]>
Commit | Line | Data |
---|---|---|
1 | // SPDX-License-Identifier: GPL-2.0 | |
2 | /* | |
3 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
4 | * | |
5 | * Swap reorganised 29.12.95, Stephen Tweedie. | |
6 | * kswapd added: 7.1.96 sct | |
7 | * Removed kswapd_ctl limits, and swap out as many pages as needed | |
8 | * to bring the system back to freepages.high: 2.4.97, Rik van Riel. | |
9 | * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). | |
10 | * Multiqueue VM started 5.8.00, Rik van Riel. | |
11 | */ | |
12 | ||
13 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | |
14 | ||
15 | #include <linux/mm.h> | |
16 | #include <linux/sched/mm.h> | |
17 | #include <linux/module.h> | |
18 | #include <linux/gfp.h> | |
19 | #include <linux/kernel_stat.h> | |
20 | #include <linux/swap.h> | |
21 | #include <linux/pagemap.h> | |
22 | #include <linux/init.h> | |
23 | #include <linux/highmem.h> | |
24 | #include <linux/vmpressure.h> | |
25 | #include <linux/vmstat.h> | |
26 | #include <linux/file.h> | |
27 | #include <linux/writeback.h> | |
28 | #include <linux/blkdev.h> | |
29 | #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ | |
30 | #include <linux/mm_inline.h> | |
31 | #include <linux/backing-dev.h> | |
32 | #include <linux/rmap.h> | |
33 | #include <linux/topology.h> | |
34 | #include <linux/cpu.h> | |
35 | #include <linux/cpuset.h> | |
36 | #include <linux/compaction.h> | |
37 | #include <linux/notifier.h> | |
38 | #include <linux/delay.h> | |
39 | #include <linux/kthread.h> | |
40 | #include <linux/freezer.h> | |
41 | #include <linux/memcontrol.h> | |
42 | #include <linux/migrate.h> | |
43 | #include <linux/delayacct.h> | |
44 | #include <linux/sysctl.h> | |
45 | #include <linux/memory-tiers.h> | |
46 | #include <linux/oom.h> | |
47 | #include <linux/pagevec.h> | |
48 | #include <linux/prefetch.h> | |
49 | #include <linux/printk.h> | |
50 | #include <linux/dax.h> | |
51 | #include <linux/psi.h> | |
52 | #include <linux/pagewalk.h> | |
53 | #include <linux/shmem_fs.h> | |
54 | #include <linux/ctype.h> | |
55 | #include <linux/debugfs.h> | |
56 | #include <linux/khugepaged.h> | |
57 | #include <linux/rculist_nulls.h> | |
58 | #include <linux/random.h> | |
59 | #include <linux/mmu_notifier.h> | |
60 | ||
61 | #include <asm/tlbflush.h> | |
62 | #include <asm/div64.h> | |
63 | ||
64 | #include <linux/swapops.h> | |
65 | #include <linux/balloon_compaction.h> | |
66 | #include <linux/sched/sysctl.h> | |
67 | ||
68 | #include "internal.h" | |
69 | #include "swap.h" | |
70 | ||
71 | #define CREATE_TRACE_POINTS | |
72 | #include <trace/events/vmscan.h> | |
73 | ||
74 | struct scan_control { | |
75 | /* How many pages shrink_list() should reclaim */ | |
76 | unsigned long nr_to_reclaim; | |
77 | ||
78 | /* | |
79 | * Nodemask of nodes allowed by the caller. If NULL, all nodes | |
80 | * are scanned. | |
81 | */ | |
82 | nodemask_t *nodemask; | |
83 | ||
84 | /* | |
85 | * The memory cgroup that hit its limit and as a result is the | |
86 | * primary target of this reclaim invocation. | |
87 | */ | |
88 | struct mem_cgroup *target_mem_cgroup; | |
89 | ||
90 | /* | |
91 | * Scan pressure balancing between anon and file LRUs | |
92 | */ | |
93 | unsigned long anon_cost; | |
94 | unsigned long file_cost; | |
95 | ||
96 | #ifdef CONFIG_MEMCG | |
97 | /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */ | |
98 | int *proactive_swappiness; | |
99 | #endif | |
100 | ||
101 | /* Can active folios be deactivated as part of reclaim? */ | |
102 | #define DEACTIVATE_ANON 1 | |
103 | #define DEACTIVATE_FILE 2 | |
104 | unsigned int may_deactivate:2; | |
105 | unsigned int force_deactivate:1; | |
106 | unsigned int skipped_deactivate:1; | |
107 | ||
108 | /* Writepage batching in laptop mode; RECLAIM_WRITE */ | |
109 | unsigned int may_writepage:1; | |
110 | ||
111 | /* Can mapped folios be reclaimed? */ | |
112 | unsigned int may_unmap:1; | |
113 | ||
114 | /* Can folios be swapped as part of reclaim? */ | |
115 | unsigned int may_swap:1; | |
116 | ||
117 | /* Not allow cache_trim_mode to be turned on as part of reclaim? */ | |
118 | unsigned int no_cache_trim_mode:1; | |
119 | ||
120 | /* Has cache_trim_mode failed at least once? */ | |
121 | unsigned int cache_trim_mode_failed:1; | |
122 | ||
123 | /* Proactive reclaim invoked by userspace through memory.reclaim */ | |
124 | unsigned int proactive:1; | |
125 | ||
126 | /* | |
127 | * Cgroup memory below memory.low is protected as long as we | |
128 | * don't threaten to OOM. If any cgroup is reclaimed at | |
129 | * reduced force or passed over entirely due to its memory.low | |
130 | * setting (memcg_low_skipped), and nothing is reclaimed as a | |
131 | * result, then go back for one more cycle that reclaims the protected | |
132 | * memory (memcg_low_reclaim) to avert OOM. | |
133 | */ | |
134 | unsigned int memcg_low_reclaim:1; | |
135 | unsigned int memcg_low_skipped:1; | |
136 | ||
137 | /* Shared cgroup tree walk failed, rescan the whole tree */ | |
138 | unsigned int memcg_full_walk:1; | |
139 | ||
140 | unsigned int hibernation_mode:1; | |
141 | ||
142 | /* One of the zones is ready for compaction */ | |
143 | unsigned int compaction_ready:1; | |
144 | ||
145 | /* There is easily reclaimable cold cache in the current node */ | |
146 | unsigned int cache_trim_mode:1; | |
147 | ||
148 | /* The file folios on the current node are dangerously low */ | |
149 | unsigned int file_is_tiny:1; | |
150 | ||
151 | /* Always discard instead of demoting to lower tier memory */ | |
152 | unsigned int no_demotion:1; | |
153 | ||
154 | /* Allocation order */ | |
155 | s8 order; | |
156 | ||
157 | /* Scan (total_size >> priority) pages at once */ | |
158 | s8 priority; | |
159 | ||
160 | /* The highest zone to isolate folios for reclaim from */ | |
161 | s8 reclaim_idx; | |
162 | ||
163 | /* This context's GFP mask */ | |
164 | gfp_t gfp_mask; | |
165 | ||
166 | /* Incremented by the number of inactive pages that were scanned */ | |
167 | unsigned long nr_scanned; | |
168 | ||
169 | /* Number of pages freed so far during a call to shrink_zones() */ | |
170 | unsigned long nr_reclaimed; | |
171 | ||
172 | struct { | |
173 | unsigned int dirty; | |
174 | unsigned int unqueued_dirty; | |
175 | unsigned int congested; | |
176 | unsigned int writeback; | |
177 | unsigned int immediate; | |
178 | unsigned int file_taken; | |
179 | unsigned int taken; | |
180 | } nr; | |
181 | ||
182 | /* for recording the reclaimed slab by now */ | |
183 | struct reclaim_state reclaim_state; | |
184 | }; | |
185 | ||
186 | #ifdef ARCH_HAS_PREFETCHW | |
187 | #define prefetchw_prev_lru_folio(_folio, _base, _field) \ | |
188 | do { \ | |
189 | if ((_folio)->lru.prev != _base) { \ | |
190 | struct folio *prev; \ | |
191 | \ | |
192 | prev = lru_to_folio(&(_folio->lru)); \ | |
193 | prefetchw(&prev->_field); \ | |
194 | } \ | |
195 | } while (0) | |
196 | #else | |
197 | #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) | |
198 | #endif | |
199 | ||
200 | /* | |
201 | * From 0 .. MAX_SWAPPINESS. Higher means more swappy. | |
202 | */ | |
203 | int vm_swappiness = 60; | |
204 | ||
205 | #ifdef CONFIG_MEMCG | |
206 | ||
207 | /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ | |
208 | static bool cgroup_reclaim(struct scan_control *sc) | |
209 | { | |
210 | return sc->target_mem_cgroup; | |
211 | } | |
212 | ||
213 | /* | |
214 | * Returns true for reclaim on the root cgroup. This is true for direct | |
215 | * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. | |
216 | */ | |
217 | static bool root_reclaim(struct scan_control *sc) | |
218 | { | |
219 | return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); | |
220 | } | |
221 | ||
222 | /** | |
223 | * writeback_throttling_sane - is the usual dirty throttling mechanism available? | |
224 | * @sc: scan_control in question | |
225 | * | |
226 | * The normal page dirty throttling mechanism in balance_dirty_pages() is | |
227 | * completely broken with the legacy memcg and direct stalling in | |
228 | * shrink_folio_list() is used for throttling instead, which lacks all the | |
229 | * niceties such as fairness, adaptive pausing, bandwidth proportional | |
230 | * allocation and configurability. | |
231 | * | |
232 | * This function tests whether the vmscan currently in progress can assume | |
233 | * that the normal dirty throttling mechanism is operational. | |
234 | */ | |
235 | static bool writeback_throttling_sane(struct scan_control *sc) | |
236 | { | |
237 | if (!cgroup_reclaim(sc)) | |
238 | return true; | |
239 | #ifdef CONFIG_CGROUP_WRITEBACK | |
240 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
241 | return true; | |
242 | #endif | |
243 | return false; | |
244 | } | |
245 | ||
246 | static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) | |
247 | { | |
248 | if (sc->proactive && sc->proactive_swappiness) | |
249 | return *sc->proactive_swappiness; | |
250 | return mem_cgroup_swappiness(memcg); | |
251 | } | |
252 | #else | |
253 | static bool cgroup_reclaim(struct scan_control *sc) | |
254 | { | |
255 | return false; | |
256 | } | |
257 | ||
258 | static bool root_reclaim(struct scan_control *sc) | |
259 | { | |
260 | return true; | |
261 | } | |
262 | ||
263 | static bool writeback_throttling_sane(struct scan_control *sc) | |
264 | { | |
265 | return true; | |
266 | } | |
267 | ||
268 | static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) | |
269 | { | |
270 | return READ_ONCE(vm_swappiness); | |
271 | } | |
272 | #endif | |
273 | ||
274 | /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to | |
275 | * and including the specified highidx | |
276 | * @zone: The current zone in the iterator | |
277 | * @pgdat: The pgdat which node_zones are being iterated | |
278 | * @idx: The index variable | |
279 | * @highidx: The index of the highest zone to return | |
280 | * | |
281 | * This macro iterates through all managed zones up to and including the specified highidx. | |
282 | * The zone iterator enters an invalid state after macro call and must be reinitialized | |
283 | * before it can be used again. | |
284 | */ | |
285 | #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx) \ | |
286 | for ((idx) = 0, (zone) = (pgdat)->node_zones; \ | |
287 | (idx) <= (highidx); \ | |
288 | (idx)++, (zone)++) \ | |
289 | if (!managed_zone(zone)) \ | |
290 | continue; \ | |
291 | else | |
292 | ||
293 | static void set_task_reclaim_state(struct task_struct *task, | |
294 | struct reclaim_state *rs) | |
295 | { | |
296 | /* Check for an overwrite */ | |
297 | WARN_ON_ONCE(rs && task->reclaim_state); | |
298 | ||
299 | /* Check for the nulling of an already-nulled member */ | |
300 | WARN_ON_ONCE(!rs && !task->reclaim_state); | |
301 | ||
302 | task->reclaim_state = rs; | |
303 | } | |
304 | ||
305 | /* | |
306 | * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to | |
307 | * scan_control->nr_reclaimed. | |
308 | */ | |
309 | static void flush_reclaim_state(struct scan_control *sc) | |
310 | { | |
311 | /* | |
312 | * Currently, reclaim_state->reclaimed includes three types of pages | |
313 | * freed outside of vmscan: | |
314 | * (1) Slab pages. | |
315 | * (2) Clean file pages from pruned inodes (on highmem systems). | |
316 | * (3) XFS freed buffer pages. | |
317 | * | |
318 | * For all of these cases, we cannot universally link the pages to a | |
319 | * single memcg. For example, a memcg-aware shrinker can free one object | |
320 | * charged to the target memcg, causing an entire page to be freed. | |
321 | * If we count the entire page as reclaimed from the memcg, we end up | |
322 | * overestimating the reclaimed amount (potentially under-reclaiming). | |
323 | * | |
324 | * Only count such pages for global reclaim to prevent under-reclaiming | |
325 | * from the target memcg; preventing unnecessary retries during memcg | |
326 | * charging and false positives from proactive reclaim. | |
327 | * | |
328 | * For uncommon cases where the freed pages were actually mostly | |
329 | * charged to the target memcg, we end up underestimating the reclaimed | |
330 | * amount. This should be fine. The freed pages will be uncharged | |
331 | * anyway, even if they are not counted here properly, and we will be | |
332 | * able to make forward progress in charging (which is usually in a | |
333 | * retry loop). | |
334 | * | |
335 | * We can go one step further, and report the uncharged objcg pages in | |
336 | * memcg reclaim, to make reporting more accurate and reduce | |
337 | * underestimation, but it's probably not worth the complexity for now. | |
338 | */ | |
339 | if (current->reclaim_state && root_reclaim(sc)) { | |
340 | sc->nr_reclaimed += current->reclaim_state->reclaimed; | |
341 | current->reclaim_state->reclaimed = 0; | |
342 | } | |
343 | } | |
344 | ||
345 | static bool can_demote(int nid, struct scan_control *sc, | |
346 | struct mem_cgroup *memcg) | |
347 | { | |
348 | int demotion_nid; | |
349 | ||
350 | if (!numa_demotion_enabled) | |
351 | return false; | |
352 | if (sc && sc->no_demotion) | |
353 | return false; | |
354 | ||
355 | demotion_nid = next_demotion_node(nid); | |
356 | if (demotion_nid == NUMA_NO_NODE) | |
357 | return false; | |
358 | ||
359 | /* If demotion node isn't in the cgroup's mems_allowed, fall back */ | |
360 | return mem_cgroup_node_allowed(memcg, demotion_nid); | |
361 | } | |
362 | ||
363 | static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, | |
364 | int nid, | |
365 | struct scan_control *sc) | |
366 | { | |
367 | if (memcg == NULL) { | |
368 | /* | |
369 | * For non-memcg reclaim, is there | |
370 | * space in any swap device? | |
371 | */ | |
372 | if (get_nr_swap_pages() > 0) | |
373 | return true; | |
374 | } else { | |
375 | /* Is the memcg below its swap limit? */ | |
376 | if (mem_cgroup_get_nr_swap_pages(memcg) > 0) | |
377 | return true; | |
378 | } | |
379 | ||
380 | /* | |
381 | * The page can not be swapped. | |
382 | * | |
383 | * Can it be reclaimed from this node via demotion? | |
384 | */ | |
385 | return can_demote(nid, sc, memcg); | |
386 | } | |
387 | ||
388 | /* | |
389 | * This misses isolated folios which are not accounted for to save counters. | |
390 | * As the data only determines if reclaim or compaction continues, it is | |
391 | * not expected that isolated folios will be a dominating factor. | |
392 | */ | |
393 | unsigned long zone_reclaimable_pages(struct zone *zone) | |
394 | { | |
395 | unsigned long nr; | |
396 | ||
397 | nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + | |
398 | zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); | |
399 | if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) | |
400 | nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + | |
401 | zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); | |
402 | /* | |
403 | * If there are no reclaimable file-backed or anonymous pages, | |
404 | * ensure zones with sufficient free pages are not skipped. | |
405 | * This prevents zones like DMA32 from being ignored in reclaim | |
406 | * scenarios where they can still help alleviate memory pressure. | |
407 | */ | |
408 | if (nr == 0) | |
409 | nr = zone_page_state_snapshot(zone, NR_FREE_PAGES); | |
410 | return nr; | |
411 | } | |
412 | ||
413 | /** | |
414 | * lruvec_lru_size - Returns the number of pages on the given LRU list. | |
415 | * @lruvec: lru vector | |
416 | * @lru: lru to use | |
417 | * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) | |
418 | */ | |
419 | static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, | |
420 | int zone_idx) | |
421 | { | |
422 | unsigned long size = 0; | |
423 | int zid; | |
424 | struct zone *zone; | |
425 | ||
426 | for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) { | |
427 | if (!mem_cgroup_disabled()) | |
428 | size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); | |
429 | else | |
430 | size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); | |
431 | } | |
432 | return size; | |
433 | } | |
434 | ||
435 | static unsigned long drop_slab_node(int nid) | |
436 | { | |
437 | unsigned long freed = 0; | |
438 | struct mem_cgroup *memcg = NULL; | |
439 | ||
440 | memcg = mem_cgroup_iter(NULL, NULL, NULL); | |
441 | do { | |
442 | freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); | |
443 | } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); | |
444 | ||
445 | return freed; | |
446 | } | |
447 | ||
448 | void drop_slab(void) | |
449 | { | |
450 | int nid; | |
451 | int shift = 0; | |
452 | unsigned long freed; | |
453 | ||
454 | do { | |
455 | freed = 0; | |
456 | for_each_online_node(nid) { | |
457 | if (fatal_signal_pending(current)) | |
458 | return; | |
459 | ||
460 | freed += drop_slab_node(nid); | |
461 | } | |
462 | } while ((freed >> shift++) > 1); | |
463 | } | |
464 | ||
465 | #define CHECK_RECLAIMER_OFFSET(type) \ | |
466 | do { \ | |
467 | BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \ | |
468 | PGDEMOTE_##type - PGDEMOTE_KSWAPD); \ | |
469 | BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \ | |
470 | PGSCAN_##type - PGSCAN_KSWAPD); \ | |
471 | } while (0) | |
472 | ||
473 | static int reclaimer_offset(struct scan_control *sc) | |
474 | { | |
475 | CHECK_RECLAIMER_OFFSET(DIRECT); | |
476 | CHECK_RECLAIMER_OFFSET(KHUGEPAGED); | |
477 | CHECK_RECLAIMER_OFFSET(PROACTIVE); | |
478 | ||
479 | if (current_is_kswapd()) | |
480 | return 0; | |
481 | if (current_is_khugepaged()) | |
482 | return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; | |
483 | if (sc->proactive) | |
484 | return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD; | |
485 | return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; | |
486 | } | |
487 | ||
488 | static inline int is_page_cache_freeable(struct folio *folio) | |
489 | { | |
490 | /* | |
491 | * A freeable page cache folio is referenced only by the caller | |
492 | * that isolated the folio, the page cache and optional filesystem | |
493 | * private data at folio->private. | |
494 | */ | |
495 | return folio_ref_count(folio) - folio_test_private(folio) == | |
496 | 1 + folio_nr_pages(folio); | |
497 | } | |
498 | ||
499 | /* | |
500 | * We detected a synchronous write error writing a folio out. Probably | |
501 | * -ENOSPC. We need to propagate that into the address_space for a subsequent | |
502 | * fsync(), msync() or close(). | |
503 | * | |
504 | * The tricky part is that after writepage we cannot touch the mapping: nothing | |
505 | * prevents it from being freed up. But we have a ref on the folio and once | |
506 | * that folio is locked, the mapping is pinned. | |
507 | * | |
508 | * We're allowed to run sleeping folio_lock() here because we know the caller has | |
509 | * __GFP_FS. | |
510 | */ | |
511 | static void handle_write_error(struct address_space *mapping, | |
512 | struct folio *folio, int error) | |
513 | { | |
514 | folio_lock(folio); | |
515 | if (folio_mapping(folio) == mapping) | |
516 | mapping_set_error(mapping, error); | |
517 | folio_unlock(folio); | |
518 | } | |
519 | ||
520 | static bool skip_throttle_noprogress(pg_data_t *pgdat) | |
521 | { | |
522 | int reclaimable = 0, write_pending = 0; | |
523 | int i; | |
524 | struct zone *zone; | |
525 | /* | |
526 | * If kswapd is disabled, reschedule if necessary but do not | |
527 | * throttle as the system is likely near OOM. | |
528 | */ | |
529 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) | |
530 | return true; | |
531 | ||
532 | /* | |
533 | * If there are a lot of dirty/writeback folios then do not | |
534 | * throttle as throttling will occur when the folios cycle | |
535 | * towards the end of the LRU if still under writeback. | |
536 | */ | |
537 | for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) { | |
538 | reclaimable += zone_reclaimable_pages(zone); | |
539 | write_pending += zone_page_state_snapshot(zone, | |
540 | NR_ZONE_WRITE_PENDING); | |
541 | } | |
542 | if (2 * write_pending <= reclaimable) | |
543 | return true; | |
544 | ||
545 | return false; | |
546 | } | |
547 | ||
548 | void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) | |
549 | { | |
550 | wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; | |
551 | long timeout, ret; | |
552 | DEFINE_WAIT(wait); | |
553 | ||
554 | /* | |
555 | * Do not throttle user workers, kthreads other than kswapd or | |
556 | * workqueues. They may be required for reclaim to make | |
557 | * forward progress (e.g. journalling workqueues or kthreads). | |
558 | */ | |
559 | if (!current_is_kswapd() && | |
560 | current->flags & (PF_USER_WORKER|PF_KTHREAD)) { | |
561 | cond_resched(); | |
562 | return; | |
563 | } | |
564 | ||
565 | /* | |
566 | * These figures are pulled out of thin air. | |
567 | * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many | |
568 | * parallel reclaimers which is a short-lived event so the timeout is | |
569 | * short. Failing to make progress or waiting on writeback are | |
570 | * potentially long-lived events so use a longer timeout. This is shaky | |
571 | * logic as a failure to make progress could be due to anything from | |
572 | * writeback to a slow device to excessive referenced folios at the tail | |
573 | * of the inactive LRU. | |
574 | */ | |
575 | switch(reason) { | |
576 | case VMSCAN_THROTTLE_WRITEBACK: | |
577 | timeout = HZ/10; | |
578 | ||
579 | if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { | |
580 | WRITE_ONCE(pgdat->nr_reclaim_start, | |
581 | node_page_state(pgdat, NR_THROTTLED_WRITTEN)); | |
582 | } | |
583 | ||
584 | break; | |
585 | case VMSCAN_THROTTLE_CONGESTED: | |
586 | fallthrough; | |
587 | case VMSCAN_THROTTLE_NOPROGRESS: | |
588 | if (skip_throttle_noprogress(pgdat)) { | |
589 | cond_resched(); | |
590 | return; | |
591 | } | |
592 | ||
593 | timeout = 1; | |
594 | ||
595 | break; | |
596 | case VMSCAN_THROTTLE_ISOLATED: | |
597 | timeout = HZ/50; | |
598 | break; | |
599 | default: | |
600 | WARN_ON_ONCE(1); | |
601 | timeout = HZ; | |
602 | break; | |
603 | } | |
604 | ||
605 | prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); | |
606 | ret = schedule_timeout(timeout); | |
607 | finish_wait(wqh, &wait); | |
608 | ||
609 | if (reason == VMSCAN_THROTTLE_WRITEBACK) | |
610 | atomic_dec(&pgdat->nr_writeback_throttled); | |
611 | ||
612 | trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), | |
613 | jiffies_to_usecs(timeout - ret), | |
614 | reason); | |
615 | } | |
616 | ||
617 | /* | |
618 | * Account for folios written if tasks are throttled waiting on dirty | |
619 | * folios to clean. If enough folios have been cleaned since throttling | |
620 | * started then wakeup the throttled tasks. | |
621 | */ | |
622 | void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, | |
623 | int nr_throttled) | |
624 | { | |
625 | unsigned long nr_written; | |
626 | ||
627 | node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); | |
628 | ||
629 | /* | |
630 | * This is an inaccurate read as the per-cpu deltas may not | |
631 | * be synchronised. However, given that the system is | |
632 | * writeback throttled, it is not worth taking the penalty | |
633 | * of getting an accurate count. At worst, the throttle | |
634 | * timeout guarantees forward progress. | |
635 | */ | |
636 | nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - | |
637 | READ_ONCE(pgdat->nr_reclaim_start); | |
638 | ||
639 | if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) | |
640 | wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); | |
641 | } | |
642 | ||
643 | /* possible outcome of pageout() */ | |
644 | typedef enum { | |
645 | /* failed to write folio out, folio is locked */ | |
646 | PAGE_KEEP, | |
647 | /* move folio to the active list, folio is locked */ | |
648 | PAGE_ACTIVATE, | |
649 | /* folio has been sent to the disk successfully, folio is unlocked */ | |
650 | PAGE_SUCCESS, | |
651 | /* folio is clean and locked */ | |
652 | PAGE_CLEAN, | |
653 | } pageout_t; | |
654 | ||
655 | /* | |
656 | * pageout is called by shrink_folio_list() for each dirty folio. | |
657 | */ | |
658 | static pageout_t pageout(struct folio *folio, struct address_space *mapping, | |
659 | struct swap_iocb **plug, struct list_head *folio_list) | |
660 | { | |
661 | int (*writeout)(struct folio *, struct writeback_control *); | |
662 | ||
663 | /* | |
664 | * We no longer attempt to writeback filesystem folios here, other | |
665 | * than tmpfs/shmem. That's taken care of in page-writeback. | |
666 | * If we find a dirty filesystem folio at the end of the LRU list, | |
667 | * typically that means the filesystem is saturating the storage | |
668 | * with contiguous writes and telling it to write a folio here | |
669 | * would only make the situation worse by injecting an element | |
670 | * of random access. | |
671 | * | |
672 | * If the folio is swapcache, write it back even if that would | |
673 | * block, for some throttling. This happens by accident, because | |
674 | * swap_backing_dev_info is bust: it doesn't reflect the | |
675 | * congestion state of the swapdevs. Easy to fix, if needed. | |
676 | */ | |
677 | if (!is_page_cache_freeable(folio)) | |
678 | return PAGE_KEEP; | |
679 | if (!mapping) { | |
680 | /* | |
681 | * Some data journaling orphaned folios can have | |
682 | * folio->mapping == NULL while being dirty with clean buffers. | |
683 | */ | |
684 | if (folio_test_private(folio)) { | |
685 | if (try_to_free_buffers(folio)) { | |
686 | folio_clear_dirty(folio); | |
687 | pr_info("%s: orphaned folio\n", __func__); | |
688 | return PAGE_CLEAN; | |
689 | } | |
690 | } | |
691 | return PAGE_KEEP; | |
692 | } | |
693 | if (shmem_mapping(mapping)) | |
694 | writeout = shmem_writeout; | |
695 | else if (folio_test_anon(folio)) | |
696 | writeout = swap_writeout; | |
697 | else | |
698 | return PAGE_ACTIVATE; | |
699 | ||
700 | if (folio_clear_dirty_for_io(folio)) { | |
701 | int res; | |
702 | struct writeback_control wbc = { | |
703 | .sync_mode = WB_SYNC_NONE, | |
704 | .nr_to_write = SWAP_CLUSTER_MAX, | |
705 | .range_start = 0, | |
706 | .range_end = LLONG_MAX, | |
707 | .for_reclaim = 1, | |
708 | .swap_plug = plug, | |
709 | }; | |
710 | ||
711 | /* | |
712 | * The large shmem folio can be split if CONFIG_THP_SWAP is | |
713 | * not enabled or contiguous swap entries are failed to | |
714 | * allocate. | |
715 | */ | |
716 | if (shmem_mapping(mapping) && folio_test_large(folio)) | |
717 | wbc.list = folio_list; | |
718 | ||
719 | folio_set_reclaim(folio); | |
720 | res = writeout(folio, &wbc); | |
721 | if (res < 0) | |
722 | handle_write_error(mapping, folio, res); | |
723 | if (res == AOP_WRITEPAGE_ACTIVATE) { | |
724 | folio_clear_reclaim(folio); | |
725 | return PAGE_ACTIVATE; | |
726 | } | |
727 | ||
728 | if (!folio_test_writeback(folio)) { | |
729 | /* synchronous write? */ | |
730 | folio_clear_reclaim(folio); | |
731 | } | |
732 | trace_mm_vmscan_write_folio(folio); | |
733 | node_stat_add_folio(folio, NR_VMSCAN_WRITE); | |
734 | return PAGE_SUCCESS; | |
735 | } | |
736 | ||
737 | return PAGE_CLEAN; | |
738 | } | |
739 | ||
740 | /* | |
741 | * Same as remove_mapping, but if the folio is removed from the mapping, it | |
742 | * gets returned with a refcount of 0. | |
743 | */ | |
744 | static int __remove_mapping(struct address_space *mapping, struct folio *folio, | |
745 | bool reclaimed, struct mem_cgroup *target_memcg) | |
746 | { | |
747 | int refcount; | |
748 | void *shadow = NULL; | |
749 | ||
750 | BUG_ON(!folio_test_locked(folio)); | |
751 | BUG_ON(mapping != folio_mapping(folio)); | |
752 | ||
753 | if (!folio_test_swapcache(folio)) | |
754 | spin_lock(&mapping->host->i_lock); | |
755 | xa_lock_irq(&mapping->i_pages); | |
756 | /* | |
757 | * The non racy check for a busy folio. | |
758 | * | |
759 | * Must be careful with the order of the tests. When someone has | |
760 | * a ref to the folio, it may be possible that they dirty it then | |
761 | * drop the reference. So if the dirty flag is tested before the | |
762 | * refcount here, then the following race may occur: | |
763 | * | |
764 | * get_user_pages(&page); | |
765 | * [user mapping goes away] | |
766 | * write_to(page); | |
767 | * !folio_test_dirty(folio) [good] | |
768 | * folio_set_dirty(folio); | |
769 | * folio_put(folio); | |
770 | * !refcount(folio) [good, discard it] | |
771 | * | |
772 | * [oops, our write_to data is lost] | |
773 | * | |
774 | * Reversing the order of the tests ensures such a situation cannot | |
775 | * escape unnoticed. The smp_rmb is needed to ensure the folio->flags | |
776 | * load is not satisfied before that of folio->_refcount. | |
777 | * | |
778 | * Note that if the dirty flag is always set via folio_mark_dirty, | |
779 | * and thus under the i_pages lock, then this ordering is not required. | |
780 | */ | |
781 | refcount = 1 + folio_nr_pages(folio); | |
782 | if (!folio_ref_freeze(folio, refcount)) | |
783 | goto cannot_free; | |
784 | /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ | |
785 | if (unlikely(folio_test_dirty(folio))) { | |
786 | folio_ref_unfreeze(folio, refcount); | |
787 | goto cannot_free; | |
788 | } | |
789 | ||
790 | if (folio_test_swapcache(folio)) { | |
791 | swp_entry_t swap = folio->swap; | |
792 | ||
793 | if (reclaimed && !mapping_exiting(mapping)) | |
794 | shadow = workingset_eviction(folio, target_memcg); | |
795 | __delete_from_swap_cache(folio, swap, shadow); | |
796 | memcg1_swapout(folio, swap); | |
797 | xa_unlock_irq(&mapping->i_pages); | |
798 | put_swap_folio(folio, swap); | |
799 | } else { | |
800 | void (*free_folio)(struct folio *); | |
801 | ||
802 | free_folio = mapping->a_ops->free_folio; | |
803 | /* | |
804 | * Remember a shadow entry for reclaimed file cache in | |
805 | * order to detect refaults, thus thrashing, later on. | |
806 | * | |
807 | * But don't store shadows in an address space that is | |
808 | * already exiting. This is not just an optimization, | |
809 | * inode reclaim needs to empty out the radix tree or | |
810 | * the nodes are lost. Don't plant shadows behind its | |
811 | * back. | |
812 | * | |
813 | * We also don't store shadows for DAX mappings because the | |
814 | * only page cache folios found in these are zero pages | |
815 | * covering holes, and because we don't want to mix DAX | |
816 | * exceptional entries and shadow exceptional entries in the | |
817 | * same address_space. | |
818 | */ | |
819 | if (reclaimed && folio_is_file_lru(folio) && | |
820 | !mapping_exiting(mapping) && !dax_mapping(mapping)) | |
821 | shadow = workingset_eviction(folio, target_memcg); | |
822 | __filemap_remove_folio(folio, shadow); | |
823 | xa_unlock_irq(&mapping->i_pages); | |
824 | if (mapping_shrinkable(mapping)) | |
825 | inode_add_lru(mapping->host); | |
826 | spin_unlock(&mapping->host->i_lock); | |
827 | ||
828 | if (free_folio) | |
829 | free_folio(folio); | |
830 | } | |
831 | ||
832 | return 1; | |
833 | ||
834 | cannot_free: | |
835 | xa_unlock_irq(&mapping->i_pages); | |
836 | if (!folio_test_swapcache(folio)) | |
837 | spin_unlock(&mapping->host->i_lock); | |
838 | return 0; | |
839 | } | |
840 | ||
841 | /** | |
842 | * remove_mapping() - Attempt to remove a folio from its mapping. | |
843 | * @mapping: The address space. | |
844 | * @folio: The folio to remove. | |
845 | * | |
846 | * If the folio is dirty, under writeback or if someone else has a ref | |
847 | * on it, removal will fail. | |
848 | * Return: The number of pages removed from the mapping. 0 if the folio | |
849 | * could not be removed. | |
850 | * Context: The caller should have a single refcount on the folio and | |
851 | * hold its lock. | |
852 | */ | |
853 | long remove_mapping(struct address_space *mapping, struct folio *folio) | |
854 | { | |
855 | if (__remove_mapping(mapping, folio, false, NULL)) { | |
856 | /* | |
857 | * Unfreezing the refcount with 1 effectively | |
858 | * drops the pagecache ref for us without requiring another | |
859 | * atomic operation. | |
860 | */ | |
861 | folio_ref_unfreeze(folio, 1); | |
862 | return folio_nr_pages(folio); | |
863 | } | |
864 | return 0; | |
865 | } | |
866 | ||
867 | /** | |
868 | * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. | |
869 | * @folio: Folio to be returned to an LRU list. | |
870 | * | |
871 | * Add previously isolated @folio to appropriate LRU list. | |
872 | * The folio may still be unevictable for other reasons. | |
873 | * | |
874 | * Context: lru_lock must not be held, interrupts must be enabled. | |
875 | */ | |
876 | void folio_putback_lru(struct folio *folio) | |
877 | { | |
878 | folio_add_lru(folio); | |
879 | folio_put(folio); /* drop ref from isolate */ | |
880 | } | |
881 | ||
882 | enum folio_references { | |
883 | FOLIOREF_RECLAIM, | |
884 | FOLIOREF_RECLAIM_CLEAN, | |
885 | FOLIOREF_KEEP, | |
886 | FOLIOREF_ACTIVATE, | |
887 | }; | |
888 | ||
889 | #ifdef CONFIG_LRU_GEN | |
890 | /* | |
891 | * Only used on a mapped folio in the eviction (rmap walk) path, where promotion | |
892 | * needs to be done by taking the folio off the LRU list and then adding it back | |
893 | * with PG_active set. In contrast, the aging (page table walk) path uses | |
894 | * folio_update_gen(). | |
895 | */ | |
896 | static bool lru_gen_set_refs(struct folio *folio) | |
897 | { | |
898 | /* see the comment on LRU_REFS_FLAGS */ | |
899 | if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) { | |
900 | set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced)); | |
901 | return false; | |
902 | } | |
903 | ||
904 | set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_workingset)); | |
905 | return true; | |
906 | } | |
907 | #else | |
908 | static bool lru_gen_set_refs(struct folio *folio) | |
909 | { | |
910 | return false; | |
911 | } | |
912 | #endif /* CONFIG_LRU_GEN */ | |
913 | ||
914 | static enum folio_references folio_check_references(struct folio *folio, | |
915 | struct scan_control *sc) | |
916 | { | |
917 | int referenced_ptes, referenced_folio; | |
918 | unsigned long vm_flags; | |
919 | ||
920 | referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, | |
921 | &vm_flags); | |
922 | ||
923 | /* | |
924 | * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. | |
925 | * Let the folio, now marked Mlocked, be moved to the unevictable list. | |
926 | */ | |
927 | if (vm_flags & VM_LOCKED) | |
928 | return FOLIOREF_ACTIVATE; | |
929 | ||
930 | /* | |
931 | * There are two cases to consider. | |
932 | * 1) Rmap lock contention: rotate. | |
933 | * 2) Skip the non-shared swapbacked folio mapped solely by | |
934 | * the exiting or OOM-reaped process. | |
935 | */ | |
936 | if (referenced_ptes == -1) | |
937 | return FOLIOREF_KEEP; | |
938 | ||
939 | if (lru_gen_enabled()) { | |
940 | if (!referenced_ptes) | |
941 | return FOLIOREF_RECLAIM; | |
942 | ||
943 | return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP; | |
944 | } | |
945 | ||
946 | referenced_folio = folio_test_clear_referenced(folio); | |
947 | ||
948 | if (referenced_ptes) { | |
949 | /* | |
950 | * All mapped folios start out with page table | |
951 | * references from the instantiating fault, so we need | |
952 | * to look twice if a mapped file/anon folio is used more | |
953 | * than once. | |
954 | * | |
955 | * Mark it and spare it for another trip around the | |
956 | * inactive list. Another page table reference will | |
957 | * lead to its activation. | |
958 | * | |
959 | * Note: the mark is set for activated folios as well | |
960 | * so that recently deactivated but used folios are | |
961 | * quickly recovered. | |
962 | */ | |
963 | folio_set_referenced(folio); | |
964 | ||
965 | if (referenced_folio || referenced_ptes > 1) | |
966 | return FOLIOREF_ACTIVATE; | |
967 | ||
968 | /* | |
969 | * Activate file-backed executable folios after first usage. | |
970 | */ | |
971 | if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) | |
