i]); | |
3300 | } | |
3301 | ||
3302 | /* | |
3303 | * Flush the vm mapping and reset the direct map. | |
3304 | */ | |
3305 | static void vm_reset_perms(struct vm_struct *area) | |
3306 | { | |
3307 | unsigned long start = ULONG_MAX, end = 0; | |
3308 | unsigned int page_order = vm_area_page_order(area); | |
3309 | int flush_dmap = 0; | |
3310 | int i; | |
3311 | ||
3312 | /* | |
3313 | * Find the start and end range of the direct mappings to make sure that | |
3314 | * the vm_unmap_aliases() flush includes the direct map. | |
3315 | */ | |
3316 | for (i = 0; i < area->nr_pages; i += 1U << page_order) { | |
3317 | unsigned long addr = (unsigned long)page_address(area->pages[i]); | |
3318 | ||
3319 | if (addr) { | |
3320 | unsigned long page_size; | |
3321 | ||
3322 | page_size = PAGE_SIZE << page_order; | |
3323 | start = min(addr, start); | |
3324 | end = max(addr + page_size, end); | |
3325 | flush_dmap = 1; | |
3326 | } | |
3327 | } | |
3328 | ||
3329 | /* | |
3330 | * Set direct map to something invalid so that it won't be cached if | |
3331 | * there are any accesses after the TLB flush, then flush the TLB and | |
3332 | * reset the direct map permissions to the default. | |
3333 | */ | |
3334 | set_area_direct_map(area, set_direct_map_invalid_noflush); | |
3335 | _vm_unmap_aliases(start, end, flush_dmap); | |
3336 | set_area_direct_map(area, set_direct_map_default_noflush); | |
3337 | } | |
3338 | ||
3339 | static void delayed_vfree_work(struct work_struct *w) | |
3340 | { | |
3341 | struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); | |
3342 | struct llist_node *t, *llnode; | |
3343 | ||
3344 | llist_for_each_safe(llnode, t, llist_del_all(&p->list)) | |
3345 | vfree(llnode); | |
3346 | } | |
3347 | ||
3348 | /** | |
3349 | * vfree_atomic - release memory allocated by vmalloc() | |
3350 | * @addr: memory base address | |
3351 | * | |
3352 | * This one is just like vfree() but can be called in any atomic context | |
3353 | * except NMIs. | |
3354 | */ | |
3355 | void vfree_atomic(const void *addr) | |
3356 | { | |
3357 | struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); | |
3358 | ||
3359 | BUG_ON(in_nmi()); | |
3360 | kmemleak_free(addr); | |
3361 | ||
3362 | /* | |
3363 | * Use raw_cpu_ptr() because this can be called from preemptible | |
3364 | * context. Preemption is absolutely fine here, because the llist_add() | |
3365 | * implementation is lockless, so it works even if we are adding to | |
3366 | * another cpu's list. schedule_work() should be fine with this too. | |
3367 | */ | |
3368 | if (addr && llist_add((struct llist_node *)addr, &p->list)) | |
3369 | schedule_work(&p->wq); | |
3370 | } | |
3371 | ||
3372 | /** | |
3373 | * vfree - Release memory allocated by vmalloc() | |
3374 | * @addr: Memory base address | |
3375 | * | |
3376 | * Free the virtually continuous memory area starting at @addr, as obtained | |
3377 | * from one of the vmalloc() family of APIs. This will usually also free the | |
3378 | * physical memory underlying the virtual allocation, but that memory is | |
3379 | * reference counted, so it will not be freed until the last user goes away. | |
3380 | * | |
3381 | * If @addr is NULL, no operation is performed. | |
3382 | * | |
3383 | * Context: | |
3384 | * May sleep if called *not* from interrupt context. | |
3385 | * Must not be called in NMI context (strictly speaking, it could be | |
3386 | * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling | |
3387 | * conventions for vfree() arch-dependent would be a really bad idea). | |
3388 | */ | |
3389 | void vfree(const void *addr) | |
3390 | { | |
3391 | struct vm_struct *vm; | |
3392 | int i; | |
3393 | ||
3394 | if (unlikely(in_interrupt())) { | |
3395 | vfree_atomic(addr); | |
3396 | return; | |
3397 | } | |
3398 | ||
3399 | BUG_ON(in_nmi()); | |
3400 | kmemleak_free(addr); | |
3401 | might_sleep(); | |
3402 | ||
3403 | if (!addr) | |
3404 | return; | |
3405 | ||
3406 | vm = remove_vm_area(addr); | |
3407 | if (unlikely(!vm)) { | |
3408 | WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", | |
3409 | addr); | |
3410 | return; | |
3411 | } | |
3412 | ||
3413 | if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS)) | |
3414 | vm_reset_perms(vm); | |
3415 | /* All pages of vm should be charged to same memcg, so use first one. */ | |
3416 | if (vm->nr_pages && !(vm->flags & VM_MAP_PUT_PAGES)) | |
3417 | mod_memcg_page_state(vm->pages[0], MEMCG_VMALLOC, -vm->nr_pages); | |
3418 | for (i = 0; i < vm->nr_pages; i++) { | |
3419 | struct page *page = vm->pages[i]; | |
3420 | ||
3421 | BUG_ON(!page); | |
3422 | /* | |
3423 | * High-order allocs for huge vmallocs are split, so | |
3424 | * can be freed as an array of order-0 allocations | |
3425 | */ | |
3426 | __free_page(page); | |
3427 | cond_resched(); | |
3428 | } | |
3429 | if (!(vm->flags & VM_MAP_PUT_PAGES)) | |
3430 | atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages); | |
3431 | kvfree(vm->pages); | |
3432 | kfree(vm); | |
3433 | } | |
3434 | EXPORT_SYMBOL(vfree); | |
3435 | ||
3436 | /** | |
3437 | * vunmap - release virtual mapping obtained by vmap() | |
3438 | * @addr: memory base address | |
3439 | * | |
3440 | * Free the virtually contiguous memory area starting at @addr, | |
3441 | * which was created from the page array passed to vmap(). | |
3442 | * | |
3443 | * Must not be called in interrupt context. | |
3444 | */ | |
3445 | void vunmap(const void *addr) | |
3446 | { | |
3447 | struct vm_struct *vm; | |
3448 | ||
3449 | BUG_ON(in_interrupt()); | |
3450 | might_sleep(); | |
3451 | ||
3452 | if (!addr) | |
3453 | return; | |
3454 | vm = remove_vm_area(addr); | |
3455 | if (unlikely(!vm)) { | |
3456 | WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n", | |
3457 | addr); | |
3458 | return; | |
3459 | } | |
3460 | kfree(vm); | |
3461 | } | |
3462 | EXPORT_SYMBOL(vunmap); | |
3463 | ||
3464 | /** | |
3465 | * vmap - map an array of pages into virtually contiguous space | |
3466 | * @pages: array of page pointers | |
3467 | * @count: number of pages to map | |
3468 | * @flags: vm_area->flags | |
3469 | * @prot: page protection for the mapping | |
3470 | * | |
3471 | * Maps @count pages from @pages into contiguous kernel virtual space. | |
3472 | * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself | |
3473 | * (which must be kmalloc or vmalloc memory) and one reference per pages in it | |
3474 | * are transferred from the caller to vmap(), and will be freed / dropped when | |
3475 | * vfree() is called on the return value. | |
3476 | * | |
3477 | * Return: the address of the area or %NULL on failure | |
3478 | */ | |
3479 | void *vmap(struct page **pages, unsigned int count, | |
3480 | unsigned long flags, pgprot_t prot) | |
3481 | { | |
3482 | struct vm_struct *area; | |
3483 | unsigned long addr; | |
3484 | unsigned long size; /* In bytes */ | |
3485 | ||
3486 | might_sleep(); | |
3487 | ||
3488 | if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS)) | |
3489 | return NULL; | |
3490 | ||
3491 | /* | |
3492 | * Your top guard is someone else's bottom guard. Not having a top | |
3493 | * guard compromises someone else's mappings too. | |
3494 | */ | |
3495 | if (WARN_ON_ONCE(flags & VM_NO_GUARD)) | |
3496 | flags &= ~VM_NO_GUARD; | |
3497 | ||
3498 | if (count > totalram_pages()) | |
3499 | return NULL; | |
3500 | ||
3501 | size = (unsigned long)count << PAGE_SHIFT; | |
3502 | area = get_vm_area_caller(size, flags, __builtin_return_address(0)); | |
3503 | if (!area) | |
3504 | return NULL; | |
3505 | ||
3506 | addr = (unsigned long)area->addr; | |
3507 | if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), | |
3508 | pages, PAGE_SHIFT) < 0) { | |
3509 | vunmap(area->addr); | |
3510 | return NULL; | |
3511 | } | |
3512 | ||
3513 | if (flags & VM_MAP_PUT_PAGES) { | |
3514 | area->pages = pages; | |
3515 | area->nr_pages = count; | |
3516 | } | |
3517 | return area->addr; | |
3518 | } | |
3519 | EXPORT_SYMBOL(vmap); | |
3520 | ||
3521 | #ifdef CONFIG_VMAP_PFN | |
3522 | struct vmap_pfn_data { | |
3523 | unsigned long *pfns; | |
3524 | pgprot_t prot; | |
3525 | unsigned int idx; | |
3526 | }; | |
3527 | ||
3528 | static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) | |
3529 | { | |
3530 | struct vmap_pfn_data *data = private; | |
3531 | unsigned long pfn = data->pfns[data->idx]; | |
3532 | pte_t ptent; | |
3533 | ||
3534 | if (WARN_ON_ONCE(pfn_valid(pfn))) | |
3535 | return -EINVAL; | |
3536 | ||
3537 | ptent = pte_mkspecial(pfn_pte(pfn, data->prot)); | |
3538 | set_pte_at(&init_mm, addr, pte, ptent); | |
3539 | ||
3540 | data->idx++; | |
3541 | return 0; | |
3542 | } | |
3543 | ||
3544 | /** | |
3545 | * vmap_pfn - map an array of PFNs into virtually contiguous space | |
3546 | * @pfns: array of PFNs | |
3547 | * @count: number of pages to map | |
3548 | * @prot: page protection for the mapping | |
3549 | * | |
3550 | * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns | |
