]>
| Commit | Line | Data |
|---|---|---|
| 1 | /* SPDX-License-Identifier: LGPL-2.1-or-later */ | |
| 2 | ||
| 3 | #include <fnmatch.h> | |
| 4 | #include <pthread.h> | |
| 5 | #include <unistd.h> | |
| 6 | #if HAVE_VALGRIND_VALGRIND_H | |
| 7 | # include <valgrind/valgrind.h> | |
| 8 | #endif | |
| 9 | ||
| 10 | #include "alloc-util.h" | |
| 11 | #include "extract-word.h" | |
| 12 | #include "hashmap.h" | |
| 13 | #include "log.h" | |
| 14 | #include "logarithm.h" | |
| 15 | #include "memory-util.h" | |
| 16 | #include "mempool.h" | |
| 17 | #include "process-util.h" | |
| 18 | #include "random-util.h" | |
| 19 | #include "set.h" | |
| 20 | #include "siphash24.h" | |
| 21 | #include "sort-util.h" | |
| 22 | #include "string-util.h" | |
| 23 | #include "strv.h" | |
| 24 | ||
| 25 | #if ENABLE_DEBUG_HASHMAP | |
| 26 | #include "list.h" | |
| 27 | #endif | |
| 28 | ||
| 29 | /* | |
| 30 | * Implementation of hashmaps. | |
| 31 | * Addressing: open | |
| 32 | * - uses less RAM compared to closed addressing (chaining), because | |
| 33 | * our entries are small (especially in Sets, which tend to contain | |
| 34 | * the majority of entries in systemd). | |
| 35 | * Collision resolution: Robin Hood | |
| 36 | * - tends to equalize displacement of entries from their optimal buckets. | |
| 37 | * Probe sequence: linear | |
| 38 | * - though theoretically worse than random probing/uniform hashing/double | |
| 39 | * hashing, it is good for cache locality. | |
| 40 | * | |
| 41 | * References: | |
| 42 | * Celis, P. 1986. Robin Hood Hashing. | |
| 43 | * Ph.D. Dissertation. University of Waterloo, Waterloo, Ont., Canada, Canada. | |
| 44 | * https://cs.uwaterloo.ca/research/tr/1986/CS-86-14.pdf | |
| 45 | * - The results are derived for random probing. Suggests deletion with | |
| 46 | * tombstones and two mean-centered search methods. None of that works | |
| 47 | * well for linear probing. | |
| 48 | * | |
| 49 | * Janson, S. 2005. Individual displacements for linear probing hashing with different insertion policies. | |
| 50 | * ACM Trans. Algorithms 1, 2 (October 2005), 177-213. | |
| 51 | * DOI=10.1145/1103963.1103964 http://doi.acm.org/10.1145/1103963.1103964 | |
| 52 | * http://www.math.uu.se/~svante/papers/sj157.pdf | |
| 53 | * - Applies to Robin Hood with linear probing. Contains remarks on | |
| 54 | * the unsuitability of mean-centered search with linear probing. | |
| 55 | * | |
| 56 | * Viola, A. 2005. Exact distribution of individual displacements in linear probing hashing. | |
| 57 | * ACM Trans. Algorithms 1, 2 (October 2005), 214-242. | |
| 58 | * DOI=10.1145/1103963.1103965 http://doi.acm.org/10.1145/1103963.1103965 | |
| 59 | * - Similar to Janson. Note that Viola writes about C_{m,n} (number of probes | |
| 60 | * in a successful search), and Janson writes about displacement. C = d + 1. | |
| 61 | * | |
| 62 | * Goossaert, E. 2013. Robin Hood hashing: backward shift deletion. | |
| 63 | * http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/ | |
| 64 | * - Explanation of backward shift deletion with pictures. | |
| 65 | * | |
| 66 | * Khuong, P. 2013. The Other Robin Hood Hashing. | |
| 67 | * http://www.pvk.ca/Blog/2013/11/26/the-other-robin-hood-hashing/ | |
| 68 | * - Short summary of random vs. linear probing, and tombstones vs. backward shift. | |
| 69 | */ | |
| 70 | ||
| 71 | /* | |
| 72 | * XXX Ideas for improvement: | |
| 73 | * For unordered hashmaps, randomize iteration order, similarly to Perl: | |
| 74 | * http://blog.booking.com/hardening-perls-hash-function.html | |
| 75 | */ | |
| 76 | ||
| 77 | /* INV_KEEP_FREE = 1 / (1 - max_load_factor) | |
| 78 | * e.g. 1 / (1 - 0.8) = 5 ... keep one fifth of the buckets free. */ | |
| 79 | #define INV_KEEP_FREE 5U | |
| 80 | ||
| 81 | /* Fields common to entries of all hashmap/set types */ | |
| 82 | struct hashmap_base_entry { | |
| 83 | const void *key; | |
| 84 | }; | |
| 85 | ||
| 86 | /* Entry types for specific hashmap/set types | |
| 87 | * hashmap_base_entry must be at the beginning of each entry struct. */ | |
| 88 | ||
| 89 | struct plain_hashmap_entry { | |
| 90 | struct hashmap_base_entry b; | |
| 91 | void *value; | |
| 92 | }; | |
| 93 | ||
| 94 | struct ordered_hashmap_entry { | |
| 95 | struct plain_hashmap_entry p; | |
| 96 | unsigned iterate_next, iterate_previous; | |
| 97 | }; | |
| 98 | ||
| 99 | struct set_entry { | |
| 100 | struct hashmap_base_entry b; | |
| 101 | }; | |
| 102 | ||
| 103 | /* In several functions it is advantageous to have the hash table extended | |
| 104 | * virtually by a couple of additional buckets. We reserve special index values | |
| 105 | * for these "swap" buckets. */ | |
| 106 | #define _IDX_SWAP_BEGIN (UINT_MAX - 3) | |
| 107 | #define IDX_PUT (_IDX_SWAP_BEGIN + 0) | |
| 108 | #define IDX_TMP (_IDX_SWAP_BEGIN + 1) | |
| 109 | #define _IDX_SWAP_END (_IDX_SWAP_BEGIN + 2) | |
| 110 | ||
| 111 | #define IDX_FIRST (UINT_MAX - 1) /* special index for freshly initialized iterators */ | |
| 112 | #define IDX_NIL UINT_MAX /* special index value meaning "none" or "end" */ | |
| 113 | ||
| 114 | assert_cc(IDX_FIRST == _IDX_SWAP_END); | |
| 115 | assert_cc(IDX_FIRST == _IDX_ITERATOR_FIRST); | |
| 116 | ||
| 117 | /* Storage space for the "swap" buckets. | |
| 118 | * All entry types can fit into an ordered_hashmap_entry. */ | |
| 119 | struct swap_entries { | |
| 120 | struct ordered_hashmap_entry e[_IDX_SWAP_END - _IDX_SWAP_BEGIN]; | |
| 121 | }; | |
| 122 | ||
| 123 | /* Distance from Initial Bucket */ | |
| 124 | typedef uint8_t dib_raw_t; | |
| 125 | #define DIB_RAW_OVERFLOW ((dib_raw_t)0xfdU) /* indicates DIB value is greater than representable */ | |
| 126 | #define DIB_RAW_REHASH ((dib_raw_t)0xfeU) /* entry yet to be rehashed during in-place resize */ | |
| 127 | #define DIB_RAW_FREE ((dib_raw_t)0xffU) /* a free bucket */ | |
| 128 | #define DIB_RAW_INIT ((char)DIB_RAW_FREE) /* a byte to memset a DIB store with when initializing */ | |
| 129 | ||
| 130 | #define DIB_FREE UINT_MAX | |
| 131 | ||
| 132 | #if ENABLE_DEBUG_HASHMAP | |
| 133 | struct hashmap_debug_info { | |
| 134 | LIST_FIELDS(struct hashmap_debug_info, debug_list); | |
| 135 | unsigned max_entries; /* high watermark of n_entries */ | |
| 136 | ||
| 137 | /* fields to detect modification while iterating */ | |
| 138 | unsigned put_count; /* counts puts into the hashmap */ | |
| 139 | unsigned rem_count; /* counts removals from hashmap */ | |
| 140 | unsigned last_rem_idx; /* remembers last removal index */ | |
| 141 | }; | |
| 142 | ||
| 143 | /* Tracks all existing hashmaps. Get at it from gdb. See sd_dump_hashmaps.py */ | |
| 144 | static LIST_HEAD(struct hashmap_debug_info, hashmap_debug_list); | |
| 145 | static pthread_mutex_t hashmap_debug_list_mutex = PTHREAD_MUTEX_INITIALIZER; | |
| 146 | #endif | |
| 147 | ||
| 148 | enum HashmapType { | |
| 149 | HASHMAP_TYPE_PLAIN, | |
| 150 | HASHMAP_TYPE_ORDERED, | |
| 151 | HASHMAP_TYPE_SET, | |
| 152 | _HASHMAP_TYPE_MAX | |
| 153 | }; | |
| 154 | ||
| 155 | struct _packed_ indirect_storage { | |
| 156 | void *storage; /* where buckets and DIBs are stored */ | |
| 157 | uint8_t hash_key[HASH_KEY_SIZE]; /* hash key; changes during resize */ | |
| 158 | ||
| 159 | unsigned n_entries; /* number of stored entries */ | |
| 160 | unsigned n_buckets; /* number of buckets */ | |
| 161 | ||
| 162 | unsigned idx_lowest_entry; /* Index below which all buckets are free. | |
| 163 | Makes "while (hashmap_steal_first())" loops | |
| 164 | O(n) instead of O(n^2) for unordered hashmaps. */ | |
| 165 | uint8_t _pad[3]; /* padding for the whole HashmapBase */ | |
| 166 | /* The bitfields in HashmapBase complete the alignment of the whole thing. */ | |
| 167 | }; | |
| 168 | ||
| 169 | struct direct_storage { | |
| 170 | /* This gives us 39 bytes on 64-bit, or 35 bytes on 32-bit. | |
| 171 | * That's room for 4 set_entries + 4 DIB bytes + 3 unused bytes on 64-bit, | |
| 172 | * or 7 set_entries + 7 DIB bytes + 0 unused bytes on 32-bit. */ | |
| 173 | uint8_t storage[sizeof(struct indirect_storage)]; | |
| 174 | }; | |
| 175 | ||
| 176 | #define DIRECT_BUCKETS(entry_t) \ | |
| 177 | (sizeof(struct direct_storage) / (sizeof(entry_t) + sizeof(dib_raw_t))) | |
| 178 | ||
| 179 | /* We should be able to store at least one entry directly. */ | |
| 180 | assert_cc(DIRECT_BUCKETS(struct ordered_hashmap_entry) >= 1); | |
| 181 | ||
| 182 | /* We have 3 bits for n_direct_entries. */ | |
| 183 | assert_cc(DIRECT_BUCKETS(struct set_entry) < (1 << 3)); | |
| 184 | ||
| 185 | /* Hashmaps with directly stored entries all use this shared hash key. | |
| 186 | * It's no big deal if the key is guessed, because there can be only | |
| 187 | * a handful of directly stored entries in a hashmap. When a hashmap | |
| 188 | * outgrows direct storage, it gets its own key for indirect storage. */ | |
| 189 | static uint8_t shared_hash_key[HASH_KEY_SIZE]; | |
| 190 | ||
| 191 | /* Fields that all hashmap/set types must have */ | |
| 192 | struct HashmapBase { | |
| 193 | const struct hash_ops *hash_ops; /* hash and compare ops to use */ | |
| 194 | ||
| 195 | union _packed_ { | |
| 196 | struct indirect_storage indirect; /* if has_indirect */ | |
| 197 | struct direct_storage direct; /* if !has_indirect */ | |
| 198 | }; | |
| 199 | ||
| 200 | enum HashmapType type:2; /* HASHMAP_TYPE_* */ | |
| 201 | bool has_indirect:1; /* whether indirect storage is used */ | |
| 202 | unsigned n_direct_entries:3; /* Number of entries in direct storage. | |
| 203 | * Only valid if !has_indirect. */ | |
| 204 | bool from_pool:1; /* whether was allocated from mempool */ | |
| 205 | bool dirty:1; /* whether dirtied since last iterated_cache_get() */ | |
| 206 | bool cached:1; /* whether this hashmap is being cached */ | |
| 207 | ||
| 208 | #if ENABLE_DEBUG_HASHMAP | |
| 209 | struct hashmap_debug_info debug; | |
| 210 | #endif | |
| 211 | }; | |