972 | return FOLIOREF_ACTIVATE; | |
973 | ||
974 | return FOLIOREF_KEEP; | |
975 | } | |
976 | ||
977 | /* Reclaim if clean, defer dirty folios to writeback */ | |
978 | if (referenced_folio && folio_is_file_lru(folio)) | |
979 | return FOLIOREF_RECLAIM_CLEAN; | |
980 | ||
981 | return FOLIOREF_RECLAIM; | |
982 | } | |
983 | ||
984 | /* Check if a folio is dirty or under writeback */ | |
985 | static void folio_check_dirty_writeback(struct folio *folio, | |
986 | bool *dirty, bool *writeback) | |
987 | { | |
988 | struct address_space *mapping; | |
989 | ||
990 | /* | |
991 | * Anonymous folios are not handled by flushers and must be written | |
992 | * from reclaim context. Do not stall reclaim based on them. | |
993 | * MADV_FREE anonymous folios are put into inactive file list too. | |
994 | * They could be mistakenly treated as file lru. So further anon | |
995 | * test is needed. | |
996 | */ | |
997 | if (!folio_is_file_lru(folio) || | |
998 | (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { | |
999 | *dirty = false; | |
1000 | *writeback = false; | |
1001 | return; | |
1002 | } | |
1003 | ||
1004 | /* By default assume that the folio flags are accurate */ | |
1005 | *dirty = folio_test_dirty(folio); | |
1006 | *writeback = folio_test_writeback(folio); | |
1007 | ||
1008 | /* Verify dirty/writeback state if the filesystem supports it */ | |
1009 | if (!folio_test_private(folio)) | |
1010 | return; | |
1011 | ||
1012 | mapping = folio_mapping(folio); | |
1013 | if (mapping && mapping->a_ops->is_dirty_writeback) | |
1014 | mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); | |
1015 | } | |
1016 | ||
1017 | struct folio *alloc_migrate_folio(struct folio *src, unsigned long private) | |
1018 | { | |
1019 | struct folio *dst; | |
1020 | nodemask_t *allowed_mask; | |
1021 | struct migration_target_control *mtc; | |
1022 | ||
1023 | mtc = (struct migration_target_control *)private; | |
1024 | ||
1025 | allowed_mask = mtc->nmask; | |
1026 | /* | |
1027 | * make sure we allocate from the target node first also trying to | |
1028 | * demote or reclaim pages from the target node via kswapd if we are | |
1029 | * low on free memory on target node. If we don't do this and if | |
1030 | * we have free memory on the slower(lower) memtier, we would start | |
1031 | * allocating pages from slower(lower) memory tiers without even forcing | |
1032 | * a demotion of cold pages from the target memtier. This can result | |
1033 | * in the kernel placing hot pages in slower(lower) memory tiers. | |
1034 | */ | |
1035 | mtc->nmask = NULL; | |
1036 | mtc->gfp_mask |= __GFP_THISNODE; | |
1037 | dst = alloc_migration_target(src, (unsigned long)mtc); | |
1038 | if (dst) | |
1039 | return dst; | |
1040 | ||
1041 | mtc->gfp_mask &= ~__GFP_THISNODE; | |
1042 | mtc->nmask = allowed_mask; | |
1043 | ||
1044 | return alloc_migration_target(src, (unsigned long)mtc); | |
1045 | } | |
1046 | ||
1047 | /* | |
1048 | * Take folios on @demote_folios and attempt to demote them to another node. | |
1049 | * Folios which are not demoted are left on @demote_folios. | |
1050 | */ | |
1051 | static unsigned int demote_folio_list(struct list_head *demote_folios, | |
1052 | struct pglist_data *pgdat) | |
1053 | { | |
1054 | int target_nid = next_demotion_node(pgdat->node_id); | |
1055 | unsigned int nr_succeeded; | |
1056 | nodemask_t allowed_mask; | |
1057 | ||
1058 | struct migration_target_control mtc = { | |
1059 | /* | |
1060 | * Allocate from 'node', or fail quickly and quietly. | |
1061 | * When this happens, 'page' will likely just be discarded | |
1062 | * instead of migrated. | |
1063 | */ | |
1064 | .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | | |
1065 | __GFP_NOMEMALLOC | GFP_NOWAIT, | |
1066 | .nid = target_nid, | |
1067 | .nmask = &allowed_mask, | |
1068 | .reason = MR_DEMOTION, | |
1069 | }; | |
1070 | ||
1071 | if (list_empty(demote_folios)) | |
1072 | return 0; | |
1073 | ||
1074 | if (target_nid == NUMA_NO_NODE) | |
1075 | return 0; | |
1076 | ||
1077 | node_get_allowed_targets(pgdat, &allowed_mask); | |
1078 | ||
1079 | /* Demotion ignores all cpuset and mempolicy settings */ | |
1080 | migrate_pages(demote_folios, alloc_migrate_folio, NULL, | |
1081 | (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, | |
1082 | &nr_succeeded); | |
1083 | ||
1084 | return nr_succeeded; | |
1085 | } | |
1086 | ||
1087 | static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) | |
1088 | { | |
1089 | if (gfp_mask & __GFP_FS) | |
1090 | return true; | |
1091 | if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) | |
1092 | return false; | |
1093 | /* | |
1094 | * We can "enter_fs" for swap-cache with only __GFP_IO | |
1095 | * providing this isn't SWP_FS_OPS. | |
1096 | * ->flags can be updated non-atomicially (scan_swap_map_slots), | |
1097 | * but that will never affect SWP_FS_OPS, so the data_race | |
1098 | * is safe. | |
1099 | */ | |
1100 | return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); | |
1101 | } | |
1102 | ||
1103 | /* | |
1104 | * shrink_folio_list() returns the number of reclaimed pages | |
1105 | */ | |
1106 | static unsigned int shrink_folio_list(struct list_head *folio_list, | |
1107 | struct pglist_data *pgdat, struct scan_control *sc, | |
1108 | struct reclaim_stat *stat, bool ignore_references, | |
1109 | struct mem_cgroup *memcg) | |
1110 | { | |
1111 | struct folio_batch free_folios; | |
1112 | LIST_HEAD(ret_folios); | |
1113 | LIST_HEAD(demote_folios); | |
1114 | unsigned int nr_reclaimed = 0, nr_demoted = 0; | |
1115 | unsigned int pgactivate = 0; | |
1116 | bool do_demote_pass; | |
1117 | struct swap_iocb *plug = NULL; | |
1118 | ||
1119 | folio_batch_init(&free_folios); | |
1120 | memset(stat, 0, sizeof(*stat)); | |
1121 | cond_resched(); | |
1122 | do_demote_pass = can_demote(pgdat->node_id, sc, memcg); | |
1123 | ||
1124 | retry: | |
1125 | while (!list_empty(folio_list)) { | |
1126 | struct address_space *mapping; | |
1127 | struct folio *folio; | |
1128 | enum folio_references references = FOLIOREF_RECLAIM; | |
1129 | bool dirty, writeback; | |
1130 | unsigned int nr_pages; | |
1131 | ||
1132 | cond_resched(); | |
1133 | ||
1134 | folio = lru_to_folio(folio_list); | |
1135 | list_del(&folio->lru); | |
1136 | ||
1137 | if (!folio_trylock(folio)) | |
1138 | goto keep; | |
1139 | ||
1140 | if (folio_contain_hwpoisoned_page(folio)) { | |
1141 | unmap_poisoned_folio(folio, folio_pfn(folio), false); | |
1142 | folio_unlock(folio); | |
1143 | folio_put(folio); | |
1144 | continue; | |
1145 | } | |
1146 | ||
1147 | VM_BUG_ON_FOLIO(folio_test_active(folio), folio); | |
1148 | ||
1149 | nr_pages = folio_nr_pages(folio); | |
1150 | ||
1151 | /* Account the number of base pages */ | |
1152 | sc->nr_scanned += nr_pages; | |
1153 | ||
1154 | if (unlikely(!folio_evictable(folio))) | |
1155 | goto activate_locked; | |
1156 | ||
1157 | if (!sc->may_unmap && folio_mapped(folio)) | |
1158 | goto keep_locked; | |
1159 | ||
1160 | /* | |
1161 | * The number of dirty pages determines if a node is marked | |
1162 | * reclaim_congested. kswapd will stall and start writing | |
1163 | * folios if the tail of the LRU is all dirty unqueued folios. | |
1164 | */ | |
1165 | folio_check_dirty_writeback(folio, &dirty, &writeback); | |
1166 | if (dirty || writeback) | |
1167 | stat->nr_dirty += nr_pages; | |
1168 | ||
1169 | if (dirty && !writeback) | |
1170 | stat->nr_unqueued_dirty += nr_pages; | |
1171 | ||
1172 | /* | |
1173 | * Treat this folio as congested if folios are cycling | |
1174 | * through the LRU so quickly that the folios marked | |
1175 | * for immediate reclaim are making it to the end of | |
1176 | * the LRU a second time. | |
1177 | */ | |
1178 | if (writeback && folio_test_reclaim(folio)) | |
1179 | stat->nr_congested += nr_pages; | |
1180 | ||
1181 | /* | |
1182 | * If a folio at the tail of the LRU is under writeback, there | |
1183 | * are three cases to consider. | |
1184 | * | |
1185 | * 1) If reclaim is encountering an excessive number | |
1186 | * of folios under writeback and this folio has both | |
1187 | * the writeback and reclaim flags set, then it | |
1188 | * indicates that folios are being queued for I/O but | |
1189 | * are being recycled through the LRU before the I/O | |
1190 | * can complete. Waiting on the folio itself risks an | |
1191 | * indefinite stall if it is impossible to writeback | |
1192 | * the folio due to I/O error or disconnected storage | |
1193 | * so instead note that the LRU is being scanned too | |
1194 | * quickly and the caller can stall after the folio | |
1195 | * list has been processed. | |
1196 | * | |
1197 | * 2) Global or new memcg reclaim encounters a folio that is | |
1198 | * not marked for immediate reclaim, or the caller does not | |
1199 | * have __GFP_FS (or __GFP_IO if it's simply going to swap, | |
1200 | * not to fs), or the folio belongs to a mapping where | |
1201 | * waiting on writeback during reclaim may lead to a deadlock. | |
1202 | * In this case mark the folio for immediate reclaim and | |
1203 | * continue scanning. | |
1204 | * | |
1205 | * Require may_enter_fs() because we would wait on fs, which | |
1206 | * may not have submitted I/O yet. And the loop driver might | |
1207 | * enter reclaim, and deadlock if it waits on a folio for | |
1208 | * which it is needed to do the write (loop masks off | |
1209 | * __GFP_IO|__GFP_FS for this reason); but more thought | |
1210 | * would probably show more reasons. | |
1211 | * | |
1212 | * 3) Legacy memcg encounters a folio that already has the | |
1213 | * reclaim flag set. memcg does not have any dirty folio | |
1214 | * throttling so we could easily OOM just because too many | |
1215 | * folios are in writeback and there is nothing else to | |
1216 | * reclaim. Wait for the writeback to complete. | |
1217 | * | |
1218 | * In cases 1) and 2) we activate the folios to get them out of | |
1219 | * the way while we continue scanning for clean folios on the | |
1220 | * inactive list and refilling from the active list. The | |
1221 | * observation here is that waiting for disk writes is more | |
1222 | * expensive than potentially causing reloads down the line. | |
1223 | * Since they're marked for immediate reclaim, they won't put | |
1224 | * memory pressure on the cache working set any longer than it | |
1225 | * takes to write them to disk. | |
1226 | */ | |
1227 | if (folio_test_writeback(folio)) { | |
1228 | mapping = folio_mapping(folio); | |
1229 | ||
1230 | /* Case 1 above */ | |
1231 | if (current_is_kswapd() && | |
1232 | folio_test_reclaim(folio) && | |
1233 | test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { | |
1234 | stat->nr_immediate += nr_pages; | |
1235 | goto activate_locked; | |
1236 | ||
1237 | /* Case 2 above */ | |
1238 | } else if (writeback_throttling_sane(sc) || | |
1239 | !folio_test_reclaim(folio) || | |
1240 | !may_enter_fs(folio, sc->gfp_mask) || | |
1241 | (mapping && | |
1242 | mapping_writeback_may_deadlock_on_reclaim(mapping))) { | |
1243 | /* | |
1244 | * This is slightly racy - | |
1245 | * folio_end_writeback() might have | |
1246 | * just cleared the reclaim flag, then | |
1247 | * setting the reclaim flag here ends up | |
1248 | * interpreted as the readahead flag - but | |
1249 | * that does not matter enough to care. | |
1250 | * What we do want is for this folio to | |
1251 | * have the reclaim flag set next time | |
1252 | * memcg reclaim reaches the tests above, | |
1253 | * so it will then wait for writeback to | |
1254 | * avoid OOM; and it's also appropriate | |
1255 | * in global reclaim. | |
1256 | */ | |
1257 | folio_set_reclaim(folio); | |
1258 | stat->nr_writeback += nr_pages; | |
1259 | goto activate_locked; | |
1260 | ||
1261 | /* Case 3 above */ | |
1262 | } else { | |
1263 | folio_unlock(folio); | |
1264 | folio_wait_writeback(folio); | |
1265 | /* then go back and try same folio again */ | |
1266 | list_add_tail(&folio->lru, folio_list); | |
1267 | continue; | |
1268 | } | |
1269 | } | |
1270 | ||
1271 | if (!ignore_references) | |
1272 | references = folio_check_references(folio, sc); | |
1273 | ||
1274 | switch (references) { | |
1275 | case FOLIOREF_ACTIVATE: | |
1276 | goto activate_locked; | |
1277 | case FOLIOREF_KEEP: | |
1278 | stat->nr_ref_keep += nr_pages; | |
1279 | goto keep_locked; | |
1280 | case FOLIOREF_RECLAIM: | |
1281 | case FOLIOREF_RECLAIM_CLEAN: | |
1282 | ; /* try to reclaim the folio below */ | |
1283 | } | |
1284 | ||
1285 | /* | |
1286 | * Before reclaiming the folio, try to relocate | |
1287 | * its contents to another node. | |
1288 | */ | |
1289 | if (do_demote_pass && | |
1290 | (thp_migration_supported() || !folio_test_large(folio))) { | |
1291 | list_add(&folio->lru, &demote_folios); | |
1292 | folio_unlock(folio); | |
1293 | continue; | |
1294 | } | |
1295 | ||
1296 | /* | |
1297 | * Anonymous process memory has backing store? | |
1298 | * Try to allocate it some swap space here. | |
1299 | * Lazyfree folio could be freed directly | |
1300 | */ | |
1301 | if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { | |
1302 | if (!folio_test_swapcache(folio)) { | |
1303 | if (!(sc->gfp_mask & __GFP_IO)) | |
1304 | goto keep_locked; | |
1305 | if (folio_maybe_dma_pinned(folio)) | |
1306 | goto keep_locked; | |
1307 | if (folio_test_large(folio)) { | |
1308 | /* cannot split folio, skip it */ | |
1309 | if (!can_split_folio(folio, 1, NULL)) | |
1310 | goto activate_locked; | |
1311 | /* | |
1312 | * Split partially mapped folios right away. | |
1313 | * We can free the unmapped pages without IO. | |
1314 | */ | |
1315 | if (data_race(!list_empty(&folio->_deferred_list) && | |
1316 | folio_test_partially_mapped(folio)) && | |
1317 | split_folio_to_list(folio, folio_list)) | |
1318 | goto activate_locked; | |
1319 | } | |
1320 | if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) { | |
1321 | int __maybe_unused order = folio_order(folio); | |
1322 | ||
1323 | if (!folio_test_large(folio)) | |
1324 | goto activate_locked_split; | |
1325 | /* Fallback to swap normal pages */ | |
1326 | if (split_folio_to_list(folio, folio_list)) | |
1327 | goto activate_locked; | |
1328 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
1329 | if (nr_pages >= HPAGE_PMD_NR) { | |
1330 | count_memcg_folio_events(folio, | |
1331 | THP_SWPOUT_FALLBACK, 1); | |
1332 | count_vm_event(THP_SWPOUT_FALLBACK); | |
1333 | } | |
1334 | #endif | |
1335 | count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK); | |
1336 | if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) | |
1337 | goto activate_locked_split; | |
1338 | } | |
1339 | /* | |
1340 | * Normally the folio will be dirtied in unmap because its | |
1341 | * pte should be dirty. A special case is MADV_FREE page. The | |
1342 | * page's pte could have dirty bit cleared but the folio's | |
1343 | * SwapBacked flag is still set because clearing the dirty bit | |
1344 | * and SwapBacked flag has no lock protected. For such folio, | |
1345 | * unmap will not set dirty bit for it, so folio reclaim will | |
1346 | * not write the folio out. This can cause data corruption when | |
1347 | * the folio is swapped in later. Always setting the dirty flag | |
1348 | * for the folio solves the problem. | |
1349 | */ | |
1350 | folio_mark_dirty(folio); | |
1351 | } | |
1352 | } | |
1353 | ||
1354 | /* | |
1355 | * If the folio was split above, the tail pages will make | |
1356 | * their own pass through this function and be accounted | |
1357 | * then. | |
1358 | */ | |
1359 | if ((nr_pages > 1) && !folio_test_large(folio)) { | |
1360 | sc->nr_scanned -= (nr_pages - 1); | |
1361 | nr_pages = 1; | |
1362 | } | |
1363 | ||
1364 | /* | |
1365 | * The folio is mapped into the page tables of one or more | |
1366 | * processes. Try to unmap it here. | |
1367 | */ | |
1368 | if (folio_mapped(folio)) { | |
1369 | enum ttu_flags flags = TTU_BATCH_FLUSH; | |
1370 | bool was_swapbacked = folio_test_swapbacked(folio); | |
1371 | ||
1372 | if (folio_test_pmd_mappable(folio)) | |
1373 | flags |= TTU_SPLIT_HUGE_PMD; | |
1374 | /* | |
1375 | * Without TTU_SYNC, try_to_unmap will only begin to | |
1376 | * hold PTL from the first present PTE within a large | |
1377 | * folio. Some initial PTEs might be skipped due to | |
1378 | * races with parallel PTE writes in which PTEs can be | |
1379 | * cleared temporarily before being written new present | |
1380 | * values. This will lead to a large folio is still | |
1381 | * mapped while some subpages have been partially | |
1382 | * unmapped after try_to_unmap; TTU_SYNC helps | |
1383 | * try_to_unmap acquire PTL from the first PTE, | |
1384 | * eliminating the influence of temporary PTE values. | |
1385 | */ | |
1386 | if (folio_test_large(folio)) | |
1387 | flags |= TTU_SYNC; | |
1388 | ||
1389 | try_to_unmap(folio, flags); | |
1390 | if (folio_mapped(folio)) { | |
1391 | stat->nr_unmap_fail += nr_pages; | |
1392 | if (!was_swapbacked && | |
1393 | folio_test_swapbacked(folio)) | |
1394 | stat->nr_lazyfree_fail += nr_pages; | |
1395 | goto activate_locked; | |
1396 | } | |
1397 | } | |
1398 | ||
1399 | /* | |
1400 | * Folio is unmapped now so it cannot be newly pinned anymore. | |
1401 | * No point in trying to reclaim folio if it is pinned. | |
1402 | * Furthermore we don't want to reclaim underlying fs metadata | |
1403 | * if the folio is pinned and thus potentially modified by the | |
1404 | * pinning process as that may upset the filesystem. | |
1405 | */ | |
1406 | if (folio_maybe_dma_pinned(folio)) | |
1407 | goto activate_locked; | |
1408 | ||
1409 | mapping = folio_mapping(folio); | |
1410 | if (folio_test_dirty(folio)) { | |
1411 | /* | |
1412 | * Only kswapd can writeback filesystem folios | |
1413 | * to avoid risk of stack overflow. But avoid | |
1414 | * injecting inefficient single-folio I/O into | |
1415 | * flusher writeback as much as possible: only | |
1416 | * write folios when we've encountered many | |
1417 | * dirty folios, and when we've already scanned | |
1418 | * the rest of the LRU for clean folios and see | |
1419 | * the same dirty folios again (with the reclaim | |
1420 | * flag set). | |
1421 | */ | |
1422 | if (folio_is_file_lru(folio) && | |
1423 | (!current_is_kswapd() || | |
1424 | !folio_test_reclaim(folio) || | |
1425 | !test_bit(PGDAT_DIRTY, &pgdat->flags))) { | |
1426 | /* | |
1427 | * Immediately reclaim when written back. | |
1428 | * Similar in principle to folio_deactivate() | |
1429 | * except we already have the folio isolated | |
1430 | * and know it's dirty | |
1431 | */ | |
1432 | node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, | |
1433 | nr_pages); | |
1434 | folio_set_reclaim(folio); | |
1435 | ||
1436 | goto activate_locked; | |
1437 | } | |
1438 | ||
1439 | if (references == FOLIOREF_RECLAIM_CLEAN) | |
1440 | goto keep_locked; | |
1441 | if (!may_enter_fs(folio, sc->gfp_mask)) | |
1442 | goto keep_locked; | |
1443 | if (!sc->may_writepage) | |
1444 | goto keep_locked; | |
1445 | ||
1446 | /* | |
1447 | * Folio is dirty. Flush the TLB if a writable entry | |
1448 | * potentially exists to avoid CPU writes after I/O | |
1449 | * starts and then write it out here. | |
1450 | */ | |
1451 | try_to_unmap_flush_dirty(); | |
1452 | switch (pageout(folio, mapping, &plug, folio_list)) { | |
1453 | case PAGE_KEEP: | |
1454 | goto keep_locked; | |
1455 | case PAGE_ACTIVATE: | |
1456 | /* | |
1457 | * If shmem folio is split when writeback to swap, | |
1458 | * the tail pages will make their own pass through | |
1459 | * this function and be accounted then. | |
1460 | */ | |
1461 | if (nr_pages > 1 && !folio_test_large(folio)) { | |
1462 | sc->nr_scanned -= (nr_pages - 1); | |
1463 | nr_pages = 1; | |
1464 | } | |
1465 | goto activate_locked; | |
1466 | case PAGE_SUCCESS: | |
1467 | if (nr_pages > 1 && !folio_test_large(folio)) { | |
1468 | sc->nr_scanned -= (nr_pages - 1); | |
1469 | nr_pages = 1; | |
1470 | } | |
1471 | stat->nr_pageout += nr_pages; | |
1472 | ||
1473 | if (folio_test_writeback(folio)) | |
1474 | goto keep; | |
1475 | if (folio_test_dirty(folio)) | |
1476 | goto keep; | |
1477 | ||
1478 | /* | |
1479 | * A synchronous write - probably a ramdisk. Go | |
1480 | * ahead and try to reclaim the folio. | |
1481 | */ | |
1482 | if (!folio_trylock(folio)) | |
1483 | goto keep; | |
1484 | if (folio_test_dirty(folio) || | |
1485 | folio_test_writeback(folio)) | |
1486 | goto keep_locked; | |
1487 | mapping = folio_mapping(folio); | |
1488 | fallthrough; | |
1489 | case PAGE_CLEAN: | |
1490 | ; /* try to free the folio below */ | |
1491 | } | |
1492 | } | |
1493 | ||
1494 | /* | |
1495 | * If the folio has buffers, try to free the buffer | |
1496 | * mappings associated with this folio. If we succeed | |
1497 | * we try to free the folio as well. | |
1498 | * | |
1499 | * We do this even if the folio is dirty. | |
1500 | * filemap_release_folio() does not perform I/O, but it | |
1501 | * is possible for a folio to have the dirty flag set, | |
1502 | * but it is actually clean (all its buffers are clean). | |
1503 | * This happens if the buffers were written out directly, | |
1504 | * with submit_bh(). ext3 will do this, as well as | |
1505 | * the blockdev mapping. filemap_release_folio() will | |
1506 | * discover that cleanness and will drop the buffers | |
1507 | * and mark the folio clean - it can be freed. | |
1508 | * | |
1509 | * Rarely, folios can have buffers and no ->mapping. | |
1510 | * These are the folios which were not successfully | |
1511 | * invalidated in truncate_cleanup_folio(). We try to | |
1512 | * drop those buffers here and if that worked, and the | |
1513 | * folio is no longer mapped into process address space | |
1514 | * (refcount == 1) it can be freed. Otherwise, leave | |
1515 | * the folio on the LRU so it is swappable. | |
1516 | */ | |
1517 | if (folio_needs_release(folio)) { | |
1518 | if (!filemap_release_folio(folio, sc->gfp_mask)) | |
1519 | goto activate_locked; | |
1520 | if (!mapping && folio_ref_count(folio) == 1) { | |
1521 | folio_unlock(folio); | |
1522 | if (folio_put_testzero(folio)) | |
1523 | goto free_it; | |
1524 | else { | |
1525 | /* | |
1526 | * rare race with speculative reference. | |
1527 | * the speculative reference will free | |
1528 | * this folio shortly, so we may | |
1529 | * increment nr_reclaimed here (and | |
1530 | * leave it off the LRU). | |
1531 | */ | |
1532 | nr_reclaimed += nr_pages; | |
1533 | continue; | |
1534 | } | |
1535 | } | |
1536 | } | |
1537 | ||
1538 | if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { | |
1539 | /* follow __remove_mapping for reference */ | |
1540 | if (!folio_ref_freeze(folio, 1)) | |
1541 | goto keep_locked; | |
1542 | /* | |
1543 | * The folio has only one reference left, which is | |
1544 | * from the isolation. After the caller puts the | |
1545 | * folio back on the lru and drops the reference, the | |
1546 | * folio will be freed anyway. It doesn't matter | |
1547 | * which lru it goes on. So we don't bother checking | |
1548 | * the dirty flag here. | |
1549 | */ | |
1550 | count_vm_events(PGLAZYFREED, nr_pages); | |
1551 | count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); | |
1552 | } else if (!mapping || !__remove_mapping(mapping, folio, true, | |
1553 | sc->target_mem_cgroup)) | |
1554 | goto keep_locked; | |
1555 | ||
1556 | folio_unlock(folio); | |
1557 | free_it: | |
1558 | /* | |
1559 | * Folio may get swapped out as a whole, need to account | |
1560 | * all pages in it. | |
1561 | */ | |
1562 | nr_reclaimed += nr_pages; | |
1563 | ||
1564 | folio_unqueue_deferred_split(folio); | |
1565 | if (folio_batch_add(&free_folios, folio) == 0) { | |
1566 | mem_cgroup_uncharge_folios(&free_folios); | |
1567 | try_to_unmap_flush(); | |
1568 | free_unref_folios(&free_folios); | |
1569 | } | |
1570 | continue; | |
1571 | ||
1572 | activate_locked_split: | |
1573 | /* | |
1574 | * The tail pages that are failed to add into swap cache | |
1575 | * reach here. Fixup nr_scanned and nr_pages. | |
1576 | */ | |
1577 | if (nr_pages > 1) { | |
1578 | sc->nr_scanned -= (nr_pages - 1); | |
1579 | nr_pages = 1; | |
1580 | } | |
1581 | activate_locked: | |
1582 | /* Not a candidate for swapping, so reclaim swap space. */ | |
1583 | if (folio_test_swapcache(folio) && | |
1584 | (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) | |
1585 | folio_free_swap(folio); | |
1586 | VM_BUG_ON_FOLIO(folio_test_active(folio), folio); | |
1587 | if (!folio_test_mlocked(folio)) { | |
1588 | int type = folio_is_file_lru(folio); | |
1589 | folio_set_active(folio); | |
1590 | stat->nr_activate[type] += nr_pages; | |
1591 | count_memcg_folio_events(folio, PGACTIVATE, nr_pages); | |
1592 | } | |
1593 | keep_locked: | |
1594 | folio_unlock(folio); | |
1595 | keep: | |
1596 | list_add(&folio->lru, &ret_folios); | |
1597 | VM_BUG_ON_FOLIO(folio_test_lru(folio) || | |
1598 | folio_test_unevictable(folio), folio); | |
1599 | } | |
1600 | /* 'folio_list' is always empty here */ | |
1601 | ||
1602 | /* Migrate folios selected for demotion */ | |
1603 | nr_demoted = demote_folio_list(&demote_folios, pgdat); | |
1604 | nr_reclaimed += nr_demoted; | |
1605 | stat->nr_demoted += nr_demoted; | |
1606 | /* Folios that could not be demoted are still in @demote_folios */ | |
1607 | if (!list_empty(&demote_folios)) { | |
1608 | /* Folios which weren't demoted go back on @folio_list */ | |
1609 | list_splice_init(&demote_folios, folio_list); | |
1610 | ||
1611 | /* | |
1612 | * goto retry to reclaim the undemoted folios in folio_list if | |
1613 | * desired. | |
1614 | * | |
1615 | * Reclaiming directly from top tier nodes is not often desired | |
1616 | * due to it breaking the LRU ordering: in general memory | |
1617 | * should be reclaimed from lower tier nodes and demoted from | |
1618 | * top tier nodes. | |
1619 | * | |
1620 | * However, disabling reclaim from top tier nodes entirely | |
1621 | * would cause ooms in edge scenarios where lower tier memory | |
1622 | * is unreclaimable for whatever reason, eg memory being | |
1623 | * mlocked or too hot to reclaim. We can disable reclaim | |
1624 | * from top tier nodes in proactive reclaim though as that is | |
1625 | * not real memory pressure. | |
1626 | */ | |
1627 | if (!sc->proactive) { | |
1628 | do_demote_pass = false; | |
1629 | goto retry; | |
1630 | } | |
1631 | } | |
1632 | ||
1633 | pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; | |
1634 | ||
1635 | mem_cgroup_uncharge_folios(&free_folios); | |
1636 | try_to_unmap_flush(); | |
1637 | free_unref_folios(&free_folios); | |
1638 | ||
1639 | list_splice(&ret_folios, folio_list); | |
1640 | count_vm_events(PGACTIVATE, pgactivate); | |
1641 | ||
1642 | if (plug) | |
1643 | swap_write_unplug(plug); | |
1644 | return nr_reclaimed; | |
1645 | } | |
1646 | ||
1647 | unsigned int reclaim_clean_pages_from_list(struct zone *zone, | |
1648 | struct list_head *folio_list) | |
1649 | { | |
1650 | struct scan_control sc = { | |
1651 | .gfp_mask = GFP_KERNEL, | |
1652 | .may_unmap = 1, | |
1653 | }; | |
1654 | struct reclaim_stat stat; | |
1655 | unsigned int nr_reclaimed; | |
1656 | struct folio *folio, *next; | |
1657 | LIST_HEAD(clean_folios); | |
1658 | unsigned int noreclaim_flag; | |
1659 | ||
1660 | list_for_each_entry_safe(folio, next, folio_list, lru) { | |
1661 | if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && | |
1662 | !folio_test_dirty(folio) && !__folio_test_movable(folio) && | |
1663 | !folio_test_unevictable(folio)) { | |
1664 | folio_clear_active(folio); | |
1665 | list_move(&folio->lru, &clean_folios); | |
1666 | } | |
1667 | } | |
1668 | ||
1669 | /* | |
1670 | * We should be safe here since we are only dealing with file pages and | |
1671 | * we are not kswapd and therefore cannot write dirty file pages. But | |
1672 | * call memalloc_noreclaim_save() anyway, just in case these conditions | |
1673 | * change in the future. | |
1674 | */ | |
1675 | noreclaim_flag = memalloc_noreclaim_save(); | |
1676 | nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, | |
1677 | &stat, true, NULL); | |
1678 | memalloc_noreclaim_restore(noreclaim_flag); | |
1679 | ||
1680 | list_splice(&clean_folios, folio_list); | |
1681 | mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, | |
1682 | -(long)nr_reclaimed); | |
1683 | /* | |
1684 | * Since lazyfree pages are isolated from file LRU from the beginning, | |
1685 | * they will rotate back to anonymous LRU in the end if it failed to | |
1686 | * discard so isolated count will be mismatched. | |
1687 | * Compensate the isolated count for both LRU lists. | |
1688 | */ | |
1689 | mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, | |
1690 | stat.nr_lazyfree_fail); | |
1691 | mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, | |
1692 | -(long)stat.nr_lazyfree_fail); | |
1693 | return nr_reclaimed; | |
1694 | } | |
1695 | ||
1696 | /* | |
1697 | * Update LRU sizes after isolating pages. The LRU size updates must | |
1698 | * be complete before mem_cgroup_update_lru_size due to a sanity check. | |
1699 | */ | |
1700 | static __always_inline void update_lru_sizes(struct lruvec *lruvec, | |
1701 | enum lru_list lru, unsigned long *nr_zone_taken) | |
1702 | { | |
1703 | int zid; | |
1704 | ||
1705 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
1706 | if (!nr_zone_taken[zid]) | |
1707 | continue; | |
1708 | ||
1709 | update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); | |
1710 | } | |
1711 | ||
1712 | } | |
1713 | ||
1714 | /* | |
1715 | * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. | |
1716 | * | |
1717 | * lruvec->lru_lock is heavily contended. Some of the functions that | |
1718 | * shrink the lists perform better by taking out a batch of pages | |
1719 | * and working on them outside the LRU lock. | |
1720 | * | |
1721 | * For pagecache intensive workloads, this function is the hottest | |
1722 | * spot in the kernel (apart from copy_*_user functions). | |
1723 | * | |
1724 | * Lru_lock must be held before calling this function. | |
1725 | * | |
1726 | * @nr_to_scan: The number of eligible pages to look through on the list. | |
1727 | * @lruvec: The LRU vector to pull pages from. | |
1728 | * @dst: The temp list to put pages on to. | |
1729 | * @nr_scanned: The number of pages that were scanned. | |
1730 | * @sc: The scan_control struct for this reclaim session | |
1731 | * @lru: LRU list id for isolating | |
1732 | * | |
1733 | * returns how many pages were moved onto *@dst. | |
1734 | */ | |
1735 | static unsigned long isolate_lru_folios(unsigned long nr_to_scan, | |
1736 | struct lruvec *lruvec, struct list_head *dst, | |
1737 | unsigned long *nr_scanned, struct scan_control *sc, | |
1738 | enum lru_list lru) | |
1739 | { | |
1740 | struct list_head *src = &lruvec->lists[lru]; | |
1741 | unsigned long nr_taken = 0; | |
1742 | unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; | |
1743 | unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; | |
1744 | unsigned long skipped = 0, total_scan = 0, scan = 0; | |
1745 | unsigned long nr_pages; | |
1746 | unsigned long max_nr_skipped = 0; | |
1747 | LIST_HEAD(folios_skipped); | |
1748 | ||
1749 | while (scan < nr_to_scan && !list_empty(src)) { | |
1750 | struct list_head *move_to = src; | |
1751 | struct folio *folio; | |
1752 | ||
1753 | folio = lru_to_folio(src); | |
1754 | prefetchw_prev_lru_folio(folio, src, flags); | |
1755 | ||
1756 | nr_pages = folio_nr_pages(folio); | |
1757 | total_scan += nr_pages; | |
1758 | ||
1759 | /* Using max_nr_skipped to prevent hard LOCKUP*/ | |
1760 | if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED && | |
1761 | (folio_zonenum(folio) > sc->reclaim_idx)) { | |
1762 | nr_skipped[folio_zonenum(folio)] += nr_pages; | |
1763 | move_to = &folios_skipped; | |
1764 | max_nr_skipped++; | |
1765 | goto move; | |
1766 | } | |
1767 | ||
1768 | /* | |
1769 | * Do not count skipped folios because that makes the function | |
1770 | * return with no isolated folios if the LRU mostly contains | |
1771 | * ineligible folios. This causes the VM to not reclaim any | |
1772 | * folios, triggering a premature OOM. | |
1773 | * Account all pages in a folio. | |
1774 | */ | |
1775 | scan += nr_pages; | |
1776 | ||
1777 | if (!folio_test_lru(folio)) | |
1778 | goto move; | |
1779 | if (!sc->may_unmap && folio_mapped(folio)) | |
1780 | goto move; | |
1781 | ||
1782 | /* | |
1783 | * Be careful not to clear the lru flag until after we're | |
1784 | * sure the folio is not being freed elsewhere -- the | |
1785 | * folio release code relies on it. | |
1786 | */ | |
1787 | if (unlikely(!folio_try_get(folio))) | |
1788 | goto move; | |
1789 | ||
1790 | if (!folio_test_clear_lru(folio)) { | |
1791 | /* Another thread is already isolating this folio */ | |
1792 | folio_put(folio); | |
1793 | goto move; | |
1794 | } | |
1795 | ||
1796 | nr_taken += nr_pages; | |
1797 | nr_zone_taken[folio_zonenum(folio)] += nr_pages; | |
1798 | move_to = dst; | |
1799 | move: | |
1800 | list_move(&folio->lru, move_to); | |
1801 | } | |
1802 | ||
1803 | /* | |
1804 | * Splice any skipped folios to the start of the LRU list. Note that | |
1805 | * this disrupts the LRU order when reclaiming for lower zones but | |
1806 | * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX | |
1807 | * scanning would soon rescan the same folios to skip and waste lots | |
1808 | * of cpu cycles. | |
1809 | */ | |
1810 | if (!list_empty(&folios_skipped)) { | |
1811 | int zid; | |
1812 | ||
1813 | list_splice(&folios_skipped, src); | |
1814 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
1815 | if (!nr_skipped[zid]) | |
1816 | continue; | |
1817 | ||
1818 | __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); | |
1819 | skipped += nr_skipped[zid]; | |
1820 | } | |
1821 | } | |
1822 | *nr_scanned = total_scan; | |
1823 | trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, | |
1824 | total_scan, skipped, nr_taken, lru); | |
1825 | update_lru_sizes(lruvec, lru, nr_zone_taken); | |
1826 | return nr_taken; | |
1827 | } | |
1828 | ||
1829 | /** | |
1830 | * folio_isolate_lru() - Try to isolate a folio from its LRU list. | |
1831 | * @folio: Folio to isolate from its LRU list. | |
1832 | * | |
1833 | * Isolate a @folio from an LRU list and adjust the vmstat statistic | |
1834 | * corresponding to whatever LRU list the folio was on. | |
1835 | * | |
1836 | * The folio will have its LRU flag cleared. If it was found on the | |
1837 | * active list, it will have the Active flag set. If it was found on the | |
1838 | * unevictable list, it will have the Unevictable flag set. These flags | |
1839 | * may need to be cleared by the caller before letting the page go. | |
1840 | * | |
1841 | * Context: | |
1842 | * | |
1843 | * (1) Must be called with an elevated refcount on the folio. This is a | |
1844 | * fundamental difference from isolate_lru_folios() (which is called | |
1845 | * without a stable reference). | |
1846 | * (2) The lru_lock must not be held. | |
1847 | * (3) Interrupts must be enabled. | |
1848 | * | |
1849 | * Return: true if the folio was removed from an LRU list. | |
1850 | * false if the folio was not on an LRU list. | |
1851 | */ | |
1852 | bool folio_isolate_lru(struct folio *folio) | |
1853 | { | |
1854 | bool ret = false; | |
1855 | ||
1856 | VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); | |
1857 | ||
1858 | if (folio_test_clear_lru(folio)) { | |
1859 | struct lruvec *lruvec; | |
1860 | ||
1861 | folio_get(folio); | |
1862 | lruvec = folio_lruvec_lock_irq(folio); | |
1863 | lruvec_del_folio(lruvec, folio); | |
1864 | unlock_page_lruvec_irq(lruvec); | |
1865 | ret = true; | |
1866 | } | |
1867 | ||
1868 | return ret; | |
1869 | } | |
1870 | ||
1871 | /* | |
1872 | * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and | |