3551 | * the start address of the mapping. | |
3552 | */ | |
3553 | void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) | |
3554 | { | |
3555 | struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; | |
3556 | struct vm_struct *area; | |
3557 | ||
3558 | area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, | |
3559 | __builtin_return_address(0)); | |
3560 | if (!area) | |
3561 | return NULL; | |
3562 | if (apply_to_page_range(&init_mm, (unsigned long)area->addr, | |
3563 | count * PAGE_SIZE, vmap_pfn_apply, &data)) { | |
3564 | free_vm_area(area); | |
3565 | return NULL; | |
3566 | } | |
3567 | ||
3568 | flush_cache_vmap((unsigned long)area->addr, | |
3569 | (unsigned long)area->addr + count * PAGE_SIZE); | |
3570 | ||
3571 | return area->addr; | |
3572 | } | |
3573 | EXPORT_SYMBOL_GPL(vmap_pfn); | |
3574 | #endif /* CONFIG_VMAP_PFN */ | |
3575 | ||
3576 | static inline unsigned int | |
3577 | vm_area_alloc_pages(gfp_t gfp, int nid, | |
3578 | unsigned int order, unsigned int nr_pages, struct page **pages) | |
3579 | { | |
3580 | unsigned int nr_allocated = 0; | |
3581 | struct page *page; | |
3582 | int i; | |
3583 | ||
3584 | /* | |
3585 | * For order-0 pages we make use of bulk allocator, if | |
3586 | * the page array is partly or not at all populated due | |
3587 | * to fails, fallback to a single page allocator that is | |
3588 | * more permissive. | |
3589 | */ | |
3590 | if (!order) { | |
3591 | while (nr_allocated < nr_pages) { | |
3592 | unsigned int nr, nr_pages_request; | |
3593 | ||
3594 | /* | |
3595 | * A maximum allowed request is hard-coded and is 100 | |
3596 | * pages per call. That is done in order to prevent a | |
3597 | * long preemption off scenario in the bulk-allocator | |
3598 | * so the range is [1:100]. | |
3599 | */ | |
3600 | nr_pages_request = min(100U, nr_pages - nr_allocated); | |
3601 | ||
3602 | /* memory allocation should consider mempolicy, we can't | |
3603 | * wrongly use nearest node when nid == NUMA_NO_NODE, | |
3604 | * otherwise memory may be allocated in only one node, | |
3605 | * but mempolicy wants to alloc memory by interleaving. | |
3606 | */ | |
3607 | if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) | |
3608 | nr = alloc_pages_bulk_mempolicy_noprof(gfp, | |
3609 | nr_pages_request, | |
3610 | pages + nr_allocated); | |
3611 | else | |
3612 | nr = alloc_pages_bulk_node_noprof(gfp, nid, | |
3613 | nr_pages_request, | |
3614 | pages + nr_allocated); | |
3615 | ||
3616 | nr_allocated += nr; | |
3617 | cond_resched(); | |
3618 | ||
3619 | /* | |
3620 | * If zero or pages were obtained partly, | |
3621 | * fallback to a single page allocator. | |
3622 | */ | |
3623 | if (nr != nr_pages_request) | |
3624 | break; | |
3625 | } | |
3626 | } | |
3627 | ||
3628 | /* High-order pages or fallback path if "bulk" fails. */ | |
3629 | while (nr_allocated < nr_pages) { | |
3630 | if (!(gfp & __GFP_NOFAIL) && fatal_signal_pending(current)) | |
3631 | break; | |
3632 | ||
3633 | if (nid == NUMA_NO_NODE) | |
3634 | page = alloc_pages_noprof(gfp, order); | |
3635 | else | |
3636 | page = alloc_pages_node_noprof(nid, gfp, order); | |
3637 | ||
3638 | if (unlikely(!page)) | |
3639 | break; | |
3640 | ||
3641 | /* | |
3642 | * High-order allocations must be able to be treated as | |
3643 | * independent small pages by callers (as they can with | |
3644 | * small-page vmallocs). Some drivers do their own refcounting | |
3645 | * on vmalloc_to_page() pages, some use page->mapping, | |
3646 | * page->lru, etc. | |
3647 | */ | |
3648 | if (order) | |
3649 | split_page(page, order); | |
3650 | ||
3651 | /* | |
3652 | * Careful, we allocate and map page-order pages, but | |
3653 | * tracking is done per PAGE_SIZE page so as to keep the | |
3654 | * vm_struct APIs independent of the physical/mapped size. | |
3655 | */ | |
3656 | for (i = 0; i < (1U << order); i++) | |
3657 | pages[nr_allocated + i] = page + i; | |
3658 | ||
3659 | cond_resched(); | |
3660 | nr_allocated += 1U << order; | |
3661 | } | |
3662 | ||
3663 | return nr_allocated; | |
3664 | } | |
3665 | ||
3666 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, | |
3667 | pgprot_t prot, unsigned int page_shift, | |
3668 | int node) | |
3669 | { | |
3670 | const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; | |
3671 | bool nofail = gfp_mask & __GFP_NOFAIL; | |
3672 | unsigned long addr = (unsigned long)area->addr; | |
3673 | unsigned long size = get_vm_area_size(area); | |
3674 | unsigned long array_size; | |
3675 | unsigned int nr_small_pages = size >> PAGE_SHIFT; | |
3676 | unsigned int page_order; | |
3677 | unsigned int flags; | |
3678 | int ret; | |
3679 | ||
3680 | array_size = (unsigned long)nr_small_pages * sizeof(struct page *); | |
3681 | ||
3682 | if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) | |
3683 | gfp_mask |= __GFP_HIGHMEM; | |
3684 | ||
3685 | /* Please note that the recursion is strictly bounded. */ | |
3686 | if (array_size > PAGE_SIZE) { | |
3687 | area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node, | |
3688 | area->caller); | |
3689 | } else { | |
3690 | area->pages = kmalloc_node_noprof(array_size, nested_gfp, node); | |
3691 | } | |
3692 | ||
3693 | if (!area->pages) { | |
3694 | warn_alloc(gfp_mask, NULL, | |
3695 | "vmalloc error: size %lu, failed to allocated page array size %lu", | |
3696 | nr_small_pages * PAGE_SIZE, array_size); | |
3697 | free_vm_area(area); | |
3698 | return NULL; | |
3699 | } | |
3700 | ||
3701 | set_vm_area_page_order(area, page_shift - PAGE_SHIFT); | |
3702 | page_order = vm_area_page_order(area); | |
3703 | ||
3704 | /* | |
3705 | * High-order nofail allocations are really expensive and | |
3706 | * potentially dangerous (pre-mature OOM, disruptive reclaim | |
3707 | * and compaction etc. | |
3708 | * | |
3709 | * Please note, the __vmalloc_node_range_noprof() falls-back | |
3710 | * to order-0 pages if high-order attempt is unsuccessful. | |
3711 | */ | |
3712 | area->nr_pages = vm_area_alloc_pages((page_order ? | |
3713 | gfp_mask & ~__GFP_NOFAIL : gfp_mask) | __GFP_NOWARN, | |
3714 | node, page_order, nr_small_pages, area->pages); | |
3715 | ||
3716 | atomic_long_add(area->nr_pages, &nr_vmalloc_pages); | |
3717 | /* All pages of vm should be charged to same memcg, so use first one. */ | |
3718 | if (gfp_mask & __GFP_ACCOUNT && area->nr_pages) | |
3719 | mod_memcg_page_state(area->pages[0], MEMCG_VMALLOC, | |
3720 | area->nr_pages); | |
3721 | ||
3722 | /* | |
3723 | * If not enough pages were obtained to accomplish an | |
3724 | * allocation request, free them via vfree() if any. | |
3725 | */ | |
3726 | if (area->nr_pages != nr_small_pages) { | |
3727 | /* | |
3728 | * vm_area_alloc_pages() can fail due to insufficient memory but | |
3729 | * also:- | |
3730 | * | |
3731 | * - a pending fatal signal | |
3732 | * - insufficient huge page-order pages | |
3733 | * | |
3734 | * Since we always retry allocations at order-0 in the huge page | |
3735 | * case a warning for either is spurious. | |
3736 | */ | |
3737 | if (!fatal_signal_pending(current) && page_order == 0) | |
3738 | warn_alloc(gfp_mask, NULL, | |
3739 | "vmalloc error: size %lu, failed to allocate pages", | |
3740 | area->nr_pages * PAGE_SIZE); | |
3741 | goto fail; | |
3742 | } | |
3743 | ||
3744 | /* | |
3745 | * page tables allocations ignore external gfp mask, enforce it | |
3746 | * by the scope API | |
3747 | */ | |
3748 | if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) | |
3749 | flags = memalloc_nofs_save(); | |
3750 | else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) | |
3751 | flags = memalloc_noio_save(); | |
3752 | ||
3753 | do { | |
3754 | ret = vmap_pages_range(addr, addr + size, prot, area->pages, | |
3755 | page_shift); | |
3756 | if (nofail && (ret < 0)) | |
3757 | schedule_timeout_uninterruptible(1); | |
3758 | } while (nofail && (ret < 0)); | |
3759 | ||
3760 | if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) | |
3761 | memalloc_nofs_restore(flags); | |
3762 | else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) | |
3763 | memalloc_noio_restore(flags); | |
3764 | ||
3765 | if (ret < 0) { | |
3766 | warn_alloc(gfp_mask, NULL, | |
3767 | "vmalloc error: size %lu, failed to map pages", | |
3768 | area->nr_pages * PAGE_SIZE); | |
3769 | goto fail; | |
3770 | } | |
3771 | ||
3772 | return area->addr; | |
3773 | ||
3774 | fail: | |
3775 | vfree(area->addr); | |
3776 | return NULL; | |
3777 | } | |
3778 | ||
3779 | /** | |
3780 | * __vmalloc_node_range - allocate virtually contiguous memory | |
3781 | * @size: allocation size | |
3782 | * @align: desired alignment | |
3783 | * @start: vm area range start | |
3784 | * @end: vm area range end | |
3785 | * @gfp_mask: flags for the page level allocator | |
3786 | * @prot: protection mask for the allocated pages | |
3787 | * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) | |
