]>
Commit | Line | Data |
---|---|---|
1 | /* SPDX-License-Identifier: LGPL-2.1-or-later */ | |
2 | ||
3 | #include <fnmatch.h> | |
4 | #include <pthread.h> | |
5 | #include <unistd.h> | |
6 | #if HAVE_VALGRIND_VALGRIND_H | |
7 | # include <valgrind/valgrind.h> | |
8 | #endif | |
9 | ||
10 | #include "alloc-util.h" | |
11 | #include "extract-word.h" | |
12 | #include "hashmap.h" | |
13 | #include "log.h" | |
14 | #include "logarithm.h" | |
15 | #include "memory-util.h" | |
16 | #include "mempool.h" | |
17 | #include "process-util.h" | |
18 | #include "random-util.h" | |
19 | #include "set.h" | |
20 | #include "siphash24.h" | |
21 | #include "sort-util.h" | |
22 | #include "string-util.h" | |
23 | #include "strv.h" | |
24 | ||
25 | #if ENABLE_DEBUG_HASHMAP | |
26 | #include "list.h" | |
27 | #endif | |
28 | ||
29 | /* | |
30 | * Implementation of hashmaps. | |
31 | * Addressing: open | |
32 | * - uses less RAM compared to closed addressing (chaining), because | |
33 | * our entries are small (especially in Sets, which tend to contain | |
34 | * the majority of entries in systemd). | |
35 | * Collision resolution: Robin Hood | |
36 | * - tends to equalize displacement of entries from their optimal buckets. | |
37 | * Probe sequence: linear | |
38 | * - though theoretically worse than random probing/uniform hashing/double | |
39 | * hashing, it is good for cache locality. | |
40 | * | |
41 | * References: | |
42 | * Celis, P. 1986. Robin Hood Hashing. | |
43 | * Ph.D. Dissertation. University of Waterloo, Waterloo, Ont., Canada, Canada. | |
44 | * https://cs.uwaterloo.ca/research/tr/1986/CS-86-14.pdf | |
45 | * - The results are derived for random probing. Suggests deletion with | |
46 | * tombstones and two mean-centered search methods. None of that works | |
47 | * well for linear probing. | |
48 | * | |
49 | * Janson, S. 2005. Individual displacements for linear probing hashing with different insertion policies. | |
50 | * ACM Trans. Algorithms 1, 2 (October 2005), 177-213. | |
51 | * DOI=10.1145/1103963.1103964 http://doi.acm.org/10.1145/1103963.1103964 | |
52 | * http://www.math.uu.se/~svante/papers/sj157.pdf | |
53 | * - Applies to Robin Hood with linear probing. Contains remarks on | |
54 | * the unsuitability of mean-centered search with linear probing. | |
55 | * | |
56 | * Viola, A. 2005. Exact distribution of individual displacements in linear probing hashing. | |
57 | * ACM Trans. Algorithms 1, 2 (October 2005), 214-242. | |
58 | * DOI=10.1145/1103963.1103965 http://doi.acm.org/10.1145/1103963.1103965 | |
59 | * - Similar to Janson. Note that Viola writes about C_{m,n} (number of probes | |
60 | * in a successful search), and Janson writes about displacement. C = d + 1. | |
61 | * | |
62 | * Goossaert, E. 2013. Robin Hood hashing: backward shift deletion. | |
63 | * http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/ | |
64 | * - Explanation of backward shift deletion with pictures. | |
65 | * | |
66 | * Khuong, P. 2013. The Other Robin Hood Hashing. | |
67 | * http://www.pvk.ca/Blog/2013/11/26/the-other-robin-hood-hashing/ | |
68 | * - Short summary of random vs. linear probing, and tombstones vs. backward shift. | |
69 | */ | |
70 | ||
71 | /* | |
72 | * XXX Ideas for improvement: | |
73 | * For unordered hashmaps, randomize iteration order, similarly to Perl: | |
74 | * http://blog.booking.com/hardening-perls-hash-function.html | |
75 | */ | |
76 | ||
77 | /* INV_KEEP_FREE = 1 / (1 - max_load_factor) | |
78 | * e.g. 1 / (1 - 0.8) = 5 ... keep one fifth of the buckets free. */ | |
79 | #define INV_KEEP_FREE 5U | |
80 | ||
81 | /* Fields common to entries of all hashmap/set types */ | |
82 | struct hashmap_base_entry { | |
83 | const void *key; | |
84 | }; | |
85 | ||
86 | /* Entry types for specific hashmap/set types | |
87 | * hashmap_base_entry must be at the beginning of each entry struct. */ | |
88 | ||
89 | struct plain_hashmap_entry { | |
90 | struct hashmap_base_entry b; | |
91 | void *value; | |
92 | }; | |
93 | ||
94 | struct ordered_hashmap_entry { | |
95 | struct plain_hashmap_entry p; | |
96 | unsigned iterate_next, iterate_previous; | |
97 | }; | |
98 | ||
99 | struct set_entry { | |
100 | struct hashmap_base_entry b; | |
101 | }; | |
102 | ||
103 | /* In several functions it is advantageous to have the hash table extended | |
104 | * virtually by a couple of additional buckets. We reserve special index values | |
105 | * for these "swap" buckets. */ | |
106 | #define _IDX_SWAP_BEGIN (UINT_MAX - 3) | |
107 | #define IDX_PUT (_IDX_SWAP_BEGIN + 0) | |
108 | #define IDX_TMP (_IDX_SWAP_BEGIN + 1) | |
109 | #define _IDX_SWAP_END (_IDX_SWAP_BEGIN + 2) | |
110 | ||
111 | #define IDX_FIRST (UINT_MAX - 1) /* special index for freshly initialized iterators */ | |
112 | #define IDX_NIL UINT_MAX /* special index value meaning "none" or "end" */ | |
113 | ||
114 | assert_cc(IDX_FIRST == _IDX_SWAP_END); | |
115 | assert_cc(IDX_FIRST == _IDX_ITERATOR_FIRST); | |
116 | ||
117 | /* Storage space for the "swap" buckets. | |
118 | * All entry types can fit into an ordered_hashmap_entry. */ | |
119 | struct swap_entries { | |
120 | struct ordered_hashmap_entry e[_IDX_SWAP_END - _IDX_SWAP_BEGIN]; | |
121 | }; | |
122 | ||
123 | /* Distance from Initial Bucket */ | |
124 | typedef uint8_t dib_raw_t; | |
125 | #define DIB_RAW_OVERFLOW ((dib_raw_t)0xfdU) /* indicates DIB value is greater than representable */ | |
126 | #define DIB_RAW_REHASH ((dib_raw_t)0xfeU) /* entry yet to be rehashed during in-place resize */ | |
127 | #define DIB_RAW_FREE ((dib_raw_t)0xffU) /* a free bucket */ | |
128 | #define DIB_RAW_INIT ((char)DIB_RAW_FREE) /* a byte to memset a DIB store with when initializing */ | |
129 | ||
130 | #define DIB_FREE UINT_MAX | |
131 | ||
132 | #if ENABLE_DEBUG_HASHMAP | |
133 | struct hashmap_debug_info { | |
134 | LIST_FIELDS(struct hashmap_debug_info, debug_list); | |
135 | unsigned max_entries; /* high watermark of n_entries */ | |
136 | ||
137 | /* fields to detect modification while iterating */ | |
138 | unsigned put_count; /* counts puts into the hashmap */ | |
139 | unsigned rem_count; /* counts removals from hashmap */ | |
140 | unsigned last_rem_idx; /* remembers last removal index */ | |
141 | }; | |
142 | ||
143 | /* Tracks all existing hashmaps. Get at it from gdb. See sd_dump_hashmaps.py */ | |
144 | static LIST_HEAD(struct hashmap_debug_info, hashmap_debug_list); | |
145 | static pthread_mutex_t hashmap_debug_list_mutex = PTHREAD_MUTEX_INITIALIZER; | |
146 | #endif | |
147 | ||
148 | enum HashmapType { | |
149 | HASHMAP_TYPE_PLAIN, | |
150 | HASHMAP_TYPE_ORDERED, | |
151 | HASHMAP_TYPE_SET, | |
152 | _HASHMAP_TYPE_MAX | |
153 | }; | |
154 | ||
155 | struct _packed_ indirect_storage { | |
156 | void *storage; /* where buckets and DIBs are stored */ | |
157 | uint8_t hash_key[HASH_KEY_SIZE]; /* hash key; changes during resize */ | |
158 | ||
159 | unsigned n_entries; /* number of stored entries */ | |
160 | unsigned n_buckets; /* number of buckets */ | |
161 | ||
162 | unsigned idx_lowest_entry; /* Index below which all buckets are free. | |
163 | Makes "while (hashmap_steal_first())" loops | |
164 | O(n) instead of O(n^2) for unordered hashmaps. */ | |
165 | uint8_t _pad[3]; /* padding for the whole HashmapBase */ | |
166 | /* The bitfields in HashmapBase complete the alignment of the whole thing. */ | |
167 | }; | |
168 | ||
169 | struct direct_storage { | |
170 | /* This gives us 39 bytes on 64-bit, or 35 bytes on 32-bit. | |
171 | * That's room for 4 set_entries + 4 DIB bytes + 3 unused bytes on 64-bit, | |
172 | * or 7 set_entries + 7 DIB bytes + 0 unused bytes on 32-bit. */ | |
173 | uint8_t storage[sizeof(struct indirect_storage)]; | |
174 | }; | |
175 | ||
176 | #define DIRECT_BUCKETS(entry_t) \ | |
177 | (sizeof(struct direct_storage) / (sizeof(entry_t) + sizeof(dib_raw_t))) | |
178 | ||
179 | /* We should be able to store at least one entry directly. */ | |
180 | assert_cc(DIRECT_BUCKETS(struct ordered_hashmap_entry) >= 1); | |
181 | ||
182 | /* We have 3 bits for n_direct_entries. */ | |
183 | assert_cc(DIRECT_BUCKETS(struct set_entry) < (1 << 3)); | |
184 | ||
185 | /* Hashmaps with directly stored entries all use this shared hash key. | |
186 | * It's no big deal if the key is guessed, because there can be only | |
187 | * a handful of directly stored entries in a hashmap. When a hashmap | |
188 | * outgrows direct storage, it gets its own key for indirect storage. */ | |
189 | static uint8_t shared_hash_key[HASH_KEY_SIZE]; | |
190 | ||
191 | /* Fields that all hashmap/set types must have */ | |
192 | struct HashmapBase { | |
193 | const struct hash_ops *hash_ops; /* hash and compare ops to use */ | |
194 | ||
195 | union _packed_ { | |
196 | struct indirect_storage indirect; /* if has_indirect */ | |
197 | struct direct_storage direct; /* if !has_indirect */ | |
198 | }; | |
199 | ||
200 | enum HashmapType type:2; /* HASHMAP_TYPE_* */ | |
201 | bool has_indirect:1; /* whether indirect storage is used */ | |
202 | unsigned n_direct_entries:3; /* Number of entries in direct storage. | |
203 | * Only valid if !has_indirect. */ | |
204 | bool from_pool:1; /* whether was allocated from mempool */ | |
205 | bool dirty:1; /* whether dirtied since last iterated_cache_get() */ | |
206 | bool cached:1; /* whether this hashmap is being cached */ | |
