]> git.ipfire.org Git - thirdparty/git.git/blame_incremental - run-command.c
The fifth batch
[thirdparty/git.git] / run-command.c
... / ...
CommitLineData
1#define USE_THE_REPOSITORY_VARIABLE
2#define DISABLE_SIGN_COMPARE_WARNINGS
3
4#include "git-compat-util.h"
5#include "run-command.h"
6#include "environment.h"
7#include "exec-cmd.h"
8#include "gettext.h"
9#include "sigchain.h"
10#include "strvec.h"
11#include "symlinks.h"
12#include "thread-utils.h"
13#include "strbuf.h"
14#include "string-list.h"
15#include "trace.h"
16#include "trace2.h"
17#include "quote.h"
18#include "config.h"
19#include "packfile.h"
20#include "compat/nonblock.h"
21
22void child_process_init(struct child_process *child)
23{
24 struct child_process blank = CHILD_PROCESS_INIT;
25 memcpy(child, &blank, sizeof(*child));
26}
27
28void child_process_clear(struct child_process *child)
29{
30 strvec_clear(&child->args);
31 strvec_clear(&child->env);
32}
33
34struct child_to_clean {
35 pid_t pid;
36 struct child_process *process;
37 struct child_to_clean *next;
38};
39static struct child_to_clean *children_to_clean;
40static int installed_child_cleanup_handler;
41
42static void cleanup_children(int sig, int in_signal)
43{
44 struct child_to_clean *children_to_wait_for = NULL;
45
46 while (children_to_clean) {
47 struct child_to_clean *p = children_to_clean;
48 children_to_clean = p->next;
49
50 if (p->process && !in_signal) {
51 struct child_process *process = p->process;
52 if (process->clean_on_exit_handler) {
53 trace_printf(
54 "trace: run_command: running exit handler for pid %"
55 PRIuMAX, (uintmax_t)p->pid
56 );
57 process->clean_on_exit_handler(process);
58 }
59 }
60
61 kill(p->pid, sig);
62
63 if (p->process && p->process->wait_after_clean) {
64 p->next = children_to_wait_for;
65 children_to_wait_for = p;
66 } else {
67 if (!in_signal)
68 free(p);
69 }
70 }
71
72 while (children_to_wait_for) {
73 struct child_to_clean *p = children_to_wait_for;
74 children_to_wait_for = p->next;
75
76 while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
77 ; /* spin waiting for process exit or error */
78
79 if (!in_signal)
80 free(p);
81 }
82}
83
84static void cleanup_children_on_signal(int sig)
85{
86 cleanup_children(sig, 1);
87 sigchain_pop(sig);
88 raise(sig);
89}
90
91static void cleanup_children_on_exit(void)
92{
93 cleanup_children(SIGTERM, 0);
94}
95
96static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
97{
98 struct child_to_clean *p = xmalloc(sizeof(*p));
99 p->pid = pid;
100 p->process = process;
101 p->next = children_to_clean;
102 children_to_clean = p;
103
104 if (!installed_child_cleanup_handler) {
105 atexit(cleanup_children_on_exit);
106 sigchain_push_common(cleanup_children_on_signal);
107 installed_child_cleanup_handler = 1;
108 }
109}
110
111static void clear_child_for_cleanup(pid_t pid)
112{
113 struct child_to_clean **pp;
114
115 for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
116 struct child_to_clean *clean_me = *pp;
117
118 if (clean_me->pid == pid) {
119 *pp = clean_me->next;
120 free(clean_me);
121 return;
122 }
123 }
124}
125
126static inline void close_pair(int fd[2])
127{
128 close(fd[0]);
129 close(fd[1]);
130}
131
132int is_executable(const char *name)
133{
134 struct stat st;
135
136 if (stat(name, &st) || /* stat, not lstat */
137 !S_ISREG(st.st_mode))
138 return 0;
139
140#if defined(GIT_WINDOWS_NATIVE)
141 /*
142 * On Windows there is no executable bit. The file extension
143 * indicates whether it can be run as an executable, and Git
144 * has special-handling to detect scripts and launch them
145 * through the indicated script interpreter. We test for the
146 * file extension first because virus scanners may make
147 * it quite expensive to open many files.
148 */
149 if (ends_with(name, ".exe"))
150 return S_IXUSR;
151
152{
153 /*
154 * Now that we know it does not have an executable extension,
155 * peek into the file instead.
156 */
157 char buf[3] = { 0 };
158 int n;
159 int fd = open(name, O_RDONLY);
160 st.st_mode &= ~S_IXUSR;
161 if (fd >= 0) {
162 n = read(fd, buf, 2);
163 if (n == 2)
164 /* look for a she-bang */
165 if (!strcmp(buf, "#!"))
166 st.st_mode |= S_IXUSR;
167 close(fd);
168 }
169}
170#endif
171 return st.st_mode & S_IXUSR;
172}
173
174#ifndef locate_in_PATH
175/*
176 * Search $PATH for a command. This emulates the path search that
177 * execvp would perform, without actually executing the command so it
178 * can be used before fork() to prepare to run a command using
179 * execve() or after execvp() to diagnose why it failed.
180 *
181 * The caller should ensure that file contains no directory
182 * separators.
183 *
184 * Returns the path to the command, as found in $PATH or NULL if the
185 * command could not be found. The caller inherits ownership of the memory
186 * used to store the resultant path.
187 *
188 * This should not be used on Windows, where the $PATH search rules
189 * are more complicated (e.g., a search for "foo" should find
190 * "foo.exe").
191 */
192static char *locate_in_PATH(const char *file)
193{
194 const char *p = getenv("PATH");
195 struct strbuf buf = STRBUF_INIT;
196
197 if (!p || !*p)
198 return NULL;
199
200 while (1) {
201 const char *end = strchrnul(p, ':');
202
203 strbuf_reset(&buf);
204
205 /* POSIX specifies an empty entry as the current directory. */
206 if (end != p) {
207 strbuf_add(&buf, p, end - p);
208 strbuf_addch(&buf, '/');
209 }
210 strbuf_addstr(&buf, file);
211
212 if (is_executable(buf.buf))
213 return strbuf_detach(&buf, NULL);
214
215 if (!*end)
216 break;
217 p = end + 1;
218 }
219
220 strbuf_release(&buf);
221 return NULL;
222}
223#endif
224
225int exists_in_PATH(const char *command)
226{
227 char *r = locate_in_PATH(command);
228 int found = r != NULL;
229 free(r);
230 return found;
231}
232
233int sane_execvp(const char *file, char * const argv[])
234{
235#ifndef GIT_WINDOWS_NATIVE
236 /*
237 * execvp() doesn't return, so we all we can do is tell trace2
238 * what we are about to do and let it leave a hint in the log
239 * (unless of course the execvp() fails).
240 *
241 * we skip this for Windows because the compat layer already
242 * has to emulate the execvp() call anyway.
243 */
244 int exec_id = trace2_exec(file, (const char **)argv);
245#endif
246
247 if (!execvp(file, argv))
248 return 0; /* cannot happen ;-) */
249
250#ifndef GIT_WINDOWS_NATIVE
251 {
252 int ec = errno;
253 trace2_exec_result(exec_id, ec);
254 errno = ec;
255 }
256#endif
257
258 /*
259 * When a command can't be found because one of the directories
260 * listed in $PATH is unsearchable, execvp reports EACCES, but
261 * careful usability testing (read: analysis of occasional bug
262 * reports) reveals that "No such file or directory" is more
263 * intuitive.
264 *
265 * We avoid commands with "/", because execvp will not do $PATH
266 * lookups in that case.
