]> git.ipfire.org Git - thirdparty/git.git/blame_incremental - notes.c
The seventh batch
[thirdparty/git.git] / notes.c
... / ...
CommitLineData
1#define USE_THE_REPOSITORY_VARIABLE
2#define DISABLE_SIGN_COMPARE_WARNINGS
3
4#include "git-compat-util.h"
5#include "config.h"
6#include "environment.h"
7#include "hex.h"
8#include "notes.h"
9#include "object-file.h"
10#include "object-name.h"
11#include "object-store.h"
12#include "utf8.h"
13#include "strbuf.h"
14#include "tree-walk.h"
15#include "string-list.h"
16#include "refs.h"
17
18/*
19 * Use a non-balancing simple 16-tree structure with struct int_node as
20 * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
21 * 16-array of pointers to its children.
22 * The bottom 2 bits of each pointer is used to identify the pointer type
23 * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
24 * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
25 * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
26 * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
27 *
28 * The root node is a statically allocated struct int_node.
29 */
30struct int_node {
31 void *a[16];
32};
33
34/*
35 * Leaf nodes come in two variants, note entries and subtree entries,
36 * distinguished by the LSb of the leaf node pointer (see above).
37 * As a note entry, the key is the SHA1 of the referenced object, and the
38 * value is the SHA1 of the note object.
39 * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
40 * referenced object, using the last byte of the key to store the length of
41 * the prefix. The value is the SHA1 of the tree object containing the notes
42 * subtree.
43 */
44struct leaf_node {
45 struct object_id key_oid;
46 struct object_id val_oid;
47};
48
49/*
50 * A notes tree may contain entries that are not notes, and that do not follow
51 * the naming conventions of notes. There are typically none/few of these, but
52 * we still need to keep track of them. Keep a simple linked list sorted alpha-
53 * betically on the non-note path. The list is populated when parsing tree
54 * objects in load_subtree(), and the non-notes are correctly written back into
55 * the tree objects produced by write_notes_tree().
56 */
57struct non_note {
58 struct non_note *next; /* grounded (last->next == NULL) */
59 char *path;
60 unsigned int mode;
61 struct object_id oid;
62};
63
64#define PTR_TYPE_NULL 0
65#define PTR_TYPE_INTERNAL 1
66#define PTR_TYPE_NOTE 2
67#define PTR_TYPE_SUBTREE 3
68
69#define GET_PTR_TYPE(ptr) ((uintptr_t) (ptr) & 3)
70#define CLR_PTR_TYPE(ptr) ((void *) ((uintptr_t) (ptr) & ~3))
71#define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
72
73#define GET_NIBBLE(n, sha1) ((((sha1)[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
74
75#define KEY_INDEX (the_hash_algo->rawsz - 1)
76#define FANOUT_PATH_SEPARATORS (the_hash_algo->rawsz - 1)
77#define FANOUT_PATH_SEPARATORS_MAX ((GIT_MAX_HEXSZ / 2) - 1)
78#define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
79 (memcmp(key_sha1, subtree_sha1, subtree_sha1[KEY_INDEX]))
80
81struct notes_tree default_notes_tree;
82
83static struct string_list display_notes_refs = STRING_LIST_INIT_NODUP;
84static struct notes_tree **display_notes_trees;
85
86static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
87 struct int_node *node, unsigned int n);
88
89/*
90 * Search the tree until the appropriate location for the given key is found:
91 * 1. Start at the root node, with n = 0
92 * 2. If a[0] at the current level is a matching subtree entry, unpack that
93 * subtree entry and remove it; restart search at the current level.
94 * 3. Use the nth nibble of the key as an index into a:
95 * - If a[n] is an int_node, recurse from #2 into that node and increment n
96 * - If a matching subtree entry, unpack that subtree entry (and remove it);
97 * restart search at the current level.
98 * - Otherwise, we have found one of the following:
99 * - a subtree entry which does not match the key
100 * - a note entry which may or may not match the key
101 * - an unused leaf node (NULL)
102 * In any case, set *tree and *n, and return pointer to the tree location.
103 */
104static void **note_tree_search(struct notes_tree *t, struct int_node **tree,
105 unsigned char *n, const unsigned char *key_sha1)
106{
107 struct leaf_node *l;
108 unsigned char i;
109 void *p = (*tree)->a[0];
110
111 if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
112 l = (struct leaf_node *) CLR_PTR_TYPE(p);
113 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_oid.hash)) {
114 /* unpack tree and resume search */
115 (*tree)->a[0] = NULL;
116 load_subtree(t, l, *tree, *n);
117 free(l);
118 return note_tree_search(t, tree, n, key_sha1);
119 }
120 }
121
122 i = GET_NIBBLE(*n, key_sha1);
123 p = (*tree)->a[i];
124 switch (GET_PTR_TYPE(p)) {
125 case PTR_TYPE_INTERNAL:
126 *tree = CLR_PTR_TYPE(p);
127 (*n)++;
128 return note_tree_search(t, tree, n, key_sha1);
129 case PTR_TYPE_SUBTREE:
130 l = (struct leaf_node *) CLR_PTR_TYPE(p);
131 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_oid.hash)) {
132 /* unpack tree and resume search */
133 (*tree)->a[i] = NULL;
134 load_subtree(t, l, *tree, *n);
135 free(l);
136 return note_tree_search(t, tree, n, key_sha1);
137 }
138 /* fall through */
139 default:
140 return &((*tree)->a[i]);
141 }
142}
143
144/*
145 * To find a leaf_node:
146 * Search to the tree location appropriate for the given key:
147 * If a note entry with matching key, return the note entry, else return NULL.
148 */
149static struct leaf_node *note_tree_find(struct notes_tree *t,
150 struct int_node *tree, unsigned char n,
151 const unsigned char *key_sha1)
152{
153 void **p = note_tree_search(t, &tree, &n, key_sha1);
154 if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
155 struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
156 if (hasheq(key_sha1, l->key_oid.hash, the_repository->hash_algo))
157 return l;
158 }
159 return NULL;
160}
161
162/*
163 * How to consolidate an int_node:
164 * If there are > 1 non-NULL entries, give up and return non-zero.
