]>
Commit | Line | Data |
---|---|---|
1 | /* SPDX-License-Identifier: LGPL-2.1-or-later */ | |
2 | ||
3 | #include <fcntl.h> | |
4 | #include <linux/if.h> | |
5 | #include <linux/if_arp.h> | |
6 | #include <mqueue.h> | |
7 | #include <net/if.h> | |
8 | #include <netdb.h> | |
9 | #include <netinet/ip.h> | |
10 | #include <poll.h> | |
11 | #include <stdio.h> | |
12 | #include <sys/ioctl.h> | |
13 | #include <unistd.h> | |
14 | ||
15 | #include "alloc-util.h" | |
16 | #include "errno-util.h" | |
17 | #include "escape.h" | |
18 | #include "fd-util.h" | |
19 | #include "format-ifname.h" | |
20 | #include "format-util.h" | |
21 | #include "in-addr-util.h" | |
22 | #include "io-util.h" | |
23 | #include "log.h" | |
24 | #include "memory-util.h" | |
25 | #include "parse-util.h" | |
26 | #include "path-util.h" | |
27 | #include "pidref.h" | |
28 | #include "process-util.h" | |
29 | #include "random-util.h" | |
30 | #include "socket-util.h" | |
31 | #include "sparse-endian.h" | |
32 | #include "string-table.h" | |
33 | #include "string-util.h" | |
34 | #include "strv.h" | |
35 | #include "sysctl-util.h" | |
36 | ||
37 | #if ENABLE_IDN | |
38 | # define IDN_FLAGS NI_IDN | |
39 | #else | |
40 | # define IDN_FLAGS 0 | |
41 | #endif | |
42 | ||
43 | static const char* const socket_address_type_table[] = { | |
44 | [SOCK_STREAM] = "Stream", | |
45 | [SOCK_DGRAM] = "Datagram", | |
46 | [SOCK_RAW] = "Raw", | |
47 | [SOCK_RDM] = "ReliableDatagram", | |
48 | [SOCK_SEQPACKET] = "SequentialPacket", | |
49 | [SOCK_DCCP] = "DatagramCongestionControl", | |
50 | }; | |
51 | ||
52 | DEFINE_STRING_TABLE_LOOKUP(socket_address_type, int); | |
53 | ||
54 | int socket_address_verify(const SocketAddress *a, bool strict) { | |
55 | assert(a); | |
56 | ||
57 | /* With 'strict' we enforce additional sanity constraints which are not set by the standard, | |
58 | * but should only apply to sockets we create ourselves. */ | |
59 | ||
60 | switch (socket_address_family(a)) { | |
61 | ||
62 | case AF_INET: | |
63 | if (a->size != sizeof(struct sockaddr_in)) | |
64 | return -EINVAL; | |
65 | ||
66 | if (a->sockaddr.in.sin_port == 0) | |
67 | return -EINVAL; | |
68 | ||
69 | if (!IN_SET(a->type, 0, SOCK_STREAM, SOCK_DGRAM)) | |
70 | return -EINVAL; | |
71 | ||
72 | return 0; | |
73 | ||
74 | case AF_INET6: | |
75 | if (a->size != sizeof(struct sockaddr_in6)) | |
76 | return -EINVAL; | |
77 | ||
78 | if (a->sockaddr.in6.sin6_port == 0) | |
79 | return -EINVAL; | |
80 | ||
81 | if (!IN_SET(a->type, 0, SOCK_STREAM, SOCK_DGRAM)) | |
82 | return -EINVAL; | |
83 | ||
84 | return 0; | |
85 | ||
86 | case AF_UNIX: | |
87 | if (a->size < offsetof(struct sockaddr_un, sun_path)) | |
88 | return -EINVAL; | |
89 | if (a->size > sizeof(struct sockaddr_un) + !strict) | |
90 | /* If !strict, allow one extra byte, since getsockname() on Linux will append | |
91 | * a NUL byte if we have path sockets that are above sun_path's full size. */ | |
92 | return -EINVAL; | |
93 | ||
94 | if (a->size > offsetof(struct sockaddr_un, sun_path) && | |
95 | a->sockaddr.un.sun_path[0] != 0 && | |
96 | strict) { | |
97 | /* Only validate file system sockets here, and only in strict mode */ | |
98 | const char *e; | |
99 | ||
100 | e = memchr(a->sockaddr.un.sun_path, 0, sizeof(a->sockaddr.un.sun_path)); | |
101 | if (e) { | |
102 | /* If there's an embedded NUL byte, make sure the size of the socket address matches it */ | |
103 | if (a->size != offsetof(struct sockaddr_un, sun_path) + (e - a->sockaddr.un.sun_path) + 1) | |
104 | return -EINVAL; | |
105 | } else { | |