| 212 | ||
| 213 | /* Specific hash types | |
| 214 | * HashmapBase must be at the beginning of each hashmap struct. */ | |
| 215 | ||
| 216 | struct Hashmap { | |
| 217 | struct HashmapBase b; | |
| 218 | }; | |
| 219 | ||
| 220 | struct OrderedHashmap { | |
| 221 | struct HashmapBase b; | |
| 222 | unsigned iterate_list_head, iterate_list_tail; | |
| 223 | }; | |
| 224 | ||
| 225 | struct Set { | |
| 226 | struct HashmapBase b; | |
| 227 | }; | |
| 228 | ||
| 229 | typedef struct CacheMem { | |
| 230 | const void **ptr; | |
| 231 | size_t n_populated; | |
| 232 | bool active:1; | |
| 233 | } CacheMem; | |
| 234 | ||
| 235 | struct IteratedCache { | |
| 236 | HashmapBase *hashmap; | |
| 237 | CacheMem keys, values; | |
| 238 | }; | |
| 239 | ||
| 240 | DEFINE_MEMPOOL(hashmap_pool, Hashmap, 8); | |
| 241 | DEFINE_MEMPOOL(ordered_hashmap_pool, OrderedHashmap, 8); | |
| 242 | /* No need for a separate Set pool */ | |
| 243 | assert_cc(sizeof(Hashmap) == sizeof(Set)); | |
| 244 | ||
| 245 | struct hashmap_type_info { | |
| 246 | size_t head_size; | |
| 247 | size_t entry_size; | |
| 248 | struct mempool *mempool; | |
| 249 | unsigned n_direct_buckets; | |
| 250 | }; | |
| 251 | ||
| 252 | static _used_ const struct hashmap_type_info hashmap_type_info[_HASHMAP_TYPE_MAX] = { | |
| 253 | [HASHMAP_TYPE_PLAIN] = { | |
| 254 | .head_size = sizeof(Hashmap), | |
| 255 | .entry_size = sizeof(struct plain_hashmap_entry), | |
| 256 | .mempool = &hashmap_pool, | |
| 257 | .n_direct_buckets = DIRECT_BUCKETS(struct plain_hashmap_entry), | |
| 258 | }, | |
| 259 | [HASHMAP_TYPE_ORDERED] = { | |
| 260 | .head_size = sizeof(OrderedHashmap), | |
| 261 | .entry_size = sizeof(struct ordered_hashmap_entry), | |
| 262 | .mempool = &ordered_hashmap_pool, | |
| 263 | .n_direct_buckets = DIRECT_BUCKETS(struct ordered_hashmap_entry), | |
| 264 | }, | |
| 265 | [HASHMAP_TYPE_SET] = { | |
| 266 | .head_size = sizeof(Set), | |
| 267 | .entry_size = sizeof(struct set_entry), | |
| 268 | .mempool = &hashmap_pool, | |
| 269 | .n_direct_buckets = DIRECT_BUCKETS(struct set_entry), | |
| 270 | }, | |
| 271 | }; | |
| 272 | ||
| 273 | void hashmap_trim_pools(void) { | |
| 274 | int r; | |
| 275 | ||
| 276 | /* The pool is only allocated by the main thread, but the memory can be passed to other | |
| 277 | * threads. Let's clean up if we are the main thread and no other threads are live. */ | |
| 278 | ||
| 279 | /* We build our own is_main_thread() here, which doesn't use C11 TLS based caching of the | |
| 280 | * result. That's because valgrind apparently doesn't like TLS to be used from a GCC destructor. */ | |
| 281 | if (getpid() != gettid()) | |
| 282 | return (void) log_debug("Not cleaning up memory pools, not in main thread."); | |
| 283 | ||
| 284 | r = get_process_threads(0); | |
| 285 | if (r < 0) | |
| 286 | return (void) log_debug_errno(r, "Failed to determine number of threads, not cleaning up memory pools: %m"); | |
| 287 | if (r != 1) | |
| 288 | return (void) log_debug("Not cleaning up memory pools, running in multi-threaded process."); | |
| 289 | ||
| 290 | mempool_trim(&hashmap_pool); | |
| 291 | mempool_trim(&ordered_hashmap_pool); | |
| 292 | } | |
| 293 | ||
| 294 | #if HAVE_VALGRIND_VALGRIND_H | |
| 295 | _destructor_ static void cleanup_pools(void) { | |
| 296 | /* Be nice to valgrind */ | |
| 297 | if (RUNNING_ON_VALGRIND) | |
| 298 | hashmap_trim_pools(); | |
| 299 | } | |
| 300 | #endif | |
| 301 | ||
| 302 | static unsigned n_buckets(HashmapBase *h) { | |
| 303 | return h->has_indirect ? h->indirect.n_buckets | |
| 304 | : hashmap_type_info[h->type].n_direct_buckets; | |
| 305 | } | |
| 306 | ||
| 307 | static unsigned n_entries(HashmapBase *h) { | |
| 308 | return h->has_indirect ? h->indirect.n_entries | |
| 309 | : h->n_direct_entries; | |
| 310 | } | |
| 311 | ||
| 312 | static void n_entries_inc(HashmapBase *h) { | |
| 313 | if (h->has_indirect) | |
| 314 | h->indirect.n_entries++; | |
| 315 | else | |
| 316 | h->n_direct_entries++; | |
| 317 | } | |
| 318 | ||
| 319 | static void n_entries_dec(HashmapBase *h) { | |
| 320 | if (h->has_indirect) | |
| 321 | h->indirect.n_entries--; | |
| 322 | else | |
| 323 | h->n_direct_entries--; | |
| 324 | } | |
| 325 | ||
| 326 | static void* storage_ptr(HashmapBase *h) { | |
| 327 | return h->has_indirect ? h->indirect.storage | |
| 328 | : h->direct.storage; | |
| 329 | } | |
| 330 | ||
| 331 | static uint8_t* hash_key(HashmapBase *h) { | |
| 332 | return h->has_indirect ? h->indirect.hash_key | |
| 333 | : shared_hash_key; | |
| 334 | } | |
| 335 | ||
| 336 | static unsigned base_bucket_hash(HashmapBase *h, const void *p) { | |
| 337 | struct siphash state; | |
| 338 | uint64_t hash; | |
| 339 | ||
| 340 | siphash24_init(&state, hash_key(h)); | |
| 341 | ||
| 342 | h->hash_ops->hash(p, &state); | |
| 343 | ||
| 344 | hash = siphash24_finalize(&state); | |
| 345 | ||
| 346 | return (unsigned) (hash % n_buckets(h)); | |
| 347 | } | |
| 348 | #define bucket_hash(h, p) base_bucket_hash(HASHMAP_BASE(h), p) | |
| 349 | ||
| 350 | static void base_set_dirty(HashmapBase *h) { | |
| 351 | h->dirty = true; | |
| 352 | } | |
| 353 | #define hashmap_set_dirty(h) base_set_dirty(HASHMAP_BASE(h)) | |
| 354 | ||
| 355 | static void get_hash_key(uint8_t hash_key[HASH_KEY_SIZE], bool reuse_is_ok) { | |
| 356 | static uint8_t current[HASH_KEY_SIZE]; | |
| 357 | static bool current_initialized = false; | |
| 358 | ||
| 359 | /* Returns a hash function key to use. In order to keep things | |
| 360 | * fast we will not generate a new key each time we allocate a | |
| 361 | * new hash table. Instead, we'll just reuse the most recently | |
| 362 | * generated one, except if we never generated one or when we | |
| 363 | * are rehashing an entire hash table because we reached a | |
| 364 | * fill level */ | |
| 365 | ||
| 366 | if (!current_initialized || !reuse_is_ok) { | |
| 367 | random_bytes(current, sizeof(current)); | |
| 368 | current_initialized = true; | |
| 369 | } | |
| 370 | ||
| 371 | memcpy(hash_key, current, sizeof(current)); | |
| 372 | } | |
| 373 | ||
| 374 | static struct hashmap_base_entry* bucket_at(HashmapBase *h, unsigned idx) { | |
| 375 | return CAST_ALIGN_PTR( | |
| 376 | struct hashmap_base_entry, | |
| 377 | (uint8_t *) storage_ptr(h) + idx * hashmap_type_info[h->type].entry_size); | |
| 378 | } | |
| 379 | ||
| 380 | static struct plain_hashmap_entry* plain_bucket_at(Hashmap *h, unsigned idx) { | |
| 381 | return (struct plain_hashmap_entry*) bucket_at(HASHMAP_BASE(h), idx); | |
| 382 | } | |
| 383 | ||
| 384 | static struct ordered_hashmap_entry* ordered_bucket_at(OrderedHashmap *h, unsigned idx) { | |
| 385 | return (struct ordered_hashmap_entry*) bucket_at(HASHMAP_BASE(h), idx); | |
| 386 | } | |
| 387 | ||
| 388 | static struct set_entry *set_bucket_at(Set *h, unsigned idx) { | |
| 389 | return (struct set_entry*) bucket_at(HASHMAP_BASE(h), idx); | |
| 390 | } | |
| 391 | ||
| 392 | static struct ordered_hashmap_entry* bucket_at_swap(struct swap_entries *swap, unsigned idx) { | |
| 393 | return &swap->e[idx - _IDX_SWAP_BEGIN]; | |
| 394 | } | |
| 395 | ||
| 396 | /* Returns a pointer to the bucket at index idx. | |
| 397 | * Understands real indexes and swap indexes, hence "_virtual". */ | |
| 398 | static struct hashmap_base_entry* bucket_at_virtual(HashmapBase *h, struct swap_entries *swap, | |
| 399 | unsigned idx) { | |
| 400 | if (idx < _IDX_SWAP_BEGIN) | |
| 401 | return bucket_at(h, idx); | |
| 402 | ||
| 403 | if (idx < _IDX_SWAP_END) | |
| 404 | return &bucket_at_swap(swap, idx)->p.b; | |
| 405 | ||
| 406 | assert_not_reached(); | |
| 407 | } | |
| 408 | ||
| 409 | static dib_raw_t* dib_raw_ptr(HashmapBase *h) { | |
| 410 | return (dib_raw_t*) | |
| 411 | ((uint8_t*) storage_ptr(h) + hashmap_type_info[h->type].entry_size * n_buckets(h)); | |
| 412 | } | |
| 413 | ||
| 414 | static unsigned bucket_distance(HashmapBase *h, unsigned idx, unsigned from) { | |
| 415 | return idx >= from ? idx - from | |
| 416 | : n_buckets(h) + idx - from; | |
| 417 | } | |
| 418 | ||
| 419 | static unsigned bucket_calculate_dib(HashmapBase *h, unsigned idx, dib_raw_t raw_dib) { | |
| 420 | unsigned initial_bucket; | |
| 421 | ||
| 422 | if (raw_dib == DIB_RAW_FREE) | |
| 423 | return DIB_FREE; | |
| 424 | ||
| 425 | if (_likely_(raw_dib < DIB_RAW_OVERFLOW)) | |
| 426 | return raw_dib; | |
| 427 | ||
| 428 | /* | |
| 429 | * Having an overflow DIB value is very unlikely. The hash function | |
| 430 | * would have to be bad. For example, in a table of size 2^24 filled | |
| 431 | * to load factor 0.9 the maximum observed DIB is only about 60. | |
| 432 | * In theory (assuming I used Maxima correctly), for an infinite size | |
| 433 | * hash table with load factor 0.8 the probability of a given entry | |
| 434 | * having DIB > 40 is 1.9e-8. | |
| 435 | * This returns the correct DIB value by recomputing the hash value in | |
| 436 | * the unlikely case. XXX Hitting this case could be a hint to rehash. | |
| 437 | */ | |
| 438 | initial_bucket = bucket_hash(h, bucket_at(h, idx)->key); | |
| 439 | return bucket_distance(h, idx, initial_bucket); | |
| 440 | } | |
| 441 | ||
| 442 | static void bucket_set_dib(HashmapBase *h, unsigned idx, unsigned dib) { | |
| 443 | dib_raw_ptr(h)[idx] = dib != DIB_FREE ? MIN(dib, DIB_RAW_OVERFLOW) : DIB_RAW_FREE; | |
| 444 | } | |
| 445 | ||
| 446 | static unsigned skip_free_buckets(HashmapBase *h, unsigned idx) { | |
| 447 | dib_raw_t *dibs; | |
| 448 | ||
| 449 | dibs = dib_raw_ptr(h); | |
| 450 | ||
| 451 | for ( ; idx < n_buckets(h); idx++) | |
| 452 | if (dibs[idx] != DIB_RAW_FREE) | |
| 453 | return idx; | |
| 454 | ||
| 455 | return IDX_NIL; | |
| 456 | } | |
| 457 | ||
| 458 | static void bucket_mark_free(HashmapBase *h, unsigned idx) { | |
| 459 | memzero(bucket_at(h, idx), hashmap_type_info[h->type].entry_size); | |
| 460 | bucket_set_dib(h, idx, DIB_FREE); | |