3788 | * @node: node to use for allocation or NUMA_NO_NODE | |
3789 | * @caller: caller's return address | |
3790 | * | |
3791 | * Allocate enough pages to cover @size from the page level | |
3792 | * allocator with @gfp_mask flags. Please note that the full set of gfp | |
3793 | * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all | |
3794 | * supported. | |
3795 | * Zone modifiers are not supported. From the reclaim modifiers | |
3796 | * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) | |
3797 | * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and | |
3798 | * __GFP_RETRY_MAYFAIL are not supported). | |
3799 | * | |
3800 | * __GFP_NOWARN can be used to suppress failures messages. | |
3801 | * | |
3802 | * Map them into contiguous kernel virtual space, using a pagetable | |
3803 | * protection of @prot. | |
3804 | * | |
3805 | * Return: the address of the area or %NULL on failure | |
3806 | */ | |
3807 | void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align, | |
3808 | unsigned long start, unsigned long end, gfp_t gfp_mask, | |
3809 | pgprot_t prot, unsigned long vm_flags, int node, | |
3810 | const void *caller) | |
3811 | { | |
3812 | struct vm_struct *area; | |
3813 | void *ret; | |
3814 | kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; | |
3815 | unsigned long original_align = align; | |
3816 | unsigned int shift = PAGE_SHIFT; | |
3817 | ||
3818 | if (WARN_ON_ONCE(!size)) | |
3819 | return NULL; | |
3820 | ||
3821 | if ((size >> PAGE_SHIFT) > totalram_pages()) { | |
3822 | warn_alloc(gfp_mask, NULL, | |
3823 | "vmalloc error: size %lu, exceeds total pages", | |
3824 | size); | |
3825 | return NULL; | |
3826 | } | |
3827 | ||
3828 | if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { | |
3829 | /* | |
3830 | * Try huge pages. Only try for PAGE_KERNEL allocations, | |
3831 | * others like modules don't yet expect huge pages in | |
3832 | * their allocations due to apply_to_page_range not | |
3833 | * supporting them. | |
3834 | */ | |
3835 | ||
3836 | if (arch_vmap_pmd_supported(prot) && size >= PMD_SIZE) | |
3837 | shift = PMD_SHIFT; | |
3838 | else | |
3839 | shift = arch_vmap_pte_supported_shift(size); | |
3840 | ||
3841 | align = max(original_align, 1UL << shift); | |
3842 | } | |
3843 | ||
3844 | again: | |
3845 | area = __get_vm_area_node(size, align, shift, VM_ALLOC | | |
3846 | VM_UNINITIALIZED | vm_flags, start, end, node, | |
3847 | gfp_mask, caller); | |
3848 | if (!area) { | |
3849 | bool nofail = gfp_mask & __GFP_NOFAIL; | |
3850 | warn_alloc(gfp_mask, NULL, | |
3851 | "vmalloc error: size %lu, vm_struct allocation failed%s", | |
3852 | size, (nofail) ? ". Retrying." : ""); | |
3853 | if (nofail) { | |
3854 | schedule_timeout_uninterruptible(1); | |
3855 | goto again; | |
3856 | } | |
3857 | goto fail; | |
3858 | } | |
3859 | ||
3860 | /* | |
3861 | * Prepare arguments for __vmalloc_area_node() and | |
3862 | * kasan_unpoison_vmalloc(). | |
3863 | */ | |
3864 | if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { | |
3865 | if (kasan_hw_tags_enabled()) { | |
3866 | /* | |
3867 | * Modify protection bits to allow tagging. | |
3868 | * This must be done before mapping. | |
3869 | */ | |
3870 | prot = arch_vmap_pgprot_tagged(prot); | |
3871 | ||
3872 | /* | |
3873 | * Skip page_alloc poisoning and zeroing for physical | |
3874 | * pages backing VM_ALLOC mapping. Memory is instead | |
3875 | * poisoned and zeroed by kasan_unpoison_vmalloc(). | |
3876 | */ | |
3877 | gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO; | |
3878 | } | |
3879 | ||
3880 | /* Take note that the mapping is PAGE_KERNEL. */ | |
3881 | kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; | |
3882 | } | |
3883 | ||
3884 | /* Allocate physical pages and map them into vmalloc space. */ | |
3885 | ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); | |
3886 | if (!ret) | |
3887 | goto fail; | |
3888 | ||
3889 | /* | |
3890 | * Mark the pages as accessible, now that they are mapped. | |
3891 | * The condition for setting KASAN_VMALLOC_INIT should complement the | |
3892 | * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check | |
3893 | * to make sure that memory is initialized under the same conditions. | |
3894 | * Tag-based KASAN modes only assign tags to normal non-executable | |
3895 | * allocations, see __kasan_unpoison_vmalloc(). | |
3896 | */ | |
3897 | kasan_flags |= KASAN_VMALLOC_VM_ALLOC; | |
3898 | if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && | |
3899 | (gfp_mask & __GFP_SKIP_ZERO)) | |
3900 | kasan_flags |= KASAN_VMALLOC_INIT; | |
3901 | /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ | |
3902 | area->addr = kasan_unpoison_vmalloc(area->addr, size, kasan_flags); | |
3903 | ||
3904 | /* | |
3905 | * In this function, newly allocated vm_struct has VM_UNINITIALIZED | |
3906 | * flag. It means that vm_struct is not fully initialized. | |
3907 | * Now, it is fully initialized, so remove this flag here. | |
3908 | */ | |
3909 | clear_vm_uninitialized_flag(area); | |
3910 | ||
3911 | if (!(vm_flags & VM_DEFER_KMEMLEAK)) | |
3912 | kmemleak_vmalloc(area, PAGE_ALIGN(size), gfp_mask); | |
3913 | ||
3914 | return area->addr; | |
3915 | ||
3916 | fail: | |
3917 | if (shift > PAGE_SHIFT) { | |
3918 | shift = PAGE_SHIFT; | |
3919 | align = original_align; | |
3920 | goto again; | |
3921 | } | |
3922 | ||
3923 | return NULL; | |
3924 | } | |
3925 | ||
3926 | /** | |
3927 | * __vmalloc_node - allocate virtually contiguous memory | |
3928 | * @size: allocation size | |
3929 | * @align: desired alignment | |
3930 | * @gfp_mask: flags for the page level allocator | |
3931 | * @node: node to use for allocation or NUMA_NO_NODE | |
3932 | * @caller: caller's return address | |
3933 | * | |
3934 | * Allocate enough pages to cover @size from the page level allocator with | |
3935 | * @gfp_mask flags. Map them into contiguous kernel virtual space. | |
3936 | * | |
3937 | * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL | |
3938 | * and __GFP_NOFAIL are not supported | |
3939 | * | |
3940 | * Any use of gfp flags outside of GFP_KERNEL should be consulted | |
3941 | * with mm people. | |
3942 | * | |
3943 | * Return: pointer to the allocated memory or %NULL on error | |
3944 | */ | |
3945 | void *__vmalloc_node_noprof(unsigned long size, unsigned long align, | |
3946 | gfp_t gfp_mask, int node, const void *caller) | |
3947 | { | |
3948 | return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END, | |
3949 | gfp_mask, PAGE_KERNEL, 0, node, caller); | |
3950 | } | |
3951 | /* | |
3952 | * This is only for performance analysis of vmalloc and stress purpose. | |
3953 | * It is required by vmalloc test module, therefore do not use it other | |
3954 | * than that. | |
3955 | */ | |
3956 | #ifdef CONFIG_TEST_VMALLOC_MODULE | |
3957 | EXPORT_SYMBOL_GPL(__vmalloc_node_noprof); | |
3958 | #endif | |
3959 | ||
3960 | void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask) | |
3961 | { | |
3962 | return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE, | |
3963 | __builtin_return_address(0)); | |
3964 | } | |
3965 | EXPORT_SYMBOL(__vmalloc_noprof); | |
3966 | ||
3967 | /** | |
3968 | * vmalloc - allocate virtually contiguous memory | |
3969 | * @size: allocation size | |
3970 | * | |
3971 | * Allocate enough pages to cover @size from the page level | |
3972 | * allocator and map them into contiguous kernel virtual space. | |
3973 | * | |
3974 | * For tight control over page level allocator and protection flags | |
3975 | * use __vmalloc() instead. | |
3976 | * | |
3977 | * Return: pointer to the allocated memory or %NULL on error | |
3978 | */ | |
3979 | void *vmalloc_noprof(unsigned long size) | |
3980 | { | |
3981 | return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE, | |
3982 | __builtin_return_address(0)); | |
3983 | } | |
3984 | EXPORT_SYMBOL(vmalloc_noprof); | |
3985 | ||
3986 | /** | |
3987 | * vmalloc_huge_node - allocate virtually contiguous memory, allow huge pages | |
3988 | * @size: allocation size | |
3989 | * @gfp_mask: flags for the page level allocator | |
3990 | * @node: node to use for allocation or NUMA_NO_NODE | |
3991 | * | |
3992 | * Allocate enough pages to cover @size from the page level | |
3993 | * allocator and map them into contiguous kernel virtual space. | |
3994 | * If @size is greater than or equal to PMD_SIZE, allow using | |
3995 | * huge pages for the memory | |
3996 | * | |
3997 | * Return: pointer to the allocated memory or %NULL on error | |
3998 | */ | |
3999 | void *vmalloc_huge_node_noprof(unsigned long size, gfp_t gfp_mask, int node) | |
4000 | { | |
4001 | return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, | |
4002 | gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, | |
4003 | node, __builtin_return_address(0)); | |
4004 | } | |
4005 | EXPORT_SYMBOL_GPL(vmalloc_huge_node_noprof); | |
4006 | ||
4007 | /** | |
4008 | * vzalloc - allocate virtually contiguous memory with zero fill | |