165 * Otherwise replace the int_node at the given index in the given parent node
166 * with the only NOTE entry (or a NULL entry if no entries) from the given
167 * tree, and return 0.
168 */
169static int note_tree_consolidate(struct int_node *tree,
170 struct int_node *parent, unsigned char index)
171{
172 unsigned int i;
173 void *p = NULL;
174
175 assert(tree && parent);
176 assert(CLR_PTR_TYPE(parent->a[index]) == tree);
177
178 for (i = 0; i < 16; i++) {
179 if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
180 if (p) /* more than one entry */
181 return -2;
182 p = tree->a[i];
183 }
184 }
185
186 if (p && (GET_PTR_TYPE(p) != PTR_TYPE_NOTE))
187 return -2;
188 /* replace tree with p in parent[index] */
189 parent->a[index] = p;
190 free(tree);
191 return 0;
192}
193
194/*
195 * To remove a leaf_node:
196 * Search to the tree location appropriate for the given leaf_node's key:
197 * - If location does not hold a matching entry, abort and do nothing.
198 * - Copy the matching entry's value into the given entry.
199 * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
200 * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
201 */
202static void note_tree_remove(struct notes_tree *t,
203 struct int_node *tree, unsigned char n,
204 struct leaf_node *entry)
205{
206 struct leaf_node *l;
207 struct int_node *parent_stack[GIT_MAX_RAWSZ];
208 unsigned char i, j;
209 void **p = note_tree_search(t, &tree, &n, entry->key_oid.hash);
210
211 assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
212 if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
213 return; /* type mismatch, nothing to remove */
214 l = (struct leaf_node *) CLR_PTR_TYPE(*p);
215 if (!oideq(&l->key_oid, &entry->key_oid))
216 return; /* key mismatch, nothing to remove */
217
218 /* we have found a matching entry */
219 oidcpy(&entry->val_oid, &l->val_oid);
220 free(l);
221 *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);
222
223 /* consolidate this tree level, and parent levels, if possible */
224 if (!n)
225 return; /* cannot consolidate top level */
226 /* first, build stack of ancestors between root and current node */
227 parent_stack[0] = t->root;
228 for (i = 0; i < n; i++) {
229 j = GET_NIBBLE(i, entry->key_oid.hash);
230 parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
231 }
232 assert(i == n && parent_stack[i] == tree);
233 /* next, unwind stack until note_tree_consolidate() is done */
234 while (i > 0 &&
235 !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
236 GET_NIBBLE(i - 1, entry->key_oid.hash)))
237 i--;
238}
239
240/*
241 * To insert a leaf_node:
242 * Search to the tree location appropriate for the given leaf_node's key:
243 * - If location is unused (NULL), store the tweaked pointer directly there
244 * - If location holds a note entry that matches the note-to-be-inserted, then
245 * combine the two notes (by calling the given combine_notes function).
246 * - If location holds a note entry that matches the subtree-to-be-inserted,
247 * then unpack the subtree-to-be-inserted into the location.
248 * - If location holds a matching subtree entry, unpack the subtree at that
249 * location, and restart the insert operation from that level.
250 * - Else, create a new int_node, holding both the node-at-location and the
251 * node-to-be-inserted, and store the new int_node into the location.
252 */
253static int note_tree_insert(struct notes_tree *t, struct int_node *tree,
254 unsigned char n, struct leaf_node *entry, unsigned char type,
255 combine_notes_fn combine_notes)
256{
257 struct int_node *new_node;
258 struct leaf_node *l;
259 void **p = note_tree_search(t, &tree, &n, entry->key_oid.hash);
260 int ret = 0;
261
262 assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
263 l = (struct leaf_node *) CLR_PTR_TYPE(*p);
264 switch (GET_PTR_TYPE(*p)) {
265 case PTR_TYPE_NULL:
266 assert(!*p);
267 if (is_null_oid(&entry->val_oid))
268 free(entry);
269 else
270 *p = SET_PTR_TYPE(entry, type);
271 return 0;
272 case PTR_TYPE_NOTE:
273 switch (type) {
274 case PTR_TYPE_NOTE:
275 if (oideq(&l->key_oid, &entry->key_oid)) {
276 /* skip concatenation if l == entry */
277 if (oideq(&l->val_oid, &entry->val_oid)) {
278 free(entry);
279 return 0;
280 }
281
282 ret = combine_notes(&l->val_oid,
283 &entry->val_oid);
284 if (!ret && is_null_oid(&l->val_oid))
285 note_tree_remove(t, tree, n, entry);
286 free(entry);
287 return ret;
288 }
289 break;
290 case PTR_TYPE_SUBTREE:
291 if (!SUBTREE_SHA1_PREFIXCMP(l->key_oid.hash,
292 entry->key_oid.hash)) {
293 /* unpack 'entry' */
294 load_subtree(t, entry, tree, n);
295 free(entry);
296 return 0;
297 }
298 break;
299 }
300 break;
301 case PTR_TYPE_SUBTREE:
302 if (!SUBTREE_SHA1_PREFIXCMP(entry->key_oid.hash, l->key_oid.hash)) {
303 /* unpack 'l' and restart insert */
304 *p = NULL;
305 load_subtree(t, l, tree, n);
306 free(l);
307 return note_tree_insert(t, tree, n, entry, type,
308 combine_notes);
309 }
310 break;
311 }
312
313 /* non-matching leaf_node */
314 assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
315 GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
316 if (is_null_oid(&entry->val_oid)) { /* skip insertion of empty note */
317 free(entry);
318 return 0;
319 }
320 new_node = (struct int_node *) xcalloc(1, sizeof(struct int_node));
321 ret = note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p),
322 combine_notes);
323 if (ret)
324 return ret;
325 *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