207 | ||
208 | #if ENABLE_DEBUG_HASHMAP | |
209 | struct hashmap_debug_info debug; | |
210 | #endif | |
211 | }; | |
212 | ||
213 | /* Specific hash types | |
214 | * HashmapBase must be at the beginning of each hashmap struct. */ | |
215 | ||
216 | struct Hashmap { | |
217 | struct HashmapBase b; | |
218 | }; | |
219 | ||
220 | struct OrderedHashmap { | |
221 | struct HashmapBase b; | |
222 | unsigned iterate_list_head, iterate_list_tail; | |
223 | }; | |
224 | ||
225 | struct Set { | |
226 | struct HashmapBase b; | |
227 | }; | |
228 | ||
229 | typedef struct CacheMem { | |
230 | const void **ptr; | |
231 | size_t n_populated; | |
232 | bool active:1; | |
233 | } CacheMem; | |
234 | ||
235 | struct IteratedCache { | |
236 | HashmapBase *hashmap; | |
237 | CacheMem keys, values; | |
238 | }; | |
239 | ||
240 | DEFINE_MEMPOOL(hashmap_pool, Hashmap, 8); | |
241 | DEFINE_MEMPOOL(ordered_hashmap_pool, OrderedHashmap, 8); | |
242 | /* No need for a separate Set pool */ | |
243 | assert_cc(sizeof(Hashmap) == sizeof(Set)); | |
244 | ||
245 | struct hashmap_type_info { | |
246 | size_t head_size; | |
247 | size_t entry_size; | |
248 | struct mempool *mempool; | |
249 | unsigned n_direct_buckets; | |
250 | }; | |
251 | ||
252 | static _used_ const struct hashmap_type_info hashmap_type_info[_HASHMAP_TYPE_MAX] = { | |
253 | [HASHMAP_TYPE_PLAIN] = { | |
254 | .head_size = sizeof(Hashmap), | |
255 | .entry_size = sizeof(struct plain_hashmap_entry), | |
256 | .mempool = &hashmap_pool, | |
257 | .n_direct_buckets = DIRECT_BUCKETS(struct plain_hashmap_entry), | |
258 | }, | |
259 | [HASHMAP_TYPE_ORDERED] = { | |
260 | .head_size = sizeof(OrderedHashmap), | |
261 | .entry_size = sizeof(struct ordered_hashmap_entry), | |
262 | .mempool = &ordered_hashmap_pool, | |
263 | .n_direct_buckets = DIRECT_BUCKETS(struct ordered_hashmap_entry), | |
264 | }, | |
265 | [HASHMAP_TYPE_SET] = { | |
266 | .head_size = sizeof(Set), | |
267 | .entry_size = sizeof(struct set_entry), | |
268 | .mempool = &hashmap_pool, | |
269 | .n_direct_buckets = DIRECT_BUCKETS(struct set_entry), | |
270 | }, | |
271 | }; | |
272 | ||
273 | void hashmap_trim_pools(void) { | |
274 | int r; | |
275 | ||
276 | /* The pool is only allocated by the main thread, but the memory can be passed to other | |
277 | * threads. Let's clean up if we are the main thread and no other threads are live. */ | |
278 | ||
279 | /* We build our own is_main_thread() here, which doesn't use C11 TLS based caching of the | |
280 | * result. That's because valgrind apparently doesn't like TLS to be used from a GCC destructor. */ | |
281 | if (getpid() != gettid()) | |
282 | return (void) log_debug("Not cleaning up memory pools, not in main thread."); | |
283 | ||
284 | r = get_process_threads(0); | |
285 | if (r < 0) | |
286 | return (void) log_debug_errno(r, "Failed to determine number of threads, not cleaning up memory pools: %m"); | |
287 | if (r != 1) | |
288 | return (void) log_debug("Not cleaning up memory pools, running in multi-threaded process."); | |
289 | ||
290 | mempool_trim(&hashmap_pool); | |
291 | mempool_trim(&ordered_hashmap_pool); | |
292 | } | |
293 | ||
294 | #if HAVE_VALGRIND_VALGRIND_H | |
295 | _destructor_ static void cleanup_pools(void) { | |
296 | /* Be nice to valgrind */ | |
297 | if (RUNNING_ON_VALGRIND) | |
298 | hashmap_trim_pools(); | |
299 | } | |
300 | #endif | |
301 | ||
302 | static unsigned n_buckets(HashmapBase *h) { | |
303 | return h->has_indirect ? h->indirect.n_buckets | |
304 | : hashmap_type_info[h->type].n_direct_buckets; | |
305 | } | |
306 | ||
307 | static unsigned n_entries(HashmapBase *h) { | |
308 | return h->has_indirect ? h->indirect.n_entries | |
309 | : h->n_direct_entries; | |
310 | } | |
311 | ||
312 | static void n_entries_inc(HashmapBase *h) { | |
313 | if (h->has_indirect) | |
314 | h->indirect.n_entries++; | |
315 | else | |
316 | h->n_direct_entries++; | |
317 | } | |
318 | ||
319 | static void n_entries_dec(HashmapBase *h) { | |
320 | if (h->has_indirect) | |
321 | h->indirect.n_entries--; | |
322 | else | |
323 | h->n_direct_entries--; | |
324 | } | |
325 | ||
326 | static void* storage_ptr(HashmapBase *h) { | |
327 | return h->has_indirect ? h->indirect.storage | |
328 | : h->direct.storage; | |
329 | } | |
330 | ||
331 | static uint8_t* hash_key(HashmapBase *h) { | |
332 | return h->has_indirect ? h->indirect.hash_key | |
333 | : shared_hash_key; | |
334 | } | |
335 | ||
336 | static unsigned base_bucket_hash(HashmapBase *h, const void *p) { | |
337 | struct siphash state; | |
338 | uint64_t hash; | |
339 | ||
340 | siphash24_init(&state, hash_key(h)); | |
341 | ||
342 | h->hash_ops->hash(p, &state); | |
343 | ||
344 | hash = siphash24_finalize(&state); | |
345 | ||
346 | return (unsigned) (hash % n_buckets(h)); | |
347 | } | |
348 | #define bucket_hash(h, p) base_bucket_hash(HASHMAP_BASE(h), p) | |
349 | ||
350 | static void base_set_dirty(HashmapBase *h) { | |
351 | h->dirty = true; | |
352 | } | |
353 | #define hashmap_set_dirty(h) base_set_dirty(HASHMAP_BASE(h)) | |
354 | ||
355 | static void get_hash_key(uint8_t hash_key[HASH_KEY_SIZE], bool reuse_is_ok) { | |
356 | static uint8_t current[HASH_KEY_SIZE]; | |
357 | static bool current_initialized = false; | |
358 | ||
359 | /* Returns a hash function key to use. In order to keep things | |
360 | * fast we will not generate a new key each time we allocate a | |
361 | * new hash table. Instead, we'll just reuse the most recently | |
362 | * generated one, except if we never generated one or when we | |
363 | * are rehashing an entire hash table because we reached a | |
364 | * fill level */ | |
365 | ||
366 | if (!current_initialized || !reuse_is_ok) { | |
367 | random_bytes(current, sizeof(current)); | |
368 | current_initialized = true; | |
369 | } | |
370 | ||
371 | memcpy(hash_key, current, sizeof(current)); | |
372 | } | |
373 | ||
374 | static struct hashmap_base_entry* bucket_at(HashmapBase *h, unsigned idx) { | |
375 | return CAST_ALIGN_PTR( | |
376 | struct hashmap_base_entry, | |
377 | (uint8_t *) storage_ptr(h) + idx * hashmap_type_info[h->type].entry_size); | |
378 | } | |
379 | ||
380 | static struct plain_hashmap_entry* plain_bucket_at(Hashmap *h, unsigned idx) { | |
381 | return (struct plain_hashmap_entry*) bucket_at(HASHMAP_BASE(h), idx); | |
382 | } | |
383 | ||
384 | static struct ordered_hashmap_entry* ordered_bucket_at(OrderedHashmap *h, unsigned idx) { | |
385 | return (struct ordered_hashmap_entry*) bucket_at(HASHMAP_BASE(h), idx); | |
386 | } | |
387 | ||
388 | static struct set_entry *set_bucket_at(Set *h, unsigned idx) { | |
389 | return (struct set_entry*) bucket_at(HASHMAP_BASE(h), idx); | |
390 | } | |
391 | ||
392 | static struct ordered_hashmap_entry* bucket_at_swap(struct swap_entries *swap, unsigned idx) { | |
393 | return &swap->e[idx - _IDX_SWAP_BEGIN]; | |
394 | } | |
395 | ||
396 | /* Returns a pointer to the bucket at index idx. | |
397 | * Understands real indexes and swap indexes, hence "_virtual". */ | |
398 | static struct hashmap_base_entry* bucket_at_virtual(HashmapBase *h, struct swap_entries *swap, | |
399 | unsigned idx) { | |
400 | if (idx < _IDX_SWAP_BEGIN) | |
401 | return bucket_at(h, idx); | |
402 | ||
403 | if (idx < _IDX_SWAP_END) | |
404 | return &bucket_at_swap(swap, idx)->p.b; | |
405 | ||
406 | assert_not_reached(); | |
407 | } | |
408 | ||
409 | static dib_raw_t* dib_raw_ptr(HashmapBase *h) { | |
410 | return (dib_raw_t*) | |
411 | ((uint8_t*) storage_ptr(h) + hashmap_type_info[h->type].entry_size * n_buckets(h)); | |
412 | } | |
413 | ||
414 | static unsigned bucket_distance(HashmapBase *h, unsigned idx, unsigned from) { | |
415 | return idx >= from ? idx - from | |
416 | : n_buckets(h) + idx - from; | |
417 | } | |
418 | ||
419 | static unsigned bucket_calculate_dib(HashmapBase *h, unsigned idx, dib_raw_t raw_dib) { | |
420 | unsigned initial_bucket; | |
421 | ||
422 | if (raw_dib == DIB_RAW_FREE) | |
423 | return DIB_FREE; | |
424 | ||
425 | if (_likely_(raw_dib < DIB_RAW_OVERFLOW)) | |
426 | return raw_dib; | |
427 | ||
428 | /* | |
429 | * Having an overflow DIB value is very unlikely. The hash function | |
430 | * would have to be bad. For example, in a table of size 2^24 filled | |
431 | * to load factor 0.9 the maximum observed DIB is only about 60. | |
432 | * In theory (assuming I used Maxima correctly), for an infinite size | |
433 | * hash table with load factor 0.8 the probability of a given entry | |
434 | * having DIB > 40 is 1.9e-8. | |
435 | * This returns the correct DIB value by recomputing the hash value in | |
436 | * the unlikely case. XXX Hitting this case could be a hint to rehash. | |
437 | */ | |
438 | initial_bucket = bucket_hash(h, bucket_at(h, idx)->key); | |
439 | return bucket_distance(h, idx, initial_bucket); | |
440 | } | |
441 | ||
442 | static void bucket_set_dib(HashmapBase *h, unsigned idx, unsigned dib) { | |
443 | dib_raw_ptr(h)[idx] = dib != DIB_FREE ? MIN(dib, DIB_RAW_OVERFLOW) : DIB_RAW_FREE; | |
444 | } | |
445 | ||
446 | static unsigned skip_free_buckets(HashmapBase *h, unsigned idx) { | |
447 | dib_raw_t *dibs; | |
448 | ||
449 | dibs = dib_raw_ptr(h); | |
450 | ||
451 | for ( ; idx < n_buckets(h); idx++) | |
452 | if (dibs[idx] != DIB_RAW_FREE) | |
453 | return idx; | |
454 | ||
455 | return IDX_NIL; | |
456 | } | |