4009 | * @size: allocation size | |
4010 | * | |
4011 | * Allocate enough pages to cover @size from the page level | |
4012 | * allocator and map them into contiguous kernel virtual space. | |
4013 | * The memory allocated is set to zero. | |
4014 | * | |
4015 | * For tight control over page level allocator and protection flags | |
4016 | * use __vmalloc() instead. | |
4017 | * | |
4018 | * Return: pointer to the allocated memory or %NULL on error | |
4019 | */ | |
4020 | void *vzalloc_noprof(unsigned long size) | |
4021 | { | |
4022 | return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, | |
4023 | __builtin_return_address(0)); | |
4024 | } | |
4025 | EXPORT_SYMBOL(vzalloc_noprof); | |
4026 | ||
4027 | /** | |
4028 | * vmalloc_user - allocate zeroed virtually contiguous memory for userspace | |
4029 | * @size: allocation size | |
4030 | * | |
4031 | * The resulting memory area is zeroed so it can be mapped to userspace | |
4032 | * without leaking data. | |
4033 | * | |
4034 | * Return: pointer to the allocated memory or %NULL on error | |
4035 | */ | |
4036 | void *vmalloc_user_noprof(unsigned long size) | |
4037 | { | |
4038 | return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, | |
4039 | GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, | |
4040 | VM_USERMAP, NUMA_NO_NODE, | |
4041 | __builtin_return_address(0)); | |
4042 | } | |
4043 | EXPORT_SYMBOL(vmalloc_user_noprof); | |
4044 | ||
4045 | /** | |
4046 | * vmalloc_node - allocate memory on a specific node | |
4047 | * @size: allocation size | |
4048 | * @node: numa node | |
4049 | * | |
4050 | * Allocate enough pages to cover @size from the page level | |
4051 | * allocator and map them into contiguous kernel virtual space. | |
4052 | * | |
4053 | * For tight control over page level allocator and protection flags | |
4054 | * use __vmalloc() instead. | |
4055 | * | |
4056 | * Return: pointer to the allocated memory or %NULL on error | |
4057 | */ | |
4058 | void *vmalloc_node_noprof(unsigned long size, int node) | |
4059 | { | |
4060 | return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node, | |
4061 | __builtin_return_address(0)); | |
4062 | } | |
4063 | EXPORT_SYMBOL(vmalloc_node_noprof); | |
4064 | ||
4065 | /** | |
4066 | * vzalloc_node - allocate memory on a specific node with zero fill | |
4067 | * @size: allocation size | |
4068 | * @node: numa node | |
4069 | * | |
4070 | * Allocate enough pages to cover @size from the page level | |
4071 | * allocator and map them into contiguous kernel virtual space. | |
4072 | * The memory allocated is set to zero. | |
4073 | * | |
4074 | * Return: pointer to the allocated memory or %NULL on error | |
4075 | */ | |
4076 | void *vzalloc_node_noprof(unsigned long size, int node) | |
4077 | { | |
4078 | return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node, | |
4079 | __builtin_return_address(0)); | |
4080 | } | |
4081 | EXPORT_SYMBOL(vzalloc_node_noprof); | |
4082 | ||
4083 | /** | |
4084 | * vrealloc - reallocate virtually contiguous memory; contents remain unchanged | |
4085 | * @p: object to reallocate memory for | |
4086 | * @size: the size to reallocate | |
4087 | * @flags: the flags for the page level allocator | |
4088 | * | |
4089 | * If @p is %NULL, vrealloc() behaves exactly like vmalloc(). If @size is 0 and | |
4090 | * @p is not a %NULL pointer, the object pointed to is freed. | |
4091 | * | |
4092 | * If __GFP_ZERO logic is requested, callers must ensure that, starting with the | |
4093 | * initial memory allocation, every subsequent call to this API for the same | |
4094 | * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that | |
4095 | * __GFP_ZERO is not fully honored by this API. | |
4096 | * | |
4097 | * In any case, the contents of the object pointed to are preserved up to the | |
4098 | * lesser of the new and old sizes. | |
4099 | * | |
4100 | * This function must not be called concurrently with itself or vfree() for the | |
4101 | * same memory allocation. | |
4102 | * | |
4103 | * Return: pointer to the allocated memory; %NULL if @size is zero or in case of | |
4104 | * failure | |
4105 | */ | |
4106 | void *vrealloc_noprof(const void *p, size_t size, gfp_t flags) | |
4107 | { | |
4108 | struct vm_struct *vm = NULL; | |
4109 | size_t alloced_size = 0; | |
4110 | size_t old_size = 0; | |
4111 | void *n; | |
4112 | ||
4113 | if (!size) { | |
4114 | vfree(p); | |
4115 | return NULL; | |
4116 | } | |
4117 | ||
4118 | if (p) { | |
4119 | vm = find_vm_area(p); | |
4120 | if (unlikely(!vm)) { | |
4121 | WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p); | |
4122 | return NULL; | |
4123 | } | |
4124 | ||
4125 | alloced_size = get_vm_area_size(vm); | |
4126 | old_size = vm->requested_size; | |
4127 | if (WARN(alloced_size < old_size, | |
4128 | "vrealloc() has mismatched area vs requested sizes (%p)\n", p)) | |
4129 | return NULL; | |
4130 | } | |
4131 | ||
4132 | /* | |
4133 | * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What | |
4134 | * would be a good heuristic for when to shrink the vm_area? | |
4135 | */ | |
4136 | if (size <= old_size) { | |
4137 | /* Zero out "freed" memory, potentially for future realloc. */ | |
4138 | if (want_init_on_free() || want_init_on_alloc(flags)) | |
4139 | memset((void *)p + size, 0, old_size - size); | |
4140 | vm->requested_size = size; | |
4141 | kasan_poison_vmalloc(p + size, old_size - size); | |
4142 | return (void *)p; | |
4143 | } | |
4144 | ||
4145 | /* | |
4146 | * We already have the bytes available in the allocation; use them. | |
4147 | */ | |
4148 | if (size <= alloced_size) { | |
4149 | kasan_unpoison_vmalloc(p + old_size, size - old_size, | |
4150 | KASAN_VMALLOC_PROT_NORMAL); | |
4151 | /* | |
4152 | * No need to zero memory here, as unused memory will have | |
4153 | * already been zeroed at initial allocation time or during | |
4154 | * realloc shrink time. | |
4155 | */ | |
4156 | vm->requested_size = size; | |
4157 | return (void *)p; | |
4158 | } | |
4159 | ||
4160 | /* TODO: Grow the vm_area, i.e. allocate and map additional pages. */ | |
4161 | n = __vmalloc_noprof(size, flags); | |
4162 | if (!n) | |
4163 | return NULL; | |
4164 | ||
4165 | if (p) { | |
4166 | memcpy(n, p, old_size); | |
4167 | vfree(p); | |
4168 | } | |
4169 | ||
4170 | return n; | |
4171 | } | |
4172 | ||
4173 | #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) | |
4174 | #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) | |
4175 | #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) | |
4176 | #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) | |
4177 | #else | |
4178 | /* | |
4179 | * 64b systems should always have either DMA or DMA32 zones. For others | |
4180 | * GFP_DMA32 should do the right thing and use the normal zone. | |
4181 | */ | |
4182 | #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) | |
4183 | #endif | |
4184 | ||
4185 | /** | |
4186 | * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) | |
4187 | * @size: allocation size | |
4188 | * | |
4189 | * Allocate enough 32bit PA addressable pages to cover @size from the | |
4190 | * page level allocator and map them into contiguous kernel virtual space. | |
4191 | * | |
4192 | * Return: pointer to the allocated memory or %NULL on error | |
4193 | */ | |
4194 | void *vmalloc_32_noprof(unsigned long size) | |
4195 | { | |
4196 | return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, | |
4197 | __builtin_return_address(0)); | |
4198 | } | |
4199 | EXPORT_SYMBOL(vmalloc_32_noprof); | |
4200 | ||
4201 | /** | |
4202 | * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory | |
4203 | * @size: allocation size | |
4204 | * | |
4205 | * The resulting memory area is 32bit addressable and zeroed so it can be | |
4206 | * mapped to userspace without leaking data. | |
4207 | * | |
4208 | * Return: pointer to the allocated memory or %NULL on error | |
4209 | */ | |
4210 | void *vmalloc_32_user_noprof(unsigned long size) | |
4211 | { | |
4212 | return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, | |
4213 | GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, | |
4214 | VM_USERMAP, NUMA_NO_NODE, | |
4215 | __builtin_return_address(0)); | |
4216 | } | |
4217 | EXPORT_SYMBOL(vmalloc_32_user_noprof); | |
4218 | ||
4219 | /* | |
4220 | * Atomically zero bytes in the iterator. | |
4221 | * | |
4222 | * Returns the number of zeroed bytes. | |
4223 | */ | |
4224 | static size_t zero_iter(struct iov_iter *iter, size_t count) | |
4225 | { | |
4226 | size_t remains = count; | |
4227 | ||
4228 | while (remains > 0) { | |
4229 | size_t num, copied; | |
4230 | ||
4231 | num = min_t(size_t, remains, PAGE_SIZE); | |
4232 | copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter); | |
4233 | remains -= copied; | |
4234 | ||
4235 | if (copied < num) | |
4236 | break; | |
4237 | } | |
4238 | ||
4239 | return count - remains; | |
4240 | } | |
4241 | ||
4242 | /* | |
