]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * This file is part of PowerDNS or dnsdist. | |
3 | * Copyright -- PowerDNS.COM B.V. and its contributors | |
4 | * | |
5 | * This program is free software; you can redistribute it and/or modify | |
6 | * it under the terms of version 2 of the GNU General Public License as | |
7 | * published by the Free Software Foundation. | |
8 | * | |
9 | * In addition, for the avoidance of any doubt, permission is granted to | |
10 | * link this program with OpenSSL and to (re)distribute the binaries | |
11 | * produced as the result of such linking. | |
12 | * | |
13 | * This program is distributed in the hope that it will be useful, | |
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | * GNU General Public License for more details. | |
17 | * | |
18 | * You should have received a copy of the GNU General Public License | |
19 | * along with this program; if not, write to the Free Software | |
20 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | |
21 | */ | |
22 | #pragma once | |
23 | #include <string> | |
24 | #include <sys/socket.h> | |
25 | #include <netinet/in.h> | |
26 | #include <arpa/inet.h> | |
27 | #include <iostream> | |
28 | #include <cstdio> | |
29 | #include <functional> | |
30 | #include "pdnsexception.hh" | |
31 | #include "misc.hh" | |
32 | #include <netdb.h> | |
33 | #include <sstream> | |
34 | #include <sys/un.h> | |
35 | ||
36 | #include "namespaces.hh" | |
37 | ||
38 | #ifdef __APPLE__ | |
39 | #include <libkern/OSByteOrder.h> | |
40 | ||
41 | #define htobe16(x) OSSwapHostToBigInt16(x) | |
42 | #define htole16(x) OSSwapHostToLittleInt16(x) | |
43 | #define be16toh(x) OSSwapBigToHostInt16(x) | |
44 | #define le16toh(x) OSSwapLittleToHostInt16(x) | |
45 | ||
46 | #define htobe32(x) OSSwapHostToBigInt32(x) | |
47 | #define htole32(x) OSSwapHostToLittleInt32(x) | |
48 | #define be32toh(x) OSSwapBigToHostInt32(x) | |
49 | #define le32toh(x) OSSwapLittleToHostInt32(x) | |
50 | ||
51 | #define htobe64(x) OSSwapHostToBigInt64(x) | |
52 | #define htole64(x) OSSwapHostToLittleInt64(x) | |
53 | #define be64toh(x) OSSwapBigToHostInt64(x) | |
54 | #define le64toh(x) OSSwapLittleToHostInt64(x) | |
55 | #endif | |
56 | ||
57 | #ifdef __sun | |
58 | ||
59 | #define htobe16(x) BE_16(x) | |
60 | #define htole16(x) LE_16(x) | |
61 | #define be16toh(x) BE_IN16(&(x)) | |
62 | #define le16toh(x) LE_IN16(&(x)) | |
63 | ||
64 | #define htobe32(x) BE_32(x) | |
65 | #define htole32(x) LE_32(x) | |
66 | #define be32toh(x) BE_IN32(&(x)) | |
67 | #define le32toh(x) LE_IN32(&(x)) | |
68 | ||
69 | #define htobe64(x) BE_64(x) | |
70 | #define htole64(x) LE_64(x) | |
71 | #define be64toh(x) BE_IN64(&(x)) | |
72 | #define le64toh(x) LE_IN64(&(x)) | |
73 | ||
74 | #endif | |
75 | ||
76 | #ifdef __FreeBSD__ | |
77 | #include <sys/endian.h> | |
78 | #endif | |
79 | ||
80 | #if defined(__NetBSD__) && defined(IP_PKTINFO) && !defined(IP_SENDSRCADDR) | |
81 | // The IP_PKTINFO option in NetBSD was incompatible with Linux until a | |
82 | // change that also introduced IP_SENDSRCADDR for FreeBSD compatibility. | |
83 | #undef IP_PKTINFO | |
84 | #endif | |
85 | ||
86 | union ComboAddress | |
87 | { | |
88 | sockaddr_in sin4{}; | |
89 | sockaddr_in6 sin6; | |
90 | ||
91 | bool operator==(const ComboAddress& rhs) const | |
92 | { | |
93 | if (std::tie(sin4.sin_family, sin4.sin_port) != std::tie(rhs.sin4.sin_family, rhs.sin4.sin_port)) { | |
94 | return false; | |
95 | } | |
96 | if (sin4.sin_family == AF_INET) { | |
97 | return sin4.sin_addr.s_addr == rhs.sin4.sin_addr.s_addr; | |
98 | } | |
99 | return memcmp(&sin6.sin6_addr.s6_addr, &rhs.sin6.sin6_addr.s6_addr, sizeof(sin6.sin6_addr.s6_addr)) == 0; | |
100 | } | |
101 | ||
102 | bool operator!=(const ComboAddress& rhs) const | |
103 | { | |
104 | return (!operator==(rhs)); | |
105 | } | |
106 | ||
107 | bool operator<(const ComboAddress& rhs) const | |
108 | { | |
109 | if (sin4.sin_family == 0) { | |
110 | return false; | |
111 | } | |
112 | if (std::tie(sin4.sin_family, sin4.sin_port) < std::tie(rhs.sin4.sin_family, rhs.sin4.sin_port)) { | |
113 | return true; | |
114 | } | |
115 | if (std::tie(sin4.sin_family, sin4.sin_port) > std::tie(rhs.sin4.sin_family, rhs.sin4.sin_port)) { | |
116 | return false; | |
117 | } | |
118 | if (sin4.sin_family == AF_INET) { | |
119 | return sin4.sin_addr.s_addr < rhs.sin4.sin_addr.s_addr; | |
120 | } | |
121 | return memcmp(&sin6.sin6_addr.s6_addr, &rhs.sin6.sin6_addr.s6_addr, sizeof(sin6.sin6_addr.s6_addr)) < 0; | |
122 | } | |
123 | ||
124 | bool operator>(const ComboAddress& rhs) const | |
125 | { | |
126 | return rhs.operator<(*this); | |
127 | } | |
128 | ||
129 | struct addressPortOnlyHash | |
130 | { | |
131 | uint32_t operator()(const ComboAddress& address) const | |
132 | { | |
133 | // NOLINTBEGIN(cppcoreguidelines-pro-type-reinterpret-cast) | |
134 | if (address.sin4.sin_family == AF_INET) { | |
135 | const auto* start = reinterpret_cast<const unsigned char*>(&address.sin4.sin_addr.s_addr); | |
136 | auto tmp = burtle(start, 4, 0); | |
137 | return burtle(reinterpret_cast<const uint8_t*>(&address.sin4.sin_port), 2, tmp); | |
138 | } | |
139 | const auto* start = reinterpret_cast<const unsigned char*>(&address.sin6.sin6_addr.s6_addr); | |
140 | auto tmp = burtle(start, 16, 0); | |
141 | return burtle(reinterpret_cast<const unsigned char*>(&address.sin6.sin6_port), 2, tmp); | |
142 | // NOLINTEND(cppcoreguidelines-pro-type-reinterpret-cast) | |
143 | } | |
144 | }; | |
145 | ||
146 | struct addressOnlyHash | |
147 | { | |
148 | uint32_t operator()(const ComboAddress& address) const | |
149 | { | |
150 | const unsigned char* start = nullptr; | |
151 | uint32_t len = 0; | |
152 | // NOLINTBEGIN(cppcoreguidelines-pro-type-reinterpret-cast) | |
153 | if (address.sin4.sin_family == AF_INET) { | |
154 | start = reinterpret_cast<const unsigned char*>(&address.sin4.sin_addr.s_addr); | |
155 | len = 4; | |
156 | } | |
157 | else { | |
158 | start = reinterpret_cast<const unsigned char*>(&address.sin6.sin6_addr.s6_addr); | |
159 | len = 16; | |
160 | } | |
161 | // NOLINTEND(cppcoreguidelines-pro-type-reinterpret-cast) | |
162 | return burtle(start, len, 0); | |
163 | } | |
164 | }; | |
165 | ||
166 | struct addressOnlyLessThan | |
167 | { | |
168 | bool operator()(const ComboAddress& lhs, const ComboAddress& rhs) const | |
169 | { | |
170 | if (lhs.sin4.sin_family < rhs.sin4.sin_family) { | |
171 | return true; | |
172 | } | |
173 | if (lhs.sin4.sin_family > rhs.sin4.sin_family) { | |
174 | return false; | |
175 | } | |
176 | if (lhs.sin4.sin_family == AF_INET) { | |
177 | return lhs.sin4.sin_addr.s_addr < rhs.sin4.sin_addr.s_addr; | |
178 | } | |
179 | return memcmp(&lhs.sin6.sin6_addr.s6_addr, &rhs.sin6.sin6_addr.s6_addr, sizeof(lhs.sin6.sin6_addr.s6_addr)) < 0; | |
180 | } | |
181 | }; | |
182 | ||
183 | struct addressOnlyEqual | |
184 | { | |
185 | bool operator()(const ComboAddress& lhs, const ComboAddress& rhs) const | |
186 | { | |
187 | if (lhs.sin4.sin_family != rhs.sin4.sin_family) { | |
188 | return false; | |
189 | } | |
190 | if (lhs.sin4.sin_family == AF_INET) { | |
191 | return lhs.sin4.sin_addr.s_addr == rhs.sin4.sin_addr.s_addr; | |
192 | } | |
193 | return memcmp(&lhs.sin6.sin6_addr.s6_addr, &rhs.sin6.sin6_addr.s6_addr, sizeof(lhs.sin6.sin6_addr.s6_addr)) == 0; | |
194 | } | |
195 | }; | |
196 | ||
197 | [[nodiscard]] socklen_t getSocklen() const | |
198 | { | |
199 | if (sin4.sin_family == AF_INET) { | |
200 | return sizeof(sin4); | |
201 | } | |
202 | return sizeof(sin6); | |
203 | } | |
204 | ||
205 | ComboAddress() | |
206 | { | |
207 | sin4.sin_family = AF_INET; | |
208 | sin4.sin_addr.s_addr = 0; | |
209 | sin4.sin_port = 0; | |
210 | sin6.sin6_scope_id = 0; | |
211 | sin6.sin6_flowinfo = 0; | |
212 | } | |
213 | ||
214 | ComboAddress(const struct sockaddr* socketAddress, socklen_t salen) | |
215 | { | |
216 | setSockaddr(socketAddress, salen); | |
217 | }; | |
218 | ||
219 | ComboAddress(const struct sockaddr_in6* socketAddress) | |
220 | { | |
221 | // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) | |
222 | setSockaddr(reinterpret_cast<const struct sockaddr*>(socketAddress), sizeof(struct sockaddr_in6)); | |
223 | }; | |
224 | ||
225 | ComboAddress(const struct sockaddr_in* socketAddress) | |
226 | { | |
227 | // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) | |
228 | setSockaddr(reinterpret_cast<const struct sockaddr*>(socketAddress), sizeof(struct sockaddr_in)); | |
229 | }; | |
230 | ||
231 | void setSockaddr(const struct sockaddr* socketAddress, socklen_t salen) | |
232 | { | |
233 | if (salen > sizeof(struct sockaddr_in6)) { | |
234 | throw PDNSException("ComboAddress can't handle other than sockaddr_in or sockaddr_in6"); | |
235 | } | |
236 | memcpy(this, socketAddress, salen); | |
237 | } | |
238 | ||
239 | // 'port' sets a default value in case 'str' does not set a port | |