457 | ||
458 | static void bucket_mark_free(HashmapBase *h, unsigned idx) { | |
459 | memzero(bucket_at(h, idx), hashmap_type_info[h->type].entry_size); | |
460 | bucket_set_dib(h, idx, DIB_FREE); | |
461 | } | |
462 | ||
463 | static void bucket_move_entry(HashmapBase *h, struct swap_entries *swap, | |
464 | unsigned from, unsigned to) { | |
465 | struct hashmap_base_entry *e_from, *e_to; | |
466 | ||
467 | assert(from != to); | |
468 | ||
469 | e_from = bucket_at_virtual(h, swap, from); | |
470 | e_to = bucket_at_virtual(h, swap, to); | |
471 | ||
472 | memcpy(e_to, e_from, hashmap_type_info[h->type].entry_size); | |
473 | ||
474 | if (h->type == HASHMAP_TYPE_ORDERED) { | |
475 | OrderedHashmap *lh = (OrderedHashmap*) h; | |
476 | struct ordered_hashmap_entry *le, *le_to; | |
477 | ||
478 | le_to = (struct ordered_hashmap_entry*) e_to; | |
479 | ||
480 | if (le_to->iterate_next != IDX_NIL) { | |
481 | le = (struct ordered_hashmap_entry*) | |
482 | bucket_at_virtual(h, swap, le_to->iterate_next); | |
483 | le->iterate_previous = to; | |
484 | } | |
485 | ||
486 | if (le_to->iterate_previous != IDX_NIL) { | |
487 | le = (struct ordered_hashmap_entry*) | |
488 | bucket_at_virtual(h, swap, le_to->iterate_previous); | |
489 | le->iterate_next = to; | |
490 | } | |
491 | ||
492 | if (lh->iterate_list_head == from) | |
493 | lh->iterate_list_head = to; | |
494 | if (lh->iterate_list_tail == from) | |
495 | lh->iterate_list_tail = to; | |
496 | } | |
497 | } | |
498 | ||
499 | static unsigned next_idx(HashmapBase *h, unsigned idx) { | |
500 | return (idx + 1U) % n_buckets(h); | |
501 | } | |
502 | ||
503 | static unsigned prev_idx(HashmapBase *h, unsigned idx) { | |
504 | return (n_buckets(h) + idx - 1U) % n_buckets(h); | |
505 | } | |
506 | ||
507 | static void* entry_value(HashmapBase *h, struct hashmap_base_entry *e) { | |
508 | switch (h->type) { | |
509 | ||
510 | case HASHMAP_TYPE_PLAIN: | |
511 | case HASHMAP_TYPE_ORDERED: | |
512 | return ((struct plain_hashmap_entry*)e)->value; | |
513 | ||
514 | case HASHMAP_TYPE_SET: | |
515 | return (void*) e->key; | |
516 | ||
517 | default: | |
518 | assert_not_reached(); | |
519 | } | |
520 | } | |
521 | ||
522 | static void base_remove_entry(HashmapBase *h, unsigned idx) { | |
523 | unsigned left, right, prev, dib; | |
524 | dib_raw_t raw_dib, *dibs; | |
525 | ||
526 | dibs = dib_raw_ptr(h); | |
527 | assert(dibs[idx] != DIB_RAW_FREE); | |
528 | ||
529 | #if ENABLE_DEBUG_HASHMAP | |
530 | h->debug.rem_count++; | |
531 | h->debug.last_rem_idx = idx; | |
532 | #endif | |
533 | ||
534 | left = idx; | |
535 | /* Find the stop bucket ("right"). It is either free or has DIB == 0. */ | |
536 | for (right = next_idx(h, left); ; right = next_idx(h, right)) { | |
537 | raw_dib = dibs[right]; | |
538 | if (IN_SET(raw_dib, 0, DIB_RAW_FREE)) | |
539 | break; | |
540 | ||
541 | /* The buckets are not supposed to be all occupied and with DIB > 0. | |
542 | * That would mean we could make everyone better off by shifting them | |
543 | * backward. This scenario is impossible. */ | |
544 | assert(left != right); | |
545 | } | |
546 | ||
547 | if (h->type == HASHMAP_TYPE_ORDERED) { | |
548 | OrderedHashmap *lh = (OrderedHashmap*) h; | |
549 | struct ordered_hashmap_entry *le = ordered_bucket_at(lh, idx); | |
550 | ||
551 | if (le->iterate_next != IDX_NIL) | |
552 | ordered_bucket_at(lh, le->iterate_next)->iterate_previous = le->iterate_previous; | |
553 | else | |
554 | lh->iterate_list_tail = le->iterate_previous; | |
555 | ||
556 | if (le->iterate_previous != IDX_NIL) | |
557 | ordered_bucket_at(lh, le->iterate_previous)->iterate_next = le->iterate_next; | |
558 | else | |
559 | lh->iterate_list_head = le->iterate_next; | |
560 | } | |
561 | ||
562 | /* Now shift all buckets in the interval (left, right) one step backwards */ | |
563 | for (prev = left, left = next_idx(h, left); left != right; | |
564 | prev = left, left = next_idx(h, left)) { | |
565 | dib = bucket_calculate_dib(h, left, dibs[left]); | |
566 | assert(dib != 0); | |
567 | bucket_move_entry(h, NULL, left, prev); | |
568 | bucket_set_dib(h, prev, dib - 1); | |
569 | } | |
570 | ||
571 | bucket_mark_free(h, prev); | |
572 | n_entries_dec(h); | |
573 | base_set_dirty(h); | |
574 | } | |
575 | #define remove_entry(h, idx) base_remove_entry(HASHMAP_BASE(h), idx) | |
576 | ||
577 | static unsigned hashmap_iterate_in_insertion_order(OrderedHashmap *h, Iterator *i) { | |
578 | struct ordered_hashmap_entry *e; | |
579 | unsigned idx; | |
580 | ||
581 | assert(h); | |
582 | assert(i); | |
583 | ||
584 | if (i->idx == IDX_NIL) | |
585 | goto at_end; | |
586 | ||
587 | if (i->idx == IDX_FIRST && h->iterate_list_head == IDX_NIL) | |
588 | goto at_end; | |
589 | ||
590 | if (i->idx == IDX_FIRST) { | |
591 | idx = h->iterate_list_head; | |
592 | e = ordered_bucket_at(h, idx); | |
593 | } else { | |
594 | idx = i->idx; | |
595 | e = ordered_bucket_at(h, idx); | |
596 | /* | |
597 | * We allow removing the current entry while iterating, but removal may cause | |
598 | * a backward shift. The next entry may thus move one bucket to the left. | |
599 | * To detect when it happens, we remember the key pointer of the entry we were | |
600 | * going to iterate next. If it does not match, there was a backward shift. | |
601 | */ | |
602 | if (e->p.b.key != i->next_key) { | |
603 | idx = prev_idx(HASHMAP_BASE(h), idx); | |
604 | e = ordered_bucket_at(h, idx); | |
605 | } | |
606 | assert(e->p.b.key == i->next_key); | |
607 | } | |
608 | ||
609 | #if ENABLE_DEBUG_HASHMAP | |
610 | i->prev_idx = idx; | |
611 | #endif | |
612 | ||
613 | if (e->iterate_next != IDX_NIL) { | |
614 | struct ordered_hashmap_entry *n; | |
615 | i->idx = e->iterate_next; | |
616 | n = ordered_bucket_at(h, i->idx); | |
617 | i->next_key = n->p.b.key; | |
618 | } else | |
619 | i->idx = IDX_NIL; | |
620 | ||
621 | return idx; | |
622 | ||
623 | at_end: | |
624 | i->idx = IDX_NIL; | |
625 | return IDX_NIL; | |
626 | } | |
627 | ||
628 | static unsigned hashmap_iterate_in_internal_order(HashmapBase *h, Iterator *i) { | |
629 | unsigned idx; | |
630 | ||
631 | assert(h); | |
632 | assert(i); | |
633 | ||
634 | if (i->idx == IDX_NIL) | |
635 | goto at_end; | |
636 | ||
637 | if (i->idx == IDX_FIRST) { | |
638 | /* fast forward to the first occupied bucket */ | |
639 | if (h->has_indirect) { | |
640 | i->idx = skip_free_buckets(h, h->indirect.idx_lowest_entry); | |
641 | h->indirect.idx_lowest_entry = i->idx; | |
642 | } else | |
643 | i->idx = skip_free_buckets(h, 0); | |
644 | ||
645 | if (i->idx == IDX_NIL) | |
646 | goto at_end; | |
647 | } else { | |
648 | struct hashmap_base_entry *e; | |
649 | ||
650 | assert(i->idx > 0); | |
651 | ||
652 | e = bucket_at(h, i->idx); | |
653 | /* | |
654 | * We allow removing the current entry while iterating, but removal may cause | |
655 | * a backward shift. The next entry may thus move one bucket to the left. | |
656 | * To detect when it happens, we remember the key pointer of the entry we were | |
657 | * going to iterate next. If it does not match, there was a backward shift. | |
658 | */ | |
659 | if (e->key != i->next_key) | |
660 | e = bucket_at(h, --i->idx); | |
661 | ||
662 | assert(e->key == i->next_key); | |
663 | } | |
664 | ||
665 | idx = i->idx; | |
666 | #if ENABLE_DEBUG_HASHMAP | |
667 | i->prev_idx = idx; | |
668 | #endif | |
669 | ||
670 | i->idx = skip_free_buckets(h, i->idx + 1); | |
671 | if (i->idx != IDX_NIL) | |
672 | i->next_key = bucket_at(h, i->idx)->key; | |
673 | else | |
674 | i->idx = IDX_NIL; | |
675 | ||
676 | return idx; | |
677 | ||
678 | at_end: | |
679 | i->idx = IDX_NIL; | |
680 | return IDX_NIL; | |
681 | } | |
682 | ||
683 | static unsigned hashmap_iterate_entry(HashmapBase *h, Iterator *i) { | |
684 | if (!h) { | |
685 | i->idx = IDX_NIL; | |
686 | return IDX_NIL; | |
687 | } | |
688 | ||
689 | #if ENABLE_DEBUG_HASHMAP | |
690 | if (i->idx == IDX_FIRST) { | |
691 | i->put_count = h->debug.put_count; | |
692 | i->rem_count = h->debug.rem_count; | |
693 | } else { | |
694 | /* While iterating, must not add any new entries */ | |
695 | assert(i->put_count == h->debug.put_count); | |
696 | /* ... or remove entries other than the current one */ | |
697 | assert(i->rem_count == h->debug.rem_count || | |
698 | (i->rem_count == h->debug.rem_count - 1 && | |
699 | i->prev_idx == h->debug.last_rem_idx)); | |
700 | /* Reset our removals counter */ | |
701 | i->rem_count = h->debug.rem_count; | |
702 | } | |
703 | #endif | |
704 | ||
705 | return h->type == HASHMAP_TYPE_ORDERED ? hashmap_iterate_in_insertion_order((OrderedHashmap*) h, i) | |
706 | : hashmap_iterate_in_internal_order(h, i); | |
707 | } | |
708 | ||
709 | bool _hashmap_iterate(HashmapBase *h, Iterator *i, void **value, const void **key) { | |
710 | struct hashmap_base_entry *e; | |
711 | void *data; | |
712 | unsigned idx; | |
713 | ||
714 | idx = hashmap_iterate_entry(h, i); | |
715 | if (idx == IDX_NIL) { | |
716 | if (value) | |
717 | *value = NULL; | |
718 | if (key) | |
719 | *key = NULL; | |
720 | ||
721 | return false; | |
722 | } | |
723 | ||
724 | e = bucket_at(h, idx); | |
725 | data = entry_value(h, e); | |
726 | if (value) | |
727 | *value = data; | |
728 | if (key) | |
729 | *key = e->key; | |
730 | ||
731 | return true; | |
732 | } | |
733 | ||
734 | #define HASHMAP_FOREACH_IDX(idx, h, i) \ | |
