]> git.ipfire.org Git - thirdparty/linux.git/blame_incremental - security/security.c
Merge tag 'mm-hotfixes-stable-2025-07-11-16-16' of git://git.kernel.org/pub/scm/linux...
[thirdparty/linux.git] / security / security.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
10 */
11
12#define pr_fmt(fmt) "LSM: " fmt
13
14#include <linux/bpf.h>
15#include <linux/capability.h>
16#include <linux/dcache.h>
17#include <linux/export.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/kernel_read_file.h>
21#include <linux/lsm_hooks.h>
22#include <linux/mman.h>
23#include <linux/mount.h>
24#include <linux/personality.h>
25#include <linux/backing-dev.h>
26#include <linux/string.h>
27#include <linux/xattr.h>
28#include <linux/msg.h>
29#include <linux/overflow.h>
30#include <linux/perf_event.h>
31#include <linux/fs.h>
32#include <net/flow.h>
33#include <net/sock.h>
34
35#define SECURITY_HOOK_ACTIVE_KEY(HOOK, IDX) security_hook_active_##HOOK##_##IDX
36
37/*
38 * Identifier for the LSM static calls.
39 * HOOK is an LSM hook as defined in linux/lsm_hookdefs.h
40 * IDX is the index of the static call. 0 <= NUM < MAX_LSM_COUNT
41 */
42#define LSM_STATIC_CALL(HOOK, IDX) lsm_static_call_##HOOK##_##IDX
43
44/*
45 * Call the macro M for each LSM hook MAX_LSM_COUNT times.
46 */
47#define LSM_LOOP_UNROLL(M, ...) \
48do { \
49 UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__) \
50} while (0)
51
52#define LSM_DEFINE_UNROLL(M, ...) UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)
53
54/*
55 * These are descriptions of the reasons that can be passed to the
56 * security_locked_down() LSM hook. Placing this array here allows
57 * all security modules to use the same descriptions for auditing
58 * purposes.
59 */
60const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
61 [LOCKDOWN_NONE] = "none",
62 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
63 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
64 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
65 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
66 [LOCKDOWN_HIBERNATION] = "hibernation",
67 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
68 [LOCKDOWN_IOPORT] = "raw io port access",
69 [LOCKDOWN_MSR] = "raw MSR access",
70 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
71 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
72 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
73 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
74 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
75 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
76 [LOCKDOWN_DEBUGFS] = "debugfs access",
77 [LOCKDOWN_XMON_WR] = "xmon write access",
78 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
79 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
80 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
81 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
82 [LOCKDOWN_KCORE] = "/proc/kcore access",
83 [LOCKDOWN_KPROBES] = "use of kprobes",
84 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
85 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
86 [LOCKDOWN_PERF] = "unsafe use of perf",
87 [LOCKDOWN_TRACEFS] = "use of tracefs",
88 [LOCKDOWN_XMON_RW] = "xmon read and write access",
89 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
90 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
91};
92
93static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
94
95static struct kmem_cache *lsm_file_cache;
96static struct kmem_cache *lsm_inode_cache;
97
98char *lsm_names;
99static struct lsm_blob_sizes blob_sizes __ro_after_init;
100
101/* Boot-time LSM user choice */
102static __initdata const char *chosen_lsm_order;
103static __initdata const char *chosen_major_lsm;
104
105static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
106
107/* Ordered list of LSMs to initialize. */
108static __initdata struct lsm_info *ordered_lsms[MAX_LSM_COUNT + 1];
109static __initdata struct lsm_info *exclusive;
110
111#ifdef CONFIG_HAVE_STATIC_CALL
112#define LSM_HOOK_TRAMP(NAME, NUM) \
113 &STATIC_CALL_TRAMP(LSM_STATIC_CALL(NAME, NUM))
114#else
115#define LSM_HOOK_TRAMP(NAME, NUM) NULL
116#endif
117
118/*
119 * Define static calls and static keys for each LSM hook.
120 */
121#define DEFINE_LSM_STATIC_CALL(NUM, NAME, RET, ...) \
122 DEFINE_STATIC_CALL_NULL(LSM_STATIC_CALL(NAME, NUM), \
123 *((RET(*)(__VA_ARGS__))NULL)); \
124 DEFINE_STATIC_KEY_FALSE(SECURITY_HOOK_ACTIVE_KEY(NAME, NUM));
125
126#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
127 LSM_DEFINE_UNROLL(DEFINE_LSM_STATIC_CALL, NAME, RET, __VA_ARGS__)
128#include <linux/lsm_hook_defs.h>
129#undef LSM_HOOK
130#undef DEFINE_LSM_STATIC_CALL
131
132/*
133 * Initialise a table of static calls for each LSM hook.
134 * DEFINE_STATIC_CALL_NULL invocation above generates a key (STATIC_CALL_KEY)
135 * and a trampoline (STATIC_CALL_TRAMP) which are used to call
136 * __static_call_update when updating the static call.
137 *
138 * The static calls table is used by early LSMs, some architectures can fault on
139 * unaligned accesses and the fault handling code may not be ready by then.
140 * Thus, the static calls table should be aligned to avoid any unhandled faults
141 * in early init.
142 */
143struct lsm_static_calls_table
144 static_calls_table __ro_after_init __aligned(sizeof(u64)) = {
145#define INIT_LSM_STATIC_CALL(NUM, NAME) \
146 (struct lsm_static_call) { \
147 .key = &STATIC_CALL_KEY(LSM_STATIC_CALL(NAME, NUM)), \
148 .trampoline = LSM_HOOK_TRAMP(NAME, NUM), \
149 .active = &SECURITY_HOOK_ACTIVE_KEY(NAME, NUM), \
150 },
151#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
152 .NAME = { \
153 LSM_DEFINE_UNROLL(INIT_LSM_STATIC_CALL, NAME) \
154 },
155#include <linux/lsm_hook_defs.h>
156#undef LSM_HOOK
157#undef INIT_LSM_STATIC_CALL
158 };
159
160static __initdata bool debug;
161#define init_debug(...) \
162 do { \
163 if (debug) \
164 pr_info(__VA_ARGS__); \
165 } while (0)
166
167static bool __init is_enabled(struct lsm_info *lsm)
168{
169 if (!lsm->enabled)
170 return false;
171
172 return *lsm->enabled;
173}
174
175/* Mark an LSM's enabled flag. */
176static int lsm_enabled_true __initdata = 1;
177static int lsm_enabled_false __initdata = 0;
178static void __init set_enabled(struct lsm_info *lsm, bool enabled)
179{
180 /*
181 * When an LSM hasn't configured an enable variable, we can use
182 * a hard-coded location for storing the default enabled state.
183 */
184 if (!lsm->enabled) {
185 if (enabled)
186 lsm->enabled = &lsm_enabled_true;
187 else
188 lsm->enabled = &lsm_enabled_false;
189 } else if (lsm->enabled == &lsm_enabled_true) {
190 if (!enabled)
191 lsm->enabled = &lsm_enabled_false;
192 } else if (lsm->enabled == &lsm_enabled_false) {
193 if (enabled)
194 lsm->enabled = &lsm_enabled_true;
195 } else {
196 *lsm->enabled = enabled;
197 }
198}
199
200/* Is an LSM already listed in the ordered LSMs list? */
201static bool __init exists_ordered_lsm(struct lsm_info *lsm)
202{
203 struct lsm_info **check;
204
205 for (check = ordered_lsms; *check; check++)
206 if (*check == lsm)
207 return true;
208
209 return false;
210}
211
212/* Append an LSM to the list of ordered LSMs to initialize. */
213static int last_lsm __initdata;
214static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
215{
216 /* Ignore duplicate selections. */
217 if (exists_ordered_lsm(lsm))
218 return;
219
220 if (WARN(last_lsm == MAX_LSM_COUNT, "%s: out of LSM static calls!?\n", from))
221 return;
222
223 /* Enable this LSM, if it is not already set. */
224 if (!lsm->enabled)
225 lsm->enabled = &lsm_enabled_true;
226 ordered_lsms[last_lsm++] = lsm;
227
228 init_debug("%s ordered: %s (%s)\n", from, lsm->name,
229 is_enabled(lsm) ? "enabled" : "disabled");
230}
231
232/* Is an LSM allowed to be initialized? */
233static bool __init lsm_allowed(struct lsm_info *lsm)
234{
235 /* Skip if the LSM is disabled. */
236 if (!is_enabled(lsm))
237 return false;
238
239 /* Not allowed if another exclusive LSM already initialized. */
240 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
241 init_debug("exclusive disabled: %s\n", lsm->name);
242 return false;
243 }
244
245 return true;
246}
247
248static void __init lsm_set_blob_size(int *need, int *lbs)
249{
250 int offset;
251
252 if (*need <= 0)
253 return;
254
255 offset = ALIGN(*lbs, sizeof(void *));
256 *lbs = offset + *need;
257 *need = offset;
258}
259
260static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
261{
262 if (!needed)
263 return;
264
265 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
266 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
267 lsm_set_blob_size(&needed->lbs_ib, &blob_sizes.lbs_ib);
268 /*
269 * The inode blob gets an rcu_head in addition to
270 * what the modules might need.
271 */
272 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
273 blob_sizes.lbs_inode = sizeof(struct rcu_head);
274 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
275 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
276 lsm_set_blob_size(&needed->lbs_key, &blob_sizes.lbs_key);
277 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
278 lsm_set_blob_size(&needed->lbs_perf_event, &blob_sizes.lbs_perf_event);
279 lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock);
280 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
281 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
282 lsm_set_blob_size(&needed->lbs_tun_dev, &blob_sizes.lbs_tun_dev);
283 lsm_set_blob_size(&needed->lbs_xattr_count,
284 &blob_sizes.lbs_xattr_count);
285 lsm_set_blob_size(&needed->lbs_bdev, &blob_sizes.lbs_bdev);
286}
287
288/* Prepare LSM for initialization. */
289static void __init prepare_lsm(struct lsm_info *lsm)
290{
291 int enabled = lsm_allowed(lsm);
292
293 /* Record enablement (to handle any following exclusive LSMs). */
294 set_enabled(lsm, enabled);
295
296 /* If enabled, do pre-initialization work. */
297 if (enabled) {
298 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
299 exclusive = lsm;
300 init_debug("exclusive chosen: %s\n", lsm->name);
301 }
302
303 lsm_set_blob_sizes(lsm->blobs);
304 }
305}
306
307/* Initialize a given LSM, if it is enabled. */
308static void __init initialize_lsm(struct lsm_info *lsm)
309{
310 if (is_enabled(lsm)) {
311 int ret;
312
313 init_debug("initializing %s\n", lsm->name);
314 ret = lsm->init();
315 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
316 }
317}
318
319/*
320 * Current index to use while initializing the lsm id list.
321 */
322u32 lsm_active_cnt __ro_after_init;
323const struct lsm_id *lsm_idlist[MAX_LSM_COUNT];
324
325/* Populate ordered LSMs list from comma-separated LSM name list. */
326static void __init ordered_lsm_parse(const char *order, const char *origin)
327{
328 struct lsm_info *lsm;
329 char *sep, *name, *next;
330
331 /* LSM_ORDER_FIRST is always first. */
332 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
333 if (lsm->order == LSM_ORDER_FIRST)
334 append_ordered_lsm(lsm, " first");
335 }
336
337 /* Process "security=", if given. */
338 if (chosen_major_lsm) {
339 struct lsm_info *major;
340
341 /*
342 * To match the original "security=" behavior, this
343 * explicitly does NOT fallback to another Legacy Major
344 * if the selected one was separately disabled: disable
345 * all non-matching Legacy Major LSMs.
346 */
347 for (major = __start_lsm_info; major < __end_lsm_info;
348 major++) {
349 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
350 strcmp(major->name, chosen_major_lsm) != 0) {
351 set_enabled(major, false);
352 init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
353 chosen_major_lsm, major->name);
354 }
355 }
356 }
357
358 sep = kstrdup(order, GFP_KERNEL);
359 next = sep;
360 /* Walk the list, looking for matching LSMs. */
361 while ((name = strsep(&next, ",")) != NULL) {
362 bool found = false;
363
364 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
365 if (strcmp(lsm->name, name) == 0) {
366 if (lsm->order == LSM_ORDER_MUTABLE)
367 append_ordered_lsm(lsm, origin);
368 found = true;
369 }
370 }
371
372 if (!found)
373 init_debug("%s ignored: %s (not built into kernel)\n",
374 origin, name);
375 }
376
377 /* Process "security=", if given. */
378 if (chosen_major_lsm) {
379 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
380 if (exists_ordered_lsm(lsm))
381 continue;
382 if (strcmp(lsm->name, chosen_major_lsm) == 0)
383 append_ordered_lsm(lsm, "security=");
384 }
385 }
386
387 /* LSM_ORDER_LAST is always last. */
388 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
389 if (lsm->order == LSM_ORDER_LAST)
390 append_ordered_lsm(lsm, " last");
391 }
392
393 /* Disable all LSMs not in the ordered list. */
394 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
395 if (exists_ordered_lsm(lsm))
396 continue;
397 set_enabled(lsm, false);
398 init_debug("%s skipped: %s (not in requested order)\n",
399 origin, lsm->name);
400 }
401
402 kfree(sep);
403}
404
405static void __init lsm_static_call_init(struct security_hook_list *hl)
406{
407 struct lsm_static_call *scall = hl->scalls;
408 int i;
409
410 for (i = 0; i < MAX_LSM_COUNT; i++) {
411 /* Update the first static call that is not used yet */
412 if (!scall->hl) {
413 __static_call_update(scall->key, scall->trampoline,
414 hl->hook.lsm_func_addr);
415 scall->hl = hl;
416 static_branch_enable(scall->active);
417 return;
418 }
419 scall++;
420 }
421 panic("%s - Ran out of static slots.\n", __func__);
422}
423
424static void __init lsm_early_cred(struct cred *cred);
425static void __init lsm_early_task(struct task_struct *task);
426
427static int lsm_append(const char *new, char **result);
428
429static void __init report_lsm_order(void)
430{
431 struct lsm_info **lsm, *early;
432 int first = 0;
433
434 pr_info("initializing lsm=");
435
436 /* Report each enabled LSM name, comma separated. */
437 for (early = __start_early_lsm_info;
438 early < __end_early_lsm_info; early++)
439 if (is_enabled(early))
440 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
441 for (lsm = ordered_lsms; *lsm; lsm++)
442 if (is_enabled(*lsm))
443 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
444
445 pr_cont("\n");
446}
447
448static void __init ordered_lsm_init(void)
449{
450 struct lsm_info **lsm;
451
452 if (chosen_lsm_order) {
453 if (chosen_major_lsm) {
454 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
455 chosen_major_lsm, chosen_lsm_order);
456 chosen_major_lsm = NULL;
457 }
458 ordered_lsm_parse(chosen_lsm_order, "cmdline");
459 } else
460 ordered_lsm_parse(builtin_lsm_order, "builtin");
461
462 for (lsm = ordered_lsms; *lsm; lsm++)
463 prepare_lsm(*lsm);
464
465 report_lsm_order();
466
467 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
468 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
469 init_debug("ib blob size = %d\n", blob_sizes.lbs_ib);
470 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
471 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
472#ifdef CONFIG_KEYS
473 init_debug("key blob size = %d\n", blob_sizes.lbs_key);
474#endif /* CONFIG_KEYS */
475 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
476 init_debug("sock blob size = %d\n", blob_sizes.lbs_sock);
477 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
478 init_debug("perf event blob size = %d\n", blob_sizes.lbs_perf_event);
479 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
480 init_debug("tun device blob size = %d\n", blob_sizes.lbs_tun_dev);
481 init_debug("xattr slots = %d\n", blob_sizes.lbs_xattr_count);
482 init_debug("bdev blob size = %d\n", blob_sizes.lbs_bdev);
483
484 /*
485 * Create any kmem_caches needed for blobs
486 */
487 if (blob_sizes.lbs_file)
488 lsm_file_cache = kmem_cache_create("lsm_file_cache",
489 blob_sizes.lbs_file, 0,
490 SLAB_PANIC, NULL);
491 if (blob_sizes.lbs_inode)
492 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
493 blob_sizes.lbs_inode, 0,
494 SLAB_PANIC, NULL);
495
496 lsm_early_cred((struct cred *) current->cred);
497 lsm_early_task(current);
498 for (lsm = ordered_lsms; *lsm; lsm++)
499 initialize_lsm(*lsm);
500}
501
502int __init early_security_init(void)
503{
504 struct lsm_info *lsm;
505
506 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
507 if (!lsm->enabled)
508 lsm->enabled = &lsm_enabled_true;
509 prepare_lsm(lsm);
510 initialize_lsm(lsm);
511 }
512
513 return 0;
514}
515
516/**
517 * security_init - initializes the security framework
518 *
519 * This should be called early in the kernel initialization sequence.
520 */
521int __init security_init(void)
522{
523 struct lsm_info *lsm;
524
525 init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
526 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order);
527 init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
528
529 /*
530 * Append the names of the early LSM modules now that kmalloc() is
531 * available
532 */
533 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
534 init_debug(" early started: %s (%s)\n", lsm->name,
535 is_enabled(lsm) ? "enabled" : "disabled");
536 if (lsm->enabled)
537 lsm_append(lsm->name, &lsm_names);
538 }
539
540 /* Load LSMs in specified order. */
541 ordered_lsm_init();
542
543 return 0;
544}
545
546/* Save user chosen LSM */
547static int __init choose_major_lsm(char *str)
548{
549 chosen_major_lsm = str;
550 return 1;
551}
552__setup("security=", choose_major_lsm);
553
554/* Explicitly choose LSM initialization order. */
555static int __init choose_lsm_order(char *str)
556{
557 chosen_lsm_order = str;
558 return 1;
559}
560__setup("lsm=", choose_lsm_order);
561
562/* Enable LSM order debugging. */
563static int __init enable_debug(char *str)
564{
565 debug = true;
566 return 1;
567}
568__setup("lsm.debug", enable_debug);
569
570static bool match_last_lsm(const char *list, const char *lsm)
571{
572 const char *last;
573
574 if (WARN_ON(!list || !lsm))
575 return false;
576 last = strrchr(list, ',');
577 if (last)
578 /* Pass the comma, strcmp() will check for '\0' */
579 last++;
580 else
581 last = list;
582 return !strcmp(last, lsm);
583}
584
585static int lsm_append(const char *new, char **result)
586{
587 char *cp;
588
589 if (*result == NULL) {
590 *result = kstrdup(new, GFP_KERNEL);
591 if (*result == NULL)
592 return -ENOMEM;
593 } else {
594 /* Check if it is the last registered name */
595 if (match_last_lsm(*result, new))
596 return 0;
597 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
598 if (cp == NULL)
599 return -ENOMEM;
600 kfree(*result);
601 *result = cp;
602 }
603 return 0;
604}
605
606/**
607 * security_add_hooks - Add a modules hooks to the hook lists.
608 * @hooks: the hooks to add
609 * @count: the number of hooks to add
610 * @lsmid: the identification information for the security module
611 *
612 * Each LSM has to register its hooks with the infrastructure.
613 */
614void __init security_add_hooks(struct security_hook_list *hooks, int count,
615 const struct lsm_id *lsmid)
616{
617 int i;
618
619 /*
620 * A security module may call security_add_hooks() more
621 * than once during initialization, and LSM initialization
622 * is serialized. Landlock is one such case.
623 * Look at the previous entry, if there is one, for duplication.
624 */
625 if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
626 if (lsm_active_cnt >= MAX_LSM_COUNT)
627 panic("%s Too many LSMs registered.\n", __func__);
628 lsm_idlist[lsm_active_cnt++] = lsmid;
629 }
630
631 for (i = 0; i < count; i++) {
632 hooks[i].lsmid = lsmid;
633 lsm_static_call_init(&hooks[i]);
634 }
635
636 /*
637 * Don't try to append during early_security_init(), we'll come back
638 * and fix this up afterwards.
639 */
640 if (slab_is_available()) {
641 if (lsm_append(lsmid->name, &lsm_names) < 0)
642 panic("%s - Cannot get early memory.\n", __func__);
643 }
644}
645
646int call_blocking_lsm_notifier(enum lsm_event event, void *data)
647{
648 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
649 event, data);
650}
651EXPORT_SYMBOL(call_blocking_lsm_notifier);
652
653int register_blocking_lsm_notifier(struct notifier_block *nb)
654{
655 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
656 nb);
657}
658EXPORT_SYMBOL(register_blocking_lsm_notifier);
659
660int unregister_blocking_lsm_notifier(struct notifier_block *nb)
661{
662 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
663 nb);
664}
665EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
666
667/**
668 * lsm_blob_alloc - allocate a composite blob
669 * @dest: the destination for the blob
670 * @size: the size of the blob
671 * @gfp: allocation type
672 *
673 * Allocate a blob for all the modules
674 *
675 * Returns 0, or -ENOMEM if memory can't be allocated.
676 */
677static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp)
678{
679 if (size == 0) {
680 *dest = NULL;
681 return 0;
682 }
683
684 *dest = kzalloc(size, gfp);
685 if (*dest == NULL)
686 return -ENOMEM;
687 return 0;
688}
689
690/**
691 * lsm_cred_alloc - allocate a composite cred blob
692 * @cred: the cred that needs a blob
693 * @gfp: allocation type
694 *
695 * Allocate the cred blob for all the modules
696 *
697 * Returns 0, or -ENOMEM if memory can't be allocated.
698 */
699static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
700{
701 return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp);
702}
703
704/**
705 * lsm_early_cred - during initialization allocate a composite cred blob
706 * @cred: the cred that needs a blob
707 *
708 * Allocate the cred blob for all the modules
709 */
710static void __init lsm_early_cred(struct cred *cred)
711{
712 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
713
714 if (rc)
715 panic("%s: Early cred alloc failed.\n", __func__);
716}
717
718/**
719 * lsm_file_alloc - allocate a composite file blob
720 * @file: the file that needs a blob
721 *
722 * Allocate the file blob for all the modules
723 *
724 * Returns 0, or -ENOMEM if memory can't be allocated.
725 */
726static int lsm_file_alloc(struct file *file)
727{
728 if (!lsm_file_cache) {
729 file->f_security = NULL;
730 return 0;
731 }
732
733 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
734 if (file->f_security == NULL)
735 return -ENOMEM;
736 return 0;
737}
738
739/**
740 * lsm_inode_alloc - allocate a composite inode blob
741 * @inode: the inode that needs a blob
742 * @gfp: allocation flags
743 *
744 * Allocate the inode blob for all the modules
745 *
746 * Returns 0, or -ENOMEM if memory can't be allocated.
747 */
748static int lsm_inode_alloc(struct inode *inode, gfp_t gfp)
749{
750 if (!lsm_inode_cache) {
751 inode->i_security = NULL;
752 return 0;
753 }
754
755 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, gfp);
756 if (inode->i_security == NULL)
757 return -ENOMEM;
758 return 0;
759}
760
761/**
762 * lsm_task_alloc - allocate a composite task blob
763 * @task: the task that needs a blob
764 *
765 * Allocate the task blob for all the modules
766 *
767 * Returns 0, or -ENOMEM if memory can't be allocated.
768 */
769static int lsm_task_alloc(struct task_struct *task)
770{
771 return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL);
772}
773
774/**
775 * lsm_ipc_alloc - allocate a composite ipc blob
776 * @kip: the ipc that needs a blob
777 *
778 * Allocate the ipc blob for all the modules
779 *
780 * Returns 0, or -ENOMEM if memory can't be allocated.