326 return note_tree_insert(t, new_node, n + 1, entry, type, combine_notes);
327}
328
329/* Free the entire notes data contained in the given tree */
330static void note_tree_free(struct int_node *tree)
331{
332 unsigned int i;
333 for (i = 0; i < 16; i++) {
334 void *p = tree->a[i];
335 switch (GET_PTR_TYPE(p)) {
336 case PTR_TYPE_INTERNAL:
337 note_tree_free(CLR_PTR_TYPE(p));
338 /* fall through */
339 case PTR_TYPE_NOTE:
340 case PTR_TYPE_SUBTREE:
341 free(CLR_PTR_TYPE(p));
342 }
343 }
344}
345
346static int non_note_cmp(const struct non_note *a, const struct non_note *b)
347{
348 return strcmp(a->path, b->path);
349}
350
351/* note: takes ownership of path string */
352static void add_non_note(struct notes_tree *t, char *path,
353 unsigned int mode, const unsigned char *sha1)
354{
355 struct non_note *p = t->prev_non_note, *n;
356 n = (struct non_note *) xmalloc(sizeof(struct non_note));
357 n->next = NULL;
358 n->path = path;
359 n->mode = mode;
360 oidread(&n->oid, sha1, the_repository->hash_algo);
361 t->prev_non_note = n;
362
363 if (!t->first_non_note) {
364 t->first_non_note = n;
365 return;
366 }
367
368 if (non_note_cmp(p, n) < 0)
369 ; /* do nothing */
370 else if (non_note_cmp(t->first_non_note, n) <= 0)
371 p = t->first_non_note;
372 else {
373 /* n sorts before t->first_non_note */
374 n->next = t->first_non_note;
375 t->first_non_note = n;
376 return;
377 }
378
379 /* n sorts equal or after p */
380 while (p->next && non_note_cmp(p->next, n) <= 0)
381 p = p->next;
382
383 if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */
384 assert(strcmp(p->path, n->path) == 0);
385 p->mode = n->mode;
386 oidcpy(&p->oid, &n->oid);
387 free(n);
388 t->prev_non_note = p;
389 return;
390 }
391
392 /* n sorts between p and p->next */
393 n->next = p->next;
394 p->next = n;
395}
396
397static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
398 struct int_node *node, unsigned int n)
399{
400 struct object_id object_oid;
401 size_t prefix_len;
402 void *buf;
403 struct tree_desc desc;
404 struct name_entry entry;
405 const unsigned hashsz = the_hash_algo->rawsz;
406
407 buf = fill_tree_descriptor(the_repository, &desc, &subtree->val_oid);
408 if (!buf)
409 die("Could not read %s for notes-index",
410 oid_to_hex(&subtree->val_oid));
411
412 prefix_len = subtree->key_oid.hash[KEY_INDEX];
413 if (prefix_len >= hashsz)
414 BUG("prefix_len (%"PRIuMAX") is out of range", (uintmax_t)prefix_len);
415 if (prefix_len * 2 < n)
416 BUG("prefix_len (%"PRIuMAX") is too small", (uintmax_t)prefix_len);
417 memcpy(object_oid.hash, subtree->key_oid.hash, prefix_len);
418 while (tree_entry(&desc, &entry)) {
419 unsigned char type;
420 struct leaf_node *l;
421 size_t path_len = strlen(entry.path);
422
423 if (path_len == 2 * (hashsz - prefix_len)) {
424 /* This is potentially the remainder of the SHA-1 */
425
426 if (!S_ISREG(entry.mode))
427 /* notes must be blobs */
428 goto handle_non_note;
429
430 if (hex_to_bytes(object_oid.hash + prefix_len, entry.path,
431 hashsz - prefix_len))
432 goto handle_non_note; /* entry.path is not a SHA1 */
433
434 memset(object_oid.hash + hashsz, 0, GIT_MAX_RAWSZ - hashsz);
435
436 type = PTR_TYPE_NOTE;
437 } else if (path_len == 2) {
438 /* This is potentially an internal node */
439 size_t len = prefix_len;
440
441 if (!S_ISDIR(entry.mode))
442 /* internal nodes must be trees */
443 goto handle_non_note;
444
445 if (hex_to_bytes(object_oid.hash + len++, entry.path, 1))
446 goto handle_non_note; /* entry.path is not a SHA1 */
447
448 /*
449 * Pad the rest of the SHA-1 with zeros,
450 * except for the last byte, where we write
451 * the length:
452 */
453 memset(object_oid.hash + len, 0, hashsz - len - 1);
454 object_oid.hash[KEY_INDEX] = (unsigned char)len;
455
456 type = PTR_TYPE_SUBTREE;
457 } else {
458 /* This can't be part of a note */
459 goto handle_non_note;
460 }
461
462 CALLOC_ARRAY(l, 1);
463 oidcpy(&l->key_oid, &object_oid);
464 oidcpy(&l->val_oid, &entry.oid);
465 oid_set_algo(&l->key_oid, the_hash_algo);
466 oid_set_algo(&l->val_oid, the_hash_algo);
467 if (note_tree_insert(t, node, n, l, type,
468 combine_notes_concatenate))
469 die("Failed to load %s %s into notes tree "
470 "from %s",
471 type == PTR_TYPE_NOTE ? "note" : "subtree",
472 oid_to_hex(&object_oid), t->ref);
473
474 continue;
475
476handle_non_note:
477 /*
478 * Determine full path for this non-note entry. The
479 * filename is already found in entry.path, but the
480 * directory part of the path must be deduced from the
481 * subtree containing this entry based on our
482 * knowledge that the overall notes tree follows a
483 * strict byte-based progressive fanout structure
484 * (i.e. using 2/38, 2/2/36, etc. fanouts).
485 */
486 {
487 struct strbuf non_note_path = STRBUF_INIT;
488 const char *q = oid_to_hex(&subtree->key_oid);
489 size_t i;
490 for (i = 0; i < prefix_len; i++) {
491 strbuf_addch(&non_note_path, *q++);
492 strbuf_addch(&non_note_path, *q++);
493 strbuf_addch(&non_note_path, '/');
494 }
495 strbuf_addstr(&non_note_path, entry.path);
496 oid_set_algo(&entry.oid, the_hash_algo);
497 add_non_note(t, strbuf_detach(&non_note_path, NULL),
498 entry.mode, entry.oid.hash);
499 }
500 }
501 free(buf);
502}
503
504/*
505 * Determine optimal on-disk fanout for this part of the notes tree
506 *
507 * Given a (sub)tree and the level in the internal tree structure, determine
508 * whether or not the given existing fanout should be expanded for this
509 * (sub)tree.