267 *
268 * The reassignment of EACCES to errno looks like a no-op below,
269 * but we need to protect against exists_in_PATH overwriting errno.
270 */
271 if (errno == EACCES && !strchr(file, '/'))
272 errno = exists_in_PATH(file) ? EACCES : ENOENT;
273 else if (errno == ENOTDIR && !strchr(file, '/'))
274 errno = ENOENT;
275 return -1;
276}
277
278char *git_shell_path(void)
279{
280#ifndef GIT_WINDOWS_NATIVE
281 return xstrdup(SHELL_PATH);
282#else
283 char *p = locate_in_PATH("sh");
284 convert_slashes(p);
285 return p;
286#endif
287}
288
289static const char **prepare_shell_cmd(struct strvec *out, const char **argv)
290{
291 if (!argv[0])
292 BUG("shell command is empty");
293
294 if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
295 strvec_push_nodup(out, git_shell_path());
296 strvec_push(out, "-c");
297
298 /*
299 * If we have no extra arguments, we do not even need to
300 * bother with the "$@" magic.
301 */
302 if (!argv[1])
303 strvec_push(out, argv[0]);
304 else
305 strvec_pushf(out, "%s \"$@\"", argv[0]);
306 }
307
308 strvec_pushv(out, argv);
309 return out->v;
310}
311
312#ifndef GIT_WINDOWS_NATIVE
313static int child_notifier = -1;
314
315enum child_errcode {
316 CHILD_ERR_CHDIR,
317 CHILD_ERR_DUP2,
318 CHILD_ERR_CLOSE,
319 CHILD_ERR_SIGPROCMASK,
320 CHILD_ERR_SILENT,
321 CHILD_ERR_ERRNO
322};
323
324struct child_err {
325 enum child_errcode err;
326 int syserr; /* errno */
327};
328
329static void child_die(enum child_errcode err)
330{
331 struct child_err buf;
332
333 buf.err = err;
334 buf.syserr = errno;
335
336 /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
337 xwrite(child_notifier, &buf, sizeof(buf));
338 _exit(1);
339}
340
341static void child_dup2(int fd, int to)
342{
343 if (dup2(fd, to) < 0)
344 child_die(CHILD_ERR_DUP2);
345}
346
347static void child_close(int fd)
348{
349 if (close(fd))
350 child_die(CHILD_ERR_CLOSE);
351}
352
353static void child_close_pair(int fd[2])
354{
355 child_close(fd[0]);
356 child_close(fd[1]);
357}
358
359static void child_error_fn(const char *err UNUSED, va_list params UNUSED)
360{
361 const char msg[] = "error() should not be called in child\n";
362 xwrite(2, msg, sizeof(msg) - 1);
363}
364
365static void child_warn_fn(const char *err UNUSED, va_list params UNUSED)
366{
367 const char msg[] = "warn() should not be called in child\n";
368 xwrite(2, msg, sizeof(msg) - 1);
369}
370
371static void NORETURN child_die_fn(const char *err UNUSED, va_list params UNUSED)
372{
373 const char msg[] = "die() should not be called in child\n";
374 xwrite(2, msg, sizeof(msg) - 1);
375 _exit(2);
376}
377
378/* this runs in the parent process */
379static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
380{
381 static void (*old_errfn)(const char *err, va_list params);
382 report_fn die_message_routine = get_die_message_routine();
383
384 old_errfn = get_error_routine();
385 set_error_routine(die_message_routine);
386 errno = cerr->syserr;
387
388 switch (cerr->err) {
389 case CHILD_ERR_CHDIR:
390 error_errno("exec '%s': cd to '%s' failed",
391 cmd->args.v[0], cmd->dir);
392 break;
393 case CHILD_ERR_DUP2:
394 error_errno("dup2() in child failed");
395 break;
396 case CHILD_ERR_CLOSE:
397 error_errno("close() in child failed");
398 break;
399 case CHILD_ERR_SIGPROCMASK:
400 error_errno("sigprocmask failed restoring signals");
401 break;
402 case CHILD_ERR_SILENT:
403 break;
404 case CHILD_ERR_ERRNO:
405 error_errno("cannot exec '%s'", cmd->args.v[0]);
406 break;
407 }
408 set_error_routine(old_errfn);
409}
410
411static int prepare_cmd(struct strvec *out, const struct child_process *cmd)
412{
413 if (!cmd->args.v[0])
414 BUG("command is empty");
415
416 /*
417 * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
418 * attempt to interpret the command with 'sh'.
419 */
420 strvec_push(out, SHELL_PATH);
421
422 if (cmd->git_cmd) {
423 prepare_git_cmd(out, cmd->args.v);
424 } else if (cmd->use_shell) {
425 prepare_shell_cmd(out, cmd->args.v);
426 } else {
427 strvec_pushv(out, cmd->args.v);
428 }
429
430 /*
431 * If there are no dir separator characters in the command then perform
432 * a path lookup and use the resolved path as the command to exec. If
433 * there are dir separator characters, we have exec attempt to invoke
434 * the command directly.
435 */
436 if (!has_dir_sep(out->v[1])) {
437 char *program = locate_in_PATH(out->v[1]);
438 if (program) {
439 free((char *)out->v[1]);
440 out->v[1] = program;
441 } else {
442 strvec_clear(out);
443 errno = ENOENT;
444 return -1;
445 }
446 }
447
448 return 0;
449}
450
451static char **prep_childenv(const char *const *deltaenv)
452{
453 extern char **environ;
454 char **childenv;
455 struct string_list env = STRING_LIST_INIT_DUP;
456 struct strbuf key = STRBUF_INIT;
457 const char *const *p;
458 int i;
459
460 /* Construct a sorted string list consisting of the current environ */
461 for (p = (const char *const *) environ; p && *p; p++) {
462 const char *equals = strchr(*p, '=');
463
464 if (equals) {
465 strbuf_reset(&key);
466 strbuf_add(&key, *p, equals - *p);
467 string_list_append(&env, key.buf)->util = (void *) *p;
468 } else {
469 string_list_append(&env, *p)->util = (void *) *p;
470 }
471 }
472 string_list_sort(&env);
473
474 /* Merge in 'deltaenv' with the current environ */
475 for (p = deltaenv; p && *p; p++) {
476 const char *equals = strchr(*p, '=');
477
478 if (equals) {
479 /* ('key=value'), insert or replace entry */
480 strbuf_reset(&key);
481 strbuf_add(&key, *p, equals - *p);
482 string_list_insert(&env, key.buf)->util = (void *) *p;
483 } else {
484 /* otherwise ('key') remove existing entry */
485 string_list_remove(&env, *p, 0);
486 }
487 }
488
489 /* Create an array of 'char *' to be used as the childenv */
490 ALLOC_ARRAY(childenv, env.nr + 1);
491 for (i = 0; i < env.nr; i++)
492 childenv[i] = env.items[i].util;
493 childenv[env.nr] = NULL;
494
495 string_list_clear(&env, 0);
496 strbuf_release(&key);
497 return childenv;
498}
499
500struct atfork_state {
501#ifndef NO_PTHREADS
502 int cs;
503#endif
504 sigset_t old;
505};
506
507#define CHECK_BUG(err, msg) \
508 do { \
509 int e = (err); \
510 if (e) \
511 BUG("%s: %s", msg, strerror(e)); \
512 } while(0)
513
514static void atfork_prepare(struct atfork_state *as)
515{
516 sigset_t all;
517
518 /*
519 * POSIX says sigfillset() can fail, but an overly clever
520 * compiler can see through the header files and decide
521 * it cannot fail on a particular platform it is compiling for,
522 * triggering -Wunreachable-code false positive.