781 */
782static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
783{
784 return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL);
785}
786
787#ifdef CONFIG_KEYS
788/**
789 * lsm_key_alloc - allocate a composite key blob
790 * @key: the key that needs a blob
791 *
792 * Allocate the key blob for all the modules
793 *
794 * Returns 0, or -ENOMEM if memory can't be allocated.
795 */
796static int lsm_key_alloc(struct key *key)
797{
798 return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL);
799}
800#endif /* CONFIG_KEYS */
801
802/**
803 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
804 * @mp: the msg_msg that needs a blob
805 *
806 * Allocate the ipc blob for all the modules
807 *
808 * Returns 0, or -ENOMEM if memory can't be allocated.
809 */
810static int lsm_msg_msg_alloc(struct msg_msg *mp)
811{
812 return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg,
813 GFP_KERNEL);
814}
815
816/**
817 * lsm_bdev_alloc - allocate a composite block_device blob
818 * @bdev: the block_device that needs a blob
819 *
820 * Allocate the block_device blob for all the modules
821 *
822 * Returns 0, or -ENOMEM if memory can't be allocated.
823 */
824static int lsm_bdev_alloc(struct block_device *bdev)
825{
826 if (blob_sizes.lbs_bdev == 0) {
827 bdev->bd_security = NULL;
828 return 0;
829 }
830
831 bdev->bd_security = kzalloc(blob_sizes.lbs_bdev, GFP_KERNEL);
832 if (!bdev->bd_security)
833 return -ENOMEM;
834
835 return 0;
836}
837
838/**
839 * lsm_early_task - during initialization allocate a composite task blob
840 * @task: the task that needs a blob
841 *
842 * Allocate the task blob for all the modules
843 */
844static void __init lsm_early_task(struct task_struct *task)
845{
846 int rc = lsm_task_alloc(task);
847
848 if (rc)
849 panic("%s: Early task alloc failed.\n", __func__);
850}
851
852/**
853 * lsm_superblock_alloc - allocate a composite superblock blob
854 * @sb: the superblock that needs a blob
855 *
856 * Allocate the superblock blob for all the modules
857 *
858 * Returns 0, or -ENOMEM if memory can't be allocated.
859 */
860static int lsm_superblock_alloc(struct super_block *sb)
861{
862 return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock,
863 GFP_KERNEL);
864}
865
866/**
867 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
868 * @uctx: a userspace LSM context to be filled
869 * @uctx_len: available uctx size (input), used uctx size (output)
870 * @val: the new LSM context value
871 * @val_len: the size of the new LSM context value
872 * @id: LSM id
873 * @flags: LSM defined flags
874 *
875 * Fill all of the fields in a userspace lsm_ctx structure. If @uctx is NULL
876 * simply calculate the required size to output via @utc_len and return
877 * success.
878 *
879 * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
880 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
881 */
882int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
883 void *val, size_t val_len,
884 u64 id, u64 flags)
885{
886 struct lsm_ctx *nctx = NULL;
887 size_t nctx_len;
888 int rc = 0;
889
890 nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
891 if (nctx_len > *uctx_len) {
892 rc = -E2BIG;
893 goto out;
894 }
895
896 /* no buffer - return success/0 and set @uctx_len to the req size */
897 if (!uctx)
898 goto out;
899
900 nctx = kzalloc(nctx_len, GFP_KERNEL);
901 if (nctx == NULL) {
902 rc = -ENOMEM;
903 goto out;
904 }
905 nctx->id = id;
906 nctx->flags = flags;
907 nctx->len = nctx_len;
908 nctx->ctx_len = val_len;
909 memcpy(nctx->ctx, val, val_len);
910
911 if (copy_to_user(uctx, nctx, nctx_len))
912 rc = -EFAULT;
913
914out:
915 kfree(nctx);
916 *uctx_len = nctx_len;
917 return rc;
918}
919
920/*
921 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
922 * can be accessed with:
923 *
924 * LSM_RET_DEFAULT(<hook_name>)
925 *
926 * The macros below define static constants for the default value of each
927 * LSM hook.
928 */
929#define LSM_RET_DEFAULT(NAME) (NAME##_default)
930#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
931#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
932 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
933#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
934 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
935
936#include <linux/lsm_hook_defs.h>
937#undef LSM_HOOK
938
939/*
940 * Hook list operation macros.
941 *
942 * call_void_hook:
943 * This is a hook that does not return a value.
944 *
945 * call_int_hook:
946 * This is a hook that returns a value.
947 */
948#define __CALL_STATIC_VOID(NUM, HOOK, ...) \
949do { \
950 if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) { \
951 static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__); \
952 } \
953} while (0);
954
955#define call_void_hook(HOOK, ...) \
956 do { \
957 LSM_LOOP_UNROLL(__CALL_STATIC_VOID, HOOK, __VA_ARGS__); \
958 } while (0)
959
960
961#define __CALL_STATIC_INT(NUM, R, HOOK, LABEL, ...) \
962do { \
963 if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) { \
964 R = static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__); \
965 if (R != LSM_RET_DEFAULT(HOOK)) \
966 goto LABEL; \
967 } \
968} while (0);
969
970#define call_int_hook(HOOK, ...) \
971({ \
972 __label__ OUT; \
973 int RC = LSM_RET_DEFAULT(HOOK); \
974 \
975 LSM_LOOP_UNROLL(__CALL_STATIC_INT, RC, HOOK, OUT, __VA_ARGS__); \
976OUT: \
977 RC; \
978})
979
980#define lsm_for_each_hook(scall, NAME) \
981 for (scall = static_calls_table.NAME; \
982 scall - static_calls_table.NAME < MAX_LSM_COUNT; scall++) \
983 if (static_key_enabled(&scall->active->key))
984
985/* Security operations */
986
987/**
988 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
989 * @mgr: task credentials of current binder process
990 *
991 * Check whether @mgr is allowed to be the binder context manager.
992 *
993 * Return: Return 0 if permission is granted.
994 */
995int security_binder_set_context_mgr(const struct cred *mgr)
996{
997 return call_int_hook(binder_set_context_mgr, mgr);
998}
999
1000/**
1001 * security_binder_transaction() - Check if a binder transaction is allowed
1002 * @from: sending process
1003 * @to: receiving process
1004 *
1005 * Check whether @from is allowed to invoke a binder transaction call to @to.
1006 *
1007 * Return: Returns 0 if permission is granted.
1008 */
1009int security_binder_transaction(const struct cred *from,
1010 const struct cred *to)
1011{
1012 return call_int_hook(binder_transaction, from, to);
1013}
1014
1015/**
1016 * security_binder_transfer_binder() - Check if a binder transfer is allowed
1017 * @from: sending process
1018 * @to: receiving process
1019 *
1020 * Check whether @from is allowed to transfer a binder reference to @to.
1021 *
1022 * Return: Returns 0 if permission is granted.
1023 */
1024int security_binder_transfer_binder(const struct cred *from,
1025 const struct cred *to)
1026{
1027 return call_int_hook(binder_transfer_binder, from, to);
1028}
1029
1030/**
1031 * security_binder_transfer_file() - Check if a binder file xfer is allowed
1032 * @from: sending process
1033 * @to: receiving process
1034 * @file: file being transferred
1035 *
1036 * Check whether @from is allowed to transfer @file to @to.
1037 *
1038 * Return: Returns 0 if permission is granted.
1039 */
1040int security_binder_transfer_file(const struct cred *from,
1041 const struct cred *to, const struct file *file)
1042{
1043 return call_int_hook(binder_transfer_file, from, to, file);
1044}
1045
1046/**
1047 * security_ptrace_access_check() - Check if tracing is allowed
1048 * @child: target process
1049 * @mode: PTRACE_MODE flags
1050 *
1051 * Check permission before allowing the current process to trace the @child
1052 * process. Security modules may also want to perform a process tracing check
1053 * during an execve in the set_security or apply_creds hooks of tracing check
1054 * during an execve in the bprm_set_creds hook of binprm_security_ops if the
1055 * process is being traced and its security attributes would be changed by the
1056 * execve.
1057 *
1058 * Return: Returns 0 if permission is granted.
1059 */
1060int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
1061{
1062 return call_int_hook(ptrace_access_check, child, mode);
1063}
1064
1065/**
1066 * security_ptrace_traceme() - Check if tracing is allowed
1067 * @parent: tracing process
1068 *
1069 * Check that the @parent process has sufficient permission to trace the
1070 * current process before allowing the current process to present itself to the
1071 * @parent process for tracing.
1072 *
1073 * Return: Returns 0 if permission is granted.
1074 */
1075int security_ptrace_traceme(struct task_struct *parent)
1076{
1077 return call_int_hook(ptrace_traceme, parent);
1078}
1079
1080/**
1081 * security_capget() - Get the capability sets for a process
1082 * @target: target process
1083 * @effective: effective capability set
1084 * @inheritable: inheritable capability set
1085 * @permitted: permitted capability set
1086 *
1087 * Get the @effective, @inheritable, and @permitted capability sets for the
1088 * @target process. The hook may also perform permission checking to determine
1089 * if the current process is allowed to see the capability sets of the @target
1090 * process.
1091 *
1092 * Return: Returns 0 if the capability sets were successfully obtained.
1093 */
1094int security_capget(const struct task_struct *target,
1095 kernel_cap_t *effective,
1096 kernel_cap_t *inheritable,
1097 kernel_cap_t *permitted)
1098{
1099 return call_int_hook(capget, target, effective, inheritable, permitted);
1100}
1101
1102/**
1103 * security_capset() - Set the capability sets for a process
1104 * @new: new credentials for the target process
1105 * @old: current credentials of the target process
1106 * @effective: effective capability set
1107 * @inheritable: inheritable capability set
1108 * @permitted: permitted capability set
1109 *
1110 * Set the @effective, @inheritable, and @permitted capability sets for the
1111 * current process.
1112 *
1113 * Return: Returns 0 and update @new if permission is granted.
1114 */
1115int security_capset(struct cred *new, const struct cred *old,
1116 const kernel_cap_t *effective,
1117 const kernel_cap_t *inheritable,
1118 const kernel_cap_t *permitted)
1119{
1120 return call_int_hook(capset, new, old, effective, inheritable,
1121 permitted);
1122}
1123
1124/**
1125 * security_capable() - Check if a process has the necessary capability
1126 * @cred: credentials to examine
1127 * @ns: user namespace
1128 * @cap: capability requested
1129 * @opts: capability check options
1130 *
1131 * Check whether the @tsk process has the @cap capability in the indicated
1132 * credentials. @cap contains the capability <include/linux/capability.h>.
1133 * @opts contains options for the capable check <include/linux/security.h>.
1134 *
1135 * Return: Returns 0 if the capability is granted.
1136 */
1137int security_capable(const struct cred *cred,
1138 struct user_namespace *ns,
1139 int cap,
1140 unsigned int opts)
1141{
1142 return call_int_hook(capable, cred, ns, cap, opts);
1143}
1144
1145/**
1146 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1147 * @cmds: commands
1148 * @type: type
1149 * @id: id
1150 * @sb: filesystem
1151 *
1152 * Check whether the quotactl syscall is allowed for this @sb.
1153 *
1154 * Return: Returns 0 if permission is granted.
1155 */
1156int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1157{
1158 return call_int_hook(quotactl, cmds, type, id, sb);
1159}
1160
1161/**
1162 * security_quota_on() - Check if QUOTAON is allowed for a dentry
1163 * @dentry: dentry
1164 *
1165 * Check whether QUOTAON is allowed for @dentry.
1166 *
1167 * Return: Returns 0 if permission is granted.
1168 */
1169int security_quota_on(struct dentry *dentry)
1170{
1171 return call_int_hook(quota_on, dentry);
1172}
1173
1174/**
1175 * security_syslog() - Check if accessing the kernel message ring is allowed
1176 * @type: SYSLOG_ACTION_* type
1177 *
1178 * Check permission before accessing the kernel message ring or changing
1179 * logging to the console. See the syslog(2) manual page for an explanation of
1180 * the @type values.
1181 *
1182 * Return: Return 0 if permission is granted.
1183 */
1184int security_syslog(int type)
1185{
1186 return call_int_hook(syslog, type);
1187}
1188
1189/**
1190 * security_settime64() - Check if changing the system time is allowed
1191 * @ts: new time
1192 * @tz: timezone
1193 *
1194 * Check permission to change the system time, struct timespec64 is defined in
1195 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1196 *
1197 * Return: Returns 0 if permission is granted.
1198 */
1199int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1200{
1201 return call_int_hook(settime, ts, tz);
1202}
1203
1204/**
1205 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1206 * @mm: mm struct
1207 * @pages: number of pages
1208 *
1209 * Check permissions for allocating a new virtual mapping. If all LSMs return
1210 * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1211 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1212 * called with cap_sys_admin cleared.
1213 *
1214 * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1215 * caller.
1216 */
1217int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1218{
1219 struct lsm_static_call *scall;
1220 int cap_sys_admin = 1;
1221 int rc;
1222
1223 /*
1224 * The module will respond with 0 if it thinks the __vm_enough_memory()
1225 * call should be made with the cap_sys_admin set. If all of the modules
1226 * agree that it should be set it will. If any module thinks it should
1227 * not be set it won't.
1228 */
1229 lsm_for_each_hook(scall, vm_enough_memory) {
1230 rc = scall->hl->hook.vm_enough_memory(mm, pages);
1231 if (rc < 0) {
1232 cap_sys_admin = 0;
1233 break;
1234 }
1235 }
1236 return __vm_enough_memory(mm, pages, cap_sys_admin);
1237}
1238
1239/**
1240 * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1241 * @bprm: binary program information
1242 *
1243 * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1244 * properly for executing @bprm->file, update the LSM's portion of
1245 * @bprm->cred->security to be what commit_creds needs to install for the new
1246 * program. This hook may also optionally check permissions (e.g. for
1247 * transitions between security domains). The hook must set @bprm->secureexec
1248 * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm
1249 * contains the linux_binprm structure.
1250 *
1251 * If execveat(2) is called with the AT_EXECVE_CHECK flag, bprm->is_check is
1252 * set. The result must be the same as without this flag even if the execution
1253 * will never really happen and @bprm will always be dropped.
1254 *
1255 * This hook must not change current->cred, only @bprm->cred.
1256 *
1257 * Return: Returns 0 if the hook is successful and permission is granted.
1258 */
1259int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1260{
1261 return call_int_hook(bprm_creds_for_exec, bprm);
1262}
1263
1264/**
1265 * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1266 * @bprm: binary program information
1267 * @file: associated file
1268 *
1269 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1270 * exec, update @bprm->cred to reflect that change. This is called after
1271 * finding the binary that will be executed without an interpreter. This
1272 * ensures that the credentials will not be derived from a script that the
1273 * binary will need to reopen, which when reopend may end up being a completely
1274 * different file. This hook may also optionally check permissions (e.g. for
1275 * transitions between security domains). The hook must set @bprm->secureexec
1276 * to 1 if AT_SECURE should be set to request libc enable secure mode. The
1277 * hook must add to @bprm->per_clear any personality flags that should be
1278 * cleared from current->personality. @bprm contains the linux_binprm
1279 * structure.
1280 *
1281 * Return: Returns 0 if the hook is successful and permission is granted.
1282 */
1283int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1284{
1285 return call_int_hook(bprm_creds_from_file, bprm, file);
1286}
1287
1288/**
1289 * security_bprm_check() - Mediate binary handler search
1290 * @bprm: binary program information
1291 *
1292 * This hook mediates the point when a search for a binary handler will begin.
1293 * It allows a check against the @bprm->cred->security value which was set in
1294 * the preceding creds_for_exec call. The argv list and envp list are reliably
1295 * available in @bprm. This hook may be called multiple times during a single
1296 * execve. @bprm contains the linux_binprm structure.
1297 *
1298 * Return: Returns 0 if the hook is successful and permission is granted.
1299 */
1300int security_bprm_check(struct linux_binprm *bprm)
1301{
1302 return call_int_hook(bprm_check_security, bprm);
1303}
1304
1305/**
1306 * security_bprm_committing_creds() - Install creds for a process during exec()
1307 * @bprm: binary program information
1308 *
1309 * Prepare to install the new security attributes of a process being
1310 * transformed by an execve operation, based on the old credentials pointed to
1311 * by @current->cred and the information set in @bprm->cred by the
1312 * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This
1313 * hook is a good place to perform state changes on the process such as closing
1314 * open file descriptors to which access will no longer be granted when the
1315 * attributes are changed. This is called immediately before commit_creds().
1316 */
1317void security_bprm_committing_creds(const struct linux_binprm *bprm)
1318{
1319 call_void_hook(bprm_committing_creds, bprm);
1320}
1321
1322/**
1323 * security_bprm_committed_creds() - Tidy up after cred install during exec()
1324 * @bprm: binary program information
1325 *
1326 * Tidy up after the installation of the new security attributes of a process
1327 * being transformed by an execve operation. The new credentials have, by this
1328 * point, been set to @current->cred. @bprm points to the linux_binprm
1329 * structure. This hook is a good place to perform state changes on the
1330 * process such as clearing out non-inheritable signal state. This is called
1331 * immediately after commit_creds().
1332 */
1333void security_bprm_committed_creds(const struct linux_binprm *bprm)
1334{
1335 call_void_hook(bprm_committed_creds, bprm);
1336}
1337
1338/**
1339 * security_fs_context_submount() - Initialise fc->security
1340 * @fc: new filesystem context
1341 * @reference: dentry reference for submount/remount
1342 *
1343 * Fill out the ->security field for a new fs_context.
1344 *
1345 * Return: Returns 0 on success or negative error code on failure.
1346 */
1347int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1348{
1349 return call_int_hook(fs_context_submount, fc, reference);
1350}
1351
1352/**
1353 * security_fs_context_dup() - Duplicate a fs_context LSM blob
1354 * @fc: destination filesystem context
1355 * @src_fc: source filesystem context
1356 *
1357 * Allocate and attach a security structure to sc->security. This pointer is
1358 * initialised to NULL by the caller. @fc indicates the new filesystem context.
1359 * @src_fc indicates the original filesystem context.
1360 *
1361 * Return: Returns 0 on success or a negative error code on failure.
1362 */
1363int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1364{
1365 return call_int_hook(fs_context_dup, fc, src_fc);
1366}
1367
1368/**
1369 * security_fs_context_parse_param() - Configure a filesystem context
1370 * @fc: filesystem context
1371 * @param: filesystem parameter
1372 *
1373 * Userspace provided a parameter to configure a superblock. The LSM can
1374 * consume the parameter or return it to the caller for use elsewhere.
1375 *
1376 * Return: If the parameter is used by the LSM it should return 0, if it is
1377 * returned to the caller -ENOPARAM is returned, otherwise a negative
1378 * error code is returned.
1379 */
1380int security_fs_context_parse_param(struct fs_context *fc,
1381 struct fs_parameter *param)
1382{
1383 struct lsm_static_call *scall;
1384 int trc;
1385 int rc = -ENOPARAM;
1386
1387 lsm_for_each_hook(scall, fs_context_parse_param) {
1388 trc = scall->hl->hook.fs_context_parse_param(fc, param);
1389 if (trc == 0)
1390 rc = 0;
1391 else if (trc != -ENOPARAM)
1392 return trc;
1393 }
1394 return rc;
1395}
1396
1397/**
1398 * security_sb_alloc() - Allocate a super_block LSM blob
1399 * @sb: filesystem superblock
1400 *
1401 * Allocate and attach a security structure to the sb->s_security field. The
1402 * s_security field is initialized to NULL when the structure is allocated.
1403 * @sb contains the super_block structure to be modified.
1404 *
1405 * Return: Returns 0 if operation was successful.
1406 */
1407int security_sb_alloc(struct super_block *sb)
1408{
1409 int rc = lsm_superblock_alloc(sb);
1410
1411 if (unlikely(rc))
1412 return rc;
1413 rc = call_int_hook(sb_alloc_security, sb);
1414 if (unlikely(rc))
1415 security_sb_free(sb);
1416 return rc;
1417}
1418
1419/**
1420 * security_sb_delete() - Release super_block LSM associated objects
1421 * @sb: filesystem superblock
1422 *
1423 * Release objects tied to a superblock (e.g. inodes). @sb contains the
1424 * super_block structure being released.
1425 */
1426void security_sb_delete(struct super_block *sb)
1427{
1428 call_void_hook(sb_delete, sb);
1429}
1430
1431/**
1432 * security_sb_free() - Free a super_block LSM blob
1433 * @sb: filesystem superblock
1434 *
1435 * Deallocate and clear the sb->s_security field. @sb contains the super_block
1436 * structure to be modified.
1437 */
1438void security_sb_free(struct super_block *sb)
1439{
1440 call_void_hook(sb_free_security, sb);
1441 kfree(sb->s_security);
1442 sb->s_security = NULL;
1443}
1444
1445/**
1446 * security_free_mnt_opts() - Free memory associated with mount options
1447 * @mnt_opts: LSM processed mount options
1448 *
1449 * Free memory associated with @mnt_ops.
1450 */
1451void security_free_mnt_opts(void **mnt_opts)
1452{
1453 if (!*mnt_opts)
1454 return;
1455 call_void_hook(sb_free_mnt_opts, *mnt_opts);
1456 *mnt_opts = NULL;
1457}
1458EXPORT_SYMBOL(security_free_mnt_opts);
1459
1460/**
1461 * security_sb_eat_lsm_opts() - Consume LSM mount options
1462 * @options: mount options
1463 * @mnt_opts: LSM processed mount options
1464 *
1465 * Eat (scan @options) and save them in @mnt_opts.
1466 *
1467 * Return: Returns 0 on success, negative values on failure.
1468 */
1469int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1470{
1471 return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1472}
1473EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1474
1475/**
1476 * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1477 * @sb: filesystem superblock
1478 * @mnt_opts: new mount options
1479 *
1480 * Determine if the new mount options in @mnt_opts are allowed given the
1481 * existing mounted filesystem at @sb. @sb superblock being compared.
1482 *
1483 * Return: Returns 0 if options are compatible.
1484 */
1485int security_sb_mnt_opts_compat(struct super_block *sb,
1486 void *mnt_opts)
1487{
1488 return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1489}
1490EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1491
1492/**
1493 * security_sb_remount() - Verify no incompatible mount changes during remount
1494 * @sb: filesystem superblock
1495 * @mnt_opts: (re)mount options
1496 *
1497 * Extracts security system specific mount options and verifies no changes are
1498 * being made to those options.
1499 *
1500 * Return: Returns 0 if permission is granted.
1501 */
1502int security_sb_remount(struct super_block *sb,
1503 void *mnt_opts)
1504{
1505 return call_int_hook(sb_remount, sb, mnt_opts);
1506}
1507EXPORT_SYMBOL(security_sb_remount);
1508
1509/**
1510 * security_sb_kern_mount() - Check if a kernel mount is allowed
1511 * @sb: filesystem superblock
1512 *
1513 * Mount this @sb if allowed by permissions.
1514 *
1515 * Return: Returns 0 if permission is granted.
1516 */
1517int security_sb_kern_mount(const struct super_block *sb)
1518{
1519 return call_int_hook(sb_kern_mount, sb);
1520}
1521
1522/**
1523 * security_sb_show_options() - Output the mount options for a superblock
1524 * @m: output file
1525 * @sb: filesystem superblock
1526 *
1527 * Show (print on @m) mount options for this @sb.
1528 *
1529 * Return: Returns 0 on success, negative values on failure.