510 *
511 * Values of the 'fanout' variable:
512 * - 0: No fanout (all notes are stored directly in the root notes tree)
513 * - 1: 2/38 fanout
514 * - 2: 2/2/36 fanout
515 * - 3: 2/2/2/34 fanout
516 * etc.
517 */
518static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
519 unsigned char fanout)
520{
521 /*
522 * The following is a simple heuristic that works well in practice:
523 * For each even-numbered 16-tree level (remember that each on-disk
524 * fanout level corresponds to _two_ 16-tree levels), peek at all 16
525 * entries at that tree level. If all of them are either int_nodes or
526 * subtree entries, then there are likely plenty of notes below this
527 * level, so we return an incremented fanout.
528 */
529 unsigned int i;
530 if ((n % 2) || (n > 2 * fanout))
531 return fanout;
532 for (i = 0; i < 16; i++) {
533 switch (GET_PTR_TYPE(tree->a[i])) {
534 case PTR_TYPE_SUBTREE:
535 case PTR_TYPE_INTERNAL:
536 continue;
537 default:
538 return fanout;
539 }
540 }
541 return fanout + 1;
542}
543
544/* hex oid + '/' between each pair of hex digits + NUL */
545#define FANOUT_PATH_MAX GIT_MAX_HEXSZ + FANOUT_PATH_SEPARATORS_MAX + 1
546
547static void construct_path_with_fanout(const unsigned char *hash,
548 unsigned char fanout, char *path)
549{
550 unsigned int i = 0, j = 0;
551 const char *hex_hash = hash_to_hex(hash);
552 assert(fanout < the_hash_algo->rawsz);
553 while (fanout) {
554 path[i++] = hex_hash[j++];
555 path[i++] = hex_hash[j++];
556 path[i++] = '/';
557 fanout--;
558 }
559 xsnprintf(path + i, FANOUT_PATH_MAX - i, "%s", hex_hash + j);
560}
561
562static int for_each_note_helper(struct notes_tree *t, struct int_node *tree,
563 unsigned char n, unsigned char fanout, int flags,
564 each_note_fn fn, void *cb_data)
565{
566 unsigned int i;
567 void *p;
568 int ret = 0;
569 struct leaf_node *l;
570 static char path[FANOUT_PATH_MAX];
571
572 fanout = determine_fanout(tree, n, fanout);
573 for (i = 0; i < 16; i++) {
574redo:
575 p = tree->a[i];
576 switch (GET_PTR_TYPE(p)) {
577 case PTR_TYPE_INTERNAL:
578 /* recurse into int_node */
579 ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1,
580 fanout, flags, fn, cb_data);
581 break;
582 case PTR_TYPE_SUBTREE:
583 l = (struct leaf_node *) CLR_PTR_TYPE(p);
584 /*
585 * Subtree entries in the note tree represent parts of
586 * the note tree that have not yet been explored. There
587 * is a direct relationship between subtree entries at
588 * level 'n' in the tree, and the 'fanout' variable:
589 * Subtree entries at level 'n < 2 * fanout' should be
590 * preserved, since they correspond exactly to a fanout
591 * directory in the on-disk structure. However, subtree
592 * entries at level 'n >= 2 * fanout' should NOT be
593 * preserved, but rather consolidated into the above
594 * notes tree level. We achieve this by unconditionally
595 * unpacking subtree entries that exist below the
596 * threshold level at 'n = 2 * fanout'.
597 */
598 if (n < 2 * fanout &&
599 flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
600 /* invoke callback with subtree */
601 unsigned int path_len =
602 l->key_oid.hash[KEY_INDEX] * 2 + fanout;
603 assert(path_len < FANOUT_PATH_MAX - 1);
604 construct_path_with_fanout(l->key_oid.hash,
605 fanout,
606 path);
607 /* Create trailing slash, if needed */
608 if (path[path_len - 1] != '/')
609 path[path_len++] = '/';
610 path[path_len] = '\0';
611 ret = fn(&l->key_oid, &l->val_oid,
612 path,
613 cb_data);
614 }
615 if (n >= 2 * fanout ||
616 !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
617 /* unpack subtree and resume traversal */
618 tree->a[i] = NULL;
619 load_subtree(t, l, tree, n);
620 free(l);
621 goto redo;
622 }
623 break;
624 case PTR_TYPE_NOTE:
625 l = (struct leaf_node *) CLR_PTR_TYPE(p);
626 construct_path_with_fanout(l->key_oid.hash, fanout,
627 path);
628 ret = fn(&l->key_oid, &l->val_oid, path,
629 cb_data);
630 break;
631 }
632 if (ret)
633 return ret;
634 }
635 return 0;
636}
637
638struct tree_write_stack {
639 struct tree_write_stack *next;
640 struct strbuf buf;
641 char path[2]; /* path to subtree in next, if any */
642};
643
644static inline int matches_tree_write_stack(struct tree_write_stack *tws,
645 const char *full_path)
646{
647 return full_path[0] == tws->path[0] &&
648 full_path[1] == tws->path[1] &&
649 full_path[2] == '/';
650}
651
652static void write_tree_entry(struct strbuf *buf, unsigned int mode,
653 const char *path, unsigned int path_len, const
654 unsigned char *hash)
655{
656 strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0');
657 strbuf_add(buf, hash, the_hash_algo->rawsz);
658}
659
660static void tree_write_stack_init_subtree(struct tree_write_stack *tws,
661 const char *path)
662{
663 struct tree_write_stack *n;
664 assert(!tws->next);
665 assert(tws->path[0] == '\0' && tws->path[1] == '\0');
666 n = (struct tree_write_stack *)
667 xmalloc(sizeof(struct tree_write_stack));
668 n->next = NULL;
669 strbuf_init(&n->buf, 256 * (32 + the_hash_algo->hexsz)); /* assume 256 entries per tree */
670 n->path[0] = n->path[1] = '\0';
671 tws->next = n;
672 tws->path[0] = path[0];
673 tws->path[1] = path[1];
674}
675
676static int tree_write_stack_finish_subtree(struct tree_write_stack *tws)
677{
678 int ret;
679 struct tree_write_stack *n = tws->next;
680 struct object_id s;