735 | for ((i) = ITERATOR_FIRST, (idx) = hashmap_iterate_entry((h), &(i)); \ | |
736 | (idx != IDX_NIL); \ | |
737 | (idx) = hashmap_iterate_entry((h), &(i))) | |
738 | ||
739 | IteratedCache* _hashmap_iterated_cache_new(HashmapBase *h) { | |
740 | IteratedCache *cache; | |
741 | ||
742 | assert(h); | |
743 | assert(!h->cached); | |
744 | ||
745 | if (h->cached) | |
746 | return NULL; | |
747 | ||
748 | cache = new0(IteratedCache, 1); | |
749 | if (!cache) | |
750 | return NULL; | |
751 | ||
752 | cache->hashmap = h; | |
753 | h->cached = true; | |
754 | ||
755 | return cache; | |
756 | } | |
757 | ||
758 | static void reset_direct_storage(HashmapBase *h) { | |
759 | const struct hashmap_type_info *hi = &hashmap_type_info[h->type]; | |
760 | void *p; | |
761 | ||
762 | assert(!h->has_indirect); | |
763 | ||
764 | p = mempset(h->direct.storage, 0, hi->entry_size * hi->n_direct_buckets); | |
765 | memset(p, DIB_RAW_INIT, sizeof(dib_raw_t) * hi->n_direct_buckets); | |
766 | } | |
767 | ||
768 | static void shared_hash_key_initialize(void) { | |
769 | random_bytes(shared_hash_key, sizeof(shared_hash_key)); | |
770 | } | |
771 | ||
772 | static struct HashmapBase* hashmap_base_new(const struct hash_ops *hash_ops, enum HashmapType type) { | |
773 | HashmapBase *h; | |
774 | const struct hashmap_type_info *hi = &hashmap_type_info[type]; | |
775 | ||
776 | bool use_pool = mempool_enabled && mempool_enabled(); /* mempool_enabled is a weak symbol */ | |
777 | ||
778 | h = use_pool ? mempool_alloc0_tile(hi->mempool) : malloc0(hi->head_size); | |
779 | if (!h) | |
780 | return NULL; | |
781 | ||
782 | h->type = type; | |
783 | h->from_pool = use_pool; | |
784 | h->hash_ops = hash_ops ?: &trivial_hash_ops; | |
785 | ||
786 | if (type == HASHMAP_TYPE_ORDERED) { | |
787 | OrderedHashmap *lh = (OrderedHashmap*)h; | |
788 | lh->iterate_list_head = lh->iterate_list_tail = IDX_NIL; | |
789 | } | |
790 | ||
791 | reset_direct_storage(h); | |
792 | ||
793 | static pthread_once_t once = PTHREAD_ONCE_INIT; | |
794 | assert_se(pthread_once(&once, shared_hash_key_initialize) == 0); | |
795 | ||
796 | #if ENABLE_DEBUG_HASHMAP | |
797 | assert_se(pthread_mutex_lock(&hashmap_debug_list_mutex) == 0); | |
798 | LIST_PREPEND(debug_list, hashmap_debug_list, &h->debug); | |
799 | assert_se(pthread_mutex_unlock(&hashmap_debug_list_mutex) == 0); | |
800 | #endif | |
801 | ||
802 | return h; | |
803 | } | |
804 | ||
805 | Hashmap *hashmap_new(const struct hash_ops *hash_ops) { | |
806 | return (Hashmap*) hashmap_base_new(hash_ops, HASHMAP_TYPE_PLAIN); | |
807 | } | |
808 | ||
809 | OrderedHashmap *ordered_hashmap_new(const struct hash_ops *hash_ops) { | |
810 | return (OrderedHashmap*) hashmap_base_new(hash_ops, HASHMAP_TYPE_ORDERED); | |
811 | } | |
812 | ||
813 | Set *set_new(const struct hash_ops *hash_ops) { | |
814 | return (Set*) hashmap_base_new(hash_ops, HASHMAP_TYPE_SET); | |
815 | } | |
816 | ||
817 | static int hashmap_base_ensure_allocated(HashmapBase **h, const struct hash_ops *hash_ops, | |
818 | enum HashmapType type) { | |
819 | HashmapBase *q; | |
820 | ||
821 | assert(h); | |
822 | ||
823 | if (*h) { | |
824 | assert((*h)->hash_ops == (hash_ops ?: &trivial_hash_ops)); | |
825 | return 0; | |
826 | } | |
827 | ||
828 | q = hashmap_base_new(hash_ops, type); | |
829 | if (!q) | |
830 | return -ENOMEM; | |
831 | ||
832 | *h = q; | |
833 | return 1; | |
834 | } | |
835 | ||
836 | int hashmap_ensure_allocated(Hashmap **h, const struct hash_ops *hash_ops) { | |
837 | return hashmap_base_ensure_allocated((HashmapBase**)h, hash_ops, HASHMAP_TYPE_PLAIN); | |
838 | } | |
839 | ||
840 | int ordered_hashmap_ensure_allocated(OrderedHashmap **h, const struct hash_ops *hash_ops) { | |
841 | return hashmap_base_ensure_allocated((HashmapBase**)h, hash_ops, HASHMAP_TYPE_ORDERED); | |
842 | } | |
843 | ||
844 | int set_ensure_allocated(Set **s, const struct hash_ops *hash_ops) { | |
845 | return hashmap_base_ensure_allocated((HashmapBase**)s, hash_ops, HASHMAP_TYPE_SET); | |
846 | } | |
847 | ||
848 | int hashmap_ensure_put(Hashmap **h, const struct hash_ops *hash_ops, const void *key, void *value) { | |
849 | int r; | |
850 | ||
851 | r = hashmap_ensure_allocated(h, hash_ops); | |
852 | if (r < 0) | |
853 | return r; | |
854 | ||
855 | return hashmap_put(*h, key, value); | |
856 | } | |
857 | ||
858 | int ordered_hashmap_ensure_put(OrderedHashmap **h, const struct hash_ops *hash_ops, const void *key, void *value) { | |
859 | int r; | |
860 | ||
861 | r = ordered_hashmap_ensure_allocated(h, hash_ops); | |
862 | if (r < 0) | |
863 | return r; | |
864 | ||
865 | return ordered_hashmap_put(*h, key, value); | |
866 | } | |
867 | ||
868 | int ordered_hashmap_ensure_replace(OrderedHashmap **h, const struct hash_ops *hash_ops, const void *key, void *value) { | |
869 | int r; | |
870 | ||
871 | r = ordered_hashmap_ensure_allocated(h, hash_ops); | |
872 | if (r < 0) | |
873 | return r; | |
874 | ||
875 | return ordered_hashmap_replace(*h, key, value); | |
876 | } | |
877 | ||
878 | int hashmap_ensure_replace(Hashmap **h, const struct hash_ops *hash_ops, const void *key, void *value) { | |
879 | int r; | |
880 | ||
881 | r = hashmap_ensure_allocated(h, hash_ops); | |
882 | if (r < 0) | |
883 | return r; | |
884 | ||
885 | return hashmap_replace(*h, key, value); | |
886 | } | |
887 | ||
888 | static void hashmap_free_no_clear(HashmapBase *h) { | |
889 | assert(!h->has_indirect); | |
890 | assert(h->n_direct_entries == 0); | |
891 | ||
892 | #if ENABLE_DEBUG_HASHMAP | |
893 | assert_se(pthread_mutex_lock(&hashmap_debug_list_mutex) == 0); | |
894 | LIST_REMOVE(debug_list, hashmap_debug_list, &h->debug); | |
895 | assert_se(pthread_mutex_unlock(&hashmap_debug_list_mutex) == 0); | |
896 | #endif | |
897 | ||
898 | if (h->from_pool) { | |
899 | /* Ensure that the object didn't get migrated between threads. */ | |
900 | assert_se(is_main_thread()); | |
901 | mempool_free_tile(hashmap_type_info[h->type].mempool, h); | |
902 | } else | |
903 | free(h); | |
904 | } | |
905 | ||
906 | HashmapBase* _hashmap_free(HashmapBase *h) { | |
907 | if (h) { | |
908 | _hashmap_clear(h); | |
909 | hashmap_free_no_clear(h); | |
910 | } | |
911 | ||
912 | return NULL; | |
913 | } | |
914 | ||
915 | void _hashmap_clear(HashmapBase *h) { | |
916 | if (!h) | |
917 | return; | |
918 | ||
919 | if (h->hash_ops->free_key || h->hash_ops->free_value) { | |
920 | ||
921 | /* If destructor calls are defined, let's destroy things defensively: let's take the item out of the | |
922 | * hash table, and only then call the destructor functions. If these destructors then try to unregister | |
923 | * themselves from our hash table a second time, the entry is already gone. */ | |
924 | ||
925 | while (_hashmap_size(h) > 0) { | |
926 | void *k = NULL; | |
927 | void *v; | |
928 | ||
929 | v = _hashmap_first_key_and_value(h, true, &k); | |
930 | ||
931 | if (h->hash_ops->free_key) | |
932 | h->hash_ops->free_key(k); | |
933 | ||
934 | if (h->hash_ops->free_value) | |
935 | h->hash_ops->free_value(v); | |
936 | } | |
937 | } | |
938 | ||
939 | if (h->has_indirect) { | |
940 | free(h->indirect.storage); | |
941 | h->has_indirect = false; | |
942 | } | |
943 | ||
944 | h->n_direct_entries = 0; | |
945 | reset_direct_storage(h); | |
946 | ||
947 | if (h->type == HASHMAP_TYPE_ORDERED) { | |
948 | OrderedHashmap *lh = (OrderedHashmap*) h; | |
949 | lh->iterate_list_head = lh->iterate_list_tail = IDX_NIL; | |
950 | } | |
951 | ||
952 | base_set_dirty(h); | |
953 | } | |
954 | ||
955 | static int resize_buckets(HashmapBase *h, unsigned entries_add); | |
956 | ||
957 | /* | |
958 | * Finds an empty bucket to put an entry into, starting the scan at 'idx'. | |
959 | * Performs Robin Hood swaps as it goes. The entry to put must be placed | |
960 | * by the caller into swap slot IDX_PUT. | |
961 | * If used for in-place resizing, may leave a displaced entry in swap slot | |
962 | * IDX_PUT. Caller must rehash it next. | |
963 | * Returns: true if it left a displaced entry to rehash next in IDX_PUT, | |
964 | * false otherwise. | |
965 | */ | |
966 | static bool hashmap_put_robin_hood(HashmapBase *h, unsigned idx, | |
967 | struct swap_entries *swap) { | |
968 | dib_raw_t raw_dib, *dibs; | |
969 | unsigned dib, distance; | |
970 | ||
971 | #if ENABLE_DEBUG_HASHMAP | |
972 | h->debug.put_count++; | |
973 | #endif | |
974 | ||
975 | dibs = dib_raw_ptr(h); | |
976 | ||
977 | for (distance = 0; ; distance++) { | |
978 | raw_dib = dibs[idx]; | |
979 | if (IN_SET(raw_dib, DIB_RAW_FREE, DIB_RAW_REHASH)) { | |
980 | if (raw_dib == DIB_RAW_REHASH) | |
981 | bucket_move_entry(h, swap, idx, IDX_TMP); | |
982 | ||
983 | if (h->has_indirect && h->indirect.idx_lowest_entry > idx) | |
984 | h->indirect.idx_lowest_entry = idx; | |
985 | ||
986 | bucket_set_dib(h, idx, distance); | |
987 | bucket_move_entry(h, swap, IDX_PUT, idx); | |
988 | if (raw_dib == DIB_RAW_REHASH) { | |
989 | bucket_move_entry(h, swap, IDX_TMP, IDX_PUT); | |
990 | return true; | |
991 | } | |
992 | ||
993 | return false; | |
994 | } | |
995 | ||
996 | dib = bucket_calculate_dib(h, idx, raw_dib); | |
997 | ||
998 | if (dib < distance) { | |
999 | /* Found a wealthier entry. Go Robin Hood! */ | |
1000 | bucket_set_dib(h, idx, distance); | |
1001 | ||
1002 | /* swap the entries */ | |
1003 | bucket_move_entry(h, swap, idx, IDX_TMP); | |