1530 */
1531int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1532{
1533 return call_int_hook(sb_show_options, m, sb);
1534}
1535
1536/**
1537 * security_sb_statfs() - Check if accessing fs stats is allowed
1538 * @dentry: superblock handle
1539 *
1540 * Check permission before obtaining filesystem statistics for the @mnt
1541 * mountpoint. @dentry is a handle on the superblock for the filesystem.
1542 *
1543 * Return: Returns 0 if permission is granted.
1544 */
1545int security_sb_statfs(struct dentry *dentry)
1546{
1547 return call_int_hook(sb_statfs, dentry);
1548}
1549
1550/**
1551 * security_sb_mount() - Check permission for mounting a filesystem
1552 * @dev_name: filesystem backing device
1553 * @path: mount point
1554 * @type: filesystem type
1555 * @flags: mount flags
1556 * @data: filesystem specific data
1557 *
1558 * Check permission before an object specified by @dev_name is mounted on the
1559 * mount point named by @nd. For an ordinary mount, @dev_name identifies a
1560 * device if the file system type requires a device. For a remount
1561 * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount
1562 * (@flags & MS_BIND), @dev_name identifies the pathname of the object being
1563 * mounted.
1564 *
1565 * Return: Returns 0 if permission is granted.
1566 */
1567int security_sb_mount(const char *dev_name, const struct path *path,
1568 const char *type, unsigned long flags, void *data)
1569{
1570 return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1571}
1572
1573/**
1574 * security_sb_umount() - Check permission for unmounting a filesystem
1575 * @mnt: mounted filesystem
1576 * @flags: unmount flags
1577 *
1578 * Check permission before the @mnt file system is unmounted.
1579 *
1580 * Return: Returns 0 if permission is granted.
1581 */
1582int security_sb_umount(struct vfsmount *mnt, int flags)
1583{
1584 return call_int_hook(sb_umount, mnt, flags);
1585}
1586
1587/**
1588 * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1589 * @old_path: new location for current rootfs
1590 * @new_path: location of the new rootfs
1591 *
1592 * Check permission before pivoting the root filesystem.
1593 *
1594 * Return: Returns 0 if permission is granted.
1595 */
1596int security_sb_pivotroot(const struct path *old_path,
1597 const struct path *new_path)
1598{
1599 return call_int_hook(sb_pivotroot, old_path, new_path);
1600}
1601
1602/**
1603 * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1604 * @sb: filesystem superblock
1605 * @mnt_opts: binary mount options
1606 * @kern_flags: kernel flags (in)
1607 * @set_kern_flags: kernel flags (out)
1608 *
1609 * Set the security relevant mount options used for a superblock.
1610 *
1611 * Return: Returns 0 on success, error on failure.
1612 */
1613int security_sb_set_mnt_opts(struct super_block *sb,
1614 void *mnt_opts,
1615 unsigned long kern_flags,
1616 unsigned long *set_kern_flags)
1617{
1618 struct lsm_static_call *scall;
1619 int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1620
1621 lsm_for_each_hook(scall, sb_set_mnt_opts) {
1622 rc = scall->hl->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1623 set_kern_flags);
1624 if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1625 break;
1626 }
1627 return rc;
1628}
1629EXPORT_SYMBOL(security_sb_set_mnt_opts);
1630
1631/**
1632 * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1633 * @oldsb: source superblock
1634 * @newsb: destination superblock
1635 * @kern_flags: kernel flags (in)
1636 * @set_kern_flags: kernel flags (out)
1637 *
1638 * Copy all security options from a given superblock to another.
1639 *
1640 * Return: Returns 0 on success, error on failure.
1641 */
1642int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1643 struct super_block *newsb,
1644 unsigned long kern_flags,
1645 unsigned long *set_kern_flags)
1646{
1647 return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1648 kern_flags, set_kern_flags);
1649}
1650EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1651
1652/**
1653 * security_move_mount() - Check permissions for moving a mount
1654 * @from_path: source mount point
1655 * @to_path: destination mount point
1656 *
1657 * Check permission before a mount is moved.
1658 *
1659 * Return: Returns 0 if permission is granted.
1660 */
1661int security_move_mount(const struct path *from_path,
1662 const struct path *to_path)
1663{
1664 return call_int_hook(move_mount, from_path, to_path);
1665}
1666
1667/**
1668 * security_path_notify() - Check if setting a watch is allowed
1669 * @path: file path
1670 * @mask: event mask
1671 * @obj_type: file path type
1672 *
1673 * Check permissions before setting a watch on events as defined by @mask, on
1674 * an object at @path, whose type is defined by @obj_type.
1675 *
1676 * Return: Returns 0 if permission is granted.
1677 */
1678int security_path_notify(const struct path *path, u64 mask,
1679 unsigned int obj_type)
1680{
1681 return call_int_hook(path_notify, path, mask, obj_type);
1682}
1683
1684/**
1685 * security_inode_alloc() - Allocate an inode LSM blob
1686 * @inode: the inode
1687 * @gfp: allocation flags
1688 *
1689 * Allocate and attach a security structure to @inode->i_security. The
1690 * i_security field is initialized to NULL when the inode structure is
1691 * allocated.
1692 *
1693 * Return: Return 0 if operation was successful.
1694 */
1695int security_inode_alloc(struct inode *inode, gfp_t gfp)
1696{
1697 int rc = lsm_inode_alloc(inode, gfp);
1698
1699 if (unlikely(rc))
1700 return rc;
1701 rc = call_int_hook(inode_alloc_security, inode);
1702 if (unlikely(rc))
1703 security_inode_free(inode);
1704 return rc;
1705}
1706
1707static void inode_free_by_rcu(struct rcu_head *head)
1708{
1709 /* The rcu head is at the start of the inode blob */
1710 call_void_hook(inode_free_security_rcu, head);
1711 kmem_cache_free(lsm_inode_cache, head);
1712}
1713
1714/**
1715 * security_inode_free() - Free an inode's LSM blob
1716 * @inode: the inode
1717 *
1718 * Release any LSM resources associated with @inode, although due to the
1719 * inode's RCU protections it is possible that the resources will not be
1720 * fully released until after the current RCU grace period has elapsed.
1721 *
1722 * It is important for LSMs to note that despite being present in a call to
1723 * security_inode_free(), @inode may still be referenced in a VFS path walk
1724 * and calls to security_inode_permission() may be made during, or after,
1725 * a call to security_inode_free(). For this reason the inode->i_security
1726 * field is released via a call_rcu() callback and any LSMs which need to
1727 * retain inode state for use in security_inode_permission() should only
1728 * release that state in the inode_free_security_rcu() LSM hook callback.
1729 */
1730void security_inode_free(struct inode *inode)
1731{
1732 call_void_hook(inode_free_security, inode);
1733 if (!inode->i_security)
1734 return;
1735 call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu);
1736}
1737
1738/**
1739 * security_dentry_init_security() - Perform dentry initialization
1740 * @dentry: the dentry to initialize
1741 * @mode: mode used to determine resource type
1742 * @name: name of the last path component
1743 * @xattr_name: name of the security/LSM xattr
1744 * @lsmctx: pointer to the resulting LSM context
1745 *
1746 * Compute a context for a dentry as the inode is not yet available since NFSv4
1747 * has no label backed by an EA anyway. It is important to note that
1748 * @xattr_name does not need to be free'd by the caller, it is a static string.
1749 *
1750 * Return: Returns 0 on success, negative values on failure.
1751 */
1752int security_dentry_init_security(struct dentry *dentry, int mode,
1753 const struct qstr *name,
1754 const char **xattr_name,
1755 struct lsm_context *lsmctx)
1756{
1757 return call_int_hook(dentry_init_security, dentry, mode, name,
1758 xattr_name, lsmctx);
1759}
1760EXPORT_SYMBOL(security_dentry_init_security);
1761
1762/**
1763 * security_dentry_create_files_as() - Perform dentry initialization
1764 * @dentry: the dentry to initialize
1765 * @mode: mode used to determine resource type
1766 * @name: name of the last path component
1767 * @old: creds to use for LSM context calculations
1768 * @new: creds to modify
1769 *
1770 * Compute a context for a dentry as the inode is not yet available and set
1771 * that context in passed in creds so that new files are created using that
1772 * context. Context is calculated using the passed in creds and not the creds
1773 * of the caller.
1774 *
1775 * Return: Returns 0 on success, error on failure.
1776 */
1777int security_dentry_create_files_as(struct dentry *dentry, int mode,
1778 struct qstr *name,
1779 const struct cred *old, struct cred *new)
1780{
1781 return call_int_hook(dentry_create_files_as, dentry, mode,
1782 name, old, new);
1783}
1784EXPORT_SYMBOL(security_dentry_create_files_as);
1785
1786/**
1787 * security_inode_init_security() - Initialize an inode's LSM context
1788 * @inode: the inode
1789 * @dir: parent directory
1790 * @qstr: last component of the pathname
1791 * @initxattrs: callback function to write xattrs
1792 * @fs_data: filesystem specific data
1793 *
1794 * Obtain the security attribute name suffix and value to set on a newly
1795 * created inode and set up the incore security field for the new inode. This
1796 * hook is called by the fs code as part of the inode creation transaction and
1797 * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1798 * hooks called by the VFS.
1799 *
1800 * The hook function is expected to populate the xattrs array, by calling
1801 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1802 * with the lbs_xattr_count field of the lsm_blob_sizes structure. For each
1803 * slot, the hook function should set ->name to the attribute name suffix
1804 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1805 * to the attribute value, to set ->value_len to the length of the value. If
1806 * the security module does not use security attributes or does not wish to put
1807 * a security attribute on this particular inode, then it should return
1808 * -EOPNOTSUPP to skip this processing.
1809 *
1810 * Return: Returns 0 if the LSM successfully initialized all of the inode
1811 * security attributes that are required, negative values otherwise.
1812 */
1813int security_inode_init_security(struct inode *inode, struct inode *dir,
1814 const struct qstr *qstr,
1815 const initxattrs initxattrs, void *fs_data)
1816{
1817 struct lsm_static_call *scall;
1818 struct xattr *new_xattrs = NULL;
1819 int ret = -EOPNOTSUPP, xattr_count = 0;
1820
1821 if (unlikely(IS_PRIVATE(inode)))
1822 return 0;
1823
1824 if (!blob_sizes.lbs_xattr_count)
1825 return 0;
1826
1827 if (initxattrs) {
1828 /* Allocate +1 as terminator. */
1829 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1830 sizeof(*new_xattrs), GFP_NOFS);
1831 if (!new_xattrs)
1832 return -ENOMEM;
1833 }
1834
1835 lsm_for_each_hook(scall, inode_init_security) {
1836 ret = scall->hl->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1837 &xattr_count);
1838 if (ret && ret != -EOPNOTSUPP)
1839 goto out;
1840 /*
1841 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1842 * means that the LSM is not willing to provide an xattr, not
1843 * that it wants to signal an error. Thus, continue to invoke
1844 * the remaining LSMs.
1845 */
1846 }
1847
1848 /* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1849 if (!xattr_count)
1850 goto out;
1851
1852 ret = initxattrs(inode, new_xattrs, fs_data);
1853out:
1854 for (; xattr_count > 0; xattr_count--)
1855 kfree(new_xattrs[xattr_count - 1].value);
1856 kfree(new_xattrs);
1857 return (ret == -EOPNOTSUPP) ? 0 : ret;
1858}
1859EXPORT_SYMBOL(security_inode_init_security);
1860
1861/**
1862 * security_inode_init_security_anon() - Initialize an anonymous inode
1863 * @inode: the inode
1864 * @name: the anonymous inode class
1865 * @context_inode: an optional related inode
1866 *
1867 * Set up the incore security field for the new anonymous inode and return
1868 * whether the inode creation is permitted by the security module or not.
1869 *
1870 * Return: Returns 0 on success, -EACCES if the security module denies the
1871 * creation of this inode, or another -errno upon other errors.
1872 */
1873int security_inode_init_security_anon(struct inode *inode,
1874 const struct qstr *name,
1875 const struct inode *context_inode)
1876{
1877 return call_int_hook(inode_init_security_anon, inode, name,
1878 context_inode);
1879}
1880
1881#ifdef CONFIG_SECURITY_PATH
1882/**
1883 * security_path_mknod() - Check if creating a special file is allowed
1884 * @dir: parent directory
1885 * @dentry: new file
1886 * @mode: new file mode
1887 * @dev: device number
1888 *
1889 * Check permissions when creating a file. Note that this hook is called even
1890 * if mknod operation is being done for a regular file.
1891 *
1892 * Return: Returns 0 if permission is granted.
1893 */
1894int security_path_mknod(const struct path *dir, struct dentry *dentry,
1895 umode_t mode, unsigned int dev)
1896{
1897 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1898 return 0;
1899 return call_int_hook(path_mknod, dir, dentry, mode, dev);
1900}
1901EXPORT_SYMBOL(security_path_mknod);
1902
1903/**
1904 * security_path_post_mknod() - Update inode security after reg file creation
1905 * @idmap: idmap of the mount
1906 * @dentry: new file
1907 *
1908 * Update inode security field after a regular file has been created.
1909 */
1910void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1911{
1912 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1913 return;
1914 call_void_hook(path_post_mknod, idmap, dentry);
1915}
1916
1917/**
1918 * security_path_mkdir() - Check if creating a new directory is allowed
1919 * @dir: parent directory
1920 * @dentry: new directory
1921 * @mode: new directory mode
1922 *
1923 * Check permissions to create a new directory in the existing directory.
1924 *
1925 * Return: Returns 0 if permission is granted.
1926 */
1927int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1928 umode_t mode)
1929{
1930 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1931 return 0;
1932 return call_int_hook(path_mkdir, dir, dentry, mode);
1933}
1934EXPORT_SYMBOL(security_path_mkdir);
1935
1936/**
1937 * security_path_rmdir() - Check if removing a directory is allowed
1938 * @dir: parent directory
1939 * @dentry: directory to remove
1940 *
1941 * Check the permission to remove a directory.
1942 *
1943 * Return: Returns 0 if permission is granted.
1944 */
1945int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1946{
1947 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1948 return 0;
1949 return call_int_hook(path_rmdir, dir, dentry);
1950}
1951
1952/**
1953 * security_path_unlink() - Check if removing a hard link is allowed
1954 * @dir: parent directory
1955 * @dentry: file
1956 *
1957 * Check the permission to remove a hard link to a file.
1958 *
1959 * Return: Returns 0 if permission is granted.
1960 */
1961int security_path_unlink(const struct path *dir, struct dentry *dentry)
1962{
1963 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1964 return 0;
1965 return call_int_hook(path_unlink, dir, dentry);
1966}
1967EXPORT_SYMBOL(security_path_unlink);
1968
1969/**
1970 * security_path_symlink() - Check if creating a symbolic link is allowed
1971 * @dir: parent directory
1972 * @dentry: symbolic link
1973 * @old_name: file pathname
1974 *
1975 * Check the permission to create a symbolic link to a file.
1976 *
1977 * Return: Returns 0 if permission is granted.
1978 */
1979int security_path_symlink(const struct path *dir, struct dentry *dentry,
1980 const char *old_name)
1981{
1982 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1983 return 0;
1984 return call_int_hook(path_symlink, dir, dentry, old_name);
1985}
1986
1987/**
1988 * security_path_link - Check if creating a hard link is allowed
1989 * @old_dentry: existing file
1990 * @new_dir: new parent directory
1991 * @new_dentry: new link
1992 *
1993 * Check permission before creating a new hard link to a file.
1994 *
1995 * Return: Returns 0 if permission is granted.
1996 */
1997int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1998 struct dentry *new_dentry)
1999{
2000 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2001 return 0;
2002 return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
2003}
2004
2005/**
2006 * security_path_rename() - Check if renaming a file is allowed
2007 * @old_dir: parent directory of the old file
2008 * @old_dentry: the old file
2009 * @new_dir: parent directory of the new file
2010 * @new_dentry: the new file
2011 * @flags: flags
2012 *
2013 * Check for permission to rename a file or directory.
2014 *
2015 * Return: Returns 0 if permission is granted.
2016 */
2017int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
2018 const struct path *new_dir, struct dentry *new_dentry,
2019 unsigned int flags)
2020{
2021 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2022 (d_is_positive(new_dentry) &&
2023 IS_PRIVATE(d_backing_inode(new_dentry)))))
2024 return 0;
2025
2026 return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
2027 new_dentry, flags);
2028}
2029EXPORT_SYMBOL(security_path_rename);
2030
2031/**
2032 * security_path_truncate() - Check if truncating a file is allowed
2033 * @path: file
2034 *
2035 * Check permission before truncating the file indicated by path. Note that
2036 * truncation permissions may also be checked based on already opened files,
2037 * using the security_file_truncate() hook.
2038 *
2039 * Return: Returns 0 if permission is granted.
2040 */
2041int security_path_truncate(const struct path *path)
2042{
2043 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2044 return 0;
2045 return call_int_hook(path_truncate, path);
2046}
2047
2048/**
2049 * security_path_chmod() - Check if changing the file's mode is allowed
2050 * @path: file
2051 * @mode: new mode
2052 *
2053 * Check for permission to change a mode of the file @path. The new mode is
2054 * specified in @mode which is a bitmask of constants from
2055 * <include/uapi/linux/stat.h>.
2056 *
2057 * Return: Returns 0 if permission is granted.
2058 */
2059int security_path_chmod(const struct path *path, umode_t mode)
2060{
2061 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2062 return 0;
2063 return call_int_hook(path_chmod, path, mode);
2064}
2065
2066/**
2067 * security_path_chown() - Check if changing the file's owner/group is allowed
2068 * @path: file
2069 * @uid: file owner
2070 * @gid: file group
2071 *
2072 * Check for permission to change owner/group of a file or directory.
2073 *
2074 * Return: Returns 0 if permission is granted.
2075 */
2076int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
2077{
2078 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2079 return 0;
2080 return call_int_hook(path_chown, path, uid, gid);
2081}
2082
2083/**
2084 * security_path_chroot() - Check if changing the root directory is allowed
2085 * @path: directory
2086 *
2087 * Check for permission to change root directory.
2088 *
2089 * Return: Returns 0 if permission is granted.
2090 */
2091int security_path_chroot(const struct path *path)
2092{
2093 return call_int_hook(path_chroot, path);
2094}
2095#endif /* CONFIG_SECURITY_PATH */
2096
2097/**
2098 * security_inode_create() - Check if creating a file is allowed
2099 * @dir: the parent directory
2100 * @dentry: the file being created
2101 * @mode: requested file mode
2102 *
2103 * Check permission to create a regular file.
2104 *
2105 * Return: Returns 0 if permission is granted.
2106 */
2107int security_inode_create(struct inode *dir, struct dentry *dentry,
2108 umode_t mode)
2109{
2110 if (unlikely(IS_PRIVATE(dir)))
2111 return 0;
2112 return call_int_hook(inode_create, dir, dentry, mode);
2113}
2114EXPORT_SYMBOL_GPL(security_inode_create);
2115
2116/**
2117 * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2118 * @idmap: idmap of the mount
2119 * @inode: inode of the new tmpfile
2120 *
2121 * Update inode security data after a tmpfile has been created.
2122 */
2123void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2124 struct inode *inode)
2125{
2126 if (unlikely(IS_PRIVATE(inode)))
2127 return;
2128 call_void_hook(inode_post_create_tmpfile, idmap, inode);
2129}
2130
2131/**
2132 * security_inode_link() - Check if creating a hard link is allowed
2133 * @old_dentry: existing file
2134 * @dir: new parent directory
2135 * @new_dentry: new link
2136 *
2137 * Check permission before creating a new hard link to a file.
2138 *
2139 * Return: Returns 0 if permission is granted.
2140 */
2141int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2142 struct dentry *new_dentry)
2143{
2144 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2145 return 0;
2146 return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2147}
2148
2149/**
2150 * security_inode_unlink() - Check if removing a hard link is allowed
2151 * @dir: parent directory
2152 * @dentry: file
2153 *
2154 * Check the permission to remove a hard link to a file.
2155 *
2156 * Return: Returns 0 if permission is granted.
2157 */
2158int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2159{
2160 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2161 return 0;
2162 return call_int_hook(inode_unlink, dir, dentry);
2163}
2164
2165/**
2166 * security_inode_symlink() - Check if creating a symbolic link is allowed
2167 * @dir: parent directory
2168 * @dentry: symbolic link
2169 * @old_name: existing filename
2170 *
2171 * Check the permission to create a symbolic link to a file.
2172 *
2173 * Return: Returns 0 if permission is granted.
2174 */
2175int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2176 const char *old_name)
2177{
2178 if (unlikely(IS_PRIVATE(dir)))
2179 return 0;
2180 return call_int_hook(inode_symlink, dir, dentry, old_name);
2181}
2182
2183/**
2184 * security_inode_mkdir() - Check if creation a new director is allowed
2185 * @dir: parent directory
2186 * @dentry: new directory
2187 * @mode: new directory mode
2188 *
2189 * Check permissions to create a new directory in the existing directory
2190 * associated with inode structure @dir.
2191 *
2192 * Return: Returns 0 if permission is granted.
2193 */
2194int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2195{
2196 if (unlikely(IS_PRIVATE(dir)))
2197 return 0;
2198 return call_int_hook(inode_mkdir, dir, dentry, mode);
2199}
2200EXPORT_SYMBOL_GPL(security_inode_mkdir);
2201
2202/**
2203 * security_inode_rmdir() - Check if removing a directory is allowed
2204 * @dir: parent directory
2205 * @dentry: directory to be removed
2206 *
2207 * Check the permission to remove a directory.
2208 *
2209 * Return: Returns 0 if permission is granted.
2210 */
2211int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2212{
2213 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2214 return 0;
2215 return call_int_hook(inode_rmdir, dir, dentry);
2216}
2217
2218/**
2219 * security_inode_mknod() - Check if creating a special file is allowed
2220 * @dir: parent directory
2221 * @dentry: new file
2222 * @mode: new file mode
2223 * @dev: device number
2224 *
2225 * Check permissions when creating a special file (or a socket or a fifo file
2226 * created via the mknod system call). Note that if mknod operation is being
2227 * done for a regular file, then the create hook will be called and not this
2228 * hook.
2229 *
2230 * Return: Returns 0 if permission is granted.
2231 */
2232int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2233 umode_t mode, dev_t dev)
2234{
2235 if (unlikely(IS_PRIVATE(dir)))
2236 return 0;
2237 return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2238}
2239
2240/**
2241 * security_inode_rename() - Check if renaming a file is allowed
2242 * @old_dir: parent directory of the old file
2243 * @old_dentry: the old file
2244 * @new_dir: parent directory of the new file
2245 * @new_dentry: the new file
2246 * @flags: flags
2247 *
2248 * Check for permission to rename a file or directory.
2249 *
2250 * Return: Returns 0 if permission is granted.
2251 */
2252int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2253 struct inode *new_dir, struct dentry *new_dentry,
2254 unsigned int flags)
2255{
2256 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2257 (d_is_positive(new_dentry) &&
2258 IS_PRIVATE(d_backing_inode(new_dentry)))))
2259 return 0;
2260
2261 if (flags & RENAME_EXCHANGE) {
2262 int err = call_int_hook(inode_rename, new_dir, new_dentry,
2263 old_dir, old_dentry);
2264 if (err)
2265 return err;
2266 }
2267
2268 return call_int_hook(inode_rename, old_dir, old_dentry,
2269 new_dir, new_dentry);
2270}
2271
2272/**
2273 * security_inode_readlink() - Check if reading a symbolic link is allowed
2274 * @dentry: link
2275 *
2276 * Check the permission to read the symbolic link.
2277 *
2278 * Return: Returns 0 if permission is granted.