681 if (n) {
682 ret = tree_write_stack_finish_subtree(n);
683 if (ret)
684 return ret;
685 ret = write_object_file(n->buf.buf, n->buf.len, OBJ_TREE, &s);
686 if (ret)
687 return ret;
688 strbuf_release(&n->buf);
689 free(n);
690 tws->next = NULL;
691 write_tree_entry(&tws->buf, 040000, tws->path, 2, s.hash);
692 tws->path[0] = tws->path[1] = '\0';
693 }
694 return 0;
695}
696
697static int write_each_note_helper(struct tree_write_stack *tws,
698 const char *path, unsigned int mode,
699 const struct object_id *oid)
700{
701 size_t path_len = strlen(path);
702 unsigned int n = 0;
703 int ret;
704
705 /* Determine common part of tree write stack */
706 while (tws && 3 * n < path_len &&
707 matches_tree_write_stack(tws, path + 3 * n)) {
708 n++;
709 tws = tws->next;
710 }
711
712 /* tws point to last matching tree_write_stack entry */
713 ret = tree_write_stack_finish_subtree(tws);
714 if (ret)
715 return ret;
716
717 /* Start subtrees needed to satisfy path */
718 while (3 * n + 2 < path_len && path[3 * n + 2] == '/') {
719 tree_write_stack_init_subtree(tws, path + 3 * n);
720 n++;
721 tws = tws->next;
722 }
723
724 /* There should be no more directory components in the given path */
725 assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL);
726
727 /* Finally add given entry to the current tree object */
728 write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n),
729 oid->hash);
730
731 return 0;
732}
733
734struct write_each_note_data {
735 struct tree_write_stack *root;
736 struct non_note **nn_list;
737 struct non_note *nn_prev;
738};
739
740static int write_each_non_note_until(const char *note_path,
741 struct write_each_note_data *d)
742{
743 struct non_note *p = d->nn_prev;
744 struct non_note *n = p ? p->next : *d->nn_list;
745 int cmp = 0, ret;
746 while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) {
747 if (note_path && cmp == 0)
748 ; /* do nothing, prefer note to non-note */
749 else {
750 ret = write_each_note_helper(d->root, n->path, n->mode,
751 &n->oid);
752 if (ret)
753 return ret;
754 }
755 p = n;
756 n = n->next;
757 }
758 d->nn_prev = p;
759 return 0;
760}
761
762static int write_each_note(const struct object_id *object_oid UNUSED,
763 const struct object_id *note_oid, char *note_path,
764 void *cb_data)
765{
766 struct write_each_note_data *d =
767 (struct write_each_note_data *) cb_data;
768 size_t note_path_len = strlen(note_path);
769 unsigned int mode = 0100644;
770
771 if (note_path[note_path_len - 1] == '/') {
772 /* subtree entry */
773 note_path_len--;
774 note_path[note_path_len] = '\0';
775 mode = 040000;
776 }
777 assert(note_path_len <= GIT_MAX_HEXSZ + FANOUT_PATH_SEPARATORS);
778
779 /* Weave non-note entries into note entries */
780 return write_each_non_note_until(note_path, d) ||
781 write_each_note_helper(d->root, note_path, mode, note_oid);
782}
783
784struct note_delete_list {
785 struct note_delete_list *next;
786 const unsigned char *sha1;
787};
788
789static int prune_notes_helper(const struct object_id *object_oid,
790 const struct object_id *note_oid UNUSED,
791 char *note_path UNUSED,
792 void *cb_data)
793{
794 struct note_delete_list **l = (struct note_delete_list **) cb_data;
795 struct note_delete_list *n;
796
797 if (has_object(the_repository, object_oid,
798 HAS_OBJECT_RECHECK_PACKED | HAS_OBJECT_FETCH_PROMISOR))
799 return 0; /* nothing to do for this note */
800
801 /* failed to find object => prune this note */
802 n = (struct note_delete_list *) xmalloc(sizeof(*n));
803 n->next = *l;
804 n->sha1 = object_oid->hash;
805 *l = n;
806 return 0;
807}
808
809int combine_notes_concatenate(struct object_id *cur_oid,
810 const struct object_id *new_oid)
811{
812 char *cur_msg = NULL, *new_msg = NULL, *buf;
813 unsigned long cur_len, new_len, buf_len;
814 enum object_type cur_type, new_type;
815 int ret;
816
817 /* read in both note blob objects */
818 if (!is_null_oid(new_oid))
819 new_msg = repo_read_object_file(the_repository, new_oid,
820 &new_type, &new_len);
821 if (!new_msg || !new_len || new_type != OBJ_BLOB) {
822 free(new_msg);
823 return 0;
824 }
825 if (!is_null_oid(cur_oid))
826 cur_msg = repo_read_object_file(the_repository, cur_oid,
827 &cur_type, &cur_len);
828 if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
829 free(cur_msg);
830 free(new_msg);
831 oidcpy(cur_oid, new_oid);
832 return 0;
833 }
834
835 /* we will separate the notes by two newlines anyway */
836 if (cur_msg[cur_len - 1] == '\n')
837 cur_len--;
838
839 /* concatenate cur_msg and new_msg into buf */
840 buf_len = cur_len + 2 + new_len;
841 buf = (char *) xmalloc(buf_len);
842 memcpy(buf, cur_msg, cur_len);
843 buf[cur_len] = '\n';
844 buf[cur_len + 1] = '\n';
845 memcpy(buf + cur_len + 2, new_msg, new_len);
846 free(cur_msg);
847 free(new_msg);
848
849 /* create a new blob object from buf */
850 ret = write_object_file(buf, buf_len, OBJ_BLOB, cur_oid);
851 free(buf);
852 return ret;
853}
854
855int combine_notes_overwrite(struct object_id *cur_oid,
856 const struct object_id *new_oid)
857{
858 oidcpy(cur_oid, new_oid);
859 return 0;
860}
861
862int combine_notes_ignore(struct object_id *cur_oid UNUSED,
863 const struct object_id *new_oid UNUSED)
864{
865 return 0;
866}
867
868/*
869 * Add the lines from the named object to list, with trailing
870 * newlines removed.