| 461 | } | |
| 462 | ||
| 463 | static void bucket_move_entry(HashmapBase *h, struct swap_entries *swap, | |
| 464 | unsigned from, unsigned to) { | |
| 465 | struct hashmap_base_entry *e_from, *e_to; | |
| 466 | ||
| 467 | assert(from != to); | |
| 468 | ||
| 469 | e_from = bucket_at_virtual(h, swap, from); | |
| 470 | e_to = bucket_at_virtual(h, swap, to); | |
| 471 | ||
| 472 | memcpy(e_to, e_from, hashmap_type_info[h->type].entry_size); | |
| 473 | ||
| 474 | if (h->type == HASHMAP_TYPE_ORDERED) { | |
| 475 | OrderedHashmap *lh = (OrderedHashmap*) h; | |
| 476 | struct ordered_hashmap_entry *le, *le_to; | |
| 477 | ||
| 478 | le_to = (struct ordered_hashmap_entry*) e_to; | |
| 479 | ||
| 480 | if (le_to->iterate_next != IDX_NIL) { | |
| 481 | le = (struct ordered_hashmap_entry*) | |
| 482 | bucket_at_virtual(h, swap, le_to->iterate_next); | |
| 483 | le->iterate_previous = to; | |
| 484 | } | |
| 485 | ||
| 486 | if (le_to->iterate_previous != IDX_NIL) { | |
| 487 | le = (struct ordered_hashmap_entry*) | |
| 488 | bucket_at_virtual(h, swap, le_to->iterate_previous); | |
| 489 | le->iterate_next = to; | |
| 490 | } | |
| 491 | ||
| 492 | if (lh->iterate_list_head == from) | |
| 493 | lh->iterate_list_head = to; | |
| 494 | if (lh->iterate_list_tail == from) | |
| 495 | lh->iterate_list_tail = to; | |
| 496 | } | |
| 497 | } | |
| 498 | ||
| 499 | static unsigned next_idx(HashmapBase *h, unsigned idx) { | |
| 500 | return (idx + 1U) % n_buckets(h); | |
| 501 | } | |
| 502 | ||
| 503 | static unsigned prev_idx(HashmapBase *h, unsigned idx) { | |
| 504 | return (n_buckets(h) + idx - 1U) % n_buckets(h); | |
| 505 | } | |
| 506 | ||
| 507 | static void* entry_value(HashmapBase *h, struct hashmap_base_entry *e) { | |
| 508 | switch (h->type) { | |
| 509 | ||
| 510 | case HASHMAP_TYPE_PLAIN: | |
| 511 | case HASHMAP_TYPE_ORDERED: | |
| 512 | return ((struct plain_hashmap_entry*)e)->value; | |
| 513 | ||
| 514 | case HASHMAP_TYPE_SET: | |
| 515 | return (void*) e->key; | |
| 516 | ||
| 517 | default: | |
| 518 | assert_not_reached(); | |
| 519 | } | |
| 520 | } | |
| 521 | ||
| 522 | static void base_remove_entry(HashmapBase *h, unsigned idx) { | |
| 523 | unsigned left, right, prev, dib; | |
| 524 | dib_raw_t raw_dib, *dibs; | |
| 525 | ||
| 526 | dibs = dib_raw_ptr(h); | |
| 527 | assert(dibs[idx] != DIB_RAW_FREE); | |
| 528 | ||
| 529 | #if ENABLE_DEBUG_HASHMAP | |
| 530 | h->debug.rem_count++; | |
| 531 | h->debug.last_rem_idx = idx; | |
| 532 | #endif | |
| 533 | ||
| 534 | left = idx; | |
| 535 | /* Find the stop bucket ("right"). It is either free or has DIB == 0. */ | |
| 536 | for (right = next_idx(h, left); ; right = next_idx(h, right)) { | |
| 537 | raw_dib = dibs[right]; | |
| 538 | if (IN_SET(raw_dib, 0, DIB_RAW_FREE)) | |
| 539 | break; | |
| 540 | ||
| 541 | /* The buckets are not supposed to be all occupied and with DIB > 0. | |
| 542 | * That would mean we could make everyone better off by shifting them | |
| 543 | * backward. This scenario is impossible. */ | |
| 544 | assert(left != right); | |
| 545 | } | |
| 546 | ||
| 547 | if (h->type == HASHMAP_TYPE_ORDERED) { | |
| 548 | OrderedHashmap *lh = (OrderedHashmap*) h; | |
| 549 | struct ordered_hashmap_entry *le = ordered_bucket_at(lh, idx); | |
| 550 | ||
| 551 | if (le->iterate_next != IDX_NIL) | |
| 552 | ordered_bucket_at(lh, le->iterate_next)->iterate_previous = le->iterate_previous; | |
| 553 | else | |
| 554 | lh->iterate_list_tail = le->iterate_previous; | |
| 555 | ||
| 556 | if (le->iterate_previous != IDX_NIL) | |
| 557 | ordered_bucket_at(lh, le->iterate_previous)->iterate_next = le->iterate_next; | |
| 558 | else | |
| 559 | lh->iterate_list_head = le->iterate_next; | |
| 560 | } | |
| 561 | ||
| 562 | /* Now shift all buckets in the interval (left, right) one step backwards */ | |
| 563 | for (prev = left, left = next_idx(h, left); left != right; | |
| 564 | prev = left, left = next_idx(h, left)) { | |
| 565 | dib = bucket_calculate_dib(h, left, dibs[left]); | |
| 566 | assert(dib != 0); | |
| 567 | bucket_move_entry(h, NULL, left, prev); | |
| 568 | bucket_set_dib(h, prev, dib - 1); | |
| 569 | } | |
| 570 | ||
| 571 | bucket_mark_free(h, prev); | |
| 572 | n_entries_dec(h); | |
| 573 | base_set_dirty(h); | |
| 574 | } | |
| 575 | #define remove_entry(h, idx) base_remove_entry(HASHMAP_BASE(h), idx) | |
| 576 | ||
| 577 | static unsigned hashmap_iterate_in_insertion_order(OrderedHashmap *h, Iterator *i) { | |
| 578 | struct ordered_hashmap_entry *e; | |
| 579 | unsigned idx; | |
| 580 | ||
| 581 | assert(h); | |
| 582 | assert(i); | |
| 583 | ||
| 584 | if (i->idx == IDX_NIL) | |
| 585 | goto at_end; | |
| 586 | ||
| 587 | if (i->idx == IDX_FIRST && h->iterate_list_head == IDX_NIL) | |
| 588 | goto at_end; | |
| 589 | ||
| 590 | if (i->idx == IDX_FIRST) { | |
| 591 | idx = h->iterate_list_head; | |
| 592 | e = ordered_bucket_at(h, idx); | |
| 593 | } else { | |
| 594 | idx = i->idx; | |
| 595 | e = ordered_bucket_at(h, idx); | |
| 596 | /* | |
| 597 | * We allow removing the current entry while iterating, but removal may cause | |
| 598 | * a backward shift. The next entry may thus move one bucket to the left. | |
| 599 | * To detect when it happens, we remember the key pointer of the entry we were | |
| 600 | * going to iterate next. If it does not match, there was a backward shift. | |
| 601 | */ | |
| 602 | if (e->p.b.key != i->next_key) { | |
| 603 | idx = prev_idx(HASHMAP_BASE(h), idx); | |
| 604 | e = ordered_bucket_at(h, idx); | |
| 605 | } | |
| 606 | assert(e->p.b.key == i->next_key); | |
| 607 | } | |
| 608 | ||
| 609 | #if ENABLE_DEBUG_HASHMAP | |
| 610 | i->prev_idx = idx; | |
| 611 | #endif | |
| 612 | ||
| 613 | if (e->iterate_next != IDX_NIL) { | |
| 614 | struct ordered_hashmap_entry *n; | |
| 615 | i->idx = e->iterate_next; | |
| 616 | n = ordered_bucket_at(h, i->idx); | |
| 617 | i->next_key = n->p.b.key; | |
| 618 | } else | |
| 619 | i->idx = IDX_NIL; | |
| 620 | ||
| 621 | return idx; | |
| 622 | ||
| 623 | at_end: | |
| 624 | i->idx = IDX_NIL; | |
| 625 | return IDX_NIL; | |
| 626 | } | |
| 627 | ||
| 628 | static unsigned hashmap_iterate_in_internal_order(HashmapBase *h, Iterator *i) { | |
| 629 | unsigned idx; | |
| 630 | ||
| 631 | assert(h); | |
| 632 | assert(i); | |
| 633 | ||
| 634 | if (i->idx == IDX_NIL) | |
| 635 | goto at_end; | |
| 636 | ||
| 637 | if (i->idx == IDX_FIRST) { | |
| 638 | /* fast forward to the first occupied bucket */ | |
| 639 | if (h->has_indirect) { | |
| 640 | i->idx = skip_free_buckets(h, h->indirect.idx_lowest_entry); | |
| 641 | h->indirect.idx_lowest_entry = i->idx; | |
| 642 | } else | |
| 643 | i->idx = skip_free_buckets(h, 0); | |
| 644 | ||
| 645 | if (i->idx == IDX_NIL) | |
| 646 | goto at_end; | |
| 647 | } else { | |
| 648 | struct hashmap_base_entry *e; | |
| 649 | ||
| 650 | assert(i->idx > 0); | |
| 651 | ||
| 652 | e = bucket_at(h, i->idx); | |
| 653 | /* | |
| 654 | * We allow removing the current entry while iterating, but removal may cause | |
| 655 | * a backward shift. The next entry may thus move one bucket to the left. | |
| 656 | * To detect when it happens, we remember the key pointer of the entry we were | |
| 657 | * going to iterate next. If it does not match, there was a backward shift. | |
| 658 | */ | |
| 659 | if (e->key != i->next_key) | |
| 660 | e = bucket_at(h, --i->idx); | |
| 661 | ||
| 662 | assert(e->key == i->next_key); | |
| 663 | } | |
| 664 | ||
| 665 | idx = i->idx; | |
| 666 | #if ENABLE_DEBUG_HASHMAP | |
| 667 | i->prev_idx = idx; | |
| 668 | #endif | |
| 669 | ||
| 670 | i->idx = skip_free_buckets(h, i->idx + 1); | |
| 671 | if (i->idx != IDX_NIL) | |
| 672 | i->next_key = bucket_at(h, i->idx)->key; | |
| 673 | else | |
| 674 | i->idx = IDX_NIL; | |
| 675 | ||
| 676 | return idx; | |
| 677 | ||
| 678 | at_end: | |
| 679 | i->idx = IDX_NIL; | |
| 680 | return IDX_NIL; | |
| 681 | } | |
| 682 | ||
| 683 | static unsigned hashmap_iterate_entry(HashmapBase *h, Iterator *i) { | |
| 684 | if (!h) { | |
| 685 | i->idx = IDX_NIL; | |
| 686 | return IDX_NIL; | |
| 687 | } | |
| 688 | ||
| 689 | #if ENABLE_DEBUG_HASHMAP | |
| 690 | if (i->idx == IDX_FIRST) { | |
| 691 | i->put_count = h->debug.put_count; | |
| 692 | i->rem_count = h->debug.rem_count; | |
| 693 | } else { | |
| 694 | /* While iterating, must not add any new entries */ | |
| 695 | assert(i->put_count == h->debug.put_count); | |
| 696 | /* ... or remove entries other than the current one */ | |
| 697 | assert(i->rem_count == h->debug.rem_count || | |
| 698 | (i->rem_count == h->debug.rem_count - 1 && | |
| 699 | i->prev_idx == h->debug.last_rem_idx)); | |
| 700 | /* Reset our removals counter */ | |
| 701 | i->rem_count = h->debug.rem_count; | |
| 702 | } | |
| 703 | #endif | |
| 704 | ||
| 705 | return h->type == HASHMAP_TYPE_ORDERED ? hashmap_iterate_in_insertion_order((OrderedHashmap*) h, i) | |
| 706 | : hashmap_iterate_in_internal_order(h, i); | |
| 707 | } | |
| 708 | ||
| 709 | bool _hashmap_iterate(HashmapBase *h, Iterator *i, void **value, const void **key) { | |
| 710 | struct hashmap_base_entry *e; | |
| 711 | void *data; | |
| 712 | unsigned idx; | |
| 713 | ||
| 714 | idx = hashmap_iterate_entry(h, i); | |
| 715 | if (idx == IDX_NIL) { | |
| 716 | if (value) | |
| 717 | *value = NULL; | |
| 718 | if (key) | |
| 719 | *key = NULL; | |
| 720 | ||
| 721 | return false; | |
| 722 | } | |
| 723 | ||
| 724 | e = bucket_at(h, idx); | |
| 725 | data = entry_value(h, e); | |
| 726 | if (value) | |
| 727 | *value = data; | |
| 728 | if (key) | |
| 729 | *key = e->key; | |
| 730 | ||
| 731 | return true; | |
| 732 | } | |
| 733 | ||
| 734 | #define HASHMAP_FOREACH_IDX(idx, h, i) \ | |
| 735 | for ((i) = ITERATOR_FIRST, (idx) = hashmap_iterate_entry((h), &(i)); \ | |
| 736 | (idx != IDX_NIL); \ | |
| 737 | (idx) = hashmap_iterate_entry((h), &(i))) | |
| 738 | ||