2279 */
2280int security_inode_readlink(struct dentry *dentry)
2281{
2282 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2283 return 0;
2284 return call_int_hook(inode_readlink, dentry);
2285}
2286
2287/**
2288 * security_inode_follow_link() - Check if following a symbolic link is allowed
2289 * @dentry: link dentry
2290 * @inode: link inode
2291 * @rcu: true if in RCU-walk mode
2292 *
2293 * Check permission to follow a symbolic link when looking up a pathname. If
2294 * @rcu is true, @inode is not stable.
2295 *
2296 * Return: Returns 0 if permission is granted.
2297 */
2298int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2299 bool rcu)
2300{
2301 if (unlikely(IS_PRIVATE(inode)))
2302 return 0;
2303 return call_int_hook(inode_follow_link, dentry, inode, rcu);
2304}
2305
2306/**
2307 * security_inode_permission() - Check if accessing an inode is allowed
2308 * @inode: inode
2309 * @mask: access mask
2310 *
2311 * Check permission before accessing an inode. This hook is called by the
2312 * existing Linux permission function, so a security module can use it to
2313 * provide additional checking for existing Linux permission checks. Notice
2314 * that this hook is called when a file is opened (as well as many other
2315 * operations), whereas the file_security_ops permission hook is called when
2316 * the actual read/write operations are performed.
2317 *
2318 * Return: Returns 0 if permission is granted.
2319 */
2320int security_inode_permission(struct inode *inode, int mask)
2321{
2322 if (unlikely(IS_PRIVATE(inode)))
2323 return 0;
2324 return call_int_hook(inode_permission, inode, mask);
2325}
2326
2327/**
2328 * security_inode_setattr() - Check if setting file attributes is allowed
2329 * @idmap: idmap of the mount
2330 * @dentry: file
2331 * @attr: new attributes
2332 *
2333 * Check permission before setting file attributes. Note that the kernel call
2334 * to notify_change is performed from several locations, whenever file
2335 * attributes change (such as when a file is truncated, chown/chmod operations,
2336 * transferring disk quotas, etc).
2337 *
2338 * Return: Returns 0 if permission is granted.
2339 */
2340int security_inode_setattr(struct mnt_idmap *idmap,
2341 struct dentry *dentry, struct iattr *attr)
2342{
2343 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2344 return 0;
2345 return call_int_hook(inode_setattr, idmap, dentry, attr);
2346}
2347EXPORT_SYMBOL_GPL(security_inode_setattr);
2348
2349/**
2350 * security_inode_post_setattr() - Update the inode after a setattr operation
2351 * @idmap: idmap of the mount
2352 * @dentry: file
2353 * @ia_valid: file attributes set
2354 *
2355 * Update inode security field after successful setting file attributes.
2356 */
2357void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2358 int ia_valid)
2359{
2360 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2361 return;
2362 call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2363}
2364
2365/**
2366 * security_inode_getattr() - Check if getting file attributes is allowed
2367 * @path: file
2368 *
2369 * Check permission before obtaining file attributes.
2370 *
2371 * Return: Returns 0 if permission is granted.
2372 */
2373int security_inode_getattr(const struct path *path)
2374{
2375 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2376 return 0;
2377 return call_int_hook(inode_getattr, path);
2378}
2379
2380/**
2381 * security_inode_setxattr() - Check if setting file xattrs is allowed
2382 * @idmap: idmap of the mount
2383 * @dentry: file
2384 * @name: xattr name
2385 * @value: xattr value
2386 * @size: size of xattr value
2387 * @flags: flags
2388 *
2389 * This hook performs the desired permission checks before setting the extended
2390 * attributes (xattrs) on @dentry. It is important to note that we have some
2391 * additional logic before the main LSM implementation calls to detect if we
2392 * need to perform an additional capability check at the LSM layer.
2393 *
2394 * Normally we enforce a capability check prior to executing the various LSM
2395 * hook implementations, but if a LSM wants to avoid this capability check,
2396 * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2397 * xattrs that it wants to avoid the capability check, leaving the LSM fully
2398 * responsible for enforcing the access control for the specific xattr. If all
2399 * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2400 * or return a 0 (the default return value), the capability check is still
2401 * performed. If no 'inode_xattr_skipcap' hooks are registered the capability
2402 * check is performed.
2403 *
2404 * Return: Returns 0 if permission is granted.
2405 */
2406int security_inode_setxattr(struct mnt_idmap *idmap,
2407 struct dentry *dentry, const char *name,
2408 const void *value, size_t size, int flags)
2409{
2410 int rc;
2411
2412 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2413 return 0;
2414
2415 /* enforce the capability checks at the lsm layer, if needed */
2416 if (!call_int_hook(inode_xattr_skipcap, name)) {
2417 rc = cap_inode_setxattr(dentry, name, value, size, flags);
2418 if (rc)
2419 return rc;
2420 }
2421
2422 return call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2423 flags);
2424}
2425
2426/**
2427 * security_inode_set_acl() - Check if setting posix acls is allowed
2428 * @idmap: idmap of the mount
2429 * @dentry: file
2430 * @acl_name: acl name
2431 * @kacl: acl struct
2432 *
2433 * Check permission before setting posix acls, the posix acls in @kacl are
2434 * identified by @acl_name.
2435 *
2436 * Return: Returns 0 if permission is granted.
2437 */
2438int security_inode_set_acl(struct mnt_idmap *idmap,
2439 struct dentry *dentry, const char *acl_name,
2440 struct posix_acl *kacl)
2441{
2442 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2443 return 0;
2444 return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2445}
2446
2447/**
2448 * security_inode_post_set_acl() - Update inode security from posix acls set
2449 * @dentry: file
2450 * @acl_name: acl name
2451 * @kacl: acl struct
2452 *
2453 * Update inode security data after successfully setting posix acls on @dentry.
2454 * The posix acls in @kacl are identified by @acl_name.
2455 */
2456void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2457 struct posix_acl *kacl)
2458{
2459 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2460 return;
2461 call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
2462}
2463
2464/**
2465 * security_inode_get_acl() - Check if reading posix acls is allowed
2466 * @idmap: idmap of the mount
2467 * @dentry: file
2468 * @acl_name: acl name
2469 *
2470 * Check permission before getting osix acls, the posix acls are identified by
2471 * @acl_name.
2472 *
2473 * Return: Returns 0 if permission is granted.
2474 */
2475int security_inode_get_acl(struct mnt_idmap *idmap,
2476 struct dentry *dentry, const char *acl_name)
2477{
2478 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2479 return 0;
2480 return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2481}
2482
2483/**
2484 * security_inode_remove_acl() - Check if removing a posix acl is allowed
2485 * @idmap: idmap of the mount
2486 * @dentry: file
2487 * @acl_name: acl name
2488 *
2489 * Check permission before removing posix acls, the posix acls are identified
2490 * by @acl_name.
2491 *
2492 * Return: Returns 0 if permission is granted.
2493 */
2494int security_inode_remove_acl(struct mnt_idmap *idmap,
2495 struct dentry *dentry, const char *acl_name)
2496{
2497 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2498 return 0;
2499 return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2500}
2501
2502/**
2503 * security_inode_post_remove_acl() - Update inode security after rm posix acls
2504 * @idmap: idmap of the mount
2505 * @dentry: file
2506 * @acl_name: acl name
2507 *
2508 * Update inode security data after successfully removing posix acls on
2509 * @dentry in @idmap. The posix acls are identified by @acl_name.
2510 */
2511void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2512 struct dentry *dentry, const char *acl_name)
2513{
2514 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2515 return;
2516 call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2517}
2518
2519/**
2520 * security_inode_post_setxattr() - Update the inode after a setxattr operation
2521 * @dentry: file
2522 * @name: xattr name
2523 * @value: xattr value
2524 * @size: xattr value size
2525 * @flags: flags
2526 *
2527 * Update inode security field after successful setxattr operation.
2528 */
2529void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2530 const void *value, size_t size, int flags)
2531{
2532 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2533 return;
2534 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2535}
2536
2537/**
2538 * security_inode_getxattr() - Check if xattr access is allowed
2539 * @dentry: file
2540 * @name: xattr name
2541 *
2542 * Check permission before obtaining the extended attributes identified by
2543 * @name for @dentry.
2544 *
2545 * Return: Returns 0 if permission is granted.
2546 */
2547int security_inode_getxattr(struct dentry *dentry, const char *name)
2548{
2549 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2550 return 0;
2551 return call_int_hook(inode_getxattr, dentry, name);
2552}
2553
2554/**
2555 * security_inode_listxattr() - Check if listing xattrs is allowed
2556 * @dentry: file
2557 *
2558 * Check permission before obtaining the list of extended attribute names for
2559 * @dentry.
2560 *
2561 * Return: Returns 0 if permission is granted.
2562 */
2563int security_inode_listxattr(struct dentry *dentry)
2564{
2565 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2566 return 0;
2567 return call_int_hook(inode_listxattr, dentry);
2568}
2569
2570/**
2571 * security_inode_removexattr() - Check if removing an xattr is allowed
2572 * @idmap: idmap of the mount
2573 * @dentry: file
2574 * @name: xattr name
2575 *
2576 * This hook performs the desired permission checks before setting the extended
2577 * attributes (xattrs) on @dentry. It is important to note that we have some
2578 * additional logic before the main LSM implementation calls to detect if we
2579 * need to perform an additional capability check at the LSM layer.
2580 *
2581 * Normally we enforce a capability check prior to executing the various LSM
2582 * hook implementations, but if a LSM wants to avoid this capability check,
2583 * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2584 * xattrs that it wants to avoid the capability check, leaving the LSM fully
2585 * responsible for enforcing the access control for the specific xattr. If all
2586 * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2587 * or return a 0 (the default return value), the capability check is still
2588 * performed. If no 'inode_xattr_skipcap' hooks are registered the capability
2589 * check is performed.
2590 *
2591 * Return: Returns 0 if permission is granted.
2592 */
2593int security_inode_removexattr(struct mnt_idmap *idmap,
2594 struct dentry *dentry, const char *name)
2595{
2596 int rc;
2597
2598 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2599 return 0;
2600
2601 /* enforce the capability checks at the lsm layer, if needed */
2602 if (!call_int_hook(inode_xattr_skipcap, name)) {
2603 rc = cap_inode_removexattr(idmap, dentry, name);
2604 if (rc)
2605 return rc;
2606 }
2607
2608 return call_int_hook(inode_removexattr, idmap, dentry, name);
2609}
2610
2611/**
2612 * security_inode_post_removexattr() - Update the inode after a removexattr op
2613 * @dentry: file
2614 * @name: xattr name
2615 *
2616 * Update the inode after a successful removexattr operation.
2617 */
2618void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2619{
2620 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2621 return;
2622 call_void_hook(inode_post_removexattr, dentry, name);
2623}
2624
2625/**
2626 * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2627 * @dentry: associated dentry
2628 *
2629 * Called when an inode has been changed to determine if
2630 * security_inode_killpriv() should be called.
2631 *
2632 * Return: Return <0 on error to abort the inode change operation, return 0 if
2633 * security_inode_killpriv() does not need to be called, return >0 if
2634 * security_inode_killpriv() does need to be called.
2635 */
2636int security_inode_need_killpriv(struct dentry *dentry)
2637{
2638 return call_int_hook(inode_need_killpriv, dentry);
2639}
2640
2641/**
2642 * security_inode_killpriv() - The setuid bit is removed, update LSM state
2643 * @idmap: idmap of the mount
2644 * @dentry: associated dentry
2645 *
2646 * The @dentry's setuid bit is being removed. Remove similar security labels.
2647 * Called with the dentry->d_inode->i_mutex held.
2648 *
2649 * Return: Return 0 on success. If error is returned, then the operation
2650 * causing setuid bit removal is failed.
2651 */
2652int security_inode_killpriv(struct mnt_idmap *idmap,
2653 struct dentry *dentry)
2654{
2655 return call_int_hook(inode_killpriv, idmap, dentry);
2656}
2657
2658/**
2659 * security_inode_getsecurity() - Get the xattr security label of an inode
2660 * @idmap: idmap of the mount
2661 * @inode: inode
2662 * @name: xattr name
2663 * @buffer: security label buffer
2664 * @alloc: allocation flag
2665 *
2666 * Retrieve a copy of the extended attribute representation of the security
2667 * label associated with @name for @inode via @buffer. Note that @name is the
2668 * remainder of the attribute name after the security prefix has been removed.
2669 * @alloc is used to specify if the call should return a value via the buffer
2670 * or just the value length.
2671 *
2672 * Return: Returns size of buffer on success.
2673 */
2674int security_inode_getsecurity(struct mnt_idmap *idmap,
2675 struct inode *inode, const char *name,
2676 void **buffer, bool alloc)
2677{
2678 if (unlikely(IS_PRIVATE(inode)))
2679 return LSM_RET_DEFAULT(inode_getsecurity);
2680
2681 return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2682 alloc);
2683}
2684
2685/**
2686 * security_inode_setsecurity() - Set the xattr security label of an inode
2687 * @inode: inode
2688 * @name: xattr name
2689 * @value: security label
2690 * @size: length of security label
2691 * @flags: flags
2692 *
2693 * Set the security label associated with @name for @inode from the extended
2694 * attribute value @value. @size indicates the size of the @value in bytes.
2695 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2696 * remainder of the attribute name after the security. prefix has been removed.
2697 *
2698 * Return: Returns 0 on success.
2699 */
2700int security_inode_setsecurity(struct inode *inode, const char *name,
2701 const void *value, size_t size, int flags)
2702{
2703 if (unlikely(IS_PRIVATE(inode)))
2704 return LSM_RET_DEFAULT(inode_setsecurity);
2705
2706 return call_int_hook(inode_setsecurity, inode, name, value, size,
2707 flags);
2708}
2709
2710/**
2711 * security_inode_listsecurity() - List the xattr security label names
2712 * @inode: inode
2713 * @buffer: buffer
2714 * @buffer_size: size of buffer
2715 *
2716 * Copy the extended attribute names for the security labels associated with
2717 * @inode into @buffer. The maximum size of @buffer is specified by
2718 * @buffer_size. @buffer may be NULL to request the size of the buffer
2719 * required.
2720 *
2721 * Return: Returns number of bytes used/required on success.
2722 */
2723int security_inode_listsecurity(struct inode *inode,
2724 char *buffer, size_t buffer_size)
2725{
2726 if (unlikely(IS_PRIVATE(inode)))
2727 return 0;
2728 return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2729}
2730EXPORT_SYMBOL(security_inode_listsecurity);
2731
2732/**
2733 * security_inode_getlsmprop() - Get an inode's LSM data
2734 * @inode: inode
2735 * @prop: lsm specific information to return
2736 *
2737 * Get the lsm specific information associated with the node.
2738 */
2739void security_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
2740{
2741 call_void_hook(inode_getlsmprop, inode, prop);
2742}
2743
2744/**
2745 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2746 * @src: union dentry of copy-up file
2747 * @new: newly created creds
2748 *
2749 * A file is about to be copied up from lower layer to upper layer of overlay
2750 * filesystem. Security module can prepare a set of new creds and modify as
2751 * need be and return new creds. Caller will switch to new creds temporarily to
2752 * create new file and release newly allocated creds.
2753 *
2754 * Return: Returns 0 on success or a negative error code on error.
2755 */
2756int security_inode_copy_up(struct dentry *src, struct cred **new)
2757{
2758 return call_int_hook(inode_copy_up, src, new);
2759}
2760EXPORT_SYMBOL(security_inode_copy_up);
2761
2762/**
2763 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2764 * @src: union dentry of copy-up file
2765 * @name: xattr name
2766 *
2767 * Filter the xattrs being copied up when a unioned file is copied up from a
2768 * lower layer to the union/overlay layer. The caller is responsible for
2769 * reading and writing the xattrs, this hook is merely a filter.
2770 *
2771 * Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr,
2772 * -EOPNOTSUPP if the security module does not know about attribute,
2773 * or a negative error code to abort the copy up.
2774 */
2775int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2776{
2777 int rc;
2778
2779 rc = call_int_hook(inode_copy_up_xattr, src, name);
2780 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2781 return rc;
2782
2783 return LSM_RET_DEFAULT(inode_copy_up_xattr);
2784}
2785EXPORT_SYMBOL(security_inode_copy_up_xattr);
2786
2787/**
2788 * security_inode_setintegrity() - Set the inode's integrity data
2789 * @inode: inode
2790 * @type: type of integrity, e.g. hash digest, signature, etc
2791 * @value: the integrity value
2792 * @size: size of the integrity value
2793 *
2794 * Register a verified integrity measurement of a inode with LSMs.
2795 * LSMs should free the previously saved data if @value is NULL.
2796 *
2797 * Return: Returns 0 on success, negative values on failure.
2798 */
2799int security_inode_setintegrity(const struct inode *inode,
2800 enum lsm_integrity_type type, const void *value,
2801 size_t size)
2802{
2803 return call_int_hook(inode_setintegrity, inode, type, value, size);
2804}
2805EXPORT_SYMBOL(security_inode_setintegrity);
2806
2807/**
2808 * security_kernfs_init_security() - Init LSM context for a kernfs node
2809 * @kn_dir: parent kernfs node
2810 * @kn: the kernfs node to initialize
2811 *
2812 * Initialize the security context of a newly created kernfs node based on its
2813 * own and its parent's attributes.
2814 *
2815 * Return: Returns 0 if permission is granted.
2816 */
2817int security_kernfs_init_security(struct kernfs_node *kn_dir,
2818 struct kernfs_node *kn)
2819{
2820 return call_int_hook(kernfs_init_security, kn_dir, kn);
2821}
2822
2823/**
2824 * security_file_permission() - Check file permissions
2825 * @file: file
2826 * @mask: requested permissions
2827 *
2828 * Check file permissions before accessing an open file. This hook is called
2829 * by various operations that read or write files. A security module can use
2830 * this hook to perform additional checking on these operations, e.g. to
2831 * revalidate permissions on use to support privilege bracketing or policy
2832 * changes. Notice that this hook is used when the actual read/write
2833 * operations are performed, whereas the inode_security_ops hook is called when
2834 * a file is opened (as well as many other operations). Although this hook can
2835 * be used to revalidate permissions for various system call operations that
2836 * read or write files, it does not address the revalidation of permissions for
2837 * memory-mapped files. Security modules must handle this separately if they
2838 * need such revalidation.
2839 *
2840 * Return: Returns 0 if permission is granted.
2841 */
2842int security_file_permission(struct file *file, int mask)
2843{
2844 return call_int_hook(file_permission, file, mask);
2845}
2846
2847/**
2848 * security_file_alloc() - Allocate and init a file's LSM blob
2849 * @file: the file
2850 *
2851 * Allocate and attach a security structure to the file->f_security field. The
2852 * security field is initialized to NULL when the structure is first created.
2853 *
2854 * Return: Return 0 if the hook is successful and permission is granted.
2855 */
2856int security_file_alloc(struct file *file)
2857{
2858 int rc = lsm_file_alloc(file);
2859
2860 if (rc)
2861 return rc;
2862 rc = call_int_hook(file_alloc_security, file);
2863 if (unlikely(rc))
2864 security_file_free(file);
2865 return rc;
2866}
2867
2868/**
2869 * security_file_release() - Perform actions before releasing the file ref
2870 * @file: the file
2871 *
2872 * Perform actions before releasing the last reference to a file.
2873 */
2874void security_file_release(struct file *file)
2875{
2876 call_void_hook(file_release, file);
2877}
2878
2879/**
2880 * security_file_free() - Free a file's LSM blob
2881 * @file: the file
2882 *
2883 * Deallocate and free any security structures stored in file->f_security.
2884 */
2885void security_file_free(struct file *file)
2886{
2887 void *blob;
2888
2889 call_void_hook(file_free_security, file);
2890
2891 blob = file->f_security;
2892 if (blob) {
2893 file->f_security = NULL;
2894 kmem_cache_free(lsm_file_cache, blob);
2895 }
2896}
2897
2898/**
2899 * security_file_ioctl() - Check if an ioctl is allowed
2900 * @file: associated file
2901 * @cmd: ioctl cmd
2902 * @arg: ioctl arguments
2903 *
2904 * Check permission for an ioctl operation on @file. Note that @arg sometimes
2905 * represents a user space pointer; in other cases, it may be a simple integer
2906 * value. When @arg represents a user space pointer, it should never be used
2907 * by the security module.
2908 *
2909 * Return: Returns 0 if permission is granted.
2910 */
2911int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2912{
2913 return call_int_hook(file_ioctl, file, cmd, arg);
2914}
2915EXPORT_SYMBOL_GPL(security_file_ioctl);
2916
2917/**
2918 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2919 * @file: associated file
2920 * @cmd: ioctl cmd
2921 * @arg: ioctl arguments
2922 *
2923 * Compat version of security_file_ioctl() that correctly handles 32-bit
2924 * processes running on 64-bit kernels.
2925 *
2926 * Return: Returns 0 if permission is granted.
2927 */
2928int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2929 unsigned long arg)
2930{
2931 return call_int_hook(file_ioctl_compat, file, cmd, arg);
2932}
2933EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2934
2935static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2936{
2937 /*
2938 * Does we have PROT_READ and does the application expect
2939 * it to imply PROT_EXEC? If not, nothing to talk about...
2940 */
2941 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2942 return prot;
2943 if (!(current->personality & READ_IMPLIES_EXEC))
2944 return prot;
2945 /*
2946 * if that's an anonymous mapping, let it.
2947 */
2948 if (!file)
2949 return prot | PROT_EXEC;
2950 /*
2951 * ditto if it's not on noexec mount, except that on !MMU we need
2952 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2953 */
2954 if (!path_noexec(&file->f_path)) {
2955#ifndef CONFIG_MMU
2956 if (file->f_op->mmap_capabilities) {
2957 unsigned caps = file->f_op->mmap_capabilities(file);
2958 if (!(caps & NOMMU_MAP_EXEC))
2959 return prot;
2960 }
2961#endif
2962 return prot | PROT_EXEC;
2963 }
2964 /* anything on noexec mount won't get PROT_EXEC */
2965 return prot;
2966}
2967
2968/**
2969 * security_mmap_file() - Check if mmap'ing a file is allowed
2970 * @file: file
2971 * @prot: protection applied by the kernel
2972 * @flags: flags
2973 *
2974 * Check permissions for a mmap operation. The @file may be NULL, e.g. if
2975 * mapping anonymous memory.
2976 *
2977 * Return: Returns 0 if permission is granted.
2978 */
2979int security_mmap_file(struct file *file, unsigned long prot,
2980 unsigned long flags)
2981{
2982 return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
2983 flags);
2984}
2985
2986/**
2987 * security_mmap_addr() - Check if mmap'ing an address is allowed
2988 * @addr: address
2989 *
2990 * Check permissions for a mmap operation at @addr.
2991 *
2992 * Return: Returns 0 if permission is granted.
2993 */
2994int security_mmap_addr(unsigned long addr)
2995{
2996 return call_int_hook(mmap_addr, addr);
2997}
2998
2999/**
3000 * security_file_mprotect() - Check if changing memory protections is allowed
3001 * @vma: memory region
3002 * @reqprot: application requested protection
3003 * @prot: protection applied by the kernel
3004 *
3005 * Check permissions before changing memory access permissions.
3006 *
3007 * Return: Returns 0 if permission is granted.
3008 */
3009int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
3010 unsigned long prot)
3011{
3012 return call_int_hook(file_mprotect, vma, reqprot, prot);
3013}
3014
3015/**
3016 * security_file_lock() - Check if a file lock is allowed
3017 * @file: file
3018 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
3019 *
3020 * Check permission before performing file locking operations. Note the hook
3021 * mediates both flock and fcntl style locks.