871 */
872static int string_list_add_note_lines(struct string_list *list,
873 const struct object_id *oid)
874{
875 char *data;
876 unsigned long len;
877 enum object_type t;
878
879 if (is_null_oid(oid))
880 return 0;
881
882 /* read_sha1_file NUL-terminates */
883 data = repo_read_object_file(the_repository, oid, &t, &len);
884 if (t != OBJ_BLOB || !data || !len) {
885 free(data);
886 return t != OBJ_BLOB || !data;
887 }
888
889 /*
890 * If the last line of the file is EOL-terminated, this will
891 * add an empty string to the list. But it will be removed
892 * later, along with any empty strings that came from empty
893 * lines within the file.
894 */
895 string_list_split(list, data, '\n', -1);
896 free(data);
897 return 0;
898}
899
900static int string_list_join_lines_helper(struct string_list_item *item,
901 void *cb_data)
902{
903 struct strbuf *buf = cb_data;
904 strbuf_addstr(buf, item->string);
905 strbuf_addch(buf, '\n');
906 return 0;
907}
908
909int combine_notes_cat_sort_uniq(struct object_id *cur_oid,
910 const struct object_id *new_oid)
911{
912 struct string_list sort_uniq_list = STRING_LIST_INIT_DUP;
913 struct strbuf buf = STRBUF_INIT;
914 int ret = 1;
915
916 /* read both note blob objects into unique_lines */
917 if (string_list_add_note_lines(&sort_uniq_list, cur_oid))
918 goto out;
919 if (string_list_add_note_lines(&sort_uniq_list, new_oid))
920 goto out;
921 string_list_remove_empty_items(&sort_uniq_list, 0);
922 string_list_sort(&sort_uniq_list);
923 string_list_remove_duplicates(&sort_uniq_list, 0);
924
925 /* create a new blob object from sort_uniq_list */
926 if (for_each_string_list(&sort_uniq_list,
927 string_list_join_lines_helper, &buf))
928 goto out;
929
930 ret = write_object_file(buf.buf, buf.len, OBJ_BLOB, cur_oid);
931
932out:
933 strbuf_release(&buf);
934 string_list_clear(&sort_uniq_list, 0);
935 return ret;
936}
937
938static int string_list_add_one_ref(const char *refname, const char *referent UNUSED,
939 const struct object_id *oid UNUSED,
940 int flag UNUSED, void *cb)
941{
942 struct string_list *refs = cb;
943 if (!unsorted_string_list_has_string(refs, refname))
944 string_list_append(refs, refname);
945 return 0;
946}
947
948/*
949 * The list argument must have strdup_strings set on it.
950 */
951void string_list_add_refs_by_glob(struct string_list *list, const char *glob)
952{
953 assert(list->strdup_strings);
954 if (has_glob_specials(glob)) {
955 refs_for_each_glob_ref(get_main_ref_store(the_repository),
956 string_list_add_one_ref, glob, list);
957 } else {
958 struct object_id oid;
959 if (repo_get_oid(the_repository, glob, &oid))
960 warning("notes ref %s is invalid", glob);
961 if (!unsorted_string_list_has_string(list, glob))
962 string_list_append(list, glob);
963 }
964}
965
966void string_list_add_refs_from_colon_sep(struct string_list *list,
967 const char *globs)
968{
969 struct string_list split = STRING_LIST_INIT_NODUP;
970 char *globs_copy = xstrdup(globs);
971 int i;
972
973 string_list_split_in_place(&split, globs_copy, ":", -1);
974 string_list_remove_empty_items(&split, 0);
975
976 for (i = 0; i < split.nr; i++)
977 string_list_add_refs_by_glob(list, split.items[i].string);
978
979 string_list_clear(&split, 0);
980 free(globs_copy);
981}
982
983static int notes_display_config(const char *k, const char *v,
984 const struct config_context *ctx UNUSED,
985 void *cb)
986{
987 int *load_refs = cb;
988
989 if (*load_refs && !strcmp(k, "notes.displayref")) {
990 if (!v)
991 return config_error_nonbool(k);
992 string_list_add_refs_by_glob(&display_notes_refs, v);
993 }
994
995 return 0;
996}
997
998char *default_notes_ref(struct repository *repo)
999{
1000 char *notes_ref = NULL;
1001
1002 if (!notes_ref)
1003 notes_ref = xstrdup_or_null(getenv(GIT_NOTES_REF_ENVIRONMENT));
1004 if (!notes_ref)
1005 repo_config_get_string(repo, "core.notesref", &notes_ref);
1006 if (!notes_ref)
1007 notes_ref = xstrdup(GIT_NOTES_DEFAULT_REF);
1008 return notes_ref;
1009}
1010
1011void init_notes(struct notes_tree *t, const char *notes_ref,
1012 combine_notes_fn combine_notes, int flags)
1013{
1014 struct object_id oid, object_oid;
1015 unsigned short mode;
1016 struct leaf_node root_tree;
1017 char *to_free = NULL;
1018
1019 if (!t)
1020 t = &default_notes_tree;
1021 assert(!t->initialized);
1022
1023 if (!notes_ref)
1024 notes_ref = to_free = default_notes_ref(the_repository);
1025 update_ref_namespace(NAMESPACE_NOTES, xstrdup(notes_ref));
1026
1027 if (!combine_notes)
1028 combine_notes = combine_notes_concatenate;
1029
1030 t->root = (struct int_node *) xcalloc(1, sizeof(struct int_node));
1031 t->first_non_note = NULL;
1032 t->prev_non_note = NULL;
1033 t->ref = xstrdup(notes_ref);
1034 t->update_ref = (flags & NOTES_INIT_WRITABLE) ? t->ref : NULL;
1035 t->combine_notes = combine_notes;
1036 t->initialized = 1;
1037 t->dirty = 0;
1038
1039 if (flags & NOTES_INIT_EMPTY ||
1040 repo_get_oid_treeish(the_repository, notes_ref, &object_oid))
1041 goto out;
1042 if (flags & NOTES_INIT_WRITABLE && refs_read_ref(get_main_ref_store(the_repository), notes_ref, &object_oid))