| 739 | IteratedCache* _hashmap_iterated_cache_new(HashmapBase *h) { | |
| 740 | IteratedCache *cache; | |
| 741 | ||
| 742 | assert(h); | |
| 743 | assert(!h->cached); | |
| 744 | ||
| 745 | if (h->cached) | |
| 746 | return NULL; | |
| 747 | ||
| 748 | cache = new0(IteratedCache, 1); | |
| 749 | if (!cache) | |
| 750 | return NULL; | |
| 751 | ||
| 752 | cache->hashmap = h; | |
| 753 | h->cached = true; | |
| 754 | ||
| 755 | return cache; | |
| 756 | } | |
| 757 | ||
| 758 | static void reset_direct_storage(HashmapBase *h) { | |
| 759 | const struct hashmap_type_info *hi = &hashmap_type_info[h->type]; | |
| 760 | void *p; | |
| 761 | ||
| 762 | assert(!h->has_indirect); | |
| 763 | ||
| 764 | p = mempset(h->direct.storage, 0, hi->entry_size * hi->n_direct_buckets); | |
| 765 | memset(p, DIB_RAW_INIT, sizeof(dib_raw_t) * hi->n_direct_buckets); | |
| 766 | } | |
| 767 | ||
| 768 | static void shared_hash_key_initialize(void) { | |
| 769 | random_bytes(shared_hash_key, sizeof(shared_hash_key)); | |
| 770 | } | |
| 771 | ||
| 772 | static struct HashmapBase* hashmap_base_new(const struct hash_ops *hash_ops, enum HashmapType type) { | |
| 773 | HashmapBase *h; | |
| 774 | const struct hashmap_type_info *hi = &hashmap_type_info[type]; | |
| 775 | ||
| 776 | bool use_pool = mempool_enabled && mempool_enabled(); /* mempool_enabled is a weak symbol */ | |
| 777 | ||
| 778 | h = use_pool ? mempool_alloc0_tile(hi->mempool) : malloc0(hi->head_size); | |
| 779 | if (!h) | |
| 780 | return NULL; | |
| 781 | ||
| 782 | h->type = type; | |
| 783 | h->from_pool = use_pool; | |
| 784 | h->hash_ops = hash_ops ?: &trivial_hash_ops; | |
| 785 | ||
| 786 | if (type == HASHMAP_TYPE_ORDERED) { | |
| 787 | OrderedHashmap *lh = (OrderedHashmap*)h; | |
| 788 | lh->iterate_list_head = lh->iterate_list_tail = IDX_NIL; | |
| 789 | } | |
| 790 | ||
| 791 | reset_direct_storage(h); | |
| 792 | ||
| 793 | static pthread_once_t once = PTHREAD_ONCE_INIT; | |
| 794 | assert_se(pthread_once(&once, shared_hash_key_initialize) == 0); | |
| 795 | ||
| 796 | #if ENABLE_DEBUG_HASHMAP | |
| 797 | assert_se(pthread_mutex_lock(&hashmap_debug_list_mutex) == 0); | |
| 798 | LIST_PREPEND(debug_list, hashmap_debug_list, &h->debug); | |
| 799 | assert_se(pthread_mutex_unlock(&hashmap_debug_list_mutex) == 0); | |
| 800 | #endif | |
| 801 | ||
| 802 | return h; | |
| 803 | } | |
| 804 | ||
| 805 | Hashmap *hashmap_new(const struct hash_ops *hash_ops) { | |
| 806 | return (Hashmap*) hashmap_base_new(hash_ops, HASHMAP_TYPE_PLAIN); | |
| 807 | } | |
| 808 | ||
| 809 | OrderedHashmap *ordered_hashmap_new(const struct hash_ops *hash_ops) { | |
| 810 | return (OrderedHashmap*) hashmap_base_new(hash_ops, HASHMAP_TYPE_ORDERED); | |
| 811 | } | |
| 812 | ||
| 813 | Set *set_new(const struct hash_ops *hash_ops) { | |
| 814 | return (Set*) hashmap_base_new(hash_ops, HASHMAP_TYPE_SET); | |
| 815 | } | |
| 816 | ||
| 817 | static int hashmap_base_ensure_allocated(HashmapBase **h, const struct hash_ops *hash_ops, | |
| 818 | enum HashmapType type) { | |
| 819 | HashmapBase *q; | |
| 820 | ||
| 821 | assert(h); | |
| 822 | ||
| 823 | if (*h) { | |
| 824 | assert((*h)->hash_ops == (hash_ops ?: &trivial_hash_ops)); | |
| 825 | return 0; | |
| 826 | } | |
| 827 | ||
| 828 | q = hashmap_base_new(hash_ops, type); | |
| 829 | if (!q) | |
| 830 | return -ENOMEM; | |
| 831 | ||
| 832 | *h = q; | |
| 833 | return 1; | |
| 834 | } | |
| 835 | ||
| 836 | int hashmap_ensure_allocated(Hashmap **h, const struct hash_ops *hash_ops) { | |
| 837 | return hashmap_base_ensure_allocated((HashmapBase**)h, hash_ops, HASHMAP_TYPE_PLAIN); | |
| 838 | } | |
| 839 | ||
| 840 | int ordered_hashmap_ensure_allocated(OrderedHashmap **h, const struct hash_ops *hash_ops) { | |
| 841 | return hashmap_base_ensure_allocated((HashmapBase**)h, hash_ops, HASHMAP_TYPE_ORDERED); | |
| 842 | } | |
| 843 | ||
| 844 | int set_ensure_allocated(Set **s, const struct hash_ops *hash_ops) { | |
| 845 | return hashmap_base_ensure_allocated((HashmapBase**)s, hash_ops, HASHMAP_TYPE_SET); | |
| 846 | } | |
| 847 | ||
| 848 | int hashmap_ensure_put(Hashmap **h, const struct hash_ops *hash_ops, const void *key, void *value) { | |
| 849 | int r; | |
| 850 | ||
| 851 | r = hashmap_ensure_allocated(h, hash_ops); | |
| 852 | if (r < 0) | |
| 853 | return r; | |
| 854 | ||
| 855 | return hashmap_put(*h, key, value); | |
| 856 | } | |
| 857 | ||
| 858 | int ordered_hashmap_ensure_put(OrderedHashmap **h, const struct hash_ops *hash_ops, const void *key, void *value) { | |
| 859 | int r; | |
| 860 | ||
| 861 | r = ordered_hashmap_ensure_allocated(h, hash_ops); | |
| 862 | if (r < 0) | |
| 863 | return r; | |
| 864 | ||
| 865 | return ordered_hashmap_put(*h, key, value); | |
| 866 | } | |
| 867 | ||
| 868 | int ordered_hashmap_ensure_replace(OrderedHashmap **h, const struct hash_ops *hash_ops, const void *key, void *value) { | |
| 869 | int r; | |
| 870 | ||
| 871 | r = ordered_hashmap_ensure_allocated(h, hash_ops); | |
| 872 | if (r < 0) | |
| 873 | return r; | |
| 874 | ||
| 875 | return ordered_hashmap_replace(*h, key, value); | |
| 876 | } | |
| 877 | ||
| 878 | int hashmap_ensure_replace(Hashmap **h, const struct hash_ops *hash_ops, const void *key, void *value) { | |
| 879 | int r; | |
| 880 | ||
| 881 | r = hashmap_ensure_allocated(h, hash_ops); | |
| 882 | if (r < 0) | |
| 883 | return r; | |
| 884 | ||
| 885 | return hashmap_replace(*h, key, value); | |
| 886 | } | |
| 887 | ||
| 888 | static void hashmap_free_no_clear(HashmapBase *h) { | |
| 889 | assert(!h->has_indirect); | |
| 890 | assert(h->n_direct_entries == 0); | |
| 891 | ||
| 892 | #if ENABLE_DEBUG_HASHMAP | |
| 893 | assert_se(pthread_mutex_lock(&hashmap_debug_list_mutex) == 0); | |
| 894 | LIST_REMOVE(debug_list, hashmap_debug_list, &h->debug); | |
| 895 | assert_se(pthread_mutex_unlock(&hashmap_debug_list_mutex) == 0); | |
| 896 | #endif | |
| 897 | ||
| 898 | if (h->from_pool) { | |
| 899 | /* Ensure that the object didn't get migrated between threads. */ | |
| 900 | assert_se(is_main_thread()); | |
| 901 | mempool_free_tile(hashmap_type_info[h->type].mempool, h); | |
| 902 | } else | |
| 903 | free(h); | |
| 904 | } | |
| 905 | ||
| 906 | HashmapBase* _hashmap_free(HashmapBase *h) { | |
| 907 | if (h) { | |
| 908 | _hashmap_clear(h); | |
| 909 | hashmap_free_no_clear(h); | |
| 910 | } | |
| 911 | ||
| 912 | return NULL; | |
| 913 | } | |
| 914 | ||
| 915 | void _hashmap_clear(HashmapBase *h) { | |
| 916 | if (!h) | |
| 917 | return; | |
| 918 | ||
| 919 | if (h->hash_ops->free_key || h->hash_ops->free_value) { | |
| 920 | ||
| 921 | /* If destructor calls are defined, let's destroy things defensively: let's take the item out of the | |
| 922 | * hash table, and only then call the destructor functions. If these destructors then try to unregister | |
| 923 | * themselves from our hash table a second time, the entry is already gone. */ | |
| 924 | ||
| 925 | while (_hashmap_size(h) > 0) { | |
| 926 | void *k = NULL; | |
| 927 | void *v; | |
| 928 | ||
| 929 | v = _hashmap_first_key_and_value(h, true, &k); | |
| 930 | ||
| 931 | if (h->hash_ops->free_key) | |
| 932 | h->hash_ops->free_key(k); | |
| 933 | ||
| 934 | if (h->hash_ops->free_value) | |
| 935 | h->hash_ops->free_value(v); | |
| 936 | } | |
| 937 | } | |
| 938 | ||
| 939 | if (h->has_indirect) { | |
| 940 | free(h->indirect.storage); | |
| 941 | h->has_indirect = false; | |
| 942 | } | |
| 943 | ||
| 944 | h->n_direct_entries = 0; | |
| 945 | reset_direct_storage(h); | |
| 946 | ||
| 947 | if (h->type == HASHMAP_TYPE_ORDERED) { | |
| 948 | OrderedHashmap *lh = (OrderedHashmap*) h; | |
| 949 | lh->iterate_list_head = lh->iterate_list_tail = IDX_NIL; | |
| 950 | } | |
| 951 | ||
| 952 | base_set_dirty(h); | |
| 953 | } | |
| 954 | ||
| 955 | static int resize_buckets(HashmapBase *h, unsigned entries_add); | |
| 956 | ||
| 957 | /* | |
| 958 | * Finds an empty bucket to put an entry into, starting the scan at 'idx'. | |
| 959 | * Performs Robin Hood swaps as it goes. The entry to put must be placed | |
| 960 | * by the caller into swap slot IDX_PUT. | |
| 961 | * If used for in-place resizing, may leave a displaced entry in swap slot | |
| 962 | * IDX_PUT. Caller must rehash it next. | |
| 963 | * Returns: true if it left a displaced entry to rehash next in IDX_PUT, | |
| 964 | * false otherwise. | |
| 965 | */ | |
| 966 | static bool hashmap_put_robin_hood(HashmapBase *h, unsigned idx, | |
| 967 | struct swap_entries *swap) { | |
| 968 | dib_raw_t raw_dib, *dibs; | |
| 969 | unsigned dib, distance; | |
| 970 | ||
| 971 | #if ENABLE_DEBUG_HASHMAP | |
| 972 | h->debug.put_count++; | |
| 973 | #endif | |
| 974 | ||
| 975 | dibs = dib_raw_ptr(h); | |
| 976 | ||
| 977 | for (distance = 0; ; distance++) { | |
| 978 | raw_dib = dibs[idx]; | |
| 979 | if (IN_SET(raw_dib, DIB_RAW_FREE, DIB_RAW_REHASH)) { | |
| 980 | if (raw_dib == DIB_RAW_REHASH) | |
| 981 | bucket_move_entry(h, swap, idx, IDX_TMP); | |
| 982 | ||
| 983 | if (h->has_indirect && h->indirect.idx_lowest_entry > idx) | |
| 984 | h->indirect.idx_lowest_entry = idx; | |
| 985 | ||
| 986 | bucket_set_dib(h, idx, distance); | |
| 987 | bucket_move_entry(h, swap, IDX_PUT, idx); | |
| 988 | if (raw_dib == DIB_RAW_REHASH) { | |
| 989 | bucket_move_entry(h, swap, IDX_TMP, IDX_PUT); | |
| 990 | return true; | |
| 991 | } | |
| 992 | ||
| 993 | return false; | |
| 994 | } | |
| 995 | ||
| 996 | dib = bucket_calculate_dib(h, idx, raw_dib); | |
| 997 | ||
| 998 | if (dib < distance) { | |
| 999 | /* Found a wealthier entry. Go Robin Hood! */ | |
| 1000 | bucket_set_dib(h, idx, distance); | |
| 1001 | ||
| 1002 | /* swap the entries */ | |
| 1003 | bucket_move_entry(h, swap, idx, IDX_TMP); | |
| 1004 | bucket_move_entry(h, swap, IDX_PUT, idx); | |
| 1005 | bucket_move_entry(h, swap, IDX_TMP, IDX_PUT); | |
| 1006 | ||
| 1007 | distance = dib; | |
| 1008 | } | |
| 1009 | ||