523 */
524 if (NOT_CONSTANT(sigfillset(&all)))
525 die_errno("sigfillset");
526#ifdef NO_PTHREADS
527 if (sigprocmask(SIG_SETMASK, &all, &as->old))
528 die_errno("sigprocmask");
529#else
530 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &all, &as->old),
531 "blocking all signals");
532 CHECK_BUG(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
533 "disabling cancellation");
534#endif
535}
536
537static void atfork_parent(struct atfork_state *as)
538{
539#ifdef NO_PTHREADS
540 if (sigprocmask(SIG_SETMASK, &as->old, NULL))
541 die_errno("sigprocmask");
542#else
543 CHECK_BUG(pthread_setcancelstate(as->cs, NULL),
544 "re-enabling cancellation");
545 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
546 "restoring signal mask");
547#endif
548}
549#endif /* GIT_WINDOWS_NATIVE */
550
551static inline void set_cloexec(int fd)
552{
553 int flags = fcntl(fd, F_GETFD);
554 if (flags >= 0)
555 fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
556}
557
558static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
559{
560 int status, code = -1;
561 pid_t waiting;
562 int failed_errno = 0;
563
564 while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
565 ; /* nothing */
566
567 if (waiting < 0) {
568 failed_errno = errno;
569 if (!in_signal)
570 error_errno("waitpid for %s failed", argv0);
571 } else if (waiting != pid) {
572 if (!in_signal)
573 error("waitpid is confused (%s)", argv0);
574 } else if (WIFSIGNALED(status)) {
575 code = WTERMSIG(status);
576 if (!in_signal && code != SIGINT && code != SIGQUIT && code != SIGPIPE)
577 error("%s died of signal %d", argv0, code);
578 /*
579 * This return value is chosen so that code & 0xff
580 * mimics the exit code that a POSIX shell would report for
581 * a program that died from this signal.
582 */
583 code += 128;
584 } else if (WIFEXITED(status)) {
585 code = WEXITSTATUS(status);
586 } else {
587 if (!in_signal)
588 error("waitpid is confused (%s)", argv0);
589 }
590
591 if (!in_signal)
592 clear_child_for_cleanup(pid);
593
594 errno = failed_errno;
595 return code;
596}
597
598static void trace_add_env(struct strbuf *dst, const char *const *deltaenv)
599{
600 struct string_list envs = STRING_LIST_INIT_DUP;
601 const char *const *e;
602 int i;
603 int printed_unset = 0;
604
605 /* Last one wins, see run-command.c:prep_childenv() for context */
606 for (e = deltaenv; e && *e; e++) {
607 struct strbuf key = STRBUF_INIT;
608 char *equals = strchr(*e, '=');
609
610 if (equals) {
611 strbuf_add(&key, *e, equals - *e);
612 string_list_insert(&envs, key.buf)->util = equals + 1;
613 } else {
614 string_list_insert(&envs, *e)->util = NULL;
615 }
616 strbuf_release(&key);
617 }
618
619 /* "unset X Y...;" */
620 for (i = 0; i < envs.nr; i++) {
621 const char *var = envs.items[i].string;
622 const char *val = envs.items[i].util;
623
624 if (val || !getenv(var))
625 continue;
626
627 if (!printed_unset) {
628 strbuf_addstr(dst, " unset");
629 printed_unset = 1;
630 }
631 strbuf_addf(dst, " %s", var);
632 }
633 if (printed_unset)
634 strbuf_addch(dst, ';');
635
636 /* ... followed by "A=B C=D ..." */
637 for (i = 0; i < envs.nr; i++) {
638 const char *var = envs.items[i].string;
639 const char *val = envs.items[i].util;
640 const char *oldval;
641
642 if (!val)
643 continue;
644
645 oldval = getenv(var);
646 if (oldval && !strcmp(val, oldval))
647 continue;
648
649 strbuf_addf(dst, " %s=", var);
650 sq_quote_buf_pretty(dst, val);
651 }
652 string_list_clear(&envs, 0);
653}
654
655static void trace_run_command(const struct child_process *cp)
656{
657 struct strbuf buf = STRBUF_INIT;
658
659 if (!trace_want(&trace_default_key))
660 return;
661
662 strbuf_addstr(&buf, "trace: run_command:");
663 if (cp->dir) {
664 strbuf_addstr(&buf, " cd ");
665 sq_quote_buf_pretty(&buf, cp->dir);
666 strbuf_addch(&buf, ';');
667 }
668 trace_add_env(&buf, cp->env.v);
669 if (cp->git_cmd)
670 strbuf_addstr(&buf, " git");
671 sq_quote_argv_pretty(&buf, cp->args.v);
672
673 trace_printf("%s", buf.buf);
674 strbuf_release(&buf);
675}
676
677int start_command(struct child_process *cmd)
678{
679 int need_in, need_out, need_err;
680 int fdin[2], fdout[2], fderr[2];
681 int failed_errno;
682 const char *str;
683
684 /*
685 * In case of errors we must keep the promise to close FDs
686 * that have been passed in via ->in and ->out.
687 */
688
689 need_in = !cmd->no_stdin && cmd->in < 0;
690 if (need_in) {
691 if (pipe(fdin) < 0) {
692 failed_errno = errno;
693 if (cmd->out > 0)
694 close(cmd->out);
695 str = "standard input";
696 goto fail_pipe;
697 }
698 cmd->in = fdin[1];
699 }
700
701 need_out = !cmd->no_stdout
702 && !cmd->stdout_to_stderr
703 && cmd->out < 0;
704 if (need_out) {
705 if (pipe(fdout) < 0) {
706 failed_errno = errno;
707 if (need_in)
708 close_pair(fdin);
709 else if (cmd->in)
710 close(cmd->in);
711 str = "standard output";
712 goto fail_pipe;
713 }
714 cmd->out = fdout[0];
715 }
716
717 need_err = !cmd->no_stderr && cmd->err < 0;
718 if (need_err) {
719 if (pipe(fderr) < 0) {
720 failed_errno = errno;
721 if (need_in)
722 close_pair(fdin);
723 else if (cmd->in)
724 close(cmd->in);
725 if (need_out)
726 close_pair(fdout);
727 else if (cmd->out)
728 close(cmd->out);
729 str = "standard error";
730fail_pipe:
731 error("cannot create %s pipe for %s: %s",
732 str, cmd->args.v[0], strerror(failed_errno));
733 child_process_clear(cmd);
734 errno = failed_errno;
735 return -1;
736 }
737 cmd->err = fderr[0];
738 }
739
740 trace2_child_start(cmd);
741 trace_run_command(cmd);
742
743 fflush(NULL);
744
745 if (cmd->close_object_store)
746 close_object_store(the_repository->objects);
747
748#ifndef GIT_WINDOWS_NATIVE
749{
750 int notify_pipe[2];
751 int null_fd = -1;
752 char **childenv;
753 struct strvec argv = STRVEC_INIT;
754 struct child_err cerr;
755 struct atfork_state as;
756
757 if (prepare_cmd(&argv, cmd) < 0) {
758 failed_errno = errno;
759 cmd->pid = -1;
760 if (!cmd->silent_exec_failure)
761 error_errno("cannot run %s", cmd->args.v[0]);
762 goto end_of_spawn;
763 }
764
765 trace_argv_printf(&argv.v[1], "trace: start_command:");
766
767 if (pipe(notify_pipe))
768 notify_pipe[0] = notify_pipe[1] = -1;
769
770 if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
771 null_fd = xopen("/dev/null", O_RDWR | O_CLOEXEC);
772 set_cloexec(null_fd);
773 }
774
775 childenv = prep_childenv(cmd->env.v);
776 atfork_prepare(&as);
777
778 /*
779 * NOTE: In order to prevent deadlocking when using threads special
780 * care should be taken with the function calls made in between the
781 * fork() and exec() calls. No calls should be made to functions which
782 * require acquiring a lock (e.g. malloc) as the lock could have been
783 * held by another thread at the time of forking, causing the lock to
784 * never be released in the child process. This means only
785 * Async-Signal-Safe functions are permitted in the child.