240 | explicit ComboAddress(const string& str, uint16_t port = 0) | |
241 | { | |
242 | memset(&sin6, 0, sizeof(sin6)); | |
243 | sin4.sin_family = AF_INET; | |
244 | sin4.sin_port = 0; | |
245 | if (makeIPv4sockaddr(str, &sin4) != 0) { | |
246 | sin6.sin6_family = AF_INET6; | |
247 | if (makeIPv6sockaddr(str, &sin6) < 0) { | |
248 | throw PDNSException("Unable to convert presentation address '" + str + "'"); | |
249 | } | |
250 | } | |
251 | if (sin4.sin_port == 0) { // 'str' overrides port! | |
252 | sin4.sin_port = htons(port); | |
253 | } | |
254 | } | |
255 | ||
256 | [[nodiscard]] bool isIPv6() const | |
257 | { | |
258 | return sin4.sin_family == AF_INET6; | |
259 | } | |
260 | [[nodiscard]] bool isIPv4() const | |
261 | { | |
262 | return sin4.sin_family == AF_INET; | |
263 | } | |
264 | ||
265 | [[nodiscard]] bool isMappedIPv4() const | |
266 | { | |
267 | if (sin4.sin_family != AF_INET6) { | |
268 | return false; | |
269 | } | |
270 | ||
271 | int iter = 0; | |
272 | // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) | |
273 | const auto* ptr = reinterpret_cast<const unsigned char*>(&sin6.sin6_addr.s6_addr); | |
274 | for (iter = 0; iter < 10; ++iter) { | |
275 | if (ptr[iter] != 0) { // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic) | |
276 | return false; | |
277 | } | |
278 | } | |
279 | for (; iter < 12; ++iter) { | |
280 | if (ptr[iter] != 0xff) { // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic) | |
281 | return false; | |
282 | } | |
283 | } | |
284 | return true; | |
285 | } | |
286 | ||
287 | [[nodiscard]] bool isUnspecified() const | |
288 | { | |
289 | const ComboAddress unspecifiedV4("0.0.0.0:0"); | |
290 | const ComboAddress unspecifiedV6("[::]:0"); | |
291 | return *this == unspecifiedV4 || *this == unspecifiedV6; | |
292 | } | |
293 | ||
294 | [[nodiscard]] ComboAddress mapToIPv4() const | |
295 | { | |
296 | if (!isMappedIPv4()) { | |
297 | throw PDNSException("ComboAddress can't map non-mapped IPv6 address back to IPv4"); | |
298 | } | |
299 | ComboAddress ret; | |
300 | ret.sin4.sin_family = AF_INET; | |
301 | ret.sin4.sin_port = sin4.sin_port; | |
302 | ||
303 | // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) | |
304 | const auto* ptr = reinterpret_cast<const unsigned char*>(&sin6.sin6_addr.s6_addr); | |
305 | ptr += (sizeof(sin6.sin6_addr.s6_addr) - sizeof(ret.sin4.sin_addr.s_addr)); // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic) | |
306 | memcpy(&ret.sin4.sin_addr.s_addr, ptr, sizeof(ret.sin4.sin_addr.s_addr)); | |
307 | return ret; | |
308 | } | |
309 | ||
310 | [[nodiscard]] string toString() const | |
311 | { | |
312 | std::array<char, 1024> host{}; | |
313 | if (sin4.sin_family != 0) { | |
314 | // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) | |
315 | int retval = getnameinfo(reinterpret_cast<const struct sockaddr*>(this), getSocklen(), host.data(), host.size(), nullptr, 0, NI_NUMERICHOST); | |
316 | if (retval == 0) { | |
317 | return host.data(); | |
318 | } | |
319 | return "invalid " + string(gai_strerror(retval)); | |
320 | } | |
321 | return "invalid"; | |
322 | } | |
323 | ||
324 | //! Ignores any interface specifiers possibly available in the sockaddr data. | |
325 | [[nodiscard]] string toStringNoInterface() const | |
326 | { | |
327 | std::array<char, 1024> host{}; | |
328 | if (sin4.sin_family == AF_INET) { | |
329 | const auto* ret = inet_ntop(sin4.sin_family, &sin4.sin_addr, host.data(), host.size()); | |
330 | if (ret != nullptr) { | |
331 | return host.data(); | |
332 | } | |
333 | } | |
334 | else if (sin4.sin_family == AF_INET6) { | |
335 | const auto* ret = inet_ntop(sin4.sin_family, &sin6.sin6_addr, host.data(), host.size()); | |
336 | if (ret != nullptr) { | |
337 | return host.data(); | |
338 | } | |
339 | } | |
340 | else { | |
341 | return "invalid"; | |
342 | } | |
343 | return "invalid " + stringerror(); | |
344 | } | |
345 | ||
346 | [[nodiscard]] string toStringReversed() const | |
347 | { | |
348 | if (isIPv4()) { | |
349 | const auto address = ntohl(sin4.sin_addr.s_addr); | |
350 | auto aaa = (address >> 0) & 0xFF; | |
351 | auto bbb = (address >> 8) & 0xFF; | |
352 | auto ccc = (address >> 16) & 0xFF; | |
353 | auto ddd = (address >> 24) & 0xFF; | |
354 | return std::to_string(aaa) + "." + std::to_string(bbb) + "." + std::to_string(ccc) + "." + std::to_string(ddd); | |
355 | } | |
356 | const auto* addr = &sin6.sin6_addr; | |
357 | std::stringstream res{}; | |
358 | res << std::hex; | |
359 | for (int i = 15; i >= 0; i--) { | |
360 | auto byte = addr->s6_addr[i]; // NOLINT(cppcoreguidelines-pro-bounds-constant-array-index) | |
361 | res << ((byte >> 0) & 0xF) << "."; | |
362 | res << ((byte >> 4) & 0xF); | |
363 | if (i != 0) { | |
364 | res << "."; | |
365 | } | |
366 | } | |
367 | return res.str(); | |
368 | } | |
369 | ||
370 | [[nodiscard]] string toStringWithPort() const | |
371 | { | |
372 | if (sin4.sin_family == AF_INET) { | |
373 | return toString() + ":" + std::to_string(ntohs(sin4.sin_port)); | |
374 | } | |
375 | return "[" + toString() + "]:" + std::to_string(ntohs(sin4.sin_port)); | |
376 | } | |
377 | ||
378 | [[nodiscard]] string toStringWithPortExcept(int port) const | |
379 | { | |
380 | if (ntohs(sin4.sin_port) == port) { | |
381 | return toString(); | |
382 | } | |
383 | if (sin4.sin_family == AF_INET) { | |
384 | return toString() + ":" + std::to_string(ntohs(sin4.sin_port)); | |
385 | } | |
386 | return "[" + toString() + "]:" + std::to_string(ntohs(sin4.sin_port)); | |
387 | } | |
388 | ||
389 | [[nodiscard]] string toLogString() const | |
390 | { | |
391 | return toStringWithPortExcept(53); | |
392 | } | |
393 | ||
394 | [[nodiscard]] string toStructuredLogString() const | |
395 | { | |
396 | return toStringWithPort(); | |
397 | } | |
398 | ||
399 | [[nodiscard]] string toByteString() const | |
400 | { | |
401 | // NOLINTBEGIN(cppcoreguidelines-pro-type-reinterpret-cast) | |
402 | if (isIPv4()) { | |
403 | return {reinterpret_cast<const char*>(&sin4.sin_addr.s_addr), sizeof(sin4.sin_addr.s_addr)}; | |
404 | } | |
405 | return {reinterpret_cast<const char*>(&sin6.sin6_addr.s6_addr), sizeof(sin6.sin6_addr.s6_addr)}; | |
406 | // NOLINTEND(cppcoreguidelines-pro-type-reinterpret-cast) | |
407 | } | |
408 | ||
409 | void truncate(unsigned int bits) noexcept; | |
410 | ||
411 | [[nodiscard]] uint16_t getNetworkOrderPort() const noexcept | |
412 | { | |
413 | return sin4.sin_port; | |
414 | } | |
415 | [[nodiscard]] uint16_t getPort() const noexcept | |
416 | { | |
417 | return ntohs(getNetworkOrderPort()); | |
418 | } | |
419 | void setPort(uint16_t port) | |
420 | { | |
421 | sin4.sin_port = htons(port); | |
422 | } | |
423 | ||
424 | void reset() | |
425 | { | |
426 | memset(&sin6, 0, sizeof(sin6)); | |
427 | } | |
428 | ||
429 | //! Get the total number of address bits (either 32 or 128 depending on IP version) | |
430 | [[nodiscard]] uint8_t getBits() const | |
431 | { | |
432 | if (isIPv4()) { | |
433 | return 32; | |
434 | } | |
435 | if (isIPv6()) { | |
436 | return 128; | |
437 | } | |
438 | return 0; | |
439 | } | |
440 | /** Get the value of the bit at the provided bit index. When the index >= 0, | |
441 | the index is relative to the LSB starting at index zero. When the index < 0, | |
442 | the index is relative to the MSB starting at index -1 and counting down. | |
443 | */ | |
444 | [[nodiscard]] bool getBit(int index) const | |
445 | { | |
446 | if (isIPv4()) { | |
447 | if (index >= 32) { | |
448 | return false; | |
449 | } | |
450 | if (index < 0) { | |
451 | if (index < -32) { | |
452 | return false; | |
453 | } | |
454 | index = 32 + index; | |
455 | } | |
456 | ||
457 | uint32_t ls_addr = ntohl(sin4.sin_addr.s_addr); | |
458 | ||
459 | return ((ls_addr & (1U << index)) != 0x00000000); | |
460 | } | |
461 | if (isIPv6()) { | |
462 | if (index >= 128) { | |
463 | return false; | |
464 | } | |
465 | if (index < 0) { | |
466 | if (index < -128) { | |
467 | return false; | |
468 | } | |
469 | index = 128 + index; | |
470 | } | |
471 | ||
472 | const auto* ls_addr = reinterpret_cast<const uint8_t*>(sin6.sin6_addr.s6_addr); // NOLINT(cppcoreguidelines-pro-type-reinterpret-cast) | |
473 | uint8_t byte_idx = index / 8; | |
474 | uint8_t bit_idx = index % 8; | |
475 | ||
476 | return ((ls_addr[15 - byte_idx] & (1U << bit_idx)) != 0x00); // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic) | |
477 | } | |
478 | return false; | |
479 | } | |
480 | ||
481 | /*! Returns a comma-separated string of IP addresses | |
482 | * | |
483 | * \param c An stl container with ComboAddresses | |
484 | * \param withPort Also print the port (default true) | |
485 | * \param portExcept Print the port, except when this is the port (default 53) | |
486 | */ | |
487 | template <template <class...> class Container, class... Args> | |
488 | static string caContainerToString(const Container<ComboAddress, Args...>& container, const bool withPort = true, const uint16_t portExcept = 53) | |