4243 | * small helper routine, copy contents to iter from addr. | |
4244 | * If the page is not present, fill zero. | |
4245 | * | |
4246 | * Returns the number of copied bytes. | |
4247 | */ | |
4248 | static size_t aligned_vread_iter(struct iov_iter *iter, | |
4249 | const char *addr, size_t count) | |
4250 | { | |
4251 | size_t remains = count; | |
4252 | struct page *page; | |
4253 | ||
4254 | while (remains > 0) { | |
4255 | unsigned long offset, length; | |
4256 | size_t copied = 0; | |
4257 | ||
4258 | offset = offset_in_page(addr); | |
4259 | length = PAGE_SIZE - offset; | |
4260 | if (length > remains) | |
4261 | length = remains; | |
4262 | page = vmalloc_to_page(addr); | |
4263 | /* | |
4264 | * To do safe access to this _mapped_ area, we need lock. But | |
4265 | * adding lock here means that we need to add overhead of | |
4266 | * vmalloc()/vfree() calls for this _debug_ interface, rarely | |
4267 | * used. Instead of that, we'll use an local mapping via | |
4268 | * copy_page_to_iter_nofault() and accept a small overhead in | |
4269 | * this access function. | |
4270 | */ | |
4271 | if (page) | |
4272 | copied = copy_page_to_iter_nofault(page, offset, | |
4273 | length, iter); | |
4274 | else | |
4275 | copied = zero_iter(iter, length); | |
4276 | ||
4277 | addr += copied; | |
4278 | remains -= copied; | |
4279 | ||
4280 | if (copied != length) | |
4281 | break; | |
4282 | } | |
4283 | ||
4284 | return count - remains; | |
4285 | } | |
4286 | ||
4287 | /* | |
4288 | * Read from a vm_map_ram region of memory. | |
4289 | * | |
4290 | * Returns the number of copied bytes. | |
4291 | */ | |
4292 | static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr, | |
4293 | size_t count, unsigned long flags) | |
4294 | { | |
4295 | char *start; | |
4296 | struct vmap_block *vb; | |
4297 | struct xarray *xa; | |
4298 | unsigned long offset; | |
4299 | unsigned int rs, re; | |
4300 | size_t remains, n; | |
4301 | ||
4302 | /* | |
4303 | * If it's area created by vm_map_ram() interface directly, but | |
4304 | * not further subdividing and delegating management to vmap_block, | |
4305 | * handle it here. | |
4306 | */ | |
4307 | if (!(flags & VMAP_BLOCK)) | |
4308 | return aligned_vread_iter(iter, addr, count); | |
4309 | ||
4310 | remains = count; | |
4311 | ||
4312 | /* | |
4313 | * Area is split into regions and tracked with vmap_block, read out | |
4314 | * each region and zero fill the hole between regions. | |
4315 | */ | |
4316 | xa = addr_to_vb_xa((unsigned long) addr); | |
4317 | vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr)); | |
4318 | if (!vb) | |
4319 | goto finished_zero; | |
4320 | ||
4321 | spin_lock(&vb->lock); | |
4322 | if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) { | |
4323 | spin_unlock(&vb->lock); | |
4324 | goto finished_zero; | |
4325 | } | |
4326 | ||
4327 | for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) { | |
4328 | size_t copied; | |
4329 | ||
4330 | if (remains == 0) | |
4331 | goto finished; | |
4332 | ||
4333 | start = vmap_block_vaddr(vb->va->va_start, rs); | |
4334 | ||
4335 | if (addr < start) { | |
4336 | size_t to_zero = min_t(size_t, start - addr, remains); | |
4337 | size_t zeroed = zero_iter(iter, to_zero); | |
4338 | ||
4339 | addr += zeroed; | |
4340 | remains -= zeroed; | |
4341 | ||
4342 | if (remains == 0 || zeroed != to_zero) | |
4343 | goto finished; | |
4344 | } | |
4345 | ||
4346 | /*it could start reading from the middle of used region*/ | |
4347 | offset = offset_in_page(addr); | |
4348 | n = ((re - rs + 1) << PAGE_SHIFT) - offset; | |
4349 | if (n > remains) | |
4350 | n = remains; | |
4351 | ||
4352 | copied = aligned_vread_iter(iter, start + offset, n); | |
4353 | ||
4354 | addr += copied; | |
4355 | remains -= copied; | |
4356 | ||
4357 | if (copied != n) | |
4358 | goto finished; | |
4359 | } | |
4360 | ||
4361 | spin_unlock(&vb->lock); | |
4362 | ||
4363 | finished_zero: | |
4364 | /* zero-fill the left dirty or free regions */ | |
4365 | return count - remains + zero_iter(iter, remains); | |
4366 | finished: | |
4367 | /* We couldn't copy/zero everything */ | |
4368 | spin_unlock(&vb->lock); | |
4369 | return count - remains; | |
4370 | } | |
4371 | ||
4372 | /** | |
4373 | * vread_iter() - read vmalloc area in a safe way to an iterator. | |
4374 | * @iter: the iterator to which data should be written. | |
4375 | * @addr: vm address. | |
4376 | * @count: number of bytes to be read. | |
4377 | * | |
4378 | * This function checks that addr is a valid vmalloc'ed area, and | |
4379 | * copy data from that area to a given buffer. If the given memory range | |
4380 | * of [addr...addr+count) includes some valid address, data is copied to | |
4381 | * proper area of @buf. If there are memory holes, they'll be zero-filled. | |
4382 | * IOREMAP area is treated as memory hole and no copy is done. | |
4383 | * | |
4384 | * If [addr...addr+count) doesn't includes any intersects with alive | |
4385 | * vm_struct area, returns 0. @buf should be kernel's buffer. | |
4386 | * | |
4387 | * Note: In usual ops, vread() is never necessary because the caller | |
4388 | * should know vmalloc() area is valid and can use memcpy(). | |
4389 | * This is for routines which have to access vmalloc area without | |
4390 | * any information, as /proc/kcore. | |
4391 | * | |
4392 | * Return: number of bytes for which addr and buf should be increased | |
4393 | * (same number as @count) or %0 if [addr...addr+count) doesn't | |
4394 | * include any intersection with valid vmalloc area | |
4395 | */ | |
4396 | long vread_iter(struct iov_iter *iter, const char *addr, size_t count) | |
4397 | { | |
4398 | struct vmap_node *vn; | |
4399 | struct vmap_area *va; | |
4400 | struct vm_struct *vm; | |
4401 | char *vaddr; | |
4402 | size_t n, size, flags, remains; | |
4403 | unsigned long next; | |
4404 | ||
4405 | addr = kasan_reset_tag(addr); | |
4406 | ||
4407 | /* Don't allow overflow */ | |
4408 | if ((unsigned long) addr + count < count) | |
4409 | count = -(unsigned long) addr; | |
4410 | ||
4411 | remains = count; | |
4412 | ||
4413 | vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va); | |
4414 | if (!vn) | |
4415 | goto finished_zero; | |
4416 | ||
4417 | /* no intersects with alive vmap_area */ | |
4418 | if ((unsigned long)addr + remains <= va->va_start) | |
4419 | goto finished_zero; | |
4420 | ||
4421 | do { | |
4422 | size_t copied; | |
4423 | ||
4424 | if (remains == 0) | |
4425 | goto finished; | |
4426 | ||
4427 | vm = va->vm; | |
4428 | flags = va->flags & VMAP_FLAGS_MASK; | |
4429 | /* | |
4430 | * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need | |
4431 | * be set together with VMAP_RAM. | |
4432 | */ | |
4433 | WARN_ON(flags == VMAP_BLOCK); | |
4434 | ||
4435 | if (!vm && !flags) | |
4436 | goto next_va; | |
4437 | ||
4438 | if (vm && (vm->flags & VM_UNINITIALIZED)) | |
4439 | goto next_va; | |
4440 | ||
4441 | /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ | |
4442 | smp_rmb(); | |
4443 | ||
4444 | vaddr = (char *) va->va_start; | |
4445 | size = vm ? get_vm_area_size(vm) : va_size(va); | |
4446 | ||
4447 | if (addr >= vaddr + size) | |
4448 | goto next_va; | |
4449 | ||
4450 | if (addr < vaddr) { | |
4451 | size_t to_zero = min_t(size_t, vaddr - addr, remains); | |
4452 | size_t zeroed = zero_iter(iter, to_zero); | |
4453 | ||
4454 | addr += zeroed; | |
4455 | remains -= zeroed; | |
4456 | ||
4457 | if (remains == 0 || zeroed != to_zero) | |
4458 | goto finished; | |
4459 | } | |
4460 | ||
4461 | n = vaddr + size - addr; | |
4462 | if (n > remains) | |
4463 | n = remains; | |
4464 | ||
4465 | if (flags & VMAP_RAM) | |
4466 | copied = vmap_ram_vread_iter(iter, addr, n, flags); | |
4467 | else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE)))) | |
4468 | copied = aligned_vread_iter(iter, addr, n); | |
4469 | else /* IOREMAP | SPARSE area is treated as memory hole */ | |
4470 | copied = zero_iter(iter, n); | |
4471 | ||
4472 | addr += copied; | |
4473 | remains -= copied; | |
4474 | ||
4475 | if (copied != n) | |
4476 | goto finished; | |
4477 | ||
4478 | next_va: | |
4479 | next = va->va_end; | |
4480 | spin_unlock(&vn->busy.lock); | |
4481 | } while ((vn = find_vmap_area_exceed_addr_lock(next, &va))); | |
4482 | ||
4483 | finished_zero: | |
4484 | if (vn) | |
4485 | spin_unlock(&vn->busy.lock); | |
4486 | ||
4487 | /* zero-fill memory holes */ | |
4488 | return count - remains + zero_iter(iter, remains); | |
4489 | finished: | |
4490 | /* Nothing remains, or We couldn't copy/zero everything. */ | |
4491 | if (vn) | |
4492 | spin_unlock(&vn->busy.lock); | |
4493 | ||
4494 | return count - remains; | |
4495 | } | |
4496 | ||
4497 | /** | |
4498 | * remap_vmalloc_range_partial - map vmalloc pages to userspace | |
4499 | * @vma: vma to cover | |
4500 | * @uaddr: target user address to start at | |
4501 | * @kaddr: virtual address of vmalloc kernel memory | |
4502 | * @pgoff: offset from @kaddr to start at | |