1004 | bucket_move_entry(h, swap, IDX_PUT, idx); | |
1005 | bucket_move_entry(h, swap, IDX_TMP, IDX_PUT); | |
1006 | ||
1007 | distance = dib; | |
1008 | } | |
1009 | ||
1010 | idx = next_idx(h, idx); | |
1011 | } | |
1012 | } | |
1013 | ||
1014 | /* | |
1015 | * Puts an entry into a hashmap, boldly - no check whether key already exists. | |
1016 | * The caller must place the entry (only its key and value, not link indexes) | |
1017 | * in swap slot IDX_PUT. | |
1018 | * Caller must ensure: the key does not exist yet in the hashmap. | |
1019 | * that resize is not needed if !may_resize. | |
1020 | * Returns: 1 if entry was put successfully. | |
1021 | * -ENOMEM if may_resize==true and resize failed with -ENOMEM. | |
1022 | * Cannot return -ENOMEM if !may_resize. | |
1023 | */ | |
1024 | static int hashmap_base_put_boldly(HashmapBase *h, unsigned idx, | |
1025 | struct swap_entries *swap, bool may_resize) { | |
1026 | struct ordered_hashmap_entry *new_entry; | |
1027 | int r; | |
1028 | ||
1029 | assert(idx < n_buckets(h)); | |
1030 | ||
1031 | new_entry = bucket_at_swap(swap, IDX_PUT); | |
1032 | ||
1033 | if (may_resize) { | |
1034 | r = resize_buckets(h, 1); | |
1035 | if (r < 0) | |
1036 | return r; | |
1037 | if (r > 0) | |
1038 | idx = bucket_hash(h, new_entry->p.b.key); | |
1039 | } | |
1040 | assert(n_entries(h) < n_buckets(h)); | |
1041 | ||
1042 | if (h->type == HASHMAP_TYPE_ORDERED) { | |
1043 | OrderedHashmap *lh = (OrderedHashmap*) h; | |
1044 | ||
1045 | new_entry->iterate_next = IDX_NIL; | |
1046 | new_entry->iterate_previous = lh->iterate_list_tail; | |
1047 | ||
1048 | if (lh->iterate_list_tail != IDX_NIL) { | |
1049 | struct ordered_hashmap_entry *old_tail; | |
1050 | ||
1051 | old_tail = ordered_bucket_at(lh, lh->iterate_list_tail); | |
1052 | assert(old_tail->iterate_next == IDX_NIL); | |
1053 | old_tail->iterate_next = IDX_PUT; | |
1054 | } | |
1055 | ||
1056 | lh->iterate_list_tail = IDX_PUT; | |
1057 | if (lh->iterate_list_head == IDX_NIL) | |
1058 | lh->iterate_list_head = IDX_PUT; | |
1059 | } | |
1060 | ||
1061 | assert_se(hashmap_put_robin_hood(h, idx, swap) == false); | |
1062 | ||
1063 | n_entries_inc(h); | |
1064 | #if ENABLE_DEBUG_HASHMAP | |
1065 | h->debug.max_entries = MAX(h->debug.max_entries, n_entries(h)); | |
1066 | #endif | |
1067 | ||
1068 | base_set_dirty(h); | |
1069 | ||
1070 | return 1; | |
1071 | } | |
1072 | #define hashmap_put_boldly(h, idx, swap, may_resize) \ | |
1073 | hashmap_base_put_boldly(HASHMAP_BASE(h), idx, swap, may_resize) | |
1074 | ||
1075 | /* | |
1076 | * Returns 0 if resize is not needed. | |
1077 | * 1 if successfully resized. | |
1078 | * -ENOMEM on allocation failure. | |
1079 | */ | |
1080 | static int resize_buckets(HashmapBase *h, unsigned entries_add) { | |
1081 | struct swap_entries swap; | |
1082 | void *new_storage; | |
1083 | dib_raw_t *old_dibs, *new_dibs; | |
1084 | const struct hashmap_type_info *hi; | |
1085 | unsigned idx, optimal_idx; | |
1086 | unsigned old_n_buckets, new_n_buckets, n_rehashed, new_n_entries; | |
1087 | uint8_t new_shift; | |
1088 | bool rehash_next; | |
1089 | ||
1090 | assert(h); | |
1091 | ||
1092 | hi = &hashmap_type_info[h->type]; | |
1093 | new_n_entries = n_entries(h) + entries_add; | |
1094 | ||
1095 | /* overflow? */ | |
1096 | if (_unlikely_(new_n_entries < entries_add)) | |
1097 | return -ENOMEM; | |
1098 | ||
1099 | /* For direct storage we allow 100% load, because it's tiny. */ | |
1100 | if (!h->has_indirect && new_n_entries <= hi->n_direct_buckets) | |
1101 | return 0; | |
1102 | ||
1103 | /* | |
1104 | * Load factor = n/m = 1 - (1/INV_KEEP_FREE). | |
1105 | * From it follows: m = n + n/(INV_KEEP_FREE - 1) | |
1106 | */ | |
1107 | new_n_buckets = new_n_entries + new_n_entries / (INV_KEEP_FREE - 1); | |
1108 | /* overflow? */ | |
1109 | if (_unlikely_(new_n_buckets < new_n_entries)) | |
1110 | return -ENOMEM; | |
1111 | ||
1112 | if (_unlikely_(new_n_buckets > UINT_MAX / (hi->entry_size + sizeof(dib_raw_t)))) | |
1113 | return -ENOMEM; | |
1114 | ||
1115 | old_n_buckets = n_buckets(h); | |
1116 | ||
1117 | if (_likely_(new_n_buckets <= old_n_buckets)) | |
1118 | return 0; | |
1119 | ||
1120 | new_shift = log2u_round_up(MAX( | |
1121 | new_n_buckets * (hi->entry_size + sizeof(dib_raw_t)), | |
1122 | 2 * sizeof(struct direct_storage))); | |
1123 | ||
1124 | /* Realloc storage (buckets and DIB array). */ | |
1125 | new_storage = realloc(h->has_indirect ? h->indirect.storage : NULL, | |
1126 | 1U << new_shift); | |
1127 | if (!new_storage) | |
1128 | return -ENOMEM; | |
1129 | ||
1130 | /* Must upgrade direct to indirect storage. */ | |
1131 | if (!h->has_indirect) { | |
1132 | memcpy(new_storage, h->direct.storage, | |
1133 | old_n_buckets * (hi->entry_size + sizeof(dib_raw_t))); | |
1134 | h->indirect.n_entries = h->n_direct_entries; | |
1135 | h->indirect.idx_lowest_entry = 0; | |
1136 | h->n_direct_entries = 0; | |
1137 | } | |
1138 | ||
1139 | /* Get a new hash key. If we've just upgraded to indirect storage, | |
1140 | * allow reusing a previously generated key. It's still a different key | |
1141 | * from the shared one that we used for direct storage. */ | |
1142 | get_hash_key(h->indirect.hash_key, !h->has_indirect); | |
1143 | ||
1144 | h->has_indirect = true; | |
1145 | h->indirect.storage = new_storage; | |
1146 | h->indirect.n_buckets = (1U << new_shift) / | |
1147 | (hi->entry_size + sizeof(dib_raw_t)); | |
1148 | ||
1149 | old_dibs = (dib_raw_t*)((uint8_t*) new_storage + hi->entry_size * old_n_buckets); | |
1150 | new_dibs = dib_raw_ptr(h); | |
1151 | ||
1152 | /* | |
1153 | * Move the DIB array to the new place, replacing valid DIB values with | |
1154 | * DIB_RAW_REHASH to indicate all of the used buckets need rehashing. | |
1155 | * Note: Overlap is not possible, because we have at least doubled the | |
1156 | * number of buckets and dib_raw_t is smaller than any entry type. | |
1157 | */ | |
1158 | for (idx = 0; idx < old_n_buckets; idx++) { | |
1159 | assert(old_dibs[idx] != DIB_RAW_REHASH); | |
1160 | new_dibs[idx] = old_dibs[idx] == DIB_RAW_FREE ? DIB_RAW_FREE | |
1161 | : DIB_RAW_REHASH; | |
1162 | } | |
1163 | ||
1164 | /* Zero the area of newly added entries (including the old DIB area) */ | |
1165 | memzero(bucket_at(h, old_n_buckets), | |
1166 | (n_buckets(h) - old_n_buckets) * hi->entry_size); | |
1167 | ||
1168 | /* The upper half of the new DIB array needs initialization */ | |
1169 | memset(&new_dibs[old_n_buckets], DIB_RAW_INIT, | |
1170 | (n_buckets(h) - old_n_buckets) * sizeof(dib_raw_t)); | |
1171 | ||
1172 | /* Rehash entries that need it */ | |
1173 | n_rehashed = 0; | |
1174 | for (idx = 0; idx < old_n_buckets; idx++) { | |
1175 | if (new_dibs[idx] != DIB_RAW_REHASH) | |
1176 | continue; | |
1177 | ||
1178 | optimal_idx = bucket_hash(h, bucket_at(h, idx)->key); | |
1179 | ||
1180 | /* | |
1181 | * Not much to do if by luck the entry hashes to its current | |
1182 | * location. Just set its DIB. | |
1183 | */ | |
1184 | if (optimal_idx == idx) { | |
1185 | new_dibs[idx] = 0; | |
1186 | n_rehashed++; | |
1187 | continue; | |
1188 | } | |
1189 | ||
1190 | new_dibs[idx] = DIB_RAW_FREE; | |
1191 | bucket_move_entry(h, &swap, idx, IDX_PUT); | |
1192 | /* bucket_move_entry does not clear the source */ | |
1193 | memzero(bucket_at(h, idx), hi->entry_size); | |
1194 | ||
1195 | do { | |
1196 | /* | |
1197 | * Find the new bucket for the current entry. This may make | |
1198 | * another entry homeless and load it into IDX_PUT. | |
1199 | */ | |
1200 | rehash_next = hashmap_put_robin_hood(h, optimal_idx, &swap); | |
1201 | n_rehashed++; | |
1202 | ||
1203 | /* Did the current entry displace another one? */ | |
1204 | if (rehash_next) | |
1205 | optimal_idx = bucket_hash(h, bucket_at_swap(&swap, IDX_PUT)->p.b.key); | |
1206 | } while (rehash_next); | |
1207 | } | |
1208 | ||
1209 | assert_se(n_rehashed == n_entries(h)); | |
1210 | ||
1211 | return 1; | |
1212 | } | |
1213 | ||
1214 | /* | |
1215 | * Finds an entry with a matching key | |
1216 | * Returns: index of the found entry, or IDX_NIL if not found. | |
1217 | */ | |
1218 | static unsigned base_bucket_scan(HashmapBase *h, unsigned idx, const void *key) { | |
1219 | struct hashmap_base_entry *e; | |
1220 | unsigned dib, distance; | |
1221 | dib_raw_t *dibs = dib_raw_ptr(h); | |
1222 | ||
1223 | assert(idx < n_buckets(h)); | |
1224 | ||
1225 | for (distance = 0; ; distance++) { | |
1226 | if (dibs[idx] == DIB_RAW_FREE) | |
1227 | return IDX_NIL; | |
1228 | ||
1229 | dib = bucket_calculate_dib(h, idx, dibs[idx]); | |
1230 | ||
1231 | if (dib < distance) | |
1232 | return IDX_NIL; | |
1233 | if (dib == distance) { | |
1234 | e = bucket_at(h, idx); | |
1235 | if (h->hash_ops->compare(e->key, key) == 0) | |
1236 | return idx; | |
1237 | } | |
1238 | ||
1239 | idx = next_idx(h, idx); | |
1240 | } | |
1241 | } | |
1242 | #define bucket_scan(h, idx, key) base_bucket_scan(HASHMAP_BASE(h), idx, key) | |
1243 | ||
1244 | int hashmap_put(Hashmap *h, const void *key, void *value) { | |
1245 | struct swap_entries swap; | |
1246 | struct plain_hashmap_entry *e; | |
1247 | unsigned hash, idx; | |
1248 | ||
1249 | assert(h); | |
1250 | ||
1251 | hash = bucket_hash(h, key); | |
1252 | idx = bucket_scan(h, hash, key); | |
1253 | if (idx != IDX_NIL) { | |
1254 | e = plain_bucket_at(h, idx); | |