786 */
787 cmd->pid = fork();
788 failed_errno = errno;
789 if (!cmd->pid) {
790 int sig;
791 /*
792 * Ensure the default die/error/warn routines do not get
793 * called, they can take stdio locks and malloc.
794 */
795 set_die_routine(child_die_fn);
796 set_error_routine(child_error_fn);
797 set_warn_routine(child_warn_fn);
798
799 close(notify_pipe[0]);
800 set_cloexec(notify_pipe[1]);
801 child_notifier = notify_pipe[1];
802
803 if (cmd->no_stdin)
804 child_dup2(null_fd, 0);
805 else if (need_in) {
806 child_dup2(fdin[0], 0);
807 child_close_pair(fdin);
808 } else if (cmd->in) {
809 child_dup2(cmd->in, 0);
810 child_close(cmd->in);
811 }
812
813 if (cmd->no_stderr)
814 child_dup2(null_fd, 2);
815 else if (need_err) {
816 child_dup2(fderr[1], 2);
817 child_close_pair(fderr);
818 } else if (cmd->err > 1) {
819 child_dup2(cmd->err, 2);
820 child_close(cmd->err);
821 }
822
823 if (cmd->no_stdout)
824 child_dup2(null_fd, 1);
825 else if (cmd->stdout_to_stderr)
826 child_dup2(2, 1);
827 else if (need_out) {
828 child_dup2(fdout[1], 1);
829 child_close_pair(fdout);
830 } else if (cmd->out > 1) {
831 child_dup2(cmd->out, 1);
832 child_close(cmd->out);
833 }
834
835 if (cmd->dir && chdir(cmd->dir))
836 child_die(CHILD_ERR_CHDIR);
837
838 /*
839 * restore default signal handlers here, in case
840 * we catch a signal right before execve below
841 */
842 for (sig = 1; sig < NSIG; sig++) {
843 /* ignored signals get reset to SIG_DFL on execve */
844 if (signal(sig, SIG_DFL) == SIG_IGN)
845 signal(sig, SIG_IGN);
846 }
847
848 if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
849 child_die(CHILD_ERR_SIGPROCMASK);
850
851 /*
852 * Attempt to exec using the command and arguments starting at
853 * argv.argv[1]. argv.argv[0] contains SHELL_PATH which will
854 * be used in the event exec failed with ENOEXEC at which point
855 * we will try to interpret the command using 'sh'.
856 */
857 execve(argv.v[1], (char *const *) argv.v + 1,
858 (char *const *) childenv);
859 if (errno == ENOEXEC)
860 execve(argv.v[0], (char *const *) argv.v,
861 (char *const *) childenv);
862
863 if (cmd->silent_exec_failure && errno == ENOENT)
864 child_die(CHILD_ERR_SILENT);
865 child_die(CHILD_ERR_ERRNO);
866 }
867 atfork_parent(&as);
868 if (cmd->pid < 0)
869 error_errno("cannot fork() for %s", cmd->args.v[0]);
870 else if (cmd->clean_on_exit)
871 mark_child_for_cleanup(cmd->pid, cmd);
872
873 /*
874 * Wait for child's exec. If the exec succeeds (or if fork()
875 * failed), EOF is seen immediately by the parent. Otherwise, the
876 * child process sends a child_err struct.
877 * Note that use of this infrastructure is completely advisory,
878 * therefore, we keep error checks minimal.
879 */
880 close(notify_pipe[1]);
881 if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
882 /*
883 * At this point we know that fork() succeeded, but exec()
884 * failed. Errors have been reported to our stderr.
885 */
886 wait_or_whine(cmd->pid, cmd->args.v[0], 0);
887 child_err_spew(cmd, &cerr);
888 failed_errno = errno;
889 cmd->pid = -1;
890 }
891 close(notify_pipe[0]);
892
893 if (null_fd >= 0)
894 close(null_fd);
895 strvec_clear(&argv);
896 free(childenv);
897}
898end_of_spawn:
899
900#else
901{
902 int fhin = 0, fhout = 1, fherr = 2;
903 const char **sargv = cmd->args.v;
904 struct strvec nargv = STRVEC_INIT;
905
906 if (cmd->no_stdin)
907 fhin = open("/dev/null", O_RDWR);
908 else if (need_in)
909 fhin = dup(fdin[0]);
910 else if (cmd->in)
911 fhin = dup(cmd->in);
912
913 if (cmd->no_stderr)
914 fherr = open("/dev/null", O_RDWR);
915 else if (need_err)
916 fherr = dup(fderr[1]);
917 else if (cmd->err > 2)
918 fherr = dup(cmd->err);
919
920 if (cmd->no_stdout)
921 fhout = open("/dev/null", O_RDWR);
922 else if (cmd->stdout_to_stderr)
923 fhout = dup(fherr);
924 else if (need_out)
925 fhout = dup(fdout[1]);
926 else if (cmd->out > 1)
927 fhout = dup(cmd->out);
928
929 if (cmd->git_cmd)
930 cmd->args.v = prepare_git_cmd(&nargv, sargv);
931 else if (cmd->use_shell)
932 cmd->args.v = prepare_shell_cmd(&nargv, sargv);
933
934 trace_argv_printf(cmd->args.v, "trace: start_command:");
935 cmd->pid = mingw_spawnvpe(cmd->args.v[0], cmd->args.v,
936 (char**) cmd->env.v,
937 cmd->dir, fhin, fhout, fherr);
938 failed_errno = errno;
939 if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
940 error_errno("cannot spawn %s", cmd->args.v[0]);
941 if (cmd->clean_on_exit && cmd->pid >= 0)
942 mark_child_for_cleanup(cmd->pid, cmd);
943
944 strvec_clear(&nargv);
945 cmd->args.v = sargv;
946 if (fhin != 0)
947 close(fhin);
948 if (fhout != 1)
949 close(fhout);
950 if (fherr != 2)
951 close(fherr);
952}
953#endif
954
955 if (cmd->pid < 0) {
956 trace2_child_exit(cmd, -1);
957
958 if (need_in)
959 close_pair(fdin);
960 else if (cmd->in)
961 close(cmd->in);
962 if (need_out)
963 close_pair(fdout);
964 else if (cmd->out)
965 close(cmd->out);
966 if (need_err)
967 close_pair(fderr);
968 else if (cmd->err)
969 close(cmd->err);
970 child_process_clear(cmd);
971 errno = failed_errno;
972 return -1;
973 }
974
975 if (need_in)
976 close(fdin[0]);
977 else if (cmd->in)
978 close(cmd->in);
979
980 if (need_out)
981 close(fdout[1]);
982 else if (cmd->out)
983 close(cmd->out);
984
985 if (need_err)
986 close(fderr[1]);
987 else if (cmd->err)
988 close(cmd->err);
989
990 return 0;
991}
992
993int finish_command(struct child_process *cmd)
994{