1873 | * then get rescheduled. When there are massive number of tasks doing page | |
1874 | * allocation, such sleeping direct reclaimers may keep piling up on each CPU, | |
1875 | * the LRU list will go small and be scanned faster than necessary, leading to | |
1876 | * unnecessary swapping, thrashing and OOM. | |
1877 | */ | |
1878 | static bool too_many_isolated(struct pglist_data *pgdat, int file, | |
1879 | struct scan_control *sc) | |
1880 | { | |
1881 | unsigned long inactive, isolated; | |
1882 | bool too_many; | |
1883 | ||
1884 | if (current_is_kswapd()) | |
1885 | return false; | |
1886 | ||
1887 | if (!writeback_throttling_sane(sc)) | |
1888 | return false; | |
1889 | ||
1890 | if (file) { | |
1891 | inactive = node_page_state(pgdat, NR_INACTIVE_FILE); | |
1892 | isolated = node_page_state(pgdat, NR_ISOLATED_FILE); | |
1893 | } else { | |
1894 | inactive = node_page_state(pgdat, NR_INACTIVE_ANON); | |
1895 | isolated = node_page_state(pgdat, NR_ISOLATED_ANON); | |
1896 | } | |
1897 | ||
1898 | /* | |
1899 | * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they | |
1900 | * won't get blocked by normal direct-reclaimers, forming a circular | |
1901 | * deadlock. | |
1902 | */ | |
1903 | if (gfp_has_io_fs(sc->gfp_mask)) | |
1904 | inactive >>= 3; | |
1905 | ||
1906 | too_many = isolated > inactive; | |
1907 | ||
1908 | /* Wake up tasks throttled due to too_many_isolated. */ | |
1909 | if (!too_many) | |
1910 | wake_throttle_isolated(pgdat); | |
1911 | ||
1912 | return too_many; | |
1913 | } | |
1914 | ||
1915 | /* | |
1916 | * move_folios_to_lru() moves folios from private @list to appropriate LRU list. | |
1917 | * | |
1918 | * Returns the number of pages moved to the given lruvec. | |
1919 | */ | |
1920 | static unsigned int move_folios_to_lru(struct lruvec *lruvec, | |
1921 | struct list_head *list) | |
1922 | { | |
1923 | int nr_pages, nr_moved = 0; | |
1924 | struct folio_batch free_folios; | |
1925 | ||
1926 | folio_batch_init(&free_folios); | |
1927 | while (!list_empty(list)) { | |
1928 | struct folio *folio = lru_to_folio(list); | |
1929 | ||
1930 | VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); | |
1931 | list_del(&folio->lru); | |
1932 | if (unlikely(!folio_evictable(folio))) { | |
1933 | spin_unlock_irq(&lruvec->lru_lock); | |
1934 | folio_putback_lru(folio); | |
1935 | spin_lock_irq(&lruvec->lru_lock); | |
1936 | continue; | |
1937 | } | |
1938 | ||
1939 | /* | |
1940 | * The folio_set_lru needs to be kept here for list integrity. | |
1941 | * Otherwise: | |
1942 | * #0 move_folios_to_lru #1 release_pages | |
1943 | * if (!folio_put_testzero()) | |
1944 | * if (folio_put_testzero()) | |
1945 | * !lru //skip lru_lock | |
1946 | * folio_set_lru() | |
1947 | * list_add(&folio->lru,) | |
1948 | * list_add(&folio->lru,) | |
1949 | */ | |
1950 | folio_set_lru(folio); | |
1951 | ||
1952 | if (unlikely(folio_put_testzero(folio))) { | |
1953 | __folio_clear_lru_flags(folio); | |
1954 | ||
1955 | folio_unqueue_deferred_split(folio); | |
1956 | if (folio_batch_add(&free_folios, folio) == 0) { | |
1957 | spin_unlock_irq(&lruvec->lru_lock); | |
1958 | mem_cgroup_uncharge_folios(&free_folios); | |
1959 | free_unref_folios(&free_folios); | |
1960 | spin_lock_irq(&lruvec->lru_lock); | |
1961 | } | |
1962 | ||
1963 | continue; | |
1964 | } | |
1965 | ||
1966 | /* | |
1967 | * All pages were isolated from the same lruvec (and isolation | |
1968 | * inhibits memcg migration). | |
1969 | */ | |
1970 | VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); | |
1971 | lruvec_add_folio(lruvec, folio); | |
1972 | nr_pages = folio_nr_pages(folio); | |
1973 | nr_moved += nr_pages; | |
1974 | if (folio_test_active(folio)) | |
1975 | workingset_age_nonresident(lruvec, nr_pages); | |
1976 | } | |
1977 | ||
1978 | if (free_folios.nr) { | |
1979 | spin_unlock_irq(&lruvec->lru_lock); | |
1980 | mem_cgroup_uncharge_folios(&free_folios); | |
1981 | free_unref_folios(&free_folios); | |
1982 | spin_lock_irq(&lruvec->lru_lock); | |
1983 | } | |
1984 | ||
1985 | return nr_moved; | |
1986 | } | |
1987 | ||
1988 | /* | |
1989 | * If a kernel thread (such as nfsd for loop-back mounts) services a backing | |
1990 | * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case | |
1991 | * we should not throttle. Otherwise it is safe to do so. | |
1992 | */ | |
1993 | static int current_may_throttle(void) | |
1994 | { | |
1995 | return !(current->flags & PF_LOCAL_THROTTLE); | |
1996 | } | |
1997 | ||
1998 | /* | |
1999 | * shrink_inactive_list() is a helper for shrink_node(). It returns the number | |
2000 | * of reclaimed pages | |
2001 | */ | |
2002 | static unsigned long shrink_inactive_list(unsigned long nr_to_scan, | |
2003 | struct lruvec *lruvec, struct scan_control *sc, | |
2004 | enum lru_list lru) | |
2005 | { | |
2006 | LIST_HEAD(folio_list); | |
2007 | unsigned long nr_scanned; | |
2008 | unsigned int nr_reclaimed = 0; | |
2009 | unsigned long nr_taken; | |
2010 | struct reclaim_stat stat; | |
2011 | bool file = is_file_lru(lru); | |
2012 | enum vm_event_item item; | |
2013 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | |
2014 | bool stalled = false; | |
2015 | ||
2016 | while (unlikely(too_many_isolated(pgdat, file, sc))) { | |
2017 | if (stalled) | |
2018 | return 0; | |
2019 | ||
2020 | /* wait a bit for the reclaimer. */ | |
2021 | stalled = true; | |
2022 | reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); | |
2023 | ||
2024 | /* We are about to die and free our memory. Return now. */ | |
2025 | if (fatal_signal_pending(current)) | |
2026 | return SWAP_CLUSTER_MAX; | |
2027 | } | |
2028 | ||
2029 | lru_add_drain(); | |
2030 | ||
2031 | spin_lock_irq(&lruvec->lru_lock); | |
2032 | ||
2033 | nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, | |
2034 | &nr_scanned, sc, lru); | |
2035 | ||
2036 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); | |
2037 | item = PGSCAN_KSWAPD + reclaimer_offset(sc); | |
2038 | if (!cgroup_reclaim(sc)) | |
2039 | __count_vm_events(item, nr_scanned); | |
2040 | count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); | |
2041 | __count_vm_events(PGSCAN_ANON + file, nr_scanned); | |
2042 | ||
2043 | spin_unlock_irq(&lruvec->lru_lock); | |
2044 | ||
2045 | if (nr_taken == 0) | |
2046 | return 0; | |
2047 | ||
2048 | nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false, | |
2049 | lruvec_memcg(lruvec)); | |
2050 | ||
2051 | spin_lock_irq(&lruvec->lru_lock); | |
2052 | move_folios_to_lru(lruvec, &folio_list); | |
2053 | ||
2054 | __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc), | |
2055 | stat.nr_demoted); | |
2056 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); | |
2057 | item = PGSTEAL_KSWAPD + reclaimer_offset(sc); | |
2058 | if (!cgroup_reclaim(sc)) | |
2059 | __count_vm_events(item, nr_reclaimed); | |
2060 | count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); | |
2061 | __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); | |
2062 | spin_unlock_irq(&lruvec->lru_lock); | |
2063 | ||
2064 | lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); | |
2065 | ||
2066 | /* | |
2067 | * If dirty folios are scanned that are not queued for IO, it | |
2068 | * implies that flushers are not doing their job. This can | |
2069 | * happen when memory pressure pushes dirty folios to the end of | |
2070 | * the LRU before the dirty limits are breached and the dirty | |
2071 | * data has expired. It can also happen when the proportion of | |
2072 | * dirty folios grows not through writes but through memory | |
2073 | * pressure reclaiming all the clean cache. And in some cases, | |
2074 | * the flushers simply cannot keep up with the allocation | |
2075 | * rate. Nudge the flusher threads in case they are asleep. | |
2076 | */ | |
2077 | if (stat.nr_unqueued_dirty == nr_taken) { | |
2078 | wakeup_flusher_threads(WB_REASON_VMSCAN); | |
2079 | /* | |
2080 | * For cgroupv1 dirty throttling is achieved by waking up | |
2081 | * the kernel flusher here and later waiting on folios | |
2082 | * which are in writeback to finish (see shrink_folio_list()). | |
2083 | * | |
2084 | * Flusher may not be able to issue writeback quickly | |
2085 | * enough for cgroupv1 writeback throttling to work | |
2086 | * on a large system. | |
2087 | */ | |
2088 | if (!writeback_throttling_sane(sc)) | |
2089 | reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); | |
2090 | } | |
2091 | ||
2092 | sc->nr.dirty += stat.nr_dirty; | |
2093 | sc->nr.congested += stat.nr_congested; | |
2094 | sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; | |
2095 | sc->nr.writeback += stat.nr_writeback; | |
2096 | sc->nr.immediate += stat.nr_immediate; | |
2097 | sc->nr.taken += nr_taken; | |
2098 | if (file) | |
2099 | sc->nr.file_taken += nr_taken; | |
2100 | ||
2101 | trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, | |
2102 | nr_scanned, nr_reclaimed, &stat, sc->priority, file); | |
2103 | return nr_reclaimed; | |
2104 | } | |
2105 | ||
2106 | /* | |
2107 | * shrink_active_list() moves folios from the active LRU to the inactive LRU. | |
2108 | * | |
2109 | * We move them the other way if the folio is referenced by one or more | |
2110 | * processes. | |
2111 | * | |
2112 | * If the folios are mostly unmapped, the processing is fast and it is | |
2113 | * appropriate to hold lru_lock across the whole operation. But if | |
2114 | * the folios are mapped, the processing is slow (folio_referenced()), so | |
2115 | * we should drop lru_lock around each folio. It's impossible to balance | |
2116 | * this, so instead we remove the folios from the LRU while processing them. | |
2117 | * It is safe to rely on the active flag against the non-LRU folios in here | |
2118 | * because nobody will play with that bit on a non-LRU folio. | |
2119 | * | |
2120 | * The downside is that we have to touch folio->_refcount against each folio. | |
2121 | * But we had to alter folio->flags anyway. | |
2122 | */ | |
2123 | static void shrink_active_list(unsigned long nr_to_scan, | |
2124 | struct lruvec *lruvec, | |
2125 | struct scan_control *sc, | |
2126 | enum lru_list lru) | |
2127 | { | |
2128 | unsigned long nr_taken; | |
2129 | unsigned long nr_scanned; | |
2130 | unsigned long vm_flags; | |
2131 | LIST_HEAD(l_hold); /* The folios which were snipped off */ | |
2132 | LIST_HEAD(l_active); | |
2133 | LIST_HEAD(l_inactive); | |
2134 | unsigned nr_deactivate, nr_activate; | |
2135 | unsigned nr_rotated = 0; | |
2136 | bool file = is_file_lru(lru); | |
2137 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | |
2138 | ||
2139 | lru_add_drain(); | |
2140 | ||
2141 | spin_lock_irq(&lruvec->lru_lock); | |
2142 | ||
2143 | nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, | |
2144 | &nr_scanned, sc, lru); | |
2145 | ||
2146 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); | |
2147 | ||
2148 | if (!cgroup_reclaim(sc)) | |
2149 | __count_vm_events(PGREFILL, nr_scanned); | |
2150 | count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); | |
2151 | ||
2152 | spin_unlock_irq(&lruvec->lru_lock); | |
2153 | ||
2154 | while (!list_empty(&l_hold)) { | |
2155 | struct folio *folio; | |
2156 | ||
2157 | cond_resched(); | |
2158 | folio = lru_to_folio(&l_hold); | |
2159 | list_del(&folio->lru); | |
2160 | ||
2161 | if (unlikely(!folio_evictable(folio))) { | |
2162 | folio_putback_lru(folio); | |
2163 | continue; | |
2164 | } | |
2165 | ||
2166 | if (unlikely(buffer_heads_over_limit)) { | |
2167 | if (folio_needs_release(folio) && | |
2168 | folio_trylock(folio)) { | |
2169 | filemap_release_folio(folio, 0); | |
2170 | folio_unlock(folio); | |
2171 | } | |
2172 | } | |
2173 | ||
2174 | /* Referenced or rmap lock contention: rotate */ | |
2175 | if (folio_referenced(folio, 0, sc->target_mem_cgroup, | |
2176 | &vm_flags) != 0) { | |
2177 | /* | |
2178 | * Identify referenced, file-backed active folios and | |
2179 | * give them one more trip around the active list. So | |
2180 | * that executable code get better chances to stay in | |
2181 | * memory under moderate memory pressure. Anon folios | |
2182 | * are not likely to be evicted by use-once streaming | |
2183 | * IO, plus JVM can create lots of anon VM_EXEC folios, | |
2184 | * so we ignore them here. | |
2185 | */ | |
2186 | if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { | |
2187 | nr_rotated += folio_nr_pages(folio); | |
2188 | list_add(&folio->lru, &l_active); | |
2189 | continue; | |
2190 | } | |
2191 | } | |
2192 | ||
2193 | folio_clear_active(folio); /* we are de-activating */ | |
2194 | folio_set_workingset(folio); | |
2195 | list_add(&folio->lru, &l_inactive); | |
2196 | } | |
2197 | ||
2198 | /* | |
2199 | * Move folios back to the lru list. | |
2200 | */ | |
2201 | spin_lock_irq(&lruvec->lru_lock); | |
2202 | ||
2203 | nr_activate = move_folios_to_lru(lruvec, &l_active); | |
2204 | nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); | |
2205 | ||
2206 | __count_vm_events(PGDEACTIVATE, nr_deactivate); | |
2207 | count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); | |
2208 | ||
2209 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); | |
2210 | spin_unlock_irq(&lruvec->lru_lock); | |
2211 | ||
2212 | if (nr_rotated) | |
2213 | lru_note_cost(lruvec, file, 0, nr_rotated); | |
2214 | trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, | |
2215 | nr_deactivate, nr_rotated, sc->priority, file); | |
2216 | } | |
2217 | ||
2218 | static unsigned int reclaim_folio_list(struct list_head *folio_list, | |
2219 | struct pglist_data *pgdat) | |
2220 | { | |
2221 | struct reclaim_stat stat; | |
2222 | unsigned int nr_reclaimed; | |
2223 | struct folio *folio; | |
2224 | struct scan_control sc = { | |
2225 | .gfp_mask = GFP_KERNEL, | |
2226 | .may_writepage = 1, | |
2227 | .may_unmap = 1, | |
2228 | .may_swap = 1, | |
2229 | .no_demotion = 1, | |
2230 | }; | |
2231 | ||
2232 | nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true, NULL); | |
2233 | while (!list_empty(folio_list)) { | |
2234 | folio = lru_to_folio(folio_list); | |
2235 | list_del(&folio->lru); | |
2236 | folio_putback_lru(folio); | |
2237 | } | |
2238 | trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat); | |
2239 | ||
2240 | return nr_reclaimed; | |
2241 | } | |
2242 | ||
2243 | unsigned long reclaim_pages(struct list_head *folio_list) | |
2244 | { | |
2245 | int nid; | |
2246 | unsigned int nr_reclaimed = 0; | |
2247 | LIST_HEAD(node_folio_list); | |
2248 | unsigned int noreclaim_flag; | |
2249 | ||
2250 | if (list_empty(folio_list)) | |
2251 | return nr_reclaimed; | |
2252 | ||
2253 | noreclaim_flag = memalloc_noreclaim_save(); | |
2254 | ||
2255 | nid = folio_nid(lru_to_folio(folio_list)); | |
2256 | do { | |
2257 | struct folio *folio = lru_to_folio(folio_list); | |
2258 | ||
2259 | if (nid == folio_nid(folio)) { | |
2260 | folio_clear_active(folio); | |
2261 | list_move(&folio->lru, &node_folio_list); | |
2262 | continue; | |
2263 | } | |
2264 | ||
2265 | nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); | |
2266 | nid = folio_nid(lru_to_folio(folio_list)); | |
2267 | } while (!list_empty(folio_list)); | |
2268 | ||
2269 | nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); | |
2270 | ||
2271 | memalloc_noreclaim_restore(noreclaim_flag); | |
2272 | ||
2273 | return nr_reclaimed; | |
2274 | } | |
2275 | ||
2276 | static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, | |
2277 | struct lruvec *lruvec, struct scan_control *sc) | |
2278 | { | |
2279 | if (is_active_lru(lru)) { | |
2280 | if (sc->may_deactivate & (1 << is_file_lru(lru))) | |
2281 | shrink_active_list(nr_to_scan, lruvec, sc, lru); | |
2282 | else | |
2283 | sc->skipped_deactivate = 1; | |
2284 | return 0; | |
2285 | } | |
2286 | ||
2287 | return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); | |
2288 | } | |
2289 | ||
2290 | /* | |
2291 | * The inactive anon list should be small enough that the VM never has | |
2292 | * to do too much work. | |
2293 | * | |
2294 | * The inactive file list should be small enough to leave most memory | |
2295 | * to the established workingset on the scan-resistant active list, | |
2296 | * but large enough to avoid thrashing the aggregate readahead window. | |
2297 | * | |
2298 | * Both inactive lists should also be large enough that each inactive | |
2299 | * folio has a chance to be referenced again before it is reclaimed. | |
2300 | * | |
2301 | * If that fails and refaulting is observed, the inactive list grows. | |
2302 | * | |
2303 | * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios | |
2304 | * on this LRU, maintained by the pageout code. An inactive_ratio | |
2305 | * of 3 means 3:1 or 25% of the folios are kept on the inactive list. | |
2306 | * | |
2307 | * total target max | |
2308 | * memory ratio inactive | |
2309 | * ------------------------------------- | |
2310 | * 10MB 1 5MB | |
2311 | * 100MB 1 50MB | |
2312 | * 1GB 3 250MB | |
2313 | * 10GB 10 0.9GB | |
2314 | * 100GB 31 3GB | |
2315 | * 1TB 101 10GB | |
2316 | * 10TB 320 32GB | |
2317 | */ | |
2318 | static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) | |
2319 | { | |
2320 | enum lru_list active_lru = inactive_lru + LRU_ACTIVE; | |
2321 | unsigned long inactive, active; | |
2322 | unsigned long inactive_ratio; | |
2323 | unsigned long gb; | |
2324 | ||
2325 | inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); | |
2326 | active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); | |
2327 | ||
2328 | gb = (inactive + active) >> (30 - PAGE_SHIFT); | |
2329 | if (gb) | |
2330 | inactive_ratio = int_sqrt(10 * gb); | |
2331 | else | |
2332 | inactive_ratio = 1; | |
2333 | ||
2334 | return inactive * inactive_ratio < active; | |
2335 | } | |
2336 | ||
2337 | enum scan_balance { | |
2338 | SCAN_EQUAL, | |
2339 | SCAN_FRACT, | |
2340 | SCAN_ANON, | |
2341 | SCAN_FILE, | |
2342 | }; | |
2343 | ||
2344 | static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc) | |
2345 | { | |
2346 | unsigned long file; | |
2347 | struct lruvec *target_lruvec; | |
2348 | ||
2349 | if (lru_gen_enabled()) | |
2350 | return; | |
2351 | ||
2352 | target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); | |
2353 | ||
2354 | /* | |
2355 | * Flush the memory cgroup stats in rate-limited way as we don't need | |
2356 | * most accurate stats here. We may switch to regular stats flushing | |
2357 | * in the future once it is cheap enough. | |
2358 | */ | |
2359 | mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup); | |
2360 | ||
2361 | /* | |
2362 | * Determine the scan balance between anon and file LRUs. | |
2363 | */ | |
2364 | spin_lock_irq(&target_lruvec->lru_lock); | |
2365 | sc->anon_cost = target_lruvec->anon_cost; | |
2366 | sc->file_cost = target_lruvec->file_cost; | |
2367 | spin_unlock_irq(&target_lruvec->lru_lock); | |
2368 | ||
2369 | /* | |
2370 | * Target desirable inactive:active list ratios for the anon | |
2371 | * and file LRU lists. | |
2372 | */ | |
2373 | if (!sc->force_deactivate) { | |
2374 | unsigned long refaults; | |
2375 | ||
2376 | /* | |
2377 | * When refaults are being observed, it means a new | |
2378 | * workingset is being established. Deactivate to get | |
2379 | * rid of any stale active pages quickly. | |
2380 | */ | |
2381 | refaults = lruvec_page_state(target_lruvec, | |
2382 | WORKINGSET_ACTIVATE_ANON); | |
2383 | if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || | |
2384 | inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) | |
2385 | sc->may_deactivate |= DEACTIVATE_ANON; | |
2386 | else | |
2387 | sc->may_deactivate &= ~DEACTIVATE_ANON; | |
2388 | ||
2389 | refaults = lruvec_page_state(target_lruvec, | |
2390 | WORKINGSET_ACTIVATE_FILE); | |
2391 | if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || | |
2392 | inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) | |
2393 | sc->may_deactivate |= DEACTIVATE_FILE; | |
2394 | else | |
2395 | sc->may_deactivate &= ~DEACTIVATE_FILE; | |
2396 | } else | |
2397 | sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; | |
2398 | ||
2399 | /* | |
2400 | * If we have plenty of inactive file pages that aren't | |
2401 | * thrashing, try to reclaim those first before touching | |
2402 | * anonymous pages. | |
2403 | */ | |
2404 | file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); | |
2405 | if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) && | |
2406 | !sc->no_cache_trim_mode) | |
2407 | sc->cache_trim_mode = 1; | |
2408 | else | |
2409 | sc->cache_trim_mode = 0; | |
2410 | ||
2411 | /* | |
2412 | * Prevent the reclaimer from falling into the cache trap: as | |
2413 | * cache pages start out inactive, every cache fault will tip | |
2414 | * the scan balance towards the file LRU. And as the file LRU | |
2415 | * shrinks, so does the window for rotation from references. | |
2416 | * This means we have a runaway feedback loop where a tiny | |
2417 | * thrashing file LRU becomes infinitely more attractive than | |
2418 | * anon pages. Try to detect this based on file LRU size. | |
2419 | */ | |
2420 | if (!cgroup_reclaim(sc)) { | |
2421 | unsigned long total_high_wmark = 0; | |
2422 | unsigned long free, anon; | |
2423 | int z; | |
2424 | struct zone *zone; | |
2425 | ||
2426 | free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); | |
2427 | file = node_page_state(pgdat, NR_ACTIVE_FILE) + | |
2428 | node_page_state(pgdat, NR_INACTIVE_FILE); | |
2429 | ||
2430 | for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) { | |
2431 | total_high_wmark += high_wmark_pages(zone); | |
2432 | } | |
2433 | ||
2434 | /* | |
2435 | * Consider anon: if that's low too, this isn't a | |
2436 | * runaway file reclaim problem, but rather just | |
2437 | * extreme pressure. Reclaim as per usual then. | |
2438 | */ | |
2439 | anon = node_page_state(pgdat, NR_INACTIVE_ANON); | |
2440 | ||
2441 | sc->file_is_tiny = | |
2442 | file + free <= total_high_wmark && | |
2443 | !(sc->may_deactivate & DEACTIVATE_ANON) && | |
2444 | anon >> sc->priority; | |
2445 | } | |
2446 | } | |
2447 | ||
2448 | static inline void calculate_pressure_balance(struct scan_control *sc, | |
2449 | int swappiness, u64 *fraction, u64 *denominator) | |
2450 | { | |
2451 | unsigned long anon_cost, file_cost, total_cost; | |
2452 | unsigned long ap, fp; | |
2453 | ||
2454 | /* | |
2455 | * Calculate the pressure balance between anon and file pages. | |
2456 | * | |
2457 | * The amount of pressure we put on each LRU is inversely | |
2458 | * proportional to the cost of reclaiming each list, as | |
2459 | * determined by the share of pages that are refaulting, times | |
2460 | * the relative IO cost of bringing back a swapped out | |
2461 | * anonymous page vs reloading a filesystem page (swappiness). | |
2462 | * | |
2463 | * Although we limit that influence to ensure no list gets | |
2464 | * left behind completely: at least a third of the pressure is | |
2465 | * applied, before swappiness. | |
2466 | * | |
2467 | * With swappiness at 100, anon and file have equal IO cost. | |
2468 | */ | |
2469 | total_cost = sc->anon_cost + sc->file_cost; | |
2470 | anon_cost = total_cost + sc->anon_cost; | |
2471 | file_cost = total_cost + sc->file_cost; | |
2472 | total_cost = anon_cost + file_cost; | |
2473 | ||
2474 | ap = swappiness * (total_cost + 1); | |
2475 | ap /= anon_cost + 1; | |
2476 | ||
2477 | fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1); | |
2478 | fp /= file_cost + 1; | |
2479 | ||
2480 | fraction[WORKINGSET_ANON] = ap; | |
2481 | fraction[WORKINGSET_FILE] = fp; | |
2482 | *denominator = ap + fp; | |
2483 | } | |
2484 | ||
2485 | /* | |
2486 | * Determine how aggressively the anon and file LRU lists should be | |
2487 | * scanned. | |
2488 | * | |
2489 | * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan | |
2490 | * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan | |
2491 | */ | |
2492 | static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, | |
2493 | unsigned long *nr) | |
2494 | { | |
2495 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | |
2496 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); | |
2497 | int swappiness = sc_swappiness(sc, memcg); | |
2498 | u64 fraction[ANON_AND_FILE]; | |
2499 | u64 denominator = 0; /* gcc */ | |
2500 | enum scan_balance scan_balance; | |
2501 | enum lru_list lru; | |
2502 | ||
2503 | /* If we have no swap space, do not bother scanning anon folios. */ | |
2504 | if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { | |
2505 | scan_balance = SCAN_FILE; | |
2506 | goto out; | |
2507 | } | |
2508 | ||
2509 | /* | |
2510 | * Global reclaim will swap to prevent OOM even with no | |
2511 | * swappiness, but memcg users want to use this knob to | |
2512 | * disable swapping for individual groups completely when | |
2513 | * using the memory controller's swap limit feature would be | |
2514 | * too expensive. | |
2515 | */ | |
2516 | if (cgroup_reclaim(sc) && !swappiness) { | |
2517 | scan_balance = SCAN_FILE; | |
2518 | goto out; | |
2519 | } | |
2520 | ||
2521 | /* Proactive reclaim initiated by userspace for anonymous memory only */ | |
2522 | if (swappiness == SWAPPINESS_ANON_ONLY) { | |
2523 | WARN_ON_ONCE(!sc->proactive); | |
2524 | scan_balance = SCAN_ANON; | |
2525 | goto out; | |
2526 | } | |
2527 | ||
2528 | /* | |
2529 | * Do not apply any pressure balancing cleverness when the | |
2530 | * system is close to OOM, scan both anon and file equally | |
2531 | * (unless the swappiness setting disagrees with swapping). | |
2532 | */ | |
2533 | if (!sc->priority && swappiness) { | |
2534 | scan_balance = SCAN_EQUAL; | |
2535 | goto out; | |
2536 | } | |
2537 | ||
2538 | /* | |
2539 | * If the system is almost out of file pages, force-scan anon. | |
2540 | */ | |
2541 | if (sc->file_is_tiny) { | |
2542 | scan_balance = SCAN_ANON; | |
2543 | goto out; | |
2544 | } | |
2545 | ||
2546 | /* | |
2547 | * If there is enough inactive page cache, we do not reclaim | |
2548 | * anything from the anonymous working right now to make sure | |
2549 | * a streaming file access pattern doesn't cause swapping. | |
2550 | */ | |
2551 | if (sc->cache_trim_mode) { | |
2552 | scan_balance = SCAN_FILE; | |
2553 | goto out; | |
2554 | } | |
2555 | ||
2556 | scan_balance = SCAN_FRACT; | |
2557 | calculate_pressure_balance(sc, swappiness, fraction, &denominator); | |
2558 | ||
2559 | out: | |
2560 | for_each_evictable_lru(lru) { | |
2561 | bool file = is_file_lru(lru); | |
2562 | unsigned long lruvec_size; | |
2563 | unsigned long low, min; | |
2564 | unsigned long scan; | |
2565 | ||
2566 | lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); | |
2567 | mem_cgroup_protection(sc->target_mem_cgroup, memcg, | |
2568 | &min, &low); | |
2569 | ||
2570 | if (min || low) { | |
2571 | /* | |
2572 | * Scale a cgroup's reclaim pressure by proportioning | |
2573 | * its current usage to its memory.low or memory.min | |
2574 | * setting. | |
2575 | * | |
2576 | * This is important, as otherwise scanning aggression | |
2577 | * becomes extremely binary -- from nothing as we | |
2578 | * approach the memory protection threshold, to totally | |
2579 | * nominal as we exceed it. This results in requiring | |
2580 | * setting extremely liberal protection thresholds. It | |
2581 | * also means we simply get no protection at all if we | |
2582 | * set it too low, which is not ideal. | |
2583 | * | |
2584 | * If there is any protection in place, we reduce scan | |
2585 | * pressure by how much of the total memory used is | |
2586 | * within protection thresholds. | |
2587 | * | |
2588 | * There is one special case: in the first reclaim pass, | |
2589 | * we skip over all groups that are within their low | |
2590 | * protection. If that fails to reclaim enough pages to | |
2591 | * satisfy the reclaim goal, we come back and override | |
2592 | * the best-effort low protection. However, we still | |
2593 | * ideally want to honor how well-behaved groups are in | |
2594 | * that case instead of simply punishing them all | |
2595 | * equally. As such, we reclaim them based on how much | |
2596 | * memory they are using, reducing the scan pressure | |
2597 | * again by how much of the total memory used is under | |
2598 | * hard protection. | |
2599 | */ | |
2600 | unsigned long cgroup_size = mem_cgroup_size(memcg); | |
2601 | unsigned long protection; | |
2602 | ||
2603 | /* memory.low scaling, make sure we retry before OOM */ | |
2604 | if (!sc->memcg_low_reclaim && low > min) { | |
2605 | protection = low; | |
2606 | sc->memcg_low_skipped = 1; | |
2607 | } else { | |
2608 | protection = min; | |
2609 | } | |
2610 | ||
2611 | /* Avoid TOCTOU with earlier protection check */ | |
2612 | cgroup_size = max(cgroup_size, protection); | |
2613 | ||
2614 | scan = lruvec_size - lruvec_size * protection / | |
2615 | (cgroup_size + 1); | |
2616 | ||
2617 | /* | |
2618 | * Minimally target SWAP_CLUSTER_MAX pages to keep | |
2619 | * reclaim moving forwards, avoiding decrementing | |
2620 | * sc->priority further than desirable. | |
2621 | */ | |
2622 | scan = max(scan, SWAP_CLUSTER_MAX); | |
2623 | } else { | |
2624 | scan = lruvec_size; | |
2625 | } | |
2626 | ||
2627 | scan >>= sc->priority; | |
2628 | ||
2629 | /* | |
2630 | * If the cgroup's already been deleted, make sure to | |
2631 | * scrape out the remaining cache. | |
2632 | */ | |
2633 | if (!scan && !mem_cgroup_online(memcg)) | |
2634 | scan = min(lruvec_size, SWAP_CLUSTER_MAX); | |
2635 | ||
2636 | switch (scan_balance) { | |
2637 | case SCAN_EQUAL: | |
2638 | /* Scan lists relative to size */ | |
2639 | break; | |
2640 | case SCAN_FRACT: | |
2641 | /* | |
2642 | * Scan types proportional to swappiness and | |
2643 | * their relative recent reclaim efficiency. | |
2644 | * Make sure we don't miss the last page on | |
2645 | * the offlined memory cgroups because of a | |
2646 | * round-off error. | |
2647 | */ | |
2648 | scan = mem_cgroup_online(memcg) ? | |
2649 | div64_u64(scan * fraction[file], denominator) : | |
2650 | DIV64_U64_ROUND_UP(scan * fraction[file], | |
2651 | denominator); | |
2652 | break; | |
2653 | case SCAN_FILE: | |
2654 | case SCAN_ANON: | |
2655 | /* Scan one type exclusively */ | |
2656 | if ((scan_balance == SCAN_FILE) != file) | |
2657 | scan = 0; | |
2658 | break; | |
2659 | default: | |
2660 | /* Look ma, no brain */ | |
2661 | BUG(); | |
2662 | } | |
2663 | ||
2664 | nr[lru] = scan; | |
2665 | } | |
2666 | } | |
2667 | ||
2668 | /* | |
2669 | * Anonymous LRU management is a waste if there is | |
2670 | * ultimately no way to reclaim the memory. | |
2671 | */ | |
2672 | static bool can_age_anon_pages(struct lruvec *lruvec, | |
2673 | struct scan_control *sc) | |
2674 | { | |
2675 | /* Aging the anon LRU is valuable if swap is present: */ | |
2676 | if (total_swap_pages > 0) | |
2677 | return true; | |
2678 | ||
2679 | /* Also valuable if anon pages can be demoted: */ | |
2680 | return can_demote(lruvec_pgdat(lruvec)->node_id, sc, | |
2681 | lruvec_memcg(lruvec)); | |
2682 | } | |
2683 | ||
2684 | #ifdef CONFIG_LRU_GEN | |
2685 | ||
2686 | #ifdef CONFIG_LRU_GEN_ENABLED | |
2687 | DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); | |
2688 | #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) | |
2689 | #else | |
2690 | DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); | |
2691 | #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) | |
2692 | #endif | |
2693 | ||
2694 | static bool should_walk_mmu(void) | |
2695 | { | |
2696 | return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); | |
2697 | } | |
2698 | ||
2699 | static bool should_clear_pmd_young(void) | |
2700 | { | |
2701 | return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); | |
2702 | } | |
2703 | ||
2704 | /****************************************************************************** | |
2705 | * shorthand helpers | |
2706 | ******************************************************************************/ | |
2707 | ||
2708 | #define DEFINE_MAX_SEQ(lruvec) \ | |
2709 | unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) | |
2710 | ||
2711 | #define DEFINE_MIN_SEQ(lruvec) \ | |
2712 | unsigned long min_seq[ANON_AND_FILE] = { \ | |
2713 | READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ | |
2714 | READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ | |
2715 | } | |
2716 | ||
2717 | /* Get the min/max evictable type based on swappiness */ | |
2718 | #define min_type(swappiness) (!(swappiness)) | |
2719 | #define max_type(swappiness) ((swappiness) < SWAPPINESS_ANON_ONLY) | |
2720 | ||
2721 | #define evictable_min_seq(min_seq, swappiness) \ | |
2722 | min((min_seq)[min_type(swappiness)], (min_seq)[max_type(swappiness)]) | |
2723 | ||
2724 | #define for_each_gen_type_zone(gen, type, zone) \ | |
2725 | for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ | |
2726 | for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ | |
2727 | for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) | |
2728 | ||
2729 | #define for_each_evictable_type(type, swappiness) \ | |
2730 | for ((type) = min_type(swappiness); (type) <= max_type(swappiness); (type)++) | |
2731 | ||
2732 | #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) | |
2733 | #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) | |
2734 | ||
2735 | static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) | |
2736 | { | |
2737 | struct pglist_data *pgdat = NODE_DATA(nid); | |
2738 | ||
2739 | #ifdef CONFIG_MEMCG | |
2740 | if (memcg) { | |
2741 | struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; | |
2742 | ||
2743 | /* see the comment in mem_cgroup_lruvec() */ | |
2744 | if (!lruvec->pgdat) | |
2745 | lruvec->pgdat = pgdat; | |
2746 | ||
2747 | return lruvec; | |
2748 | } | |
2749 | #endif | |
2750 | VM_WARN_ON_ONCE(!mem_cgroup_disabled()); | |
2751 | ||
2752 | return &pgdat->__lruvec; | |
2753 | } | |
2754 | ||
2755 | static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) | |
2756 | { | |
2757 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); | |
2758 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | |
2759 | ||
2760 | if (!sc->may_swap) | |
2761 | return 0; | |
2762 | ||
2763 | if (!can_demote(pgdat->node_id, sc, memcg) && | |
2764 | mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) | |
2765 | return 0; | |
2766 | ||
2767 | return sc_swappiness(sc, memcg); | |
2768 | } | |
2769 | ||
2770 | static int get_nr_gens(struct lruvec *lruvec, int type) | |
2771 | { | |
2772 | return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; | |
2773 | } | |
2774 | ||
2775 | static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) | |
2776 | { | |
2777 | int type; | |
2778 | ||
2779 | for (type = 0; type < ANON_AND_FILE; type++) { | |
2780 | int n = get_nr_gens(lruvec, type); | |
2781 | ||
2782 | if (n < MIN_NR_GENS || n > MAX_NR_GENS) | |
2783 | return false; | |
2784 | } | |
2785 | ||
2786 | return true; | |
2787 | } | |
2788 | ||
2789 | /****************************************************************************** | |
2790 | * Bloom filters | |
2791 | ******************************************************************************/ | |
2792 | ||
2793 | /* | |
2794 | * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when | |
2795 | * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of | |
2796 | * bits in a bitmap, k is the number of hash functions and n is the number of | |
2797 | * inserted items. | |
2798 | * | |
2799 | * Page table walkers use one of the two filters to reduce their search space. | |
2800 | * To get rid of non-leaf entries that no longer have enough leaf entries, the | |
2801 | * aging uses the double-buffering technique to flip to the other filter each | |
2802 | * time it produces a new generation. For non-leaf entries that have enough | |
2803 | * leaf entries, the aging carries them over to the next generation in | |
2804 | * walk_pmd_range(); the eviction also report them when walking the rmap | |