4503 | * @size: size of map area | |
4504 | * | |
4505 | * Returns: 0 for success, -Exxx on failure | |
4506 | * | |
4507 | * This function checks that @kaddr is a valid vmalloc'ed area, | |
4508 | * and that it is big enough to cover the range starting at | |
4509 | * @uaddr in @vma. Will return failure if that criteria isn't | |
4510 | * met. | |
4511 | * | |
4512 | * Similar to remap_pfn_range() (see mm/memory.c) | |
4513 | */ | |
4514 | int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, | |
4515 | void *kaddr, unsigned long pgoff, | |
4516 | unsigned long size) | |
4517 | { | |
4518 | struct vm_struct *area; | |
4519 | unsigned long off; | |
4520 | unsigned long end_index; | |
4521 | ||
4522 | if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) | |
4523 | return -EINVAL; | |
4524 | ||
4525 | size = PAGE_ALIGN(size); | |
4526 | ||
4527 | if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) | |
4528 | return -EINVAL; | |
4529 | ||
4530 | area = find_vm_area(kaddr); | |
4531 | if (!area) | |
4532 | return -EINVAL; | |
4533 | ||
4534 | if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) | |
4535 | return -EINVAL; | |
4536 | ||
4537 | if (check_add_overflow(size, off, &end_index) || | |
4538 | end_index > get_vm_area_size(area)) | |
4539 | return -EINVAL; | |
4540 | kaddr += off; | |
4541 | ||
4542 | do { | |
4543 | struct page *page = vmalloc_to_page(kaddr); | |
4544 | int ret; | |
4545 | ||
4546 | ret = vm_insert_page(vma, uaddr, page); | |
4547 | if (ret) | |
4548 | return ret; | |
4549 | ||
4550 | uaddr += PAGE_SIZE; | |
4551 | kaddr += PAGE_SIZE; | |
4552 | size -= PAGE_SIZE; | |
4553 | } while (size > 0); | |
4554 | ||
4555 | vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP); | |
4556 | ||
4557 | return 0; | |
4558 | } | |
4559 | ||
4560 | /** | |
4561 | * remap_vmalloc_range - map vmalloc pages to userspace | |
4562 | * @vma: vma to cover (map full range of vma) | |
4563 | * @addr: vmalloc memory | |
4564 | * @pgoff: number of pages into addr before first page to map | |
4565 | * | |
4566 | * Returns: 0 for success, -Exxx on failure | |
4567 | * | |
4568 | * This function checks that addr is a valid vmalloc'ed area, and | |
4569 | * that it is big enough to cover the vma. Will return failure if | |
4570 | * that criteria isn't met. | |
4571 | * | |
4572 | * Similar to remap_pfn_range() (see mm/memory.c) | |
4573 | */ | |
4574 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | |
4575 | unsigned long pgoff) | |
4576 | { | |
4577 | return remap_vmalloc_range_partial(vma, vma->vm_start, | |
4578 | addr, pgoff, | |
4579 | vma->vm_end - vma->vm_start); | |
4580 | } | |
4581 | EXPORT_SYMBOL(remap_vmalloc_range); | |
4582 | ||
4583 | void free_vm_area(struct vm_struct *area) | |
4584 | { | |
4585 | struct vm_struct *ret; | |
4586 | ret = remove_vm_area(area->addr); | |
4587 | BUG_ON(ret != area); | |
4588 | kfree(area); | |
4589 | } | |
4590 | EXPORT_SYMBOL_GPL(free_vm_area); | |
4591 | ||
4592 | #ifdef CONFIG_SMP | |
4593 | static struct vmap_area *node_to_va(struct rb_node *n) | |
4594 | { | |
4595 | return rb_entry_safe(n, struct vmap_area, rb_node); | |
4596 | } | |
4597 | ||
4598 | /** | |
4599 | * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to | |
4600 | * @addr: target address | |
4601 | * | |
4602 | * Returns: vmap_area if it is found. If there is no such area | |
4603 | * the first highest(reverse order) vmap_area is returned | |
4604 | * i.e. va->va_start < addr && va->va_end < addr or NULL | |
4605 | * if there are no any areas before @addr. | |
4606 | */ | |
4607 | static struct vmap_area * | |
4608 | pvm_find_va_enclose_addr(unsigned long addr) | |
4609 | { | |
4610 | struct vmap_area *va, *tmp; | |
4611 | struct rb_node *n; | |
4612 | ||
4613 | n = free_vmap_area_root.rb_node; | |
4614 | va = NULL; | |
4615 | ||
4616 | while (n) { | |
4617 | tmp = rb_entry(n, struct vmap_area, rb_node); | |
4618 | if (tmp->va_start <= addr) { | |
4619 | va = tmp; | |
4620 | if (tmp->va_end >= addr) | |
4621 | break; | |
4622 | ||
4623 | n = n->rb_right; | |
4624 | } else { | |
4625 | n = n->rb_left; | |
4626 | } | |
4627 | } | |
4628 | ||
4629 | return va; | |
4630 | } | |
4631 | ||
4632 | /** | |
4633 | * pvm_determine_end_from_reverse - find the highest aligned address | |
4634 | * of free block below VMALLOC_END | |
4635 | * @va: | |
4636 | * in - the VA we start the search(reverse order); | |
4637 | * out - the VA with the highest aligned end address. | |
4638 | * @align: alignment for required highest address | |
4639 | * | |
4640 | * Returns: determined end address within vmap_area | |
4641 | */ | |
4642 | static unsigned long | |
4643 | pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) | |
4644 | { | |
4645 | unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
4646 | unsigned long addr; | |
4647 | ||
4648 | if (likely(*va)) { | |
4649 | list_for_each_entry_from_reverse((*va), | |
4650 | &free_vmap_area_list, list) { | |
4651 | addr = min((*va)->va_end & ~(align - 1), vmalloc_end); | |
4652 | if ((*va)->va_start < addr) | |
4653 | return addr; | |
4654 | } | |
4655 | } | |
4656 | ||
4657 | return 0; | |
4658 | } | |
4659 | ||
4660 | /** | |
4661 | * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator | |
4662 | * @offsets: array containing offset of each area | |
4663 | * @sizes: array containing size of each area | |
4664 | * @nr_vms: the number of areas to allocate | |
4665 | * @align: alignment, all entries in @offsets and @sizes must be aligned to this | |
4666 | * | |
4667 | * Returns: kmalloc'd vm_struct pointer array pointing to allocated | |
4668 | * vm_structs on success, %NULL on failure | |
4669 | * | |
4670 | * Percpu allocator wants to use congruent vm areas so that it can | |
4671 | * maintain the offsets among percpu areas. This function allocates | |
4672 | * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to | |
4673 | * be scattered pretty far, distance between two areas easily going up | |
4674 | * to gigabytes. To avoid interacting with regular vmallocs, these | |
4675 | * areas are allocated from top. | |
4676 | * | |
4677 | * Despite its complicated look, this allocator is rather simple. It | |
4678 | * does everything top-down and scans free blocks from the end looking | |
4679 | * for matching base. While scanning, if any of the areas do not fit the | |
4680 | * base address is pulled down to fit the area. Scanning is repeated till | |
4681 | * all the areas fit and then all necessary data structures are inserted | |
4682 | * and the result is returned. | |
4683 | */ | |
4684 | struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, | |
4685 | const size_t *sizes, int nr_vms, | |
4686 | size_t align) | |
4687 | { | |
4688 | const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); | |
4689 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
4690 | struct vmap_area **vas, *va; | |
4691 | struct vm_struct **vms; | |
4692 | int area, area2, last_area, term_area; | |
4693 | unsigned long base, start, size, end, last_end, orig_start, orig_end; | |
4694 | bool purged = false; | |
4695 | ||
4696 | /* verify parameters and allocate data structures */ | |
4697 | BUG_ON(offset_in_page(align) || !is_power_of_2(align)); | |
4698 | for (last_area = 0, area = 0; area < nr_vms; area++) { | |
4699 | start = offsets[area]; | |
4700 | end = start + sizes[area]; | |
4701 | ||
4702 | /* is everything aligned properly? */ | |
4703 | BUG_ON(!IS_ALIGNED(offsets[area], align)); | |
4704 | BUG_ON(!IS_ALIGNED(sizes[area], align)); | |
4705 | ||
4706 | /* detect the area with the highest address */ | |
4707 | if (start > offsets[last_area]) | |
4708 | last_area = area; | |
4709 | ||
4710 | for (area2 = area + 1; area2 < nr_vms; area2++) { | |
4711 | unsigned long start2 = offsets[area2]; | |
4712 | unsigned long end2 = start2 + sizes[area2]; | |
4713 | ||
4714 | BUG_ON(start2 < end && start < end2); | |
4715 | } | |
4716 | } | |
4717 | last_end = offsets[last_area] + sizes[last_area]; | |
4718 | ||
4719 | if (vmalloc_end - vmalloc_start < last_end) { | |
4720 | WARN_ON(true); | |
4721 | return NULL; | |
4722 | } | |
4723 | ||
4724 | vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); | |
4725 | vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); | |
4726 | if (!vas || !vms) | |
4727 | goto err_free2; | |
4728 | ||
4729 | for (area = 0; area < nr_vms; area++) { | |
4730 | vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); | |
4731 | vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); | |
4732 | if (!vas[area] || !vms[area]) | |
4733 | goto err_free; | |
4734 | } | |
4735 | retry: | |
4736 | spin_lock(&free_vmap_area_lock); | |
4737 | ||
4738 | /* start scanning - we scan from the top, begin with the last area */ | |
4739 | area = term_area = last_area; | |
4740 | start = offsets[area]; | |
4741 | end = start + sizes[area]; | |
4742 | ||
4743 | va = pvm_find_va_enclose_addr(vmalloc_end); | |