995 int ret = wait_or_whine(cmd->pid, cmd->args.v[0], 0);
996 trace2_child_exit(cmd, ret);
997 child_process_clear(cmd);
998 invalidate_lstat_cache();
999 return ret;
1000}
1001
1002int finish_command_in_signal(struct child_process *cmd)
1003{
1004 int ret = wait_or_whine(cmd->pid, cmd->args.v[0], 1);
1005 if (ret != -1)
1006 trace2_child_exit(cmd, ret);
1007 return ret;
1008}
1009
1010
1011int run_command(struct child_process *cmd)
1012{
1013 int code;
1014
1015 if (cmd->out < 0 || cmd->err < 0)
1016 BUG("run_command with a pipe can cause deadlock");
1017
1018 code = start_command(cmd);
1019 if (code)
1020 return code;
1021 return finish_command(cmd);
1022}
1023
1024#ifndef NO_PTHREADS
1025static pthread_t main_thread;
1026static int main_thread_set;
1027static pthread_key_t async_key;
1028static pthread_key_t async_die_counter;
1029
1030static void *run_thread(void *data)
1031{
1032 struct async *async = data;
1033 intptr_t ret;
1034
1035 if (async->isolate_sigpipe) {
1036 sigset_t mask;
1037 sigemptyset(&mask);
1038 sigaddset(&mask, SIGPIPE);
1039 if (pthread_sigmask(SIG_BLOCK, &mask, NULL)) {
1040 ret = error("unable to block SIGPIPE in async thread");
1041 return (void *)ret;
1042 }
1043 }
1044
1045 pthread_setspecific(async_key, async);
1046 ret = async->proc(async->proc_in, async->proc_out, async->data);
1047 return (void *)ret;
1048}
1049
1050static NORETURN void die_async(const char *err, va_list params)
1051{
1052 report_fn die_message_fn = get_die_message_routine();
1053
1054 die_message_fn(err, params);
1055
1056 if (in_async()) {
1057 struct async *async = pthread_getspecific(async_key);
1058 if (async->proc_in >= 0)
1059 close(async->proc_in);
1060 if (async->proc_out >= 0)
1061 close(async->proc_out);
1062 pthread_exit((void *)128);
1063 }
1064
1065 exit(128);
1066}
1067
1068static int async_die_is_recursing(void)
1069{
1070 void *ret = pthread_getspecific(async_die_counter);
1071 pthread_setspecific(async_die_counter, &async_die_counter); /* set to any non-NULL valid pointer */
1072 return ret != NULL;
1073}
1074
1075int in_async(void)
1076{
1077 if (!main_thread_set)
1078 return 0; /* no asyncs started yet */
1079 return !pthread_equal(main_thread, pthread_self());
1080}
1081
1082static void NORETURN async_exit(int code)
1083{
1084 pthread_exit((void *)(intptr_t)code);
1085}
1086
1087#else
1088
1089static struct {
1090 void (**handlers)(void);
1091 size_t nr;
1092 size_t alloc;
1093} git_atexit_hdlrs;
1094
1095static int git_atexit_installed;
1096
1097static void git_atexit_dispatch(void)
1098{
1099 size_t i;
1100
1101 for (i=git_atexit_hdlrs.nr ; i ; i--)
1102 git_atexit_hdlrs.handlers[i-1]();
1103}
1104
1105static void git_atexit_clear(void)
1106{
1107 free(git_atexit_hdlrs.handlers);
1108 memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
1109 git_atexit_installed = 0;
1110}
1111
1112#undef atexit
1113int git_atexit(void (*handler)(void))
1114{
1115 ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
1116 git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
1117 if (!git_atexit_installed) {
1118 if (atexit(&git_atexit_dispatch))
1119 return -1;
1120 git_atexit_installed = 1;
1121 }
1122 return 0;
1123}
1124#define atexit git_atexit
1125
1126static int process_is_async;
1127int in_async(void)
1128{
1129 return process_is_async;
1130}
1131
1132static void NORETURN async_exit(int code)
1133{
1134 exit(code);
1135}
1136
1137#endif
1138
1139void check_pipe(int err)
1140{
1141 if (err == EPIPE) {
1142 if (in_async())
1143 async_exit(141);
1144
1145 signal(SIGPIPE, SIG_DFL);
1146 raise(SIGPIPE);
1147 /* Should never happen, but just in case... */
1148 exit(141);
1149 }
1150}
1151
1152int start_async(struct async *async)
1153{
1154 int need_in, need_out;
1155 int fdin[2], fdout[2];
1156 int proc_in, proc_out;
1157
1158 need_in = async->in < 0;
1159 if (need_in) {
1160 if (pipe(fdin) < 0) {
1161 if (async->out > 0)
1162 close(async->out);
1163 return error_errno("cannot create pipe");
1164 }
1165 async->in = fdin[1];
1166 }
1167
1168 need_out = async->out < 0;
1169 if (need_out) {
1170 if (pipe(fdout) < 0) {
1171 if (need_in)
1172 close_pair(fdin);
1173 else if (async->in)
1174 close(async->in);
1175 return error_errno("cannot create pipe");
1176 }
1177 async->out = fdout[0];
1178 }
1179
1180 if (need_in)
1181 proc_in = fdin[0];
1182 else if (async->in)
1183 proc_in = async->in;
1184 else
1185 proc_in = -1;
1186
1187 if (need_out)
1188 proc_out = fdout[1];
1189 else if (async->out)
1190 proc_out = async->out;
1191 else
1192 proc_out = -1;
1193
1194#ifdef NO_PTHREADS
1195 /* Flush stdio before fork() to avoid cloning buffers */
1196 fflush(NULL);
1197
1198 async->pid = fork();
1199 if (async->pid < 0) {
1200 error_errno("fork (async) failed");
1201 goto error;
1202 }
1203 if (!async->pid) {
1204 if (need_in)
1205 close(fdin[1]);
1206 if (need_out)
1207 close(fdout[0]);
1208 git_atexit_clear();
1209 process_is_async = 1;
1210 exit(!!async->proc(proc_in, proc_out, async->data));
1211 }
1212
1213 mark_child_for_cleanup(async->pid, NULL);
1214
1215 if (need_in)
1216 close(fdin[0]);
1217 else if (async->in)
1218 close(async->in);
1219
1220 if (need_out)
1221 close(fdout[1]);
1222 else if (async->out)
1223 close(async->out);
1224#else
1225 if (!main_thread_set) {
1226 /*
1227 * We assume that the first time that start_async is called
1228 * it is from the main thread.