2805 | * in lru_gen_look_around(). | |
2806 | * | |
2807 | * For future optimizations: | |
2808 | * 1. It's not necessary to keep both filters all the time. The spare one can be | |
2809 | * freed after the RCU grace period and reallocated if needed again. | |
2810 | * 2. And when reallocating, it's worth scaling its size according to the number | |
2811 | * of inserted entries in the other filter, to reduce the memory overhead on | |
2812 | * small systems and false positives on large systems. | |
2813 | * 3. Jenkins' hash function is an alternative to Knuth's. | |
2814 | */ | |
2815 | #define BLOOM_FILTER_SHIFT 15 | |
2816 | ||
2817 | static inline int filter_gen_from_seq(unsigned long seq) | |
2818 | { | |
2819 | return seq % NR_BLOOM_FILTERS; | |
2820 | } | |
2821 | ||
2822 | static void get_item_key(void *item, int *key) | |
2823 | { | |
2824 | u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); | |
2825 | ||
2826 | BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); | |
2827 | ||
2828 | key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); | |
2829 | key[1] = hash >> BLOOM_FILTER_SHIFT; | |
2830 | } | |
2831 | ||
2832 | static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, | |
2833 | void *item) | |
2834 | { | |
2835 | int key[2]; | |
2836 | unsigned long *filter; | |
2837 | int gen = filter_gen_from_seq(seq); | |
2838 | ||
2839 | filter = READ_ONCE(mm_state->filters[gen]); | |
2840 | if (!filter) | |
2841 | return true; | |
2842 | ||
2843 | get_item_key(item, key); | |
2844 | ||
2845 | return test_bit(key[0], filter) && test_bit(key[1], filter); | |
2846 | } | |
2847 | ||
2848 | static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, | |
2849 | void *item) | |
2850 | { | |
2851 | int key[2]; | |
2852 | unsigned long *filter; | |
2853 | int gen = filter_gen_from_seq(seq); | |
2854 | ||
2855 | filter = READ_ONCE(mm_state->filters[gen]); | |
2856 | if (!filter) | |
2857 | return; | |
2858 | ||
2859 | get_item_key(item, key); | |
2860 | ||
2861 | if (!test_bit(key[0], filter)) | |
2862 | set_bit(key[0], filter); | |
2863 | if (!test_bit(key[1], filter)) | |
2864 | set_bit(key[1], filter); | |
2865 | } | |
2866 | ||
2867 | static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq) | |
2868 | { | |
2869 | unsigned long *filter; | |
2870 | int gen = filter_gen_from_seq(seq); | |
2871 | ||
2872 | filter = mm_state->filters[gen]; | |
2873 | if (filter) { | |
2874 | bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); | |
2875 | return; | |
2876 | } | |
2877 | ||
2878 | filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), | |
2879 | __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); | |
2880 | WRITE_ONCE(mm_state->filters[gen], filter); | |
2881 | } | |
2882 | ||
2883 | /****************************************************************************** | |
2884 | * mm_struct list | |
2885 | ******************************************************************************/ | |
2886 | ||
2887 | #ifdef CONFIG_LRU_GEN_WALKS_MMU | |
2888 | ||
2889 | static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) | |
2890 | { | |
2891 | static struct lru_gen_mm_list mm_list = { | |
2892 | .fifo = LIST_HEAD_INIT(mm_list.fifo), | |
2893 | .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), | |
2894 | }; | |
2895 | ||
2896 | #ifdef CONFIG_MEMCG | |
2897 | if (memcg) | |
2898 | return &memcg->mm_list; | |
2899 | #endif | |
2900 | VM_WARN_ON_ONCE(!mem_cgroup_disabled()); | |
2901 | ||
2902 | return &mm_list; | |
2903 | } | |
2904 | ||
2905 | static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) | |
2906 | { | |
2907 | return &lruvec->mm_state; | |
2908 | } | |
2909 | ||
2910 | static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) | |
2911 | { | |
2912 | int key; | |
2913 | struct mm_struct *mm; | |
2914 | struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); | |
2915 | struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); | |
2916 | ||
2917 | mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); | |
2918 | key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); | |
2919 | ||
2920 | if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) | |
2921 | return NULL; | |
2922 | ||
2923 | clear_bit(key, &mm->lru_gen.bitmap); | |
2924 | ||
2925 | return mmget_not_zero(mm) ? mm : NULL; | |
2926 | } | |
2927 | ||
2928 | void lru_gen_add_mm(struct mm_struct *mm) | |
2929 | { | |
2930 | int nid; | |
2931 | struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); | |
2932 | struct lru_gen_mm_list *mm_list = get_mm_list(memcg); | |
2933 | ||
2934 | VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); | |
2935 | #ifdef CONFIG_MEMCG | |
2936 | VM_WARN_ON_ONCE(mm->lru_gen.memcg); | |
2937 | mm->lru_gen.memcg = memcg; | |
2938 | #endif | |
2939 | spin_lock(&mm_list->lock); | |
2940 | ||
2941 | for_each_node_state(nid, N_MEMORY) { | |
2942 | struct lruvec *lruvec = get_lruvec(memcg, nid); | |
2943 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); | |
2944 | ||
2945 | /* the first addition since the last iteration */ | |
2946 | if (mm_state->tail == &mm_list->fifo) | |
2947 | mm_state->tail = &mm->lru_gen.list; | |
2948 | } | |
2949 | ||
2950 | list_add_tail(&mm->lru_gen.list, &mm_list->fifo); | |
2951 | ||
2952 | spin_unlock(&mm_list->lock); | |
2953 | } | |
2954 | ||
2955 | void lru_gen_del_mm(struct mm_struct *mm) | |
2956 | { | |
2957 | int nid; | |
2958 | struct lru_gen_mm_list *mm_list; | |
2959 | struct mem_cgroup *memcg = NULL; | |
2960 | ||
2961 | if (list_empty(&mm->lru_gen.list)) | |
2962 | return; | |
2963 | ||
2964 | #ifdef CONFIG_MEMCG | |
2965 | memcg = mm->lru_gen.memcg; | |
2966 | #endif | |
2967 | mm_list = get_mm_list(memcg); | |
2968 | ||
2969 | spin_lock(&mm_list->lock); | |
2970 | ||
2971 | for_each_node(nid) { | |
2972 | struct lruvec *lruvec = get_lruvec(memcg, nid); | |
2973 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); | |
2974 | ||
2975 | /* where the current iteration continues after */ | |
2976 | if (mm_state->head == &mm->lru_gen.list) | |
2977 | mm_state->head = mm_state->head->prev; | |
2978 | ||
2979 | /* where the last iteration ended before */ | |
2980 | if (mm_state->tail == &mm->lru_gen.list) | |
2981 | mm_state->tail = mm_state->tail->next; | |
2982 | } | |
2983 | ||
2984 | list_del_init(&mm->lru_gen.list); | |
2985 | ||
2986 | spin_unlock(&mm_list->lock); | |
2987 | ||
2988 | #ifdef CONFIG_MEMCG | |
2989 | mem_cgroup_put(mm->lru_gen.memcg); | |
2990 | mm->lru_gen.memcg = NULL; | |
2991 | #endif | |
2992 | } | |
2993 | ||
2994 | #ifdef CONFIG_MEMCG | |
2995 | void lru_gen_migrate_mm(struct mm_struct *mm) | |
2996 | { | |
2997 | struct mem_cgroup *memcg; | |
2998 | struct task_struct *task = rcu_dereference_protected(mm->owner, true); | |
2999 | ||
3000 | VM_WARN_ON_ONCE(task->mm != mm); | |
3001 | lockdep_assert_held(&task->alloc_lock); | |
3002 | ||
3003 | /* for mm_update_next_owner() */ | |
3004 | if (mem_cgroup_disabled()) | |
3005 | return; | |
3006 | ||
3007 | /* migration can happen before addition */ | |
3008 | if (!mm->lru_gen.memcg) | |
3009 | return; | |
3010 | ||
3011 | rcu_read_lock(); | |
3012 | memcg = mem_cgroup_from_task(task); | |
3013 | rcu_read_unlock(); | |
3014 | if (memcg == mm->lru_gen.memcg) | |
3015 | return; | |
3016 | ||
3017 | VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); | |
3018 | ||
3019 | lru_gen_del_mm(mm); | |
3020 | lru_gen_add_mm(mm); | |
3021 | } | |
3022 | #endif | |
3023 | ||
3024 | #else /* !CONFIG_LRU_GEN_WALKS_MMU */ | |
3025 | ||
3026 | static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) | |
3027 | { | |
3028 | return NULL; | |
3029 | } | |
3030 | ||
3031 | static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) | |
3032 | { | |
3033 | return NULL; | |
3034 | } | |
3035 | ||
3036 | static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) | |
3037 | { | |
3038 | return NULL; | |
3039 | } | |
3040 | ||
3041 | #endif | |
3042 | ||
3043 | static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last) | |
3044 | { | |
3045 | int i; | |
3046 | int hist; | |
3047 | struct lruvec *lruvec = walk->lruvec; | |
3048 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); | |
3049 | ||
3050 | lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); | |
3051 | ||
3052 | hist = lru_hist_from_seq(walk->seq); | |
3053 | ||
3054 | for (i = 0; i < NR_MM_STATS; i++) { | |
3055 | WRITE_ONCE(mm_state->stats[hist][i], | |
3056 | mm_state->stats[hist][i] + walk->mm_stats[i]); | |
3057 | walk->mm_stats[i] = 0; | |
3058 | } | |
3059 | ||
3060 | if (NR_HIST_GENS > 1 && last) { | |
3061 | hist = lru_hist_from_seq(walk->seq + 1); | |
3062 | ||
3063 | for (i = 0; i < NR_MM_STATS; i++) | |
3064 | WRITE_ONCE(mm_state->stats[hist][i], 0); | |
3065 | } | |
3066 | } | |
3067 | ||
3068 | static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter) | |
3069 | { | |
3070 | bool first = false; | |
3071 | bool last = false; | |
3072 | struct mm_struct *mm = NULL; | |
3073 | struct lruvec *lruvec = walk->lruvec; | |
3074 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); | |
3075 | struct lru_gen_mm_list *mm_list = get_mm_list(memcg); | |
3076 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); | |
3077 | ||
3078 | /* | |
3079 | * mm_state->seq is incremented after each iteration of mm_list. There | |
3080 | * are three interesting cases for this page table walker: | |
3081 | * 1. It tries to start a new iteration with a stale max_seq: there is | |
3082 | * nothing left to do. | |
3083 | * 2. It started the next iteration: it needs to reset the Bloom filter | |
3084 | * so that a fresh set of PTE tables can be recorded. | |
3085 | * 3. It ended the current iteration: it needs to reset the mm stats | |
3086 | * counters and tell its caller to increment max_seq. | |
3087 | */ | |
3088 | spin_lock(&mm_list->lock); | |
3089 | ||
3090 | VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq); | |
3091 | ||
3092 | if (walk->seq <= mm_state->seq) | |
3093 | goto done; | |
3094 | ||
3095 | if (!mm_state->head) | |
3096 | mm_state->head = &mm_list->fifo; | |
3097 | ||
3098 | if (mm_state->head == &mm_list->fifo) | |
3099 | first = true; | |
3100 | ||
3101 | do { | |
3102 | mm_state->head = mm_state->head->next; | |
3103 | if (mm_state->head == &mm_list->fifo) { | |
3104 | WRITE_ONCE(mm_state->seq, mm_state->seq + 1); | |
3105 | last = true; | |
3106 | break; | |
3107 | } | |
3108 | ||
3109 | /* force scan for those added after the last iteration */ | |
3110 | if (!mm_state->tail || mm_state->tail == mm_state->head) { | |
3111 | mm_state->tail = mm_state->head->next; | |
3112 | walk->force_scan = true; | |
3113 | } | |
3114 | } while (!(mm = get_next_mm(walk))); | |
3115 | done: | |
3116 | if (*iter || last) | |
3117 | reset_mm_stats(walk, last); | |
3118 | ||
3119 | spin_unlock(&mm_list->lock); | |
3120 | ||
3121 | if (mm && first) | |
3122 | reset_bloom_filter(mm_state, walk->seq + 1); | |
3123 | ||
3124 | if (*iter) | |
3125 | mmput_async(*iter); | |
3126 | ||
3127 | *iter = mm; | |
3128 | ||
3129 | return last; | |
3130 | } | |
3131 | ||
3132 | static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq) | |
3133 | { | |
3134 | bool success = false; | |
3135 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); | |
3136 | struct lru_gen_mm_list *mm_list = get_mm_list(memcg); | |
3137 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); | |
3138 | ||
3139 | spin_lock(&mm_list->lock); | |
3140 | ||
3141 | VM_WARN_ON_ONCE(mm_state->seq + 1 < seq); | |
3142 | ||
3143 | if (seq > mm_state->seq) { | |
3144 | mm_state->head = NULL; | |
3145 | mm_state->tail = NULL; | |
3146 | WRITE_ONCE(mm_state->seq, mm_state->seq + 1); | |
3147 | success = true; | |
3148 | } | |
3149 | ||
3150 | spin_unlock(&mm_list->lock); | |
3151 | ||
3152 | return success; | |
3153 | } | |
3154 | ||
3155 | /****************************************************************************** | |
3156 | * PID controller | |
3157 | ******************************************************************************/ | |
3158 | ||
3159 | /* | |
3160 | * A feedback loop based on Proportional-Integral-Derivative (PID) controller. | |
3161 | * | |
3162 | * The P term is refaulted/(evicted+protected) from a tier in the generation | |
3163 | * currently being evicted; the I term is the exponential moving average of the | |
3164 | * P term over the generations previously evicted, using the smoothing factor | |
3165 | * 1/2; the D term isn't supported. | |
3166 | * | |
3167 | * The setpoint (SP) is always the first tier of one type; the process variable | |
3168 | * (PV) is either any tier of the other type or any other tier of the same | |
3169 | * type. | |
3170 | * | |
3171 | * The error is the difference between the SP and the PV; the correction is to | |
3172 | * turn off protection when SP>PV or turn on protection when SP<PV. | |
3173 | * | |
3174 | * For future optimizations: | |
3175 | * 1. The D term may discount the other two terms over time so that long-lived | |
3176 | * generations can resist stale information. | |
3177 | */ | |
3178 | struct ctrl_pos { | |
3179 | unsigned long refaulted; | |
3180 | unsigned long total; | |
3181 | int gain; | |
3182 | }; | |
3183 | ||
3184 | static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, | |
3185 | struct ctrl_pos *pos) | |
3186 | { | |
3187 | int i; | |
3188 | struct lru_gen_folio *lrugen = &lruvec->lrugen; | |
3189 | int hist = lru_hist_from_seq(lrugen->min_seq[type]); | |
3190 | ||
3191 | pos->gain = gain; | |
3192 | pos->refaulted = pos->total = 0; | |
3193 | ||
3194 | for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) { | |
3195 | pos->refaulted += lrugen->avg_refaulted[type][i] + | |
3196 | atomic_long_read(&lrugen->refaulted[hist][type][i]); | |
3197 | pos->total += lrugen->avg_total[type][i] + | |
3198 | lrugen->protected[hist][type][i] + | |
3199 | atomic_long_read(&lrugen->evicted[hist][type][i]); | |
3200 | } | |
3201 | } | |
3202 | ||
3203 | static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) | |
3204 | { | |
3205 | int hist, tier; | |
3206 | struct lru_gen_folio *lrugen = &lruvec->lrugen; | |
3207 | bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; | |
3208 | unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; | |
3209 | ||
3210 | lockdep_assert_held(&lruvec->lru_lock); | |
3211 | ||
3212 | if (!carryover && !clear) | |
3213 | return; | |
3214 | ||
3215 | hist = lru_hist_from_seq(seq); | |
3216 | ||
3217 | for (tier = 0; tier < MAX_NR_TIERS; tier++) { | |
3218 | if (carryover) { | |
3219 | unsigned long sum; | |
3220 | ||
3221 | sum = lrugen->avg_refaulted[type][tier] + | |
3222 | atomic_long_read(&lrugen->refaulted[hist][type][tier]); | |
3223 | WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); | |
3224 | ||
3225 | sum = lrugen->avg_total[type][tier] + | |
3226 | lrugen->protected[hist][type][tier] + | |
3227 | atomic_long_read(&lrugen->evicted[hist][type][tier]); | |
3228 | WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); | |
3229 | } | |
3230 | ||
3231 | if (clear) { | |
3232 | atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); | |
3233 | atomic_long_set(&lrugen->evicted[hist][type][tier], 0); | |
3234 | WRITE_ONCE(lrugen->protected[hist][type][tier], 0); | |
3235 | } | |
3236 | } | |
3237 | } | |
3238 | ||
3239 | static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) | |
3240 | { | |
3241 | /* | |
3242 | * Return true if the PV has a limited number of refaults or a lower | |
3243 | * refaulted/total than the SP. | |
3244 | */ | |
3245 | return pv->refaulted < MIN_LRU_BATCH || | |
3246 | pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= | |
3247 | (sp->refaulted + 1) * pv->total * pv->gain; | |
3248 | } | |
3249 | ||
3250 | /****************************************************************************** | |
3251 | * the aging | |
3252 | ******************************************************************************/ | |
3253 | ||
3254 | /* promote pages accessed through page tables */ | |
3255 | static int folio_update_gen(struct folio *folio, int gen) | |
3256 | { | |
3257 | unsigned long new_flags, old_flags = READ_ONCE(folio->flags); | |
3258 | ||
3259 | VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); | |
3260 | ||
3261 | /* see the comment on LRU_REFS_FLAGS */ | |
3262 | if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) { | |
3263 | set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced)); | |
3264 | return -1; | |
3265 | } | |
3266 | ||
3267 | do { | |
3268 | /* lru_gen_del_folio() has isolated this page? */ | |
3269 | if (!(old_flags & LRU_GEN_MASK)) | |
3270 | return -1; | |
3271 | ||
3272 | new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS); | |
3273 | new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset); | |
3274 | } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); | |
3275 | ||
3276 | return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; | |
3277 | } | |
3278 | ||
3279 | /* protect pages accessed multiple times through file descriptors */ | |
3280 | static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) | |
3281 | { | |
3282 | int type = folio_is_file_lru(folio); | |
3283 | struct lru_gen_folio *lrugen = &lruvec->lrugen; | |
3284 | int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); | |
3285 | unsigned long new_flags, old_flags = READ_ONCE(folio->flags); | |
3286 | ||
3287 | VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); | |
3288 | ||
3289 | do { | |
3290 | new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; | |
3291 | /* folio_update_gen() has promoted this page? */ | |
3292 | if (new_gen >= 0 && new_gen != old_gen) | |
3293 | return new_gen; | |
3294 | ||
3295 | new_gen = (old_gen + 1) % MAX_NR_GENS; | |
3296 | ||
3297 | new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS); | |
3298 | new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; | |
3299 | /* for folio_end_writeback() */ | |
3300 | if (reclaiming) | |
3301 | new_flags |= BIT(PG_reclaim); | |
3302 | } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); | |
3303 | ||
3304 | lru_gen_update_size(lruvec, folio, old_gen, new_gen); | |
3305 | ||
3306 | return new_gen; | |
3307 | } | |
3308 | ||
3309 | static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, | |
3310 | int old_gen, int new_gen) | |
3311 | { | |
3312 | int type = folio_is_file_lru(folio); | |
3313 | int zone = folio_zonenum(folio); | |
3314 | int delta = folio_nr_pages(folio); | |
3315 | ||
3316 | VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); | |
3317 | VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); | |
3318 | ||
3319 | walk->batched++; | |
3320 | ||
3321 | walk->nr_pages[old_gen][type][zone] -= delta; | |
3322 | walk->nr_pages[new_gen][type][zone] += delta; | |
3323 | } | |
3324 | ||
3325 | static void reset_batch_size(struct lru_gen_mm_walk *walk) | |
3326 | { | |
3327 | int gen, type, zone; | |
3328 | struct lruvec *lruvec = walk->lruvec; | |
3329 | struct lru_gen_folio *lrugen = &lruvec->lrugen; | |
3330 | ||
3331 | walk->batched = 0; | |
3332 | ||
3333 | for_each_gen_type_zone(gen, type, zone) { | |
3334 | enum lru_list lru = type * LRU_INACTIVE_FILE; | |
3335 | int delta = walk->nr_pages[gen][type][zone]; | |
3336 | ||
3337 | if (!delta) | |
3338 | continue; | |
3339 | ||
3340 | walk->nr_pages[gen][type][zone] = 0; | |
3341 | WRITE_ONCE(lrugen->nr_pages[gen][type][zone], | |
3342 | lrugen->nr_pages[gen][type][zone] + delta); | |
3343 | ||
3344 | if (lru_gen_is_active(lruvec, gen)) | |
3345 | lru += LRU_ACTIVE; | |
3346 | __update_lru_size(lruvec, lru, zone, delta); | |
3347 | } | |
3348 | } | |
3349 | ||
3350 | static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) | |
3351 | { | |
3352 | struct address_space *mapping; | |
3353 | struct vm_area_struct *vma = args->vma; | |
3354 | struct lru_gen_mm_walk *walk = args->private; | |
3355 | ||
3356 | if (!vma_is_accessible(vma)) | |
3357 | return true; | |
3358 | ||
3359 | if (is_vm_hugetlb_page(vma)) | |
3360 | return true; | |
3361 | ||
3362 | if (!vma_has_recency(vma)) | |
3363 | return true; | |
3364 | ||
3365 | if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) | |
3366 | return true; | |
3367 | ||
3368 | if (vma == get_gate_vma(vma->vm_mm)) | |
3369 | return true; | |
3370 | ||
3371 | if (vma_is_anonymous(vma)) | |
3372 | return !walk->swappiness; | |
3373 | ||
3374 | if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) | |
3375 | return true; | |
3376 | ||
3377 | mapping = vma->vm_file->f_mapping; | |
3378 | if (mapping_unevictable(mapping)) | |
3379 | return true; | |
3380 | ||
3381 | if (shmem_mapping(mapping)) | |
3382 | return !walk->swappiness; | |
3383 | ||
3384 | if (walk->swappiness > MAX_SWAPPINESS) | |
3385 | return true; | |
3386 | ||
3387 | /* to exclude special mappings like dax, etc. */ | |
3388 | return !mapping->a_ops->read_folio; | |
3389 | } | |
3390 | ||
3391 | /* | |
3392 | * Some userspace memory allocators map many single-page VMAs. Instead of | |
3393 | * returning back to the PGD table for each of such VMAs, finish an entire PMD | |
3394 | * table to reduce zigzags and improve cache performance. | |
3395 | */ | |
3396 | static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, | |
3397 | unsigned long *vm_start, unsigned long *vm_end) | |
3398 | { | |
3399 | unsigned long start = round_up(*vm_end, size); | |
3400 | unsigned long end = (start | ~mask) + 1; | |
3401 | VMA_ITERATOR(vmi, args->mm, start); | |
3402 | ||
3403 | VM_WARN_ON_ONCE(mask & size); | |
3404 | VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); | |
3405 | ||
3406 | for_each_vma(vmi, args->vma) { | |
3407 | if (end && end <= args->vma->vm_start) | |
3408 | return false; | |
3409 | ||
3410 | if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) | |
3411 | continue; | |
3412 | ||
3413 | *vm_start = max(start, args->vma->vm_start); | |
3414 | *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; | |
3415 | ||
3416 | return true; | |
3417 | } | |
3418 | ||
3419 | return false; | |
3420 | } | |
3421 | ||
3422 | static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr, | |
3423 | struct pglist_data *pgdat) | |
3424 | { | |
3425 | unsigned long pfn = pte_pfn(pte); | |
3426 | ||
3427 | VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); | |
3428 | ||
3429 | if (!pte_present(pte) || is_zero_pfn(pfn)) | |
3430 | return -1; | |
3431 | ||
3432 | if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) | |
3433 | return -1; | |
3434 | ||
3435 | if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm)) | |
3436 | return -1; | |
3437 | ||
3438 | if (WARN_ON_ONCE(!pfn_valid(pfn))) | |
3439 | return -1; | |
3440 | ||
3441 | if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) | |
3442 | return -1; | |
3443 | ||
3444 | return pfn; | |
3445 | } | |
3446 | ||
3447 | static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr, | |
3448 | struct pglist_data *pgdat) | |
3449 | { | |
3450 | unsigned long pfn = pmd_pfn(pmd); | |
3451 | ||
3452 | VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); | |
3453 | ||
3454 | if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) | |
3455 | return -1; | |
3456 | ||
3457 | if (WARN_ON_ONCE(pmd_devmap(pmd))) | |
3458 | return -1; | |
3459 | ||
3460 | if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm)) | |
3461 | return -1; | |
3462 | ||
3463 | if (WARN_ON_ONCE(!pfn_valid(pfn))) | |
3464 | return -1; | |
3465 | ||
3466 | if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) | |
3467 | return -1; | |
3468 | ||
3469 | return pfn; | |
3470 | } | |
3471 | ||
3472 | static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, | |
3473 | struct pglist_data *pgdat) | |
3474 | { | |
3475 | struct folio *folio = pfn_folio(pfn); | |
3476 | ||
3477 | if (folio_lru_gen(folio) < 0) | |
3478 | return NULL; | |
3479 | ||
3480 | if (folio_nid(folio) != pgdat->node_id) | |
3481 | return NULL; | |
3482 | ||
3483 | if (folio_memcg(folio) != memcg) | |
3484 | return NULL; | |
3485 | ||
3486 | return folio; | |
3487 | } | |
3488 | ||
3489 | static bool suitable_to_scan(int total, int young) | |
3490 | { | |
3491 | int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); | |
3492 | ||
3493 | /* suitable if the average number of young PTEs per cacheline is >=1 */ | |
3494 | return young * n >= total; | |
3495 | } | |
3496 | ||
3497 | static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio, | |
3498 | int new_gen, bool dirty) | |
3499 | { | |
3500 | int old_gen; | |
3501 | ||
3502 | if (!folio) | |
3503 | return; | |
3504 | ||
3505 | if (dirty && !folio_test_dirty(folio) && | |
3506 | !(folio_test_anon(folio) && folio_test_swapbacked(folio) && | |
3507 | !folio_test_swapcache(folio))) | |
3508 | folio_mark_dirty(folio); | |
3509 | ||
3510 | if (walk) { | |
3511 | old_gen = folio_update_gen(folio, new_gen); | |
3512 | if (old_gen >= 0 && old_gen != new_gen) | |
3513 | update_batch_size(walk, folio, old_gen, new_gen); | |
3514 | } else if (lru_gen_set_refs(folio)) { | |
3515 | old_gen = folio_lru_gen(folio); | |
3516 | if (old_gen >= 0 && old_gen != new_gen) | |
3517 | folio_activate(folio); | |
3518 | } | |
3519 | } | |
3520 | ||
3521 | static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, | |
3522 | struct mm_walk *args) | |
3523 | { | |
3524 | int i; | |
3525 | bool dirty; | |
3526 | pte_t *pte; | |
3527 | spinlock_t *ptl; | |
3528 | unsigned long addr; | |
3529 | int total = 0; | |
3530 | int young = 0; | |
3531 | struct folio *last = NULL; | |
3532 | struct lru_gen_mm_walk *walk = args->private; | |
3533 | struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); | |
3534 | struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); | |
3535 | DEFINE_MAX_SEQ(walk->lruvec); | |
3536 | int gen = lru_gen_from_seq(max_seq); | |
3537 | pmd_t pmdval; | |
3538 | ||
3539 | pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl); | |
3540 | if (!pte) | |
3541 | return false; | |
3542 | ||
3543 | if (!spin_trylock(ptl)) { | |
3544 | pte_unmap(pte); | |
3545 | return true; | |
3546 | } | |
3547 | ||
3548 | if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) { | |
3549 | pte_unmap_unlock(pte, ptl); | |
3550 | return false; | |
3551 | } | |
3552 | ||
3553 | arch_enter_lazy_mmu_mode(); | |
3554 | restart: | |
3555 | for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { | |
3556 | unsigned long pfn; | |
3557 | struct folio *folio; | |
3558 | pte_t ptent = ptep_get(pte + i); | |
3559 | ||
3560 | total++; | |
3561 | walk->mm_stats[MM_LEAF_TOTAL]++; | |
3562 | ||
3563 | pfn = get_pte_pfn(ptent, args->vma, addr, pgdat); | |
3564 | if (pfn == -1) | |
3565 | continue; | |
3566 | ||
3567 | folio = get_pfn_folio(pfn, memcg, pgdat); | |
3568 | if (!folio) | |
3569 | continue; | |
3570 | ||
3571 | if (!ptep_clear_young_notify(args->vma, addr, pte + i)) | |
3572 | continue; | |
3573 | ||
3574 | if (last != folio) { | |
3575 | walk_update_folio(walk, last, gen, dirty); | |
3576 | ||
3577 | last = folio; | |
3578 | dirty = false; | |
3579 | } | |
3580 | ||
3581 | if (pte_dirty(ptent)) | |
3582 | dirty = true; | |
3583 | ||
3584 | young++; | |
3585 | walk->mm_stats[MM_LEAF_YOUNG]++; | |
3586 | } | |
3587 | ||
3588 | walk_update_folio(walk, last, gen, dirty); | |
3589 | last = NULL; | |
3590 | ||
3591 | if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) | |
3592 | goto restart; | |
3593 | ||
3594 | arch_leave_lazy_mmu_mode(); | |
3595 | pte_unmap_unlock(pte, ptl); | |
3596 | ||
3597 | return suitable_to_scan(total, young); | |
3598 | } | |
3599 | ||
3600 | static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, | |
3601 | struct mm_walk *args, unsigned long *bitmap, unsigned long *first) | |
3602 | { | |
3603 | int i; | |
3604 | bool dirty; | |
3605 | pmd_t *pmd; | |
3606 | spinlock_t *ptl; | |
3607 | struct folio *last = NULL; | |
3608 | struct lru_gen_mm_walk *walk = args->private; | |
3609 | struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); | |
3610 | struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); | |
3611 | DEFINE_MAX_SEQ(walk->lruvec); | |
3612 | int gen = lru_gen_from_seq(max_seq); | |
3613 | ||
3614 | VM_WARN_ON_ONCE(pud_leaf(*pud)); | |
3615 | ||
3616 | /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ | |
3617 | if (*first == -1) { | |
3618 | *first = addr; | |
3619 | bitmap_zero(bitmap, MIN_LRU_BATCH); | |
3620 | return; | |
3621 | } | |
3622 | ||
3623 | i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); | |
3624 | if (i && i <= MIN_LRU_BATCH) { | |
3625 | __set_bit(i - 1, bitmap); | |
3626 | return; | |
3627 | } | |
3628 | ||
3629 | pmd = pmd_offset(pud, *first); | |
3630 | ||
3631 | ptl = pmd_lockptr(args->mm, pmd); | |
3632 | if (!spin_trylock(ptl)) | |
3633 | goto done; | |
3634 | ||
3635 | arch_enter_lazy_mmu_mode(); | |
3636 | ||
3637 | do { | |
3638 | unsigned long pfn; | |
3639 | struct folio *folio; | |
3640 | ||
3641 | /* don't round down the first address */ | |
3642 | addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; | |
3643 | ||
3644 | if (!pmd_present(pmd[i])) | |
3645 | goto next; | |
3646 | ||
3647 | if (!pmd_trans_huge(pmd[i])) { | |
3648 | if (!walk->force_scan && should_clear_pmd_young() && | |
3649 | !mm_has_notifiers(args->mm)) | |
3650 | pmdp_test_and_clear_young(vma, addr, pmd + i); | |
3651 | goto next; | |
3652 | } | |
3653 | ||
3654 | pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat); | |
3655 | if (pfn == -1) | |
3656 | goto next; | |
3657 | ||
3658 | folio = get_pfn_folio(pfn, memcg, pgdat); | |
3659 | if (!folio) | |
3660 | goto next; | |
3661 | ||
3662 | if (!pmdp_clear_young_notify(vma, addr, pmd + i)) | |
3663 | goto next; | |
3664 | ||
3665 | if (last != folio) { | |
3666 | walk_update_folio(walk, last, gen, dirty); | |
3667 | ||
3668 | last = folio; | |
3669 | dirty = false; | |
3670 | } | |
3671 | ||
3672 | if (pmd_dirty(pmd[i])) | |
3673 | dirty = true; | |
3674 | ||
3675 | walk->mm_stats[MM_LEAF_YOUNG]++; | |
3676 | next: | |
3677 | i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; | |
3678 | } while (i <= MIN_LRU_BATCH); | |
3679 | ||
3680 | walk_update_folio(walk, last, gen, dirty); | |
3681 | ||
3682 | arch_leave_lazy_mmu_mode(); | |
3683 | spin_unlock(ptl); | |
3684 | done: | |
3685 | *first = -1; | |
3686 | } | |
3687 | ||
3688 | static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, | |
3689 | struct mm_walk *args) | |
3690 | { | |
3691 | int i; | |
3692 | pmd_t *pmd; | |
3693 | unsigned long next; | |
3694 | unsigned long addr; | |
3695 | struct vm_area_struct *vma; | |
3696 | DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); | |
3697 | unsigned long first = -1; | |
3698 | struct lru_gen_mm_walk *walk = args->private; | |
3699 | struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); | |
3700 | ||
3701 | VM_WARN_ON_ONCE(pud_leaf(*pud)); | |
3702 | ||
3703 | /* | |
3704 | * Finish an entire PMD in two passes: the first only reaches to PTE | |
3705 | * tables to avoid taking the PMD lock; the second, if necessary, takes | |
3706 | * the PMD lock to clear the accessed bit in PMD entries. | |
3707 | */ | |
3708 | pmd = pmd_offset(pud, start & PUD_MASK); | |
3709 | restart: | |
3710 | /* walk_pte_range() may call get_next_vma() */ | |
3711 | vma = args->vma; | |
3712 | for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { | |
3713 | pmd_t val = pmdp_get_lockless(pmd + i); | |
3714 | ||
3715 | next = pmd_addr_end(addr, end); | |
3716 | ||
3717 | if (!pmd_present(val) || is_huge_zero_pmd(val)) { | |
3718 | walk->mm_stats[MM_LEAF_TOTAL]++; | |
3719 | continue; | |
3720 | } | |
3721 | ||
3722 | if (pmd_trans_huge(val)) { | |
3723 | struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); | |
3724 | unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat); | |
3725 | ||
3726 | walk->mm_stats[MM_LEAF_TOTAL]++; | |
3727 | ||
3728 | if (pfn != -1) | |
3729 | walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); | |
3730 | continue; | |
3731 | } | |
3732 | ||
3733 | if (!walk->force_scan && should_clear_pmd_young() && | |
3734 | !mm_has_notifiers(args->mm)) { | |
3735 | if (!pmd_young(val)) | |
3736 | continue; | |
3737 | ||
3738 | walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); | |
3739 | } | |
3740 | ||
3741 | if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i)) | |
3742 | continue; | |
3743 | ||
3744 | walk->mm_stats[MM_NONLEAF_FOUND]++; | |
3745 | ||
3746 | if (!walk_pte_range(&val, addr, next, args)) | |
3747 | continue; | |
3748 | ||
3749 | walk->mm_stats[MM_NONLEAF_ADDED]++; | |
3750 | ||
3751 | /* carry over to the next generation */ | |
3752 | update_bloom_filter(mm_state, walk->seq + 1, pmd + i); | |
3753 | } | |
3754 | ||
3755 | walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); | |
3756 | ||
3757 | if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) | |
3758 | goto restart; | |
3759 | } | |
3760 | ||
3761 | static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, | |
3762 | struct mm_walk *args) | |
3763 | { | |
3764 | int i; | |
3765 | pud_t *pud; | |
3766 | unsigned long addr; | |
3767 | unsigned long next; | |
3768 | struct lru_gen_mm_walk *walk = args->private; | |
3769 | ||
3770 | VM_WARN_ON_ONCE(p4d_leaf(*p4d)); | |
3771 | ||
3772 | pud = pud_offset(p4d, start & P4D_MASK); | |
3773 | restart: | |
3774 | for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { | |
3775 | pud_t val = READ_ONCE(pud[i]); | |
3776 | ||
3777 | next = pud_addr_end(addr, end); | |
3778 | ||
3779 | if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) | |
3780 | continue; | |
3781 | ||
3782 | walk_pmd_range(&val, addr, next, args); | |
3783 | ||
3784 | if (need_resched() || walk->batched >= MAX_LRU_BATCH) { | |
3785 | end = (addr | ~PUD_MASK) + 1; | |
3786 | goto done; | |
3787 | } | |
3788 | } | |
3789 | ||
3790 | if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) | |
3791 | goto restart; | |
3792 | ||
3793 | end = round_up(end, P4D_SIZE); | |
3794 | done: | |
3795 | if (!end || !args->vma) | |
3796 | return 1; | |
3797 | ||
3798 | walk->next_addr = max(end, args->vma->vm_start); | |
3799 | ||
3800 | return -EAGAIN; | |
3801 | } | |
3802 | ||
3803 | static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) | |
3804 | { | |
3805 | static const struct mm_walk_ops mm_walk_ops = { | |
3806 | .test_walk = should_skip_vma, | |
3807 | .p4d_entry = walk_pud_range, | |
3808 | .walk_lock = PGWALK_RDLOCK, | |
3809 | }; | |
3810 | int err; | |
3811 | struct lruvec *lruvec = walk->lruvec; | |
3812 | ||
3813 | walk->next_addr = FIRST_USER_ADDRESS; | |
3814 | ||
3815 | do { | |
3816 | DEFINE_MAX_SEQ(lruvec); | |
3817 | ||
3818 | err = -EBUSY; | |
3819 | ||
3820 | /* another thread might have called inc_max_seq() */ | |
3821 | if (walk->seq != max_seq) | |
3822 | break; | |
3823 | ||
3824 | /* the caller might be holding the lock for write */ | |
3825 | if (mmap_read_trylock(mm)) { | |
3826 | err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); | |
3827 | ||
3828 | mmap_read_unlock(mm); | |
3829 | } | |
3830 | ||
3831 | if (walk->batched) { | |
3832 | spin_lock_irq(&lruvec->lru_lock); | |
3833 | reset_batch_size(walk); | |
3834 | spin_unlock_irq(&lruvec->lru_lock); | |
3835 | } | |
3836 | ||
3837 | cond_resched(); | |
3838 | } while (err == -EAGAIN); | |
3839 | } | |
3840 | ||
3841 | static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) | |
3842 | { | |
3843 | struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; | |
3844 | ||
3845 | if (pgdat && current_is_kswapd()) { | |
3846 | VM_WARN_ON_ONCE(walk); | |
3847 | ||
3848 | walk = &pgdat->mm_walk; | |
3849 | } else if (!walk && force_alloc) { | |
3850 | VM_WARN_ON_ONCE(current_is_kswapd()); | |
3851 | ||
3852 | walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); | |
3853 | } | |
3854 | ||
3855 | current->reclaim_state->mm_walk = walk; | |
3856 | ||