489 | { | |
490 | vector<string> strs; | |
491 | for (const auto& address : container) { | |
492 | if (withPort) { | |
493 | strs.push_back(address.toStringWithPortExcept(portExcept)); | |
494 | continue; | |
495 | } | |
496 | strs.push_back(address.toString()); | |
497 | } | |
498 | return boost::join(strs, ","); | |
499 | }; | |
500 | }; | |
501 | ||
502 | union SockaddrWrapper | |
503 | { | |
504 | sockaddr_in sin4{}; | |
505 | sockaddr_in6 sin6; | |
506 | sockaddr_un sinun; | |
507 | ||
508 | [[nodiscard]] socklen_t getSocklen() const | |
509 | { | |
510 | if (sin4.sin_family == AF_INET) { | |
511 | return sizeof(sin4); | |
512 | } | |
513 | if (sin6.sin6_family == AF_INET6) { | |
514 | return sizeof(sin6); | |
515 | } | |
516 | if (sinun.sun_family == AF_UNIX) { | |
517 | return sizeof(sinun); | |
518 | } | |
519 | return 0; | |
520 | } | |
521 | ||
522 | SockaddrWrapper() | |
523 | { | |
524 | sin4.sin_family = AF_INET; | |
525 | sin4.sin_addr.s_addr = 0; | |
526 | sin4.sin_port = 0; | |
527 | } | |
528 | ||
529 | SockaddrWrapper(const struct sockaddr* socketAddress, socklen_t salen) | |
530 | { | |
531 | setSockaddr(socketAddress, salen); | |
532 | }; | |
533 | ||
534 | SockaddrWrapper(const struct sockaddr_in6* socketAddress) | |
535 | { | |
536 | // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) | |
537 | setSockaddr(reinterpret_cast<const struct sockaddr*>(socketAddress), sizeof(struct sockaddr_in6)); | |
538 | }; | |
539 | ||
540 | SockaddrWrapper(const struct sockaddr_in* socketAddress) | |
541 | { | |
542 | // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) | |
543 | setSockaddr(reinterpret_cast<const struct sockaddr*>(socketAddress), sizeof(struct sockaddr_in)); | |
544 | }; | |
545 | ||
546 | SockaddrWrapper(const struct sockaddr_un* socketAddress) | |
547 | { | |
548 | // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) | |
549 | setSockaddr(reinterpret_cast<const struct sockaddr*>(socketAddress), sizeof(struct sockaddr_un)); | |
550 | }; | |
551 | ||
552 | void setSockaddr(const struct sockaddr* socketAddress, socklen_t salen) | |
553 | { | |
554 | if (salen > sizeof(struct sockaddr_un)) { | |
555 | throw PDNSException("ComboAddress can't handle other than sockaddr_in, sockaddr_in6 or sockaddr_un"); | |
556 | } | |
557 | memcpy(this, socketAddress, salen); | |
558 | } | |
559 | ||
560 | explicit SockaddrWrapper(const string& str, uint16_t port = 0) | |
561 | { | |
562 | memset(&sinun, 0, sizeof(sinun)); | |
563 | sin4.sin_family = AF_INET; | |
564 | sin4.sin_port = 0; | |
565 | if (str == "\"\"" || str == "''") { | |
566 | throw PDNSException("Stray quotation marks in address."); | |
567 | } | |
568 | if (makeIPv4sockaddr(str, &sin4) != 0) { | |
569 | sin6.sin6_family = AF_INET6; | |
570 | if (makeIPv6sockaddr(str, &sin6) < 0) { | |
571 | sinun.sun_family = AF_UNIX; | |
572 | // only attempt Unix socket address if address candidate does not contain a port | |
573 | if (str.find(':') != string::npos || makeUNsockaddr(str, &sinun) < 0) { | |
574 | throw PDNSException("Unable to convert presentation address '" + str + "'"); | |
575 | } | |
576 | } | |
577 | } | |
578 | if (sinun.sun_family != AF_UNIX && sin4.sin_port == 0) { // 'str' overrides port! | |
579 | sin4.sin_port = htons(port); | |
580 | } | |
581 | } | |
582 | ||
583 | [[nodiscard]] bool isIPv6() const | |
584 | { | |
585 | return sin4.sin_family == AF_INET6; | |
586 | } | |
587 | [[nodiscard]] bool isIPv4() const | |
588 | { | |
589 | return sin4.sin_family == AF_INET; | |
590 | } | |
591 | [[nodiscard]] bool isUnixSocket() const | |
592 | { | |
593 | return sin4.sin_family == AF_UNIX; | |
594 | } | |
595 | ||
596 | [[nodiscard]] string toString() const | |
597 | { | |
598 | if (sinun.sun_family == AF_UNIX) { | |
599 | return sinun.sun_path; | |
600 | } | |
601 | std::array<char, 1024> host{}; | |
602 | if (sin4.sin_family != 0) { | |
603 | // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) | |
604 | int retval = getnameinfo(reinterpret_cast<const struct sockaddr*>(this), getSocklen(), host.data(), host.size(), nullptr, 0, NI_NUMERICHOST); | |
605 | if (retval == 0) { | |
606 | return host.data(); | |
607 | } | |
608 | return "invalid " + string(gai_strerror(retval)); | |
609 | } | |
610 | return "invalid"; | |
611 | } | |
612 | ||
613 | [[nodiscard]] string toStringWithPort() const | |
614 | { | |
615 | if (sinun.sun_family == AF_UNIX) { | |
616 | return toString(); | |
617 | } | |
618 | if (sin4.sin_family == AF_INET) { | |
619 | return toString() + ":" + std::to_string(ntohs(sin4.sin_port)); | |
620 | } | |
621 | return "[" + toString() + "]:" + std::to_string(ntohs(sin4.sin_port)); | |
622 | } | |
623 | ||
624 | void reset() | |
625 | { | |
626 | memset(&sinun, 0, sizeof(sinun)); | |
627 | } | |
628 | }; | |
629 | ||
630 | /** This exception is thrown by the Netmask class and by extension by the NetmaskGroup class */ | |
631 | class NetmaskException : public PDNSException | |
632 | { | |
633 | public: | |
634 | NetmaskException(const string& arg) : | |
635 | PDNSException(arg) {} | |
636 | }; | |
637 | ||
638 | inline ComboAddress makeComboAddress(const string& str) | |
639 | { | |
640 | ComboAddress address; | |
641 | address.sin4.sin_family = AF_INET; | |
642 | if (inet_pton(AF_INET, str.c_str(), &address.sin4.sin_addr) <= 0) { | |
643 | address.sin4.sin_family = AF_INET6; | |
644 | if (makeIPv6sockaddr(str, &address.sin6) < 0) { | |
645 | throw NetmaskException("Unable to convert '" + str + "' to a netmask"); | |
646 | } | |
647 | } | |
648 | return address; | |
649 | } | |
650 | ||
651 | inline ComboAddress makeComboAddressFromRaw(uint8_t version, const char* raw, size_t len) | |
652 | { | |
653 | ComboAddress address; | |
654 | ||
655 | if (version == 4) { | |
656 | address.sin4.sin_family = AF_INET; | |
657 | if (len != sizeof(address.sin4.sin_addr)) { | |
658 | throw NetmaskException("invalid raw address length"); | |
659 | } | |
660 | memcpy(&address.sin4.sin_addr, raw, sizeof(address.sin4.sin_addr)); | |
661 | } | |
662 | else if (version == 6) { | |
663 | address.sin6.sin6_family = AF_INET6; | |
664 | if (len != sizeof(address.sin6.sin6_addr)) { | |
665 | throw NetmaskException("invalid raw address length"); | |
666 | } | |
667 | memcpy(&address.sin6.sin6_addr, raw, sizeof(address.sin6.sin6_addr)); | |
668 | } | |
669 | else { | |
670 | throw NetmaskException("invalid address family"); | |
671 | } | |
672 | ||
673 | return address; | |
674 | } | |
675 | ||
676 | inline ComboAddress makeComboAddressFromRaw(uint8_t version, const string& str) | |
677 | { | |
678 | return makeComboAddressFromRaw(version, str.c_str(), str.size()); | |
679 | } | |
680 | ||
681 | /** This class represents a netmask and can be queried to see if a certain | |
682 | IP address is matched by this mask */ | |
683 | class Netmask | |
684 | { | |
685 | public: | |
686 | Netmask() | |
687 | { | |
688 | d_network.sin4.sin_family = 0; // disable this doing anything useful | |
689 | d_network.sin4.sin_port = 0; // this guarantees d_network compares identical | |
690 | } | |
691 | ||
692 | Netmask(const ComboAddress& network, uint8_t bits = 0xff) : | |
693 | d_network(network) | |
694 | { | |
695 | d_network.sin4.sin_port = 0; | |
696 | setBits(bits); | |
697 | } | |
698 | ||
699 | Netmask(const sockaddr_in* network, uint8_t bits = 0xff) : | |
700 | d_network(network) | |
701 | { | |
702 | d_network.sin4.sin_port = 0; | |
703 | setBits(bits); | |
704 | } | |
705 | Netmask(const sockaddr_in6* network, uint8_t bits = 0xff) : | |
706 | d_network(network) | |
707 | { | |
708 | d_network.sin4.sin_port = 0; | |
709 | setBits(bits); | |
710 | } | |
711 | void setBits(uint8_t value) | |
712 | { | |
713 | d_bits = d_network.isIPv4() ? std::min(value, static_cast<uint8_t>(32U)) : std::min(value, static_cast<uint8_t>(128U)); | |
714 | ||
715 | if (d_bits < 32) { | |
716 | d_mask = ~(0xFFFFFFFF >> d_bits); | |
717 | } | |
718 | else { | |
719 | // note that d_mask is unused for IPv6 | |
720 | d_mask = 0xFFFFFFFF; | |
721 | } | |
722 | ||
723 | if (isIPv4()) { | |
724 | d_network.sin4.sin_addr.s_addr = htonl(ntohl(d_network.sin4.sin_addr.s_addr) & d_mask); | |
725 | } | |
726 | else if (isIPv6()) { | |
727 | uint8_t bytes = d_bits / 8; | |
728 | auto* address = reinterpret_cast<uint8_t*>(&d_network.sin6.sin6_addr.s6_addr); // NOLINT(cppcoreguidelines-pro-type-reinterpret-cast) | |
729 | uint8_t bits = d_bits % 8; | |
730 | auto mask = static_cast<uint8_t>(~(0xFF >> bits)); | |
731 | ||
732 | if (bytes < sizeof(d_network.sin6.sin6_addr.s6_addr)) { | |
733 | address[bytes] &= mask; // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic) | |
734 | } | |
735 | ||
736 | for (size_t idx = bytes + 1; idx < sizeof(d_network.sin6.sin6_addr.s6_addr); ++idx) { | |
737 | address[idx] = 0; // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic) | |