3022 *
3023 * Return: Returns 0 if permission is granted.
3024 */
3025int security_file_lock(struct file *file, unsigned int cmd)
3026{
3027 return call_int_hook(file_lock, file, cmd);
3028}
3029
3030/**
3031 * security_file_fcntl() - Check if fcntl() op is allowed
3032 * @file: file
3033 * @cmd: fcntl command
3034 * @arg: command argument
3035 *
3036 * Check permission before allowing the file operation specified by @cmd from
3037 * being performed on the file @file. Note that @arg sometimes represents a
3038 * user space pointer; in other cases, it may be a simple integer value. When
3039 * @arg represents a user space pointer, it should never be used by the
3040 * security module.
3041 *
3042 * Return: Returns 0 if permission is granted.
3043 */
3044int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
3045{
3046 return call_int_hook(file_fcntl, file, cmd, arg);
3047}
3048
3049/**
3050 * security_file_set_fowner() - Set the file owner info in the LSM blob
3051 * @file: the file
3052 *
3053 * Save owner security information (typically from current->security) in
3054 * file->f_security for later use by the send_sigiotask hook.
3055 *
3056 * This hook is called with file->f_owner.lock held.
3057 *
3058 * Return: Returns 0 on success.
3059 */
3060void security_file_set_fowner(struct file *file)
3061{
3062 call_void_hook(file_set_fowner, file);
3063}
3064
3065/**
3066 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
3067 * @tsk: target task
3068 * @fown: signal sender
3069 * @sig: signal to be sent, SIGIO is sent if 0
3070 *
3071 * Check permission for the file owner @fown to send SIGIO or SIGURG to the
3072 * process @tsk. Note that this hook is sometimes called from interrupt. Note
3073 * that the fown_struct, @fown, is never outside the context of a struct file,
3074 * so the file structure (and associated security information) can always be
3075 * obtained: container_of(fown, struct file, f_owner).
3076 *
3077 * Return: Returns 0 if permission is granted.
3078 */
3079int security_file_send_sigiotask(struct task_struct *tsk,
3080 struct fown_struct *fown, int sig)
3081{
3082 return call_int_hook(file_send_sigiotask, tsk, fown, sig);
3083}
3084
3085/**
3086 * security_file_receive() - Check if receiving a file via IPC is allowed
3087 * @file: file being received
3088 *
3089 * This hook allows security modules to control the ability of a process to
3090 * receive an open file descriptor via socket IPC.
3091 *
3092 * Return: Returns 0 if permission is granted.
3093 */
3094int security_file_receive(struct file *file)
3095{
3096 return call_int_hook(file_receive, file);
3097}
3098
3099/**
3100 * security_file_open() - Save open() time state for late use by the LSM
3101 * @file:
3102 *
3103 * Save open-time permission checking state for later use upon file_permission,
3104 * and recheck access if anything has changed since inode_permission.
3105 *
3106 * We can check if a file is opened for execution (e.g. execve(2) call), either
3107 * directly or indirectly (e.g. ELF's ld.so) by checking file->f_flags &
3108 * __FMODE_EXEC .
3109 *
3110 * Return: Returns 0 if permission is granted.
3111 */
3112int security_file_open(struct file *file)
3113{
3114 return call_int_hook(file_open, file);
3115}
3116
3117/**
3118 * security_file_post_open() - Evaluate a file after it has been opened
3119 * @file: the file
3120 * @mask: access mask
3121 *
3122 * Evaluate an opened file and the access mask requested with open(). The hook
3123 * is useful for LSMs that require the file content to be available in order to
3124 * make decisions.
3125 *
3126 * Return: Returns 0 if permission is granted.
3127 */
3128int security_file_post_open(struct file *file, int mask)
3129{
3130 return call_int_hook(file_post_open, file, mask);
3131}
3132EXPORT_SYMBOL_GPL(security_file_post_open);
3133
3134/**
3135 * security_file_truncate() - Check if truncating a file is allowed
3136 * @file: file
3137 *
3138 * Check permission before truncating a file, i.e. using ftruncate. Note that
3139 * truncation permission may also be checked based on the path, using the
3140 * @path_truncate hook.
3141 *
3142 * Return: Returns 0 if permission is granted.
3143 */
3144int security_file_truncate(struct file *file)
3145{
3146 return call_int_hook(file_truncate, file);
3147}
3148
3149/**
3150 * security_task_alloc() - Allocate a task's LSM blob
3151 * @task: the task
3152 * @clone_flags: flags indicating what is being shared
3153 *
3154 * Handle allocation of task-related resources.
3155 *
3156 * Return: Returns a zero on success, negative values on failure.
3157 */
3158int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
3159{
3160 int rc = lsm_task_alloc(task);
3161
3162 if (rc)
3163 return rc;
3164 rc = call_int_hook(task_alloc, task, clone_flags);
3165 if (unlikely(rc))
3166 security_task_free(task);
3167 return rc;
3168}
3169
3170/**
3171 * security_task_free() - Free a task's LSM blob and related resources
3172 * @task: task
3173 *
3174 * Handle release of task-related resources. Note that this can be called from
3175 * interrupt context.
3176 */
3177void security_task_free(struct task_struct *task)
3178{
3179 call_void_hook(task_free, task);
3180
3181 kfree(task->security);
3182 task->security = NULL;
3183}
3184
3185/**
3186 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3187 * @cred: credentials
3188 * @gfp: gfp flags
3189 *
3190 * Only allocate sufficient memory and attach to @cred such that
3191 * cred_transfer() will not get ENOMEM.
3192 *
3193 * Return: Returns 0 on success, negative values on failure.
3194 */
3195int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3196{
3197 int rc = lsm_cred_alloc(cred, gfp);
3198
3199 if (rc)
3200 return rc;
3201
3202 rc = call_int_hook(cred_alloc_blank, cred, gfp);
3203 if (unlikely(rc))
3204 security_cred_free(cred);
3205 return rc;
3206}
3207
3208/**
3209 * security_cred_free() - Free the cred's LSM blob and associated resources
3210 * @cred: credentials
3211 *
3212 * Deallocate and clear the cred->security field in a set of credentials.
3213 */
3214void security_cred_free(struct cred *cred)
3215{
3216 /*
3217 * There is a failure case in prepare_creds() that
3218 * may result in a call here with ->security being NULL.
3219 */
3220 if (unlikely(cred->security == NULL))
3221 return;
3222
3223 call_void_hook(cred_free, cred);
3224
3225 kfree(cred->security);
3226 cred->security = NULL;
3227}
3228
3229/**
3230 * security_prepare_creds() - Prepare a new set of credentials
3231 * @new: new credentials
3232 * @old: original credentials
3233 * @gfp: gfp flags
3234 *
3235 * Prepare a new set of credentials by copying the data from the old set.
3236 *
3237 * Return: Returns 0 on success, negative values on failure.
3238 */
3239int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3240{
3241 int rc = lsm_cred_alloc(new, gfp);
3242
3243 if (rc)
3244 return rc;
3245
3246 rc = call_int_hook(cred_prepare, new, old, gfp);
3247 if (unlikely(rc))
3248 security_cred_free(new);
3249 return rc;
3250}
3251
3252/**
3253 * security_transfer_creds() - Transfer creds
3254 * @new: target credentials
3255 * @old: original credentials
3256 *
3257 * Transfer data from original creds to new creds.
3258 */
3259void security_transfer_creds(struct cred *new, const struct cred *old)
3260{
3261 call_void_hook(cred_transfer, new, old);
3262}
3263
3264/**
3265 * security_cred_getsecid() - Get the secid from a set of credentials
3266 * @c: credentials
3267 * @secid: secid value
3268 *
3269 * Retrieve the security identifier of the cred structure @c. In case of
3270 * failure, @secid will be set to zero.
3271 */
3272void security_cred_getsecid(const struct cred *c, u32 *secid)
3273{
3274 *secid = 0;
3275 call_void_hook(cred_getsecid, c, secid);
3276}
3277EXPORT_SYMBOL(security_cred_getsecid);
3278
3279/**
3280 * security_cred_getlsmprop() - Get the LSM data from a set of credentials
3281 * @c: credentials
3282 * @prop: destination for the LSM data
3283 *
3284 * Retrieve the security data of the cred structure @c. In case of
3285 * failure, @prop will be cleared.
3286 */
3287void security_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
3288{
3289 lsmprop_init(prop);
3290 call_void_hook(cred_getlsmprop, c, prop);
3291}
3292EXPORT_SYMBOL(security_cred_getlsmprop);
3293
3294/**
3295 * security_kernel_act_as() - Set the kernel credentials to act as secid
3296 * @new: credentials
3297 * @secid: secid
3298 *
3299 * Set the credentials for a kernel service to act as (subjective context).
3300 * The current task must be the one that nominated @secid.
3301 *
3302 * Return: Returns 0 if successful.
3303 */
3304int security_kernel_act_as(struct cred *new, u32 secid)
3305{
3306 return call_int_hook(kernel_act_as, new, secid);
3307}
3308
3309/**
3310 * security_kernel_create_files_as() - Set file creation context using an inode
3311 * @new: target credentials
3312 * @inode: reference inode
3313 *
3314 * Set the file creation context in a set of credentials to be the same as the
3315 * objective context of the specified inode. The current task must be the one
3316 * that nominated @inode.
3317 *
3318 * Return: Returns 0 if successful.
3319 */
3320int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3321{
3322 return call_int_hook(kernel_create_files_as, new, inode);
3323}
3324
3325/**
3326 * security_kernel_module_request() - Check if loading a module is allowed
3327 * @kmod_name: module name
3328 *
3329 * Ability to trigger the kernel to automatically upcall to userspace for
3330 * userspace to load a kernel module with the given name.
3331 *
3332 * Return: Returns 0 if successful.
3333 */
3334int security_kernel_module_request(char *kmod_name)
3335{
3336 return call_int_hook(kernel_module_request, kmod_name);
3337}
3338
3339/**
3340 * security_kernel_read_file() - Read a file specified by userspace
3341 * @file: file
3342 * @id: file identifier
3343 * @contents: trust if security_kernel_post_read_file() will be called
3344 *
3345 * Read a file specified by userspace.
3346 *
3347 * Return: Returns 0 if permission is granted.
3348 */
3349int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3350 bool contents)
3351{
3352 return call_int_hook(kernel_read_file, file, id, contents);
3353}
3354EXPORT_SYMBOL_GPL(security_kernel_read_file);
3355
3356/**
3357 * security_kernel_post_read_file() - Read a file specified by userspace
3358 * @file: file
3359 * @buf: file contents
3360 * @size: size of file contents
3361 * @id: file identifier
3362 *
3363 * Read a file specified by userspace. This must be paired with a prior call
3364 * to security_kernel_read_file() call that indicated this hook would also be
3365 * called, see security_kernel_read_file() for more information.
3366 *
3367 * Return: Returns 0 if permission is granted.
3368 */
3369int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3370 enum kernel_read_file_id id)
3371{
3372 return call_int_hook(kernel_post_read_file, file, buf, size, id);
3373}
3374EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3375
3376/**
3377 * security_kernel_load_data() - Load data provided by userspace
3378 * @id: data identifier
3379 * @contents: true if security_kernel_post_load_data() will be called
3380 *
3381 * Load data provided by userspace.
3382 *
3383 * Return: Returns 0 if permission is granted.
3384 */
3385int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3386{
3387 return call_int_hook(kernel_load_data, id, contents);
3388}
3389EXPORT_SYMBOL_GPL(security_kernel_load_data);
3390
3391/**
3392 * security_kernel_post_load_data() - Load userspace data from a non-file source
3393 * @buf: data
3394 * @size: size of data
3395 * @id: data identifier
3396 * @description: text description of data, specific to the id value
3397 *
3398 * Load data provided by a non-file source (usually userspace buffer). This
3399 * must be paired with a prior security_kernel_load_data() call that indicated
3400 * this hook would also be called, see security_kernel_load_data() for more
3401 * information.
3402 *
3403 * Return: Returns 0 if permission is granted.
3404 */
3405int security_kernel_post_load_data(char *buf, loff_t size,
3406 enum kernel_load_data_id id,
3407 char *description)
3408{
3409 return call_int_hook(kernel_post_load_data, buf, size, id, description);
3410}
3411EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3412
3413/**
3414 * security_task_fix_setuid() - Update LSM with new user id attributes
3415 * @new: updated credentials
3416 * @old: credentials being replaced
3417 * @flags: LSM_SETID_* flag values
3418 *
3419 * Update the module's state after setting one or more of the user identity
3420 * attributes of the current process. The @flags parameter indicates which of
3421 * the set*uid system calls invoked this hook. If @new is the set of
3422 * credentials that will be installed. Modifications should be made to this
3423 * rather than to @current->cred.
3424 *
3425 * Return: Returns 0 on success.
3426 */
3427int security_task_fix_setuid(struct cred *new, const struct cred *old,
3428 int flags)
3429{
3430 return call_int_hook(task_fix_setuid, new, old, flags);
3431}
3432
3433/**
3434 * security_task_fix_setgid() - Update LSM with new group id attributes
3435 * @new: updated credentials
3436 * @old: credentials being replaced
3437 * @flags: LSM_SETID_* flag value
3438 *
3439 * Update the module's state after setting one or more of the group identity
3440 * attributes of the current process. The @flags parameter indicates which of
3441 * the set*gid system calls invoked this hook. @new is the set of credentials
3442 * that will be installed. Modifications should be made to this rather than to
3443 * @current->cred.
3444 *
3445 * Return: Returns 0 on success.
3446 */
3447int security_task_fix_setgid(struct cred *new, const struct cred *old,
3448 int flags)
3449{
3450 return call_int_hook(task_fix_setgid, new, old, flags);
3451}
3452
3453/**
3454 * security_task_fix_setgroups() - Update LSM with new supplementary groups
3455 * @new: updated credentials
3456 * @old: credentials being replaced
3457 *
3458 * Update the module's state after setting the supplementary group identity
3459 * attributes of the current process. @new is the set of credentials that will
3460 * be installed. Modifications should be made to this rather than to
3461 * @current->cred.
3462 *
3463 * Return: Returns 0 on success.
3464 */
3465int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3466{
3467 return call_int_hook(task_fix_setgroups, new, old);
3468}
3469
3470/**
3471 * security_task_setpgid() - Check if setting the pgid is allowed
3472 * @p: task being modified
3473 * @pgid: new pgid
3474 *
3475 * Check permission before setting the process group identifier of the process
3476 * @p to @pgid.
3477 *
3478 * Return: Returns 0 if permission is granted.
3479 */
3480int security_task_setpgid(struct task_struct *p, pid_t pgid)
3481{
3482 return call_int_hook(task_setpgid, p, pgid);
3483}
3484
3485/**
3486 * security_task_getpgid() - Check if getting the pgid is allowed
3487 * @p: task
3488 *
3489 * Check permission before getting the process group identifier of the process
3490 * @p.
3491 *
3492 * Return: Returns 0 if permission is granted.
3493 */
3494int security_task_getpgid(struct task_struct *p)
3495{
3496 return call_int_hook(task_getpgid, p);
3497}
3498
3499/**
3500 * security_task_getsid() - Check if getting the session id is allowed
3501 * @p: task
3502 *
3503 * Check permission before getting the session identifier of the process @p.
3504 *
3505 * Return: Returns 0 if permission is granted.
3506 */
3507int security_task_getsid(struct task_struct *p)
3508{
3509 return call_int_hook(task_getsid, p);
3510}
3511
3512/**
3513 * security_current_getlsmprop_subj() - Current task's subjective LSM data
3514 * @prop: lsm specific information
3515 *
3516 * Retrieve the subjective security identifier of the current task and return
3517 * it in @prop.
3518 */
3519void security_current_getlsmprop_subj(struct lsm_prop *prop)
3520{
3521 lsmprop_init(prop);
3522 call_void_hook(current_getlsmprop_subj, prop);
3523}
3524EXPORT_SYMBOL(security_current_getlsmprop_subj);
3525
3526/**
3527 * security_task_getlsmprop_obj() - Get a task's objective LSM data
3528 * @p: target task
3529 * @prop: lsm specific information
3530 *
3531 * Retrieve the objective security identifier of the task_struct in @p and
3532 * return it in @prop.
3533 */
3534void security_task_getlsmprop_obj(struct task_struct *p, struct lsm_prop *prop)
3535{
3536 lsmprop_init(prop);
3537 call_void_hook(task_getlsmprop_obj, p, prop);
3538}
3539EXPORT_SYMBOL(security_task_getlsmprop_obj);
3540
3541/**
3542 * security_task_setnice() - Check if setting a task's nice value is allowed
3543 * @p: target task
3544 * @nice: nice value
3545 *
3546 * Check permission before setting the nice value of @p to @nice.
3547 *
3548 * Return: Returns 0 if permission is granted.
3549 */
3550int security_task_setnice(struct task_struct *p, int nice)
3551{
3552 return call_int_hook(task_setnice, p, nice);
3553}
3554
3555/**
3556 * security_task_setioprio() - Check if setting a task's ioprio is allowed
3557 * @p: target task
3558 * @ioprio: ioprio value
3559 *
3560 * Check permission before setting the ioprio value of @p to @ioprio.
3561 *
3562 * Return: Returns 0 if permission is granted.
3563 */
3564int security_task_setioprio(struct task_struct *p, int ioprio)
3565{
3566 return call_int_hook(task_setioprio, p, ioprio);
3567}
3568
3569/**
3570 * security_task_getioprio() - Check if getting a task's ioprio is allowed
3571 * @p: task
3572 *
3573 * Check permission before getting the ioprio value of @p.
3574 *
3575 * Return: Returns 0 if permission is granted.
3576 */
3577int security_task_getioprio(struct task_struct *p)
3578{
3579 return call_int_hook(task_getioprio, p);
3580}
3581
3582/**
3583 * security_task_prlimit() - Check if get/setting resources limits is allowed
3584 * @cred: current task credentials
3585 * @tcred: target task credentials
3586 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3587 *
3588 * Check permission before getting and/or setting the resource limits of
3589 * another task.
3590 *
3591 * Return: Returns 0 if permission is granted.
3592 */
3593int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3594 unsigned int flags)
3595{
3596 return call_int_hook(task_prlimit, cred, tcred, flags);
3597}
3598
3599/**
3600 * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3601 * @p: target task's group leader
3602 * @resource: resource whose limit is being set
3603 * @new_rlim: new resource limit
3604 *
3605 * Check permission before setting the resource limits of process @p for
3606 * @resource to @new_rlim. The old resource limit values can be examined by
3607 * dereferencing (p->signal->rlim + resource).
3608 *
3609 * Return: Returns 0 if permission is granted.
3610 */
3611int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3612 struct rlimit *new_rlim)
3613{
3614 return call_int_hook(task_setrlimit, p, resource, new_rlim);
3615}
3616
3617/**
3618 * security_task_setscheduler() - Check if setting sched policy/param is allowed
3619 * @p: target task
3620 *
3621 * Check permission before setting scheduling policy and/or parameters of
3622 * process @p.
3623 *
3624 * Return: Returns 0 if permission is granted.
3625 */
3626int security_task_setscheduler(struct task_struct *p)
3627{
3628 return call_int_hook(task_setscheduler, p);
3629}
3630
3631/**
3632 * security_task_getscheduler() - Check if getting scheduling info is allowed
3633 * @p: target task
3634 *
3635 * Check permission before obtaining scheduling information for process @p.
3636 *
3637 * Return: Returns 0 if permission is granted.
3638 */
3639int security_task_getscheduler(struct task_struct *p)
3640{
3641 return call_int_hook(task_getscheduler, p);
3642}
3643
3644/**
3645 * security_task_movememory() - Check if moving memory is allowed
3646 * @p: task
3647 *
3648 * Check permission before moving memory owned by process @p.
3649 *
3650 * Return: Returns 0 if permission is granted.
3651 */
3652int security_task_movememory(struct task_struct *p)
3653{
3654 return call_int_hook(task_movememory, p);
3655}
3656
3657/**
3658 * security_task_kill() - Check if sending a signal is allowed
3659 * @p: target process
3660 * @info: signal information
3661 * @sig: signal value
3662 * @cred: credentials of the signal sender, NULL if @current
3663 *
3664 * Check permission before sending signal @sig to @p. @info can be NULL, the
3665 * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or
3666 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3667 * the kernel and should typically be permitted. SIGIO signals are handled
3668 * separately by the send_sigiotask hook in file_security_ops.
3669 *
3670 * Return: Returns 0 if permission is granted.
3671 */
3672int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3673 int sig, const struct cred *cred)
3674{
3675 return call_int_hook(task_kill, p, info, sig, cred);
3676}
3677
3678/**
3679 * security_task_prctl() - Check if a prctl op is allowed
3680 * @option: operation
3681 * @arg2: argument
3682 * @arg3: argument
3683 * @arg4: argument
3684 * @arg5: argument
3685 *
3686 * Check permission before performing a process control operation on the
3687 * current process.
3688 *
3689 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3690 * to cause prctl() to return immediately with that value.
3691 */
3692int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3693 unsigned long arg4, unsigned long arg5)
3694{
3695 int thisrc;
3696 int rc = LSM_RET_DEFAULT(task_prctl);
3697 struct lsm_static_call *scall;
3698
3699 lsm_for_each_hook(scall, task_prctl) {
3700 thisrc = scall->hl->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3701 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3702 rc = thisrc;
3703 if (thisrc != 0)
3704 break;
3705 }
3706 }
3707 return rc;
3708}
3709
3710/**
3711 * security_task_to_inode() - Set the security attributes of a task's inode
3712 * @p: task
3713 * @inode: inode
3714 *
3715 * Set the security attributes for an inode based on an associated task's
3716 * security attributes, e.g. for /proc/pid inodes.
3717 */
3718void security_task_to_inode(struct task_struct *p, struct inode *inode)
3719{
3720 call_void_hook(task_to_inode, p, inode);
3721}
3722
3723/**
3724 * security_create_user_ns() - Check if creating a new userns is allowed
3725 * @cred: prepared creds
3726 *
3727 * Check permission prior to creating a new user namespace.
3728 *
3729 * Return: Returns 0 if successful, otherwise < 0 error code.
3730 */
3731int security_create_user_ns(const struct cred *cred)
3732{
3733 return call_int_hook(userns_create, cred);
3734}
3735
3736/**
3737 * security_ipc_permission() - Check if sysv ipc access is allowed
3738 * @ipcp: ipc permission structure
3739 * @flag: requested permissions
3740 *
3741 * Check permissions for access to IPC.
3742 *
3743 * Return: Returns 0 if permission is granted.
3744 */
3745int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3746{
3747 return call_int_hook(ipc_permission, ipcp, flag);
3748}
3749
3750/**
3751 * security_ipc_getlsmprop() - Get the sysv ipc object LSM data
3752 * @ipcp: ipc permission structure
3753 * @prop: pointer to lsm information
3754 *
3755 * Get the lsm information associated with the ipc object.
3756 */
3757
3758void security_ipc_getlsmprop(struct kern_ipc_perm *ipcp, struct lsm_prop *prop)
3759{
3760 lsmprop_init(prop);
3761 call_void_hook(ipc_getlsmprop, ipcp, prop);
3762}
3763
3764/**
3765 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3766 * @msg: message structure
3767 *
3768 * Allocate and attach a security structure to the msg->security field. The
3769 * security field is initialized to NULL when the structure is first created.
3770 *
3771 * Return: Return 0 if operation was successful and permission is granted.