| 1010 | idx = next_idx(h, idx); | |
| 1011 | } | |
| 1012 | } | |
| 1013 | ||
| 1014 | /* | |
| 1015 | * Puts an entry into a hashmap, boldly - no check whether key already exists. | |
| 1016 | * The caller must place the entry (only its key and value, not link indexes) | |
| 1017 | * in swap slot IDX_PUT. | |
| 1018 | * Caller must ensure: the key does not exist yet in the hashmap. | |
| 1019 | * that resize is not needed if !may_resize. | |
| 1020 | * Returns: 1 if entry was put successfully. | |
| 1021 | * -ENOMEM if may_resize==true and resize failed with -ENOMEM. | |
| 1022 | * Cannot return -ENOMEM if !may_resize. | |
| 1023 | */ | |
| 1024 | static int hashmap_base_put_boldly(HashmapBase *h, unsigned idx, | |
| 1025 | struct swap_entries *swap, bool may_resize) { | |
| 1026 | struct ordered_hashmap_entry *new_entry; | |
| 1027 | int r; | |
| 1028 | ||
| 1029 | assert(idx < n_buckets(h)); | |
| 1030 | ||
| 1031 | new_entry = bucket_at_swap(swap, IDX_PUT); | |
| 1032 | ||
| 1033 | if (may_resize) { | |
| 1034 | r = resize_buckets(h, 1); | |
| 1035 | if (r < 0) | |
| 1036 | return r; | |
| 1037 | if (r > 0) | |
| 1038 | idx = bucket_hash(h, new_entry->p.b.key); | |
| 1039 | } | |
| 1040 | assert(n_entries(h) < n_buckets(h)); | |
| 1041 | ||
| 1042 | if (h->type == HASHMAP_TYPE_ORDERED) { | |
| 1043 | OrderedHashmap *lh = (OrderedHashmap*) h; | |
| 1044 | ||
| 1045 | new_entry->iterate_next = IDX_NIL; | |
| 1046 | new_entry->iterate_previous = lh->iterate_list_tail; | |
| 1047 | ||
| 1048 | if (lh->iterate_list_tail != IDX_NIL) { | |
| 1049 | struct ordered_hashmap_entry *old_tail; | |
| 1050 | ||
| 1051 | old_tail = ordered_bucket_at(lh, lh->iterate_list_tail); | |
| 1052 | assert(old_tail->iterate_next == IDX_NIL); | |
| 1053 | old_tail->iterate_next = IDX_PUT; | |
| 1054 | } | |
| 1055 | ||
| 1056 | lh->iterate_list_tail = IDX_PUT; | |
| 1057 | if (lh->iterate_list_head == IDX_NIL) | |
| 1058 | lh->iterate_list_head = IDX_PUT; | |
| 1059 | } | |
| 1060 | ||
| 1061 | assert_se(hashmap_put_robin_hood(h, idx, swap) == false); | |
| 1062 | ||
| 1063 | n_entries_inc(h); | |
| 1064 | #if ENABLE_DEBUG_HASHMAP | |
| 1065 | h->debug.max_entries = MAX(h->debug.max_entries, n_entries(h)); | |
| 1066 | #endif | |
| 1067 | ||
| 1068 | base_set_dirty(h); | |
| 1069 | ||
| 1070 | return 1; | |
| 1071 | } | |
| 1072 | #define hashmap_put_boldly(h, idx, swap, may_resize) \ | |
| 1073 | hashmap_base_put_boldly(HASHMAP_BASE(h), idx, swap, may_resize) | |
| 1074 | ||
| 1075 | /* | |
| 1076 | * Returns 0 if resize is not needed. | |
| 1077 | * 1 if successfully resized. | |
| 1078 | * -ENOMEM on allocation failure. | |
| 1079 | */ | |
| 1080 | static int resize_buckets(HashmapBase *h, unsigned entries_add) { | |
| 1081 | struct swap_entries swap; | |
| 1082 | void *new_storage; | |
| 1083 | dib_raw_t *old_dibs, *new_dibs; | |
| 1084 | const struct hashmap_type_info *hi; | |
| 1085 | unsigned idx, optimal_idx; | |
| 1086 | unsigned old_n_buckets, new_n_buckets, n_rehashed, new_n_entries; | |
| 1087 | uint8_t new_shift; | |
| 1088 | bool rehash_next; | |
| 1089 | ||
| 1090 | assert(h); | |
| 1091 | ||
| 1092 | hi = &hashmap_type_info[h->type]; | |
| 1093 | new_n_entries = n_entries(h) + entries_add; | |
| 1094 | ||
| 1095 | /* overflow? */ | |
| 1096 | if (_unlikely_(new_n_entries < entries_add)) | |
| 1097 | return -ENOMEM; | |
| 1098 | ||
| 1099 | /* For direct storage we allow 100% load, because it's tiny. */ | |
| 1100 | if (!h->has_indirect && new_n_entries <= hi->n_direct_buckets) | |
| 1101 | return 0; | |
| 1102 | ||
| 1103 | /* | |
| 1104 | * Load factor = n/m = 1 - (1/INV_KEEP_FREE). | |
| 1105 | * From it follows: m = n + n/(INV_KEEP_FREE - 1) | |
| 1106 | */ | |
| 1107 | new_n_buckets = new_n_entries + new_n_entries / (INV_KEEP_FREE - 1); | |
| 1108 | /* overflow? */ | |
| 1109 | if (_unlikely_(new_n_buckets < new_n_entries)) | |
| 1110 | return -ENOMEM; | |
| 1111 | ||
| 1112 | if (_unlikely_(new_n_buckets > UINT_MAX / (hi->entry_size + sizeof(dib_raw_t)))) | |
| 1113 | return -ENOMEM; | |
| 1114 | ||
| 1115 | old_n_buckets = n_buckets(h); | |
| 1116 | ||
| 1117 | if (_likely_(new_n_buckets <= old_n_buckets)) | |
| 1118 | return 0; | |
| 1119 | ||
| 1120 | new_shift = log2u_round_up(MAX( | |
| 1121 | new_n_buckets * (hi->entry_size + sizeof(dib_raw_t)), | |
| 1122 | 2 * sizeof(struct direct_storage))); | |
| 1123 | ||
| 1124 | /* Realloc storage (buckets and DIB array). */ | |
| 1125 | new_storage = realloc(h->has_indirect ? h->indirect.storage : NULL, | |
| 1126 | 1U << new_shift); | |
| 1127 | if (!new_storage) | |
| 1128 | return -ENOMEM; | |
| 1129 | ||
| 1130 | /* Must upgrade direct to indirect storage. */ | |
| 1131 | if (!h->has_indirect) { | |
| 1132 | memcpy(new_storage, h->direct.storage, | |
| 1133 | old_n_buckets * (hi->entry_size + sizeof(dib_raw_t))); | |
| 1134 | h->indirect.n_entries = h->n_direct_entries; | |
| 1135 | h->indirect.idx_lowest_entry = 0; | |
| 1136 | h->n_direct_entries = 0; | |
| 1137 | } | |
| 1138 | ||
| 1139 | /* Get a new hash key. If we've just upgraded to indirect storage, | |
| 1140 | * allow reusing a previously generated key. It's still a different key | |
| 1141 | * from the shared one that we used for direct storage. */ | |
| 1142 | get_hash_key(h->indirect.hash_key, !h->has_indirect); | |
| 1143 | ||
| 1144 | h->has_indirect = true; | |
| 1145 | h->indirect.storage = new_storage; | |
| 1146 | h->indirect.n_buckets = (1U << new_shift) / | |
| 1147 | (hi->entry_size + sizeof(dib_raw_t)); | |
| 1148 | ||
| 1149 | old_dibs = (dib_raw_t*)((uint8_t*) new_storage + hi->entry_size * old_n_buckets); | |
| 1150 | new_dibs = dib_raw_ptr(h); | |
| 1151 | ||
| 1152 | /* | |
| 1153 | * Move the DIB array to the new place, replacing valid DIB values with | |
| 1154 | * DIB_RAW_REHASH to indicate all of the used buckets need rehashing. | |
| 1155 | * Note: Overlap is not possible, because we have at least doubled the | |
| 1156 | * number of buckets and dib_raw_t is smaller than any entry type. | |
| 1157 | */ | |
| 1158 | for (idx = 0; idx < old_n_buckets; idx++) { | |
| 1159 | assert(old_dibs[idx] != DIB_RAW_REHASH); | |
| 1160 | new_dibs[idx] = old_dibs[idx] == DIB_RAW_FREE ? DIB_RAW_FREE | |
| 1161 | : DIB_RAW_REHASH; | |
| 1162 | } | |
| 1163 | ||
| 1164 | /* Zero the area of newly added entries (including the old DIB area) */ | |
| 1165 | memzero(bucket_at(h, old_n_buckets), | |
| 1166 | (n_buckets(h) - old_n_buckets) * hi->entry_size); | |
| 1167 | ||
| 1168 | /* The upper half of the new DIB array needs initialization */ | |
| 1169 | memset(&new_dibs[old_n_buckets], DIB_RAW_INIT, | |
| 1170 | (n_buckets(h) - old_n_buckets) * sizeof(dib_raw_t)); | |
| 1171 | ||
| 1172 | /* Rehash entries that need it */ | |
| 1173 | n_rehashed = 0; | |
| 1174 | for (idx = 0; idx < old_n_buckets; idx++) { | |
| 1175 | if (new_dibs[idx] != DIB_RAW_REHASH) | |
| 1176 | continue; | |
| 1177 | ||
| 1178 | optimal_idx = bucket_hash(h, bucket_at(h, idx)->key); | |
| 1179 | ||
| 1180 | /* | |
| 1181 | * Not much to do if by luck the entry hashes to its current | |
| 1182 | * location. Just set its DIB. | |
| 1183 | */ | |
| 1184 | if (optimal_idx == idx) { | |
| 1185 | new_dibs[idx] = 0; | |
| 1186 | n_rehashed++; | |
| 1187 | continue; | |
| 1188 | } | |
| 1189 | ||
| 1190 | new_dibs[idx] = DIB_RAW_FREE; | |
| 1191 | bucket_move_entry(h, &swap, idx, IDX_PUT); | |
| 1192 | /* bucket_move_entry does not clear the source */ | |
| 1193 | memzero(bucket_at(h, idx), hi->entry_size); | |
| 1194 | ||
| 1195 | do { | |
| 1196 | /* | |
| 1197 | * Find the new bucket for the current entry. This may make | |
| 1198 | * another entry homeless and load it into IDX_PUT. | |
| 1199 | */ | |
| 1200 | rehash_next = hashmap_put_robin_hood(h, optimal_idx, &swap); | |
| 1201 | n_rehashed++; | |
| 1202 | ||
| 1203 | /* Did the current entry displace another one? */ | |
| 1204 | if (rehash_next) | |
| 1205 | optimal_idx = bucket_hash(h, bucket_at_swap(&swap, IDX_PUT)->p.b.key); | |
| 1206 | } while (rehash_next); | |
| 1207 | } | |
| 1208 | ||
| 1209 | assert_se(n_rehashed == n_entries(h)); | |
| 1210 | ||
| 1211 | return 1; | |
| 1212 | } | |
| 1213 | ||
| 1214 | /* | |
| 1215 | * Finds an entry with a matching key | |
| 1216 | * Returns: index of the found entry, or IDX_NIL if not found. | |
| 1217 | */ | |
| 1218 | static unsigned base_bucket_scan(HashmapBase *h, unsigned idx, const void *key) { | |
| 1219 | struct hashmap_base_entry *e; | |
| 1220 | unsigned dib, distance; | |
| 1221 | dib_raw_t *dibs = dib_raw_ptr(h); | |
| 1222 | ||
| 1223 | assert(idx < n_buckets(h)); | |
| 1224 | ||
| 1225 | for (distance = 0; ; distance++) { | |
| 1226 | if (dibs[idx] == DIB_RAW_FREE) | |
| 1227 | return IDX_NIL; | |
| 1228 | ||
| 1229 | dib = bucket_calculate_dib(h, idx, dibs[idx]); | |
| 1230 | ||
| 1231 | if (dib < distance) | |
| 1232 | return IDX_NIL; | |
| 1233 | if (dib == distance) { | |
| 1234 | e = bucket_at(h, idx); | |
| 1235 | if (h->hash_ops->compare(e->key, key) == 0) | |
| 1236 | return idx; | |
| 1237 | } | |
| 1238 | ||
| 1239 | idx = next_idx(h, idx); | |
| 1240 | } | |
| 1241 | } | |
| 1242 | #define bucket_scan(h, idx, key) base_bucket_scan(HASHMAP_BASE(h), idx, key) | |
| 1243 | ||
| 1244 | int hashmap_put(Hashmap *h, const void *key, void *value) { | |
| 1245 | struct swap_entries swap; | |
| 1246 | struct plain_hashmap_entry *e; | |
| 1247 | unsigned hash, idx; | |
| 1248 | ||
| 1249 | assert(h); | |
| 1250 | ||
| 1251 | hash = bucket_hash(h, key); | |
| 1252 | idx = bucket_scan(h, hash, key); | |
| 1253 | if (idx != IDX_NIL) { | |
| 1254 | e = plain_bucket_at(h, idx); | |
| 1255 | if (e->value == value) | |
| 1256 | return 0; | |
| 1257 | return -EEXIST; | |
| 1258 | } | |
| 1259 | ||
| 1260 | e = &bucket_at_swap(&swap, IDX_PUT)->p; | |
| 1261 | e->b.key = key; | |
| 1262 | e->value = value; | |