1229 */
1230 main_thread_set = 1;
1231 main_thread = pthread_self();
1232 pthread_key_create(&async_key, NULL);
1233 pthread_key_create(&async_die_counter, NULL);
1234 set_die_routine(die_async);
1235 set_die_is_recursing_routine(async_die_is_recursing);
1236 }
1237
1238 if (proc_in >= 0)
1239 set_cloexec(proc_in);
1240 if (proc_out >= 0)
1241 set_cloexec(proc_out);
1242 async->proc_in = proc_in;
1243 async->proc_out = proc_out;
1244 {
1245 int err = pthread_create(&async->tid, NULL, run_thread, async);
1246 if (err) {
1247 error(_("cannot create async thread: %s"), strerror(err));
1248 goto error;
1249 }
1250 }
1251#endif
1252 return 0;
1253
1254error:
1255 if (need_in)
1256 close_pair(fdin);
1257 else if (async->in)
1258 close(async->in);
1259
1260 if (need_out)
1261 close_pair(fdout);
1262 else if (async->out)
1263 close(async->out);
1264 return -1;
1265}
1266
1267int finish_async(struct async *async)
1268{
1269#ifdef NO_PTHREADS
1270 int ret = wait_or_whine(async->pid, "child process", 0);
1271
1272 invalidate_lstat_cache();
1273
1274 return ret;
1275#else
1276 void *ret = (void *)(intptr_t)(-1);
1277
1278 if (pthread_join(async->tid, &ret))
1279 error("pthread_join failed");
1280 invalidate_lstat_cache();
1281 return (int)(intptr_t)ret;
1282
1283#endif
1284}
1285
1286int async_with_fork(void)
1287{
1288#ifdef NO_PTHREADS
1289 return 1;
1290#else
1291 return 0;
1292#endif
1293}
1294
1295struct io_pump {
1296 /* initialized by caller */
1297 int fd;
1298 int type; /* POLLOUT or POLLIN */
1299 union {
1300 struct {
1301 const char *buf;
1302 size_t len;
1303 } out;
1304 struct {
1305 struct strbuf *buf;
1306 size_t hint;
1307 } in;
1308 } u;
1309
1310 /* returned by pump_io */
1311 int error; /* 0 for success, otherwise errno */
1312
1313 /* internal use */
1314 struct pollfd *pfd;
1315};
1316
1317static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1318{
1319 int pollsize = 0;
1320 int i;
1321
1322 for (i = 0; i < nr; i++) {
1323 struct io_pump *io = &slots[i];
1324 if (io->fd < 0)
1325 continue;
1326 pfd[pollsize].fd = io->fd;
1327 pfd[pollsize].events = io->type;
1328 io->pfd = &pfd[pollsize++];
1329 }
1330
1331 if (!pollsize)
1332 return 0;
1333
1334 if (poll(pfd, pollsize, -1) < 0) {
1335 if (errno == EINTR)
1336 return 1;
1337 die_errno("poll failed");
1338 }
1339
1340 for (i = 0; i < nr; i++) {
1341 struct io_pump *io = &slots[i];
1342
1343 if (io->fd < 0)
1344 continue;
1345
1346 if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1347 continue;
1348
1349 if (io->type == POLLOUT) {
1350 ssize_t len;
1351
1352 /*
1353 * Don't use xwrite() here. It loops forever on EAGAIN,
1354 * and we're in our own poll() loop here.
1355 *
1356 * Note that we lose xwrite()'s handling of MAX_IO_SIZE
1357 * and EINTR, so we have to implement those ourselves.
1358 */
1359 len = write(io->fd, io->u.out.buf,
1360 io->u.out.len <= MAX_IO_SIZE ?
1361 io->u.out.len : MAX_IO_SIZE);
1362 if (len < 0) {
1363 if (errno != EINTR && errno != EAGAIN &&
1364 errno != ENOSPC) {
1365 io->error = errno;
1366 close(io->fd);
1367 io->fd = -1;
1368 }
1369 } else {
1370 io->u.out.buf += len;
1371 io->u.out.len -= len;
1372 if (!io->u.out.len) {
1373 close(io->fd);
1374 io->fd = -1;
1375 }
1376 }
1377 }
1378
1379 if (io->type == POLLIN) {
1380 ssize_t len = strbuf_read_once(io->u.in.buf,
1381 io->fd, io->u.in.hint);
1382 if (len < 0)
1383 io->error = errno;
1384 if (len <= 0) {
1385 close(io->fd);
1386 io->fd = -1;
1387 }
1388 }
1389 }
1390
1391 return 1;
1392}
1393
1394static int pump_io(struct io_pump *slots, int nr)
1395{
1396 struct pollfd *pfd;
1397 int i;
1398
1399 for (i = 0; i < nr; i++)
1400 slots[i].error = 0;
1401
1402 ALLOC_ARRAY(pfd, nr);
1403 while (pump_io_round(slots, nr, pfd))
1404 ; /* nothing */
1405 free(pfd);
1406
1407 /* There may be multiple errno values, so just pick the first. */
1408 for (i = 0; i < nr; i++) {
1409 if (slots[i].error) {
1410 errno = slots[i].error;
1411 return -1;
1412 }
1413 }
1414 return 0;
1415}
1416
1417
1418int pipe_command(struct child_process *cmd,
1419 const char *in, size_t in_len,
1420 struct strbuf *out, size_t out_hint,
1421 struct strbuf *err, size_t err_hint)
1422{
1423 struct io_pump io[3];
1424 int nr = 0;
1425
1426 if (in)
1427 cmd->in = -1;
1428 if (out)
1429 cmd->out = -1;
1430 if (err)
1431 cmd->err = -1;
1432
1433 if (start_command(cmd) < 0)
1434 return -1;
1435
1436 if (in) {
1437 if (enable_pipe_nonblock(cmd->in) < 0) {
1438 error_errno("unable to make pipe non-blocking");
1439 close(cmd->in);
1440 if (out)
1441 close(cmd->out);
1442 if (err)
1443 close(cmd->err);
1444 return -1;
1445 }
1446 io[nr].fd = cmd->in;
1447 io[nr].type = POLLOUT;
1448 io[nr].u.out.buf = in;
1449 io[nr].u.out.len = in_len;
1450 nr++;
1451 }
1452 if (out) {
1453 io[nr].fd = cmd->out;
1454 io[nr].type = POLLIN;
1455 io[nr].u.in.buf = out;
1456 io[nr].u.in.hint = out_hint;
1457 nr++;
1458 }
1459 if (err) {
1460 io[nr].fd = cmd->err;
1461 io[nr].type = POLLIN;
1462 io[nr].u.in.buf = err;
1463 io[nr].u.in.hint = err_hint;
1464 nr++;
1465 }
1466
1467 if (pump_io(io, nr) < 0) {
1468 finish_command(cmd); /* throw away exit code */
1469 return -1;
1470 }
1471
1472 return finish_command(cmd);
1473}
1474
1475enum child_state {
1476 GIT_CP_FREE,
1477 GIT_CP_WORKING,
1478 GIT_CP_WAIT_CLEANUP,
1479};
1480
1481struct parallel_processes {
1482 size_t nr_processes;
1483
1484 struct {
1485 enum child_state state;
1486 struct child_process process;
1487 struct strbuf err;
1488 void *data;
1489 } *children;
1490 /*
1491 * The struct pollfd is logically part of *children,
1492 * but the system call expects it as its own array.
1493 */
1494 struct pollfd *pfd;
1495
1496 unsigned shutdown : 1;
1497
1498 size_t output_owner;
1499 struct strbuf buffered_output; /* of finished children */
1500};
1501
1502struct parallel_processes_for_signal {
1503 const struct run_process_parallel_opts *opts;
1504 const struct parallel_processes *pp;
1505};
1506
1507static void kill_children(const struct parallel_processes *pp,
1508 const struct run_process_parallel_opts *opts,
1509 int signo)
1510{
1511 for (size_t i = 0; i < opts->processes; i++)
1512 if (pp->children[i].state == GIT_CP_WORKING)
1513 kill(pp->children[i].process.pid, signo);
1514}
1515
1516static void kill_children_signal(const struct parallel_processes_for_signal *pp_sig,
1517 int signo)
1518{
1519 kill_children(pp_sig->pp, pp_sig->opts, signo);
1520}
1521
1522static struct parallel_processes_for_signal *pp_for_signal;
1523
1524static void handle_children_on_signal(int signo)
1525{
1526 kill_children_signal(pp_for_signal, signo);
1527 sigchain_pop(signo);
1528 raise(signo);
1529}
1530
1531static void pp_init(struct parallel_processes *pp,
1532 const struct run_process_parallel_opts *opts,
1533 struct parallel_processes_for_signal *pp_sig)
1534{
1535 const size_t n = opts->processes;
1536
1537 if (!n)
1538 BUG("you must provide a non-zero number of processes!");
1539
1540 trace_printf("run_processes_parallel: preparing to run up to %"PRIuMAX" tasks",
1541 (uintmax_t)n);
1542
1543 if (!opts->get_next_task)
1544 BUG("you need to specify a get_next_task function");
1545
1546 CALLOC_ARRAY(pp->children, n);
1547 if (!opts->ungroup)
1548 CALLOC_ARRAY(pp->pfd, n);
1549
1550 for (size_t i = 0; i < n; i++) {
1551 strbuf_init(&pp->children[i].err, 0);
1552 child_process_init(&pp->children[i].process);
1553 if (pp->pfd) {
1554 pp->pfd[i].events = POLLIN | POLLHUP;
1555 pp->pfd[i].fd = -1;
1556 }
1557 }
1558
1559 pp_sig->pp = pp;
1560 pp_sig->opts = opts;
1561 pp_for_signal = pp_sig;
1562 sigchain_push_common(handle_children_on_signal);
1563}
1564
1565static void pp_cleanup(struct parallel_processes *pp,
1566 const struct run_process_parallel_opts *opts)
1567{
1568 trace_printf("run_processes_parallel: done");
1569 for (size_t i = 0; i < opts->processes; i++) {
1570 strbuf_release(&pp->children[i].err);
1571 child_process_clear(&pp->children[i].process);
1572 }
1573
1574 free(pp->children);
1575 free(pp->pfd);
1576
1577 /*
1578 * When get_next_task added messages to the buffer in its last
1579 * iteration, the buffered output is non empty.