1043 die("Cannot use notes ref %s", notes_ref);
1044 if (get_tree_entry(the_repository, &object_oid, "", &oid, &mode))
1045 die("Failed to read notes tree referenced by %s (%s)",
1046 notes_ref, oid_to_hex(&object_oid));
1047
1048 oidclr(&root_tree.key_oid, the_repository->hash_algo);
1049 oidcpy(&root_tree.val_oid, &oid);
1050 load_subtree(t, &root_tree, t->root, 0);
1051
1052out:
1053 free(to_free);
1054}
1055
1056struct notes_tree **load_notes_trees(struct string_list *refs, int flags)
1057{
1058 struct string_list_item *item;
1059 int counter = 0;
1060 struct notes_tree **trees;
1061 ALLOC_ARRAY(trees, refs->nr + 1);
1062 for_each_string_list_item(item, refs) {
1063 struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree));
1064 init_notes(t, item->string, combine_notes_ignore, flags);
1065 trees[counter++] = t;
1066 }
1067 trees[counter] = NULL;
1068 return trees;
1069}
1070
1071void init_display_notes(struct display_notes_opt *opt)
1072{
1073 memset(opt, 0, sizeof(*opt));
1074 opt->use_default_notes = -1;
1075 string_list_init_dup(&opt->extra_notes_refs);
1076}
1077
1078void release_display_notes(struct display_notes_opt *opt)
1079{
1080 string_list_clear(&opt->extra_notes_refs, 0);
1081}
1082
1083void enable_default_display_notes(struct display_notes_opt *opt, int *show_notes)
1084{
1085 opt->use_default_notes = 1;
1086 *show_notes = 1;
1087}
1088
1089void enable_ref_display_notes(struct display_notes_opt *opt, int *show_notes,
1090 const char *ref) {
1091 struct strbuf buf = STRBUF_INIT;
1092 strbuf_addstr(&buf, ref);
1093 expand_notes_ref(&buf);
1094 string_list_append_nodup(&opt->extra_notes_refs,
1095 strbuf_detach(&buf, NULL));
1096 *show_notes = 1;
1097}
1098
1099void disable_display_notes(struct display_notes_opt *opt, int *show_notes)
1100{
1101 opt->use_default_notes = -1;
1102 string_list_clear(&opt->extra_notes_refs, 0);
1103 *show_notes = 0;
1104}
1105
1106void load_display_notes(struct display_notes_opt *opt)
1107{
1108 char *display_ref_env;
1109 int load_config_refs = 0;
1110 display_notes_refs.strdup_strings = 1;
1111
1112 assert(!display_notes_trees);
1113
1114 if (!opt || opt->use_default_notes > 0 ||
1115 (opt->use_default_notes == -1 && !opt->extra_notes_refs.nr)) {
1116 string_list_append_nodup(&display_notes_refs, default_notes_ref(the_repository));
1117 display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT);
1118 if (display_ref_env) {
1119 string_list_add_refs_from_colon_sep(&display_notes_refs,
1120 display_ref_env);
1121 load_config_refs = 0;
1122 } else
1123 load_config_refs = 1;
1124 }
1125
1126 git_config(notes_display_config, &load_config_refs);
1127
1128 if (opt) {
1129 struct string_list_item *item;
1130 for_each_string_list_item(item, &opt->extra_notes_refs)
1131 string_list_add_refs_by_glob(&display_notes_refs,
1132 item->string);
1133 }
1134
1135 display_notes_trees = load_notes_trees(&display_notes_refs, 0);
1136 string_list_clear(&display_notes_refs, 0);
1137}
1138
1139int add_note(struct notes_tree *t, const struct object_id *object_oid,
1140 const struct object_id *note_oid, combine_notes_fn combine_notes)
1141{
1142 struct leaf_node *l;
1143
1144 if (!t)
1145 t = &default_notes_tree;
1146 assert(t->initialized);
1147 t->dirty = 1;
1148 if (!combine_notes)
1149 combine_notes = t->combine_notes;
1150 l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
1151 oidcpy(&l->key_oid, object_oid);
1152 oidcpy(&l->val_oid, note_oid);
1153 return note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes);
1154}
1155
1156int remove_note(struct notes_tree *t, const unsigned char *object_sha1)
1157{
1158 struct leaf_node l;
1159
1160 if (!t)
1161 t = &default_notes_tree;
1162 assert(t->initialized);
1163 oidread(&l.key_oid, object_sha1, the_repository->hash_algo);
1164 oidclr(&l.val_oid, the_repository->hash_algo);
1165 note_tree_remove(t, t->root, 0, &l);
1166 if (is_null_oid(&l.val_oid)) /* no note was removed */
1167 return 1;
1168 t->dirty = 1;
1169 return 0;
1170}
1171
1172const struct object_id *get_note(struct notes_tree *t,
1173 const struct object_id *oid)
1174{
1175 struct leaf_node *found;
1176
1177 if (!t)
1178 t = &default_notes_tree;
1179 assert(t->initialized);
1180 found = note_tree_find(t, t->root, 0, oid->hash);
1181 return found ? &found->val_oid : NULL;
1182}
1183
1184int for_each_note(struct notes_tree *t, int flags, each_note_fn fn,
1185 void *cb_data)
1186{
1187 if (!t)
1188 t = &default_notes_tree;
1189 assert(t->initialized);
1190 return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data);
1191}
1192
1193int write_notes_tree(struct notes_tree *t, struct object_id *result)
1194{
1195 struct tree_write_stack root;
1196 struct write_each_note_data cb_data;
1197 int ret;
1198 int flags;
1199
1200 if (!t)
1201 t = &default_notes_tree;
1202 assert(t->initialized);
1203
1204 /* Prepare for traversal of current notes tree */
1205 root.next = NULL; /* last forward entry in list is grounded */