738 | } | |
739 | } | |
740 | } | |
741 | ||
742 | enum stringType | |
743 | { | |
744 | humanString, | |
745 | byteString, | |
746 | }; | |
747 | //! Constructor supplies the mask, which cannot be changed | |
748 | Netmask(const string& mask, stringType type = humanString) | |
749 | { | |
750 | if (type == byteString) { | |
751 | uint8_t afi = mask.at(0); | |
752 | size_t len = afi == 4 ? 4 : 16; | |
753 | uint8_t bits = mask.at(len + 1); | |
754 | ||
755 | d_network = makeComboAddressFromRaw(afi, mask.substr(1, len)); | |
756 | ||
757 | setBits(bits); | |
758 | } | |
759 | else { | |
760 | pair<string, string> split = splitField(mask, '/'); | |
761 | d_network = makeComboAddress(split.first); | |
762 | ||
763 | if (!split.second.empty()) { | |
764 | setBits(pdns::checked_stoi<uint8_t>(split.second)); | |
765 | } | |
766 | else if (d_network.sin4.sin_family == AF_INET) { | |
767 | setBits(32); | |
768 | } | |
769 | else { | |
770 | setBits(128); | |
771 | } | |
772 | } | |
773 | } | |
774 | ||
775 | [[nodiscard]] bool match(const ComboAddress& address) const | |
776 | { | |
777 | return match(&address); | |
778 | } | |
779 | ||
780 | //! If this IP address in socket address matches | |
781 | bool match(const ComboAddress* address) const | |
782 | { | |
783 | if (d_network.sin4.sin_family != address->sin4.sin_family) { | |
784 | return false; | |
785 | } | |
786 | if (d_network.sin4.sin_family == AF_INET) { | |
787 | return match4(htonl((unsigned int)address->sin4.sin_addr.s_addr)); | |
788 | } | |
789 | if (d_network.sin6.sin6_family == AF_INET6) { | |
790 | uint8_t bytes = d_bits / 8; | |
791 | uint8_t index = 0; | |
792 | // NOLINTBEGIN(cppcoreguidelines-pro-type-reinterpret-cast) | |
793 | const auto* lhs = reinterpret_cast<const uint8_t*>(&d_network.sin6.sin6_addr.s6_addr); | |
794 | const auto* rhs = reinterpret_cast<const uint8_t*>(&address->sin6.sin6_addr.s6_addr); | |
795 | // NOLINTEND(cppcoreguidelines-pro-type-reinterpret-cast) | |
796 | ||
797 | // NOLINTBEGIN(cppcoreguidelines-pro-bounds-pointer-arithmetic) | |
798 | for (index = 0; index < bytes; ++index) { | |
799 | if (lhs[index] != rhs[index]) { | |
800 | return false; | |
801 | } | |
802 | } | |
803 | // still here, now match remaining bits | |
804 | uint8_t bits = d_bits % 8; | |
805 | auto mask = static_cast<uint8_t>(~(0xFF >> bits)); | |
806 | ||
807 | return ((lhs[index]) == (rhs[index] & mask)); | |
808 | // NOLINTEND(cppcoreguidelines-pro-bounds-pointer-arithmetic) | |
809 | } | |
810 | return false; | |
811 | } | |
812 | ||
813 | //! If this ASCII IP address matches | |
814 | [[nodiscard]] bool match(const string& arg) const | |
815 | { | |
816 | ComboAddress address = makeComboAddress(arg); | |
817 | return match(&address); | |
818 | } | |
819 | ||
820 | //! If this IP address in native format matches | |
821 | [[nodiscard]] bool match4(uint32_t arg) const | |
822 | { | |
823 | return (arg & d_mask) == (ntohl(d_network.sin4.sin_addr.s_addr)); | |
824 | } | |
825 | ||
826 | [[nodiscard]] string toString() const | |
827 | { | |
828 | return d_network.toStringNoInterface() + "/" + std::to_string((unsigned int)d_bits); | |
829 | } | |
830 | ||
831 | [[nodiscard]] string toStringNoMask() const | |
832 | { | |
833 | return d_network.toStringNoInterface(); | |
834 | } | |
835 | ||
836 | [[nodiscard]] string toByteString() const | |
837 | { | |
838 | ostringstream tmp; | |
839 | ||
840 | tmp << (d_network.isIPv4() ? "\x04" : "\x06") | |
841 | << d_network.toByteString() | |
842 | << getBits(); | |
843 | ||
844 | return tmp.str(); | |
845 | } | |
846 | ||
847 | [[nodiscard]] const ComboAddress& getNetwork() const | |
848 | { | |
849 | return d_network; | |
850 | } | |
851 | ||
852 | [[nodiscard]] const ComboAddress& getMaskedNetwork() const | |
853 | { | |
854 | return getNetwork(); | |
855 | } | |
856 | ||
857 | [[nodiscard]] uint8_t getBits() const | |
858 | { | |
859 | return d_bits; | |
860 | } | |
861 | ||
862 | [[nodiscard]] bool isIPv6() const | |
863 | { | |
864 | return d_network.sin6.sin6_family == AF_INET6; | |
865 | } | |
866 | ||
867 | [[nodiscard]] bool isIPv4() const | |
868 | { | |
869 | return d_network.sin4.sin_family == AF_INET; | |
870 | } | |
871 | ||
872 | bool operator<(const Netmask& rhs) const | |
873 | { | |
874 | if (empty() && !rhs.empty()) { | |
875 | return false; | |
876 | } | |
877 | if (!empty() && rhs.empty()) { | |
878 | return true; | |
879 | } | |
880 | if (d_bits > rhs.d_bits) { | |
881 | return true; | |
882 | } | |
883 | if (d_bits < rhs.d_bits) { | |
884 | return false; | |
885 | } | |
886 | ||
887 | return d_network < rhs.d_network; | |
888 | } | |
889 | ||
890 | bool operator>(const Netmask& rhs) const | |
891 | { | |
892 | return rhs.operator<(*this); | |
893 | } | |
894 | ||
895 | bool operator==(const Netmask& rhs) const | |
896 | { | |
897 | return std::tie(d_network, d_bits) == std::tie(rhs.d_network, rhs.d_bits); | |
898 | } | |
899 | bool operator!=(const Netmask& rhs) const | |
900 | { | |
901 | return !operator==(rhs); | |
902 | } | |
903 | ||
904 | [[nodiscard]] bool empty() const | |
905 | { | |
906 | return d_network.sin4.sin_family == 0; | |
907 | } | |
908 | ||
909 | //! Get normalized version of the netmask. This means that all address bits below the network bits are zero. | |
910 | [[nodiscard]] Netmask getNormalized() const | |
911 | { | |
912 | return {getMaskedNetwork(), d_bits}; | |
913 | } | |
914 | //! Get Netmask for super network of this one (i.e. with fewer network bits) | |
915 | [[nodiscard]] Netmask getSuper(uint8_t bits) const | |
916 | { | |
917 | return {d_network, std::min(d_bits, bits)}; | |
918 | } | |
919 | ||
920 | //! Get the total number of address bits for this netmask (either 32 or 128 depending on IP version) | |
921 | [[nodiscard]] uint8_t getFullBits() const | |
922 | { | |
923 | return d_network.getBits(); | |
924 | } | |
925 | ||
926 | /** Get the value of the bit at the provided bit index. When the index >= 0, | |
927 | the index is relative to the LSB starting at index zero. When the index < 0, | |
928 | the index is relative to the MSB starting at index -1 and counting down. | |
929 | When the index points outside the network bits, it always yields zero. | |
930 | */ | |
931 | [[nodiscard]] bool getBit(int bit) const | |
932 | { | |
933 | if (bit < -d_bits) { | |
934 | return false; | |
935 | } | |
936 | if (bit >= 0) { | |
937 | if (isIPv4()) { | |
938 | if (bit >= 32 || bit < (32 - d_bits)) { | |
939 | return false; | |
940 | } | |
941 | } | |
942 | if (isIPv6()) { | |
943 | if (bit >= 128 || bit < (128 - d_bits)) { | |
944 | return false; | |
945 | } | |
946 | } | |
947 | } | |
948 | return d_network.getBit(bit); | |
949 | } | |
950 | ||
951 | struct Hash | |
952 | { | |
953 | size_t operator()(const Netmask& netmask) const | |
954 | { | |
955 | return burtle(&netmask.d_bits, 1, ComboAddress::addressOnlyHash()(netmask.d_network)); | |
956 | } | |
957 | }; | |
958 | ||
959 | private: | |
960 | ComboAddress d_network; | |
961 | uint32_t d_mask{0}; | |
962 | uint8_t d_bits{0}; | |
963 | }; | |
964 | ||
965 | namespace std | |
966 | { | |
967 | template <> | |
968 | struct hash<Netmask> | |
969 | { | |
970 | auto operator()(const Netmask& netmask) const | |
971 | { | |
972 | return Netmask::Hash{}(netmask); | |
973 | } | |
974 | }; | |
975 | } | |
976 | ||
977 | /** Binary tree map implementation with <Netmask,T> pair. | |
978 | * | |
979 | * This is an binary tree implementation for storing attributes for IPv4 and IPv6 prefixes. | |
980 | * The most simple use case is simple NetmaskTree<bool> used by NetmaskGroup, which only | |
981 | * wants to know if given IP address is matched in the prefixes stored. | |
982 | * | |
983 | * This element is useful for anything that needs to *STORE* prefixes, and *MATCH* IP addresses | |
984 | * to a *LIST* of *PREFIXES*. Not the other way round. | |
985 | * | |
986 | * You can store IPv4 and IPv6 addresses to same tree, separate payload storage is kept per AFI. | |
987 | * Network prefixes (Netmasks) are always recorded in normalized fashion, meaning that only | |
988 | * the network bits are set. This is what is returned in the insert() and lookup() return | |
989 | * values. | |
990 | * | |
991 | * Use swap if you need to move the tree to another NetmaskTree instance, it is WAY faster | |
992 | * than using copy ctor or assignment operator, since it moves the nodes and tree root to | |
993 | * new home instead of actually recreating the tree. | |
994 | * | |
995 | * Please see NetmaskGroup for example of simple use case. Other usecases can be found | |
996 | * from GeoIPBackend and Sortlist, and from dnsdist. | |
997 | */ | |
998 | template <typename T, class K = Netmask> | |
999 | class NetmaskTree | |
1000 | { | |
1001 | public: | |
1002 | class Iterator; | |
1003 | ||
1004 | using key_type = K; | |
1005 | using value_type = T; | |