4744 | base = pvm_determine_end_from_reverse(&va, align) - end; | |
4745 | ||
4746 | while (true) { | |
4747 | /* | |
4748 | * base might have underflowed, add last_end before | |
4749 | * comparing. | |
4750 | */ | |
4751 | if (base + last_end < vmalloc_start + last_end) | |
4752 | goto overflow; | |
4753 | ||
4754 | /* | |
4755 | * Fitting base has not been found. | |
4756 | */ | |
4757 | if (va == NULL) | |
4758 | goto overflow; | |
4759 | ||
4760 | /* | |
4761 | * If required width exceeds current VA block, move | |
4762 | * base downwards and then recheck. | |
4763 | */ | |
4764 | if (base + end > va->va_end) { | |
4765 | base = pvm_determine_end_from_reverse(&va, align) - end; | |
4766 | term_area = area; | |
4767 | continue; | |
4768 | } | |
4769 | ||
4770 | /* | |
4771 | * If this VA does not fit, move base downwards and recheck. | |
4772 | */ | |
4773 | if (base + start < va->va_start) { | |
4774 | va = node_to_va(rb_prev(&va->rb_node)); | |
4775 | base = pvm_determine_end_from_reverse(&va, align) - end; | |
4776 | term_area = area; | |
4777 | continue; | |
4778 | } | |
4779 | ||
4780 | /* | |
4781 | * This area fits, move on to the previous one. If | |
4782 | * the previous one is the terminal one, we're done. | |
4783 | */ | |
4784 | area = (area + nr_vms - 1) % nr_vms; | |
4785 | if (area == term_area) | |
4786 | break; | |
4787 | ||
4788 | start = offsets[area]; | |
4789 | end = start + sizes[area]; | |
4790 | va = pvm_find_va_enclose_addr(base + end); | |
4791 | } | |
4792 | ||
4793 | /* we've found a fitting base, insert all va's */ | |
4794 | for (area = 0; area < nr_vms; area++) { | |
4795 | int ret; | |
4796 | ||
4797 | start = base + offsets[area]; | |
4798 | size = sizes[area]; | |
4799 | ||
4800 | va = pvm_find_va_enclose_addr(start); | |
4801 | if (WARN_ON_ONCE(va == NULL)) | |
4802 | /* It is a BUG(), but trigger recovery instead. */ | |
4803 | goto recovery; | |
4804 | ||
4805 | ret = va_clip(&free_vmap_area_root, | |
4806 | &free_vmap_area_list, va, start, size); | |
4807 | if (WARN_ON_ONCE(unlikely(ret))) | |
4808 | /* It is a BUG(), but trigger recovery instead. */ | |
4809 | goto recovery; | |
4810 | ||
4811 | /* Allocated area. */ | |
4812 | va = vas[area]; | |
4813 | va->va_start = start; | |
4814 | va->va_end = start + size; | |
4815 | } | |
4816 | ||
4817 | spin_unlock(&free_vmap_area_lock); | |
4818 | ||
4819 | /* populate the kasan shadow space */ | |
4820 | for (area = 0; area < nr_vms; area++) { | |
4821 | if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) | |
4822 | goto err_free_shadow; | |
4823 | } | |
4824 | ||
4825 | /* insert all vm's */ | |
4826 | for (area = 0; area < nr_vms; area++) { | |
4827 | struct vmap_node *vn = addr_to_node(vas[area]->va_start); | |
4828 | ||
4829 | spin_lock(&vn->busy.lock); | |
4830 | insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head); | |
4831 | setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, | |
4832 | pcpu_get_vm_areas); | |
4833 | spin_unlock(&vn->busy.lock); | |
4834 | } | |
4835 | ||
4836 | /* | |
4837 | * Mark allocated areas as accessible. Do it now as a best-effort | |
4838 | * approach, as they can be mapped outside of vmalloc code. | |
4839 | * With hardware tag-based KASAN, marking is skipped for | |
4840 | * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). | |
4841 | */ | |
4842 | for (area = 0; area < nr_vms; area++) | |
4843 | vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, | |
4844 | vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); | |
4845 | ||
4846 | kfree(vas); | |
4847 | return vms; | |
4848 | ||
4849 | recovery: | |
4850 | /* | |
4851 | * Remove previously allocated areas. There is no | |
4852 | * need in removing these areas from the busy tree, | |
4853 | * because they are inserted only on the final step | |
4854 | * and when pcpu_get_vm_areas() is success. | |
4855 | */ | |
4856 | while (area--) { | |
4857 | orig_start = vas[area]->va_start; | |
4858 | orig_end = vas[area]->va_end; | |
4859 | va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, | |
4860 | &free_vmap_area_list); | |
4861 | if (va) | |
4862 | kasan_release_vmalloc(orig_start, orig_end, | |
4863 | va->va_start, va->va_end, | |
4864 | KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH); | |
4865 | vas[area] = NULL; | |
4866 | } | |
4867 | ||
4868 | overflow: | |
4869 | spin_unlock(&free_vmap_area_lock); | |
4870 | if (!purged) { | |
4871 | reclaim_and_purge_vmap_areas(); | |
4872 | purged = true; | |
4873 | ||
4874 | /* Before "retry", check if we recover. */ | |
4875 | for (area = 0; area < nr_vms; area++) { | |
4876 | if (vas[area]) | |
4877 | continue; | |
4878 | ||
4879 | vas[area] = kmem_cache_zalloc( | |
4880 | vmap_area_cachep, GFP_KERNEL); | |
4881 | if (!vas[area]) | |
4882 | goto err_free; | |
4883 | } | |
4884 | ||
4885 | goto retry; | |
4886 | } | |
4887 | ||
4888 | err_free: | |
4889 | for (area = 0; area < nr_vms; area++) { | |
4890 | if (vas[area]) | |
4891 | kmem_cache_free(vmap_area_cachep, vas[area]); | |
4892 | ||
4893 | kfree(vms[area]); | |
4894 | } | |
4895 | err_free2: | |
4896 | kfree(vas); | |
4897 | kfree(vms); | |
4898 | return NULL; | |
4899 | ||
4900 | err_free_shadow: | |
4901 | spin_lock(&free_vmap_area_lock); | |
4902 | /* | |
4903 | * We release all the vmalloc shadows, even the ones for regions that | |
4904 | * hadn't been successfully added. This relies on kasan_release_vmalloc | |
4905 | * being able to tolerate this case. | |
4906 | */ | |
4907 | for (area = 0; area < nr_vms; area++) { | |
4908 | orig_start = vas[area]->va_start; | |
4909 | orig_end = vas[area]->va_end; | |
4910 | va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, | |
4911 | &free_vmap_area_list); | |
4912 | if (va) | |
4913 | kasan_release_vmalloc(orig_start, orig_end, | |
4914 | va->va_start, va->va_end, | |
4915 | KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH); | |
4916 | vas[area] = NULL; | |
4917 | kfree(vms[area]); | |
4918 | } | |
4919 | spin_unlock(&free_vmap_area_lock); | |
4920 | kfree(vas); | |
4921 | kfree(vms); | |
4922 | return NULL; | |
4923 | } | |
4924 | ||
4925 | /** | |
4926 | * pcpu_free_vm_areas - free vmalloc areas for percpu allocator | |
4927 | * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() | |
4928 | * @nr_vms: the number of allocated areas | |
4929 | * | |
4930 | * Free vm_structs and the array allocated by pcpu_get_vm_areas(). | |
4931 | */ | |
4932 | void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) | |
4933 | { | |
4934 | int i; | |
4935 | ||
4936 | for (i = 0; i < nr_vms; i++) | |
4937 | free_vm_area(vms[i]); | |
4938 | kfree(vms); | |
4939 | } | |
4940 | #endif /* CONFIG_SMP */ | |
4941 | ||
4942 | #ifdef CONFIG_PRINTK | |
4943 | bool vmalloc_dump_obj(void *object) | |
4944 | { | |
4945 | const void *caller; | |
4946 | struct vm_struct *vm; | |
4947 | struct vmap_area *va; | |
4948 | struct vmap_node *vn; | |
4949 | unsigned long addr; | |
4950 | unsigned int nr_pages; | |
4951 | ||
4952 | addr = PAGE_ALIGN((unsigned long) object); | |
4953 | vn = addr_to_node(addr); | |
4954 | ||
4955 | if (!spin_trylock(&vn->busy.lock)) | |
4956 | return false; | |
4957 | ||
4958 | va = __find_vmap_area(addr, &vn->busy.root); | |
4959 | if (!va || !va->vm) { | |
4960 | spin_unlock(&vn->busy.lock); | |
4961 | return false; | |
4962 | } | |
4963 | ||
4964 | vm = va->vm; | |
4965 | addr = (unsigned long) vm->addr; | |
4966 | caller = vm->caller; | |
4967 | nr_pages = vm->nr_pages; | |
4968 | spin_unlock(&vn->busy.lock); | |
4969 | ||
4970 | pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", | |
4971 | nr_pages, addr, caller); | |
4972 | ||
4973 | return true; | |
4974 | } | |
4975 | #endif | |
4976 | ||
4977 | #ifdef CONFIG_PROC_FS | |
4978 | ||
4979 | /* | |
4980 | * Print number of pages allocated on each memory node. | |
4981 | * | |
4982 | * This function can only be called if CONFIG_NUMA is enabled | |
4983 | * and VM_UNINITIALIZED bit in v->flags is disabled. | |
4984 | */ | |
4985 | static void show_numa_info(struct seq_file *m, struct vm_struct *v, | |
4986 | unsigned int *counters) | |
4987 | { | |
4988 | unsigned int nr; | |
4989 | unsigned int step = 1U << vm_area_page_order(v); | |
4990 | ||
4991 | if (!counters) | |
4992 | return; | |
4993 | ||
4994 | memset(counters, 0, nr_node_ids * sizeof(unsigned int)); | |
4995 | ||
4996 | for (nr = 0; nr < v->nr_pages; nr += step) | |
4997 | counters[page_to_nid(v->pages[nr])] += step; | |
4998 | for_each_node_state(nr, N_HIGH_MEMORY) | |
4999 | if (counters[nr]) | |
5000 | seq_printf(m, " N%u=%u", nr, counters[nr]); | |
5001 | } | |
5002 | ||
5003 | static void show_purge_info(struct seq_file *m) | |
5004 | { | |
5005 | struct vmap_node *vn; | |
5006 | struct vmap_area *va; | |
5007 | ||
5008 | for_each_vmap_node(vn) { | |
5009 | spin_lock(&vn->lazy.lock); | |
5010 | list_for_each_entry(va, &vn->lazy.head, list) { | |