3857 | return walk; | |
3858 | } | |
3859 | ||
3860 | static void clear_mm_walk(void) | |
3861 | { | |
3862 | struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; | |
3863 | ||
3864 | VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); | |
3865 | VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); | |
3866 | ||
3867 | current->reclaim_state->mm_walk = NULL; | |
3868 | ||
3869 | if (!current_is_kswapd()) | |
3870 | kfree(walk); | |
3871 | } | |
3872 | ||
3873 | static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness) | |
3874 | { | |
3875 | int zone; | |
3876 | int remaining = MAX_LRU_BATCH; | |
3877 | struct lru_gen_folio *lrugen = &lruvec->lrugen; | |
3878 | int hist = lru_hist_from_seq(lrugen->min_seq[type]); | |
3879 | int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); | |
3880 | ||
3881 | /* For file type, skip the check if swappiness is anon only */ | |
3882 | if (type && (swappiness == SWAPPINESS_ANON_ONLY)) | |
3883 | goto done; | |
3884 | ||
3885 | /* For anon type, skip the check if swappiness is zero (file only) */ | |
3886 | if (!type && !swappiness) | |
3887 | goto done; | |
3888 | ||
3889 | /* prevent cold/hot inversion if the type is evictable */ | |
3890 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | |
3891 | struct list_head *head = &lrugen->folios[old_gen][type][zone]; | |
3892 | ||
3893 | while (!list_empty(head)) { | |
3894 | struct folio *folio = lru_to_folio(head); | |
3895 | int refs = folio_lru_refs(folio); | |
3896 | bool workingset = folio_test_workingset(folio); | |
3897 | ||
3898 | VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); | |
3899 | VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); | |
3900 | VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); | |
3901 | VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); | |
3902 | ||
3903 | new_gen = folio_inc_gen(lruvec, folio, false); | |
3904 | list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); | |
3905 | ||
3906 | /* don't count the workingset being lazily promoted */ | |
3907 | if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) { | |
3908 | int tier = lru_tier_from_refs(refs, workingset); | |
3909 | int delta = folio_nr_pages(folio); | |
3910 | ||
3911 | WRITE_ONCE(lrugen->protected[hist][type][tier], | |
3912 | lrugen->protected[hist][type][tier] + delta); | |
3913 | } | |
3914 | ||
3915 | if (!--remaining) | |
3916 | return false; | |
3917 | } | |
3918 | } | |
3919 | done: | |
3920 | reset_ctrl_pos(lruvec, type, true); | |
3921 | WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); | |
3922 | ||
3923 | return true; | |
3924 | } | |
3925 | ||
3926 | static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness) | |
3927 | { | |
3928 | int gen, type, zone; | |
3929 | bool success = false; | |
3930 | struct lru_gen_folio *lrugen = &lruvec->lrugen; | |
3931 | DEFINE_MIN_SEQ(lruvec); | |
3932 | ||
3933 | VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); | |
3934 | ||
3935 | /* find the oldest populated generation */ | |
3936 | for_each_evictable_type(type, swappiness) { | |
3937 | while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { | |
3938 | gen = lru_gen_from_seq(min_seq[type]); | |
3939 | ||
3940 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | |
3941 | if (!list_empty(&lrugen->folios[gen][type][zone])) | |
3942 | goto next; | |
3943 | } | |
3944 | ||
3945 | min_seq[type]++; | |
3946 | } | |
3947 | next: | |
3948 | ; | |
3949 | } | |
3950 | ||
3951 | /* see the comment on lru_gen_folio */ | |
3952 | if (swappiness && swappiness <= MAX_SWAPPINESS) { | |
3953 | unsigned long seq = lrugen->max_seq - MIN_NR_GENS; | |
3954 | ||
3955 | if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq) | |
3956 | min_seq[LRU_GEN_ANON] = seq; | |
3957 | else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq) | |
3958 | min_seq[LRU_GEN_FILE] = seq; | |
3959 | } | |
3960 | ||
3961 | for_each_evictable_type(type, swappiness) { | |
3962 | if (min_seq[type] <= lrugen->min_seq[type]) | |
3963 | continue; | |
3964 | ||
3965 | reset_ctrl_pos(lruvec, type, true); | |
3966 | WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); | |
3967 | success = true; | |
3968 | } | |
3969 | ||
3970 | return success; | |
3971 | } | |
3972 | ||
3973 | static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness) | |
3974 | { | |
3975 | bool success; | |
3976 | int prev, next; | |
3977 | int type, zone; | |
3978 | struct lru_gen_folio *lrugen = &lruvec->lrugen; | |
3979 | restart: | |
3980 | if (seq < READ_ONCE(lrugen->max_seq)) | |
3981 | return false; | |
3982 | ||
3983 | spin_lock_irq(&lruvec->lru_lock); | |
3984 | ||
3985 | VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); | |
3986 | ||
3987 | success = seq == lrugen->max_seq; | |
3988 | if (!success) | |
3989 | goto unlock; | |
3990 | ||
3991 | for (type = 0; type < ANON_AND_FILE; type++) { | |
3992 | if (get_nr_gens(lruvec, type) != MAX_NR_GENS) | |
3993 | continue; | |
3994 | ||
3995 | if (inc_min_seq(lruvec, type, swappiness)) | |
3996 | continue; | |
3997 | ||
3998 | spin_unlock_irq(&lruvec->lru_lock); | |
3999 | cond_resched(); | |
4000 | goto restart; | |
4001 | } | |
4002 | ||
4003 | /* | |
4004 | * Update the active/inactive LRU sizes for compatibility. Both sides of | |
4005 | * the current max_seq need to be covered, since max_seq+1 can overlap | |
4006 | * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do | |
4007 | * overlap, cold/hot inversion happens. | |
4008 | */ | |
4009 | prev = lru_gen_from_seq(lrugen->max_seq - 1); | |
4010 | next = lru_gen_from_seq(lrugen->max_seq + 1); | |
4011 | ||
4012 | for (type = 0; type < ANON_AND_FILE; type++) { | |
4013 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | |
4014 | enum lru_list lru = type * LRU_INACTIVE_FILE; | |
4015 | long delta = lrugen->nr_pages[prev][type][zone] - | |
4016 | lrugen->nr_pages[next][type][zone]; | |
4017 | ||
4018 | if (!delta) | |
4019 | continue; | |
4020 | ||
4021 | __update_lru_size(lruvec, lru, zone, delta); | |
4022 | __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); | |
4023 | } | |
4024 | } | |
4025 | ||
4026 | for (type = 0; type < ANON_AND_FILE; type++) | |
4027 | reset_ctrl_pos(lruvec, type, false); | |
4028 | ||
4029 | WRITE_ONCE(lrugen->timestamps[next], jiffies); | |
4030 | /* make sure preceding modifications appear */ | |
4031 | smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); | |
4032 | unlock: | |
4033 | spin_unlock_irq(&lruvec->lru_lock); | |
4034 | ||
4035 | return success; | |
4036 | } | |
4037 | ||
4038 | static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq, | |
4039 | int swappiness, bool force_scan) | |
4040 | { | |
4041 | bool success; | |
4042 | struct lru_gen_mm_walk *walk; | |
4043 | struct mm_struct *mm = NULL; | |
4044 | struct lru_gen_folio *lrugen = &lruvec->lrugen; | |
4045 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); | |
4046 | ||
4047 | VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq)); | |
4048 | ||
4049 | if (!mm_state) | |
4050 | return inc_max_seq(lruvec, seq, swappiness); | |
4051 | ||
4052 | /* see the comment in iterate_mm_list() */ | |
4053 | if (seq <= READ_ONCE(mm_state->seq)) | |
4054 | return false; | |
4055 | ||
4056 | /* | |
4057 | * If the hardware doesn't automatically set the accessed bit, fallback | |
4058 | * to lru_gen_look_around(), which only clears the accessed bit in a | |
4059 | * handful of PTEs. Spreading the work out over a period of time usually | |
4060 | * is less efficient, but it avoids bursty page faults. | |
4061 | */ | |
4062 | if (!should_walk_mmu()) { | |
4063 | success = iterate_mm_list_nowalk(lruvec, seq); | |
4064 | goto done; | |
4065 | } | |
4066 | ||
4067 | walk = set_mm_walk(NULL, true); | |
4068 | if (!walk) { | |
4069 | success = iterate_mm_list_nowalk(lruvec, seq); | |
4070 | goto done; | |
4071 | } | |
4072 | ||
4073 | walk->lruvec = lruvec; | |
4074 | walk->seq = seq; | |
4075 | walk->swappiness = swappiness; | |
4076 | walk->force_scan = force_scan; | |
4077 | ||
4078 | do { | |
4079 | success = iterate_mm_list(walk, &mm); | |
4080 | if (mm) | |
4081 | walk_mm(mm, walk); | |
4082 | } while (mm); | |
4083 | done: | |
4084 | if (success) { | |
4085 | success = inc_max_seq(lruvec, seq, swappiness); | |
4086 | WARN_ON_ONCE(!success); | |
4087 | } | |
4088 | ||
4089 | return success; | |
4090 | } | |
4091 | ||
4092 | /****************************************************************************** | |
4093 | * working set protection | |
4094 | ******************************************************************************/ | |
4095 | ||
4096 | static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) | |
4097 | { | |
4098 | int priority; | |
4099 | unsigned long reclaimable; | |
4100 | ||
4101 | if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) | |
4102 | return; | |
4103 | /* | |
4104 | * Determine the initial priority based on | |
4105 | * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, | |
4106 | * where reclaimed_to_scanned_ratio = inactive / total. | |
4107 | */ | |
4108 | reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); | |
4109 | if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) | |
4110 | reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); | |
4111 | ||
4112 | /* round down reclaimable and round up sc->nr_to_reclaim */ | |
4113 | priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); | |
4114 | ||
4115 | /* | |
4116 | * The estimation is based on LRU pages only, so cap it to prevent | |
4117 | * overshoots of shrinker objects by large margins. | |
4118 | */ | |
4119 | sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY); | |
4120 | } | |
4121 | ||
4122 | static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) | |
4123 | { | |
4124 | int gen, type, zone; | |
4125 | unsigned long total = 0; | |
4126 | int swappiness = get_swappiness(lruvec, sc); | |
4127 | struct lru_gen_folio *lrugen = &lruvec->lrugen; | |
4128 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); | |
4129 | DEFINE_MAX_SEQ(lruvec); | |
4130 | DEFINE_MIN_SEQ(lruvec); | |
4131 | ||
4132 | for_each_evictable_type(type, swappiness) { | |
4133 | unsigned long seq; | |
4134 | ||
4135 | for (seq = min_seq[type]; seq <= max_seq; seq++) { | |
4136 | gen = lru_gen_from_seq(seq); | |
4137 | ||
4138 | for (zone = 0; zone < MAX_NR_ZONES; zone++) | |
4139 | total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); | |
4140 | } | |
4141 | } | |
4142 | ||
4143 | /* whether the size is big enough to be helpful */ | |
4144 | return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; | |
4145 | } | |
4146 | ||
4147 | static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, | |
4148 | unsigned long min_ttl) | |
4149 | { | |
4150 | int gen; | |
4151 | unsigned long birth; | |
4152 | int swappiness = get_swappiness(lruvec, sc); | |
4153 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); | |
4154 | DEFINE_MIN_SEQ(lruvec); | |
4155 | ||
4156 | if (mem_cgroup_below_min(NULL, memcg)) | |
4157 | return false; | |
4158 | ||
4159 | if (!lruvec_is_sizable(lruvec, sc)) | |
4160 | return false; | |
4161 | ||
4162 | gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness)); | |
4163 | birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); | |
4164 | ||
4165 | return time_is_before_jiffies(birth + min_ttl); | |
4166 | } | |
4167 | ||
4168 | /* to protect the working set of the last N jiffies */ | |
4169 | static unsigned long lru_gen_min_ttl __read_mostly; | |
4170 | ||
4171 | static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) | |
4172 | { | |
4173 | struct mem_cgroup *memcg; | |
4174 | unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); | |
4175 | bool reclaimable = !min_ttl; | |
4176 | ||
4177 | VM_WARN_ON_ONCE(!current_is_kswapd()); | |
4178 | ||
4179 | set_initial_priority(pgdat, sc); | |
4180 | ||
4181 | memcg = mem_cgroup_iter(NULL, NULL, NULL); | |
4182 | do { | |
4183 | struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); | |
4184 | ||
4185 | mem_cgroup_calculate_protection(NULL, memcg); | |
4186 | ||
4187 | if (!reclaimable) | |
4188 | reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl); | |
4189 | } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); | |
4190 | ||
4191 | /* | |
4192 | * The main goal is to OOM kill if every generation from all memcgs is | |
4193 | * younger than min_ttl. However, another possibility is all memcgs are | |
4194 | * either too small or below min. | |
4195 | */ | |
4196 | if (!reclaimable && mutex_trylock(&oom_lock)) { | |
4197 | struct oom_control oc = { | |
4198 | .gfp_mask = sc->gfp_mask, | |
4199 | }; | |
4200 | ||
4201 | out_of_memory(&oc); | |
4202 | ||
4203 | mutex_unlock(&oom_lock); | |
4204 | } | |
4205 | } | |
4206 | ||
4207 | /****************************************************************************** | |
4208 | * rmap/PT walk feedback | |
4209 | ******************************************************************************/ | |
4210 | ||
4211 | /* | |
4212 | * This function exploits spatial locality when shrink_folio_list() walks the | |
4213 | * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If | |
4214 | * the scan was done cacheline efficiently, it adds the PMD entry pointing to | |
4215 | * the PTE table to the Bloom filter. This forms a feedback loop between the | |
4216 | * eviction and the aging. | |
4217 | */ | |
4218 | bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) | |
4219 | { | |
4220 | int i; | |
4221 | bool dirty; | |
4222 | unsigned long start; | |
4223 | unsigned long end; | |
4224 | struct lru_gen_mm_walk *walk; | |
4225 | struct folio *last = NULL; | |
4226 | int young = 1; | |
4227 | pte_t *pte = pvmw->pte; | |
4228 | unsigned long addr = pvmw->address; | |
4229 | struct vm_area_struct *vma = pvmw->vma; | |
4230 | struct folio *folio = pfn_folio(pvmw->pfn); | |
4231 | struct mem_cgroup *memcg = folio_memcg(folio); | |
4232 | struct pglist_data *pgdat = folio_pgdat(folio); | |
4233 | struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); | |
4234 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); | |
4235 | DEFINE_MAX_SEQ(lruvec); | |
4236 | int gen = lru_gen_from_seq(max_seq); | |
4237 | ||
4238 | lockdep_assert_held(pvmw->ptl); | |
4239 | VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); | |
4240 | ||
4241 | if (!ptep_clear_young_notify(vma, addr, pte)) | |
4242 | return false; | |
4243 | ||
4244 | if (spin_is_contended(pvmw->ptl)) | |
4245 | return true; | |
4246 | ||
4247 | /* exclude special VMAs containing anon pages from COW */ | |
4248 | if (vma->vm_flags & VM_SPECIAL) | |
4249 | return true; | |
4250 | ||
4251 | /* avoid taking the LRU lock under the PTL when possible */ | |
4252 | walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; | |
4253 | ||
4254 | start = max(addr & PMD_MASK, vma->vm_start); | |
4255 | end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1; | |
4256 | ||
4257 | if (end - start == PAGE_SIZE) | |
4258 | return true; | |
4259 | ||
4260 | if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { | |
4261 | if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) | |
4262 | end = start + MIN_LRU_BATCH * PAGE_SIZE; | |
4263 | else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) | |
4264 | start = end - MIN_LRU_BATCH * PAGE_SIZE; | |
4265 | else { | |
4266 | start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; | |
4267 | end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; | |
4268 | } | |
4269 | } | |
4270 | ||
4271 | arch_enter_lazy_mmu_mode(); | |
4272 | ||
4273 | pte -= (addr - start) / PAGE_SIZE; | |
4274 | ||
4275 | for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { | |
4276 | unsigned long pfn; | |
4277 | pte_t ptent = ptep_get(pte + i); | |
4278 | ||
4279 | pfn = get_pte_pfn(ptent, vma, addr, pgdat); | |
4280 | if (pfn == -1) | |
4281 | continue; | |
4282 | ||
4283 | folio = get_pfn_folio(pfn, memcg, pgdat); | |
4284 | if (!folio) | |
4285 | continue; | |
4286 | ||
4287 | if (!ptep_clear_young_notify(vma, addr, pte + i)) | |
4288 | continue; | |
4289 | ||
4290 | if (last != folio) { | |
4291 | walk_update_folio(walk, last, gen, dirty); | |
4292 | ||
4293 | last = folio; | |
4294 | dirty = false; | |
4295 | } | |
4296 | ||
4297 | if (pte_dirty(ptent)) | |
4298 | dirty = true; | |
4299 | ||
4300 | young++; | |
4301 | } | |
4302 | ||
4303 | walk_update_folio(walk, last, gen, dirty); | |
4304 | ||
4305 | arch_leave_lazy_mmu_mode(); | |
4306 | ||
4307 | /* feedback from rmap walkers to page table walkers */ | |
4308 | if (mm_state && suitable_to_scan(i, young)) | |
4309 | update_bloom_filter(mm_state, max_seq, pvmw->pmd); | |
4310 | ||
4311 | return true; | |
4312 | } | |
4313 | ||
4314 | /****************************************************************************** | |
4315 | * memcg LRU | |
4316 | ******************************************************************************/ | |
4317 | ||
4318 | /* see the comment on MEMCG_NR_GENS */ | |
4319 | enum { | |
4320 | MEMCG_LRU_NOP, | |
4321 | MEMCG_LRU_HEAD, | |
4322 | MEMCG_LRU_TAIL, | |
4323 | MEMCG_LRU_OLD, | |
4324 | MEMCG_LRU_YOUNG, | |
4325 | }; | |
4326 | ||
4327 | static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) | |
4328 | { | |
4329 | int seg; | |
4330 | int old, new; | |
4331 | unsigned long flags; | |
4332 | int bin = get_random_u32_below(MEMCG_NR_BINS); | |
4333 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | |
4334 | ||
4335 | spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); | |
4336 | ||
4337 | VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); | |
4338 | ||
4339 | seg = 0; | |
4340 | new = old = lruvec->lrugen.gen; | |
4341 | ||
4342 | /* see the comment on MEMCG_NR_GENS */ | |
4343 | if (op == MEMCG_LRU_HEAD) | |
4344 | seg = MEMCG_LRU_HEAD; | |
4345 | else if (op == MEMCG_LRU_TAIL) | |
4346 | seg = MEMCG_LRU_TAIL; | |
4347 | else if (op == MEMCG_LRU_OLD) | |
4348 | new = get_memcg_gen(pgdat->memcg_lru.seq); | |
4349 | else if (op == MEMCG_LRU_YOUNG) | |
4350 | new = get_memcg_gen(pgdat->memcg_lru.seq + 1); | |
4351 | else | |
4352 | VM_WARN_ON_ONCE(true); | |
4353 | ||
4354 | WRITE_ONCE(lruvec->lrugen.seg, seg); | |
4355 | WRITE_ONCE(lruvec->lrugen.gen, new); | |
4356 | ||
4357 | hlist_nulls_del_rcu(&lruvec->lrugen.list); | |
4358 | ||
4359 | if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) | |
4360 | hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); | |
4361 | else | |
4362 | hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); | |
4363 | ||
4364 | pgdat->memcg_lru.nr_memcgs[old]--; | |
4365 | pgdat->memcg_lru.nr_memcgs[new]++; | |
4366 | ||
4367 | if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) | |
4368 | WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); | |
4369 | ||
4370 | spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags); | |
4371 | } | |
4372 | ||
4373 | #ifdef CONFIG_MEMCG | |
4374 | ||
4375 | void lru_gen_online_memcg(struct mem_cgroup *memcg) | |
4376 | { | |
4377 | int gen; | |
4378 | int nid; | |
4379 | int bin = get_random_u32_below(MEMCG_NR_BINS); | |
4380 | ||
4381 | for_each_node(nid) { | |
4382 | struct pglist_data *pgdat = NODE_DATA(nid); | |
4383 | struct lruvec *lruvec = get_lruvec(memcg, nid); | |
4384 | ||
4385 | spin_lock_irq(&pgdat->memcg_lru.lock); | |
4386 | ||
4387 | VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); | |
4388 | ||
4389 | gen = get_memcg_gen(pgdat->memcg_lru.seq); | |
4390 | ||
4391 | lruvec->lrugen.gen = gen; | |
4392 | ||
4393 | hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); | |
4394 | pgdat->memcg_lru.nr_memcgs[gen]++; | |
4395 | ||
4396 | spin_unlock_irq(&pgdat->memcg_lru.lock); | |
4397 | } | |
4398 | } | |
4399 | ||
4400 | void lru_gen_offline_memcg(struct mem_cgroup *memcg) | |
4401 | { | |
4402 | int nid; | |
4403 | ||
4404 | for_each_node(nid) { | |
4405 | struct lruvec *lruvec = get_lruvec(memcg, nid); | |
4406 | ||
4407 | lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); | |
4408 | } | |
4409 | } | |
4410 | ||
4411 | void lru_gen_release_memcg(struct mem_cgroup *memcg) | |
4412 | { | |
4413 | int gen; | |
4414 | int nid; | |
4415 | ||
4416 | for_each_node(nid) { | |
4417 | struct pglist_data *pgdat = NODE_DATA(nid); | |
4418 | struct lruvec *lruvec = get_lruvec(memcg, nid); | |
4419 | ||
4420 | spin_lock_irq(&pgdat->memcg_lru.lock); | |
4421 | ||
4422 | if (hlist_nulls_unhashed(&lruvec->lrugen.list)) | |
4423 | goto unlock; | |
4424 | ||
4425 | gen = lruvec->lrugen.gen; | |
4426 | ||
4427 | hlist_nulls_del_init_rcu(&lruvec->lrugen.list); | |
4428 | pgdat->memcg_lru.nr_memcgs[gen]--; | |
4429 | ||
4430 | if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) | |
4431 | WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); | |
4432 | unlock: | |
4433 | spin_unlock_irq(&pgdat->memcg_lru.lock); | |
4434 | } | |
4435 | } | |
4436 | ||
4437 | void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) | |
4438 | { | |
4439 | struct lruvec *lruvec = get_lruvec(memcg, nid); | |
4440 | ||
4441 | /* see the comment on MEMCG_NR_GENS */ | |
4442 | if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD) | |
4443 | lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); | |
4444 | } | |
4445 | ||
4446 | #endif /* CONFIG_MEMCG */ | |
4447 | ||
4448 | /****************************************************************************** | |
4449 | * the eviction | |
4450 | ******************************************************************************/ | |
4451 | ||
4452 | static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, | |
4453 | int tier_idx) | |
4454 | { | |
4455 | bool success; | |
4456 | bool dirty, writeback; | |
4457 | int gen = folio_lru_gen(folio); | |
4458 | int type = folio_is_file_lru(folio); | |
4459 | int zone = folio_zonenum(folio); | |
4460 | int delta = folio_nr_pages(folio); | |
4461 | int refs = folio_lru_refs(folio); | |
4462 | bool workingset = folio_test_workingset(folio); | |
4463 | int tier = lru_tier_from_refs(refs, workingset); | |
4464 | struct lru_gen_folio *lrugen = &lruvec->lrugen; | |
4465 | ||
4466 | VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); | |
4467 | ||
4468 | /* unevictable */ | |
4469 | if (!folio_evictable(folio)) { | |
4470 | success = lru_gen_del_folio(lruvec, folio, true); | |
4471 | VM_WARN_ON_ONCE_FOLIO(!success, folio); | |
4472 | folio_set_unevictable(folio); | |
4473 | lruvec_add_folio(lruvec, folio); | |
4474 | __count_vm_events(UNEVICTABLE_PGCULLED, delta); | |
4475 | return true; | |
4476 | } | |
4477 | ||
4478 | /* promoted */ | |
4479 | if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { | |
4480 | list_move(&folio->lru, &lrugen->folios[gen][type][zone]); | |
4481 | return true; | |
4482 | } | |
4483 | ||
4484 | /* protected */ | |
4485 | if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) { | |
4486 | gen = folio_inc_gen(lruvec, folio, false); | |
4487 | list_move(&folio->lru, &lrugen->folios[gen][type][zone]); | |
4488 | ||
4489 | /* don't count the workingset being lazily promoted */ | |
4490 | if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) { | |
4491 | int hist = lru_hist_from_seq(lrugen->min_seq[type]); | |
4492 | ||
4493 | WRITE_ONCE(lrugen->protected[hist][type][tier], | |
4494 | lrugen->protected[hist][type][tier] + delta); | |
4495 | } | |
4496 | return true; | |
4497 | } | |
4498 | ||
4499 | /* ineligible */ | |
4500 | if (!folio_test_lru(folio) || zone > sc->reclaim_idx) { | |
4501 | gen = folio_inc_gen(lruvec, folio, false); | |
4502 | list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); | |
4503 | return true; | |
4504 | } | |
4505 | ||
4506 | dirty = folio_test_dirty(folio); | |
4507 | writeback = folio_test_writeback(folio); | |
4508 | if (type == LRU_GEN_FILE && dirty) { | |
4509 | sc->nr.file_taken += delta; | |
4510 | if (!writeback) | |
4511 | sc->nr.unqueued_dirty += delta; | |
4512 | } | |
4513 | ||
4514 | /* waiting for writeback */ | |
4515 | if (writeback || (type == LRU_GEN_FILE && dirty)) { | |
4516 | gen = folio_inc_gen(lruvec, folio, true); | |
4517 | list_move(&folio->lru, &lrugen->folios[gen][type][zone]); | |
4518 | return true; | |
4519 | } | |
4520 | ||
4521 | return false; | |
4522 | } | |
4523 | ||
4524 | static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) | |
4525 | { | |
4526 | bool success; | |
4527 | ||
4528 | /* swap constrained */ | |
4529 | if (!(sc->gfp_mask & __GFP_IO) && | |
4530 | (folio_test_dirty(folio) || | |
4531 | (folio_test_anon(folio) && !folio_test_swapcache(folio)))) | |
4532 | return false; | |
4533 | ||
4534 | /* raced with release_pages() */ | |
4535 | if (!folio_try_get(folio)) | |
4536 | return false; | |
4537 | ||
4538 | /* raced with another isolation */ | |
4539 | if (!folio_test_clear_lru(folio)) { | |
4540 | folio_put(folio); | |
4541 | return false; | |
4542 | } | |
4543 | ||
4544 | /* see the comment on LRU_REFS_FLAGS */ | |
4545 | if (!folio_test_referenced(folio)) | |
4546 | set_mask_bits(&folio->flags, LRU_REFS_MASK, 0); | |
4547 | ||
4548 | /* for shrink_folio_list() */ | |
4549 | folio_clear_reclaim(folio); | |
4550 | ||
4551 | success = lru_gen_del_folio(lruvec, folio, true); | |
4552 | VM_WARN_ON_ONCE_FOLIO(!success, folio); | |
4553 | ||
4554 | return true; | |
4555 | } | |
4556 | ||
4557 | static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, | |
4558 | int type, int tier, struct list_head *list) | |
4559 | { | |
4560 | int i; | |
4561 | int gen; | |
4562 | enum vm_event_item item; | |
4563 | int sorted = 0; | |
4564 | int scanned = 0; | |
4565 | int isolated = 0; | |
4566 | int skipped = 0; | |
4567 | int remaining = MAX_LRU_BATCH; | |
4568 | struct lru_gen_folio *lrugen = &lruvec->lrugen; | |
4569 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); | |
4570 | ||
4571 | VM_WARN_ON_ONCE(!list_empty(list)); | |
4572 | ||
4573 | if (get_nr_gens(lruvec, type) == MIN_NR_GENS) | |
4574 | return 0; | |
4575 | ||
4576 | gen = lru_gen_from_seq(lrugen->min_seq[type]); | |
4577 | ||
4578 | for (i = MAX_NR_ZONES; i > 0; i--) { | |
4579 | LIST_HEAD(moved); | |
4580 | int skipped_zone = 0; | |
4581 | int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; | |
4582 | struct list_head *head = &lrugen->folios[gen][type][zone]; | |
4583 | ||
4584 | while (!list_empty(head)) { | |
4585 | struct folio *folio = lru_to_folio(head); | |
4586 | int delta = folio_nr_pages(folio); | |
4587 | ||
4588 | VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); | |
4589 | VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); | |
4590 | VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); | |
4591 | VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); | |
4592 | ||
4593 | scanned += delta; | |
4594 | ||
4595 | if (sort_folio(lruvec, folio, sc, tier)) | |
4596 | sorted += delta; | |
4597 | else if (isolate_folio(lruvec, folio, sc)) { | |
4598 | list_add(&folio->lru, list); | |
4599 | isolated += delta; | |
4600 | } else { | |
4601 | list_move(&folio->lru, &moved); | |
4602 | skipped_zone += delta; | |
4603 | } | |
4604 | ||
4605 | if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH) | |
4606 | break; | |
4607 | } | |
4608 | ||
4609 | if (skipped_zone) { | |
4610 | list_splice(&moved, head); | |
4611 | __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone); | |
4612 | skipped += skipped_zone; | |
4613 | } | |
4614 | ||
4615 | if (!remaining || isolated >= MIN_LRU_BATCH) | |
4616 | break; | |
4617 | } | |
4618 | ||
4619 | item = PGSCAN_KSWAPD + reclaimer_offset(sc); | |
4620 | if (!cgroup_reclaim(sc)) { | |
4621 | __count_vm_events(item, isolated); | |
4622 | __count_vm_events(PGREFILL, sorted); | |
4623 | } | |
4624 | count_memcg_events(memcg, item, isolated); | |
4625 | count_memcg_events(memcg, PGREFILL, sorted); | |
4626 | __count_vm_events(PGSCAN_ANON + type, isolated); | |
4627 | trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH, | |
4628 | scanned, skipped, isolated, | |
4629 | type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); | |
4630 | if (type == LRU_GEN_FILE) | |
4631 | sc->nr.file_taken += isolated; | |
4632 | /* | |
4633 | * There might not be eligible folios due to reclaim_idx. Check the | |
4634 | * remaining to prevent livelock if it's not making progress. | |
4635 | */ | |
4636 | return isolated || !remaining ? scanned : 0; | |
4637 | } | |
4638 | ||
4639 | static int get_tier_idx(struct lruvec *lruvec, int type) | |
4640 | { | |
4641 | int tier; | |
4642 | struct ctrl_pos sp, pv; | |
4643 | ||
4644 | /* | |
4645 | * To leave a margin for fluctuations, use a larger gain factor (2:3). | |
4646 | * This value is chosen because any other tier would have at least twice | |
4647 | * as many refaults as the first tier. | |
4648 | */ | |
4649 | read_ctrl_pos(lruvec, type, 0, 2, &sp); | |
4650 | for (tier = 1; tier < MAX_NR_TIERS; tier++) { | |
4651 | read_ctrl_pos(lruvec, type, tier, 3, &pv); | |
4652 | if (!positive_ctrl_err(&sp, &pv)) | |
4653 | break; | |
4654 | } | |
4655 | ||
4656 | return tier - 1; | |
4657 | } | |
4658 | ||
4659 | static int get_type_to_scan(struct lruvec *lruvec, int swappiness) | |
4660 | { | |
4661 | struct ctrl_pos sp, pv; | |
4662 | ||
4663 | if (swappiness <= MIN_SWAPPINESS + 1) | |
4664 | return LRU_GEN_FILE; | |
4665 | ||
4666 | if (swappiness >= MAX_SWAPPINESS) | |
4667 | return LRU_GEN_ANON; | |
4668 | /* | |
4669 | * Compare the sum of all tiers of anon with that of file to determine | |
4670 | * which type to scan. | |
4671 | */ | |
4672 | read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp); | |
4673 | read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv); | |
4674 | ||
4675 | return positive_ctrl_err(&sp, &pv); | |
4676 | } | |
4677 | ||
4678 | static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, | |
4679 | int *type_scanned, struct list_head *list) | |
4680 | { | |
4681 | int i; | |
4682 | int type = get_type_to_scan(lruvec, swappiness); | |
4683 | ||
4684 | for_each_evictable_type(i, swappiness) { | |
4685 | int scanned; | |
4686 | int tier = get_tier_idx(lruvec, type); | |
4687 | ||
4688 | *type_scanned = type; | |
4689 | ||
4690 | scanned = scan_folios(lruvec, sc, type, tier, list); | |
4691 | if (scanned) | |
4692 | return scanned; | |
4693 | ||
4694 | type = !type; | |
4695 | } | |
4696 | ||
4697 | return 0; | |
4698 | } | |
4699 | ||
4700 | static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) | |
4701 | { | |
4702 | int type; | |
4703 | int scanned; | |
4704 | int reclaimed; | |
4705 | LIST_HEAD(list); | |
4706 | LIST_HEAD(clean); | |
4707 | struct folio *folio; | |
4708 | struct folio *next; | |
4709 | enum vm_event_item item; | |
4710 | struct reclaim_stat stat; | |
4711 | struct lru_gen_mm_walk *walk; | |
4712 | bool skip_retry = false; | |
4713 | struct lru_gen_folio *lrugen = &lruvec->lrugen; | |
4714 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); | |
4715 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | |
4716 | ||
4717 | spin_lock_irq(&lruvec->lru_lock); | |
4718 | ||
4719 | scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); | |
4720 | ||
4721 | scanned += try_to_inc_min_seq(lruvec, swappiness); | |
4722 | ||
4723 | if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq) | |
4724 | scanned = 0; | |
4725 | ||
4726 | spin_unlock_irq(&lruvec->lru_lock); | |
4727 | ||
4728 | if (list_empty(&list)) | |
4729 | return scanned; | |
4730 | retry: | |
4731 | reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false, memcg); | |
4732 | sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; | |
4733 | sc->nr_reclaimed += reclaimed; | |
4734 | trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, | |
4735 | scanned, reclaimed, &stat, sc->priority, | |
4736 | type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); | |
4737 | ||
4738 | list_for_each_entry_safe_reverse(folio, next, &list, lru) { | |
4739 | DEFINE_MIN_SEQ(lruvec); | |
4740 | ||
4741 | if (!folio_evictable(folio)) { | |
4742 | list_del(&folio->lru); | |
4743 | folio_putback_lru(folio); | |
4744 | continue; | |
4745 | } | |
4746 | ||
4747 | /* retry folios that may have missed folio_rotate_reclaimable() */ | |
4748 | if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) && | |
4749 | !folio_test_dirty(folio) && !folio_test_writeback(folio)) { | |
4750 | list_move(&folio->lru, &clean); | |
4751 | continue; | |
4752 | } | |
4753 | ||
4754 | /* don't add rejected folios to the oldest generation */ | |
4755 | if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type]) | |
4756 | set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_active)); | |
4757 | } | |
4758 | ||
4759 | spin_lock_irq(&lruvec->lru_lock); | |
4760 | ||
4761 | move_folios_to_lru(lruvec, &list); | |
4762 | ||
4763 | walk = current->reclaim_state->mm_walk; | |
4764 | if (walk && walk->batched) { | |
4765 | walk->lruvec = lruvec; | |
4766 | reset_batch_size(walk); | |
4767 | } | |
4768 | ||
4769 | __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc), | |
4770 | stat.nr_demoted); | |
4771 | ||
4772 | item = PGSTEAL_KSWAPD + reclaimer_offset(sc); | |
4773 | if (!cgroup_reclaim(sc)) | |
4774 | __count_vm_events(item, reclaimed); | |
4775 | count_memcg_events(memcg, item, reclaimed); | |
4776 | __count_vm_events(PGSTEAL_ANON + type, reclaimed); | |
4777 | ||
4778 | spin_unlock_irq(&lruvec->lru_lock); | |
4779 | ||
4780 | list_splice_init(&clean, &list); | |
4781 | ||
4782 | if (!list_empty(&list)) { | |
4783 | skip_retry = true; | |
4784 | goto retry; | |
4785 | } | |
4786 | ||
4787 | return scanned; | |
4788 | } | |
4789 | ||
4790 | static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, | |
4791 | int swappiness, unsigned long *nr_to_scan) | |
4792 | { | |
4793 | int gen, type, zone; | |
4794 | unsigned long size = 0; | |
4795 | struct lru_gen_folio *lrugen = &lruvec->lrugen; | |
4796 | DEFINE_MIN_SEQ(lruvec); | |
4797 | ||
4798 | *nr_to_scan = 0; | |
4799 | /* have to run aging, since eviction is not possible anymore */ | |
4800 | if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq) | |
4801 | return true; | |
4802 | ||
4803 | for_each_evictable_type(type, swappiness) { | |
4804 | unsigned long seq; | |
4805 | ||
4806 | for (seq = min_seq[type]; seq <= max_seq; seq++) { | |
4807 | gen = lru_gen_from_seq(seq); | |
4808 | ||
4809 | for (zone = 0; zone < MAX_NR_ZONES; zone++) | |
4810 | size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); | |
4811 | } | |
4812 | } | |
4813 | ||
4814 | *nr_to_scan = size; | |
4815 | /* better to run aging even though eviction is still possible */ | |
4816 | return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq; | |
4817 | } | |
4818 | ||
4819 | /* | |
4820 | * For future optimizations: | |
4821 | * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg | |
4822 | * reclaim. | |
4823 | */ | |
4824 | static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness) | |
4825 | { | |
4826 | bool success; | |
4827 | unsigned long nr_to_scan; | |
4828 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); | |
4829 | DEFINE_MAX_SEQ(lruvec); | |
4830 | ||
4831 | if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) | |
4832 | return -1; | |
4833 | ||
4834 | success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan); | |
4835 | ||
4836 | /* try to scrape all its memory if this memcg was deleted */ | |
4837 | if (nr_to_scan && !mem_cgroup_online(memcg)) | |
4838 | return nr_to_scan; | |
4839 | ||
4840 | /* try to get away with not aging at the default priority */ | |
4841 | if (!success || sc->priority == DEF_PRIORITY) | |
4842 | return nr_to_scan >> sc->priority; | |
4843 | ||
4844 | /* stop scanning this lruvec as it's low on cold folios */ | |
4845 | return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0; | |
4846 | } | |
4847 | ||
4848 | static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) | |
4849 | { | |
4850 | int i; | |