1580 */
1581 strbuf_write(&pp->buffered_output, stderr);
1582 strbuf_release(&pp->buffered_output);
1583
1584 sigchain_pop_common();
1585}
1586
1587/* returns
1588 * 0 if a new task was started.
1589 * 1 if no new jobs was started (get_next_task ran out of work, non critical
1590 * problem with starting a new command)
1591 * <0 no new job was started, user wishes to shutdown early. Use negative code
1592 * to signal the children.
1593 */
1594static int pp_start_one(struct parallel_processes *pp,
1595 const struct run_process_parallel_opts *opts)
1596{
1597 size_t i;
1598 int code;
1599
1600 for (i = 0; i < opts->processes; i++)
1601 if (pp->children[i].state == GIT_CP_FREE)
1602 break;
1603 if (i == opts->processes)
1604 BUG("bookkeeping is hard");
1605
1606 /*
1607 * By default, do not inherit stdin from the parent process - otherwise,
1608 * all children would share stdin! Users may overwrite this to provide
1609 * something to the child's stdin by having their 'get_next_task'
1610 * callback assign 0 to .no_stdin and an appropriate integer to .in.
1611 */
1612 pp->children[i].process.no_stdin = 1;
1613
1614 code = opts->get_next_task(&pp->children[i].process,
1615 opts->ungroup ? NULL : &pp->children[i].err,
1616 opts->data,
1617 &pp->children[i].data);
1618 if (!code) {
1619 if (!opts->ungroup) {
1620 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1621 strbuf_reset(&pp->children[i].err);
1622 }
1623 return 1;
1624 }
1625 if (!opts->ungroup) {
1626 pp->children[i].process.err = -1;
1627 pp->children[i].process.stdout_to_stderr = 1;
1628 }
1629
1630 if (start_command(&pp->children[i].process)) {
1631 if (opts->start_failure)
1632 code = opts->start_failure(opts->ungroup ? NULL :
1633 &pp->children[i].err,
1634 opts->data,
1635 pp->children[i].data);
1636 else
1637 code = 0;
1638
1639 if (!opts->ungroup) {
1640 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1641 strbuf_reset(&pp->children[i].err);
1642 }
1643 if (code)
1644 pp->shutdown = 1;
1645 return code;
1646 }
1647
1648 pp->nr_processes++;
1649 pp->children[i].state = GIT_CP_WORKING;
1650 if (pp->pfd)
1651 pp->pfd[i].fd = pp->children[i].process.err;
1652 return 0;
1653}
1654
1655static void pp_buffer_stderr(struct parallel_processes *pp,
1656 const struct run_process_parallel_opts *opts,
1657 int output_timeout)
1658{
1659 while (poll(pp->pfd, opts->processes, output_timeout) < 0) {
1660 if (errno == EINTR)
1661 continue;
1662 pp_cleanup(pp, opts);
1663 die_errno("poll");
1664 }
1665
1666 /* Buffer output from all pipes. */
1667 for (size_t i = 0; i < opts->processes; i++) {
1668 if (pp->children[i].state == GIT_CP_WORKING &&
1669 pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1670 int n = strbuf_read_once(&pp->children[i].err,
1671 pp->children[i].process.err, 0);
1672 if (n == 0) {
1673 close(pp->children[i].process.err);
1674 pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1675 } else if (n < 0)
1676 if (errno != EAGAIN)
1677 die_errno("read");
1678 }
1679 }
1680}
1681
1682static void pp_output(const struct parallel_processes *pp)
1683{
1684 size_t i = pp->output_owner;
1685
1686 if (pp->children[i].state == GIT_CP_WORKING &&
1687 pp->children[i].err.len) {
1688 strbuf_write(&pp->children[i].err, stderr);
1689 strbuf_reset(&pp->children[i].err);
1690 }
1691}
1692
1693static int pp_collect_finished(struct parallel_processes *pp,
1694 const struct run_process_parallel_opts *opts)
1695{
1696 int code;
1697 size_t i;
1698 int result = 0;
1699
1700 while (pp->nr_processes > 0) {
1701 for (i = 0; i < opts->processes; i++)
1702 if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1703 break;
1704 if (i == opts->processes)
1705 break;
1706
1707 code = finish_command(&pp->children[i].process);
1708
1709 if (opts->task_finished)
1710 code = opts->task_finished(code, opts->ungroup ? NULL :
1711 &pp->children[i].err, opts->data,
1712 pp->children[i].data);
1713 else
1714 code = 0;
1715
1716 if (code)
1717 result = code;
1718 if (code < 0)
1719 break;
1720
1721 pp->nr_processes--;
1722 pp->children[i].state = GIT_CP_FREE;
1723 if (pp->pfd)
1724 pp->pfd[i].fd = -1;
1725 child_process_init(&pp->children[i].process);
1726
1727 if (opts->ungroup) {
1728 ; /* no strbuf_*() work to do here */
1729 } else if (i != pp->output_owner) {
1730 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1731 strbuf_reset(&pp->children[i].err);
1732 } else {
1733 const size_t n = opts->processes;
1734
1735 strbuf_write(&pp->children[i].err, stderr);
1736 strbuf_reset(&pp->children[i].err);
1737
1738 /* Output all other finished child processes */
1739 strbuf_write(&pp->buffered_output, stderr);
1740 strbuf_reset(&pp->buffered_output);
1741
1742 /*
1743 * Pick next process to output live.
1744 * NEEDSWORK:
1745 * For now we pick it randomly by doing a round
1746 * robin. Later we may want to pick the one with
1747 * the most output or the longest or shortest
1748 * running process time.