1255 | if (e->value == value) | |
1256 | return 0; | |
1257 | return -EEXIST; | |
1258 | } | |
1259 | ||
1260 | e = &bucket_at_swap(&swap, IDX_PUT)->p; | |
1261 | e->b.key = key; | |
1262 | e->value = value; | |
1263 | return hashmap_put_boldly(h, hash, &swap, true); | |
1264 | } | |
1265 | ||
1266 | int set_put(Set *s, const void *key) { | |
1267 | struct swap_entries swap; | |
1268 | struct hashmap_base_entry *e; | |
1269 | unsigned hash, idx; | |
1270 | ||
1271 | assert(s); | |
1272 | ||
1273 | hash = bucket_hash(s, key); | |
1274 | idx = bucket_scan(s, hash, key); | |
1275 | if (idx != IDX_NIL) | |
1276 | return 0; | |
1277 | ||
1278 | e = &bucket_at_swap(&swap, IDX_PUT)->p.b; | |
1279 | e->key = key; | |
1280 | return hashmap_put_boldly(s, hash, &swap, true); | |
1281 | } | |
1282 | ||
1283 | int set_ensure_put(Set **s, const struct hash_ops *hash_ops, const void *key) { | |
1284 | int r; | |
1285 | ||
1286 | r = set_ensure_allocated(s, hash_ops); | |
1287 | if (r < 0) | |
1288 | return r; | |
1289 | ||
1290 | return set_put(*s, key); | |
1291 | } | |
1292 | ||
1293 | int set_ensure_consume(Set **s, const struct hash_ops *hash_ops, void *key) { | |
1294 | int r; | |
1295 | ||
1296 | r = set_ensure_put(s, hash_ops, key); | |
1297 | if (r <= 0) { | |
1298 | if (hash_ops && hash_ops->free_key) | |
1299 | hash_ops->free_key(key); | |
1300 | else | |
1301 | free(key); | |
1302 | } | |
1303 | ||
1304 | return r; | |
1305 | } | |
1306 | ||
1307 | int hashmap_replace(Hashmap *h, const void *key, void *value) { | |
1308 | struct swap_entries swap; | |
1309 | struct plain_hashmap_entry *e; | |
1310 | unsigned hash, idx; | |
1311 | ||
1312 | assert(h); | |
1313 | ||
1314 | hash = bucket_hash(h, key); | |
1315 | idx = bucket_scan(h, hash, key); | |
1316 | if (idx != IDX_NIL) { | |
1317 | e = plain_bucket_at(h, idx); | |
1318 | #if ENABLE_DEBUG_HASHMAP | |
1319 | /* Although the key is equal, the key pointer may have changed, | |
1320 | * and this would break our assumption for iterating. So count | |
1321 | * this operation as incompatible with iteration. */ | |
1322 | if (e->b.key != key) { | |
1323 | h->b.debug.put_count++; | |
1324 | h->b.debug.rem_count++; | |
1325 | h->b.debug.last_rem_idx = idx; | |
1326 | } | |
1327 | #endif | |
1328 | e->b.key = key; | |
1329 | e->value = value; | |
1330 | hashmap_set_dirty(h); | |
1331 | ||
1332 | return 0; | |
1333 | } | |
1334 | ||
1335 | e = &bucket_at_swap(&swap, IDX_PUT)->p; | |
1336 | e->b.key = key; | |
1337 | e->value = value; | |
1338 | return hashmap_put_boldly(h, hash, &swap, true); | |
1339 | } | |
1340 | ||
1341 | int hashmap_update(Hashmap *h, const void *key, void *value) { | |
1342 | struct plain_hashmap_entry *e; | |
1343 | unsigned hash, idx; | |
1344 | ||
1345 | assert(h); | |
1346 | ||
1347 | hash = bucket_hash(h, key); | |
1348 | idx = bucket_scan(h, hash, key); | |
1349 | if (idx == IDX_NIL) | |
1350 | return -ENOENT; | |
1351 | ||
1352 | e = plain_bucket_at(h, idx); | |
1353 | e->value = value; | |
1354 | hashmap_set_dirty(h); | |
1355 | ||
1356 | return 0; | |
1357 | } | |
1358 | ||
1359 | void* _hashmap_get(HashmapBase *h, const void *key) { | |
1360 | struct hashmap_base_entry *e; | |
1361 | unsigned hash, idx; | |
1362 | ||
1363 | if (!h) | |
1364 | return NULL; | |
1365 | ||
1366 | hash = bucket_hash(h, key); | |
1367 | idx = bucket_scan(h, hash, key); | |
1368 | if (idx == IDX_NIL) | |
1369 | return NULL; | |
1370 | ||
1371 | e = bucket_at(h, idx); | |
1372 | return entry_value(h, e); | |
1373 | } | |
1374 | ||
1375 | void* hashmap_get2(Hashmap *h, const void *key, void **key2) { | |
1376 | struct plain_hashmap_entry *e; | |
1377 | unsigned hash, idx; | |
1378 | ||
1379 | if (!h) | |
1380 | return NULL; | |
1381 | ||
1382 | hash = bucket_hash(h, key); | |
1383 | idx = bucket_scan(h, hash, key); | |
1384 | if (idx == IDX_NIL) | |
1385 | return NULL; | |
1386 | ||
1387 | e = plain_bucket_at(h, idx); | |
1388 | if (key2) | |
1389 | *key2 = (void*) e->b.key; | |
1390 | ||
1391 | return e->value; | |
1392 | } | |
1393 | ||
1394 | bool _hashmap_contains(HashmapBase *h, const void *key) { | |
1395 | unsigned hash; | |
1396 | ||
1397 | if (!h) | |
1398 | return false; | |
1399 | ||
1400 | hash = bucket_hash(h, key); | |
1401 | return bucket_scan(h, hash, key) != IDX_NIL; | |
1402 | } | |
1403 | ||
1404 | void* _hashmap_remove(HashmapBase *h, const void *key) { | |
1405 | struct hashmap_base_entry *e; | |
1406 | unsigned hash, idx; | |
1407 | void *data; | |
1408 | ||
1409 | if (!h) | |
1410 | return NULL; | |
1411 | ||
1412 | hash = bucket_hash(h, key); | |
1413 | idx = bucket_scan(h, hash, key); | |
1414 | if (idx == IDX_NIL) | |
1415 | return NULL; | |
1416 | ||
1417 | e = bucket_at(h, idx); | |
1418 | data = entry_value(h, e); | |
1419 | remove_entry(h, idx); | |
1420 | ||
1421 | return data; | |
1422 | } | |
1423 | ||
1424 | void* hashmap_remove2(Hashmap *h, const void *key, void **rkey) { | |
1425 | struct plain_hashmap_entry *e; | |
1426 | unsigned hash, idx; | |
1427 | void *data; | |
1428 | ||
1429 | if (!h) { | |
1430 | if (rkey) | |
1431 | *rkey = NULL; | |
1432 | return NULL; | |
1433 | } | |
1434 | ||
1435 | hash = bucket_hash(h, key); | |
1436 | idx = bucket_scan(h, hash, key); | |
1437 | if (idx == IDX_NIL) { | |
1438 | if (rkey) | |
1439 | *rkey = NULL; | |
1440 | return NULL; | |
1441 | } | |
1442 | ||
1443 | e = plain_bucket_at(h, idx); | |
1444 | data = e->value; | |
1445 | if (rkey) | |
1446 | *rkey = (void*) e->b.key; | |
1447 | ||
1448 | remove_entry(h, idx); | |
1449 | ||
1450 | return data; | |
1451 | } | |
1452 | ||
1453 | int hashmap_remove_and_put(Hashmap *h, const void *old_key, const void *new_key, void *value) { | |
1454 | struct swap_entries swap; | |
1455 | struct plain_hashmap_entry *e; | |
1456 | unsigned old_hash, new_hash, idx; | |
1457 | ||
1458 | if (!h) | |
1459 | return -ENOENT; | |
1460 | ||
1461 | old_hash = bucket_hash(h, old_key); | |
1462 | idx = bucket_scan(h, old_hash, old_key); | |
1463 | if (idx == IDX_NIL) | |
1464 | return -ENOENT; | |
1465 | ||
1466 | new_hash = bucket_hash(h, new_key); | |
1467 | if (bucket_scan(h, new_hash, new_key) != IDX_NIL) | |
1468 | return -EEXIST; | |
1469 | ||
1470 | remove_entry(h, idx); | |
1471 | ||
1472 | e = &bucket_at_swap(&swap, IDX_PUT)->p; | |
1473 | e->b.key = new_key; | |
1474 | e->value = value; | |
1475 | assert_se(hashmap_put_boldly(h, new_hash, &swap, false) == 1); | |
1476 | ||
1477 | return 0; | |
1478 | } | |
1479 | ||
1480 | int set_remove_and_put(Set *s, const void *old_key, const void *new_key) { | |
1481 | struct swap_entries swap; | |
1482 | struct hashmap_base_entry *e; | |
1483 | unsigned old_hash, new_hash, idx; | |
1484 | ||
1485 | if (!s) | |
1486 | return -ENOENT; | |
1487 | ||
1488 | old_hash = bucket_hash(s, old_key); | |
1489 | idx = bucket_scan(s, old_hash, old_key); | |
1490 | if (idx == IDX_NIL) | |
1491 | return -ENOENT; | |
1492 | ||
1493 | new_hash = bucket_hash(s, new_key); | |
1494 | if (bucket_scan(s, new_hash, new_key) != IDX_NIL) | |
1495 | return -EEXIST; | |
1496 | ||
1497 | remove_entry(s, idx); | |
1498 | ||
1499 | e = &bucket_at_swap(&swap, IDX_PUT)->p.b; | |
1500 | e->key = new_key; | |
1501 | assert_se(hashmap_put_boldly(s, new_hash, &swap, false) == 1); | |
1502 | ||
1503 | return 0; | |
1504 | } | |
1505 | ||
1506 | int hashmap_remove_and_replace(Hashmap *h, const void *old_key, const void *new_key, void *value) { | |
1507 | struct swap_entries swap; | |
1508 | struct plain_hashmap_entry *e; | |
1509 | unsigned old_hash, new_hash, idx_old, idx_new; | |
1510 | ||
1511 | if (!h) | |
1512 | return -ENOENT; | |
1513 | ||
1514 | old_hash = bucket_hash(h, old_key); | |
1515 | idx_old = bucket_scan(h, old_hash, old_key); | |
1516 | if (idx_old == IDX_NIL) | |
1517 | return -ENOENT; | |
1518 | ||
1519 | old_key = bucket_at(HASHMAP_BASE(h), idx_old)->key; | |
1520 | ||
1521 | new_hash = bucket_hash(h, new_key); | |
1522 | idx_new = bucket_scan(h, new_hash, new_key); | |
1523 | if (idx_new != IDX_NIL) | |
1524 | if (idx_old != idx_new) { | |
1525 | remove_entry(h, idx_new); | |
1526 | /* Compensate for a possible backward shift. */ | |
1527 | if (old_key != bucket_at(HASHMAP_BASE(h), idx_old)->key) | |
1528 | idx_old = prev_idx(HASHMAP_BASE(h), idx_old); | |
1529 | assert(old_key == bucket_at(HASHMAP_BASE(h), idx_old)->key); | |
1530 | } | |
1531 | ||
1532 | remove_entry(h, idx_old); | |
1533 | ||
1534 | e = &bucket_at_swap(&swap, IDX_PUT)->p; | |
1535 | e->b.key = new_key; | |
1536 | e->value = value; | |
1537 | assert_se(hashmap_put_boldly(h, new_hash, &swap, false) == 1); | |
1538 | ||
1539 | return 0; | |
1540 | } | |
1541 | ||
1542 | void* _hashmap_remove_value(HashmapBase *h, const void *key, void *value) { | |
1543 | struct hashmap_base_entry *e; | |
1544 | unsigned hash, idx; | |
1545 | ||
1546 | if (!h) | |
1547 | return NULL; | |
1548 | ||
1549 | hash = bucket_hash(h, key); | |
1550 | idx = bucket_scan(h, hash, key); | |
1551 | if (idx == IDX_NIL) | |
1552 | return NULL; | |
1553 | ||
1554 | e = bucket_at(h, idx); | |
1555 | if (entry_value(h, e) != value) | |
1556 | return NULL; | |
1557 | ||
1558 | remove_entry(h, idx); | |
1559 | ||
1560 | return value; | |
1561 | } | |
1562 | ||
1563 | static unsigned find_first_entry(HashmapBase *h) { | |
1564 | Iterator i = ITERATOR_FIRST; | |