4851 | enum zone_watermarks mark; | |
4852 | ||
4853 | /* don't abort memcg reclaim to ensure fairness */ | |
4854 | if (!root_reclaim(sc)) | |
4855 | return false; | |
4856 | ||
4857 | if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) | |
4858 | return true; | |
4859 | ||
4860 | /* check the order to exclude compaction-induced reclaim */ | |
4861 | if (!current_is_kswapd() || sc->order) | |
4862 | return false; | |
4863 | ||
4864 | mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? | |
4865 | WMARK_PROMO : WMARK_HIGH; | |
4866 | ||
4867 | for (i = 0; i <= sc->reclaim_idx; i++) { | |
4868 | struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; | |
4869 | unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH; | |
4870 | ||
4871 | if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0)) | |
4872 | return false; | |
4873 | } | |
4874 | ||
4875 | /* kswapd should abort if all eligible zones are safe */ | |
4876 | return true; | |
4877 | } | |
4878 | ||
4879 | static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) | |
4880 | { | |
4881 | long nr_to_scan; | |
4882 | unsigned long scanned = 0; | |
4883 | int swappiness = get_swappiness(lruvec, sc); | |
4884 | ||
4885 | while (true) { | |
4886 | int delta; | |
4887 | ||
4888 | nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); | |
4889 | if (nr_to_scan <= 0) | |
4890 | break; | |
4891 | ||
4892 | delta = evict_folios(lruvec, sc, swappiness); | |
4893 | if (!delta) | |
4894 | break; | |
4895 | ||
4896 | scanned += delta; | |
4897 | if (scanned >= nr_to_scan) | |
4898 | break; | |
4899 | ||
4900 | if (should_abort_scan(lruvec, sc)) | |
4901 | break; | |
4902 | ||
4903 | cond_resched(); | |
4904 | } | |
4905 | ||
4906 | /* | |
4907 | * If too many file cache in the coldest generation can't be evicted | |
4908 | * due to being dirty, wake up the flusher. | |
4909 | */ | |
4910 | if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken) | |
4911 | wakeup_flusher_threads(WB_REASON_VMSCAN); | |
4912 | ||
4913 | /* whether this lruvec should be rotated */ | |
4914 | return nr_to_scan < 0; | |
4915 | } | |
4916 | ||
4917 | static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) | |
4918 | { | |
4919 | bool success; | |
4920 | unsigned long scanned = sc->nr_scanned; | |
4921 | unsigned long reclaimed = sc->nr_reclaimed; | |
4922 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); | |
4923 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | |
4924 | ||
4925 | /* lru_gen_age_node() called mem_cgroup_calculate_protection() */ | |
4926 | if (mem_cgroup_below_min(NULL, memcg)) | |
4927 | return MEMCG_LRU_YOUNG; | |
4928 | ||
4929 | if (mem_cgroup_below_low(NULL, memcg)) { | |
4930 | /* see the comment on MEMCG_NR_GENS */ | |
4931 | if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL) | |
4932 | return MEMCG_LRU_TAIL; | |
4933 | ||
4934 | memcg_memory_event(memcg, MEMCG_LOW); | |
4935 | } | |
4936 | ||
4937 | success = try_to_shrink_lruvec(lruvec, sc); | |
4938 | ||
4939 | shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); | |
4940 | ||
4941 | if (!sc->proactive) | |
4942 | vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, | |
4943 | sc->nr_reclaimed - reclaimed); | |
4944 | ||
4945 | flush_reclaim_state(sc); | |
4946 | ||
4947 | if (success && mem_cgroup_online(memcg)) | |
4948 | return MEMCG_LRU_YOUNG; | |
4949 | ||
4950 | if (!success && lruvec_is_sizable(lruvec, sc)) | |
4951 | return 0; | |
4952 | ||
4953 | /* one retry if offlined or too small */ | |
4954 | return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ? | |
4955 | MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; | |
4956 | } | |
4957 | ||
4958 | static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) | |
4959 | { | |
4960 | int op; | |
4961 | int gen; | |
4962 | int bin; | |
4963 | int first_bin; | |
4964 | struct lruvec *lruvec; | |
4965 | struct lru_gen_folio *lrugen; | |
4966 | struct mem_cgroup *memcg; | |
4967 | struct hlist_nulls_node *pos; | |
4968 | ||
4969 | gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); | |
4970 | bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); | |
4971 | restart: | |
4972 | op = 0; | |
4973 | memcg = NULL; | |
4974 | ||
4975 | rcu_read_lock(); | |
4976 | ||
4977 | hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { | |
4978 | if (op) { | |
4979 | lru_gen_rotate_memcg(lruvec, op); | |
4980 | op = 0; | |
4981 | } | |
4982 | ||
4983 | mem_cgroup_put(memcg); | |
4984 | memcg = NULL; | |
4985 | ||
4986 | if (gen != READ_ONCE(lrugen->gen)) | |
4987 | continue; | |
4988 | ||
4989 | lruvec = container_of(lrugen, struct lruvec, lrugen); | |
4990 | memcg = lruvec_memcg(lruvec); | |
4991 | ||
4992 | if (!mem_cgroup_tryget(memcg)) { | |
4993 | lru_gen_release_memcg(memcg); | |
4994 | memcg = NULL; | |
4995 | continue; | |
4996 | } | |
4997 | ||
4998 | rcu_read_unlock(); | |
4999 | ||
5000 | op = shrink_one(lruvec, sc); | |
5001 | ||
5002 | rcu_read_lock(); | |
5003 | ||
5004 | if (should_abort_scan(lruvec, sc)) | |
5005 | break; | |
5006 | } | |
5007 | ||
5008 | rcu_read_unlock(); | |
5009 | ||
5010 | if (op) | |
5011 | lru_gen_rotate_memcg(lruvec, op); | |
5012 | ||
5013 | mem_cgroup_put(memcg); | |
5014 | ||
5015 | if (!is_a_nulls(pos)) | |
5016 | return; | |
5017 | ||
5018 | /* restart if raced with lru_gen_rotate_memcg() */ | |
5019 | if (gen != get_nulls_value(pos)) | |
5020 | goto restart; | |
5021 | ||
5022 | /* try the rest of the bins of the current generation */ | |
5023 | bin = get_memcg_bin(bin + 1); | |
5024 | if (bin != first_bin) | |
5025 | goto restart; | |
5026 | } | |
5027 | ||
5028 | static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) | |
5029 | { | |
5030 | struct blk_plug plug; | |
5031 | ||
5032 | VM_WARN_ON_ONCE(root_reclaim(sc)); | |
5033 | VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); | |
5034 | ||
5035 | lru_add_drain(); | |
5036 | ||
5037 | blk_start_plug(&plug); | |
5038 | ||
5039 | set_mm_walk(NULL, sc->proactive); | |
5040 | ||
5041 | if (try_to_shrink_lruvec(lruvec, sc)) | |
5042 | lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); | |
5043 | ||
5044 | clear_mm_walk(); | |
5045 | ||
5046 | blk_finish_plug(&plug); | |
5047 | } | |
5048 | ||
5049 | static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) | |
5050 | { | |
5051 | struct blk_plug plug; | |
5052 | unsigned long reclaimed = sc->nr_reclaimed; | |
5053 | ||
5054 | VM_WARN_ON_ONCE(!root_reclaim(sc)); | |
5055 | ||
5056 | /* | |
5057 | * Unmapped clean folios are already prioritized. Scanning for more of | |
5058 | * them is likely futile and can cause high reclaim latency when there | |
5059 | * is a large number of memcgs. | |
5060 | */ | |
5061 | if (!sc->may_writepage || !sc->may_unmap) | |
5062 | goto done; | |
5063 | ||
5064 | lru_add_drain(); | |
5065 | ||
5066 | blk_start_plug(&plug); | |
5067 | ||
5068 | set_mm_walk(pgdat, sc->proactive); | |
5069 | ||
5070 | set_initial_priority(pgdat, sc); | |
5071 | ||
5072 | if (current_is_kswapd()) | |
5073 | sc->nr_reclaimed = 0; | |
5074 | ||
5075 | if (mem_cgroup_disabled()) | |
5076 | shrink_one(&pgdat->__lruvec, sc); | |
5077 | else | |
5078 | shrink_many(pgdat, sc); | |
5079 | ||
5080 | if (current_is_kswapd()) | |
5081 | sc->nr_reclaimed += reclaimed; | |
5082 | ||
5083 | clear_mm_walk(); | |
5084 | ||
5085 | blk_finish_plug(&plug); | |
5086 | done: | |
5087 | if (sc->nr_reclaimed > reclaimed) | |
5088 | pgdat->kswapd_failures = 0; | |
5089 | } | |
5090 | ||
5091 | /****************************************************************************** | |
5092 | * state change | |
5093 | ******************************************************************************/ | |
5094 | ||
5095 | static bool __maybe_unused state_is_valid(struct lruvec *lruvec) | |
5096 | { | |
5097 | struct lru_gen_folio *lrugen = &lruvec->lrugen; | |
5098 | ||
5099 | if (lrugen->enabled) { | |
5100 | enum lru_list lru; | |
5101 | ||
5102 | for_each_evictable_lru(lru) { | |
5103 | if (!list_empty(&lruvec->lists[lru])) | |
5104 | return false; | |
5105 | } | |
5106 | } else { | |
5107 | int gen, type, zone; | |
5108 | ||
5109 | for_each_gen_type_zone(gen, type, zone) { | |
5110 | if (!list_empty(&lrugen->folios[gen][type][zone])) | |
5111 | return false; | |
5112 | } | |
5113 | } | |
5114 | ||
5115 | return true; | |
5116 | } | |
5117 | ||
5118 | static bool fill_evictable(struct lruvec *lruvec) | |
5119 | { | |
5120 | enum lru_list lru; | |
5121 | int remaining = MAX_LRU_BATCH; | |
5122 | ||
5123 | for_each_evictable_lru(lru) { | |
5124 | int type = is_file_lru(lru); | |
5125 | bool active = is_active_lru(lru); | |
5126 | struct list_head *head = &lruvec->lists[lru]; | |
5127 | ||
5128 | while (!list_empty(head)) { | |
5129 | bool success; | |
5130 | struct folio *folio = lru_to_folio(head); | |
5131 | ||
5132 | VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); | |
5133 | VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); | |
5134 | VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); | |
5135 | VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); | |
5136 | ||
5137 | lruvec_del_folio(lruvec, folio); | |
5138 | success = lru_gen_add_folio(lruvec, folio, false); | |
5139 | VM_WARN_ON_ONCE(!success); | |
5140 | ||
5141 | if (!--remaining) | |
5142 | return false; | |
5143 | } | |
5144 | } | |
5145 | ||
5146 | return true; | |
5147 | } | |
5148 | ||
5149 | static bool drain_evictable(struct lruvec *lruvec) | |
5150 | { | |
5151 | int gen, type, zone; | |
5152 | int remaining = MAX_LRU_BATCH; | |
5153 | ||
5154 | for_each_gen_type_zone(gen, type, zone) { | |
5155 | struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; | |
5156 | ||
5157 | while (!list_empty(head)) { | |
5158 | bool success; | |
5159 | struct folio *folio = lru_to_folio(head); | |
5160 | ||
5161 | VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); | |
5162 | VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); | |
5163 | VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); | |
5164 | VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); | |
5165 | ||
5166 | success = lru_gen_del_folio(lruvec, folio, false); | |
5167 | VM_WARN_ON_ONCE(!success); | |
5168 | lruvec_add_folio(lruvec, folio); | |
5169 | ||
5170 | if (!--remaining) | |
5171 | return false; | |
5172 | } | |
5173 | } | |
5174 | ||
5175 | return true; | |
5176 | } | |
5177 | ||
5178 | static void lru_gen_change_state(bool enabled) | |
5179 | { | |
5180 | static DEFINE_MUTEX(state_mutex); | |
5181 | ||
5182 | struct mem_cgroup *memcg; | |
5183 | ||
5184 | cgroup_lock(); | |
5185 | cpus_read_lock(); | |
5186 | get_online_mems(); | |
5187 | mutex_lock(&state_mutex); | |
5188 | ||
5189 | if (enabled == lru_gen_enabled()) | |
5190 | goto unlock; | |
5191 | ||
5192 | if (enabled) | |
5193 | static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); | |
5194 | else | |
5195 | static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); | |
5196 | ||
5197 | memcg = mem_cgroup_iter(NULL, NULL, NULL); | |
5198 | do { | |
5199 | int nid; | |
5200 | ||
5201 | for_each_node(nid) { | |
5202 | struct lruvec *lruvec = get_lruvec(memcg, nid); | |
5203 | ||
5204 | spin_lock_irq(&lruvec->lru_lock); | |
5205 | ||
5206 | VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); | |
5207 | VM_WARN_ON_ONCE(!state_is_valid(lruvec)); | |
5208 | ||
5209 | lruvec->lrugen.enabled = enabled; | |
5210 | ||
5211 | while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { | |
5212 | spin_unlock_irq(&lruvec->lru_lock); | |
5213 | cond_resched(); | |
5214 | spin_lock_irq(&lruvec->lru_lock); | |
5215 | } | |
5216 | ||
5217 | spin_unlock_irq(&lruvec->lru_lock); | |
5218 | } | |
5219 | ||
5220 | cond_resched(); | |
5221 | } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); | |
5222 | unlock: | |
5223 | mutex_unlock(&state_mutex); | |
5224 | put_online_mems(); | |
5225 | cpus_read_unlock(); | |
5226 | cgroup_unlock(); | |
5227 | } | |
5228 | ||
5229 | /****************************************************************************** | |
5230 | * sysfs interface | |
5231 | ******************************************************************************/ | |
5232 | ||
5233 | static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) | |
5234 | { | |
5235 | return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); | |
5236 | } | |
5237 | ||
5238 | /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ | |
5239 | static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, | |
5240 | const char *buf, size_t len) | |
5241 | { | |
5242 | unsigned int msecs; | |
5243 | ||
5244 | if (kstrtouint(buf, 0, &msecs)) | |
5245 | return -EINVAL; | |
5246 | ||
5247 | WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); | |
5248 | ||
5249 | return len; | |
5250 | } | |
5251 | ||
5252 | static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); | |
5253 | ||
5254 | static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) | |
5255 | { | |
5256 | unsigned int caps = 0; | |
5257 | ||
5258 | if (get_cap(LRU_GEN_CORE)) | |
5259 | caps |= BIT(LRU_GEN_CORE); | |
5260 | ||
5261 | if (should_walk_mmu()) | |
5262 | caps |= BIT(LRU_GEN_MM_WALK); | |
5263 | ||
5264 | if (should_clear_pmd_young()) | |
5265 | caps |= BIT(LRU_GEN_NONLEAF_YOUNG); | |
5266 | ||
5267 | return sysfs_emit(buf, "0x%04x\n", caps); | |
5268 | } | |
5269 | ||
5270 | /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ | |
5271 | static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, | |
5272 | const char *buf, size_t len) | |
5273 | { | |
5274 | int i; | |
5275 | unsigned int caps; | |
5276 | ||
5277 | if (tolower(*buf) == 'n') | |
5278 | caps = 0; | |
5279 | else if (tolower(*buf) == 'y') | |
5280 | caps = -1; | |
5281 | else if (kstrtouint(buf, 0, &caps)) | |
5282 | return -EINVAL; | |
5283 | ||
5284 | for (i = 0; i < NR_LRU_GEN_CAPS; i++) { | |
5285 | bool enabled = caps & BIT(i); | |
5286 | ||
5287 | if (i == LRU_GEN_CORE) | |
5288 | lru_gen_change_state(enabled); | |
5289 | else if (enabled) | |
5290 | static_branch_enable(&lru_gen_caps[i]); | |
5291 | else | |
5292 | static_branch_disable(&lru_gen_caps[i]); | |
5293 | } | |
5294 | ||
5295 | return len; | |
5296 | } | |
5297 | ||
5298 | static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); | |
5299 | ||
5300 | static struct attribute *lru_gen_attrs[] = { | |
5301 | &lru_gen_min_ttl_attr.attr, | |
5302 | &lru_gen_enabled_attr.attr, | |
5303 | NULL | |
5304 | }; | |
5305 | ||
5306 | static const struct attribute_group lru_gen_attr_group = { | |
5307 | .name = "lru_gen", | |
5308 | .attrs = lru_gen_attrs, | |
5309 | }; | |
5310 | ||
5311 | /****************************************************************************** | |
5312 | * debugfs interface | |
5313 | ******************************************************************************/ | |
5314 | ||
5315 | static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) | |
5316 | { | |
5317 | struct mem_cgroup *memcg; | |
5318 | loff_t nr_to_skip = *pos; | |
5319 | ||
5320 | m->private = kvmalloc(PATH_MAX, GFP_KERNEL); | |
5321 | if (!m->private) | |
5322 | return ERR_PTR(-ENOMEM); | |
5323 | ||
5324 | memcg = mem_cgroup_iter(NULL, NULL, NULL); | |
5325 | do { | |
5326 | int nid; | |
5327 | ||
5328 | for_each_node_state(nid, N_MEMORY) { | |
5329 | if (!nr_to_skip--) | |
5330 | return get_lruvec(memcg, nid); | |
5331 | } | |
5332 | } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); | |
5333 | ||
5334 | return NULL; | |
5335 | } | |
5336 | ||
5337 | static void lru_gen_seq_stop(struct seq_file *m, void *v) | |
5338 | { | |
5339 | if (!IS_ERR_OR_NULL(v)) | |
5340 | mem_cgroup_iter_break(NULL, lruvec_memcg(v)); | |
5341 | ||
5342 | kvfree(m->private); | |
5343 | m->private = NULL; | |
5344 | } | |
5345 | ||
5346 | static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) | |
5347 | { | |
5348 | int nid = lruvec_pgdat(v)->node_id; | |
5349 | struct mem_cgroup *memcg = lruvec_memcg(v); | |
5350 | ||
5351 | ++*pos; | |
5352 | ||
5353 | nid = next_memory_node(nid); | |
5354 | if (nid == MAX_NUMNODES) { | |
5355 | memcg = mem_cgroup_iter(NULL, memcg, NULL); | |
5356 | if (!memcg) | |
5357 | return NULL; | |
5358 | ||
5359 | nid = first_memory_node; | |
5360 | } | |
5361 | ||
5362 | return get_lruvec(memcg, nid); | |
5363 | } | |
5364 | ||
5365 | static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, | |
5366 | unsigned long max_seq, unsigned long *min_seq, | |
5367 | unsigned long seq) | |
5368 | { | |
5369 | int i; | |
5370 | int type, tier; | |
5371 | int hist = lru_hist_from_seq(seq); | |
5372 | struct lru_gen_folio *lrugen = &lruvec->lrugen; | |
5373 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); | |
5374 | ||
5375 | for (tier = 0; tier < MAX_NR_TIERS; tier++) { | |
5376 | seq_printf(m, " %10d", tier); | |
5377 | for (type = 0; type < ANON_AND_FILE; type++) { | |
5378 | const char *s = "xxx"; | |
5379 | unsigned long n[3] = {}; | |
5380 | ||
5381 | if (seq == max_seq) { | |
5382 | s = "RTx"; | |
5383 | n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); | |
5384 | n[1] = READ_ONCE(lrugen->avg_total[type][tier]); | |
5385 | } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { | |
5386 | s = "rep"; | |
5387 | n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); | |
5388 | n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); | |
5389 | n[2] = READ_ONCE(lrugen->protected[hist][type][tier]); | |
5390 | } | |
5391 | ||
5392 | for (i = 0; i < 3; i++) | |
5393 | seq_printf(m, " %10lu%c", n[i], s[i]); | |
5394 | } | |
5395 | seq_putc(m, '\n'); | |
5396 | } | |
5397 | ||
5398 | if (!mm_state) | |
5399 | return; | |
5400 | ||
5401 | seq_puts(m, " "); | |
5402 | for (i = 0; i < NR_MM_STATS; i++) { | |
5403 | const char *s = "xxxx"; | |
5404 | unsigned long n = 0; | |
5405 | ||
5406 | if (seq == max_seq && NR_HIST_GENS == 1) { | |
5407 | s = "TYFA"; | |
5408 | n = READ_ONCE(mm_state->stats[hist][i]); | |
5409 | } else if (seq != max_seq && NR_HIST_GENS > 1) { | |
5410 | s = "tyfa"; | |
5411 | n = READ_ONCE(mm_state->stats[hist][i]); | |
5412 | } | |
5413 | ||
5414 | seq_printf(m, " %10lu%c", n, s[i]); | |
5415 | } | |
5416 | seq_putc(m, '\n'); | |
5417 | } | |
5418 | ||
5419 | /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ | |
5420 | static int lru_gen_seq_show(struct seq_file *m, void *v) | |
5421 | { | |
5422 | unsigned long seq; | |
5423 | bool full = !debugfs_real_fops(m->file)->write; | |
5424 | struct lruvec *lruvec = v; | |
5425 | struct lru_gen_folio *lrugen = &lruvec->lrugen; | |
5426 | int nid = lruvec_pgdat(lruvec)->node_id; | |
5427 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); | |
5428 | DEFINE_MAX_SEQ(lruvec); | |
5429 | DEFINE_MIN_SEQ(lruvec); | |
5430 | ||
5431 | if (nid == first_memory_node) { | |
5432 | const char *path = memcg ? m->private : ""; | |
5433 | ||
5434 | #ifdef CONFIG_MEMCG | |
5435 | if (memcg) | |
5436 | cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); | |
5437 | #endif | |
5438 | seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); | |
5439 | } | |
5440 | ||
5441 | seq_printf(m, " node %5d\n", nid); | |
5442 | ||
5443 | if (!full) | |
5444 | seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2); | |
5445 | else if (max_seq >= MAX_NR_GENS) | |
5446 | seq = max_seq - MAX_NR_GENS + 1; | |
5447 | else | |
5448 | seq = 0; | |
5449 | ||
5450 | for (; seq <= max_seq; seq++) { | |
5451 | int type, zone; | |
5452 | int gen = lru_gen_from_seq(seq); | |
5453 | unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); | |
5454 | ||
5455 | seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); | |
5456 | ||
5457 | for (type = 0; type < ANON_AND_FILE; type++) { | |
5458 | unsigned long size = 0; | |
5459 | char mark = full && seq < min_seq[type] ? 'x' : ' '; | |
5460 | ||
5461 | for (zone = 0; zone < MAX_NR_ZONES; zone++) | |
5462 | size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); | |
5463 | ||
5464 | seq_printf(m, " %10lu%c", size, mark); | |
5465 | } | |
5466 | ||
5467 | seq_putc(m, '\n'); | |
5468 | ||
5469 | if (full) | |
5470 | lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); | |
5471 | } | |
5472 | ||
5473 | return 0; | |
5474 | } | |
5475 | ||
5476 | static const struct seq_operations lru_gen_seq_ops = { | |
5477 | .start = lru_gen_seq_start, | |
5478 | .stop = lru_gen_seq_stop, | |
5479 | .next = lru_gen_seq_next, | |
5480 | .show = lru_gen_seq_show, | |
5481 | }; | |
5482 | ||
5483 | static int run_aging(struct lruvec *lruvec, unsigned long seq, | |
5484 | int swappiness, bool force_scan) | |
5485 | { | |
5486 | DEFINE_MAX_SEQ(lruvec); | |
5487 | ||
5488 | if (seq > max_seq) | |
5489 | return -EINVAL; | |
5490 | ||
5491 | return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST; | |
5492 | } | |
5493 | ||
5494 | static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, | |
5495 | int swappiness, unsigned long nr_to_reclaim) | |
5496 | { | |
5497 | DEFINE_MAX_SEQ(lruvec); | |
5498 | ||
5499 | if (seq + MIN_NR_GENS > max_seq) | |
5500 | return -EINVAL; | |
5501 | ||
5502 | sc->nr_reclaimed = 0; | |
5503 | ||
5504 | while (!signal_pending(current)) { | |
5505 | DEFINE_MIN_SEQ(lruvec); | |
5506 | ||
5507 | if (seq < evictable_min_seq(min_seq, swappiness)) | |
5508 | return 0; | |
5509 | ||
5510 | if (sc->nr_reclaimed >= nr_to_reclaim) | |
5511 | return 0; | |
5512 | ||
5513 | if (!evict_folios(lruvec, sc, swappiness)) | |
5514 | return 0; | |
5515 | ||
5516 | cond_resched(); | |
5517 | } | |
5518 | ||
5519 | return -EINTR; | |
5520 | } | |
5521 | ||
5522 | static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, | |
5523 | struct scan_control *sc, int swappiness, unsigned long opt) | |
5524 | { | |
5525 | struct lruvec *lruvec; | |
5526 | int err = -EINVAL; | |
5527 | struct mem_cgroup *memcg = NULL; | |
5528 | ||
5529 | if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) | |
5530 | return -EINVAL; | |
5531 | ||
5532 | if (!mem_cgroup_disabled()) { | |
5533 | rcu_read_lock(); | |
5534 | ||
5535 | memcg = mem_cgroup_from_id(memcg_id); | |
5536 | if (!mem_cgroup_tryget(memcg)) | |
5537 | memcg = NULL; | |
5538 | ||
5539 | rcu_read_unlock(); | |
5540 | ||
5541 | if (!memcg) | |
5542 | return -EINVAL; | |
5543 | } | |
5544 | ||
5545 | if (memcg_id != mem_cgroup_id(memcg)) | |
5546 | goto done; | |
5547 | ||
5548 | lruvec = get_lruvec(memcg, nid); | |
5549 | ||
5550 | if (swappiness < MIN_SWAPPINESS) | |
5551 | swappiness = get_swappiness(lruvec, sc); | |
5552 | else if (swappiness > SWAPPINESS_ANON_ONLY) | |
5553 | goto done; | |
5554 | ||
5555 | switch (cmd) { | |
5556 | case '+': | |
5557 | err = run_aging(lruvec, seq, swappiness, opt); | |
5558 | break; | |
5559 | case '-': | |
5560 | err = run_eviction(lruvec, seq, sc, swappiness, opt); | |
5561 | break; | |
5562 | } | |
5563 | done: | |
5564 | mem_cgroup_put(memcg); | |
5565 | ||
5566 | return err; | |
5567 | } | |
5568 | ||
5569 | /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ | |
5570 | static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, | |
5571 | size_t len, loff_t *pos) | |
5572 | { | |
5573 | void *buf; | |
5574 | char *cur, *next; | |
5575 | unsigned int flags; | |
5576 | struct blk_plug plug; | |
5577 | int err = -EINVAL; | |
5578 | struct scan_control sc = { | |
5579 | .may_writepage = true, | |
5580 | .may_unmap = true, | |
5581 | .may_swap = true, | |
5582 | .reclaim_idx = MAX_NR_ZONES - 1, | |
5583 | .gfp_mask = GFP_KERNEL, | |
5584 | }; | |
5585 | ||
5586 | buf = kvmalloc(len + 1, GFP_KERNEL); | |
5587 | if (!buf) | |
5588 | return -ENOMEM; | |
5589 | ||
5590 | if (copy_from_user(buf, src, len)) { | |
5591 | kvfree(buf); | |
5592 | return -EFAULT; | |
5593 | } | |
5594 | ||
5595 | set_task_reclaim_state(current, &sc.reclaim_state); | |
5596 | flags = memalloc_noreclaim_save(); | |
5597 | blk_start_plug(&plug); | |
5598 | if (!set_mm_walk(NULL, true)) { | |
5599 | err = -ENOMEM; | |
5600 | goto done; | |
5601 | } | |
5602 | ||
5603 | next = buf; | |
5604 | next[len] = '\0'; | |
5605 | ||
5606 | while ((cur = strsep(&next, ",;\n"))) { | |
5607 | int n; | |
5608 | int end; | |
5609 | char cmd, swap_string[5]; | |
5610 | unsigned int memcg_id; | |
5611 | unsigned int nid; | |
5612 | unsigned long seq; | |
5613 | unsigned int swappiness; | |
5614 | unsigned long opt = -1; | |
5615 | ||
5616 | cur = skip_spaces(cur); | |
5617 | if (!*cur) | |
5618 | continue; | |
5619 | ||
5620 | n = sscanf(cur, "%c %u %u %lu %n %4s %n %lu %n", &cmd, &memcg_id, &nid, | |
5621 | &seq, &end, swap_string, &end, &opt, &end); | |
5622 | if (n < 4 || cur[end]) { | |
5623 | err = -EINVAL; | |
5624 | break; | |
5625 | } | |
5626 | ||
5627 | if (n == 4) { | |
5628 | swappiness = -1; | |
5629 | } else if (!strcmp("max", swap_string)) { | |
5630 | /* set by userspace for anonymous memory only */ | |
5631 | swappiness = SWAPPINESS_ANON_ONLY; | |
5632 | } else { | |
5633 | err = kstrtouint(swap_string, 0, &swappiness); | |
5634 | if (err) | |
5635 | break; | |
5636 | } | |
5637 | ||
5638 | err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); | |
5639 | if (err) | |
5640 | break; | |
5641 | } | |
5642 | done: | |
5643 | clear_mm_walk(); | |
5644 | blk_finish_plug(&plug); | |
5645 | memalloc_noreclaim_restore(flags); | |
5646 | set_task_reclaim_state(current, NULL); | |
5647 | ||
5648 | kvfree(buf); | |
5649 | ||
5650 | return err ? : len; | |
5651 | } | |
5652 | ||
5653 | static int lru_gen_seq_open(struct inode *inode, struct file *file) | |
5654 | { | |
5655 | return seq_open(file, &lru_gen_seq_ops); | |
5656 | } | |
5657 | ||
5658 | static const struct file_operations lru_gen_rw_fops = { | |
5659 | .open = lru_gen_seq_open, | |
5660 | .read = seq_read, | |
5661 | .write = lru_gen_seq_write, | |
5662 | .llseek = seq_lseek, | |
5663 | .release = seq_release, | |
5664 | }; | |
5665 | ||
5666 | static const struct file_operations lru_gen_ro_fops = { | |
5667 | .open = lru_gen_seq_open, | |
5668 | .read = seq_read, | |
5669 | .llseek = seq_lseek, | |
5670 | .release = seq_release, | |
5671 | }; | |
5672 | ||
5673 | /****************************************************************************** | |
5674 | * initialization | |
5675 | ******************************************************************************/ | |
5676 | ||
5677 | void lru_gen_init_pgdat(struct pglist_data *pgdat) | |
5678 | { | |
5679 | int i, j; | |
5680 | ||
5681 | spin_lock_init(&pgdat->memcg_lru.lock); | |
5682 | ||
5683 | for (i = 0; i < MEMCG_NR_GENS; i++) { | |
5684 | for (j = 0; j < MEMCG_NR_BINS; j++) | |
5685 | INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); | |
5686 | } | |
5687 | } | |
5688 | ||
5689 | void lru_gen_init_lruvec(struct lruvec *lruvec) | |
5690 | { | |
5691 | int i; | |
5692 | int gen, type, zone; | |
5693 | struct lru_gen_folio *lrugen = &lruvec->lrugen; | |
5694 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); | |
5695 | ||
5696 | lrugen->max_seq = MIN_NR_GENS + 1; | |
5697 | lrugen->enabled = lru_gen_enabled(); | |
5698 | ||
5699 | for (i = 0; i <= MIN_NR_GENS + 1; i++) | |
5700 | lrugen->timestamps[i] = jiffies; | |
5701 | ||
5702 | for_each_gen_type_zone(gen, type, zone) | |
5703 | INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); | |
5704 | ||
5705 | if (mm_state) | |
5706 | mm_state->seq = MIN_NR_GENS; | |
5707 | } | |
5708 | ||
5709 | #ifdef CONFIG_MEMCG | |
5710 | ||
5711 | void lru_gen_init_memcg(struct mem_cgroup *memcg) | |
5712 | { | |
5713 | struct lru_gen_mm_list *mm_list = get_mm_list(memcg); | |
5714 | ||
5715 | if (!mm_list) | |
5716 | return; | |
5717 | ||
5718 | INIT_LIST_HEAD(&mm_list->fifo); | |
5719 | spin_lock_init(&mm_list->lock); | |
5720 | } | |
5721 | ||
5722 | void lru_gen_exit_memcg(struct mem_cgroup *memcg) | |
5723 | { | |
5724 | int i; | |
5725 | int nid; | |
5726 | struct lru_gen_mm_list *mm_list = get_mm_list(memcg); | |
5727 | ||
5728 | VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo)); | |
5729 | ||
5730 | for_each_node(nid) { | |
5731 | struct lruvec *lruvec = get_lruvec(memcg, nid); | |
5732 | struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); | |
5733 | ||
5734 | VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, | |
5735 | sizeof(lruvec->lrugen.nr_pages))); | |
5736 | ||
5737 | lruvec->lrugen.list.next = LIST_POISON1; | |
5738 | ||
5739 | if (!mm_state) | |
5740 | continue; | |
5741 | ||
5742 | for (i = 0; i < NR_BLOOM_FILTERS; i++) { | |
5743 | bitmap_free(mm_state->filters[i]); | |
5744 | mm_state->filters[i] = NULL; | |
5745 | } | |
5746 | } | |
5747 | } | |
5748 | ||
5749 | #endif /* CONFIG_MEMCG */ | |
5750 | ||
5751 | static int __init init_lru_gen(void) | |
5752 | { | |
5753 | BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); | |
5754 | BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); | |
5755 | ||
5756 | if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) | |
5757 | pr_err("lru_gen: failed to create sysfs group\n"); | |
5758 | ||
5759 | debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); | |
5760 | debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); | |
5761 | ||
5762 | return 0; | |
5763 | }; | |
5764 | late_initcall(init_lru_gen); | |
5765 | ||
5766 | #else /* !CONFIG_LRU_GEN */ | |
5767 | ||
5768 | static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) | |
5769 | { | |
5770 | BUILD_BUG(); | |
5771 | } | |
5772 | ||
5773 | static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) | |
5774 | { | |
5775 | BUILD_BUG(); | |
5776 | } | |
5777 | ||
5778 | static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) | |
5779 | { | |
5780 | BUILD_BUG(); | |
5781 | } | |
5782 | ||
5783 | #endif /* CONFIG_LRU_GEN */ | |
5784 | ||
5785 | static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) | |
5786 | { | |
5787 | unsigned long nr[NR_LRU_LISTS]; | |
5788 | unsigned long targets[NR_LRU_LISTS]; | |
5789 | unsigned long nr_to_scan; | |
5790 | enum lru_list lru; | |
5791 | unsigned long nr_reclaimed = 0; | |
5792 | unsigned long nr_to_reclaim = sc->nr_to_reclaim; | |
5793 | bool proportional_reclaim; | |
5794 | struct blk_plug plug; | |
5795 | ||
5796 | if (lru_gen_enabled() && !root_reclaim(sc)) { | |
5797 | lru_gen_shrink_lruvec(lruvec, sc); | |
5798 | return; | |
5799 | } | |
5800 | ||
5801 | get_scan_count(lruvec, sc, nr); | |
5802 | ||
5803 | /* Record the original scan target for proportional adjustments later */ | |
5804 | memcpy(targets, nr, sizeof(nr)); | |
5805 | ||
5806 | /* | |
5807 | * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal | |
5808 | * event that can occur when there is little memory pressure e.g. | |
5809 | * multiple streaming readers/writers. Hence, we do not abort scanning | |
5810 | * when the requested number of pages are reclaimed when scanning at | |
5811 | * DEF_PRIORITY on the assumption that the fact we are direct | |
5812 | * reclaiming implies that kswapd is not keeping up and it is best to | |
5813 | * do a batch of work at once. For memcg reclaim one check is made to | |
5814 | * abort proportional reclaim if either the file or anon lru has already | |
5815 | * dropped to zero at the first pass. | |
5816 | */ | |
5817 | proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && | |
5818 | sc->priority == DEF_PRIORITY); | |
5819 | ||
5820 | blk_start_plug(&plug); | |
5821 | while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || | |
5822 | nr[LRU_INACTIVE_FILE]) { | |
5823 | unsigned long nr_anon, nr_file, percentage; | |
5824 | unsigned long nr_scanned; | |
5825 | ||
5826 | for_each_evictable_lru(lru) { | |
5827 | if (nr[lru]) { | |
5828 | nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); | |
5829 | nr[lru] -= nr_to_scan; | |
5830 | ||
5831 | nr_reclaimed += shrink_list(lru, nr_to_scan, | |
5832 | lruvec, sc); | |
5833 | } | |
5834 | } | |
5835 | ||
5836 | cond_resched(); | |
5837 | ||
5838 | if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) | |
5839 | continue; | |
5840 | ||
5841 | /* | |
5842 | * For kswapd and memcg, reclaim at least the number of pages | |
5843 | * requested. Ensure that the anon and file LRUs are scanned | |
5844 | * proportionally what was requested by get_scan_count(). We | |
5845 | * stop reclaiming one LRU and reduce the amount scanning | |
5846 | * proportional to the original scan target. | |
5847 | */ | |
5848 | nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; | |
5849 | nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; | |
5850 | ||
5851 | /* | |
5852 | * It's just vindictive to attack the larger once the smaller | |
5853 | * has gone to zero. And given the way we stop scanning the | |
5854 | * smaller below, this makes sure that we only make one nudge | |
5855 | * towards proportionality once we've got nr_to_reclaim. | |
5856 | */ | |
5857 | if (!nr_file || !nr_anon) | |
5858 | break; | |
5859 | ||
5860 | if (nr_file > nr_anon) { | |
5861 | unsigned long scan_target = targets[LRU_INACTIVE_ANON] + | |
5862 | targets[LRU_ACTIVE_ANON] + 1; | |
5863 | lru = LRU_BASE; | |
5864 | percentage = nr_anon * 100 / scan_target; | |
5865 | } else { | |
5866 | unsigned long scan_target = targets[LRU_INACTIVE_FILE] + | |
5867 | targets[LRU_ACTIVE_FILE] + 1; | |
5868 | lru = LRU_FILE; | |
5869 | percentage = nr_file * 100 / scan_target; | |
5870 | } | |
5871 | ||
5872 | /* Stop scanning the smaller of the LRU */ | |
5873 | nr[lru] = 0; | |
5874 | nr[lru + LRU_ACTIVE] = 0; | |
5875 | ||
5876 | /* | |
5877 | * Recalculate the other LRU scan count based on its original | |
5878 | * scan target and the percentage scanning already complete | |
5879 | */ | |
5880 | lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; | |
5881 | nr_scanned = targets[lru] - nr[lru]; | |
5882 | nr[lru] = targets[lru] * (100 - percentage) / 100; | |
5883 | nr[lru] -= min(nr[lru], nr_scanned); | |
5884 | ||
5885 | lru += LRU_ACTIVE; | |
5886 | nr_scanned = targets[lru] - nr[lru]; | |
5887 | nr[lru] = targets[lru] * (100 - percentage) / 100; | |
5888 | nr[lru] -= min(nr[lru], nr_scanned); | |
5889 | } | |
5890 | blk_finish_plug(&plug); | |
5891 | sc->nr_reclaimed += nr_reclaimed; | |
5892 | ||
5893 | /* | |
5894 | * Even if we did not try to evict anon pages at all, we want to | |
5895 | * rebalance the anon lru active/inactive ratio. | |
5896 | */ | |
5897 | if (can_age_anon_pages(lruvec, sc) && | |
5898 | inactive_is_low(lruvec, LRU_INACTIVE_ANON)) | |
5899 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, | |
5900 | sc, LRU_ACTIVE_ANON); | |
5901 | } | |
5902 | ||
5903 | /* Use reclaim/compaction for costly allocs or under memory pressure */ | |
5904 | static bool in_reclaim_compaction(struct scan_control *sc) | |
5905 | { | |
5906 | if (gfp_compaction_allowed(sc->gfp_mask) && sc->order && | |
5907 | (sc->order > PAGE_ALLOC_COSTLY_ORDER || | |
5908 | sc->priority < DEF_PRIORITY - 2)) | |
5909 | return true; | |
5910 | ||
5911 | return false; | |
5912 | } | |
5913 | ||
5914 | /* | |
5915 | * Reclaim/compaction is used for high-order allocation requests. It reclaims | |
5916 | * order-0 pages before compacting the zone. should_continue_reclaim() returns | |
5917 | * true if more pages should be reclaimed such that when the page allocator | |
5918 | * calls try_to_compact_pages() that it will have enough free pages to succeed. | |
5919 | * It will give up earlier than that if there is difficulty reclaiming pages. | |
5920 | */ | |
5921 | static inline bool should_continue_reclaim(struct pglist_data *pgdat, | |
5922 | unsigned long nr_reclaimed, | |
5923 | struct scan_control *sc) | |
5924 | { | |
5925 | unsigned long pages_for_compaction; | |
5926 | unsigned long inactive_lru_pages; | |
5927 | int z; | |
5928 | struct zone *zone; | |
5929 | ||
5930 | /* If not in reclaim/compaction mode, stop */ | |
5931 | if (!in_reclaim_compaction(sc)) | |
5932 | return false; | |
5933 | ||
5934 | /* | |
5935 | * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX | |
5936 | * number of pages that were scanned. This will return to the caller | |
5937 | * with the risk reclaim/compaction and the resulting allocation attempt | |
5938 | * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL | |
5939 | * allocations through requiring that the full LRU list has been scanned | |
5940 | * first, by assuming that zero delta of sc->nr_scanned means full LRU | |
5941 | * scan, but that approximation was wrong, and there were corner cases | |
5942 | * where always a non-zero amount of pages were scanned. | |
5943 | */ | |
5944 | if (!nr_reclaimed) | |
5945 | return false; | |
5946 | ||
5947 | /* If compaction would go ahead or the allocation would succeed, stop */ | |
5948 | for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) { | |
5949 | unsigned long watermark = min_wmark_pages(zone); | |
5950 | ||
5951 | /* Allocation can already succeed, nothing to do */ | |
5952 | if (zone_watermark_ok(zone, sc->order, watermark, | |
5953 | sc->reclaim_idx, 0)) | |
5954 | return false; | |
5955 | ||
5956 | if (compaction_suitable(zone, sc->order, watermark, | |
5957 | sc->reclaim_idx)) | |
5958 | return false; | |
5959 | } | |
5960 | ||
5961 | /* | |
5962 | * If we have not reclaimed enough pages for compaction and the | |
5963 | * inactive lists are large enough, continue reclaiming | |
5964 | */ | |
5965 | pages_for_compaction = compact_gap(sc->order); | |
5966 | inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); | |
5967 | if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) | |
5968 | inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); | |
5969 | ||
5970 | return inactive_lru_pages > pages_for_compaction; | |
5971 | } | |
5972 | ||
5973 | static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) | |
5974 | { | |
5975 | struct mem_cgroup *target_memcg = sc->target_mem_cgroup; | |
5976 | struct mem_cgroup_reclaim_cookie reclaim = { | |
5977 | .pgdat = pgdat, | |
5978 | }; | |
5979 | struct mem_cgroup_reclaim_cookie *partial = &reclaim; | |
5980 | struct mem_cgroup *memcg; | |
5981 | ||
5982 | /* | |
5983 | * In most cases, direct reclaimers can do partial walks | |
5984 | * through the cgroup tree, using an iterator state that | |
5985 | * persists across invocations. This strikes a balance between | |
5986 | * fairness and allocation latency. | |
5987 | * | |
5988 | * For kswapd, reliable forward progress is more important | |
5989 | * than a quick return to idle. Always do full walks. | |
5990 | */ | |
5991 | if (current_is_kswapd() || sc->memcg_full_walk) | |
5992 | partial = NULL; | |
5993 | ||
5994 | memcg = mem_cgroup_iter(target_memcg, NULL, partial); | |
5995 | do { | |
5996 | struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); | |
5997 | unsigned long reclaimed; | |
5998 | unsigned long scanned; | |
5999 | ||
6000 | /* | |
6001 | * This loop can become CPU-bound when target memcgs | |
6002 | * aren't eligible for reclaim - either because they | |
6003 | * don't have any reclaimable pages, or because their | |
6004 | * memory is explicitly protected. Avoid soft lockups. | |
6005 | */ | |
6006 | cond_resched(); | |
6007 | ||
6008 | mem_cgroup_calculate_protection(target_memcg, memcg); | |
6009 | ||
6010 | if (mem_cgroup_below_min(target_memcg, memcg)) { | |
6011 | /* | |
6012 | * Hard protection. | |
6013 | * If there is no reclaimable memory, OOM. | |
6014 | */ | |
6015 | continue; | |
6016 | } else if (mem_cgroup_below_low(target_memcg, memcg)) { | |
6017 | /* | |
6018 | * Soft protection. | |
6019 | * Respect the protection only as long as | |
6020 | * there is an unprotected supply | |
6021 | * of reclaimable memory from other cgroups. | |
6022 | */ | |
6023 | if (!sc->memcg_low_reclaim) { | |
6024 | sc->memcg_low_skipped = 1; | |
6025 | continue; | |
6026 | } | |
6027 | memcg_memory_event(memcg, MEMCG_LOW); | |
6028 | } | |
6029 | ||
6030 | reclaimed = sc->nr_reclaimed; | |
6031 | scanned = sc->nr_scanned; | |
6032 | ||
6033 | shrink_lruvec(lruvec, sc); | |
6034 | ||
6035 | shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, | |
6036 | sc->priority); | |
6037 | ||
6038 | /* Record the group's reclaim efficiency */ | |
6039 | if (!sc->proactive) | |
6040 | vmpressure(sc->gfp_mask, memcg, false, | |
6041 | sc->nr_scanned - scanned, | |
6042 | sc->nr_reclaimed - reclaimed); | |
6043 | ||
6044 | /* If partial walks are allowed, bail once goal is reached */ | |
6045 | if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) { | |
6046 | mem_cgroup_iter_break(target_memcg, memcg); | |
6047 | break; | |
6048 | } | |
6049 | } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial))); | |
6050 | } | |
6051 | ||
6052 | static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) | |
6053 | { | |
6054 | unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; | |
6055 | struct lruvec *target_lruvec; | |
6056 | bool reclaimable = false; | |
6057 | ||
6058 | if (lru_gen_enabled() && root_reclaim(sc)) { | |
6059 | memset(&sc->nr, 0, sizeof(sc->nr)); | |
6060 | lru_gen_shrink_node(pgdat, sc); | |
6061 | return; | |
6062 | } | |
6063 | ||
6064 | target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); | |
6065 | ||
6066 | again: | |
6067 | memset(&sc->nr, 0, sizeof(sc->nr)); | |
6068 | ||
6069 | nr_reclaimed = sc->nr_reclaimed; | |
6070 | nr_scanned = sc->nr_scanned; | |
6071 | ||
6072 | prepare_scan_control(pgdat, sc); | |
6073 | ||
6074 | shrink_node_memcgs(pgdat, sc); | |
6075 | ||
6076 | flush_reclaim_state(sc); | |
6077 | ||
6078 | nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; | |
6079 | ||
6080 | /* Record the subtree's reclaim efficiency */ | |
6081 | if (!sc->proactive) | |
6082 | vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, | |
6083 | sc->nr_scanned - nr_scanned, nr_node_reclaimed); | |
6084 | ||
6085 | if (nr_node_reclaimed) | |
6086 | reclaimable = true; | |
6087 | ||
6088 | if (current_is_kswapd()) { | |
6089 | /* | |
6090 | * If reclaim is isolating dirty pages under writeback, | |
6091 | * it implies that the long-lived page allocation rate | |
6092 | * is exceeding the page laundering rate. Either the | |
6093 | * global limits are not being effective at throttling | |
6094 | * processes due to the page distribution throughout | |
6095 | * zones or there is heavy usage of a slow backing | |
6096 | * device. The only option is to throttle from reclaim | |
6097 | * context which is not ideal as there is no guarantee | |
6098 | * the dirtying process is throttled in the same way | |
6099 | * balance_dirty_pages() manages. | |
6100 | * | |
6101 | * Once a node is flagged PGDAT_WRITEBACK, kswapd will | |
6102 | * count the number of pages under pages flagged for | |
6103 | * immediate reclaim and stall if any are encountered | |
6104 | * in the nr_immediate check below. | |
6105 | */ | |
6106 | if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) | |
6107 | set_bit(PGDAT_WRITEBACK, &pgdat->flags); | |
6108 | ||
6109 | /* Allow kswapd to start writing pages during reclaim.*/ | |
6110 | if (sc->nr.unqueued_dirty && | |
6111 | sc->nr.unqueued_dirty == sc->nr.file_taken) | |
6112 | set_bit(PGDAT_DIRTY, &pgdat->flags); | |
6113 | ||
6114 | /* | |
6115 | * If kswapd scans pages marked for immediate | |
6116 | * reclaim and under writeback (nr_immediate), it | |
6117 | * implies that pages are cycling through the LRU | |
6118 | * faster than they are written so forcibly stall | |
6119 | * until some pages complete writeback. | |
6120 | */ | |
6121 | if (sc->nr.immediate) | |
6122 | reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); | |
6123 | } | |
6124 | ||
6125 | /* | |
6126 | * Tag a node/memcg as congested if all the dirty pages were marked | |
6127 | * for writeback and immediate reclaim (counted in nr.congested). | |
6128 | * | |
6129 | * Legacy memcg will stall in page writeback so avoid forcibly | |
6130 | * stalling in reclaim_throttle(). | |
6131 | */ | |
6132 | if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { | |
6133 | if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) | |
6134 | set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags); | |
6135 | ||
6136 | if (current_is_kswapd()) | |
6137 | set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags); | |
6138 | } | |
6139 | ||
6140 | /* | |
6141 | * Stall direct reclaim for IO completions if the lruvec is | |
6142 | * node is congested. Allow kswapd to continue until it | |
6143 | * starts encountering unqueued dirty pages or cycling through | |
6144 | * the LRU too quickly. | |
6145 | */ | |
6146 | if (!current_is_kswapd() && current_may_throttle() && | |
6147 | !sc->hibernation_mode && | |
6148 | (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || | |
6149 | test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) | |
6150 | reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); | |
6151 | ||
6152 | if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) | |
6153 | goto again; | |
6154 | ||
6155 | /* | |
6156 | * Kswapd gives up on balancing particular nodes after too | |
6157 | * many failures to reclaim anything from them and goes to | |
6158 | * sleep. On reclaim progress, reset the failure counter. A | |
6159 | * successful direct reclaim run will revive a dormant kswapd. | |
6160 | */ | |
6161 | if (reclaimable) | |
6162 | pgdat->kswapd_failures = 0; | |
6163 | else if (sc->cache_trim_mode) | |
6164 | sc->cache_trim_mode_failed = 1; | |
6165 | } | |
6166 | ||
6167 | /* | |
6168 | * Returns true if compaction should go ahead for a costly-order request, or | |
6169 | * the allocation would already succeed without compaction. Return false if we | |
6170 | * should reclaim first. | |
6171 | */ | |
6172 | static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) | |
6173 | { | |
6174 | unsigned long watermark; | |
6175 | ||
6176 | if (!gfp_compaction_allowed(sc->gfp_mask)) | |
6177 | return false; | |
6178 | ||
6179 | /* Allocation can already succeed, nothing to do */ | |
6180 | if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), | |
6181 | sc->reclaim_idx, 0)) | |
6182 | return true; | |
6183 | ||
6184 | /* | |
6185 | * Direct reclaim usually targets the min watermark, but compaction | |
6186 | * takes time to run and there are potentially other callers using the | |
6187 | * pages just freed. So target a higher buffer to give compaction a | |
6188 | * reasonable chance of completing and allocating the pages. | |
6189 | * | |
6190 | * Note that we won't actually reclaim the whole buffer in one attempt | |
6191 | * as the target watermark in should_continue_reclaim() is lower. But if | |
6192 | * we are already above the high+gap watermark, don't reclaim at all. | |
6193 | */ | |
6194 | watermark = high_wmark_pages(zone); | |
6195 | if (compaction_suitable(zone, sc->order, watermark, sc->reclaim_idx)) | |
6196 | return true; | |
6197 | ||
6198 | return false; | |
6199 | } | |
6200 | ||
6201 | static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) | |
6202 | { | |
6203 | /* | |
6204 | * If reclaim is making progress greater than 12% efficiency then | |
6205 | * wake all the NOPROGRESS throttled tasks. | |
6206 | */ | |
6207 | if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { | |
6208 | wait_queue_head_t *wqh; | |
6209 | ||
6210 | wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; | |
6211 | if (waitqueue_active(wqh)) | |
6212 | wake_up(wqh); | |
6213 | ||
6214 | return; | |
6215 | } | |
6216 | ||
6217 | /* | |
6218 | * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will | |
6219 | * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages | |
6220 | * under writeback and marked for immediate reclaim at the tail of the | |
6221 | * LRU. | |
6222 | */ | |
6223 | if (current_is_kswapd() || cgroup_reclaim(sc)) | |
6224 | return; | |
6225 | ||
6226 | /* Throttle if making no progress at high prioities. */ | |
6227 | if (sc->priority == 1 && !sc->nr_reclaimed) | |
6228 | reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); | |
6229 | } | |
6230 | ||
6231 | /* | |
6232 | * This is the direct reclaim path, for page-allocating processes. We only | |
6233 | * try to reclaim pages from zones which will satisfy the caller's allocation | |
6234 | * request. | |
6235 | * | |
6236 | * If a zone is deemed to be full of pinned pages then just give it a light | |
6237 | * scan then give up on it. | |
6238 | */ | |
6239 | static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) | |
6240 | { | |
6241 | struct zoneref *z; | |
6242 | struct zone *zone; | |
6243 | unsigned long nr_soft_reclaimed; | |
6244 | unsigned long nr_soft_scanned; | |
6245 | gfp_t orig_mask; | |
6246 | pg_data_t *last_pgdat = NULL; | |
6247 | pg_data_t *first_pgdat = NULL; | |
6248 | ||
6249 | /* | |
6250 | * If the number of buffer_heads in the machine exceeds the maximum | |
6251 | * allowed level, force direct reclaim to scan the highmem zone as | |
6252 | * highmem pages could be pinning lowmem pages storing buffer_heads | |
6253 | */ | |
6254 | orig_mask = sc->gfp_mask; | |
6255 | if (buffer_heads_over_limit) { | |
6256 | sc->gfp_mask |= __GFP_HIGHMEM; | |
6257 | sc->reclaim_idx = gfp_zone(sc->gfp_mask); | |
6258 | } | |
6259 | ||
6260 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | |
6261 | sc->reclaim_idx, sc->nodemask) { | |
6262 | /* | |
6263 | * Take care memory controller reclaiming has small influence | |
6264 | * to global LRU. | |
6265 | */ | |
6266 | if (!cgroup_reclaim(sc)) { | |
6267 | if (!cpuset_zone_allowed(zone, | |
6268 | GFP_KERNEL | __GFP_HARDWALL)) | |
6269 | continue; | |
6270 | ||
6271 | /* | |
6272 | * If we already have plenty of memory free for | |
6273 | * compaction in this zone, don't free any more. | |
6274 | * Even though compaction is invoked for any | |
6275 | * non-zero order, only frequent costly order | |
6276 | * reclamation is disruptive enough to become a | |
6277 | * noticeable problem, like transparent huge | |
6278 | * page allocations. | |
6279 | */ | |
6280 | if (IS_ENABLED(CONFIG_COMPACTION) && | |
6281 | sc->order > PAGE_ALLOC_COSTLY_ORDER && | |
6282 | compaction_ready(zone, sc)) { | |
6283 | sc->compaction_ready = true; | |
6284 | continue; | |
6285 | } | |
6286 | ||
6287 | /* | |
6288 | * Shrink each node in the zonelist once. If the | |
6289 | * zonelist is ordered by zone (not the default) then a | |
6290 | * node may be shrunk multiple times but in that case | |
6291 | * the user prefers lower zones being preserved. | |
6292 | */ | |
6293 | if (zone->zone_pgdat == last_pgdat) | |
6294 | continue; | |
6295 | ||
6296 | /* | |
6297 | * This steals pages from memory cgroups over softlimit | |
6298 | * and returns the number of reclaimed pages and | |
6299 | * scanned pages. This works for global memory pressure | |
6300 | * and balancing, not for a memcg's limit. | |
6301 | */ | |
6302 | nr_soft_scanned = 0; | |
6303 | nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat, | |
6304 | sc->order, sc->gfp_mask, | |
6305 | &nr_soft_scanned); | |
6306 | sc->nr_reclaimed += nr_soft_reclaimed; | |
6307 | sc->nr_scanned += nr_soft_scanned; | |
6308 | /* need some check for avoid more shrink_zone() */ | |
6309 | } | |
6310 | ||
6311 | if (!first_pgdat) | |
6312 | first_pgdat = zone->zone_pgdat; | |
6313 | ||
6314 | /* See comment about same check for global reclaim above */ | |
6315 | if (zone->zone_pgdat == last_pgdat) | |
6316 | continue; | |
6317 | last_pgdat = zone->zone_pgdat; | |
6318 | shrink_node(zone->zone_pgdat, sc); | |
6319 | } | |
6320 | ||
6321 | if (first_pgdat) | |
6322 | consider_reclaim_throttle(first_pgdat, sc); | |
6323 | ||
6324 | /* | |
6325 | * Restore to original mask to avoid the impact on the caller if we | |
6326 | * promoted it to __GFP_HIGHMEM. | |
6327 | */ | |
6328 | sc->gfp_mask = orig_mask; | |
6329 | } | |
6330 | ||
6331 | static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) | |
6332 | { | |
6333 | struct lruvec *target_lruvec; | |
6334 | unsigned long refaults; | |
6335 | ||
6336 | if (lru_gen_enabled()) | |
6337 | return; | |
6338 | ||
6339 | target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); | |
6340 | refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); | |
6341 | target_lruvec->refaults[WORKINGSET_ANON] = refaults; | |
6342 | refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); | |
6343 | target_lruvec->refaults[WORKINGSET_FILE] = refaults; | |
6344 | } | |
6345 | ||
6346 | /* | |
6347 | * This is the main entry point to direct page reclaim. | |
6348 | * | |
6349 | * If a full scan of the inactive list fails to free enough memory then we | |
6350 | * are "out of memory" and something needs to be killed. | |
6351 | * | |
6352 | * If the caller is !__GFP_FS then the probability of a failure is reasonably | |
6353 | * high - the zone may be full of dirty or under-writeback pages, which this | |
6354 | * caller can't do much about. We kick the writeback threads and take explicit | |
6355 | * naps in the hope that some of these pages can be written. But if the | |
6356 | * allocating task holds filesystem locks which prevent writeout this might not | |
6357 | * work, and the allocation attempt will fail. | |
6358 | * | |
6359 | * returns: 0, if no pages reclaimed | |
6360 | * else, the number of pages reclaimed | |
6361 | */ | |
6362 | static unsigned long do_try_to_free_pages(struct zonelist *zonelist, | |
6363 | struct scan_control *sc) | |
6364 | { | |
6365 | int initial_priority = sc->priority; | |
6366 | pg_data_t *last_pgdat; | |
6367 | struct zoneref *z; | |
6368 | struct zone *zone; | |
6369 | retry: | |
6370 | delayacct_freepages_start(); | |
6371 | ||
6372 | if (!cgroup_reclaim(sc)) | |
6373 | __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); | |
6374 | ||
6375 | do { | |
6376 | if (!sc->proactive) | |
6377 | vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, | |
6378 | sc->priority); | |
6379 | sc->nr_scanned = 0; | |
6380 | shrink_zones(zonelist, sc); | |
6381 | ||
6382 | if (sc->nr_reclaimed >= sc->nr_to_reclaim) | |
6383 | break; | |
6384 | ||
6385 | if (sc->compaction_ready) | |
6386 | break; | |
6387 | ||
6388 | /* | |
6389 | * If we're getting trouble reclaiming, start doing | |
6390 | * writepage even in laptop mode. | |
6391 | */ | |
6392 | if (sc->priority < DEF_PRIORITY - 2) | |
6393 | sc->may_writepage = 1; | |
6394 | } while (--sc->priority >= 0); | |
6395 | ||
6396 | last_pgdat = NULL; | |
6397 | for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, | |
6398 | sc->nodemask) { | |
6399 | if (zone->zone_pgdat == last_pgdat) | |
6400 | continue; | |
6401 | last_pgdat = zone->zone_pgdat; | |
6402 | ||
6403 | snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); | |
6404 | ||
6405 | if (cgroup_reclaim(sc)) { | |
6406 | struct lruvec *lruvec; | |
6407 | ||
6408 | lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, | |
6409 | zone->zone_pgdat); | |
6410 | clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); | |
6411 | } | |
6412 | } | |
6413 | ||
6414 | delayacct_freepages_end(); | |
6415 | ||
6416 | if (sc->nr_reclaimed) | |
6417 | return sc->nr_reclaimed; | |
6418 | ||
6419 | /* Aborted reclaim to try compaction? don't OOM, then */ | |
6420 | if (sc->compaction_ready) | |
6421 | return 1; | |
6422 | ||
6423 | /* | |
6424 | * In most cases, direct reclaimers can do partial walks | |
6425 | * through the cgroup tree to meet the reclaim goal while | |
6426 | * keeping latency low. Since the iterator state is shared | |
6427 | * among all direct reclaim invocations (to retain fairness | |
6428 | * among cgroups), though, high concurrency can result in | |
6429 | * individual threads not seeing enough cgroups to make | |
6430 | * meaningful forward progress. Avoid false OOMs in this case. | |
6431 | */ | |
6432 | if (!sc->memcg_full_walk) { | |
6433 | sc->priority = initial_priority; | |
6434 | sc->memcg_full_walk = 1; | |
6435 | goto retry; | |
6436 | } | |
6437 | ||
6438 | /* | |
6439 | * We make inactive:active ratio decisions based on the node's | |
6440 | * composition of memory, but a restrictive reclaim_idx or a | |
6441 | * memory.low cgroup setting can exempt large amounts of | |
6442 | * memory from reclaim. Neither of which are very common, so | |
6443 | * instead of doing costly eligibility calculations of the | |
6444 | * entire cgroup subtree up front, we assume the estimates are | |
6445 | * good, and retry with forcible deactivation if that fails. | |
6446 | */ | |
6447 | if (sc->skipped_deactivate) { | |
6448 | sc->priority = initial_priority; | |
6449 | sc->force_deactivate = 1; | |
6450 | sc->skipped_deactivate = 0; | |
6451 | goto retry; | |
6452 | } | |
6453 | ||
6454 | /* Untapped cgroup reserves? Don't OOM, retry. */ | |
6455 | if (sc->memcg_low_skipped) { | |
6456 | sc->priority = initial_priority; | |
6457 | sc->force_deactivate = 0; | |
6458 | sc->memcg_low_reclaim = 1; | |
6459 | sc->memcg_low_skipped = 0; | |
6460 | goto retry; | |
6461 | } | |
6462 | ||
6463 | return 0; | |
6464 | } | |
6465 | ||
6466 | static bool allow_direct_reclaim(pg_data_t *pgdat) | |
6467 | { | |
6468 | struct zone *zone; | |
6469 | unsigned long pfmemalloc_reserve = 0; | |
6470 | unsigned long free_pages = 0; | |
6471 | int i; | |
6472 | bool wmark_ok; | |
6473 | ||
6474 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) | |
6475 | return true; | |
6476 | ||
6477 | for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) { | |
6478 | if (!zone_reclaimable_pages(zone)) | |
6479 | continue; | |
6480 | ||
6481 | pfmemalloc_reserve += min_wmark_pages(zone); | |
6482 | free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); | |
6483 | } | |
6484 | ||
6485 | /* If there are no reserves (unexpected config) then do not throttle */ | |
6486 | if (!pfmemalloc_reserve) | |
6487 | return true; | |
6488 | ||
6489 | wmark_ok = free_pages > pfmemalloc_reserve / 2; | |
6490 | ||
6491 | /* kswapd must be awake if processes are being throttled */ | |
6492 | if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { | |
6493 | if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) | |
6494 | WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); | |
6495 | ||
6496 | wake_up_interruptible(&pgdat->kswapd_wait); | |
6497 | } | |
6498 | ||
6499 | return wmark_ok; | |
6500 | } | |
6501 | ||
6502 | /* | |
6503 | * Throttle direct reclaimers if backing storage is backed by the network | |
6504 | * and the PFMEMALLOC reserve for the preferred node is getting dangerously | |
6505 | * depleted. kswapd will continue to make progress and wake the processes | |
6506 | * when the low watermark is reached. | |
6507 | * | |
6508 | * Returns true if a fatal signal was delivered during throttling. If this | |
6509 | * happens, the page allocator should not consider triggering the OOM killer. | |
6510 | */ | |
6511 | static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, | |
6512 | nodemask_t *nodemask) | |
6513 | { | |
6514 | struct zoneref *z; | |
6515 | struct zone *zone; | |
6516 | pg_data_t *pgdat = NULL; | |
6517 | ||
6518 | /* | |
6519 | * Kernel threads should not be throttled as they may be indirectly | |
6520 | * responsible for cleaning pages necessary for reclaim to make forward | |
6521 | * progress. kjournald for example may enter direct reclaim while | |
6522 | * committing a transaction where throttling it could forcing other | |
6523 | * processes to block on log_wait_commit(). | |
6524 | */ | |
6525 | if (current->flags & PF_KTHREAD) | |
6526 | goto out; | |
6527 | ||
6528 | /* | |
6529 | * If a fatal signal is pending, this process should not throttle. | |
6530 | * It should return quickly so it can exit and free its memory | |
6531 | */ | |
6532 | if (fatal_signal_pending(current)) | |
6533 | goto out; | |
6534 | ||
6535 | /* | |
6536 | * Check if the pfmemalloc reserves are ok by finding the first node | |
6537 | * with a usable ZONE_NORMAL or lower zone. The expectation is that | |
6538 | * GFP_KERNEL will be required for allocating network buffers when | |
6539 | * swapping over the network so ZONE_HIGHMEM is unusable. | |
6540 | * | |
6541 | * Throttling is based on the first usable node and throttled processes | |
6542 | * wait on a queue until kswapd makes progress and wakes them. There | |
6543 | * is an affinity then between processes waking up and where reclaim | |
6544 | * progress has been made assuming the process wakes on the same node. | |
6545 | * More importantly, processes running on remote nodes will not compete | |
6546 | * for remote pfmemalloc reserves and processes on different nodes | |
6547 | * should make reasonable progress. | |
6548 | */ | |
6549 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | |
6550 | gfp_zone(gfp_mask), nodemask) { | |
6551 | if (zone_idx(zone) > ZONE_NORMAL) | |
6552 | continue; | |
6553 | ||
6554 | /* Throttle based on the first usable node */ | |
6555 | pgdat = zone->zone_pgdat; | |
6556 | if (allow_direct_reclaim(pgdat)) | |
6557 | goto out; | |
6558 | break; | |
6559 | } | |
6560 | ||
6561 | /* If no zone was usable by the allocation flags then do not throttle */ | |
6562 | if (!pgdat) | |
6563 | goto out; | |
6564 | ||
6565 | /* Account for the throttling */ | |
6566 | count_vm_event(PGSCAN_DIRECT_THROTTLE); | |
6567 | ||
6568 | /* | |
6569 | * If the caller cannot enter the filesystem, it's possible that it | |
6570 | * is due to the caller holding an FS lock or performing a journal | |
6571 | * transaction in the case of a filesystem like ext[3|4]. In this case, | |
6572 | * it is not safe to block on pfmemalloc_wait as kswapd could be | |
6573 | * blocked waiting on the same lock. Instead, throttle for up to a | |
6574 | * second before continuing. | |
6575 | */ | |
6576 | if (!(gfp_mask & __GFP_FS)) | |
6577 | wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, | |
6578 | allow_direct_reclaim(pgdat), HZ); | |
6579 | else | |
6580 | /* Throttle until kswapd wakes the process */ | |
6581 | wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, | |
6582 | allow_direct_reclaim(pgdat)); | |
6583 | ||
6584 | if (fatal_signal_pending(current)) | |
6585 | return true; | |
6586 | ||
6587 | out: | |
6588 | return false; | |
6589 | } | |
6590 | ||
6591 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, | |
6592 | gfp_t gfp_mask, nodemask_t *nodemask) | |
6593 | { | |
6594 | unsigned long nr_reclaimed; | |
6595 | struct scan_control sc = { | |
6596 | .nr_to_reclaim = SWAP_CLUSTER_MAX, | |
6597 | .gfp_mask = current_gfp_context(gfp_mask), | |
6598 | .reclaim_idx = gfp_zone(gfp_mask), | |
6599 | .order = order, | |
6600 | .nodemask = nodemask, | |
6601 | .priority = DEF_PRIORITY, | |
6602 | .may_writepage = !laptop_mode, | |
6603 | .may_unmap = 1, | |
6604 | .may_swap = 1, | |
6605 | }; | |
6606 | ||
6607 | /* | |
6608 | * scan_control uses s8 fields for order, priority, and reclaim_idx. | |
6609 | * Confirm they are large enough for max values. | |
6610 | */ | |
6611 | BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX); | |
6612 | BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); | |
6613 | BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); | |
6614 | ||
6615 | /* | |
6616 | * Do not enter reclaim if fatal signal was delivered while throttled. | |
6617 | * 1 is returned so that the page allocator does not OOM kill at this | |
6618 | * point. | |
6619 | */ | |
6620 | if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) | |
6621 | return 1; | |
6622 | ||
6623 | set_task_reclaim_state(current, &sc.reclaim_state); | |
6624 | trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); | |
6625 | ||
6626 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | |
6627 | ||
6628 | trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); | |
6629 | set_task_reclaim_state(current, NULL); | |
6630 | ||
6631 | return nr_reclaimed; | |
6632 | } | |
6633 | ||
6634 | #ifdef CONFIG_MEMCG | |
6635 | ||
6636 | /* Only used by soft limit reclaim. Do not reuse for anything else. */ | |
6637 | unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, | |
6638 | gfp_t gfp_mask, bool noswap, | |
6639 | pg_data_t *pgdat, | |
6640 | unsigned long *nr_scanned) | |
6641 | { | |
6642 | struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); | |
6643 | struct scan_control sc = { | |
6644 | .nr_to_reclaim = SWAP_CLUSTER_MAX, | |
6645 | .target_mem_cgroup = memcg, | |
6646 | .may_writepage = !laptop_mode, | |
6647 | .may_unmap = 1, | |
6648 | .reclaim_idx = MAX_NR_ZONES - 1, | |
6649 | .may_swap = !noswap, | |
6650 | }; | |
6651 | ||
6652 | WARN_ON_ONCE(!current->reclaim_state); | |
6653 | ||
6654 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | | |
6655 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | |
6656 | ||
6657 | trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, | |
6658 | sc.gfp_mask); | |
6659 | ||
6660 | /* | |
6661 | * NOTE: Although we can get the priority field, using it | |
6662 | * here is not a good idea, since it limits the pages we can scan. | |
6663 | * if we don't reclaim here, the shrink_node from balance_pgdat | |
6664 | * will pick up pages from other mem cgroup's as well. We hack | |
6665 | * the priority and make it zero. | |
6666 | */ | |
6667 | shrink_lruvec(lruvec, &sc); | |
6668 | ||
6669 | trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); | |
6670 | ||
6671 | *nr_scanned = sc.nr_scanned; | |
6672 | ||
6673 | return sc.nr_reclaimed; | |
6674 | } | |
6675 | ||
6676 | unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, | |
6677 | unsigned long nr_pages, | |
6678 | gfp_t gfp_mask, | |
6679 | unsigned int reclaim_options, | |
6680 | int *swappiness) | |
6681 | { | |
6682 | unsigned long nr_reclaimed; | |
6683 | unsigned int noreclaim_flag; | |
6684 | struct scan_control sc = { | |
6685 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), | |
6686 | .proactive_swappiness = swappiness, | |
6687 | .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | | |
6688 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), | |
6689 | .reclaim_idx = MAX_NR_ZONES - 1, | |
6690 | .target_mem_cgroup = memcg, | |
6691 | .priority = DEF_PRIORITY, | |
6692 | .may_writepage = !laptop_mode, | |
6693 | .may_unmap = 1, | |
6694 | .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), | |
6695 | .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), | |
6696 | }; | |
6697 | /* | |
6698 | * Traverse the ZONELIST_FALLBACK zonelist of the current node to put | |
6699 | * equal pressure on all the nodes. This is based on the assumption that | |
6700 | * the reclaim does not bail out early. | |
6701 | */ | |
6702 | struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); | |
6703 | ||
6704 | set_task_reclaim_state(current, &sc.reclaim_state); | |
6705 | trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); | |
6706 | noreclaim_flag = memalloc_noreclaim_save(); | |
6707 | ||
6708 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | |
6709 | ||
6710 | memalloc_noreclaim_restore(noreclaim_flag); | |
6711 | trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); | |
6712 | set_task_reclaim_state(current, NULL); | |
6713 | ||
6714 | return nr_reclaimed; | |
6715 | } | |
6716 | #endif | |
6717 | ||
6718 | static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) | |
6719 | { | |
6720 | struct mem_cgroup *memcg; | |
6721 | struct lruvec *lruvec; | |
6722 | ||
6723 | if (lru_gen_enabled()) { | |
6724 | lru_gen_age_node(pgdat, sc); | |
6725 | return; | |
6726 | } | |
6727 | ||
6728 | lruvec = mem_cgroup_lruvec(NULL, pgdat); | |
6729 | if (!can_age_anon_pages(lruvec, sc)) | |
6730 | return; | |
6731 | ||
6732 | if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) | |
6733 | return; | |
6734 | ||
6735 | memcg = mem_cgroup_iter(NULL, NULL, NULL); | |
6736 | do { | |
6737 | lruvec = mem_cgroup_lruvec(memcg, pgdat); | |
6738 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, | |
6739 | sc, LRU_ACTIVE_ANON); | |
6740 | memcg = mem_cgroup_iter(NULL, memcg, NULL); | |
6741 | } while (memcg); | |
6742 | } | |
6743 | ||
6744 | static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) | |
6745 | { | |
6746 | int i; | |
6747 | struct zone *zone; | |
6748 | ||
6749 | /* | |
6750 | * Check for watermark boosts top-down as the higher zones | |
6751 | * are more likely to be boosted. Both watermarks and boosts | |
6752 | * should not be checked at the same time as reclaim would | |
6753 | * start prematurely when there is no boosting and a lower | |
6754 | * zone is balanced. | |
6755 | */ | |
6756 | for (i = highest_zoneidx; i >= 0; i--) { | |
6757 | zone = pgdat->node_zones + i; | |
6758 | if (!managed_zone(zone)) | |
6759 | continue; | |
6760 | ||
6761 | if (zone->watermark_boost) | |
6762 | return true; | |
6763 | } | |
6764 | ||
6765 | return false; | |
6766 | } | |
6767 | ||
6768 | /* | |
6769 | * Returns true if there is an eligible zone balanced for the request order | |
6770 | * and highest_zoneidx | |
6771 | */ | |
6772 | static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) | |
6773 | { | |
6774 | int i; | |
6775 | unsigned long mark = -1; | |
6776 | struct zone *zone; | |
6777 | ||
6778 | /* | |
6779 | * Check watermarks bottom-up as lower zones are more likely to | |
6780 | * meet watermarks. | |
6781 | */ | |
6782 | for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { | |
6783 | enum zone_stat_item item; | |
6784 | unsigned long free_pages; | |
6785 | ||
6786 | if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) | |
6787 | mark = promo_wmark_pages(zone); | |
6788 | else | |
6789 | mark = high_wmark_pages(zone); | |
6790 | ||
6791 | /* | |
6792 | * In defrag_mode, watermarks must be met in whole | |
6793 | * blocks to avoid polluting allocator fallbacks. | |
6794 | * | |
6795 | * However, kswapd usually cannot accomplish this on | |
6796 | * its own and needs kcompactd support. Once it's | |
6797 | * reclaimed a compaction gap, and kswapd_shrink_node | |
6798 | * has dropped order, simply ensure there are enough | |
6799 | * base pages for compaction, wake kcompactd & sleep. | |
6800 | */ | |
6801 | if (defrag_mode && order) | |
6802 | item = NR_FREE_PAGES_BLOCKS; | |
6803 | else | |
6804 | item = NR_FREE_PAGES; | |
6805 | ||
6806 | /* | |
6807 | * When there is a high number of CPUs in the system, | |
6808 | * the cumulative error from the vmstat per-cpu cache | |
6809 | * can blur the line between the watermarks. In that | |
6810 | * case, be safe and get an accurate snapshot. | |
6811 | * | |
6812 | * TODO: NR_FREE_PAGES_BLOCKS moves in steps of | |
6813 | * pageblock_nr_pages, while the vmstat pcp threshold | |
6814 | * is limited to 125. On many configurations that | |
6815 | * counter won't actually be per-cpu cached. But keep | |
6816 | * things simple for now; revisit when somebody cares. | |
6817 | */ | |
6818 | free_pages = zone_page_state(zone, item); | |
6819 | if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark) | |
6820 | free_pages = zone_page_state_snapshot(zone, item); | |
6821 | ||
6822 | if (__zone_watermark_ok(zone, order, mark, highest_zoneidx, | |
6823 | 0, free_pages)) | |
6824 | return true; | |
6825 | } | |
6826 | ||
6827 | /* | |
6828 | * If a node has no managed zone within highest_zoneidx, it does not | |
6829 | * need balancing by definition. This can happen if a zone-restricted | |
6830 | * allocation tries to wake a remote kswapd. | |
6831 | */ | |
6832 | if (mark == -1) | |
6833 | return true; | |
6834 | ||
6835 | return false; | |
6836 | } | |
6837 | ||
6838 | /* Clear pgdat state for congested, dirty or under writeback. */ | |
6839 | static void clear_pgdat_congested(pg_data_t *pgdat) | |
6840 | { | |
6841 | struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); | |
6842 | ||
6843 | clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags); | |
6844 | clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); | |
6845 | clear_bit(PGDAT_DIRTY, &pgdat->flags); | |