1006 | using node_type = std::pair<const key_type, value_type>; | |
1007 | using size_type = size_t; | |
1008 | using iterator = class Iterator; | |
1009 | ||
1010 | private: | |
1011 | /** Single node in tree, internal use only. | |
1012 | */ | |
1013 | class TreeNode : boost::noncopyable | |
1014 | { | |
1015 | public: | |
1016 | explicit TreeNode() noexcept : | |
1017 | parent(nullptr), node(), assigned(false), d_bits(0) | |
1018 | { | |
1019 | } | |
1020 | explicit TreeNode(const key_type& key) : | |
1021 | parent(nullptr), node({key.getNormalized(), value_type()}), assigned(false), d_bits(key.getFullBits()) | |
1022 | { | |
1023 | } | |
1024 | ||
1025 | //<! Makes a left leaf node with specified key. | |
1026 | TreeNode* make_left(const key_type& key) | |
1027 | { | |
1028 | d_bits = node.first.getBits(); | |
1029 | left = make_unique<TreeNode>(key); | |
1030 | left->parent = this; | |
1031 | return left.get(); | |
1032 | } | |
1033 | ||
1034 | //<! Makes a right leaf node with specified key. | |
1035 | TreeNode* make_right(const key_type& key) | |
1036 | { | |
1037 | d_bits = node.first.getBits(); | |
1038 | right = make_unique<TreeNode>(key); | |
1039 | right->parent = this; | |
1040 | return right.get(); | |
1041 | } | |
1042 | ||
1043 | //<! Splits branch at indicated bit position by inserting key | |
1044 | TreeNode* split(const key_type& key, int bits) | |
1045 | { | |
1046 | if (parent == nullptr) { | |
1047 | // not to be called on the root node | |
1048 | throw std::logic_error( | |
1049 | "NetmaskTree::TreeNode::split(): must not be called on root node"); | |
1050 | } | |
1051 | ||
1052 | // determine reference from parent | |
1053 | unique_ptr<TreeNode>& parent_ref = (parent->left.get() == this ? parent->left : parent->right); | |
1054 | if (parent_ref.get() != this) { | |
1055 | throw std::logic_error( | |
1056 | "NetmaskTree::TreeNode::split(): parent node reference is invalid"); | |
1057 | } | |
1058 | ||
1059 | // create new tree node for the new key and | |
1060 | // attach the new node under our former parent | |
1061 | auto new_intermediate_node = make_unique<TreeNode>(key); | |
1062 | new_intermediate_node->d_bits = bits; | |
1063 | new_intermediate_node->parent = parent; | |
1064 | auto* new_intermediate_node_raw = new_intermediate_node.get(); | |
1065 | ||
1066 | // hereafter new_intermediate points to "this" | |
1067 | // ie the child of the new intermediate node | |
1068 | std::swap(parent_ref, new_intermediate_node); | |
1069 | // and we now assign this to current_node so | |
1070 | // it's clear it no longer refers to the new | |
1071 | // intermediate node | |
1072 | std::unique_ptr<TreeNode> current_node = std::move(new_intermediate_node); | |
1073 | ||
1074 | // attach "this" node below the new node | |
1075 | // (left or right depending on bit) | |
1076 | // technically the raw pointer escapes the duration of the | |
1077 | // unique pointer, but just below we store the unique pointer | |
1078 | // in the parent, so it lives as long as necessary | |
1079 | // coverity[escape] | |
1080 | current_node->parent = new_intermediate_node_raw; | |
1081 | if (current_node->node.first.getBit(-1 - bits)) { | |
1082 | new_intermediate_node_raw->right = std::move(current_node); | |
1083 | } | |
1084 | else { | |
1085 | new_intermediate_node_raw->left = std::move(current_node); | |
1086 | } | |
1087 | ||
1088 | return new_intermediate_node_raw; | |
1089 | } | |
1090 | ||
1091 | //<! Forks branch for new key at indicated bit position | |
1092 | TreeNode* fork(const key_type& key, int bits) | |
1093 | { | |
1094 | if (parent == nullptr) { | |
1095 | // not to be called on the root node | |
1096 | throw std::logic_error( | |
1097 | "NetmaskTree::TreeNode::fork(): must not be called on root node"); | |
1098 | } | |
1099 | ||
1100 | // determine reference from parent | |
1101 | unique_ptr<TreeNode>& parent_ref = (parent->left.get() == this ? parent->left : parent->right); | |
1102 | if (parent_ref.get() != this) { | |
1103 | throw std::logic_error( | |
1104 | "NetmaskTree::TreeNode::fork(): parent node reference is invalid"); | |
1105 | } | |
1106 | ||
1107 | // create new tree node for the branch point | |
1108 | ||
1109 | // the current node will now be a child of the new branch node | |
1110 | // (hereafter new_child1 points to "this") | |
1111 | unique_ptr<TreeNode> new_child1 = std::move(parent_ref); | |
1112 | // attach the branch node under our former parent | |
1113 | parent_ref = make_unique<TreeNode>(node.first.getSuper(bits)); | |
1114 | auto* branch_node = parent_ref.get(); | |
1115 | branch_node->d_bits = bits; | |
1116 | branch_node->parent = parent; | |
1117 | ||
1118 | // create second new leaf node for the new key | |
1119 | unique_ptr<TreeNode> new_child2 = make_unique<TreeNode>(key); | |
1120 | TreeNode* new_node = new_child2.get(); | |
1121 | ||
1122 | // attach the new child nodes below the branch node | |
1123 | // (left or right depending on bit) | |
1124 | new_child1->parent = branch_node; | |
1125 | new_child2->parent = branch_node; | |
1126 | if (new_child1->node.first.getBit(-1 - bits)) { | |
1127 | branch_node->right = std::move(new_child1); | |
1128 | branch_node->left = std::move(new_child2); | |
1129 | } | |
1130 | else { | |
1131 | branch_node->right = std::move(new_child2); | |
1132 | branch_node->left = std::move(new_child1); | |
1133 | } | |
1134 | // now we have attached the new unique pointers to the tree: | |
1135 | // - branch_node is below its parent | |
1136 | // - new_child1 (ourselves) is below branch_node | |
1137 | // - new_child2, the new leaf node, is below branch_node as well | |
1138 | ||
1139 | return new_node; | |
1140 | } | |
1141 | ||
1142 | //<! Traverse left branch depth-first | |
1143 | TreeNode* traverse_l() | |
1144 | { | |
1145 | TreeNode* tnode = this; | |
1146 | ||
1147 | while (tnode->left) { | |
1148 | tnode = tnode->left.get(); | |
1149 | } | |
1150 | return tnode; | |
1151 | } | |
1152 | ||
1153 | //<! Traverse tree depth-first and in-order (L-N-R) | |
1154 | TreeNode* traverse_lnr() | |
1155 | { | |
1156 | TreeNode* tnode = this; | |
1157 | ||
1158 | // precondition: descended left as deep as possible | |
1159 | if (tnode->right) { | |
1160 | // descend right | |
1161 | tnode = tnode->right.get(); | |
1162 | // descend left as deep as possible and return next node | |
1163 | return tnode->traverse_l(); | |
1164 | } | |
1165 | ||
1166 | // ascend to parent | |
1167 | while (tnode->parent != nullptr) { | |
1168 | TreeNode* prev_child = tnode; | |
1169 | tnode = tnode->parent; | |
1170 | ||
1171 | // return this node, but only when we come from the left child branch | |
1172 | if (tnode->left && tnode->left.get() == prev_child) { | |
1173 | return tnode; | |
1174 | } | |
1175 | } | |
1176 | return nullptr; | |
1177 | } | |
1178 | ||
1179 | //<! Traverse only assigned nodes | |
1180 | TreeNode* traverse_lnr_assigned() | |
1181 | { | |
1182 | TreeNode* tnode = traverse_lnr(); | |
1183 | ||
1184 | while (tnode != nullptr && !tnode->assigned) { | |
1185 | tnode = tnode->traverse_lnr(); | |
1186 | } | |
1187 | return tnode; | |
1188 | } | |
1189 | ||
1190 | unique_ptr<TreeNode> left; | |
1191 | unique_ptr<TreeNode> right; | |
1192 | TreeNode* parent; | |
1193 | ||
1194 | node_type node; | |
1195 | bool assigned; //<! Whether this node is assigned-to by the application | |
1196 | ||
1197 | int d_bits; //<! How many bits have been used so far | |
1198 | }; | |
1199 | ||
1200 | void cleanup_tree(TreeNode* node) | |
1201 | { | |
1202 | // only cleanup this node if it has no children and node not assigned | |
1203 | if (!(node->left || node->right || node->assigned)) { | |
1204 | // get parent node ptr | |
1205 | TreeNode* pparent = node->parent; | |
1206 | // delete this node | |
1207 | if (pparent) { | |
1208 | if (pparent->left.get() == node) { | |
1209 | pparent->left.reset(); | |
1210 | } | |
1211 | else { | |
1212 | pparent->right.reset(); | |
1213 | } | |
1214 | // now recurse up to the parent | |
1215 | cleanup_tree(pparent); | |
1216 | } | |
1217 | } | |
1218 | } | |
1219 | ||
1220 | void copyTree(const NetmaskTree& rhs) | |
1221 | { | |
1222 | try { | |
1223 | TreeNode* node = rhs.d_root.get(); | |
1224 | if (node != nullptr) { | |
1225 | node = node->traverse_l(); | |
1226 | } | |
1227 | while (node != nullptr) { | |
1228 | if (node->assigned) { | |
1229 | insert(node->node.first).second = node->node.second; | |
1230 | } | |
1231 | node = node->traverse_lnr(); | |
1232 | } | |
1233 | } | |
1234 | catch (const NetmaskException&) { | |
1235 | abort(); | |
1236 | } | |
1237 | catch (const std::logic_error&) { | |
1238 | abort(); | |
1239 | } | |
1240 | } | |
1241 | ||
1242 | public: | |
1243 | class Iterator | |
1244 | { | |
1245 | public: | |
1246 | using value_type = node_type; | |
1247 | using reference = node_type&; | |
1248 | using pointer = node_type*; | |