3772 */
3773int security_msg_msg_alloc(struct msg_msg *msg)
3774{
3775 int rc = lsm_msg_msg_alloc(msg);
3776
3777 if (unlikely(rc))
3778 return rc;
3779 rc = call_int_hook(msg_msg_alloc_security, msg);
3780 if (unlikely(rc))
3781 security_msg_msg_free(msg);
3782 return rc;
3783}
3784
3785/**
3786 * security_msg_msg_free() - Free a sysv ipc message LSM blob
3787 * @msg: message structure
3788 *
3789 * Deallocate the security structure for this message.
3790 */
3791void security_msg_msg_free(struct msg_msg *msg)
3792{
3793 call_void_hook(msg_msg_free_security, msg);
3794 kfree(msg->security);
3795 msg->security = NULL;
3796}
3797
3798/**
3799 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3800 * @msq: sysv ipc permission structure
3801 *
3802 * Allocate and attach a security structure to @msg. The security field is
3803 * initialized to NULL when the structure is first created.
3804 *
3805 * Return: Returns 0 if operation was successful and permission is granted.
3806 */
3807int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3808{
3809 int rc = lsm_ipc_alloc(msq);
3810
3811 if (unlikely(rc))
3812 return rc;
3813 rc = call_int_hook(msg_queue_alloc_security, msq);
3814 if (unlikely(rc))
3815 security_msg_queue_free(msq);
3816 return rc;
3817}
3818
3819/**
3820 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3821 * @msq: sysv ipc permission structure
3822 *
3823 * Deallocate security field @perm->security for the message queue.
3824 */
3825void security_msg_queue_free(struct kern_ipc_perm *msq)
3826{
3827 call_void_hook(msg_queue_free_security, msq);
3828 kfree(msq->security);
3829 msq->security = NULL;
3830}
3831
3832/**
3833 * security_msg_queue_associate() - Check if a msg queue operation is allowed
3834 * @msq: sysv ipc permission structure
3835 * @msqflg: operation flags
3836 *
3837 * Check permission when a message queue is requested through the msgget system
3838 * call. This hook is only called when returning the message queue identifier
3839 * for an existing message queue, not when a new message queue is created.
3840 *
3841 * Return: Return 0 if permission is granted.
3842 */
3843int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3844{
3845 return call_int_hook(msg_queue_associate, msq, msqflg);
3846}
3847
3848/**
3849 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3850 * @msq: sysv ipc permission structure
3851 * @cmd: operation
3852 *
3853 * Check permission when a message control operation specified by @cmd is to be
3854 * performed on the message queue with permissions.
3855 *
3856 * Return: Returns 0 if permission is granted.
3857 */
3858int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3859{
3860 return call_int_hook(msg_queue_msgctl, msq, cmd);
3861}
3862
3863/**
3864 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3865 * @msq: sysv ipc permission structure
3866 * @msg: message
3867 * @msqflg: operation flags
3868 *
3869 * Check permission before a message, @msg, is enqueued on the message queue
3870 * with permissions specified in @msq.
3871 *
3872 * Return: Returns 0 if permission is granted.
3873 */
3874int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3875 struct msg_msg *msg, int msqflg)
3876{
3877 return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3878}
3879
3880/**
3881 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3882 * @msq: sysv ipc permission structure
3883 * @msg: message
3884 * @target: target task
3885 * @type: type of message requested
3886 * @mode: operation flags
3887 *
3888 * Check permission before a message, @msg, is removed from the message queue.
3889 * The @target task structure contains a pointer to the process that will be
3890 * receiving the message (not equal to the current process when inline receives
3891 * are being performed).
3892 *
3893 * Return: Returns 0 if permission is granted.
3894 */
3895int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3896 struct task_struct *target, long type, int mode)
3897{
3898 return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3899}
3900
3901/**
3902 * security_shm_alloc() - Allocate a sysv shm LSM blob
3903 * @shp: sysv ipc permission structure
3904 *
3905 * Allocate and attach a security structure to the @shp security field. The
3906 * security field is initialized to NULL when the structure is first created.
3907 *
3908 * Return: Returns 0 if operation was successful and permission is granted.
3909 */
3910int security_shm_alloc(struct kern_ipc_perm *shp)
3911{
3912 int rc = lsm_ipc_alloc(shp);
3913
3914 if (unlikely(rc))
3915 return rc;
3916 rc = call_int_hook(shm_alloc_security, shp);
3917 if (unlikely(rc))
3918 security_shm_free(shp);
3919 return rc;
3920}
3921
3922/**
3923 * security_shm_free() - Free a sysv shm LSM blob
3924 * @shp: sysv ipc permission structure
3925 *
3926 * Deallocate the security structure @perm->security for the memory segment.
3927 */
3928void security_shm_free(struct kern_ipc_perm *shp)
3929{
3930 call_void_hook(shm_free_security, shp);
3931 kfree(shp->security);
3932 shp->security = NULL;
3933}
3934
3935/**
3936 * security_shm_associate() - Check if a sysv shm operation is allowed
3937 * @shp: sysv ipc permission structure
3938 * @shmflg: operation flags
3939 *
3940 * Check permission when a shared memory region is requested through the shmget
3941 * system call. This hook is only called when returning the shared memory
3942 * region identifier for an existing region, not when a new shared memory
3943 * region is created.
3944 *
3945 * Return: Returns 0 if permission is granted.
3946 */
3947int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3948{
3949 return call_int_hook(shm_associate, shp, shmflg);
3950}
3951
3952/**
3953 * security_shm_shmctl() - Check if a sysv shm operation is allowed
3954 * @shp: sysv ipc permission structure
3955 * @cmd: operation
3956 *
3957 * Check permission when a shared memory control operation specified by @cmd is
3958 * to be performed on the shared memory region with permissions in @shp.
3959 *
3960 * Return: Return 0 if permission is granted.
3961 */
3962int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3963{
3964 return call_int_hook(shm_shmctl, shp, cmd);
3965}
3966
3967/**
3968 * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3969 * @shp: sysv ipc permission structure
3970 * @shmaddr: address of memory region to attach
3971 * @shmflg: operation flags
3972 *
3973 * Check permissions prior to allowing the shmat system call to attach the
3974 * shared memory segment with permissions @shp to the data segment of the
3975 * calling process. The attaching address is specified by @shmaddr.
3976 *
3977 * Return: Returns 0 if permission is granted.
3978 */
3979int security_shm_shmat(struct kern_ipc_perm *shp,
3980 char __user *shmaddr, int shmflg)
3981{
3982 return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3983}
3984
3985/**
3986 * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3987 * @sma: sysv ipc permission structure
3988 *
3989 * Allocate and attach a security structure to the @sma security field. The
3990 * security field is initialized to NULL when the structure is first created.
3991 *
3992 * Return: Returns 0 if operation was successful and permission is granted.
3993 */
3994int security_sem_alloc(struct kern_ipc_perm *sma)
3995{
3996 int rc = lsm_ipc_alloc(sma);
3997
3998 if (unlikely(rc))
3999 return rc;
4000 rc = call_int_hook(sem_alloc_security, sma);
4001 if (unlikely(rc))
4002 security_sem_free(sma);
4003 return rc;
4004}
4005
4006/**
4007 * security_sem_free() - Free a sysv semaphore LSM blob
4008 * @sma: sysv ipc permission structure
4009 *
4010 * Deallocate security structure @sma->security for the semaphore.
4011 */
4012void security_sem_free(struct kern_ipc_perm *sma)
4013{
4014 call_void_hook(sem_free_security, sma);
4015 kfree(sma->security);
4016 sma->security = NULL;
4017}
4018
4019/**
4020 * security_sem_associate() - Check if a sysv semaphore operation is allowed
4021 * @sma: sysv ipc permission structure
4022 * @semflg: operation flags
4023 *
4024 * Check permission when a semaphore is requested through the semget system
4025 * call. This hook is only called when returning the semaphore identifier for
4026 * an existing semaphore, not when a new one must be created.
4027 *
4028 * Return: Returns 0 if permission is granted.
4029 */
4030int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
4031{
4032 return call_int_hook(sem_associate, sma, semflg);
4033}
4034
4035/**
4036 * security_sem_semctl() - Check if a sysv semaphore operation is allowed
4037 * @sma: sysv ipc permission structure
4038 * @cmd: operation
4039 *
4040 * Check permission when a semaphore operation specified by @cmd is to be
4041 * performed on the semaphore.
4042 *
4043 * Return: Returns 0 if permission is granted.
4044 */
4045int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
4046{
4047 return call_int_hook(sem_semctl, sma, cmd);
4048}
4049
4050/**
4051 * security_sem_semop() - Check if a sysv semaphore operation is allowed
4052 * @sma: sysv ipc permission structure
4053 * @sops: operations to perform
4054 * @nsops: number of operations
4055 * @alter: flag indicating changes will be made
4056 *
4057 * Check permissions before performing operations on members of the semaphore
4058 * set. If the @alter flag is nonzero, the semaphore set may be modified.
4059 *
4060 * Return: Returns 0 if permission is granted.
4061 */
4062int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
4063 unsigned nsops, int alter)
4064{
4065 return call_int_hook(sem_semop, sma, sops, nsops, alter);
4066}
4067
4068/**
4069 * security_d_instantiate() - Populate an inode's LSM state based on a dentry
4070 * @dentry: dentry
4071 * @inode: inode
4072 *
4073 * Fill in @inode security information for a @dentry if allowed.
4074 */
4075void security_d_instantiate(struct dentry *dentry, struct inode *inode)
4076{
4077 if (unlikely(inode && IS_PRIVATE(inode)))
4078 return;
4079 call_void_hook(d_instantiate, dentry, inode);
4080}
4081EXPORT_SYMBOL(security_d_instantiate);
4082
4083/*
4084 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4085 */
4086
4087/**
4088 * security_getselfattr - Read an LSM attribute of the current process.
4089 * @attr: which attribute to return
4090 * @uctx: the user-space destination for the information, or NULL
4091 * @size: pointer to the size of space available to receive the data
4092 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
4093 * attributes associated with the LSM identified in the passed @ctx be
4094 * reported.
4095 *
4096 * A NULL value for @uctx can be used to get both the number of attributes
4097 * and the size of the data.
4098 *
4099 * Returns the number of attributes found on success, negative value
4100 * on error. @size is reset to the total size of the data.
4101 * If @size is insufficient to contain the data -E2BIG is returned.
4102 */
4103int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4104 u32 __user *size, u32 flags)
4105{
4106 struct lsm_static_call *scall;
4107 struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
4108 u8 __user *base = (u8 __user *)uctx;
4109 u32 entrysize;
4110 u32 total = 0;
4111 u32 left;
4112 bool toobig = false;
4113 bool single = false;
4114 int count = 0;
4115 int rc;
4116
4117 if (attr == LSM_ATTR_UNDEF)
4118 return -EINVAL;
4119 if (size == NULL)
4120 return -EINVAL;
4121 if (get_user(left, size))
4122 return -EFAULT;
4123
4124 if (flags) {
4125 /*
4126 * Only flag supported is LSM_FLAG_SINGLE
4127 */
4128 if (flags != LSM_FLAG_SINGLE || !uctx)
4129 return -EINVAL;
4130 if (copy_from_user(&lctx, uctx, sizeof(lctx)))
4131 return -EFAULT;
4132 /*
4133 * If the LSM ID isn't specified it is an error.
4134 */
4135 if (lctx.id == LSM_ID_UNDEF)
4136 return -EINVAL;
4137 single = true;
4138 }
4139
4140 /*
4141 * In the usual case gather all the data from the LSMs.
4142 * In the single case only get the data from the LSM specified.
4143 */
4144 lsm_for_each_hook(scall, getselfattr) {
4145 if (single && lctx.id != scall->hl->lsmid->id)
4146 continue;
4147 entrysize = left;
4148 if (base)
4149 uctx = (struct lsm_ctx __user *)(base + total);
4150 rc = scall->hl->hook.getselfattr(attr, uctx, &entrysize, flags);
4151 if (rc == -EOPNOTSUPP)
4152 continue;
4153 if (rc == -E2BIG) {
4154 rc = 0;
4155 left = 0;
4156 toobig = true;
4157 } else if (rc < 0)
4158 return rc;
4159 else
4160 left -= entrysize;
4161
4162 total += entrysize;
4163 count += rc;
4164 if (single)
4165 break;
4166 }
4167 if (put_user(total, size))
4168 return -EFAULT;
4169 if (toobig)
4170 return -E2BIG;
4171 if (count == 0)
4172 return LSM_RET_DEFAULT(getselfattr);
4173 return count;
4174}
4175
4176/*
4177 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4178 */
4179
4180/**
4181 * security_setselfattr - Set an LSM attribute on the current process.
4182 * @attr: which attribute to set
4183 * @uctx: the user-space source for the information
4184 * @size: the size of the data
4185 * @flags: reserved for future use, must be 0
4186 *
4187 * Set an LSM attribute for the current process. The LSM, attribute
4188 * and new value are included in @uctx.
4189 *
4190 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4191 * if the user buffer is inaccessible, E2BIG if size is too big, or an
4192 * LSM specific failure.
4193 */
4194int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4195 u32 size, u32 flags)
4196{
4197 struct lsm_static_call *scall;
4198 struct lsm_ctx *lctx;
4199 int rc = LSM_RET_DEFAULT(setselfattr);
4200 u64 required_len;
4201
4202 if (flags)
4203 return -EINVAL;
4204 if (size < sizeof(*lctx))
4205 return -EINVAL;
4206 if (size > PAGE_SIZE)
4207 return -E2BIG;
4208
4209 lctx = memdup_user(uctx, size);
4210 if (IS_ERR(lctx))
4211 return PTR_ERR(lctx);
4212
4213 if (size < lctx->len ||
4214 check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4215 lctx->len < required_len) {
4216 rc = -EINVAL;
4217 goto free_out;
4218 }
4219
4220 lsm_for_each_hook(scall, setselfattr)
4221 if ((scall->hl->lsmid->id) == lctx->id) {
4222 rc = scall->hl->hook.setselfattr(attr, lctx, size, flags);
4223 break;
4224 }
4225
4226free_out:
4227 kfree(lctx);
4228 return rc;
4229}
4230
4231/**
4232 * security_getprocattr() - Read an attribute for a task
4233 * @p: the task
4234 * @lsmid: LSM identification
4235 * @name: attribute name
4236 * @value: attribute value
4237 *
4238 * Read attribute @name for task @p and store it into @value if allowed.
4239 *
4240 * Return: Returns the length of @value on success, a negative value otherwise.
4241 */
4242int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4243 char **value)
4244{
4245 struct lsm_static_call *scall;
4246
4247 lsm_for_each_hook(scall, getprocattr) {
4248 if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4249 continue;
4250 return scall->hl->hook.getprocattr(p, name, value);
4251 }
4252 return LSM_RET_DEFAULT(getprocattr);
4253}
4254
4255/**
4256 * security_setprocattr() - Set an attribute for a task
4257 * @lsmid: LSM identification
4258 * @name: attribute name
4259 * @value: attribute value
4260 * @size: attribute value size
4261 *
4262 * Write (set) the current task's attribute @name to @value, size @size if
4263 * allowed.
4264 *
4265 * Return: Returns bytes written on success, a negative value otherwise.
4266 */
4267int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4268{
4269 struct lsm_static_call *scall;
4270
4271 lsm_for_each_hook(scall, setprocattr) {
4272 if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4273 continue;
4274 return scall->hl->hook.setprocattr(name, value, size);
4275 }
4276 return LSM_RET_DEFAULT(setprocattr);
4277}
4278
4279/**
4280 * security_ismaclabel() - Check if the named attribute is a MAC label
4281 * @name: full extended attribute name
4282 *
4283 * Check if the extended attribute specified by @name represents a MAC label.
4284 *
4285 * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4286 */
4287int security_ismaclabel(const char *name)
4288{
4289 return call_int_hook(ismaclabel, name);
4290}
4291EXPORT_SYMBOL(security_ismaclabel);
4292
4293/**
4294 * security_secid_to_secctx() - Convert a secid to a secctx
4295 * @secid: secid
4296 * @cp: the LSM context
4297 *
4298 * Convert secid to security context. If @cp is NULL the length of the
4299 * result will be returned, but no data will be returned. This
4300 * does mean that the length could change between calls to check the length and
4301 * the next call which actually allocates and returns the data.
4302 *
4303 * Return: Return length of data on success, error on failure.
4304 */
4305int security_secid_to_secctx(u32 secid, struct lsm_context *cp)
4306{
4307 return call_int_hook(secid_to_secctx, secid, cp);
4308}
4309EXPORT_SYMBOL(security_secid_to_secctx);
4310
4311/**
4312 * security_lsmprop_to_secctx() - Convert a lsm_prop to a secctx
4313 * @prop: lsm specific information
4314 * @cp: the LSM context
4315 *
4316 * Convert a @prop entry to security context. If @cp is NULL the
4317 * length of the result will be returned. This does mean that the
4318 * length could change between calls to check the length and the
4319 * next call which actually allocates and returns the @cp.
4320 *
4321 * Return: Return length of data on success, error on failure.
4322 */
4323int security_lsmprop_to_secctx(struct lsm_prop *prop, struct lsm_context *cp)
4324{
4325 return call_int_hook(lsmprop_to_secctx, prop, cp);
4326}
4327EXPORT_SYMBOL(security_lsmprop_to_secctx);
4328
4329/**
4330 * security_secctx_to_secid() - Convert a secctx to a secid
4331 * @secdata: secctx
4332 * @seclen: length of secctx
4333 * @secid: secid
4334 *
4335 * Convert security context to secid.
4336 *
4337 * Return: Returns 0 on success, error on failure.
4338 */
4339int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4340{
4341 *secid = 0;
4342 return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4343}
4344EXPORT_SYMBOL(security_secctx_to_secid);
4345
4346/**
4347 * security_release_secctx() - Free a secctx buffer
4348 * @cp: the security context
4349 *
4350 * Release the security context.
4351 */
4352void security_release_secctx(struct lsm_context *cp)
4353{
4354 call_void_hook(release_secctx, cp);
4355 memset(cp, 0, sizeof(*cp));
4356}
4357EXPORT_SYMBOL(security_release_secctx);
4358
4359/**
4360 * security_inode_invalidate_secctx() - Invalidate an inode's security label
4361 * @inode: inode
4362 *
4363 * Notify the security module that it must revalidate the security context of
4364 * an inode.
4365 */
4366void security_inode_invalidate_secctx(struct inode *inode)
4367{
4368 call_void_hook(inode_invalidate_secctx, inode);
4369}
4370EXPORT_SYMBOL(security_inode_invalidate_secctx);
4371
4372/**
4373 * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4374 * @inode: inode
4375 * @ctx: secctx
4376 * @ctxlen: length of secctx
4377 *
4378 * Notify the security module of what the security context of an inode should
4379 * be. Initializes the incore security context managed by the security module
4380 * for this inode. Example usage: NFS client invokes this hook to initialize
4381 * the security context in its incore inode to the value provided by the server
4382 * for the file when the server returned the file's attributes to the client.
4383 * Must be called with inode->i_mutex locked.
4384 *
4385 * Return: Returns 0 on success, error on failure.
4386 */
4387int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4388{
4389 return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4390}
4391EXPORT_SYMBOL(security_inode_notifysecctx);
4392
4393/**
4394 * security_inode_setsecctx() - Change the security label of an inode
4395 * @dentry: inode
4396 * @ctx: secctx
4397 * @ctxlen: length of secctx
4398 *
4399 * Change the security context of an inode. Updates the incore security
4400 * context managed by the security module and invokes the fs code as needed
4401 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4402 * context. Example usage: NFS server invokes this hook to change the security
4403 * context in its incore inode and on the backing filesystem to a value
4404 * provided by the client on a SETATTR operation. Must be called with
4405 * inode->i_mutex locked.
4406 *
4407 * Return: Returns 0 on success, error on failure.
4408 */
4409int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4410{
4411 return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4412}
4413EXPORT_SYMBOL(security_inode_setsecctx);
4414
4415/**
4416 * security_inode_getsecctx() - Get the security label of an inode
4417 * @inode: inode
4418 * @cp: security context
4419 *
4420 * On success, returns 0 and fills out @cp with the security context
4421 * for the given @inode.
4422 *
4423 * Return: Returns 0 on success, error on failure.
4424 */
4425int security_inode_getsecctx(struct inode *inode, struct lsm_context *cp)
4426{
4427 memset(cp, 0, sizeof(*cp));
4428 return call_int_hook(inode_getsecctx, inode, cp);
4429}
4430EXPORT_SYMBOL(security_inode_getsecctx);
4431
4432#ifdef CONFIG_WATCH_QUEUE
4433/**
4434 * security_post_notification() - Check if a watch notification can be posted
4435 * @w_cred: credentials of the task that set the watch
4436 * @cred: credentials of the task which triggered the watch
4437 * @n: the notification
4438 *
4439 * Check to see if a watch notification can be posted to a particular queue.
4440 *
4441 * Return: Returns 0 if permission is granted.
4442 */
4443int security_post_notification(const struct cred *w_cred,
4444 const struct cred *cred,
4445 struct watch_notification *n)
4446{
4447 return call_int_hook(post_notification, w_cred, cred, n);
4448}
4449#endif /* CONFIG_WATCH_QUEUE */
4450
4451#ifdef CONFIG_KEY_NOTIFICATIONS
4452/**
4453 * security_watch_key() - Check if a task is allowed to watch for key events
4454 * @key: the key to watch
4455 *
4456 * Check to see if a process is allowed to watch for event notifications from
4457 * a key or keyring.
4458 *
4459 * Return: Returns 0 if permission is granted.
4460 */
4461int security_watch_key(struct key *key)
4462{
4463 return call_int_hook(watch_key, key);
4464}
4465#endif /* CONFIG_KEY_NOTIFICATIONS */
4466
4467#ifdef CONFIG_SECURITY_NETWORK
4468/**
4469 * security_netlink_send() - Save info and check if netlink sending is allowed
4470 * @sk: sending socket
4471 * @skb: netlink message
4472 *
4473 * Save security information for a netlink message so that permission checking
4474 * can be performed when the message is processed. The security information
4475 * can be saved using the eff_cap field of the netlink_skb_parms structure.
4476 * Also may be used to provide fine grained control over message transmission.
4477 *
4478 * Return: Returns 0 if the information was successfully saved and message is
4479 * allowed to be transmitted.
4480 */
4481int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4482{
4483 return call_int_hook(netlink_send, sk, skb);
4484}
4485
4486/**
4487 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4488 * @sock: originating sock
4489 * @other: peer sock
4490 * @newsk: new sock
4491 *
4492 * Check permissions before establishing a Unix domain stream connection
4493 * between @sock and @other.
4494 *
4495 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4496 * Linux provides an alternative to the conventional file name space for Unix
4497 * domain sockets. Whereas binding and connecting to sockets in the file name
4498 * space is mediated by the typical file permissions (and caught by the mknod
4499 * and permission hooks in inode_security_ops), binding and connecting to
4500 * sockets in the abstract name space is completely unmediated. Sufficient
4501 * control of Unix domain sockets in the abstract name space isn't possible
4502 * using only the socket layer hooks, since we need to know the actual target
4503 * socket, which is not looked up until we are inside the af_unix code.
4504 *
4505 * Return: Returns 0 if permission is granted.
4506 */
4507int security_unix_stream_connect(struct sock *sock, struct sock *other,
4508 struct sock *newsk)
4509{
4510 return call_int_hook(unix_stream_connect, sock, other, newsk);
4511}
4512EXPORT_SYMBOL(security_unix_stream_connect);
4513
4514/**
4515 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4516 * @sock: originating sock
4517 * @other: peer sock
4518 *
4519 * Check permissions before connecting or sending datagrams from @sock to
4520 * @other.