1565 | ||
1566 | if (!h || !n_entries(h)) | |
1567 | return IDX_NIL; | |
1568 | ||
1569 | return hashmap_iterate_entry(h, &i); | |
1570 | } | |
1571 | ||
1572 | void* _hashmap_first_key_and_value(HashmapBase *h, bool remove, void **ret_key) { | |
1573 | struct hashmap_base_entry *e; | |
1574 | void *key, *data; | |
1575 | unsigned idx; | |
1576 | ||
1577 | idx = find_first_entry(h); | |
1578 | if (idx == IDX_NIL) { | |
1579 | if (ret_key) | |
1580 | *ret_key = NULL; | |
1581 | return NULL; | |
1582 | } | |
1583 | ||
1584 | e = bucket_at(h, idx); | |
1585 | key = (void*) e->key; | |
1586 | data = entry_value(h, e); | |
1587 | ||
1588 | if (remove) | |
1589 | remove_entry(h, idx); | |
1590 | ||
1591 | if (ret_key) | |
1592 | *ret_key = key; | |
1593 | ||
1594 | return data; | |
1595 | } | |
1596 | ||
1597 | unsigned _hashmap_size(HashmapBase *h) { | |
1598 | if (!h) | |
1599 | return 0; | |
1600 | ||
1601 | return n_entries(h); | |
1602 | } | |
1603 | ||
1604 | unsigned _hashmap_buckets(HashmapBase *h) { | |
1605 | if (!h) | |
1606 | return 0; | |
1607 | ||
1608 | return n_buckets(h); | |
1609 | } | |
1610 | ||
1611 | int _hashmap_merge(Hashmap *h, Hashmap *other) { | |
1612 | Iterator i; | |
1613 | unsigned idx; | |
1614 | ||
1615 | assert(h); | |
1616 | ||
1617 | HASHMAP_FOREACH_IDX(idx, HASHMAP_BASE(other), i) { | |
1618 | struct plain_hashmap_entry *pe = plain_bucket_at(other, idx); | |
1619 | int r; | |
1620 | ||
1621 | r = hashmap_put(h, pe->b.key, pe->value); | |
1622 | if (r < 0 && r != -EEXIST) | |
1623 | return r; | |
1624 | } | |
1625 | ||
1626 | return 0; | |
1627 | } | |
1628 | ||
1629 | int set_merge(Set *s, Set *other) { | |
1630 | Iterator i; | |
1631 | unsigned idx; | |
1632 | ||
1633 | assert(s); | |
1634 | ||
1635 | HASHMAP_FOREACH_IDX(idx, HASHMAP_BASE(other), i) { | |
1636 | struct set_entry *se = set_bucket_at(other, idx); | |
1637 | int r; | |
1638 | ||
1639 | r = set_put(s, se->b.key); | |
1640 | if (r < 0) | |
1641 | return r; | |
1642 | } | |
1643 | ||
1644 | return 0; | |
1645 | } | |
1646 | ||
1647 | int _hashmap_reserve(HashmapBase *h, unsigned entries_add) { | |
1648 | int r; | |
1649 | ||
1650 | assert(h); | |
1651 | ||
1652 | r = resize_buckets(h, entries_add); | |
1653 | if (r < 0) | |
1654 | return r; | |
1655 | ||
1656 | return 0; | |
1657 | } | |
1658 | ||
1659 | /* | |
1660 | * The same as hashmap_merge(), but every new item from other is moved to h. | |
1661 | * Keys already in h are skipped and stay in other. | |
1662 | * Returns: 0 on success. | |
1663 | * -ENOMEM on alloc failure, in which case no move has been done. | |
1664 | */ | |
1665 | int _hashmap_move(HashmapBase *h, HashmapBase *other) { | |
1666 | struct swap_entries swap; | |
1667 | struct hashmap_base_entry *e, *n; | |
1668 | Iterator i; | |
1669 | unsigned idx; | |
1670 | int r; | |
1671 | ||
1672 | assert(h); | |
1673 | ||
1674 | if (!other) | |
1675 | return 0; | |
1676 | ||
1677 | assert(other->type == h->type); | |
1678 | ||
1679 | /* | |
1680 | * This reserves buckets for the worst case, where none of other's | |
1681 | * entries are yet present in h. This is preferable to risking | |
1682 | * an allocation failure in the middle of the moving and having to | |
1683 | * rollback or return a partial result. | |
1684 | */ | |
1685 | r = resize_buckets(h, n_entries(other)); | |
1686 | if (r < 0) | |
1687 | return r; | |
1688 | ||
1689 | HASHMAP_FOREACH_IDX(idx, other, i) { | |
1690 | unsigned h_hash; | |
1691 | ||
1692 | e = bucket_at(other, idx); | |
1693 | h_hash = bucket_hash(h, e->key); | |
1694 | if (bucket_scan(h, h_hash, e->key) != IDX_NIL) | |
1695 | continue; | |
1696 | ||
1697 | n = &bucket_at_swap(&swap, IDX_PUT)->p.b; | |
1698 | n->key = e->key; | |
1699 | if (h->type != HASHMAP_TYPE_SET) | |
1700 | ((struct plain_hashmap_entry*) n)->value = | |
1701 | ((struct plain_hashmap_entry*) e)->value; | |
1702 | assert_se(hashmap_put_boldly(h, h_hash, &swap, false) == 1); | |
1703 | ||
1704 | remove_entry(other, idx); | |
1705 | } | |
1706 | ||
1707 | return 0; | |
1708 | } | |
1709 | ||
1710 | int _hashmap_move_one(HashmapBase *h, HashmapBase *other, const void *key) { | |
1711 | struct swap_entries swap; | |
1712 | unsigned h_hash, other_hash, idx; | |
1713 | struct hashmap_base_entry *e, *n; | |
1714 | int r; | |
1715 | ||
1716 | assert(h); | |
1717 | ||
1718 | h_hash = bucket_hash(h, key); | |
1719 | if (bucket_scan(h, h_hash, key) != IDX_NIL) | |
1720 | return -EEXIST; | |
1721 | ||
1722 | if (!other) | |
1723 | return -ENOENT; | |
1724 | ||
1725 | assert(other->type == h->type); | |
1726 | ||
1727 | other_hash = bucket_hash(other, key); | |
1728 | idx = bucket_scan(other, other_hash, key); | |
1729 | if (idx == IDX_NIL) | |
1730 | return -ENOENT; | |
1731 | ||
1732 | e = bucket_at(other, idx); | |
1733 | ||
1734 | n = &bucket_at_swap(&swap, IDX_PUT)->p.b; | |
1735 | n->key = e->key; | |
1736 | if (h->type != HASHMAP_TYPE_SET) | |
1737 | ((struct plain_hashmap_entry*) n)->value = | |
1738 | ((struct plain_hashmap_entry*) e)->value; | |
1739 | r = hashmap_put_boldly(h, h_hash, &swap, true); | |
1740 | if (r < 0) | |
1741 | return r; | |
1742 | ||
1743 | remove_entry(other, idx); | |
1744 | return 0; | |
1745 | } | |
1746 | ||
1747 | HashmapBase* _hashmap_copy(HashmapBase *h) { | |
1748 | HashmapBase *copy; | |
1749 | int r; | |
1750 | ||
1751 | assert(h); | |
1752 | ||
1753 | copy = hashmap_base_new(h->hash_ops, h->type); | |
1754 | if (!copy) | |
1755 | return NULL; | |
1756 | ||
1757 | switch (h->type) { | |
1758 | case HASHMAP_TYPE_PLAIN: | |
1759 | case HASHMAP_TYPE_ORDERED: | |
1760 | r = hashmap_merge((Hashmap*)copy, (Hashmap*)h); | |
1761 | break; | |
1762 | case HASHMAP_TYPE_SET: | |
1763 | r = set_merge((Set*)copy, (Set*)h); | |
1764 | break; | |
1765 | default: | |
1766 | assert_not_reached(); | |
1767 | } | |
1768 | ||
1769 | if (r < 0) | |
1770 | return _hashmap_free(copy); | |
1771 | ||
1772 | return copy; | |
1773 | } | |
1774 | ||
1775 | char** _hashmap_get_strv(HashmapBase *h) { | |
1776 | char **sv; | |
1777 | Iterator i; | |
1778 | unsigned idx, n; | |
1779 | ||
1780 | if (!h) | |
1781 | return new0(char*, 1); | |
1782 | ||
1783 | sv = new(char*, n_entries(h)+1); | |
1784 | if (!sv) | |
1785 | return NULL; | |
1786 | ||
1787 | n = 0; | |
1788 | HASHMAP_FOREACH_IDX(idx, h, i) | |
1789 | sv[n++] = entry_value(h, bucket_at(h, idx)); | |
1790 | sv[n] = NULL; | |
1791 | ||
1792 | return sv; | |
1793 | } | |
1794 | ||
1795 | char** set_to_strv(Set **s) { | |
1796 | assert(s); | |
1797 | ||
1798 | /* This is similar to set_get_strv(), but invalidates the set on success. */ | |
1799 | ||
1800 | char **v = new(char*, set_size(*s) + 1); | |
1801 | if (!v) | |
1802 | return NULL; | |
1803 | ||
1804 | for (char **p = v; (*p = set_steal_first(*s)); p++) | |
1805 | ; | |
1806 | ||
1807 | assert(set_isempty(*s)); | |
1808 | *s = set_free(*s); | |
1809 | return v; | |
1810 | } | |
1811 | ||
1812 | void* ordered_hashmap_next(OrderedHashmap *h, const void *key) { | |
1813 | struct ordered_hashmap_entry *e; | |
1814 | unsigned hash, idx; | |
1815 | ||
1816 | if (!h) | |
1817 | return NULL; | |
1818 | ||
1819 | hash = bucket_hash(h, key); | |
1820 | idx = bucket_scan(h, hash, key); | |
1821 | if (idx == IDX_NIL) | |
1822 | return NULL; | |
1823 | ||
1824 | e = ordered_bucket_at(h, idx); | |
1825 | if (e->iterate_next == IDX_NIL) | |
1826 | return NULL; | |
1827 | return ordered_bucket_at(h, e->iterate_next)->p.value; | |
1828 | } | |
1829 | ||
1830 | int set_consume(Set *s, void *value) { | |
1831 | int r; | |
1832 | ||
1833 | assert(s); | |
1834 | assert(value); | |
1835 | ||
1836 | r = set_put(s, value); | |
1837 | if (r <= 0) | |
1838 | free(value); | |
1839 | ||
1840 | return r; | |
1841 | } | |
1842 | ||
1843 | int hashmap_put_strdup_full(Hashmap **h, const struct hash_ops *hash_ops, const char *k, const char *v) { | |
1844 | int r; | |
1845 | ||
1846 | r = hashmap_ensure_allocated(h, hash_ops); | |
1847 | if (r < 0) | |
1848 | return r; | |
1849 | ||
1850 | _cleanup_free_ char *kdup = NULL, *vdup = NULL; | |
1851 | ||
1852 | kdup = strdup(k); | |
1853 | if (!kdup) | |
1854 | return -ENOMEM; | |
1855 | ||
1856 | if (v) { | |
1857 | vdup = strdup(v); | |
1858 | if (!vdup) | |
1859 | return -ENOMEM; | |
1860 | } | |
1861 | ||
1862 | r = hashmap_put(*h, kdup, vdup); | |
1863 | if (r < 0) { | |
1864 | if (r == -EEXIST && streq_ptr(v, hashmap_get(*h, kdup))) | |
1865 | return 0; | |
1866 | return r; | |
1867 | } | |
1868 | ||
1869 | /* 0 with non-null vdup would mean vdup is already in the hashmap, which cannot be */ | |
1870 | assert(vdup == NULL || r > 0); | |
1871 | if (r > 0) | |
1872 | kdup = vdup = NULL; | |
1873 | ||
1874 | return r; | |
1875 | } | |
1876 | ||
1877 | int set_put_strndup_full(Set **s, const struct hash_ops *hash_ops, const char *p, size_t n) { | |
1878 | char *c; | |
1879 | int r; | |
1880 | ||
1881 | assert(s); | |
1882 | assert(p); | |
1883 | ||
1884 | r = set_ensure_allocated(s, hash_ops); | |
1885 | if (r < 0) | |
1886 | return r; | |
1887 | ||
1888 | if (n == SIZE_MAX) { | |
1889 | if (set_contains(*s, (char*) p)) | |
1890 | return 0; | |
1891 | ||
1892 | c = strdup(p); | |
1893 | } else | |
1894 | c = strndup(p, n); | |
1895 | if (!c) | |
1896 | return -ENOMEM; | |
1897 | ||
1898 | return set_consume(*s, c); | |
1899 | } | |