1249 | using iterator_category = std::forward_iterator_tag; | |
1250 | using difference_type = size_type; | |
1251 | ||
1252 | private: | |
1253 | friend class NetmaskTree; | |
1254 | ||
1255 | const NetmaskTree* d_tree; | |
1256 | TreeNode* d_node; | |
1257 | ||
1258 | Iterator(const NetmaskTree* tree, TreeNode* node) : | |
1259 | d_tree(tree), d_node(node) | |
1260 | { | |
1261 | } | |
1262 | ||
1263 | public: | |
1264 | Iterator() : | |
1265 | d_tree(nullptr), d_node(nullptr) {} | |
1266 | ||
1267 | Iterator& operator++() // prefix | |
1268 | { | |
1269 | if (d_node == nullptr) { | |
1270 | throw std::logic_error( | |
1271 | "NetmaskTree::Iterator::operator++: iterator is invalid"); | |
1272 | } | |
1273 | d_node = d_node->traverse_lnr_assigned(); | |
1274 | return *this; | |
1275 | } | |
1276 | Iterator operator++(int) // postfix | |
1277 | { | |
1278 | Iterator tmp(*this); | |
1279 | operator++(); | |
1280 | return tmp; | |
1281 | } | |
1282 | ||
1283 | reference operator*() | |
1284 | { | |
1285 | if (d_node == nullptr) { | |
1286 | throw std::logic_error( | |
1287 | "NetmaskTree::Iterator::operator*: iterator is invalid"); | |
1288 | } | |
1289 | return d_node->node; | |
1290 | } | |
1291 | ||
1292 | pointer operator->() | |
1293 | { | |
1294 | if (d_node == nullptr) { | |
1295 | throw std::logic_error( | |
1296 | "NetmaskTree::Iterator::operator->: iterator is invalid"); | |
1297 | } | |
1298 | return &d_node->node; | |
1299 | } | |
1300 | ||
1301 | bool operator==(const Iterator& rhs) | |
1302 | { | |
1303 | return (d_tree == rhs.d_tree && d_node == rhs.d_node); | |
1304 | } | |
1305 | bool operator!=(const Iterator& rhs) | |
1306 | { | |
1307 | return !(*this == rhs); | |
1308 | } | |
1309 | }; | |
1310 | ||
1311 | NetmaskTree() noexcept : | |
1312 | d_root(new TreeNode()), d_left(nullptr) | |
1313 | { | |
1314 | } | |
1315 | ||
1316 | NetmaskTree(const NetmaskTree& rhs) : | |
1317 | d_root(new TreeNode()), d_left(nullptr) | |
1318 | { | |
1319 | copyTree(rhs); | |
1320 | } | |
1321 | ||
1322 | ~NetmaskTree() = default; | |
1323 | ||
1324 | NetmaskTree& operator=(const NetmaskTree& rhs) | |
1325 | { | |
1326 | if (this != &rhs) { | |
1327 | clear(); | |
1328 | copyTree(rhs); | |
1329 | } | |
1330 | return *this; | |
1331 | } | |
1332 | ||
1333 | NetmaskTree(NetmaskTree&&) noexcept = default; | |
1334 | NetmaskTree& operator=(NetmaskTree&&) noexcept = default; | |
1335 | ||
1336 | [[nodiscard]] iterator begin() const | |
1337 | { | |
1338 | return Iterator(this, d_left); | |
1339 | } | |
1340 | [[nodiscard]] iterator end() const | |
1341 | { | |
1342 | return Iterator(this, nullptr); | |
1343 | } | |
1344 | iterator begin() | |
1345 | { | |
1346 | return Iterator(this, d_left); | |
1347 | } | |
1348 | iterator end() | |
1349 | { | |
1350 | return Iterator(this, nullptr); | |
1351 | } | |
1352 | ||
1353 | node_type& insert(const string& mask) | |
1354 | { | |
1355 | return insert(key_type(mask)); | |
1356 | } | |
1357 | ||
1358 | //<! Creates new value-pair in tree and returns it. | |
1359 | node_type& insert(const key_type& key) | |
1360 | { | |
1361 | TreeNode* node{}; | |
1362 | bool is_left = true; | |
1363 | ||
1364 | // we turn left on IPv4 and right on IPv6 | |
1365 | if (key.isIPv4()) { | |
1366 | node = d_root->left.get(); | |
1367 | if (node == nullptr) { | |
1368 | ||
1369 | d_root->left = make_unique<TreeNode>(key); | |
1370 | node = d_root->left.get(); | |
1371 | node->assigned = true; | |
1372 | node->parent = d_root.get(); | |
1373 | d_size++; | |
1374 | d_left = node; | |
1375 | return node->node; | |
1376 | } | |
1377 | } | |
1378 | else if (key.isIPv6()) { | |
1379 | node = d_root->right.get(); | |
1380 | if (node == nullptr) { | |
1381 | ||
1382 | d_root->right = make_unique<TreeNode>(key); | |
1383 | node = d_root->right.get(); | |
1384 | node->assigned = true; | |
1385 | node->parent = d_root.get(); | |
1386 | d_size++; | |
1387 | if (!d_root->left) { | |
1388 | d_left = node; | |
1389 | } | |
1390 | return node->node; | |
1391 | } | |
1392 | if (d_root->left) { | |
1393 | is_left = false; | |
1394 | } | |
1395 | } | |
1396 | else { | |
1397 | throw NetmaskException("invalid address family"); | |
1398 | } | |
1399 | ||
1400 | // we turn left on 0 and right on 1 | |
1401 | int bits = 0; | |
1402 | for (; bits < key.getBits(); bits++) { | |
1403 | bool vall = key.getBit(-1 - bits); | |
1404 | ||
1405 | if (bits >= node->d_bits) { | |
1406 | // the end of the current node is reached; continue with the next | |
1407 | if (vall) { | |
1408 | if (node->left || node->assigned) { | |
1409 | is_left = false; | |
1410 | } | |
1411 | if (!node->right) { | |
1412 | // the right branch doesn't exist yet; attach our key here | |
1413 | node = node->make_right(key); | |
1414 | break; | |
1415 | } | |
1416 | node = node->right.get(); | |
1417 | } | |
1418 | else { | |
1419 | if (!node->left) { | |
1420 | // the left branch doesn't exist yet; attach our key here | |
1421 | node = node->make_left(key); | |
1422 | break; | |
1423 | } | |
1424 | node = node->left.get(); | |
1425 | } | |
1426 | continue; | |
1427 | } | |
1428 | if (bits >= node->node.first.getBits()) { | |
1429 | // the matching branch ends here, yet the key netmask has more bits; add a | |
1430 | // child node below the existing branch leaf. | |
1431 | if (vall) { | |
1432 | if (node->assigned) { | |
1433 | is_left = false; | |
1434 | } | |
1435 | node = node->make_right(key); | |
1436 | } | |
1437 | else { | |
1438 | node = node->make_left(key); | |
1439 | } | |
1440 | break; | |
1441 | } | |
1442 | bool valr = node->node.first.getBit(-1 - bits); | |
1443 | if (vall != valr) { | |
1444 | if (vall) { | |
1445 | is_left = false; | |
1446 | } | |
1447 | // the branch matches just upto this point, yet continues in a different | |
1448 | // direction; fork the branch. | |
1449 | node = node->fork(key, bits); | |
1450 | break; | |
1451 | } | |
1452 | } | |
1453 | ||
1454 | if (node->node.first.getBits() > key.getBits()) { | |
1455 | // key is a super-network of the matching node; split the branch and | |
1456 | // insert a node for the key above the matching node. | |
1457 | node = node->split(key, key.getBits()); | |
1458 | } | |
1459 | ||
1460 | if (node->left) { | |
1461 | is_left = false; | |
1462 | } | |
1463 | ||
1464 | node_type& value = node->node; | |
1465 | ||
1466 | if (!node->assigned) { | |
1467 | // only increment size if not assigned before | |
1468 | d_size++; | |
1469 | // update the pointer to the left-most tree node | |
1470 | if (is_left) { | |
1471 | d_left = node; | |
1472 | } | |
1473 | node->assigned = true; | |
1474 | } | |
1475 | else { | |
1476 | // tree node exists for this value | |
1477 | if (is_left && d_left != node) { | |
1478 | throw std::logic_error( | |
1479 | "NetmaskTree::insert(): lost track of left-most node in tree"); | |
1480 | } | |
1481 | } | |
1482 | ||
1483 | return value; | |
1484 | } | |
1485 | ||
1486 | //<! Creates or updates value | |
1487 | void insert_or_assign(const key_type& mask, const value_type& value) | |
1488 | { | |
1489 | insert(mask).second = value; | |
1490 | } | |
1491 | ||
1492 | void insert_or_assign(const string& mask, const value_type& value) | |
1493 | { | |
1494 | insert(key_type(mask)).second = value; | |
1495 | } | |
1496 | ||
1497 | //<! check if given key is present in TreeMap | |
1498 | [[nodiscard]] bool has_key(const key_type& key) const | |
1499 | { | |
1500 | const node_type* ptr = lookup(key); | |
1501 | return ptr && ptr->first == key; | |
1502 | } | |
1503 | ||
1504 | //<! Returns "best match" for key_type, which might not be value | |
1505 | [[nodiscard]] node_type* lookup(const key_type& value) const | |
1506 | { | |
1507 | uint8_t max_bits = value.getBits(); | |
1508 | return lookupImpl(value, max_bits); | |
1509 | } | |
1510 | ||
1511 | //<! Perform best match lookup for value, using at most max_bits | |
1512 | [[nodiscard]] node_type* lookup(const ComboAddress& value, int max_bits = 128) const | |
1513 | { | |
1514 | uint8_t addr_bits = value.getBits(); | |
1515 | if (max_bits < 0 || max_bits > addr_bits) { | |
1516 | max_bits = addr_bits; | |
1517 | } | |
1518 | ||
1519 | return lookupImpl(key_type(value, max_bits), max_bits); | |
1520 | } | |
1521 | ||
1522 | //<! Removes key from TreeMap. | |
1523 | void erase(const key_type& key) | |
1524 | { | |
1525 | TreeNode* node = nullptr; | |
1526 | ||
1527 | if (key.isIPv4()) { | |
1528 | node = d_root->left.get(); | |
1529 | } | |
1530 | else if (key.isIPv6()) { | |
1531 | node = d_root->right.get(); | |
1532 | } | |
1533 | else { | |
1534 | throw NetmaskException("invalid address family"); | |
1535 | } | |
1536 | // no tree, no value | |
1537 | if (node == nullptr) { | |
1538 | return; | |
1539 | } | |
1540 | int bits = 0; | |
1541 | for (; node && bits < key.getBits(); bits++) { | |
1542 | bool vall = key.getBit(-1 - bits); | |