4521 *
4522 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4523 * Linux provides an alternative to the conventional file name space for Unix
4524 * domain sockets. Whereas binding and connecting to sockets in the file name
4525 * space is mediated by the typical file permissions (and caught by the mknod
4526 * and permission hooks in inode_security_ops), binding and connecting to
4527 * sockets in the abstract name space is completely unmediated. Sufficient
4528 * control of Unix domain sockets in the abstract name space isn't possible
4529 * using only the socket layer hooks, since we need to know the actual target
4530 * socket, which is not looked up until we are inside the af_unix code.
4531 *
4532 * Return: Returns 0 if permission is granted.
4533 */
4534int security_unix_may_send(struct socket *sock, struct socket *other)
4535{
4536 return call_int_hook(unix_may_send, sock, other);
4537}
4538EXPORT_SYMBOL(security_unix_may_send);
4539
4540/**
4541 * security_socket_create() - Check if creating a new socket is allowed
4542 * @family: protocol family
4543 * @type: communications type
4544 * @protocol: requested protocol
4545 * @kern: set to 1 if a kernel socket is requested
4546 *
4547 * Check permissions prior to creating a new socket.
4548 *
4549 * Return: Returns 0 if permission is granted.
4550 */
4551int security_socket_create(int family, int type, int protocol, int kern)
4552{
4553 return call_int_hook(socket_create, family, type, protocol, kern);
4554}
4555
4556/**
4557 * security_socket_post_create() - Initialize a newly created socket
4558 * @sock: socket
4559 * @family: protocol family
4560 * @type: communications type
4561 * @protocol: requested protocol
4562 * @kern: set to 1 if a kernel socket is requested
4563 *
4564 * This hook allows a module to update or allocate a per-socket security
4565 * structure. Note that the security field was not added directly to the socket
4566 * structure, but rather, the socket security information is stored in the
4567 * associated inode. Typically, the inode alloc_security hook will allocate
4568 * and attach security information to SOCK_INODE(sock)->i_security. This hook
4569 * may be used to update the SOCK_INODE(sock)->i_security field with additional
4570 * information that wasn't available when the inode was allocated.
4571 *
4572 * Return: Returns 0 if permission is granted.
4573 */
4574int security_socket_post_create(struct socket *sock, int family,
4575 int type, int protocol, int kern)
4576{
4577 return call_int_hook(socket_post_create, sock, family, type,
4578 protocol, kern);
4579}
4580
4581/**
4582 * security_socket_socketpair() - Check if creating a socketpair is allowed
4583 * @socka: first socket
4584 * @sockb: second socket
4585 *
4586 * Check permissions before creating a fresh pair of sockets.
4587 *
4588 * Return: Returns 0 if permission is granted and the connection was
4589 * established.
4590 */
4591int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4592{
4593 return call_int_hook(socket_socketpair, socka, sockb);
4594}
4595EXPORT_SYMBOL(security_socket_socketpair);
4596
4597/**
4598 * security_socket_bind() - Check if a socket bind operation is allowed
4599 * @sock: socket
4600 * @address: requested bind address
4601 * @addrlen: length of address
4602 *
4603 * Check permission before socket protocol layer bind operation is performed
4604 * and the socket @sock is bound to the address specified in the @address
4605 * parameter.
4606 *
4607 * Return: Returns 0 if permission is granted.
4608 */
4609int security_socket_bind(struct socket *sock,
4610 struct sockaddr *address, int addrlen)
4611{
4612 return call_int_hook(socket_bind, sock, address, addrlen);
4613}
4614
4615/**
4616 * security_socket_connect() - Check if a socket connect operation is allowed
4617 * @sock: socket
4618 * @address: address of remote connection point
4619 * @addrlen: length of address
4620 *
4621 * Check permission before socket protocol layer connect operation attempts to
4622 * connect socket @sock to a remote address, @address.
4623 *
4624 * Return: Returns 0 if permission is granted.
4625 */
4626int security_socket_connect(struct socket *sock,
4627 struct sockaddr *address, int addrlen)
4628{
4629 return call_int_hook(socket_connect, sock, address, addrlen);
4630}
4631
4632/**
4633 * security_socket_listen() - Check if a socket is allowed to listen
4634 * @sock: socket
4635 * @backlog: connection queue size
4636 *
4637 * Check permission before socket protocol layer listen operation.
4638 *
4639 * Return: Returns 0 if permission is granted.
4640 */
4641int security_socket_listen(struct socket *sock, int backlog)
4642{
4643 return call_int_hook(socket_listen, sock, backlog);
4644}
4645
4646/**
4647 * security_socket_accept() - Check if a socket is allowed to accept connections
4648 * @sock: listening socket
4649 * @newsock: newly creation connection socket
4650 *
4651 * Check permission before accepting a new connection. Note that the new
4652 * socket, @newsock, has been created and some information copied to it, but
4653 * the accept operation has not actually been performed.
4654 *
4655 * Return: Returns 0 if permission is granted.
4656 */
4657int security_socket_accept(struct socket *sock, struct socket *newsock)
4658{
4659 return call_int_hook(socket_accept, sock, newsock);
4660}
4661
4662/**
4663 * security_socket_sendmsg() - Check if sending a message is allowed
4664 * @sock: sending socket
4665 * @msg: message to send
4666 * @size: size of message
4667 *
4668 * Check permission before transmitting a message to another socket.
4669 *
4670 * Return: Returns 0 if permission is granted.
4671 */
4672int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4673{
4674 return call_int_hook(socket_sendmsg, sock, msg, size);
4675}
4676
4677/**
4678 * security_socket_recvmsg() - Check if receiving a message is allowed
4679 * @sock: receiving socket
4680 * @msg: message to receive
4681 * @size: size of message
4682 * @flags: operational flags
4683 *
4684 * Check permission before receiving a message from a socket.
4685 *
4686 * Return: Returns 0 if permission is granted.
4687 */
4688int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4689 int size, int flags)
4690{
4691 return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4692}
4693
4694/**
4695 * security_socket_getsockname() - Check if reading the socket addr is allowed
4696 * @sock: socket
4697 *
4698 * Check permission before reading the local address (name) of the socket
4699 * object.
4700 *
4701 * Return: Returns 0 if permission is granted.
4702 */
4703int security_socket_getsockname(struct socket *sock)
4704{
4705 return call_int_hook(socket_getsockname, sock);
4706}
4707
4708/**
4709 * security_socket_getpeername() - Check if reading the peer's addr is allowed
4710 * @sock: socket
4711 *
4712 * Check permission before the remote address (name) of a socket object.
4713 *
4714 * Return: Returns 0 if permission is granted.
4715 */
4716int security_socket_getpeername(struct socket *sock)
4717{
4718 return call_int_hook(socket_getpeername, sock);
4719}
4720
4721/**
4722 * security_socket_getsockopt() - Check if reading a socket option is allowed
4723 * @sock: socket
4724 * @level: option's protocol level
4725 * @optname: option name
4726 *
4727 * Check permissions before retrieving the options associated with socket
4728 * @sock.
4729 *
4730 * Return: Returns 0 if permission is granted.
4731 */
4732int security_socket_getsockopt(struct socket *sock, int level, int optname)
4733{
4734 return call_int_hook(socket_getsockopt, sock, level, optname);
4735}
4736
4737/**
4738 * security_socket_setsockopt() - Check if setting a socket option is allowed
4739 * @sock: socket
4740 * @level: option's protocol level
4741 * @optname: option name
4742 *
4743 * Check permissions before setting the options associated with socket @sock.
4744 *
4745 * Return: Returns 0 if permission is granted.
4746 */
4747int security_socket_setsockopt(struct socket *sock, int level, int optname)
4748{
4749 return call_int_hook(socket_setsockopt, sock, level, optname);
4750}
4751
4752/**
4753 * security_socket_shutdown() - Checks if shutting down the socket is allowed
4754 * @sock: socket
4755 * @how: flag indicating how sends and receives are handled
4756 *
4757 * Checks permission before all or part of a connection on the socket @sock is
4758 * shut down.
4759 *
4760 * Return: Returns 0 if permission is granted.
4761 */
4762int security_socket_shutdown(struct socket *sock, int how)
4763{
4764 return call_int_hook(socket_shutdown, sock, how);
4765}
4766
4767/**
4768 * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4769 * @sk: destination sock
4770 * @skb: incoming packet
4771 *
4772 * Check permissions on incoming network packets. This hook is distinct from
4773 * Netfilter's IP input hooks since it is the first time that the incoming
4774 * sk_buff @skb has been associated with a particular socket, @sk. Must not
4775 * sleep inside this hook because some callers hold spinlocks.
4776 *
4777 * Return: Returns 0 if permission is granted.
4778 */
4779int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4780{
4781 return call_int_hook(socket_sock_rcv_skb, sk, skb);
4782}
4783EXPORT_SYMBOL(security_sock_rcv_skb);
4784
4785/**
4786 * security_socket_getpeersec_stream() - Get the remote peer label
4787 * @sock: socket
4788 * @optval: destination buffer
4789 * @optlen: size of peer label copied into the buffer
4790 * @len: maximum size of the destination buffer
4791 *
4792 * This hook allows the security module to provide peer socket security state
4793 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4794 * For tcp sockets this can be meaningful if the socket is associated with an
4795 * ipsec SA.
4796 *
4797 * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4798 * values.
4799 */
4800int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4801 sockptr_t optlen, unsigned int len)
4802{
4803 return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4804 len);
4805}
4806
4807/**
4808 * security_socket_getpeersec_dgram() - Get the remote peer label
4809 * @sock: socket
4810 * @skb: datagram packet
4811 * @secid: remote peer label secid
4812 *
4813 * This hook allows the security module to provide peer socket security state
4814 * for udp sockets on a per-packet basis to userspace via getsockopt
4815 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4816 * option via getsockopt. It can then retrieve the security state returned by
4817 * this hook for a packet via the SCM_SECURITY ancillary message type.
4818 *
4819 * Return: Returns 0 on success, error on failure.
4820 */
4821int security_socket_getpeersec_dgram(struct socket *sock,
4822 struct sk_buff *skb, u32 *secid)
4823{
4824 return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4825}
4826EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4827
4828/**
4829 * lsm_sock_alloc - allocate a composite sock blob
4830 * @sock: the sock that needs a blob
4831 * @gfp: allocation mode
4832 *
4833 * Allocate the sock blob for all the modules
4834 *
4835 * Returns 0, or -ENOMEM if memory can't be allocated.
4836 */
4837static int lsm_sock_alloc(struct sock *sock, gfp_t gfp)
4838{
4839 return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp);
4840}
4841
4842/**
4843 * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4844 * @sk: sock
4845 * @family: protocol family
4846 * @priority: gfp flags
4847 *
4848 * Allocate and attach a security structure to the sk->sk_security field, which
4849 * is used to copy security attributes between local stream sockets.
4850 *
4851 * Return: Returns 0 on success, error on failure.
4852 */
4853int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4854{
4855 int rc = lsm_sock_alloc(sk, priority);
4856
4857 if (unlikely(rc))
4858 return rc;
4859 rc = call_int_hook(sk_alloc_security, sk, family, priority);
4860 if (unlikely(rc))
4861 security_sk_free(sk);
4862 return rc;
4863}
4864
4865/**
4866 * security_sk_free() - Free the sock's LSM blob
4867 * @sk: sock
4868 *
4869 * Deallocate security structure.
4870 */
4871void security_sk_free(struct sock *sk)
4872{
4873 call_void_hook(sk_free_security, sk);
4874 kfree(sk->sk_security);
4875 sk->sk_security = NULL;
4876}
4877
4878/**
4879 * security_sk_clone() - Clone a sock's LSM state
4880 * @sk: original sock
4881 * @newsk: target sock
4882 *
4883 * Clone/copy security structure.
4884 */
4885void security_sk_clone(const struct sock *sk, struct sock *newsk)
4886{
4887 call_void_hook(sk_clone_security, sk, newsk);
4888}
4889EXPORT_SYMBOL(security_sk_clone);
4890
4891/**
4892 * security_sk_classify_flow() - Set a flow's secid based on socket
4893 * @sk: original socket
4894 * @flic: target flow
4895 *
4896 * Set the target flow's secid to socket's secid.
4897 */
4898void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4899{
4900 call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4901}
4902EXPORT_SYMBOL(security_sk_classify_flow);
4903
4904/**
4905 * security_req_classify_flow() - Set a flow's secid based on request_sock
4906 * @req: request_sock
4907 * @flic: target flow
4908 *
4909 * Sets @flic's secid to @req's secid.
4910 */
4911void security_req_classify_flow(const struct request_sock *req,
4912 struct flowi_common *flic)
4913{
4914 call_void_hook(req_classify_flow, req, flic);
4915}
4916EXPORT_SYMBOL(security_req_classify_flow);
4917
4918/**
4919 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4920 * @sk: sock being grafted
4921 * @parent: target parent socket
4922 *
4923 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4924 * LSM state from @parent.
4925 */
4926void security_sock_graft(struct sock *sk, struct socket *parent)
4927{
4928 call_void_hook(sock_graft, sk, parent);
4929}
4930EXPORT_SYMBOL(security_sock_graft);
4931
4932/**
4933 * security_inet_conn_request() - Set request_sock state using incoming connect
4934 * @sk: parent listening sock
4935 * @skb: incoming connection
4936 * @req: new request_sock
4937 *
4938 * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4939 *
4940 * Return: Returns 0 if permission is granted.
4941 */
4942int security_inet_conn_request(const struct sock *sk,
4943 struct sk_buff *skb, struct request_sock *req)
4944{
4945 return call_int_hook(inet_conn_request, sk, skb, req);
4946}
4947EXPORT_SYMBOL(security_inet_conn_request);
4948
4949/**
4950 * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4951 * @newsk: new sock
4952 * @req: connection request_sock
4953 *
4954 * Set that LSM state of @sock using the LSM state from @req.
4955 */
4956void security_inet_csk_clone(struct sock *newsk,
4957 const struct request_sock *req)
4958{
4959 call_void_hook(inet_csk_clone, newsk, req);
4960}
4961
4962/**
4963 * security_inet_conn_established() - Update sock's LSM state with connection
4964 * @sk: sock
4965 * @skb: connection packet
4966 *
4967 * Update @sock's LSM state to represent a new connection from @skb.
4968 */
4969void security_inet_conn_established(struct sock *sk,
4970 struct sk_buff *skb)
4971{
4972 call_void_hook(inet_conn_established, sk, skb);
4973}
4974EXPORT_SYMBOL(security_inet_conn_established);
4975
4976/**
4977 * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4978 * @secid: new secmark value
4979 *
4980 * Check if the process should be allowed to relabel packets to @secid.
4981 *
4982 * Return: Returns 0 if permission is granted.
4983 */
4984int security_secmark_relabel_packet(u32 secid)
4985{
4986 return call_int_hook(secmark_relabel_packet, secid);
4987}
4988EXPORT_SYMBOL(security_secmark_relabel_packet);
4989
4990/**
4991 * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4992 *
4993 * Tells the LSM to increment the number of secmark labeling rules loaded.
4994 */
4995void security_secmark_refcount_inc(void)
4996{
4997 call_void_hook(secmark_refcount_inc);
4998}
4999EXPORT_SYMBOL(security_secmark_refcount_inc);
5000
5001/**
5002 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
5003 *
5004 * Tells the LSM to decrement the number of secmark labeling rules loaded.
5005 */
5006void security_secmark_refcount_dec(void)
5007{
5008 call_void_hook(secmark_refcount_dec);
5009}
5010EXPORT_SYMBOL(security_secmark_refcount_dec);
5011
5012/**
5013 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
5014 * @security: pointer to the LSM blob
5015 *
5016 * This hook allows a module to allocate a security structure for a TUN device,
5017 * returning the pointer in @security.
5018 *
5019 * Return: Returns a zero on success, negative values on failure.
5020 */
5021int security_tun_dev_alloc_security(void **security)
5022{
5023 int rc;
5024
5025 rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL);
5026 if (rc)
5027 return rc;
5028
5029 rc = call_int_hook(tun_dev_alloc_security, *security);
5030 if (rc) {
5031 kfree(*security);
5032 *security = NULL;
5033 }
5034 return rc;
5035}
5036EXPORT_SYMBOL(security_tun_dev_alloc_security);
5037
5038/**
5039 * security_tun_dev_free_security() - Free a TUN device LSM blob
5040 * @security: LSM blob
5041 *
5042 * This hook allows a module to free the security structure for a TUN device.
5043 */
5044void security_tun_dev_free_security(void *security)
5045{
5046 kfree(security);
5047}
5048EXPORT_SYMBOL(security_tun_dev_free_security);
5049
5050/**
5051 * security_tun_dev_create() - Check if creating a TUN device is allowed
5052 *
5053 * Check permissions prior to creating a new TUN device.
5054 *
5055 * Return: Returns 0 if permission is granted.
5056 */
5057int security_tun_dev_create(void)
5058{
5059 return call_int_hook(tun_dev_create);
5060}
5061EXPORT_SYMBOL(security_tun_dev_create);
5062
5063/**
5064 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
5065 * @security: TUN device LSM blob
5066 *
5067 * Check permissions prior to attaching to a TUN device queue.
5068 *
5069 * Return: Returns 0 if permission is granted.
5070 */
5071int security_tun_dev_attach_queue(void *security)
5072{
5073 return call_int_hook(tun_dev_attach_queue, security);
5074}
5075EXPORT_SYMBOL(security_tun_dev_attach_queue);
5076
5077/**
5078 * security_tun_dev_attach() - Update TUN device LSM state on attach
5079 * @sk: associated sock
5080 * @security: TUN device LSM blob
5081 *
5082 * This hook can be used by the module to update any security state associated
5083 * with the TUN device's sock structure.
5084 *
5085 * Return: Returns 0 if permission is granted.
5086 */
5087int security_tun_dev_attach(struct sock *sk, void *security)
5088{
5089 return call_int_hook(tun_dev_attach, sk, security);
5090}
5091EXPORT_SYMBOL(security_tun_dev_attach);
5092
5093/**
5094 * security_tun_dev_open() - Update TUN device LSM state on open
5095 * @security: TUN device LSM blob
5096 *
5097 * This hook can be used by the module to update any security state associated
5098 * with the TUN device's security structure.
5099 *
5100 * Return: Returns 0 if permission is granted.
5101 */
5102int security_tun_dev_open(void *security)
5103{
5104 return call_int_hook(tun_dev_open, security);
5105}
5106EXPORT_SYMBOL(security_tun_dev_open);
5107
5108/**
5109 * security_sctp_assoc_request() - Update the LSM on a SCTP association req
5110 * @asoc: SCTP association
5111 * @skb: packet requesting the association
5112 *
5113 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
5114 *
5115 * Return: Returns 0 on success, error on failure.
5116 */
5117int security_sctp_assoc_request(struct sctp_association *asoc,
5118 struct sk_buff *skb)
5119{
5120 return call_int_hook(sctp_assoc_request, asoc, skb);
5121}
5122EXPORT_SYMBOL(security_sctp_assoc_request);
5123
5124/**
5125 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
5126 * @sk: socket
5127 * @optname: SCTP option to validate
5128 * @address: list of IP addresses to validate
5129 * @addrlen: length of the address list
5130 *
5131 * Validiate permissions required for each address associated with sock @sk.
5132 * Depending on @optname, the addresses will be treated as either a connect or
5133 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
5134 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
5135 *
5136 * Return: Returns 0 on success, error on failure.
5137 */
5138int security_sctp_bind_connect(struct sock *sk, int optname,
5139 struct sockaddr *address, int addrlen)
5140{
5141 return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
5142}
5143EXPORT_SYMBOL(security_sctp_bind_connect);
5144
5145/**
5146 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
5147 * @asoc: SCTP association
5148 * @sk: original sock
5149 * @newsk: target sock
5150 *
5151 * Called whenever a new socket is created by accept(2) (i.e. a TCP style
5152 * socket) or when a socket is 'peeled off' e.g userspace calls
5153 * sctp_peeloff(3).
5154 */
5155void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5156 struct sock *newsk)
5157{
5158 call_void_hook(sctp_sk_clone, asoc, sk, newsk);
5159}
5160EXPORT_SYMBOL(security_sctp_sk_clone);
5161
5162/**
5163 * security_sctp_assoc_established() - Update LSM state when assoc established
5164 * @asoc: SCTP association
5165 * @skb: packet establishing the association
5166 *
5167 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
5168 * security module.
5169 *
5170 * Return: Returns 0 if permission is granted.
5171 */
5172int security_sctp_assoc_established(struct sctp_association *asoc,
5173 struct sk_buff *skb)
5174{
5175 return call_int_hook(sctp_assoc_established, asoc, skb);
5176}
5177EXPORT_SYMBOL(security_sctp_assoc_established);
5178
5179/**
5180 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
5181 * @sk: the owning MPTCP socket
5182 * @ssk: the new subflow
5183 *
5184 * Update the labeling for the given MPTCP subflow, to match the one of the
5185 * owning MPTCP socket. This hook has to be called after the socket creation and
5186 * initialization via the security_socket_create() and
5187 * security_socket_post_create() LSM hooks.
5188 *
5189 * Return: Returns 0 on success or a negative error code on failure.
5190 */
5191int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5192{
5193 return call_int_hook(mptcp_add_subflow, sk, ssk);
5194}
5195
5196#endif /* CONFIG_SECURITY_NETWORK */
5197
5198#ifdef CONFIG_SECURITY_INFINIBAND
5199/**
5200 * security_ib_pkey_access() - Check if access to an IB pkey is allowed
5201 * @sec: LSM blob
5202 * @subnet_prefix: subnet prefix of the port
5203 * @pkey: IB pkey
5204 *
5205 * Check permission to access a pkey when modifying a QP.
5206 *
5207 * Return: Returns 0 if permission is granted.
5208 */
5209int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
5210{
5211 return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
5212}
5213EXPORT_SYMBOL(security_ib_pkey_access);
5214
5215/**
5216 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5217 * @sec: LSM blob
5218 * @dev_name: IB device name
5219 * @port_num: port number
5220 *
5221 * Check permissions to send and receive SMPs on a end port.
5222 *
5223 * Return: Returns 0 if permission is granted.
5224 */
5225int security_ib_endport_manage_subnet(void *sec,
5226 const char *dev_name, u8 port_num)
5227{
5228 return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5229}
5230EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5231
5232/**
5233 * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5234 * @sec: LSM blob
5235 *
5236 * Allocate a security structure for Infiniband objects.
5237 *
5238 * Return: Returns 0 on success, non-zero on failure.
5239 */
5240int security_ib_alloc_security(void **sec)
5241{
5242 int rc;
5243
5244 rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL);
5245 if (rc)
5246 return rc;
5247
5248 rc = call_int_hook(ib_alloc_security, *sec);
5249 if (rc) {
5250 kfree(*sec);
5251 *sec = NULL;
5252 }
5253 return rc;
5254}
5255EXPORT_SYMBOL(security_ib_alloc_security);
5256
5257/**
5258 * security_ib_free_security() - Free an Infiniband LSM blob
5259 * @sec: LSM blob
5260 *
5261 * Deallocate an Infiniband security structure.