| 1263 | return hashmap_put_boldly(h, hash, &swap, true); | |
| 1264 | } | |
| 1265 | ||
| 1266 | int set_put(Set *s, const void *key) { | |
| 1267 | struct swap_entries swap; | |
| 1268 | struct hashmap_base_entry *e; | |
| 1269 | unsigned hash, idx; | |
| 1270 | ||
| 1271 | assert(s); | |
| 1272 | ||
| 1273 | hash = bucket_hash(s, key); | |
| 1274 | idx = bucket_scan(s, hash, key); | |
| 1275 | if (idx != IDX_NIL) | |
| 1276 | return 0; | |
| 1277 | ||
| 1278 | e = &bucket_at_swap(&swap, IDX_PUT)->p.b; | |
| 1279 | e->key = key; | |
| 1280 | return hashmap_put_boldly(s, hash, &swap, true); | |
| 1281 | } | |
| 1282 | ||
| 1283 | int set_ensure_put(Set **s, const struct hash_ops *hash_ops, const void *key) { | |
| 1284 | int r; | |
| 1285 | ||
| 1286 | r = set_ensure_allocated(s, hash_ops); | |
| 1287 | if (r < 0) | |
| 1288 | return r; | |
| 1289 | ||
| 1290 | return set_put(*s, key); | |
| 1291 | } | |
| 1292 | ||
| 1293 | int set_ensure_consume(Set **s, const struct hash_ops *hash_ops, void *key) { | |
| 1294 | int r; | |
| 1295 | ||
| 1296 | r = set_ensure_put(s, hash_ops, key); | |
| 1297 | if (r <= 0) { | |
| 1298 | if (hash_ops && hash_ops->free_key) | |
| 1299 | hash_ops->free_key(key); | |
| 1300 | else | |
| 1301 | free(key); | |
| 1302 | } | |
| 1303 | ||
| 1304 | return r; | |
| 1305 | } | |
| 1306 | ||
| 1307 | int hashmap_replace(Hashmap *h, const void *key, void *value) { | |
| 1308 | struct swap_entries swap; | |
| 1309 | struct plain_hashmap_entry *e; | |
| 1310 | unsigned hash, idx; | |
| 1311 | ||
| 1312 | assert(h); | |
| 1313 | ||
| 1314 | hash = bucket_hash(h, key); | |
| 1315 | idx = bucket_scan(h, hash, key); | |
| 1316 | if (idx != IDX_NIL) { | |
| 1317 | e = plain_bucket_at(h, idx); | |
| 1318 | #if ENABLE_DEBUG_HASHMAP | |
| 1319 | /* Although the key is equal, the key pointer may have changed, | |
| 1320 | * and this would break our assumption for iterating. So count | |
| 1321 | * this operation as incompatible with iteration. */ | |
| 1322 | if (e->b.key != key) { | |
| 1323 | h->b.debug.put_count++; | |
| 1324 | h->b.debug.rem_count++; | |
| 1325 | h->b.debug.last_rem_idx = idx; | |
| 1326 | } | |
| 1327 | #endif | |
| 1328 | e->b.key = key; | |
| 1329 | e->value = value; | |
| 1330 | hashmap_set_dirty(h); | |
| 1331 | ||
| 1332 | return 0; | |
| 1333 | } | |
| 1334 | ||
| 1335 | e = &bucket_at_swap(&swap, IDX_PUT)->p; | |
| 1336 | e->b.key = key; | |
| 1337 | e->value = value; | |
| 1338 | return hashmap_put_boldly(h, hash, &swap, true); | |
| 1339 | } | |
| 1340 | ||
| 1341 | int hashmap_update(Hashmap *h, const void *key, void *value) { | |
| 1342 | struct plain_hashmap_entry *e; | |
| 1343 | unsigned hash, idx; | |
| 1344 | ||
| 1345 | assert(h); | |
| 1346 | ||
| 1347 | hash = bucket_hash(h, key); | |
| 1348 | idx = bucket_scan(h, hash, key); | |
| 1349 | if (idx == IDX_NIL) | |
| 1350 | return -ENOENT; | |
| 1351 | ||
| 1352 | e = plain_bucket_at(h, idx); | |
| 1353 | e->value = value; | |
| 1354 | hashmap_set_dirty(h); | |
| 1355 | ||
| 1356 | return 0; | |
| 1357 | } | |
| 1358 | ||
| 1359 | void* _hashmap_get(HashmapBase *h, const void *key) { | |
| 1360 | struct hashmap_base_entry *e; | |
| 1361 | unsigned hash, idx; | |
| 1362 | ||
| 1363 | if (!h) | |
| 1364 | return NULL; | |
| 1365 | ||
| 1366 | hash = bucket_hash(h, key); | |
| 1367 | idx = bucket_scan(h, hash, key); | |
| 1368 | if (idx == IDX_NIL) | |
| 1369 | return NULL; | |
| 1370 | ||
| 1371 | e = bucket_at(h, idx); | |
| 1372 | return entry_value(h, e); | |
| 1373 | } | |
| 1374 | ||
| 1375 | void* hashmap_get2(Hashmap *h, const void *key, void **ret) { | |
| 1376 | struct plain_hashmap_entry *e; | |
| 1377 | unsigned hash, idx; | |
| 1378 | ||
| 1379 | if (!h) | |
| 1380 | return NULL; | |
| 1381 | ||
| 1382 | hash = bucket_hash(h, key); | |
| 1383 | idx = bucket_scan(h, hash, key); | |
| 1384 | if (idx == IDX_NIL) | |
| 1385 | return NULL; | |
| 1386 | ||
| 1387 | e = plain_bucket_at(h, idx); | |
| 1388 | if (ret) | |
| 1389 | *ret = (void*) e->b.key; | |
| 1390 | ||
| 1391 | return e->value; | |
| 1392 | } | |
| 1393 | ||
| 1394 | bool _hashmap_contains(HashmapBase *h, const void *key) { | |
| 1395 | unsigned hash; | |
| 1396 | ||
| 1397 | if (!h) | |
| 1398 | return false; | |
| 1399 | ||
| 1400 | hash = bucket_hash(h, key); | |
| 1401 | return bucket_scan(h, hash, key) != IDX_NIL; | |
| 1402 | } | |
| 1403 | ||
| 1404 | void* _hashmap_remove(HashmapBase *h, const void *key) { | |
| 1405 | struct hashmap_base_entry *e; | |
| 1406 | unsigned hash, idx; | |
| 1407 | void *data; | |
| 1408 | ||
| 1409 | if (!h) | |
| 1410 | return NULL; | |
| 1411 | ||
| 1412 | hash = bucket_hash(h, key); | |
| 1413 | idx = bucket_scan(h, hash, key); | |
| 1414 | if (idx == IDX_NIL) | |
| 1415 | return NULL; | |
| 1416 | ||
| 1417 | e = bucket_at(h, idx); | |
| 1418 | data = entry_value(h, e); | |
| 1419 | remove_entry(h, idx); | |
| 1420 | ||
| 1421 | return data; | |
| 1422 | } | |
| 1423 | ||
| 1424 | void* hashmap_remove2(Hashmap *h, const void *key, void **ret) { | |
| 1425 | struct plain_hashmap_entry *e; | |
| 1426 | unsigned hash, idx; | |
| 1427 | void *data; | |
| 1428 | ||
| 1429 | if (!h) { | |
| 1430 | if (ret) | |
| 1431 | *ret = NULL; | |
| 1432 | return NULL; | |
| 1433 | } | |
| 1434 | ||
| 1435 | hash = bucket_hash(h, key); | |
| 1436 | idx = bucket_scan(h, hash, key); | |
| 1437 | if (idx == IDX_NIL) { | |
| 1438 | if (ret) | |
| 1439 | *ret = NULL; | |
| 1440 | return NULL; | |
| 1441 | } | |
| 1442 | ||
| 1443 | e = plain_bucket_at(h, idx); | |
| 1444 | data = e->value; | |
| 1445 | if (ret) | |
| 1446 | *ret = (void*) e->b.key; | |
| 1447 | ||
| 1448 | remove_entry(h, idx); | |
| 1449 | ||
| 1450 | return data; | |
| 1451 | } | |
| 1452 | ||
| 1453 | int hashmap_remove_and_put(Hashmap *h, const void *old_key, const void *new_key, void *value) { | |
| 1454 | struct swap_entries swap; | |
| 1455 | struct plain_hashmap_entry *e; | |
| 1456 | unsigned old_hash, new_hash, idx; | |
| 1457 | ||
| 1458 | if (!h) | |
| 1459 | return -ENOENT; | |
| 1460 | ||
| 1461 | old_hash = bucket_hash(h, old_key); | |
| 1462 | idx = bucket_scan(h, old_hash, old_key); | |
| 1463 | if (idx == IDX_NIL) | |
| 1464 | return -ENOENT; | |
| 1465 | ||
| 1466 | new_hash = bucket_hash(h, new_key); | |
| 1467 | if (bucket_scan(h, new_hash, new_key) != IDX_NIL) | |
| 1468 | return -EEXIST; | |
| 1469 | ||
| 1470 | remove_entry(h, idx); | |
| 1471 | ||
| 1472 | e = &bucket_at_swap(&swap, IDX_PUT)->p; | |
| 1473 | e->b.key = new_key; | |
| 1474 | e->value = value; | |
| 1475 | assert_se(hashmap_put_boldly(h, new_hash, &swap, false) == 1); | |
| 1476 | ||
| 1477 | return 0; | |
| 1478 | } | |
| 1479 | ||
| 1480 | int set_remove_and_put(Set *s, const void *old_key, const void *new_key) { | |
| 1481 | struct swap_entries swap; | |
| 1482 | struct hashmap_base_entry *e; | |
| 1483 | unsigned old_hash, new_hash, idx; | |
| 1484 | ||
| 1485 | if (!s) | |
| 1486 | return -ENOENT; | |
| 1487 | ||
| 1488 | old_hash = bucket_hash(s, old_key); | |
| 1489 | idx = bucket_scan(s, old_hash, old_key); | |
| 1490 | if (idx == IDX_NIL) | |
| 1491 | return -ENOENT; | |
| 1492 | ||
| 1493 | new_hash = bucket_hash(s, new_key); | |
| 1494 | if (bucket_scan(s, new_hash, new_key) != IDX_NIL) | |
| 1495 | return -EEXIST; | |
| 1496 | ||
| 1497 | remove_entry(s, idx); | |
| 1498 | ||
| 1499 | e = &bucket_at_swap(&swap, IDX_PUT)->p.b; | |
| 1500 | e->key = new_key; | |
| 1501 | assert_se(hashmap_put_boldly(s, new_hash, &swap, false) == 1); | |
| 1502 | ||
| 1503 | return 0; | |
| 1504 | } | |
| 1505 | ||
| 1506 | int hashmap_remove_and_replace(Hashmap *h, const void *old_key, const void *new_key, void *value) { | |
| 1507 | struct swap_entries swap; | |
| 1508 | struct plain_hashmap_entry *e; | |
| 1509 | unsigned old_hash, new_hash, idx_old, idx_new; | |
| 1510 | ||
| 1511 | if (!h) | |
| 1512 | return -ENOENT; | |
| 1513 | ||
| 1514 | old_hash = bucket_hash(h, old_key); | |
| 1515 | idx_old = bucket_scan(h, old_hash, old_key); | |
| 1516 | if (idx_old == IDX_NIL) | |
| 1517 | return -ENOENT; | |
| 1518 | ||
| 1519 | old_key = bucket_at(HASHMAP_BASE(h), idx_old)->key; | |
| 1520 | ||
| 1521 | new_hash = bucket_hash(h, new_key); | |
| 1522 | idx_new = bucket_scan(h, new_hash, new_key); | |
| 1523 | if (idx_new != IDX_NIL) | |
| 1524 | if (idx_old != idx_new) { | |
| 1525 | remove_entry(h, idx_new); | |
| 1526 | /* Compensate for a possible backward shift. */ | |
| 1527 | if (old_key != bucket_at(HASHMAP_BASE(h), idx_old)->key) | |
| 1528 | idx_old = prev_idx(HASHMAP_BASE(h), idx_old); | |
| 1529 | assert(old_key == bucket_at(HASHMAP_BASE(h), idx_old)->key); | |
| 1530 | } | |
| 1531 | ||
| 1532 | remove_entry(h, idx_old); | |
| 1533 | ||
| 1534 | e = &bucket_at_swap(&swap, IDX_PUT)->p; | |
| 1535 | e->b.key = new_key; | |
| 1536 | e->value = value; | |
| 1537 | assert_se(hashmap_put_boldly(h, new_hash, &swap, false) == 1); | |
| 1538 | ||
| 1539 | return 0; | |
| 1540 | } | |
| 1541 | ||
| 1542 | void* _hashmap_remove_value(HashmapBase *h, const void *key, void *value) { | |
| 1543 | struct hashmap_base_entry *e; | |
| 1544 | unsigned hash, idx; | |
| 1545 | ||
| 1546 | if (!h) | |
| 1547 | return NULL; | |
| 1548 | ||
| 1549 | hash = bucket_hash(h, key); | |
| 1550 | idx = bucket_scan(h, hash, key); | |
| 1551 | if (idx == IDX_NIL) | |
| 1552 | return NULL; | |
| 1553 | ||
| 1554 | e = bucket_at(h, idx); | |
| 1555 | if (entry_value(h, e) != value) | |
| 1556 | return NULL; | |
| 1557 | ||
| 1558 | remove_entry(h, idx); | |
| 1559 | ||
| 1560 | return value; | |
| 1561 | } | |
| 1562 | ||
| 1563 | static unsigned find_first_entry(HashmapBase *h) { | |
| 1564 | Iterator i = ITERATOR_FIRST; | |
| 1565 | ||
| 1566 | if (!h || !n_entries(h)) | |
| 1567 | return IDX_NIL; | |
| 1568 | ||
| 1569 | return hashmap_iterate_entry(h, &i); | |
| 1570 | } | |
| 1571 | ||