1543 | if (bits >= node->d_bits) { | |
1544 | // the end of the current node is reached; continue with the next | |
1545 | if (vall) { | |
1546 | node = node->right.get(); | |
1547 | } | |
1548 | else { | |
1549 | node = node->left.get(); | |
1550 | } | |
1551 | continue; | |
1552 | } | |
1553 | if (bits >= node->node.first.getBits()) { | |
1554 | // the matching branch ends here | |
1555 | if (key.getBits() != node->node.first.getBits()) { | |
1556 | node = nullptr; | |
1557 | } | |
1558 | break; | |
1559 | } | |
1560 | bool valr = node->node.first.getBit(-1 - bits); | |
1561 | if (vall != valr) { | |
1562 | // the branch matches just upto this point, yet continues in a different | |
1563 | // direction | |
1564 | node = nullptr; | |
1565 | break; | |
1566 | } | |
1567 | } | |
1568 | if (node) { | |
1569 | if (d_size == 0) { | |
1570 | throw std::logic_error( | |
1571 | "NetmaskTree::erase(): size of tree is zero before erase"); | |
1572 | } | |
1573 | d_size--; | |
1574 | node->assigned = false; | |
1575 | node->node.second = value_type(); | |
1576 | ||
1577 | if (node == d_left) { | |
1578 | d_left = d_left->traverse_lnr_assigned(); | |
1579 | } | |
1580 | cleanup_tree(node); | |
1581 | } | |
1582 | } | |
1583 | ||
1584 | void erase(const string& key) | |
1585 | { | |
1586 | erase(key_type(key)); | |
1587 | } | |
1588 | ||
1589 | //<! checks whether the container is empty. | |
1590 | [[nodiscard]] bool empty() const | |
1591 | { | |
1592 | return (d_size == 0); | |
1593 | } | |
1594 | ||
1595 | //<! returns the number of elements | |
1596 | [[nodiscard]] size_type size() const | |
1597 | { | |
1598 | return d_size; | |
1599 | } | |
1600 | ||
1601 | //<! See if given ComboAddress matches any prefix | |
1602 | [[nodiscard]] bool match(const ComboAddress& value) const | |
1603 | { | |
1604 | return (lookup(value) != nullptr); | |
1605 | } | |
1606 | ||
1607 | [[nodiscard]] bool match(const std::string& value) const | |
1608 | { | |
1609 | return match(ComboAddress(value)); | |
1610 | } | |
1611 | ||
1612 | //<! Clean out the tree | |
1613 | void clear() | |
1614 | { | |
1615 | d_root = make_unique<TreeNode>(); | |
1616 | d_left = nullptr; | |
1617 | d_size = 0; | |
1618 | } | |
1619 | ||
1620 | //<! swaps the contents with another NetmaskTree | |
1621 | void swap(NetmaskTree& rhs) noexcept | |
1622 | { | |
1623 | std::swap(d_root, rhs.d_root); | |
1624 | std::swap(d_left, rhs.d_left); | |
1625 | std::swap(d_size, rhs.d_size); | |
1626 | } | |
1627 | ||
1628 | private: | |
1629 | [[nodiscard]] node_type* lookupImpl(const key_type& value, uint8_t max_bits) const | |
1630 | { | |
1631 | TreeNode* node = nullptr; | |
1632 | ||
1633 | if (value.isIPv4()) { | |
1634 | node = d_root->left.get(); | |
1635 | } | |
1636 | else if (value.isIPv6()) { | |
1637 | node = d_root->right.get(); | |
1638 | } | |
1639 | else { | |
1640 | throw NetmaskException("invalid address family"); | |
1641 | } | |
1642 | if (node == nullptr) { | |
1643 | return nullptr; | |
1644 | } | |
1645 | ||
1646 | node_type* ret = nullptr; | |
1647 | ||
1648 | int bits = 0; | |
1649 | for (; bits < max_bits; bits++) { | |
1650 | bool vall = value.getBit(-1 - bits); | |
1651 | if (bits >= node->d_bits) { | |
1652 | // the end of the current node is reached; continue with the next | |
1653 | // (we keep track of last assigned node) | |
1654 | if (node->assigned && bits == node->node.first.getBits()) { | |
1655 | ret = &node->node; | |
1656 | } | |
1657 | if (vall) { | |
1658 | if (!node->right) { | |
1659 | break; | |
1660 | } | |
1661 | node = node->right.get(); | |
1662 | } | |
1663 | else { | |
1664 | if (!node->left) { | |
1665 | break; | |
1666 | } | |
1667 | node = node->left.get(); | |
1668 | } | |
1669 | continue; | |
1670 | } | |
1671 | if (bits >= node->node.first.getBits()) { | |
1672 | // the matching branch ends here | |
1673 | break; | |
1674 | } | |
1675 | bool valr = node->node.first.getBit(-1 - bits); | |
1676 | if (vall != valr) { | |
1677 | // the branch matches just upto this point, yet continues in a different | |
1678 | // direction | |
1679 | break; | |
1680 | } | |
1681 | } | |
1682 | // needed if we did not find one in loop | |
1683 | if (node->assigned && bits == node->node.first.getBits()) { | |
1684 | ret = &node->node; | |
1685 | } | |
1686 | // this can be nullptr. | |
1687 | return ret; | |
1688 | } | |
1689 | ||
1690 | unique_ptr<TreeNode> d_root; //<! Root of our tree | |
1691 | TreeNode* d_left; | |
1692 | size_type d_size{0}; | |
1693 | }; | |
1694 | ||
1695 | /** This class represents a group of supplemental Netmask classes. An IP address matches | |
1696 | if it is matched by one or more of the Netmask objects within. | |
1697 | */ | |
1698 | class NetmaskGroup | |
1699 | { | |
1700 | public: | |
1701 | NetmaskGroup() noexcept = default; | |
1702 | ||
1703 | //! If this IP address is matched by any of the classes within | |
1704 | ||
1705 | bool match(const ComboAddress* address) const | |
1706 | { | |
1707 | const auto& ret = tree.lookup(*address); | |
1708 | if (ret != nullptr) { | |
1709 | return ret->second; | |
1710 | } | |
1711 | return false; | |
1712 | } | |
1713 | ||
1714 | [[nodiscard]] bool match(const ComboAddress& address) const | |
1715 | { | |
1716 | return match(&address); | |
1717 | } | |
1718 | ||
1719 | bool lookup(const ComboAddress* address, Netmask* nmp) const | |
1720 | { | |
1721 | const auto& ret = tree.lookup(*address); | |
1722 | if (ret != nullptr) { | |
1723 | if (nmp != nullptr) { | |
1724 | *nmp = ret->first; | |
1725 | } | |
1726 | return ret->second; | |
1727 | } | |
1728 | return false; | |
1729 | } | |
1730 | ||
1731 | bool lookup(const ComboAddress& address, Netmask* nmp) const | |
1732 | { | |
1733 | return lookup(&address, nmp); | |
1734 | } | |
1735 | ||
1736 | //! Add this string to the list of possible matches | |
1737 | void addMask(const string& address, bool positive = true) | |
1738 | { | |
1739 | if (!address.empty() && address[0] == '!') { | |
1740 | addMask(Netmask(address.substr(1)), false); | |
1741 | } | |
1742 | else { | |
1743 | addMask(Netmask(address), positive); | |
1744 | } | |
1745 | } | |
1746 | ||
1747 | //! Add this Netmask to the list of possible matches | |
1748 | void addMask(const Netmask& netmask, bool positive = true) | |
1749 | { | |
1750 | tree.insert(netmask).second = positive; | |
1751 | } | |
1752 | ||
1753 | void addMasks(const NetmaskGroup& group, boost::optional<bool> positive) | |
1754 | { | |
1755 | for (const auto& entry : group.tree) { | |
1756 | addMask(entry.first, positive ? *positive : entry.second); | |
1757 | } | |
1758 | } | |
1759 | ||
1760 | //! Delete this Netmask from the list of possible matches | |
1761 | void deleteMask(const Netmask& netmask) | |
1762 | { | |
1763 | tree.erase(netmask); | |
1764 | } | |
1765 | ||
1766 | void deleteMasks(const NetmaskGroup& group) | |
1767 | { | |
1768 | for (const auto& entry : group.tree) { | |
1769 | deleteMask(entry.first); | |
1770 | } | |
1771 | } | |
1772 | ||
1773 | void deleteMask(const std::string& address) | |
1774 | { | |
1775 | if (!address.empty()) { | |
1776 | deleteMask(Netmask(address)); | |
1777 | } | |
1778 | } | |
1779 | ||
1780 | void clear() | |
1781 | { | |
1782 | tree.clear(); | |
1783 | } | |
1784 | ||
1785 | [[nodiscard]] bool empty() const | |
1786 | { | |
1787 | return tree.empty(); | |
1788 | } | |
1789 | ||
1790 | [[nodiscard]] size_t size() const | |
1791 | { | |
1792 | return tree.size(); | |
1793 | } | |
1794 | ||
1795 | [[nodiscard]] string toString() const | |
1796 | { | |
1797 | ostringstream str; | |
1798 | for (auto iter = tree.begin(); iter != tree.end(); ++iter) { | |
1799 | if (iter != tree.begin()) { | |
1800 | str << ", "; | |
1801 | } | |
1802 | if (!(iter->second)) { | |
1803 | str << "!"; | |
1804 | } | |
1805 | str << iter->first.toString(); | |
1806 | } | |
1807 | return str.str(); | |
1808 | } | |
1809 | ||
1810 | [[nodiscard]] std::vector<std::string> toStringVector() const | |
1811 | { | |
1812 | std::vector<std::string> out; | |
1813 | out.reserve(tree.size()); | |
1814 | for (const auto& entry : tree) { | |
1815 | out.push_back((entry.second ? "" : "!") + entry.first.toString()); | |
1816 | } | |
1817 | return out; | |
1818 | } | |
1819 | ||
1820 | void toMasks(const string& ips) | |
1821 | { | |
1822 | vector<string> parts; | |
1823 | stringtok(parts, ips, ", \t"); | |
1824 | ||
1825 | for (const auto& part : parts) { | |
1826 | addMask(part); | |
1827 | } | |
1828 | } | |
1829 | ||
1830 | private: | |
1831 | NetmaskTree<bool> tree; | |
1832 | }; | |
1833 | ||
1834 | struct SComboAddress | |
1835 | { | |
1836 | SComboAddress(const ComboAddress& orig) : | |
1837 | ca(orig) {} | |
1838 | ComboAddress ca; | |
1839 | bool operator<(const SComboAddress& rhs) const | |
1840 | { | |
1841 | return ComboAddress::addressOnlyLessThan()(ca, rhs.ca); | |
1842 | } | |