1206 strbuf_init(&root.buf, 256 * (32 + the_hash_algo->hexsz)); /* assume 256 entries */
1207 root.path[0] = root.path[1] = '\0';
1208 cb_data.root = &root;
1209 cb_data.nn_list = &(t->first_non_note);
1210 cb_data.nn_prev = NULL;
1211
1212 /* Write tree objects representing current notes tree */
1213 flags = FOR_EACH_NOTE_DONT_UNPACK_SUBTREES |
1214 FOR_EACH_NOTE_YIELD_SUBTREES;
1215 ret = for_each_note(t, flags, write_each_note, &cb_data) ||
1216 write_each_non_note_until(NULL, &cb_data) ||
1217 tree_write_stack_finish_subtree(&root) ||
1218 write_object_file(root.buf.buf, root.buf.len, OBJ_TREE, result);
1219 strbuf_release(&root.buf);
1220 return ret;
1221}
1222
1223void prune_notes(struct notes_tree *t, int flags)
1224{
1225 struct note_delete_list *l = NULL;
1226
1227 if (!t)
1228 t = &default_notes_tree;
1229 assert(t->initialized);
1230
1231 for_each_note(t, 0, prune_notes_helper, &l);
1232
1233 while (l) {
1234 struct note_delete_list *next;
1235
1236 if (flags & NOTES_PRUNE_VERBOSE)
1237 printf("%s\n", hash_to_hex(l->sha1));
1238 if (!(flags & NOTES_PRUNE_DRYRUN))
1239 remove_note(t, l->sha1);
1240
1241 next = l->next;
1242 free(l);
1243 l = next;
1244 }
1245}
1246
1247void free_notes(struct notes_tree *t)
1248{
1249 if (!t)
1250 t = &default_notes_tree;
1251 if (t->root)
1252 note_tree_free(t->root);
1253 free(t->root);
1254 while (t->first_non_note) {
1255 t->prev_non_note = t->first_non_note->next;
1256 free(t->first_non_note->path);
1257 free(t->first_non_note);
1258 t->first_non_note = t->prev_non_note;
1259 }
1260 free(t->ref);
1261 memset(t, 0, sizeof(struct notes_tree));
1262}
1263
1264/*
1265 * Fill the given strbuf with the notes associated with the given object.
1266 *
1267 * If the given notes_tree structure is not initialized, it will be auto-
1268 * initialized to the default value (see documentation for init_notes() above).
1269 * If the given notes_tree is NULL, the internal/default notes_tree will be
1270 * used instead.
1271 *
1272 * (raw != 0) gives the %N userformat; otherwise, the note message is given
1273 * for human consumption.
1274 */
1275static void format_note(struct notes_tree *t, const struct object_id *object_oid,
1276 struct strbuf *sb, const char *output_encoding, int raw)
1277{
1278 static const char utf8[] = "utf-8";
1279 const struct object_id *oid;
1280 char *msg, *msg_p;
1281 unsigned long linelen, msglen;
1282 enum object_type type;
1283
1284 if (!t)
1285 t = &default_notes_tree;
1286 if (!t->initialized)
1287 init_notes(t, NULL, NULL, 0);
1288
1289 oid = get_note(t, object_oid);
1290 if (!oid)
1291 return;
1292
1293 if (!(msg = repo_read_object_file(the_repository, oid, &type, &msglen)) || type != OBJ_BLOB) {
1294 free(msg);
1295 return;
1296 }
1297
1298 if (output_encoding && *output_encoding &&
1299 !is_encoding_utf8(output_encoding)) {
1300 char *reencoded = reencode_string(msg, output_encoding, utf8);
1301 if (reencoded) {
1302 free(msg);
1303 msg = reencoded;
1304 msglen = strlen(msg);
1305 }
1306 }
1307
1308 /* we will end the annotation by a newline anyway */
1309 if (msglen && msg[msglen - 1] == '\n')
1310 msglen--;
1311
1312 if (!raw) {
1313 const char *ref = t->ref;
1314 if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) {
1315 strbuf_addstr(sb, "\nNotes:\n");
1316 } else {
1317 skip_prefix(ref, "refs/", &ref);
1318 skip_prefix(ref, "notes/", &ref);
1319 strbuf_addf(sb, "\nNotes (%s):\n", ref);
1320 }
1321 }
1322
1323 for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
1324 linelen = strchrnul(msg_p, '\n') - msg_p;
1325
1326 if (!raw)
1327 strbuf_addstr(sb, " ");
1328 strbuf_add(sb, msg_p, linelen);
1329 strbuf_addch(sb, '\n');
1330 }
1331
1332 free(msg);
1333}
1334
1335void format_display_notes(const struct object_id *object_oid,
1336 struct strbuf *sb, const char *output_encoding, int raw)
1337{
1338 int i;
1339 assert(display_notes_trees);
1340 for (i = 0; display_notes_trees[i]; i++)
1341 format_note(display_notes_trees[i], object_oid, sb,
1342 output_encoding, raw);
1343}
1344
1345int copy_note(struct notes_tree *t,
1346 const struct object_id *from_obj, const struct object_id *to_obj,
1347 int force, combine_notes_fn combine_notes)
1348{
1349 const struct object_id *note = get_note(t, from_obj);
1350 const struct object_id *existing_note = get_note(t, to_obj);
1351
1352 if (!force && existing_note)
1353 return 1;
1354
1355 if (note)
1356 return add_note(t, to_obj, note, combine_notes);
1357 else if (existing_note)
1358 return add_note(t, to_obj, null_oid(the_hash_algo), combine_notes);
1359
1360 return 0;
1361}
1362
1363void expand_notes_ref(struct strbuf *sb)
1364{
1365 if (starts_with(sb->buf, "refs/notes/"))
1366 return; /* we're happy */
1367 else if (starts_with(sb->buf, "notes/"))
1368 strbuf_insertstr(sb, 0, "refs/");
1369 else
1370 strbuf_insertstr(sb, 0, "refs/notes/");
1371}
1372
1373void expand_loose_notes_ref(struct strbuf *sb)
1374{
1375 struct object_id object;
1376
1377 if (repo_get_oid(the_repository, sb->buf, &object)) {
1378 /* fallback to expand_notes_ref */
1379 expand_notes_ref(sb);
1380 }
1381}