6846 | clear_bit(PGDAT_WRITEBACK, &pgdat->flags); | |
6847 | } | |
6848 | ||
6849 | /* | |
6850 | * Prepare kswapd for sleeping. This verifies that there are no processes | |
6851 | * waiting in throttle_direct_reclaim() and that watermarks have been met. | |
6852 | * | |
6853 | * Returns true if kswapd is ready to sleep | |
6854 | */ | |
6855 | static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, | |
6856 | int highest_zoneidx) | |
6857 | { | |
6858 | /* | |
6859 | * The throttled processes are normally woken up in balance_pgdat() as | |
6860 | * soon as allow_direct_reclaim() is true. But there is a potential | |
6861 | * race between when kswapd checks the watermarks and a process gets | |
6862 | * throttled. There is also a potential race if processes get | |
6863 | * throttled, kswapd wakes, a large process exits thereby balancing the | |
6864 | * zones, which causes kswapd to exit balance_pgdat() before reaching | |
6865 | * the wake up checks. If kswapd is going to sleep, no process should | |
6866 | * be sleeping on pfmemalloc_wait, so wake them now if necessary. If | |
6867 | * the wake up is premature, processes will wake kswapd and get | |
6868 | * throttled again. The difference from wake ups in balance_pgdat() is | |
6869 | * that here we are under prepare_to_wait(). | |
6870 | */ | |
6871 | if (waitqueue_active(&pgdat->pfmemalloc_wait)) | |
6872 | wake_up_all(&pgdat->pfmemalloc_wait); | |
6873 | ||
6874 | /* Hopeless node, leave it to direct reclaim */ | |
6875 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) | |
6876 | return true; | |
6877 | ||
6878 | if (pgdat_balanced(pgdat, order, highest_zoneidx)) { | |
6879 | clear_pgdat_congested(pgdat); | |
6880 | return true; | |
6881 | } | |
6882 | ||
6883 | return false; | |
6884 | } | |
6885 | ||
6886 | /* | |
6887 | * kswapd shrinks a node of pages that are at or below the highest usable | |
6888 | * zone that is currently unbalanced. | |
6889 | * | |
6890 | * Returns true if kswapd scanned at least the requested number of pages to | |
6891 | * reclaim or if the lack of progress was due to pages under writeback. | |
6892 | * This is used to determine if the scanning priority needs to be raised. | |
6893 | */ | |
6894 | static bool kswapd_shrink_node(pg_data_t *pgdat, | |
6895 | struct scan_control *sc) | |
6896 | { | |
6897 | struct zone *zone; | |
6898 | int z; | |
6899 | unsigned long nr_reclaimed = sc->nr_reclaimed; | |
6900 | ||
6901 | /* Reclaim a number of pages proportional to the number of zones */ | |
6902 | sc->nr_to_reclaim = 0; | |
6903 | for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) { | |
6904 | sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); | |
6905 | } | |
6906 | ||
6907 | /* | |
6908 | * Historically care was taken to put equal pressure on all zones but | |
6909 | * now pressure is applied based on node LRU order. | |
6910 | */ | |
6911 | shrink_node(pgdat, sc); | |
6912 | ||
6913 | /* | |
6914 | * Fragmentation may mean that the system cannot be rebalanced for | |
6915 | * high-order allocations. If twice the allocation size has been | |
6916 | * reclaimed then recheck watermarks only at order-0 to prevent | |
6917 | * excessive reclaim. Assume that a process requested a high-order | |
6918 | * can direct reclaim/compact. | |
6919 | */ | |
6920 | if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) | |
6921 | sc->order = 0; | |
6922 | ||
6923 | /* account for progress from mm_account_reclaimed_pages() */ | |
6924 | return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim; | |
6925 | } | |
6926 | ||
6927 | /* Page allocator PCP high watermark is lowered if reclaim is active. */ | |
6928 | static inline void | |
6929 | update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) | |
6930 | { | |
6931 | int i; | |
6932 | struct zone *zone; | |
6933 | ||
6934 | for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { | |
6935 | if (active) | |
6936 | set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); | |
6937 | else | |
6938 | clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); | |
6939 | } | |
6940 | } | |
6941 | ||
6942 | static inline void | |
6943 | set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) | |
6944 | { | |
6945 | update_reclaim_active(pgdat, highest_zoneidx, true); | |
6946 | } | |
6947 | ||
6948 | static inline void | |
6949 | clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) | |
6950 | { | |
6951 | update_reclaim_active(pgdat, highest_zoneidx, false); | |
6952 | } | |
6953 | ||
6954 | /* | |
6955 | * For kswapd, balance_pgdat() will reclaim pages across a node from zones | |
6956 | * that are eligible for use by the caller until at least one zone is | |
6957 | * balanced. | |
6958 | * | |
6959 | * Returns the order kswapd finished reclaiming at. | |
6960 | * | |
6961 | * kswapd scans the zones in the highmem->normal->dma direction. It skips | |
6962 | * zones which have free_pages > high_wmark_pages(zone), but once a zone is | |
6963 | * found to have free_pages <= high_wmark_pages(zone), any page in that zone | |
6964 | * or lower is eligible for reclaim until at least one usable zone is | |
6965 | * balanced. | |
6966 | */ | |
6967 | static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) | |
6968 | { | |
6969 | int i; | |
6970 | unsigned long nr_soft_reclaimed; | |
6971 | unsigned long nr_soft_scanned; | |
6972 | unsigned long pflags; | |
6973 | unsigned long nr_boost_reclaim; | |
6974 | unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; | |
6975 | bool boosted; | |
6976 | struct zone *zone; | |
6977 | struct scan_control sc = { | |
6978 | .gfp_mask = GFP_KERNEL, | |
6979 | .order = order, | |
6980 | .may_unmap = 1, | |
6981 | }; | |
6982 | ||
6983 | set_task_reclaim_state(current, &sc.reclaim_state); | |
6984 | psi_memstall_enter(&pflags); | |
6985 | __fs_reclaim_acquire(_THIS_IP_); | |
6986 | ||
6987 | count_vm_event(PAGEOUTRUN); | |
6988 | ||
6989 | /* | |
6990 | * Account for the reclaim boost. Note that the zone boost is left in | |
6991 | * place so that parallel allocations that are near the watermark will | |
6992 | * stall or direct reclaim until kswapd is finished. | |
6993 | */ | |
6994 | nr_boost_reclaim = 0; | |
6995 | for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) { | |
6996 | nr_boost_reclaim += zone->watermark_boost; | |
6997 | zone_boosts[i] = zone->watermark_boost; | |
6998 | } | |
6999 | boosted = nr_boost_reclaim; | |
7000 | ||
7001 | restart: | |
7002 | set_reclaim_active(pgdat, highest_zoneidx); | |
7003 | sc.priority = DEF_PRIORITY; | |
7004 | do { | |
7005 | unsigned long nr_reclaimed = sc.nr_reclaimed; | |
7006 | bool raise_priority = true; | |
7007 | bool balanced; | |
7008 | bool ret; | |
7009 | bool was_frozen; | |
7010 | ||
7011 | sc.reclaim_idx = highest_zoneidx; | |
7012 | ||
7013 | /* | |
7014 | * If the number of buffer_heads exceeds the maximum allowed | |
7015 | * then consider reclaiming from all zones. This has a dual | |
7016 | * purpose -- on 64-bit systems it is expected that | |
7017 | * buffer_heads are stripped during active rotation. On 32-bit | |
7018 | * systems, highmem pages can pin lowmem memory and shrinking | |
7019 | * buffers can relieve lowmem pressure. Reclaim may still not | |
7020 | * go ahead if all eligible zones for the original allocation | |
7021 | * request are balanced to avoid excessive reclaim from kswapd. | |
7022 | */ | |
7023 | if (buffer_heads_over_limit) { | |
7024 | for (i = MAX_NR_ZONES - 1; i >= 0; i--) { | |
7025 | zone = pgdat->node_zones + i; | |
7026 | if (!managed_zone(zone)) | |
7027 | continue; | |
7028 | ||
7029 | sc.reclaim_idx = i; | |
7030 | break; | |
7031 | } | |
7032 | } | |
7033 | ||
7034 | /* | |
7035 | * If the pgdat is imbalanced then ignore boosting and preserve | |
7036 | * the watermarks for a later time and restart. Note that the | |
7037 | * zone watermarks will be still reset at the end of balancing | |
7038 | * on the grounds that the normal reclaim should be enough to | |
7039 | * re-evaluate if boosting is required when kswapd next wakes. | |
7040 | */ | |
7041 | balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); | |
7042 | if (!balanced && nr_boost_reclaim) { | |
7043 | nr_boost_reclaim = 0; | |
7044 | goto restart; | |
7045 | } | |
7046 | ||
7047 | /* | |
7048 | * If boosting is not active then only reclaim if there are no | |
7049 | * eligible zones. Note that sc.reclaim_idx is not used as | |
7050 | * buffer_heads_over_limit may have adjusted it. | |
7051 | */ | |
7052 | if (!nr_boost_reclaim && balanced) | |
7053 | goto out; | |
7054 | ||
7055 | /* Limit the priority of boosting to avoid reclaim writeback */ | |
7056 | if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) | |
7057 | raise_priority = false; | |
7058 | ||
7059 | /* | |
7060 | * Do not writeback or swap pages for boosted reclaim. The | |
7061 | * intent is to relieve pressure not issue sub-optimal IO | |
7062 | * from reclaim context. If no pages are reclaimed, the | |
7063 | * reclaim will be aborted. | |
7064 | */ | |
7065 | sc.may_writepage = !laptop_mode && !nr_boost_reclaim; | |
7066 | sc.may_swap = !nr_boost_reclaim; | |
7067 | ||
7068 | /* | |
7069 | * Do some background aging, to give pages a chance to be | |
7070 | * referenced before reclaiming. All pages are rotated | |
7071 | * regardless of classzone as this is about consistent aging. | |
7072 | */ | |
7073 | kswapd_age_node(pgdat, &sc); | |
7074 | ||
7075 | /* | |
7076 | * If we're getting trouble reclaiming, start doing writepage | |
7077 | * even in laptop mode. | |
7078 | */ | |
7079 | if (sc.priority < DEF_PRIORITY - 2) | |
7080 | sc.may_writepage = 1; | |
7081 | ||
7082 | /* Call soft limit reclaim before calling shrink_node. */ | |
7083 | sc.nr_scanned = 0; | |
7084 | nr_soft_scanned = 0; | |
7085 | nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order, | |
7086 | sc.gfp_mask, &nr_soft_scanned); | |
7087 | sc.nr_reclaimed += nr_soft_reclaimed; | |
7088 | ||
7089 | /* | |
7090 | * There should be no need to raise the scanning priority if | |
7091 | * enough pages are already being scanned that that high | |
7092 | * watermark would be met at 100% efficiency. | |
7093 | */ | |
7094 | if (kswapd_shrink_node(pgdat, &sc)) | |
7095 | raise_priority = false; | |
7096 | ||
7097 | /* | |
7098 | * If the low watermark is met there is no need for processes | |
7099 | * to be throttled on pfmemalloc_wait as they should not be | |
7100 | * able to safely make forward progress. Wake them | |
7101 | */ | |
7102 | if (waitqueue_active(&pgdat->pfmemalloc_wait) && | |
7103 | allow_direct_reclaim(pgdat)) | |
7104 | wake_up_all(&pgdat->pfmemalloc_wait); | |
7105 | ||
7106 | /* Check if kswapd should be suspending */ | |
7107 | __fs_reclaim_release(_THIS_IP_); | |
7108 | ret = kthread_freezable_should_stop(&was_frozen); | |
7109 | __fs_reclaim_acquire(_THIS_IP_); | |
7110 | if (was_frozen || ret) | |
7111 | break; | |
7112 | ||
7113 | /* | |
7114 | * Raise priority if scanning rate is too low or there was no | |
7115 | * progress in reclaiming pages | |
7116 | */ | |
7117 | nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; | |
7118 | nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); | |
7119 | ||
7120 | /* | |
7121 | * If reclaim made no progress for a boost, stop reclaim as | |
7122 | * IO cannot be queued and it could be an infinite loop in | |
7123 | * extreme circumstances. | |
7124 | */ | |
7125 | if (nr_boost_reclaim && !nr_reclaimed) | |
7126 | break; | |
7127 | ||
7128 | if (raise_priority || !nr_reclaimed) | |
7129 | sc.priority--; | |
7130 | } while (sc.priority >= 1); | |
7131 | ||
7132 | /* | |
7133 | * Restart only if it went through the priority loop all the way, | |
7134 | * but cache_trim_mode didn't work. | |
7135 | */ | |
7136 | if (!sc.nr_reclaimed && sc.priority < 1 && | |
7137 | !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) { | |
7138 | sc.no_cache_trim_mode = 1; | |
7139 | goto restart; | |
7140 | } | |
7141 | ||
7142 | if (!sc.nr_reclaimed) | |
7143 | pgdat->kswapd_failures++; | |
7144 | ||
7145 | out: | |
7146 | clear_reclaim_active(pgdat, highest_zoneidx); | |
7147 | ||
7148 | /* If reclaim was boosted, account for the reclaim done in this pass */ | |
7149 | if (boosted) { | |
7150 | unsigned long flags; | |
7151 | ||
7152 | for (i = 0; i <= highest_zoneidx; i++) { | |
7153 | if (!zone_boosts[i]) | |
7154 | continue; | |
7155 | ||
7156 | /* Increments are under the zone lock */ | |
7157 | zone = pgdat->node_zones + i; | |
7158 | spin_lock_irqsave(&zone->lock, flags); | |
7159 | zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); | |
7160 | spin_unlock_irqrestore(&zone->lock, flags); | |
7161 | } | |
7162 | ||
7163 | /* | |
7164 | * As there is now likely space, wakeup kcompact to defragment | |
7165 | * pageblocks. | |
7166 | */ | |
7167 | wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); | |
7168 | } | |
7169 | ||
7170 | snapshot_refaults(NULL, pgdat); | |
7171 | __fs_reclaim_release(_THIS_IP_); | |
7172 | psi_memstall_leave(&pflags); | |
7173 | set_task_reclaim_state(current, NULL); | |
7174 | ||
7175 | /* | |
7176 | * Return the order kswapd stopped reclaiming at as | |
7177 | * prepare_kswapd_sleep() takes it into account. If another caller | |
7178 | * entered the allocator slow path while kswapd was awake, order will | |
7179 | * remain at the higher level. | |
7180 | */ | |
7181 | return sc.order; | |
7182 | } | |
7183 | ||
7184 | /* | |
7185 | * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to | |
7186 | * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is | |
7187 | * not a valid index then either kswapd runs for first time or kswapd couldn't | |
7188 | * sleep after previous reclaim attempt (node is still unbalanced). In that | |
7189 | * case return the zone index of the previous kswapd reclaim cycle. | |
7190 | */ | |
7191 | static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, | |
7192 | enum zone_type prev_highest_zoneidx) | |
7193 | { | |
7194 | enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); | |
7195 | ||
7196 | return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; | |
7197 | } | |
7198 | ||
7199 | static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, | |
7200 | unsigned int highest_zoneidx) | |
7201 | { | |
7202 | long remaining = 0; | |
7203 | DEFINE_WAIT(wait); | |
7204 | ||
7205 | if (freezing(current) || kthread_should_stop()) | |
7206 | return; | |
7207 | ||
7208 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
7209 | ||
7210 | /* | |
7211 | * Try to sleep for a short interval. Note that kcompactd will only be | |
7212 | * woken if it is possible to sleep for a short interval. This is | |
7213 | * deliberate on the assumption that if reclaim cannot keep an | |
7214 | * eligible zone balanced that it's also unlikely that compaction will | |
7215 | * succeed. | |
7216 | */ | |
7217 | if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { | |
7218 | /* | |
7219 | * Compaction records what page blocks it recently failed to | |
7220 | * isolate pages from and skips them in the future scanning. | |
7221 | * When kswapd is going to sleep, it is reasonable to assume | |
7222 | * that pages and compaction may succeed so reset the cache. | |
7223 | */ | |
7224 | reset_isolation_suitable(pgdat); | |
7225 | ||
7226 | /* | |
7227 | * We have freed the memory, now we should compact it to make | |
7228 | * allocation of the requested order possible. | |
7229 | */ | |
7230 | wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); | |
7231 | ||
7232 | remaining = schedule_timeout(HZ/10); | |
7233 | ||
7234 | /* | |
7235 | * If woken prematurely then reset kswapd_highest_zoneidx and | |
7236 | * order. The values will either be from a wakeup request or | |
7237 | * the previous request that slept prematurely. | |
7238 | */ | |
7239 | if (remaining) { | |
7240 | WRITE_ONCE(pgdat->kswapd_highest_zoneidx, | |
7241 | kswapd_highest_zoneidx(pgdat, | |
7242 | highest_zoneidx)); | |
7243 | ||
7244 | if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) | |
7245 | WRITE_ONCE(pgdat->kswapd_order, reclaim_order); | |
7246 | } | |
7247 | ||
7248 | finish_wait(&pgdat->kswapd_wait, &wait); | |
7249 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
7250 | } | |
7251 | ||
7252 | /* | |
7253 | * After a short sleep, check if it was a premature sleep. If not, then | |
7254 | * go fully to sleep until explicitly woken up. | |
7255 | */ | |
7256 | if (!remaining && | |
7257 | prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { | |
7258 | trace_mm_vmscan_kswapd_sleep(pgdat->node_id); | |
7259 | ||
7260 | /* | |
7261 | * vmstat counters are not perfectly accurate and the estimated | |
7262 | * value for counters such as NR_FREE_PAGES can deviate from the | |
7263 | * true value by nr_online_cpus * threshold. To avoid the zone | |
7264 | * watermarks being breached while under pressure, we reduce the | |
7265 | * per-cpu vmstat threshold while kswapd is awake and restore | |
7266 | * them before going back to sleep. | |
7267 | */ | |
7268 | set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); | |
7269 | ||
7270 | if (!kthread_should_stop()) | |
7271 | schedule(); | |
7272 | ||
7273 | set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); | |
7274 | } else { | |
7275 | if (remaining) | |
7276 | count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); | |
7277 | else | |
7278 | count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); | |
7279 | } | |
7280 | finish_wait(&pgdat->kswapd_wait, &wait); | |
7281 | } | |
7282 | ||
7283 | /* | |
7284 | * The background pageout daemon, started as a kernel thread | |
7285 | * from the init process. | |
7286 | * | |
7287 | * This basically trickles out pages so that we have _some_ | |
7288 | * free memory available even if there is no other activity | |
7289 | * that frees anything up. This is needed for things like routing | |
7290 | * etc, where we otherwise might have all activity going on in | |
7291 | * asynchronous contexts that cannot page things out. | |
7292 | * | |
7293 | * If there are applications that are active memory-allocators | |
7294 | * (most normal use), this basically shouldn't matter. | |
7295 | */ | |
7296 | static int kswapd(void *p) | |
7297 | { | |
7298 | unsigned int alloc_order, reclaim_order; | |
7299 | unsigned int highest_zoneidx = MAX_NR_ZONES - 1; | |
7300 | pg_data_t *pgdat = (pg_data_t *)p; | |
7301 | struct task_struct *tsk = current; | |
7302 | ||
7303 | /* | |
7304 | * Tell the memory management that we're a "memory allocator", | |
7305 | * and that if we need more memory we should get access to it | |
7306 | * regardless (see "__alloc_pages()"). "kswapd" should | |
7307 | * never get caught in the normal page freeing logic. | |
7308 | * | |
7309 | * (Kswapd normally doesn't need memory anyway, but sometimes | |
7310 | * you need a small amount of memory in order to be able to | |
7311 | * page out something else, and this flag essentially protects | |
7312 | * us from recursively trying to free more memory as we're | |
7313 | * trying to free the first piece of memory in the first place). | |
7314 | */ | |
7315 | tsk->flags |= PF_MEMALLOC | PF_KSWAPD; | |
7316 | set_freezable(); | |
7317 | ||
7318 | WRITE_ONCE(pgdat->kswapd_order, 0); | |
7319 | WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); | |
7320 | atomic_set(&pgdat->nr_writeback_throttled, 0); | |
7321 | for ( ; ; ) { | |
7322 | bool was_frozen; | |
7323 | ||
7324 | alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); | |
7325 | highest_zoneidx = kswapd_highest_zoneidx(pgdat, | |
7326 | highest_zoneidx); | |
7327 | ||
7328 | kswapd_try_sleep: | |
7329 | kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, | |
7330 | highest_zoneidx); | |
7331 | ||
7332 | /* Read the new order and highest_zoneidx */ | |
7333 | alloc_order = READ_ONCE(pgdat->kswapd_order); | |
7334 | highest_zoneidx = kswapd_highest_zoneidx(pgdat, | |
7335 | highest_zoneidx); | |
7336 | WRITE_ONCE(pgdat->kswapd_order, 0); | |
7337 | WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); | |
7338 | ||
7339 | if (kthread_freezable_should_stop(&was_frozen)) | |
7340 | break; | |
7341 | ||
7342 | /* | |
7343 | * We can speed up thawing tasks if we don't call balance_pgdat | |
7344 | * after returning from the refrigerator | |
7345 | */ | |
7346 | if (was_frozen) | |
7347 | continue; | |
7348 | ||
7349 | /* | |
7350 | * Reclaim begins at the requested order but if a high-order | |
7351 | * reclaim fails then kswapd falls back to reclaiming for | |
7352 | * order-0. If that happens, kswapd will consider sleeping | |
7353 | * for the order it finished reclaiming at (reclaim_order) | |
7354 | * but kcompactd is woken to compact for the original | |
7355 | * request (alloc_order). | |
7356 | */ | |
7357 | trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, | |
7358 | alloc_order); | |
7359 | reclaim_order = balance_pgdat(pgdat, alloc_order, | |
7360 | highest_zoneidx); | |
7361 | if (reclaim_order < alloc_order) | |
7362 | goto kswapd_try_sleep; | |
7363 | } | |
7364 | ||
7365 | tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); | |
7366 | ||
7367 | return 0; | |
7368 | } | |
7369 | ||
7370 | /* | |
7371 | * A zone is low on free memory or too fragmented for high-order memory. If | |
7372 | * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's | |
7373 | * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim | |
7374 | * has failed or is not needed, still wake up kcompactd if only compaction is | |
7375 | * needed. | |
7376 | */ | |
7377 | void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, | |
7378 | enum zone_type highest_zoneidx) | |
7379 | { | |
7380 | pg_data_t *pgdat; | |
7381 | enum zone_type curr_idx; | |
7382 | ||
7383 | if (!managed_zone(zone)) | |
7384 | return; | |
7385 | ||
7386 | if (!cpuset_zone_allowed(zone, gfp_flags)) | |
7387 | return; | |
7388 | ||
7389 | pgdat = zone->zone_pgdat; | |
7390 | curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); | |
7391 | ||
7392 | if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) | |
7393 | WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); | |
7394 | ||
7395 | if (READ_ONCE(pgdat->kswapd_order) < order) | |
7396 | WRITE_ONCE(pgdat->kswapd_order, order); | |
7397 | ||
7398 | if (!waitqueue_active(&pgdat->kswapd_wait)) | |
7399 | return; | |
7400 | ||
7401 | /* Hopeless node, leave it to direct reclaim if possible */ | |
7402 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || | |
7403 | (pgdat_balanced(pgdat, order, highest_zoneidx) && | |
7404 | !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { | |
7405 | /* | |
7406 | * There may be plenty of free memory available, but it's too | |
7407 | * fragmented for high-order allocations. Wake up kcompactd | |
7408 | * and rely on compaction_suitable() to determine if it's | |
7409 | * needed. If it fails, it will defer subsequent attempts to | |
7410 | * ratelimit its work. | |
7411 | */ | |
7412 | if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) | |
7413 | wakeup_kcompactd(pgdat, order, highest_zoneidx); | |
7414 | return; | |
7415 | } | |
7416 | ||
7417 | trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, | |
7418 | gfp_flags); | |
7419 | wake_up_interruptible(&pgdat->kswapd_wait); | |
7420 | } | |
7421 | ||
7422 | #ifdef CONFIG_HIBERNATION | |
7423 | /* | |
7424 | * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of | |
7425 | * freed pages. | |
7426 | * | |
7427 | * Rather than trying to age LRUs the aim is to preserve the overall | |
7428 | * LRU order by reclaiming preferentially | |
7429 | * inactive > active > active referenced > active mapped | |
7430 | */ | |
7431 | unsigned long shrink_all_memory(unsigned long nr_to_reclaim) | |
7432 | { | |
7433 | struct scan_control sc = { | |
7434 | .nr_to_reclaim = nr_to_reclaim, | |
7435 | .gfp_mask = GFP_HIGHUSER_MOVABLE, | |
7436 | .reclaim_idx = MAX_NR_ZONES - 1, | |
7437 | .priority = DEF_PRIORITY, | |
7438 | .may_writepage = 1, | |
7439 | .may_unmap = 1, | |
7440 | .may_swap = 1, | |
7441 | .hibernation_mode = 1, | |
7442 | }; | |
7443 | struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); | |
7444 | unsigned long nr_reclaimed; | |
7445 | unsigned int noreclaim_flag; | |
7446 | ||
7447 | fs_reclaim_acquire(sc.gfp_mask); | |
7448 | noreclaim_flag = memalloc_noreclaim_save(); | |
7449 | set_task_reclaim_state(current, &sc.reclaim_state); | |
7450 | ||
7451 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | |
7452 | ||
7453 | set_task_reclaim_state(current, NULL); | |
7454 | memalloc_noreclaim_restore(noreclaim_flag); | |
7455 | fs_reclaim_release(sc.gfp_mask); | |
7456 | ||
7457 | return nr_reclaimed; | |
7458 | } | |
7459 | #endif /* CONFIG_HIBERNATION */ | |
7460 | ||
7461 | /* | |
7462 | * This kswapd start function will be called by init and node-hot-add. | |
7463 | */ | |
7464 | void __meminit kswapd_run(int nid) | |
7465 | { | |
7466 | pg_data_t *pgdat = NODE_DATA(nid); | |
7467 | ||
7468 | pgdat_kswapd_lock(pgdat); | |
7469 | if (!pgdat->kswapd) { | |
7470 | pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid); | |
7471 | if (IS_ERR(pgdat->kswapd)) { | |
7472 | /* failure at boot is fatal */ | |
7473 | pr_err("Failed to start kswapd on node %d,ret=%ld\n", | |
7474 | nid, PTR_ERR(pgdat->kswapd)); | |
7475 | BUG_ON(system_state < SYSTEM_RUNNING); | |
7476 | pgdat->kswapd = NULL; | |
7477 | } else { | |
7478 | wake_up_process(pgdat->kswapd); | |
7479 | } | |
7480 | } | |
7481 | pgdat_kswapd_unlock(pgdat); | |
7482 | } | |
7483 | ||
7484 | /* | |
7485 | * Called by memory hotplug when all memory in a node is offlined. Caller must | |
7486 | * be holding mem_hotplug_begin/done(). | |
7487 | */ | |
7488 | void __meminit kswapd_stop(int nid) | |
7489 | { | |
7490 | pg_data_t *pgdat = NODE_DATA(nid); | |
7491 | struct task_struct *kswapd; | |
7492 | ||
7493 | pgdat_kswapd_lock(pgdat); | |
7494 | kswapd = pgdat->kswapd; | |
7495 | if (kswapd) { | |
7496 | kthread_stop(kswapd); | |
7497 | pgdat->kswapd = NULL; | |
7498 | } | |
7499 | pgdat_kswapd_unlock(pgdat); | |
7500 | } | |
7501 | ||
7502 | static const struct ctl_table vmscan_sysctl_table[] = { | |
7503 | { | |
7504 | .procname = "swappiness", | |
7505 | .data = &vm_swappiness, | |
7506 | .maxlen = sizeof(vm_swappiness), | |
7507 | .mode = 0644, | |
7508 | .proc_handler = proc_dointvec_minmax, | |
7509 | .extra1 = SYSCTL_ZERO, | |
7510 | .extra2 = SYSCTL_TWO_HUNDRED, | |
7511 | }, | |
7512 | #ifdef CONFIG_NUMA | |
7513 | { | |
7514 | .procname = "zone_reclaim_mode", | |
7515 | .data = &node_reclaim_mode, | |
7516 | .maxlen = sizeof(node_reclaim_mode), | |
7517 | .mode = 0644, | |
7518 | .proc_handler = proc_dointvec_minmax, | |
7519 | .extra1 = SYSCTL_ZERO, | |
7520 | } | |
7521 | #endif | |
7522 | }; | |
7523 | ||
7524 | static int __init kswapd_init(void) | |
7525 | { | |
7526 | int nid; | |
7527 | ||
7528 | swap_setup(); | |
7529 | for_each_node_state(nid, N_MEMORY) | |
7530 | kswapd_run(nid); | |
7531 | register_sysctl_init("vm", vmscan_sysctl_table); | |
7532 | return 0; | |
7533 | } | |
7534 | ||
7535 | module_init(kswapd_init) | |
7536 | ||
7537 | #ifdef CONFIG_NUMA | |
7538 | /* | |
7539 | * Node reclaim mode | |
7540 | * | |
7541 | * If non-zero call node_reclaim when the number of free pages falls below | |
7542 | * the watermarks. | |
7543 | */ | |
7544 | int node_reclaim_mode __read_mostly; | |
7545 | ||
7546 | /* | |
7547 | * Priority for NODE_RECLAIM. This determines the fraction of pages | |
7548 | * of a node considered for each zone_reclaim. 4 scans 1/16th of | |
7549 | * a zone. | |
7550 | */ | |
7551 | #define NODE_RECLAIM_PRIORITY 4 | |
7552 | ||
7553 | /* | |
7554 | * Percentage of pages in a zone that must be unmapped for node_reclaim to | |
7555 | * occur. | |
7556 | */ | |
7557 | int sysctl_min_unmapped_ratio = 1; | |
7558 | ||
7559 | /* | |
7560 | * If the number of slab pages in a zone grows beyond this percentage then | |
7561 | * slab reclaim needs to occur. | |
7562 | */ | |
7563 | int sysctl_min_slab_ratio = 5; | |
7564 | ||
7565 | static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) | |
7566 | { | |
7567 | unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); | |
7568 | unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + | |
7569 | node_page_state(pgdat, NR_ACTIVE_FILE); | |
7570 | ||
7571 | /* | |
7572 | * It's possible for there to be more file mapped pages than | |
7573 | * accounted for by the pages on the file LRU lists because | |
7574 | * tmpfs pages accounted for as ANON can also be FILE_MAPPED | |
7575 | */ | |
7576 | return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; | |
7577 | } | |
7578 | ||
7579 | /* Work out how many page cache pages we can reclaim in this reclaim_mode */ | |
7580 | static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) | |
7581 | { | |
7582 | unsigned long nr_pagecache_reclaimable; | |
7583 | unsigned long delta = 0; | |
7584 | ||
7585 | /* | |
7586 | * If RECLAIM_UNMAP is set, then all file pages are considered | |
7587 | * potentially reclaimable. Otherwise, we have to worry about | |
7588 | * pages like swapcache and node_unmapped_file_pages() provides | |
7589 | * a better estimate | |
7590 | */ | |
7591 | if (node_reclaim_mode & RECLAIM_UNMAP) | |
7592 | nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); | |
7593 | else | |
7594 | nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); | |
7595 | ||
7596 | /* If we can't clean pages, remove dirty pages from consideration */ | |
7597 | if (!(node_reclaim_mode & RECLAIM_WRITE)) | |
7598 | delta += node_page_state(pgdat, NR_FILE_DIRTY); | |
7599 | ||
7600 | /* Watch for any possible underflows due to delta */ | |
7601 | if (unlikely(delta > nr_pagecache_reclaimable)) | |
7602 | delta = nr_pagecache_reclaimable; | |
7603 | ||
7604 | return nr_pagecache_reclaimable - delta; | |
7605 | } | |
7606 | ||
7607 | /* | |
7608 | * Try to free up some pages from this node through reclaim. | |
7609 | */ | |
7610 | static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) | |
7611 | { | |
7612 | /* Minimum pages needed in order to stay on node */ | |
7613 | const unsigned long nr_pages = 1 << order; | |
7614 | struct task_struct *p = current; | |
7615 | unsigned int noreclaim_flag; | |
7616 | struct scan_control sc = { | |
7617 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), | |
7618 | .gfp_mask = current_gfp_context(gfp_mask), | |
7619 | .order = order, | |
7620 | .priority = NODE_RECLAIM_PRIORITY, | |
7621 | .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), | |
7622 | .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), | |
7623 | .may_swap = 1, | |
7624 | .reclaim_idx = gfp_zone(gfp_mask), | |
7625 | }; | |
7626 | unsigned long pflags; | |
7627 | ||
7628 | trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, | |
7629 | sc.gfp_mask); | |
7630 | ||
7631 | cond_resched(); | |
7632 | psi_memstall_enter(&pflags); | |
7633 | delayacct_freepages_start(); | |
7634 | fs_reclaim_acquire(sc.gfp_mask); | |
7635 | /* | |
7636 | * We need to be able to allocate from the reserves for RECLAIM_UNMAP | |
7637 | */ | |
7638 | noreclaim_flag = memalloc_noreclaim_save(); | |
7639 | set_task_reclaim_state(p, &sc.reclaim_state); | |
7640 | ||
7641 | if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || | |
7642 | node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { | |
7643 | /* | |
7644 | * Free memory by calling shrink node with increasing | |
7645 | * priorities until we have enough memory freed. | |
7646 | */ | |
7647 | do { | |
7648 | shrink_node(pgdat, &sc); | |
7649 | } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); | |
7650 | } | |
7651 | ||
7652 | set_task_reclaim_state(p, NULL); | |
7653 | memalloc_noreclaim_restore(noreclaim_flag); | |
7654 | fs_reclaim_release(sc.gfp_mask); | |
7655 | psi_memstall_leave(&pflags); | |
7656 | delayacct_freepages_end(); | |
7657 | ||
7658 | trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); | |
7659 | ||
7660 | return sc.nr_reclaimed >= nr_pages; | |
7661 | } | |
7662 | ||
7663 | int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) | |
7664 | { | |
7665 | int ret; | |
7666 | ||
7667 | /* | |
7668 | * Node reclaim reclaims unmapped file backed pages and | |
7669 | * slab pages if we are over the defined limits. | |
7670 | * | |
7671 | * A small portion of unmapped file backed pages is needed for | |
7672 | * file I/O otherwise pages read by file I/O will be immediately | |
7673 | * thrown out if the node is overallocated. So we do not reclaim | |
7674 | * if less than a specified percentage of the node is used by | |
7675 | * unmapped file backed pages. | |
7676 | */ | |
7677 | if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && | |
7678 | node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= | |
7679 | pgdat->min_slab_pages) | |
7680 | return NODE_RECLAIM_FULL; | |
7681 | ||
7682 | /* | |
7683 | * Do not scan if the allocation should not be delayed. | |
7684 | */ | |
7685 | if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) | |
7686 | return NODE_RECLAIM_NOSCAN; | |
7687 | ||
7688 | /* | |
7689 | * Only run node reclaim on the local node or on nodes that do not | |
7690 | * have associated processors. This will favor the local processor | |
7691 | * over remote processors and spread off node memory allocations | |
7692 | * as wide as possible. | |
7693 | */ | |
7694 | if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) | |
7695 | return NODE_RECLAIM_NOSCAN; | |
7696 | ||
7697 | if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) | |
7698 | return NODE_RECLAIM_NOSCAN; | |
7699 | ||
7700 | ret = __node_reclaim(pgdat, gfp_mask, order); | |
7701 | clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags); | |
7702 | ||
7703 | if (ret) | |
7704 | count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS); | |
7705 | else | |
7706 | count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); | |
7707 | ||
7708 | return ret; | |
7709 | } | |
7710 | #endif | |
7711 | ||
7712 | /** | |
7713 | * check_move_unevictable_folios - Move evictable folios to appropriate zone | |
7714 | * lru list | |
7715 | * @fbatch: Batch of lru folios to check. | |
7716 | * | |
7717 | * Checks folios for evictability, if an evictable folio is in the unevictable | |
7718 | * lru list, moves it to the appropriate evictable lru list. This function | |
7719 | * should be only used for lru folios. | |
7720 | */ | |
7721 | void check_move_unevictable_folios(struct folio_batch *fbatch) | |
7722 | { | |
7723 | struct lruvec *lruvec = NULL; | |
7724 | int pgscanned = 0; | |
7725 | int pgrescued = 0; | |
7726 | int i; | |
7727 | ||
7728 | for (i = 0; i < fbatch->nr; i++) { | |
7729 | struct folio *folio = fbatch->folios[i]; | |
7730 | int nr_pages = folio_nr_pages(folio); | |
7731 | ||
7732 | pgscanned += nr_pages; | |
7733 | ||
7734 | /* block memcg migration while the folio moves between lrus */ | |
7735 | if (!folio_test_clear_lru(folio)) | |
7736 | continue; | |
7737 | ||
7738 | lruvec = folio_lruvec_relock_irq(folio, lruvec); | |
7739 | if (folio_evictable(folio) && folio_test_unevictable(folio)) { | |
7740 | lruvec_del_folio(lruvec, folio); | |
7741 | folio_clear_unevictable(folio); | |
7742 | lruvec_add_folio(lruvec, folio); | |
7743 | pgrescued += nr_pages; | |
7744 | } | |
7745 | folio_set_lru(folio); | |
7746 | } | |
7747 | ||
7748 | if (lruvec) { | |
7749 | __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); | |
7750 | __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); | |
7751 | unlock_page_lruvec_irq(lruvec); | |
7752 | } else if (pgscanned) { | |
7753 | count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); | |
7754 | } | |
7755 | } | |
7756 | EXPORT_SYMBOL_GPL(check_move_unevictable_folios); |