5011 | seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", | |
5012 | (void *)va->va_start, (void *)va->va_end, | |
5013 | va_size(va)); | |
5014 | } | |
5015 | spin_unlock(&vn->lazy.lock); | |
5016 | } | |
5017 | } | |
5018 | ||
5019 | static int vmalloc_info_show(struct seq_file *m, void *p) | |
5020 | { | |
5021 | struct vmap_node *vn; | |
5022 | struct vmap_area *va; | |
5023 | struct vm_struct *v; | |
5024 | unsigned int *counters; | |
5025 | ||
5026 | if (IS_ENABLED(CONFIG_NUMA)) | |
5027 | counters = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); | |
5028 | ||
5029 | for_each_vmap_node(vn) { | |
5030 | spin_lock(&vn->busy.lock); | |
5031 | list_for_each_entry(va, &vn->busy.head, list) { | |
5032 | if (!va->vm) { | |
5033 | if (va->flags & VMAP_RAM) | |
5034 | seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", | |
5035 | (void *)va->va_start, (void *)va->va_end, | |
5036 | va_size(va)); | |
5037 | ||
5038 | continue; | |
5039 | } | |
5040 | ||
5041 | v = va->vm; | |
5042 | if (v->flags & VM_UNINITIALIZED) | |
5043 | continue; | |
5044 | ||
5045 | /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ | |
5046 | smp_rmb(); | |
5047 | ||
5048 | seq_printf(m, "0x%pK-0x%pK %7ld", | |
5049 | v->addr, v->addr + v->size, v->size); | |
5050 | ||
5051 | if (v->caller) | |
5052 | seq_printf(m, " %pS", v->caller); | |
5053 | ||
5054 | if (v->nr_pages) | |
5055 | seq_printf(m, " pages=%d", v->nr_pages); | |
5056 | ||
5057 | if (v->phys_addr) | |
5058 | seq_printf(m, " phys=%pa", &v->phys_addr); | |
5059 | ||
5060 | if (v->flags & VM_IOREMAP) | |
5061 | seq_puts(m, " ioremap"); | |
5062 | ||
5063 | if (v->flags & VM_SPARSE) | |
5064 | seq_puts(m, " sparse"); | |
5065 | ||
5066 | if (v->flags & VM_ALLOC) | |
5067 | seq_puts(m, " vmalloc"); | |
5068 | ||
5069 | if (v->flags & VM_MAP) | |
5070 | seq_puts(m, " vmap"); | |
5071 | ||
5072 | if (v->flags & VM_USERMAP) | |
5073 | seq_puts(m, " user"); | |
5074 | ||
5075 | if (v->flags & VM_DMA_COHERENT) | |
5076 | seq_puts(m, " dma-coherent"); | |
5077 | ||
5078 | if (is_vmalloc_addr(v->pages)) | |
5079 | seq_puts(m, " vpages"); | |
5080 | ||
5081 | if (IS_ENABLED(CONFIG_NUMA)) | |
5082 | show_numa_info(m, v, counters); | |
5083 | ||
5084 | seq_putc(m, '\n'); | |
5085 | } | |
5086 | spin_unlock(&vn->busy.lock); | |
5087 | } | |
5088 | ||
5089 | /* | |
5090 | * As a final step, dump "unpurged" areas. | |
5091 | */ | |
5092 | show_purge_info(m); | |
5093 | if (IS_ENABLED(CONFIG_NUMA)) | |
5094 | kfree(counters); | |
5095 | return 0; | |
5096 | } | |
5097 | ||
5098 | static int __init proc_vmalloc_init(void) | |
5099 | { | |
5100 | proc_create_single("vmallocinfo", 0400, NULL, vmalloc_info_show); | |
5101 | return 0; | |
5102 | } | |
5103 | module_init(proc_vmalloc_init); | |
5104 | ||
5105 | #endif | |
5106 | ||
5107 | static void __init vmap_init_free_space(void) | |
5108 | { | |
5109 | unsigned long vmap_start = 1; | |
5110 | const unsigned long vmap_end = ULONG_MAX; | |
5111 | struct vmap_area *free; | |
5112 | struct vm_struct *busy; | |
5113 | ||
5114 | /* | |
5115 | * B F B B B F | |
5116 | * -|-----|.....|-----|-----|-----|.....|- | |
5117 | * | The KVA space | | |
5118 | * |<--------------------------------->| | |
5119 | */ | |
5120 | for (busy = vmlist; busy; busy = busy->next) { | |
5121 | if ((unsigned long) busy->addr - vmap_start > 0) { | |
5122 | free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); | |
5123 | if (!WARN_ON_ONCE(!free)) { | |
5124 | free->va_start = vmap_start; | |
5125 | free->va_end = (unsigned long) busy->addr; | |
5126 | ||
5127 | insert_vmap_area_augment(free, NULL, | |
5128 | &free_vmap_area_root, | |
5129 | &free_vmap_area_list); | |
5130 | } | |
5131 | } | |
5132 | ||
5133 | vmap_start = (unsigned long) busy->addr + busy->size; | |
5134 | } | |
5135 | ||
5136 | if (vmap_end - vmap_start > 0) { | |
5137 | free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); | |
5138 | if (!WARN_ON_ONCE(!free)) { | |
5139 | free->va_start = vmap_start; | |
5140 | free->va_end = vmap_end; | |
5141 | ||
5142 | insert_vmap_area_augment(free, NULL, | |
5143 | &free_vmap_area_root, | |
5144 | &free_vmap_area_list); | |
5145 | } | |
5146 | } | |
5147 | } | |
5148 | ||
5149 | static void vmap_init_nodes(void) | |
5150 | { | |
5151 | struct vmap_node *vn; | |
5152 | int i; | |
5153 | ||
5154 | #if BITS_PER_LONG == 64 | |
5155 | /* | |
5156 | * A high threshold of max nodes is fixed and bound to 128, | |
5157 | * thus a scale factor is 1 for systems where number of cores | |
5158 | * are less or equal to specified threshold. | |
5159 | * | |
5160 | * As for NUMA-aware notes. For bigger systems, for example | |
5161 | * NUMA with multi-sockets, where we can end-up with thousands | |
5162 | * of cores in total, a "sub-numa-clustering" should be added. | |
5163 | * | |
5164 | * In this case a NUMA domain is considered as a single entity | |
5165 | * with dedicated sub-nodes in it which describe one group or | |
5166 | * set of cores. Therefore a per-domain purging is supposed to | |
5167 | * be added as well as a per-domain balancing. | |
5168 | */ | |
5169 | int n = clamp_t(unsigned int, num_possible_cpus(), 1, 128); | |
5170 | ||
5171 | if (n > 1) { | |
5172 | vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN); | |
5173 | if (vn) { | |
5174 | /* Node partition is 16 pages. */ | |
5175 | vmap_zone_size = (1 << 4) * PAGE_SIZE; | |
5176 | nr_vmap_nodes = n; | |
5177 | vmap_nodes = vn; | |
5178 | } else { | |
5179 | pr_err("Failed to allocate an array. Disable a node layer\n"); | |
5180 | } | |
5181 | } | |
5182 | #endif | |
5183 | ||
5184 | for_each_vmap_node(vn) { | |
5185 | vn->busy.root = RB_ROOT; | |
5186 | INIT_LIST_HEAD(&vn->busy.head); | |
5187 | spin_lock_init(&vn->busy.lock); | |
5188 | ||
5189 | vn->lazy.root = RB_ROOT; | |
5190 | INIT_LIST_HEAD(&vn->lazy.head); | |
5191 | spin_lock_init(&vn->lazy.lock); | |
5192 | ||
5193 | for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { | |
5194 | INIT_LIST_HEAD(&vn->pool[i].head); | |
5195 | WRITE_ONCE(vn->pool[i].len, 0); | |
5196 | } | |
5197 | ||
5198 | spin_lock_init(&vn->pool_lock); | |
5199 | } | |
5200 | } | |
5201 | ||
5202 | static unsigned long | |
5203 | vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc) | |
5204 | { | |
5205 | unsigned long count = 0; | |
5206 | struct vmap_node *vn; | |
5207 | int i; | |
5208 | ||
5209 | for_each_vmap_node(vn) { | |
5210 | for (i = 0; i < MAX_VA_SIZE_PAGES; i++) | |
5211 | count += READ_ONCE(vn->pool[i].len); | |
5212 | } | |
5213 | ||
5214 | return count ? count : SHRINK_EMPTY; | |
5215 | } | |
5216 | ||
5217 | static unsigned long | |
5218 | vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) | |
5219 | { | |
5220 | struct vmap_node *vn; | |
5221 | ||
5222 | for_each_vmap_node(vn) | |
5223 | decay_va_pool_node(vn, true); | |
5224 | ||
5225 | return SHRINK_STOP; | |
5226 | } | |
5227 | ||
5228 | void __init vmalloc_init(void) | |
5229 | { | |
5230 | struct shrinker *vmap_node_shrinker; | |
5231 | struct vmap_area *va; | |
5232 | struct vmap_node *vn; | |
5233 | struct vm_struct *tmp; | |
5234 | int i; | |
5235 | ||
5236 | /* | |
5237 | * Create the cache for vmap_area objects. | |
5238 | */ | |
5239 | vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); | |
5240 | ||
5241 | for_each_possible_cpu(i) { | |
5242 | struct vmap_block_queue *vbq; | |
5243 | struct vfree_deferred *p; | |
5244 | ||
5245 | vbq = &per_cpu(vmap_block_queue, i); | |
5246 | spin_lock_init(&vbq->lock); | |
5247 | INIT_LIST_HEAD(&vbq->free); | |
5248 | p = &per_cpu(vfree_deferred, i); | |
5249 | init_llist_head(&p->list); | |
5250 | INIT_WORK(&p->wq, delayed_vfree_work); | |
5251 | xa_init(&vbq->vmap_blocks); | |
5252 | } | |
5253 | ||
5254 | /* | |
5255 | * Setup nodes before importing vmlist. | |
5256 | */ | |
5257 | vmap_init_nodes(); | |
5258 | ||
5259 | /* Import existing vmlist entries. */ | |
5260 | for (tmp = vmlist; tmp; tmp = tmp->next) { | |
5261 | va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); | |
5262 | if (WARN_ON_ONCE(!va)) | |
5263 | continue; | |
5264 | ||
5265 | va->va_start = (unsigned long)tmp->addr; | |
5266 | va->va_end = va->va_start + tmp->size; | |
5267 | va->vm = tmp; | |
5268 | ||
5269 | vn = addr_to_node(va->va_start); | |
5270 | insert_vmap_area(va, &vn->busy.root, &vn->busy.head); | |
5271 | } | |
5272 | ||
5273 | /* | |
5274 | * Now we can initialize a free vmap space. | |
5275 | */ | |
5276 | vmap_init_free_space(); | |
5277 | vmap_initialized = true; | |
5278 | ||
5279 | vmap_node_shrinker = shrinker_alloc(0, "vmap-node"); | |
5280 | if (!vmap_node_shrinker) { | |
5281 | pr_err("Failed to allocate vmap-node shrinker!\n"); | |
5282 | return; | |
5283 | } | |
5284 | ||
5285 | vmap_node_shrinker->count_objects = vmap_node_shrink_count; | |
5286 | vmap_node_shrinker->scan_objects = vmap_node_shrink_scan; | |
5287 | shrinker_register(vmap_node_shrinker); | |
5288 | } |