| 1572 | void* _hashmap_first_key_and_value(HashmapBase *h, bool remove, void **ret_key) { | |
| 1573 | struct hashmap_base_entry *e; | |
| 1574 | void *key, *data; | |
| 1575 | unsigned idx; | |
| 1576 | ||
| 1577 | idx = find_first_entry(h); | |
| 1578 | if (idx == IDX_NIL) { | |
| 1579 | if (ret_key) | |
| 1580 | *ret_key = NULL; | |
| 1581 | return NULL; | |
| 1582 | } | |
| 1583 | ||
| 1584 | e = bucket_at(h, idx); | |
| 1585 | key = (void*) e->key; | |
| 1586 | data = entry_value(h, e); | |
| 1587 | ||
| 1588 | if (remove) | |
| 1589 | remove_entry(h, idx); | |
| 1590 | ||
| 1591 | if (ret_key) | |
| 1592 | *ret_key = key; | |
| 1593 | ||
| 1594 | return data; | |
| 1595 | } | |
| 1596 | ||
| 1597 | unsigned _hashmap_size(HashmapBase *h) { | |
| 1598 | if (!h) | |
| 1599 | return 0; | |
| 1600 | ||
| 1601 | return n_entries(h); | |
| 1602 | } | |
| 1603 | ||
| 1604 | unsigned _hashmap_buckets(HashmapBase *h) { | |
| 1605 | if (!h) | |
| 1606 | return 0; | |
| 1607 | ||
| 1608 | return n_buckets(h); | |
| 1609 | } | |
| 1610 | ||
| 1611 | int _hashmap_merge(Hashmap *h, Hashmap *other) { | |
| 1612 | Iterator i; | |
| 1613 | unsigned idx; | |
| 1614 | ||
| 1615 | assert(h); | |
| 1616 | ||
| 1617 | HASHMAP_FOREACH_IDX(idx, HASHMAP_BASE(other), i) { | |
| 1618 | struct plain_hashmap_entry *pe = plain_bucket_at(other, idx); | |
| 1619 | int r; | |
| 1620 | ||
| 1621 | r = hashmap_put(h, pe->b.key, pe->value); | |
| 1622 | if (r < 0 && r != -EEXIST) | |
| 1623 | return r; | |
| 1624 | } | |
| 1625 | ||
| 1626 | return 0; | |
| 1627 | } | |
| 1628 | ||
| 1629 | int set_merge(Set *s, Set *other) { | |
| 1630 | Iterator i; | |
| 1631 | unsigned idx; | |
| 1632 | ||
| 1633 | assert(s); | |
| 1634 | ||
| 1635 | HASHMAP_FOREACH_IDX(idx, HASHMAP_BASE(other), i) { | |
| 1636 | struct set_entry *se = set_bucket_at(other, idx); | |
| 1637 | int r; | |
| 1638 | ||
| 1639 | r = set_put(s, se->b.key); | |
| 1640 | if (r < 0) | |
| 1641 | return r; | |
| 1642 | } | |
| 1643 | ||
| 1644 | return 0; | |
| 1645 | } | |
| 1646 | ||
| 1647 | int _hashmap_reserve(HashmapBase *h, unsigned entries_add) { | |
| 1648 | int r; | |
| 1649 | ||
| 1650 | assert(h); | |
| 1651 | ||
| 1652 | r = resize_buckets(h, entries_add); | |
| 1653 | if (r < 0) | |
| 1654 | return r; | |
| 1655 | ||
| 1656 | return 0; | |
| 1657 | } | |
| 1658 | ||
| 1659 | /* | |
| 1660 | * The same as hashmap_merge(), but every new item from other is moved to h. | |
| 1661 | * Keys already in h are skipped and stay in other. | |
| 1662 | * Returns: 0 on success. | |
| 1663 | * -ENOMEM on alloc failure, in which case no move has been done. | |
| 1664 | */ | |
| 1665 | int _hashmap_move(HashmapBase *h, HashmapBase *other) { | |
| 1666 | struct swap_entries swap; | |
| 1667 | struct hashmap_base_entry *e, *n; | |
| 1668 | Iterator i; | |
| 1669 | unsigned idx; | |
| 1670 | int r; | |
| 1671 | ||
| 1672 | assert(h); | |
| 1673 | ||
| 1674 | if (!other) | |
| 1675 | return 0; | |
| 1676 | ||
| 1677 | assert(other->type == h->type); | |
| 1678 | ||
| 1679 | /* | |
| 1680 | * This reserves buckets for the worst case, where none of other's | |
| 1681 | * entries are yet present in h. This is preferable to risking | |
| 1682 | * an allocation failure in the middle of the moving and having to | |
| 1683 | * rollback or return a partial result. | |
| 1684 | */ | |
| 1685 | r = resize_buckets(h, n_entries(other)); | |
| 1686 | if (r < 0) | |
| 1687 | return r; | |
| 1688 | ||
| 1689 | HASHMAP_FOREACH_IDX(idx, other, i) { | |
| 1690 | unsigned h_hash; | |
| 1691 | ||
| 1692 | e = bucket_at(other, idx); | |
| 1693 | h_hash = bucket_hash(h, e->key); | |
| 1694 | if (bucket_scan(h, h_hash, e->key) != IDX_NIL) | |
| 1695 | continue; | |
| 1696 | ||
| 1697 | n = &bucket_at_swap(&swap, IDX_PUT)->p.b; | |
| 1698 | n->key = e->key; | |
| 1699 | if (h->type != HASHMAP_TYPE_SET) | |
| 1700 | ((struct plain_hashmap_entry*) n)->value = | |
| 1701 | ((struct plain_hashmap_entry*) e)->value; | |
| 1702 | assert_se(hashmap_put_boldly(h, h_hash, &swap, false) == 1); | |
| 1703 | ||
| 1704 | remove_entry(other, idx); | |
| 1705 | } | |
| 1706 | ||
| 1707 | return 0; | |
| 1708 | } | |
| 1709 | ||
| 1710 | int _hashmap_move_one(HashmapBase *h, HashmapBase *other, const void *key) { | |
| 1711 | struct swap_entries swap; | |
| 1712 | unsigned h_hash, other_hash, idx; | |
| 1713 | struct hashmap_base_entry *e, *n; | |
| 1714 | int r; | |
| 1715 | ||
| 1716 | assert(h); | |
| 1717 | ||
| 1718 | h_hash = bucket_hash(h, key); | |
| 1719 | if (bucket_scan(h, h_hash, key) != IDX_NIL) | |
| 1720 | return -EEXIST; | |
| 1721 | ||
| 1722 | if (!other) | |
| 1723 | return -ENOENT; | |
| 1724 | ||
| 1725 | assert(other->type == h->type); | |
| 1726 | ||
| 1727 | other_hash = bucket_hash(other, key); | |
| 1728 | idx = bucket_scan(other, other_hash, key); | |
| 1729 | if (idx == IDX_NIL) | |
| 1730 | return -ENOENT; | |
| 1731 | ||
| 1732 | e = bucket_at(other, idx); | |
| 1733 | ||
| 1734 | n = &bucket_at_swap(&swap, IDX_PUT)->p.b; | |
| 1735 | n->key = e->key; | |
| 1736 | if (h->type != HASHMAP_TYPE_SET) | |
| 1737 | ((struct plain_hashmap_entry*) n)->value = | |
| 1738 | ((struct plain_hashmap_entry*) e)->value; | |
| 1739 | r = hashmap_put_boldly(h, h_hash, &swap, true); | |
| 1740 | if (r < 0) | |
| 1741 | return r; | |
| 1742 | ||
| 1743 | remove_entry(other, idx); | |
| 1744 | return 0; | |
| 1745 | } | |
| 1746 | ||
| 1747 | HashmapBase* _hashmap_copy(HashmapBase *h) { | |
| 1748 | HashmapBase *copy; | |
| 1749 | int r; | |
| 1750 | ||
| 1751 | assert(h); | |
| 1752 | ||
| 1753 | copy = hashmap_base_new(h->hash_ops, h->type); | |
| 1754 | if (!copy) | |
| 1755 | return NULL; | |
| 1756 | ||
| 1757 | switch (h->type) { | |
| 1758 | case HASHMAP_TYPE_PLAIN: | |
| 1759 | case HASHMAP_TYPE_ORDERED: | |
| 1760 | r = hashmap_merge((Hashmap*)copy, (Hashmap*)h); | |
| 1761 | break; | |
| 1762 | case HASHMAP_TYPE_SET: | |
| 1763 | r = set_merge((Set*)copy, (Set*)h); | |
| 1764 | break; | |
| 1765 | default: | |
| 1766 | assert_not_reached(); | |
| 1767 | } | |
| 1768 | ||
| 1769 | if (r < 0) | |
| 1770 | return _hashmap_free(copy); | |
| 1771 | ||
| 1772 | return copy; | |
| 1773 | } | |
| 1774 | ||
| 1775 | char** _hashmap_get_strv(HashmapBase *h) { | |
| 1776 | char **sv; | |
| 1777 | Iterator i; | |
| 1778 | unsigned idx, n; | |
| 1779 | ||
| 1780 | if (!h) | |
| 1781 | return new0(char*, 1); | |
| 1782 | ||
| 1783 | sv = new(char*, n_entries(h)+1); | |
| 1784 | if (!sv) | |
| 1785 | return NULL; | |
| 1786 | ||
| 1787 | n = 0; | |
| 1788 | HASHMAP_FOREACH_IDX(idx, h, i) | |
| 1789 | sv[n++] = entry_value(h, bucket_at(h, idx)); | |
| 1790 | sv[n] = NULL; | |
| 1791 | ||
| 1792 | return sv; | |
| 1793 | } | |
| 1794 | ||
| 1795 | char** set_to_strv(Set **s) { | |
| 1796 | assert(s); | |
| 1797 | ||
| 1798 | /* This is similar to set_get_strv(), but invalidates the set on success. */ | |
| 1799 | ||
| 1800 | char **v = new(char*, set_size(*s) + 1); | |
| 1801 | if (!v) | |
| 1802 | return NULL; | |
| 1803 | ||
| 1804 | for (char **p = v; (*p = set_steal_first(*s)); p++) | |
| 1805 | ; | |
| 1806 | ||
| 1807 | assert(set_isempty(*s)); | |
| 1808 | *s = set_free(*s); | |
| 1809 | return v; | |
| 1810 | } | |
| 1811 | ||
| 1812 | void* ordered_hashmap_next(OrderedHashmap *h, const void *key) { | |
| 1813 | struct ordered_hashmap_entry *e; | |
| 1814 | unsigned hash, idx; | |
| 1815 | ||
| 1816 | if (!h) | |
| 1817 | return NULL; | |
| 1818 | ||
| 1819 | hash = bucket_hash(h, key); | |
| 1820 | idx = bucket_scan(h, hash, key); | |
| 1821 | if (idx == IDX_NIL) | |
| 1822 | return NULL; | |
| 1823 | ||
| 1824 | e = ordered_bucket_at(h, idx); | |
| 1825 | if (e->iterate_next == IDX_NIL) | |
| 1826 | return NULL; | |
| 1827 | return ordered_bucket_at(h, e->iterate_next)->p.value; | |
| 1828 | } | |
| 1829 | ||
| 1830 | int set_consume(Set *s, void *value) { | |
| 1831 | int r; | |
| 1832 | ||
| 1833 | assert(s); | |
| 1834 | assert(value); | |
| 1835 | ||
| 1836 | r = set_put(s, value); | |
| 1837 | if (r <= 0) | |
| 1838 | free(value); | |
| 1839 | ||
| 1840 | return r; | |
| 1841 | } | |
| 1842 | ||
| 1843 | int hashmap_put_strdup_full(Hashmap **h, const struct hash_ops *hash_ops, const char *k, const char *v) { | |
| 1844 | int r; | |
| 1845 | ||
| 1846 | r = hashmap_ensure_allocated(h, hash_ops); | |
| 1847 | if (r < 0) | |
| 1848 | return r; | |
| 1849 | ||
| 1850 | _cleanup_free_ char *kdup = NULL, *vdup = NULL; | |
| 1851 | ||
| 1852 | kdup = strdup(k); | |
| 1853 | if (!kdup) | |
| 1854 | return -ENOMEM; | |
| 1855 | ||
| 1856 | if (v) { | |
| 1857 | vdup = strdup(v); | |
| 1858 | if (!vdup) | |
| 1859 | return -ENOMEM; | |
| 1860 | } | |
| 1861 | ||
| 1862 | r = hashmap_put(*h, kdup, vdup); | |
| 1863 | if (r < 0) { | |
| 1864 | if (r == -EEXIST && streq_ptr(v, hashmap_get(*h, kdup))) | |
| 1865 | return 0; | |
| 1866 | return r; | |
| 1867 | } | |
| 1868 | ||
| 1869 | /* 0 with non-null vdup would mean vdup is already in the hashmap, which cannot be */ | |
| 1870 | assert(vdup == NULL || r > 0); | |
| 1871 | if (r > 0) | |
| 1872 | kdup = vdup = NULL; | |
| 1873 | ||
| 1874 | return r; | |
| 1875 | } | |
| 1876 | ||
| 1877 | int set_put_strndup_full(Set **s, const struct hash_ops *hash_ops, const char *p, size_t n) { | |
| 1878 | char *c; | |
| 1879 | int r; | |
| 1880 | ||
| 1881 | assert(s); | |
| 1882 | assert(p); | |
| 1883 | ||
| 1884 | r = set_ensure_allocated(s, hash_ops); | |
| 1885 | if (r < 0) | |
| 1886 | return r; | |
| 1887 | ||
| 1888 | if (n == SIZE_MAX) { | |
| 1889 | if (set_contains(*s, (char*) p)) | |
| 1890 | return 0; | |
| 1891 | ||
| 1892 | c = strdup(p); | |
| 1893 | } else | |
| 1894 | c = strndup(p, n); | |
| 1895 | if (!c) | |
| 1896 | return -ENOMEM; | |
| 1897 | ||
| 1898 | return set_consume(*s, c); | |
| 1899 | } | |
| 1900 | ||
| 1901 | int set_put_strdupv_full(Set **s, const struct hash_ops *hash_ops, char **l) { | |