1900 | ||
1901 | int set_put_strdupv_full(Set **s, const struct hash_ops *hash_ops, char **l) { | |
1902 | int n = 0, r; | |
1903 | ||
1904 | assert(s); | |
1905 | ||
1906 | STRV_FOREACH(i, l) { | |
1907 | r = set_put_strndup_full(s, hash_ops, *i, SIZE_MAX); | |
1908 | if (r < 0) | |
1909 | return r; | |
1910 | ||
1911 | n += r; | |
1912 | } | |
1913 | ||
1914 | return n; | |
1915 | } | |
1916 | ||
1917 | int set_put_strsplit(Set *s, const char *v, const char *separators, ExtractFlags flags) { | |
1918 | const char *p = ASSERT_PTR(v); | |
1919 | int r; | |
1920 | ||
1921 | assert(s); | |
1922 | ||
1923 | for (;;) { | |
1924 | char *word; | |
1925 | ||
1926 | r = extract_first_word(&p, &word, separators, flags); | |
1927 | if (r <= 0) | |
1928 | return r; | |
1929 | ||
1930 | r = set_consume(s, word); | |
1931 | if (r < 0) | |
1932 | return r; | |
1933 | } | |
1934 | } | |
1935 | ||
1936 | /* expand the cachemem if needed, return true if newly (re)activated. */ | |
1937 | static int cachemem_maintain(CacheMem *mem, size_t size) { | |
1938 | assert(mem); | |
1939 | ||
1940 | if (!GREEDY_REALLOC(mem->ptr, size)) { | |
1941 | if (size > 0) | |
1942 | return -ENOMEM; | |
1943 | } | |
1944 | ||
1945 | if (!mem->active) { | |
1946 | mem->active = true; | |
1947 | return true; | |
1948 | } | |
1949 | ||
1950 | return false; | |
1951 | } | |
1952 | ||
1953 | int iterated_cache_get(IteratedCache *cache, const void ***res_keys, const void ***res_values, unsigned *res_n_entries) { | |
1954 | bool sync_keys = false, sync_values = false; | |
1955 | size_t size; | |
1956 | int r; | |
1957 | ||
1958 | assert(cache); | |
1959 | assert(cache->hashmap); | |
1960 | ||
1961 | size = n_entries(cache->hashmap); | |
1962 | ||
1963 | if (res_keys) { | |
1964 | r = cachemem_maintain(&cache->keys, size); | |
1965 | if (r < 0) | |
1966 | return r; | |
1967 | ||
1968 | sync_keys = r; | |
1969 | } else | |
1970 | cache->keys.active = false; | |
1971 | ||
1972 | if (res_values) { | |
1973 | r = cachemem_maintain(&cache->values, size); | |
1974 | if (r < 0) | |
1975 | return r; | |
1976 | ||
1977 | sync_values = r; | |
1978 | } else | |
1979 | cache->values.active = false; | |
1980 | ||
1981 | if (cache->hashmap->dirty) { | |
1982 | if (cache->keys.active) | |
1983 | sync_keys = true; | |
1984 | if (cache->values.active) | |
1985 | sync_values = true; | |
1986 | ||
1987 | cache->hashmap->dirty = false; | |
1988 | } | |
1989 | ||
1990 | if (sync_keys || sync_values) { | |
1991 | unsigned i, idx; | |
1992 | Iterator iter; | |
1993 | ||
1994 | i = 0; | |
1995 | HASHMAP_FOREACH_IDX(idx, cache->hashmap, iter) { | |
1996 | struct hashmap_base_entry *e; | |
1997 | ||
1998 | e = bucket_at(cache->hashmap, idx); | |
1999 | ||
2000 | if (sync_keys) | |
2001 | cache->keys.ptr[i] = e->key; | |
2002 | if (sync_values) | |
2003 | cache->values.ptr[i] = entry_value(cache->hashmap, e); | |
2004 | i++; | |
2005 | } | |
2006 | } | |
2007 | ||
2008 | if (res_keys) | |
2009 | *res_keys = cache->keys.ptr; | |
2010 | if (res_values) | |
2011 | *res_values = cache->values.ptr; | |
2012 | if (res_n_entries) | |
2013 | *res_n_entries = size; | |
2014 | ||
2015 | return 0; | |
2016 | } | |
2017 | ||
2018 | IteratedCache* iterated_cache_free(IteratedCache *cache) { | |
2019 | if (cache) { | |
2020 | free(cache->keys.ptr); | |
2021 | free(cache->values.ptr); | |
2022 | } | |
2023 | ||
2024 | return mfree(cache); | |
2025 | } | |
2026 | ||
2027 | int set_strjoin(Set *s, const char *separator, bool wrap_with_separator, char **ret) { | |
2028 | _cleanup_free_ char *str = NULL; | |
2029 | size_t separator_len, len = 0; | |
2030 | const char *value; | |
2031 | bool first; | |
2032 | ||
2033 | assert(ret); | |
2034 | ||
2035 | if (set_isempty(s)) { | |
2036 | *ret = NULL; | |
2037 | return 0; | |
2038 | } | |
2039 | ||
2040 | separator_len = strlen_ptr(separator); | |
2041 | ||
2042 | if (separator_len == 0) | |
2043 | wrap_with_separator = false; | |
2044 | ||
2045 | first = !wrap_with_separator; | |
2046 | ||
2047 | SET_FOREACH(value, s) { | |
2048 | size_t l = strlen_ptr(value); | |
2049 | ||
2050 | if (l == 0) | |
2051 | continue; | |
2052 | ||
2053 | if (!GREEDY_REALLOC(str, len + l + (first ? 0 : separator_len) + (wrap_with_separator ? separator_len : 0) + 1)) | |
2054 | return -ENOMEM; | |
2055 | ||
2056 | if (separator_len > 0 && !first) { | |
2057 | memcpy(str + len, separator, separator_len); | |
2058 | len += separator_len; | |
2059 | } | |
2060 | ||
2061 | memcpy(str + len, value, l); | |
2062 | len += l; | |
2063 | first = false; | |
2064 | } | |
2065 | ||
2066 | if (wrap_with_separator) { | |
2067 | memcpy(str + len, separator, separator_len); | |
2068 | len += separator_len; | |
2069 | } | |
2070 | ||
2071 | str[len] = '\0'; | |
2072 | ||
2073 | *ret = TAKE_PTR(str); | |
2074 | return 0; | |
2075 | } | |
2076 | ||
2077 | bool set_equal(Set *a, Set *b) { | |
2078 | void *p; | |
2079 | ||
2080 | /* Checks whether each entry of 'a' is also in 'b' and vice versa, i.e. the two sets contain the same | |
2081 | * entries */ | |
2082 | ||
2083 | if (a == b) | |
2084 | return true; | |
2085 | ||
2086 | if (set_isempty(a) && set_isempty(b)) | |
2087 | return true; | |
2088 | ||
2089 | if (set_size(a) != set_size(b)) /* Cheap check that hopefully catches a lot of inequality cases | |
2090 | * already */ | |
2091 | return false; | |
2092 | ||
2093 | SET_FOREACH(p, a) | |
2094 | if (!set_contains(b, p)) | |
2095 | return false; | |
2096 | ||
2097 | /* If we have the same hashops, then we don't need to check things backwards given we compared the | |
2098 | * size and that all of a is in b. */ | |
2099 | if (a->b.hash_ops == b->b.hash_ops) | |
2100 | return true; | |
2101 | ||
2102 | SET_FOREACH(p, b) | |
2103 | if (!set_contains(a, p)) | |
2104 | return false; | |
2105 | ||
2106 | return true; | |
2107 | } | |
2108 | ||
2109 | static bool set_fnmatch_one(Set *patterns, const char *needle) { | |
2110 | const char *p; | |
2111 | ||
2112 | assert(needle); | |
2113 | ||
2114 | /* Any failure of fnmatch() is treated as equivalent to FNM_NOMATCH, i.e. as non-matching pattern */ | |
2115 | ||
2116 | SET_FOREACH(p, patterns) | |
2117 | if (fnmatch(p, needle, 0) == 0) | |
2118 | return true; | |
2119 | ||
2120 | return false; | |
2121 | } | |
2122 | ||
2123 | bool set_fnmatch(Set *include_patterns, Set *exclude_patterns, const char *needle) { | |
2124 | assert(needle); | |
2125 | ||
2126 | if (set_fnmatch_one(exclude_patterns, needle)) | |
2127 | return false; | |
2128 | ||
2129 | if (set_isempty(include_patterns)) | |
2130 | return true; | |
2131 | ||
2132 | return set_fnmatch_one(include_patterns, needle); | |
2133 | } | |
2134 | ||
2135 | static int hashmap_entry_compare( | |
2136 | struct hashmap_base_entry * const *a, | |
2137 | struct hashmap_base_entry * const *b, | |
2138 | compare_func_t compare) { | |
2139 | ||
2140 | assert(a && *a); | |
2141 | assert(b && *b); | |
2142 | assert(compare); | |
2143 | ||
2144 | return compare((*a)->key, (*b)->key); | |
2145 | } | |
2146 | ||
2147 | static int _hashmap_dump_entries_sorted( | |
2148 | HashmapBase *h, | |
2149 | void ***ret, | |
2150 | size_t *ret_n) { | |
2151 | _cleanup_free_ void **entries = NULL; | |
2152 | Iterator iter; | |
2153 | unsigned idx; | |
2154 | size_t n = 0; | |
2155 | ||
2156 | assert(ret); | |
2157 | assert(ret_n); | |
2158 | ||
2159 | if (_hashmap_size(h) == 0) { | |
2160 | *ret = NULL; | |
2161 | *ret_n = 0; | |
2162 | return 0; | |
2163 | } | |
2164 | ||
2165 | /* We append one more element than needed so that the resulting array can be used as a strv. We | |
2166 | * don't count this entry in the returned size. */ | |
2167 | entries = new(void*, _hashmap_size(h) + 1); | |
2168 | if (!entries) | |
2169 | return -ENOMEM; | |
2170 | ||
2171 | HASHMAP_FOREACH_IDX(idx, h, iter) | |
2172 | entries[n++] = bucket_at(h, idx); | |
2173 | ||
2174 | assert(n == _hashmap_size(h)); | |
2175 | entries[n] = NULL; | |
2176 | ||
2177 | typesafe_qsort_r((struct hashmap_base_entry**) entries, n, | |
2178 | hashmap_entry_compare, h->hash_ops->compare); | |
2179 | ||
2180 | *ret = TAKE_PTR(entries); | |
2181 | *ret_n = n; | |
2182 | return 0; | |
2183 | } | |
2184 | ||
2185 | int _hashmap_dump_keys_sorted(HashmapBase *h, void ***ret, size_t *ret_n) { | |
2186 | _cleanup_free_ void **entries = NULL; | |
2187 | size_t n; | |
2188 | int r; | |
2189 | ||
2190 | r = _hashmap_dump_entries_sorted(h, &entries, &n); | |
2191 | if (r < 0) | |
2192 | return r; | |
2193 | ||
2194 | /* Reuse the array. */ | |
2195 | FOREACH_ARRAY(e, entries, n) | |
2196 | *e = (void*) (*(struct hashmap_base_entry**) e)->key; | |
2197 | ||
2198 | *ret = TAKE_PTR(entries); | |
2199 | if (ret_n) | |
2200 | *ret_n = n; | |
2201 | return 0; | |
2202 | } | |
2203 | ||
2204 | int _hashmap_dump_sorted(HashmapBase *h, void ***ret, size_t *ret_n) { | |
2205 | _cleanup_free_ void **entries = NULL; | |
2206 | size_t n; | |
2207 | int r; | |
2208 | ||
2209 | r = _hashmap_dump_entries_sorted(h, &entries, &n); | |
2210 | if (r < 0) | |
2211 | return r; | |
2212 | ||
2213 | /* Reuse the array. */ | |
2214 | FOREACH_ARRAY(e, entries, n) | |
2215 | *e = entry_value(h, *(struct hashmap_base_entry**) e); | |
2216 | ||
2217 | *ret = TAKE_PTR(entries); | |
2218 | if (ret_n) | |
2219 | *ret_n = n; | |
2220 | return 0; | |
2221 | } |