1749 */
1750 for (i = 0; i < n; i++)
1751 if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1752 break;
1753 pp->output_owner = (pp->output_owner + i) % n;
1754 }
1755 }
1756 return result;
1757}
1758
1759void run_processes_parallel(const struct run_process_parallel_opts *opts)
1760{
1761 int i, code;
1762 int output_timeout = 100;
1763 int spawn_cap = 4;
1764 struct parallel_processes_for_signal pp_sig;
1765 struct parallel_processes pp = {
1766 .buffered_output = STRBUF_INIT,
1767 };
1768 /* options */
1769 const char *tr2_category = opts->tr2_category;
1770 const char *tr2_label = opts->tr2_label;
1771 const int do_trace2 = tr2_category && tr2_label;
1772
1773 if (do_trace2)
1774 trace2_region_enter_printf(tr2_category, tr2_label, NULL,
1775 "max:%"PRIuMAX,
1776 (uintmax_t)opts->processes);
1777
1778 pp_init(&pp, opts, &pp_sig);
1779 while (1) {
1780 for (i = 0;
1781 i < spawn_cap && !pp.shutdown &&
1782 pp.nr_processes < opts->processes;
1783 i++) {
1784 code = pp_start_one(&pp, opts);
1785 if (!code)
1786 continue;
1787 if (code < 0) {
1788 pp.shutdown = 1;
1789 kill_children(&pp, opts, -code);
1790 }
1791 break;
1792 }
1793 if (!pp.nr_processes)
1794 break;
1795 if (opts->ungroup) {
1796 for (size_t i = 0; i < opts->processes; i++)
1797 pp.children[i].state = GIT_CP_WAIT_CLEANUP;
1798 } else {
1799 pp_buffer_stderr(&pp, opts, output_timeout);
1800 pp_output(&pp);
1801 }
1802 code = pp_collect_finished(&pp, opts);
1803 if (code) {
1804 pp.shutdown = 1;
1805 if (code < 0)
1806 kill_children(&pp, opts,-code);
1807 }
1808 }
1809
1810 pp_cleanup(&pp, opts);
1811
1812 if (do_trace2)
1813 trace2_region_leave(tr2_category, tr2_label, NULL);
1814}
1815
1816int prepare_auto_maintenance(int quiet, struct child_process *maint)
1817{
1818 int enabled, auto_detach;
1819
1820 if (!git_config_get_bool("maintenance.auto", &enabled) &&
1821 !enabled)
1822 return 0;
1823
1824 /*
1825 * When `maintenance.autoDetach` isn't set, then we fall back to
1826 * honoring `gc.autoDetach`. This is somewhat weird, but required to
1827 * retain behaviour from when we used to run git-gc(1) here.
1828 */
1829 if (git_config_get_bool("maintenance.autodetach", &auto_detach) &&
1830 git_config_get_bool("gc.autodetach", &auto_detach))
1831 auto_detach = 1;
1832
1833 maint->git_cmd = 1;
1834 maint->close_object_store = 1;
1835 strvec_pushl(&maint->args, "maintenance", "run", "--auto", NULL);
1836 strvec_push(&maint->args, quiet ? "--quiet" : "--no-quiet");
1837 strvec_push(&maint->args, auto_detach ? "--detach" : "--no-detach");
1838
1839 return 1;
1840}
1841
1842int run_auto_maintenance(int quiet)
1843{
1844 struct child_process maint = CHILD_PROCESS_INIT;
1845 if (!prepare_auto_maintenance(quiet, &maint))
1846 return 0;
1847 return run_command(&maint);
1848}
1849
1850void prepare_other_repo_env(struct strvec *env, const char *new_git_dir)
1851{
1852 const char * const *var;
1853
1854 for (var = local_repo_env; *var; var++) {
1855 if (strcmp(*var, CONFIG_DATA_ENVIRONMENT) &&
1856 strcmp(*var, CONFIG_COUNT_ENVIRONMENT))
1857 strvec_push(env, *var);
1858 }
1859 strvec_pushf(env, "%s=%s", GIT_DIR_ENVIRONMENT, new_git_dir);
1860}
1861
1862enum start_bg_result start_bg_command(struct child_process *cmd,
1863 start_bg_wait_cb *wait_cb,
1864 void *cb_data,
1865 unsigned int timeout_sec)
1866{
1867 enum start_bg_result sbgr = SBGR_ERROR;
1868 int ret;
1869 int wait_status;
1870 pid_t pid_seen;
1871 time_t time_limit;
1872
1873 /*
1874 * We do not allow clean-on-exit because the child process
1875 * should persist in the background and possibly/probably
1876 * after this process exits. So we don't want to kill the
1877 * child during our atexit routine.
1878 */
1879 if (cmd->clean_on_exit)
1880 BUG("start_bg_command() does not allow non-zero clean_on_exit");
1881
1882 if (!cmd->trace2_child_class)
1883 cmd->trace2_child_class = "background";
1884
1885 ret = start_command(cmd);
1886 if (ret) {
1887 /*
1888 * We assume that if `start_command()` fails, we
1889 * either get a complete `trace2_child_start() /
1890 * trace2_child_exit()` pair or it fails before the
1891 * `trace2_child_start()` is emitted, so we do not
1892 * need to worry about it here.
1893 *
1894 * We also assume that `start_command()` does not add
1895 * us to the cleanup list. And that it calls
1896 * `child_process_clear()`.
1897 */
1898 sbgr = SBGR_ERROR;
1899 goto done;
1900 }
1901
1902 time(&time_limit);
1903 time_limit += timeout_sec;
1904
1905wait:
1906 pid_seen = waitpid(cmd->pid, &wait_status, WNOHANG);
1907
1908 if (!pid_seen) {
1909 /*
1910 * The child is currently running. Ask the callback
1911 * if the child is ready to do work or whether we
1912 * should keep waiting for it to boot up.
1913 */
1914 ret = (*wait_cb)(cmd, cb_data);
1915 if (!ret) {
1916 /*
1917 * The child is running and "ready".
1918 */
1919 trace2_child_ready(cmd, "ready");
1920 sbgr = SBGR_READY;
1921 goto done;
1922 } else if (ret > 0) {
1923 /*
1924 * The callback said to give it more time to boot up
1925 * (subject to our timeout limit).
1926 */
1927 time_t now;
1928
1929 time(&now);
1930 if (now < time_limit)
1931 goto wait;
1932
1933 /*
1934 * Our timeout has expired. We don't try to
1935 * kill the child, but rather let it continue
1936 * (hopefully) trying to startup.
1937 */
1938 trace2_child_ready(cmd, "timeout");
1939 sbgr = SBGR_TIMEOUT;
1940 goto done;
1941 } else {
1942 /*
1943 * The cb gave up on this child. It is still running,
1944 * but our cb got an error trying to probe it.
1945 */
1946 trace2_child_ready(cmd, "error");
1947 sbgr = SBGR_CB_ERROR;
1948 goto done;
1949 }
1950 }
1951
1952 else if (pid_seen == cmd->pid) {
1953 int child_code = -1;
1954
1955 /*
1956 * The child started, but exited or was terminated
1957 * before becoming "ready".
1958 *
1959 * We try to match the behavior of `wait_or_whine()`
1960 * WRT the handling of WIFSIGNALED() and WIFEXITED()
1961 * and convert the child's status to a return code for
1962 * tracing purposes and emit the `trace2_child_exit()`
1963 * event.
1964 *
1965 * We do not want the wait_or_whine() error message
1966 * because we will be called by client-side library
1967 * routines.
1968 */
1969 if (WIFEXITED(wait_status))
1970 child_code = WEXITSTATUS(wait_status);
1971 else if (WIFSIGNALED(wait_status))
1972 child_code = WTERMSIG(wait_status) + 128;
1973 trace2_child_exit(cmd, child_code);
1974
1975 sbgr = SBGR_DIED;
1976 goto done;
1977 }
1978
1979 else if (pid_seen < 0 && errno == EINTR)
1980 goto wait;
1981
1982 trace2_child_exit(cmd, -1);
1983 sbgr = SBGR_ERROR;
1984
1985done:
1986 child_process_clear(cmd);
1987 invalidate_lstat_cache();
1988 return sbgr;
1989}