1843 | operator const ComboAddress&() const | |
1844 | { | |
1845 | return ca; | |
1846 | } | |
1847 | }; | |
1848 | ||
1849 | class NetworkError : public runtime_error | |
1850 | { | |
1851 | public: | |
1852 | NetworkError(const string& why = "Network Error") : | |
1853 | runtime_error(why.c_str()) | |
1854 | {} | |
1855 | NetworkError(const char* why = "Network Error") : | |
1856 | runtime_error(why) | |
1857 | {} | |
1858 | }; | |
1859 | ||
1860 | class AddressAndPortRange | |
1861 | { | |
1862 | public: | |
1863 | AddressAndPortRange() : | |
1864 | d_addrMask(0), d_portMask(0) | |
1865 | { | |
1866 | d_addr.sin4.sin_family = 0; // disable this doing anything useful | |
1867 | d_addr.sin4.sin_port = 0; // this guarantees d_network compares identical | |
1868 | } | |
1869 | ||
1870 | AddressAndPortRange(ComboAddress address, uint8_t addrMask, uint8_t portMask = 0) : | |
1871 | d_addr(address), d_addrMask(addrMask), d_portMask(portMask) | |
1872 | { | |
1873 | if (!d_addr.isIPv4()) { | |
1874 | d_portMask = 0; | |
1875 | } | |
1876 | ||
1877 | uint16_t port = d_addr.getPort(); | |
1878 | if (d_portMask < 16) { | |
1879 | auto mask = static_cast<uint16_t>(~(0xFFFF >> d_portMask)); | |
1880 | port = port & mask; | |
1881 | } | |
1882 | ||
1883 | if (d_addrMask < d_addr.getBits()) { | |
1884 | if (d_portMask > 0) { | |
1885 | throw std::runtime_error("Trying to create a AddressAndPortRange with a reduced address mask (" + std::to_string(d_addrMask) + ") and a port range (" + std::to_string(d_portMask) + ")"); | |
1886 | } | |
1887 | d_addr = Netmask(d_addr, d_addrMask).getMaskedNetwork(); | |
1888 | } | |
1889 | d_addr.setPort(port); | |
1890 | } | |
1891 | ||
1892 | [[nodiscard]] uint8_t getFullBits() const | |
1893 | { | |
1894 | return d_addr.getBits() + 16; | |
1895 | } | |
1896 | ||
1897 | [[nodiscard]] uint8_t getBits() const | |
1898 | { | |
1899 | if (d_addrMask < d_addr.getBits()) { | |
1900 | return d_addrMask; | |
1901 | } | |
1902 | ||
1903 | return d_addr.getBits() + d_portMask; | |
1904 | } | |
1905 | ||
1906 | /** Get the value of the bit at the provided bit index. When the index >= 0, | |
1907 | the index is relative to the LSB starting at index zero. When the index < 0, | |
1908 | the index is relative to the MSB starting at index -1 and counting down. | |
1909 | */ | |
1910 | [[nodiscard]] bool getBit(int index) const | |
1911 | { | |
1912 | if (index >= getFullBits()) { | |
1913 | return false; | |
1914 | } | |
1915 | if (index < 0) { | |
1916 | index = getFullBits() + index; | |
1917 | } | |
1918 | ||
1919 | if (index < 16) { | |
1920 | /* we are into the port bits */ | |
1921 | uint16_t port = d_addr.getPort(); | |
1922 | return ((port & (1U << index)) != 0x0000); | |
1923 | } | |
1924 | ||
1925 | index -= 16; | |
1926 | ||
1927 | return d_addr.getBit(index); | |
1928 | } | |
1929 | ||
1930 | [[nodiscard]] bool isIPv4() const | |
1931 | { | |
1932 | return d_addr.isIPv4(); | |
1933 | } | |
1934 | ||
1935 | [[nodiscard]] bool isIPv6() const | |
1936 | { | |
1937 | return d_addr.isIPv6(); | |
1938 | } | |
1939 | ||
1940 | [[nodiscard]] AddressAndPortRange getNormalized() const | |
1941 | { | |
1942 | return {d_addr, d_addrMask, d_portMask}; | |
1943 | } | |
1944 | ||
1945 | [[nodiscard]] AddressAndPortRange getSuper(uint8_t bits) const | |
1946 | { | |
1947 | if (bits <= d_addrMask) { | |
1948 | return {d_addr, bits, 0}; | |
1949 | } | |
1950 | if (bits <= d_addrMask + d_portMask) { | |
1951 | return {d_addr, d_addrMask, static_cast<uint8_t>(d_portMask - (bits - d_addrMask))}; | |
1952 | } | |
1953 | ||
1954 | return {d_addr, d_addrMask, d_portMask}; | |
1955 | } | |
1956 | ||
1957 | [[nodiscard]] const ComboAddress& getNetwork() const | |
1958 | { | |
1959 | return d_addr; | |
1960 | } | |
1961 | ||
1962 | [[nodiscard]] string toString() const | |
1963 | { | |
1964 | if (d_addrMask < d_addr.getBits() || d_portMask == 0) { | |
1965 | return d_addr.toStringNoInterface() + "/" + std::to_string(d_addrMask); | |
1966 | } | |
1967 | return d_addr.toStringNoInterface() + ":" + std::to_string(d_addr.getPort()) + "/" + std::to_string(d_portMask); | |
1968 | } | |
1969 | ||
1970 | [[nodiscard]] bool empty() const | |
1971 | { | |
1972 | return d_addr.sin4.sin_family == 0; | |
1973 | } | |
1974 | ||
1975 | bool operator==(const AddressAndPortRange& rhs) const | |
1976 | { | |
1977 | return std::tie(d_addr, d_addrMask, d_portMask) == std::tie(rhs.d_addr, rhs.d_addrMask, rhs.d_portMask); | |
1978 | } | |
1979 | ||
1980 | bool operator<(const AddressAndPortRange& rhs) const | |
1981 | { | |
1982 | if (empty() && !rhs.empty()) { | |
1983 | return false; | |
1984 | } | |
1985 | ||
1986 | if (!empty() && rhs.empty()) { | |
1987 | return true; | |
1988 | } | |
1989 | ||
1990 | if (d_addrMask > rhs.d_addrMask) { | |
1991 | return true; | |
1992 | } | |
1993 | ||
1994 | if (d_addrMask < rhs.d_addrMask) { | |
1995 | return false; | |
1996 | } | |
1997 | ||
1998 | if (d_addr < rhs.d_addr) { | |
1999 | return true; | |
2000 | } | |
2001 | ||
2002 | if (d_addr > rhs.d_addr) { | |
2003 | return false; | |
2004 | } | |
2005 | ||
2006 | if (d_portMask > rhs.d_portMask) { | |
2007 | return true; | |
2008 | } | |
2009 | ||
2010 | if (d_portMask < rhs.d_portMask) { | |
2011 | return false; | |
2012 | } | |
2013 | ||
2014 | return d_addr.getPort() < rhs.d_addr.getPort(); | |
2015 | } | |
2016 | ||
2017 | bool operator>(const AddressAndPortRange& rhs) const | |
2018 | { | |
2019 | return rhs.operator<(*this); | |
2020 | } | |
2021 | ||
2022 | struct hash | |
2023 | { | |
2024 | uint32_t operator()(const AddressAndPortRange& apr) const | |
2025 | { | |
2026 | ComboAddress::addressOnlyHash hashOp; | |
2027 | uint16_t port = apr.d_addr.getPort(); | |
2028 | /* it's fine to hash the whole address and port because the non-relevant parts have | |
2029 | been masked to 0 */ | |
2030 | return burtle(reinterpret_cast<const unsigned char*>(&port), sizeof(port), hashOp(apr.d_addr)); // NOLINT(cppcoreguidelines-pro-type-reinterpret-cast) | |
2031 | } | |
2032 | }; | |
2033 | ||
2034 | private: | |
2035 | ComboAddress d_addr; | |
2036 | uint8_t d_addrMask; | |
2037 | /* only used for v4 addresses */ | |
2038 | uint8_t d_portMask; | |
2039 | }; | |
2040 | ||
2041 | int SSocket(int family, int type, int flags); | |
2042 | int SConnect(int sockfd, const ComboAddress& remote); | |
2043 | /* tries to connect to remote for a maximum of timeout seconds. | |
2044 | sockfd should be set to non-blocking beforehand. | |
2045 | returns 0 on success (the socket is writable), throw a | |
2046 | runtime_error otherwise */ | |
2047 | int SConnectWithTimeout(int sockfd, const ComboAddress& remote, const struct timeval& timeout); | |
2048 | int SBind(int sockfd, const ComboAddress& local); | |
2049 | int SAccept(int sockfd, ComboAddress& remote); | |
2050 | int SListen(int sockfd, int limit); | |
2051 | int SSetsockopt(int sockfd, int level, int opname, int value); | |
2052 | void setSocketIgnorePMTU(int sockfd, int family); | |
2053 | void setSocketForcePMTU(int sockfd, int family); | |
2054 | bool setReusePort(int sockfd); | |
2055 | ||
2056 | #if defined(IP_PKTINFO) | |
2057 | #define GEN_IP_PKTINFO IP_PKTINFO | |
2058 | #elif defined(IP_RECVDSTADDR) | |
2059 | #define GEN_IP_PKTINFO IP_RECVDSTADDR | |
2060 | #endif | |
2061 | ||
2062 | bool IsAnyAddress(const ComboAddress& addr); | |
2063 | bool HarvestDestinationAddress(const struct msghdr* msgh, ComboAddress* destination); | |
2064 | bool HarvestTimestamp(struct msghdr* msgh, struct timeval* timeval); | |
2065 | void fillMSGHdr(struct msghdr* msgh, struct iovec* iov, cmsgbuf_aligned* cbuf, size_t cbufsize, char* data, size_t datalen, ComboAddress* addr); | |
2066 | int sendOnNBSocket(int fileDesc, const struct msghdr* msgh); | |
2067 | size_t sendMsgWithOptions(int socketDesc, const void* buffer, size_t len, const ComboAddress* dest, const ComboAddress* local, unsigned int localItf, int flags); | |
2068 | ||
2069 | /* requires a non-blocking, connected TCP socket */ | |
2070 | bool isTCPSocketUsable(int sock); | |
2071 | ||
2072 | extern template class NetmaskTree<bool>; | |
2073 | ComboAddress parseIPAndPort(const std::string& input, uint16_t port); | |
2074 | ||
2075 | std::set<std::string> getListOfNetworkInterfaces(); | |
2076 | std::vector<ComboAddress> getListOfAddressesOfNetworkInterface(const std::string& itf); | |
2077 | std::vector<Netmask> getListOfRangesOfNetworkInterface(const std::string& itf); | |
2078 | ||
2079 | /* These functions throw if the value was already set to a higher value, | |
2080 | or on error */ | |
2081 | void setSocketBuffer(int fileDesc, int optname, uint32_t size); | |
2082 | void setSocketReceiveBuffer(int fileDesc, uint32_t size); | |
2083 | void setSocketSendBuffer(int fileDesc, uint32_t size); | |
2084 | uint32_t raiseSocketReceiveBufferToMax(int socket); | |
2085 | uint32_t raiseSocketSendBufferToMax(int socket); |