5262 */
5263void security_ib_free_security(void *sec)
5264{
5265 kfree(sec);
5266}
5267EXPORT_SYMBOL(security_ib_free_security);
5268#endif /* CONFIG_SECURITY_INFINIBAND */
5269
5270#ifdef CONFIG_SECURITY_NETWORK_XFRM
5271/**
5272 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5273 * @ctxp: xfrm security context being added to the SPD
5274 * @sec_ctx: security label provided by userspace
5275 * @gfp: gfp flags
5276 *
5277 * Allocate a security structure to the xp->security field; the security field
5278 * is initialized to NULL when the xfrm_policy is allocated.
5279 *
5280 * Return: Return 0 if operation was successful.
5281 */
5282int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5283 struct xfrm_user_sec_ctx *sec_ctx,
5284 gfp_t gfp)
5285{
5286 return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5287}
5288EXPORT_SYMBOL(security_xfrm_policy_alloc);
5289
5290/**
5291 * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5292 * @old_ctx: xfrm security context
5293 * @new_ctxp: target xfrm security context
5294 *
5295 * Allocate a security structure in new_ctxp that contains the information from
5296 * the old_ctx structure.
5297 *
5298 * Return: Return 0 if operation was successful.
5299 */
5300int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5301 struct xfrm_sec_ctx **new_ctxp)
5302{
5303 return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5304}
5305
5306/**
5307 * security_xfrm_policy_free() - Free a xfrm security context
5308 * @ctx: xfrm security context
5309 *
5310 * Free LSM resources associated with @ctx.
5311 */
5312void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5313{
5314 call_void_hook(xfrm_policy_free_security, ctx);
5315}
5316EXPORT_SYMBOL(security_xfrm_policy_free);
5317
5318/**
5319 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5320 * @ctx: xfrm security context
5321 *
5322 * Authorize deletion of a SPD entry.
5323 *
5324 * Return: Returns 0 if permission is granted.
5325 */
5326int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5327{
5328 return call_int_hook(xfrm_policy_delete_security, ctx);
5329}
5330
5331/**
5332 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5333 * @x: xfrm state being added to the SAD
5334 * @sec_ctx: security label provided by userspace
5335 *
5336 * Allocate a security structure to the @x->security field; the security field
5337 * is initialized to NULL when the xfrm_state is allocated. Set the context to
5338 * correspond to @sec_ctx.
5339 *
5340 * Return: Return 0 if operation was successful.
5341 */
5342int security_xfrm_state_alloc(struct xfrm_state *x,
5343 struct xfrm_user_sec_ctx *sec_ctx)
5344{
5345 return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5346}
5347EXPORT_SYMBOL(security_xfrm_state_alloc);
5348
5349/**
5350 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5351 * @x: xfrm state being added to the SAD
5352 * @polsec: associated policy's security context
5353 * @secid: secid from the flow
5354 *
5355 * Allocate a security structure to the x->security field; the security field
5356 * is initialized to NULL when the xfrm_state is allocated. Set the context to
5357 * correspond to secid.
5358 *
5359 * Return: Returns 0 if operation was successful.
5360 */
5361int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5362 struct xfrm_sec_ctx *polsec, u32 secid)
5363{
5364 return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5365}
5366
5367/**
5368 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5369 * @x: xfrm state
5370 *
5371 * Authorize deletion of x->security.
5372 *
5373 * Return: Returns 0 if permission is granted.
5374 */
5375int security_xfrm_state_delete(struct xfrm_state *x)
5376{
5377 return call_int_hook(xfrm_state_delete_security, x);
5378}
5379EXPORT_SYMBOL(security_xfrm_state_delete);
5380
5381/**
5382 * security_xfrm_state_free() - Free a xfrm state
5383 * @x: xfrm state
5384 *
5385 * Deallocate x->security.
5386 */
5387void security_xfrm_state_free(struct xfrm_state *x)
5388{
5389 call_void_hook(xfrm_state_free_security, x);
5390}
5391
5392/**
5393 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5394 * @ctx: target xfrm security context
5395 * @fl_secid: flow secid used to authorize access
5396 *
5397 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5398 * packet. The hook is called when selecting either a per-socket policy or a
5399 * generic xfrm policy.
5400 *
5401 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5402 * other errors.
5403 */
5404int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5405{
5406 return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5407}
5408
5409/**
5410 * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5411 * @x: xfrm state to match
5412 * @xp: xfrm policy to check for a match
5413 * @flic: flow to check for a match.
5414 *
5415 * Check @xp and @flic for a match with @x.
5416 *
5417 * Return: Returns 1 if there is a match.
5418 */
5419int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5420 struct xfrm_policy *xp,
5421 const struct flowi_common *flic)
5422{
5423 struct lsm_static_call *scall;
5424 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5425
5426 /*
5427 * Since this function is expected to return 0 or 1, the judgment
5428 * becomes difficult if multiple LSMs supply this call. Fortunately,
5429 * we can use the first LSM's judgment because currently only SELinux
5430 * supplies this call.
5431 *
5432 * For speed optimization, we explicitly break the loop rather than
5433 * using the macro
5434 */
5435 lsm_for_each_hook(scall, xfrm_state_pol_flow_match) {
5436 rc = scall->hl->hook.xfrm_state_pol_flow_match(x, xp, flic);
5437 break;
5438 }
5439 return rc;
5440}
5441
5442/**
5443 * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5444 * @skb: xfrm packet
5445 * @secid: secid
5446 *
5447 * Decode the packet in @skb and return the security label in @secid.
5448 *
5449 * Return: Return 0 if all xfrms used have the same secid.
5450 */
5451int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5452{
5453 return call_int_hook(xfrm_decode_session, skb, secid, 1);
5454}
5455
5456void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5457{
5458 int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5459 0);
5460
5461 BUG_ON(rc);
5462}
5463EXPORT_SYMBOL(security_skb_classify_flow);
5464#endif /* CONFIG_SECURITY_NETWORK_XFRM */
5465
5466#ifdef CONFIG_KEYS
5467/**
5468 * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5469 * @key: key
5470 * @cred: credentials
5471 * @flags: allocation flags
5472 *
5473 * Permit allocation of a key and assign security data. Note that key does not
5474 * have a serial number assigned at this point.
5475 *
5476 * Return: Return 0 if permission is granted, -ve error otherwise.
5477 */
5478int security_key_alloc(struct key *key, const struct cred *cred,
5479 unsigned long flags)
5480{
5481 int rc = lsm_key_alloc(key);
5482
5483 if (unlikely(rc))
5484 return rc;
5485 rc = call_int_hook(key_alloc, key, cred, flags);
5486 if (unlikely(rc))
5487 security_key_free(key);
5488 return rc;
5489}
5490
5491/**
5492 * security_key_free() - Free a kernel key LSM blob
5493 * @key: key
5494 *
5495 * Notification of destruction; free security data.
5496 */
5497void security_key_free(struct key *key)
5498{
5499 kfree(key->security);
5500 key->security = NULL;
5501}
5502
5503/**
5504 * security_key_permission() - Check if a kernel key operation is allowed
5505 * @key_ref: key reference
5506 * @cred: credentials of actor requesting access
5507 * @need_perm: requested permissions
5508 *
5509 * See whether a specific operational right is granted to a process on a key.
5510 *
5511 * Return: Return 0 if permission is granted, -ve error otherwise.
5512 */
5513int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5514 enum key_need_perm need_perm)
5515{
5516 return call_int_hook(key_permission, key_ref, cred, need_perm);
5517}
5518
5519/**
5520 * security_key_getsecurity() - Get the key's security label
5521 * @key: key
5522 * @buffer: security label buffer
5523 *
5524 * Get a textual representation of the security context attached to a key for
5525 * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the
5526 * storage for the NUL-terminated string and the caller should free it.
5527 *
5528 * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5529 * an error occurs. May also return 0 (and a NULL buffer pointer) if
5530 * there is no security label assigned to the key.
5531 */
5532int security_key_getsecurity(struct key *key, char **buffer)
5533{
5534 *buffer = NULL;
5535 return call_int_hook(key_getsecurity, key, buffer);
5536}
5537
5538/**
5539 * security_key_post_create_or_update() - Notification of key create or update
5540 * @keyring: keyring to which the key is linked to
5541 * @key: created or updated key
5542 * @payload: data used to instantiate or update the key
5543 * @payload_len: length of payload
5544 * @flags: key flags
5545 * @create: flag indicating whether the key was created or updated
5546 *
5547 * Notify the caller of a key creation or update.
5548 */
5549void security_key_post_create_or_update(struct key *keyring, struct key *key,
5550 const void *payload, size_t payload_len,
5551 unsigned long flags, bool create)
5552{
5553 call_void_hook(key_post_create_or_update, keyring, key, payload,
5554 payload_len, flags, create);
5555}
5556#endif /* CONFIG_KEYS */
5557
5558#ifdef CONFIG_AUDIT
5559/**
5560 * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5561 * @field: audit action
5562 * @op: rule operator
5563 * @rulestr: rule context
5564 * @lsmrule: receive buffer for audit rule struct
5565 * @gfp: GFP flag used for kmalloc
5566 *
5567 * Allocate and initialize an LSM audit rule structure.
5568 *
5569 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5570 * an invalid rule.
5571 */
5572int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5573 gfp_t gfp)
5574{
5575 return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
5576}
5577
5578/**
5579 * security_audit_rule_known() - Check if an audit rule contains LSM fields
5580 * @krule: audit rule
5581 *
5582 * Specifies whether given @krule contains any fields related to the current
5583 * LSM.
5584 *
5585 * Return: Returns 1 in case of relation found, 0 otherwise.
5586 */
5587int security_audit_rule_known(struct audit_krule *krule)
5588{
5589 return call_int_hook(audit_rule_known, krule);
5590}
5591
5592/**
5593 * security_audit_rule_free() - Free an LSM audit rule struct
5594 * @lsmrule: audit rule struct
5595 *
5596 * Deallocate the LSM audit rule structure previously allocated by
5597 * audit_rule_init().
5598 */
5599void security_audit_rule_free(void *lsmrule)
5600{
5601 call_void_hook(audit_rule_free, lsmrule);
5602}
5603
5604/**
5605 * security_audit_rule_match() - Check if a label matches an audit rule
5606 * @prop: security label
5607 * @field: LSM audit field
5608 * @op: matching operator
5609 * @lsmrule: audit rule
5610 *
5611 * Determine if given @secid matches a rule previously approved by
5612 * security_audit_rule_known().
5613 *
5614 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5615 * failure.
5616 */
5617int security_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op,
5618 void *lsmrule)
5619{
5620 return call_int_hook(audit_rule_match, prop, field, op, lsmrule);
5621}
5622#endif /* CONFIG_AUDIT */
5623
5624#ifdef CONFIG_BPF_SYSCALL
5625/**
5626 * security_bpf() - Check if the bpf syscall operation is allowed
5627 * @cmd: command
5628 * @attr: bpf attribute
5629 * @size: size
5630 * @kernel: whether or not call originated from kernel
5631 *
5632 * Do a initial check for all bpf syscalls after the attribute is copied into
5633 * the kernel. The actual security module can implement their own rules to
5634 * check the specific cmd they need.
5635 *
5636 * Return: Returns 0 if permission is granted.
5637 */
5638int security_bpf(int cmd, union bpf_attr *attr, unsigned int size, bool kernel)
5639{
5640 return call_int_hook(bpf, cmd, attr, size, kernel);
5641}
5642
5643/**
5644 * security_bpf_map() - Check if access to a bpf map is allowed
5645 * @map: bpf map
5646 * @fmode: mode
5647 *
5648 * Do a check when the kernel generates and returns a file descriptor for eBPF
5649 * maps.
5650 *
5651 * Return: Returns 0 if permission is granted.
5652 */
5653int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5654{
5655 return call_int_hook(bpf_map, map, fmode);
5656}
5657
5658/**
5659 * security_bpf_prog() - Check if access to a bpf program is allowed
5660 * @prog: bpf program
5661 *
5662 * Do a check when the kernel generates and returns a file descriptor for eBPF
5663 * programs.
5664 *
5665 * Return: Returns 0 if permission is granted.
5666 */
5667int security_bpf_prog(struct bpf_prog *prog)
5668{
5669 return call_int_hook(bpf_prog, prog);
5670}
5671
5672/**
5673 * security_bpf_map_create() - Check if BPF map creation is allowed
5674 * @map: BPF map object
5675 * @attr: BPF syscall attributes used to create BPF map
5676 * @token: BPF token used to grant user access
5677 * @kernel: whether or not call originated from kernel
5678 *
5679 * Do a check when the kernel creates a new BPF map. This is also the
5680 * point where LSM blob is allocated for LSMs that need them.
5681 *
5682 * Return: Returns 0 on success, error on failure.
5683 */
5684int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5685 struct bpf_token *token, bool kernel)
5686{
5687 return call_int_hook(bpf_map_create, map, attr, token, kernel);
5688}
5689
5690/**
5691 * security_bpf_prog_load() - Check if loading of BPF program is allowed
5692 * @prog: BPF program object
5693 * @attr: BPF syscall attributes used to create BPF program
5694 * @token: BPF token used to grant user access to BPF subsystem
5695 * @kernel: whether or not call originated from kernel
5696 *
5697 * Perform an access control check when the kernel loads a BPF program and
5698 * allocates associated BPF program object. This hook is also responsible for
5699 * allocating any required LSM state for the BPF program.
5700 *
5701 * Return: Returns 0 on success, error on failure.
5702 */
5703int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5704 struct bpf_token *token, bool kernel)
5705{
5706 return call_int_hook(bpf_prog_load, prog, attr, token, kernel);
5707}
5708
5709/**
5710 * security_bpf_token_create() - Check if creating of BPF token is allowed
5711 * @token: BPF token object
5712 * @attr: BPF syscall attributes used to create BPF token
5713 * @path: path pointing to BPF FS mount point from which BPF token is created
5714 *
5715 * Do a check when the kernel instantiates a new BPF token object from BPF FS
5716 * instance. This is also the point where LSM blob can be allocated for LSMs.
5717 *
5718 * Return: Returns 0 on success, error on failure.
5719 */
5720int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5721 const struct path *path)
5722{
5723 return call_int_hook(bpf_token_create, token, attr, path);
5724}
5725
5726/**
5727 * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5728 * requested BPF syscall command
5729 * @token: BPF token object
5730 * @cmd: BPF syscall command requested to be delegated by BPF token
5731 *
5732 * Do a check when the kernel decides whether provided BPF token should allow
5733 * delegation of requested BPF syscall command.
5734 *
5735 * Return: Returns 0 on success, error on failure.
5736 */
5737int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5738{
5739 return call_int_hook(bpf_token_cmd, token, cmd);
5740}
5741
5742/**
5743 * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5744 * requested BPF-related capability
5745 * @token: BPF token object
5746 * @cap: capabilities requested to be delegated by BPF token
5747 *
5748 * Do a check when the kernel decides whether provided BPF token should allow
5749 * delegation of requested BPF-related capabilities.
5750 *
5751 * Return: Returns 0 on success, error on failure.
5752 */
5753int security_bpf_token_capable(const struct bpf_token *token, int cap)
5754{
5755 return call_int_hook(bpf_token_capable, token, cap);
5756}
5757
5758/**
5759 * security_bpf_map_free() - Free a bpf map's LSM blob
5760 * @map: bpf map
5761 *
5762 * Clean up the security information stored inside bpf map.
5763 */
5764void security_bpf_map_free(struct bpf_map *map)
5765{
5766 call_void_hook(bpf_map_free, map);
5767}
5768
5769/**
5770 * security_bpf_prog_free() - Free a BPF program's LSM blob
5771 * @prog: BPF program struct
5772 *
5773 * Clean up the security information stored inside BPF program.
5774 */
5775void security_bpf_prog_free(struct bpf_prog *prog)
5776{
5777 call_void_hook(bpf_prog_free, prog);
5778}
5779
5780/**
5781 * security_bpf_token_free() - Free a BPF token's LSM blob
5782 * @token: BPF token struct
5783 *
5784 * Clean up the security information stored inside BPF token.
5785 */
5786void security_bpf_token_free(struct bpf_token *token)
5787{
5788 call_void_hook(bpf_token_free, token);
5789}
5790#endif /* CONFIG_BPF_SYSCALL */
5791
5792/**
5793 * security_locked_down() - Check if a kernel feature is allowed
5794 * @what: requested kernel feature
5795 *
5796 * Determine whether a kernel feature that potentially enables arbitrary code
5797 * execution in kernel space should be permitted.
5798 *
5799 * Return: Returns 0 if permission is granted.
5800 */
5801int security_locked_down(enum lockdown_reason what)
5802{
5803 return call_int_hook(locked_down, what);
5804}
5805EXPORT_SYMBOL(security_locked_down);
5806
5807/**
5808 * security_bdev_alloc() - Allocate a block device LSM blob
5809 * @bdev: block device
5810 *
5811 * Allocate and attach a security structure to @bdev->bd_security. The
5812 * security field is initialized to NULL when the bdev structure is
5813 * allocated.
5814 *
5815 * Return: Return 0 if operation was successful.
5816 */
5817int security_bdev_alloc(struct block_device *bdev)
5818{
5819 int rc = 0;
5820
5821 rc = lsm_bdev_alloc(bdev);
5822 if (unlikely(rc))
5823 return rc;
5824
5825 rc = call_int_hook(bdev_alloc_security, bdev);
5826 if (unlikely(rc))
5827 security_bdev_free(bdev);
5828
5829 return rc;
5830}
5831EXPORT_SYMBOL(security_bdev_alloc);
5832
5833/**
5834 * security_bdev_free() - Free a block device's LSM blob
5835 * @bdev: block device
5836 *
5837 * Deallocate the bdev security structure and set @bdev->bd_security to NULL.
5838 */
5839void security_bdev_free(struct block_device *bdev)
5840{
5841 if (!bdev->bd_security)
5842 return;
5843
5844 call_void_hook(bdev_free_security, bdev);
5845
5846 kfree(bdev->bd_security);
5847 bdev->bd_security = NULL;
5848}
5849EXPORT_SYMBOL(security_bdev_free);
5850
5851/**
5852 * security_bdev_setintegrity() - Set the device's integrity data
5853 * @bdev: block device
5854 * @type: type of integrity, e.g. hash digest, signature, etc
5855 * @value: the integrity value
5856 * @size: size of the integrity value
5857 *
5858 * Register a verified integrity measurement of a bdev with LSMs.
5859 * LSMs should free the previously saved data if @value is NULL.
5860 * Please note that the new hook should be invoked every time the security
5861 * information is updated to keep these data current. For example, in dm-verity,
5862 * if the mapping table is reloaded and configured to use a different dm-verity
5863 * target with a new roothash and signing information, the previously stored
5864 * data in the LSM blob will become obsolete. It is crucial to re-invoke the
5865 * hook to refresh these data and ensure they are up to date. This necessity
5866 * arises from the design of device-mapper, where a device-mapper device is
5867 * first created, and then targets are subsequently loaded into it. These
5868 * targets can be modified multiple times during the device's lifetime.
5869 * Therefore, while the LSM blob is allocated during the creation of the block
5870 * device, its actual contents are not initialized at this stage and can change
5871 * substantially over time. This includes alterations from data that the LSMs
5872 * 'trusts' to those they do not, making it essential to handle these changes
5873 * correctly. Failure to address this dynamic aspect could potentially allow
5874 * for bypassing LSM checks.
5875 *
5876 * Return: Returns 0 on success, negative values on failure.
5877 */
5878int security_bdev_setintegrity(struct block_device *bdev,
5879 enum lsm_integrity_type type, const void *value,
5880 size_t size)
5881{
5882 return call_int_hook(bdev_setintegrity, bdev, type, value, size);
5883}
5884EXPORT_SYMBOL(security_bdev_setintegrity);
5885
5886#ifdef CONFIG_PERF_EVENTS
5887/**
5888 * security_perf_event_open() - Check if a perf event open is allowed
5889 * @type: type of event
5890 *
5891 * Check whether the @type of perf_event_open syscall is allowed.
5892 *
5893 * Return: Returns 0 if permission is granted.
5894 */
5895int security_perf_event_open(int type)
5896{
5897 return call_int_hook(perf_event_open, type);
5898}
5899
5900/**
5901 * security_perf_event_alloc() - Allocate a perf event LSM blob
5902 * @event: perf event
5903 *
5904 * Allocate and save perf_event security info.
5905 *
5906 * Return: Returns 0 on success, error on failure.
5907 */
5908int security_perf_event_alloc(struct perf_event *event)
5909{
5910 int rc;
5911
5912 rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event,
5913 GFP_KERNEL);
5914 if (rc)
5915 return rc;
5916
5917 rc = call_int_hook(perf_event_alloc, event);
5918 if (rc) {
5919 kfree(event->security);
5920 event->security = NULL;
5921 }
5922 return rc;
5923}
5924
5925/**
5926 * security_perf_event_free() - Free a perf event LSM blob
5927 * @event: perf event
5928 *
5929 * Release (free) perf_event security info.
5930 */
5931void security_perf_event_free(struct perf_event *event)
5932{
5933 kfree(event->security);
5934 event->security = NULL;
5935}
5936
5937/**
5938 * security_perf_event_read() - Check if reading a perf event label is allowed
5939 * @event: perf event
5940 *
5941 * Read perf_event security info if allowed.
5942 *
5943 * Return: Returns 0 if permission is granted.
5944 */
5945int security_perf_event_read(struct perf_event *event)
5946{
5947 return call_int_hook(perf_event_read, event);
5948}
5949
5950/**
5951 * security_perf_event_write() - Check if writing a perf event label is allowed
5952 * @event: perf event
5953 *
5954 * Write perf_event security info if allowed.
5955 *
5956 * Return: Returns 0 if permission is granted.
5957 */
5958int security_perf_event_write(struct perf_event *event)
5959{
5960 return call_int_hook(perf_event_write, event);
5961}
5962#endif /* CONFIG_PERF_EVENTS */
5963
5964#ifdef CONFIG_IO_URING
5965/**
5966 * security_uring_override_creds() - Check if overriding creds is allowed
5967 * @new: new credentials
5968 *
5969 * Check if the current task, executing an io_uring operation, is allowed to
5970 * override it's credentials with @new.
5971 *
5972 * Return: Returns 0 if permission is granted.
5973 */
5974int security_uring_override_creds(const struct cred *new)
5975{
5976 return call_int_hook(uring_override_creds, new);
5977}
5978
5979/**
5980 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5981 *
5982 * Check whether the current task is allowed to spawn a io_uring polling thread
5983 * (IORING_SETUP_SQPOLL).
5984 *
5985 * Return: Returns 0 if permission is granted.
5986 */
5987int security_uring_sqpoll(void)
5988{
5989 return call_int_hook(uring_sqpoll);
5990}
5991
5992/**
5993 * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5994 * @ioucmd: command
5995 *
5996 * Check whether the file_operations uring_cmd is allowed to run.
5997 *
5998 * Return: Returns 0 if permission is granted.
5999 */
6000int security_uring_cmd(struct io_uring_cmd *ioucmd)
6001{
6002 return call_int_hook(uring_cmd, ioucmd);
6003}
6004
6005/**
6006 * security_uring_allowed() - Check if io_uring_setup() is allowed
6007 *
6008 * Check whether the current task is allowed to call io_uring_setup().
6009 *
6010 * Return: Returns 0 if permission is granted.
6011 */
6012int security_uring_allowed(void)
6013{
6014 return call_int_hook(uring_allowed);
6015}
6016#endif /* CONFIG_IO_URING */
6017
6018/**
6019 * security_initramfs_populated() - Notify LSMs that initramfs has been loaded
6020 *
6021 * Tells the LSMs the initramfs has been unpacked into the rootfs.
6022 */
6023void security_initramfs_populated(void)
6024{
6025 call_void_hook(initramfs_populated);
6026}