| 1902 | int n = 0, r; | |
| 1903 | ||
| 1904 | assert(s); | |
| 1905 | ||
| 1906 | STRV_FOREACH(i, l) { | |
| 1907 | r = set_put_strndup_full(s, hash_ops, *i, SIZE_MAX); | |
| 1908 | if (r < 0) | |
| 1909 | return r; | |
| 1910 | ||
| 1911 | n += r; | |
| 1912 | } | |
| 1913 | ||
| 1914 | return n; | |
| 1915 | } | |
| 1916 | ||
| 1917 | int set_put_strsplit(Set *s, const char *v, const char *separators, ExtractFlags flags) { | |
| 1918 | const char *p = ASSERT_PTR(v); | |
| 1919 | int r; | |
| 1920 | ||
| 1921 | assert(s); | |
| 1922 | ||
| 1923 | for (;;) { | |
| 1924 | char *word; | |
| 1925 | ||
| 1926 | r = extract_first_word(&p, &word, separators, flags); | |
| 1927 | if (r <= 0) | |
| 1928 | return r; | |
| 1929 | ||
| 1930 | r = set_consume(s, word); | |
| 1931 | if (r < 0) | |
| 1932 | return r; | |
| 1933 | } | |
| 1934 | } | |
| 1935 | ||
| 1936 | /* expand the cachemem if needed, return true if newly (re)activated. */ | |
| 1937 | static int cachemem_maintain(CacheMem *mem, size_t size) { | |
| 1938 | assert(mem); | |
| 1939 | ||
| 1940 | if (!GREEDY_REALLOC(mem->ptr, size)) { | |
| 1941 | if (size > 0) | |
| 1942 | return -ENOMEM; | |
| 1943 | } | |
| 1944 | ||
| 1945 | if (!mem->active) { | |
| 1946 | mem->active = true; | |
| 1947 | return true; | |
| 1948 | } | |
| 1949 | ||
| 1950 | return false; | |
| 1951 | } | |
| 1952 | ||
| 1953 | int iterated_cache_get(IteratedCache *cache, const void ***res_keys, const void ***res_values, unsigned *res_n_entries) { | |
| 1954 | bool sync_keys = false, sync_values = false; | |
| 1955 | size_t size; | |
| 1956 | int r; | |
| 1957 | ||
| 1958 | assert(cache); | |
| 1959 | assert(cache->hashmap); | |
| 1960 | ||
| 1961 | size = n_entries(cache->hashmap); | |
| 1962 | ||
| 1963 | if (res_keys) { | |
| 1964 | r = cachemem_maintain(&cache->keys, size); | |
| 1965 | if (r < 0) | |
| 1966 | return r; | |
| 1967 | ||
| 1968 | sync_keys = r; | |
| 1969 | } else | |
| 1970 | cache->keys.active = false; | |
| 1971 | ||
| 1972 | if (res_values) { | |
| 1973 | r = cachemem_maintain(&cache->values, size); | |
| 1974 | if (r < 0) | |
| 1975 | return r; | |
| 1976 | ||
| 1977 | sync_values = r; | |
| 1978 | } else | |
| 1979 | cache->values.active = false; | |
| 1980 | ||
| 1981 | if (cache->hashmap->dirty) { | |
| 1982 | if (cache->keys.active) | |
| 1983 | sync_keys = true; | |
| 1984 | if (cache->values.active) | |
| 1985 | sync_values = true; | |
| 1986 | ||
| 1987 | cache->hashmap->dirty = false; | |
| 1988 | } | |
| 1989 | ||
| 1990 | if (sync_keys || sync_values) { | |
| 1991 | unsigned i, idx; | |
| 1992 | Iterator iter; | |
| 1993 | ||
| 1994 | i = 0; | |
| 1995 | HASHMAP_FOREACH_IDX(idx, cache->hashmap, iter) { | |
| 1996 | struct hashmap_base_entry *e; | |
| 1997 | ||
| 1998 | e = bucket_at(cache->hashmap, idx); | |
| 1999 | ||
| 2000 | if (sync_keys) | |
| 2001 | cache->keys.ptr[i] = e->key; | |
| 2002 | if (sync_values) | |
| 2003 | cache->values.ptr[i] = entry_value(cache->hashmap, e); | |
| 2004 | i++; | |
| 2005 | } | |
| 2006 | } | |
| 2007 | ||
| 2008 | if (res_keys) | |
| 2009 | *res_keys = cache->keys.ptr; | |
| 2010 | if (res_values) | |
| 2011 | *res_values = cache->values.ptr; | |
| 2012 | if (res_n_entries) | |
| 2013 | *res_n_entries = size; | |
| 2014 | ||
| 2015 | return 0; | |
| 2016 | } | |
| 2017 | ||
| 2018 | IteratedCache* iterated_cache_free(IteratedCache *cache) { | |
| 2019 | if (cache) { | |
| 2020 | free(cache->keys.ptr); | |
| 2021 | free(cache->values.ptr); | |
| 2022 | } | |
| 2023 | ||
| 2024 | return mfree(cache); | |
| 2025 | } | |
| 2026 | ||
| 2027 | int set_strjoin(Set *s, const char *separator, bool wrap_with_separator, char **ret) { | |
| 2028 | _cleanup_free_ char *str = NULL; | |
| 2029 | size_t separator_len, len = 0; | |
| 2030 | const char *value; | |
| 2031 | bool first; | |
| 2032 | ||
| 2033 | assert(ret); | |
| 2034 | ||
| 2035 | if (set_isempty(s)) { | |
| 2036 | *ret = NULL; | |
| 2037 | return 0; | |
| 2038 | } | |
| 2039 | ||
| 2040 | separator_len = strlen_ptr(separator); | |
| 2041 | ||
| 2042 | if (separator_len == 0) | |
| 2043 | wrap_with_separator = false; | |
| 2044 | ||
| 2045 | first = !wrap_with_separator; | |
| 2046 | ||
| 2047 | SET_FOREACH(value, s) { | |
| 2048 | size_t l = strlen_ptr(value); | |
| 2049 | ||
| 2050 | if (l == 0) | |
| 2051 | continue; | |
| 2052 | ||
| 2053 | if (!GREEDY_REALLOC(str, len + l + (first ? 0 : separator_len) + (wrap_with_separator ? separator_len : 0) + 1)) | |
| 2054 | return -ENOMEM; | |
| 2055 | ||
| 2056 | if (separator_len > 0 && !first) { | |
| 2057 | memcpy(str + len, separator, separator_len); | |
| 2058 | len += separator_len; | |
| 2059 | } | |
| 2060 | ||
| 2061 | memcpy(str + len, value, l); | |
| 2062 | len += l; | |
| 2063 | first = false; | |
| 2064 | } | |
| 2065 | ||
| 2066 | if (wrap_with_separator) { | |
| 2067 | memcpy(str + len, separator, separator_len); | |
| 2068 | len += separator_len; | |
| 2069 | } | |
| 2070 | ||
| 2071 | str[len] = '\0'; | |
| 2072 | ||
| 2073 | *ret = TAKE_PTR(str); | |
| 2074 | return 0; | |
| 2075 | } | |
| 2076 | ||
| 2077 | bool set_equal(Set *a, Set *b) { | |
| 2078 | void *p; | |
| 2079 | ||
| 2080 | /* Checks whether each entry of 'a' is also in 'b' and vice versa, i.e. the two sets contain the same | |
| 2081 | * entries */ | |
| 2082 | ||
| 2083 | if (a == b) | |
| 2084 | return true; | |
| 2085 | ||
| 2086 | if (set_isempty(a) && set_isempty(b)) | |
| 2087 | return true; | |
| 2088 | ||
| 2089 | if (set_size(a) != set_size(b)) /* Cheap check that hopefully catches a lot of inequality cases | |
| 2090 | * already */ | |
| 2091 | return false; | |
| 2092 | ||
| 2093 | SET_FOREACH(p, a) | |
| 2094 | if (!set_contains(b, p)) | |
| 2095 | return false; | |
| 2096 | ||
| 2097 | /* If we have the same hashops, then we don't need to check things backwards given we compared the | |
| 2098 | * size and that all of a is in b. */ | |
| 2099 | if (a->b.hash_ops == b->b.hash_ops) | |
| 2100 | return true; | |
| 2101 | ||
| 2102 | SET_FOREACH(p, b) | |
| 2103 | if (!set_contains(a, p)) | |
| 2104 | return false; | |
| 2105 | ||
| 2106 | return true; | |
| 2107 | } | |
| 2108 | ||
| 2109 | static bool set_fnmatch_one(Set *patterns, const char *needle) { | |
| 2110 | const char *p; | |
| 2111 | ||
| 2112 | assert(needle); | |
| 2113 | ||
| 2114 | /* Any failure of fnmatch() is treated as equivalent to FNM_NOMATCH, i.e. as non-matching pattern */ | |
| 2115 | ||
| 2116 | SET_FOREACH(p, patterns) | |
| 2117 | if (fnmatch(p, needle, 0) == 0) | |
| 2118 | return true; | |
| 2119 | ||
| 2120 | return false; | |
| 2121 | } | |
| 2122 | ||
| 2123 | bool set_fnmatch(Set *include_patterns, Set *exclude_patterns, const char *needle) { | |
| 2124 | assert(needle); | |
| 2125 | ||
| 2126 | if (set_fnmatch_one(exclude_patterns, needle)) | |
| 2127 | return false; | |
| 2128 | ||
| 2129 | if (set_isempty(include_patterns)) | |
| 2130 | return true; | |
| 2131 | ||
| 2132 | return set_fnmatch_one(include_patterns, needle); | |
| 2133 | } | |
| 2134 | ||
| 2135 | static int hashmap_entry_compare( | |
| 2136 | struct hashmap_base_entry * const *a, | |
| 2137 | struct hashmap_base_entry * const *b, | |
| 2138 | compare_func_t compare) { | |
| 2139 | ||
| 2140 | assert(a && *a); | |
| 2141 | assert(b && *b); | |
| 2142 | assert(compare); | |
| 2143 | ||
| 2144 | return compare((*a)->key, (*b)->key); | |
| 2145 | } | |
| 2146 | ||
| 2147 | static int _hashmap_dump_entries_sorted( | |
| 2148 | HashmapBase *h, | |
| 2149 | void ***ret, | |
| 2150 | size_t *ret_n) { | |
| 2151 | _cleanup_free_ void **entries = NULL; | |
| 2152 | Iterator iter; | |
| 2153 | unsigned idx; | |
| 2154 | size_t n = 0; | |
| 2155 | ||
| 2156 | assert(ret); | |
| 2157 | assert(ret_n); | |
| 2158 | ||
| 2159 | if (_hashmap_size(h) == 0) { | |
| 2160 | *ret = NULL; | |
| 2161 | *ret_n = 0; | |
| 2162 | return 0; | |
| 2163 | } | |
| 2164 | ||
| 2165 | /* We append one more element than needed so that the resulting array can be used as a strv. We | |
| 2166 | * don't count this entry in the returned size. */ | |
| 2167 | entries = new(void*, _hashmap_size(h) + 1); | |
| 2168 | if (!entries) | |
| 2169 | return -ENOMEM; | |
| 2170 | ||
| 2171 | HASHMAP_FOREACH_IDX(idx, h, iter) | |
| 2172 | entries[n++] = bucket_at(h, idx); | |
| 2173 | ||
| 2174 | assert(n == _hashmap_size(h)); | |
| 2175 | entries[n] = NULL; | |
| 2176 | ||
| 2177 | typesafe_qsort_r((struct hashmap_base_entry**) entries, n, | |
| 2178 | hashmap_entry_compare, h->hash_ops->compare); | |
| 2179 | ||
| 2180 | *ret = TAKE_PTR(entries); | |
| 2181 | *ret_n = n; | |
| 2182 | return 0; | |
| 2183 | } | |
| 2184 | ||
| 2185 | int _hashmap_dump_keys_sorted(HashmapBase *h, void ***ret, size_t *ret_n) { | |
| 2186 | _cleanup_free_ void **entries = NULL; | |
| 2187 | size_t n; | |
| 2188 | int r; | |
| 2189 | ||
| 2190 | r = _hashmap_dump_entries_sorted(h, &entries, &n); | |
| 2191 | if (r < 0) | |
| 2192 | return r; | |
| 2193 | ||
| 2194 | /* Reuse the array. */ | |
| 2195 | FOREACH_ARRAY(e, entries, n) | |
| 2196 | *e = (void*) (*(struct hashmap_base_entry**) e)->key; | |
| 2197 | ||
| 2198 | *ret = TAKE_PTR(entries); | |
| 2199 | if (ret_n) | |
| 2200 | *ret_n = n; | |
| 2201 | return 0; | |
| 2202 | } | |
| 2203 | ||
| 2204 | int _hashmap_dump_sorted(HashmapBase *h, void ***ret, size_t *ret_n) { | |
| 2205 | _cleanup_free_ void **entries = NULL; | |
| 2206 | size_t n; | |
| 2207 | int r; | |
| 2208 | ||
| 2209 | r = _hashmap_dump_entries_sorted(h, &entries, &n); | |
| 2210 | if (r < 0) | |
| 2211 | return r; | |
| 2212 | ||
| 2213 | /* Reuse the array. */ | |
| 2214 | FOREACH_ARRAY(e, entries, n) | |
| 2215 | *e = entry_value(h, *(struct hashmap_base_entry**) e); | |
| 2216 | ||
| 2217 | *ret = TAKE_PTR(entries); | |
| 2218 | if (ret_n) | |
| 2219 | *ret_n = n; | |
| 2220 | return 0; | |
| 2221 | } |