106 | /* If there's no embedded NUL byte, then the size needs to match the whole | |
107 | * structure or the structure with one extra NUL byte suffixed. (Yeah, Linux is awful, | |
108 | * and considers both equivalent: getsockname() even extends sockaddr_un beyond its | |
109 | * size if the path is non NUL terminated.) */ | |
110 | if (!IN_SET(a->size, sizeof(a->sockaddr.un.sun_path), sizeof(a->sockaddr.un.sun_path)+1)) | |
111 | return -EINVAL; | |
112 | } | |
113 | } | |
114 | ||
115 | if (!IN_SET(a->type, 0, SOCK_STREAM, SOCK_DGRAM, SOCK_SEQPACKET)) | |
116 | return -EINVAL; | |
117 | ||
118 | return 0; | |
119 | ||
120 | case AF_NETLINK: | |
121 | ||
122 | if (a->size != sizeof(struct sockaddr_nl)) | |
123 | return -EINVAL; | |
124 | ||
125 | if (!IN_SET(a->type, 0, SOCK_RAW, SOCK_DGRAM)) | |
126 | return -EINVAL; | |
127 | ||
128 | return 0; | |
129 | ||
130 | case AF_VSOCK: | |
131 | if (a->size != sizeof(struct sockaddr_vm)) | |
132 | return -EINVAL; | |
133 | ||
134 | if (!IN_SET(a->type, 0, SOCK_STREAM, SOCK_DGRAM)) | |
135 | return -EINVAL; | |
136 | ||
137 | return 0; | |
138 | ||
139 | default: | |
140 | return -EAFNOSUPPORT; | |
141 | } | |
142 | } | |
143 | ||
144 | int socket_address_print(const SocketAddress *a, char **ret) { | |
145 | int r; | |
146 | ||
147 | assert(a); | |
148 | assert(ret); | |
149 | ||
150 | r = socket_address_verify(a, false); /* We do non-strict validation, because we want to be | |
151 | * able to pretty-print any socket the kernel considers | |
152 | * valid. We still need to do validation to know if we | |
153 | * can meaningfully print the address. */ | |
154 | if (r < 0) | |
155 | return r; | |
156 | ||
157 | if (socket_address_family(a) == AF_NETLINK) { | |
158 | _cleanup_free_ char *sfamily = NULL; | |
159 | ||
160 | r = netlink_family_to_string_alloc(a->protocol, &sfamily); | |
161 | if (r < 0) | |
162 | return r; | |
163 | ||
164 | r = asprintf(ret, "%s %u", sfamily, a->sockaddr.nl.nl_groups); | |
165 | if (r < 0) | |
166 | return -ENOMEM; | |
167 | ||
168 | return 0; | |
169 | } | |
170 | ||
171 | return sockaddr_pretty(&a->sockaddr.sa, a->size, false, true, ret); | |
172 | } | |
173 | ||
174 | bool socket_address_can_accept(const SocketAddress *a) { | |
175 | assert(a); | |
176 | ||
177 | return | |
178 | IN_SET(a->type, SOCK_STREAM, SOCK_SEQPACKET); | |
179 | } | |
180 | ||
181 | bool socket_address_equal(const SocketAddress *a, const SocketAddress *b) { | |
182 | assert(a); | |
183 | assert(b); | |
184 | ||
185 | /* Invalid addresses are unequal to all */ | |
186 | if (socket_address_verify(a, false) < 0 || | |
187 | socket_address_verify(b, false) < 0) | |
188 | return false; | |
189 | ||
190 | if (a->type != b->type) | |
191 | return false; | |
192 | ||
193 | if (socket_address_family(a) != socket_address_family(b)) | |
194 | return false; | |
195 | ||
196 | switch (socket_address_family(a)) { | |
197 | ||
198 | case AF_INET: | |
199 | if (a->sockaddr.in.sin_addr.s_addr != b->sockaddr.in.sin_addr.s_addr) | |
200 | return false; | |
201 | ||
202 | if (a->sockaddr.in.sin_port != b->sockaddr.in.sin_port) | |
203 | return false; | |
204 | ||
205 | break; | |
206 | ||
207 | case AF_INET6: | |
208 | if (memcmp(&a->sockaddr.in6.sin6_addr, &b->sockaddr.in6.sin6_addr, sizeof(a->sockaddr.in6.sin6_addr)) != 0) | |
209 | return false; | |
210 | ||
211 | if (a->sockaddr.in6.sin6_port != b->sockaddr.in6.sin6_port) | |
212 | return false; | |
213 | ||
214 | break; | |
215 | ||
216 | case AF_UNIX: | |
217 | if (a->size <= offsetof(struct sockaddr_un, sun_path) || | |
218 | b->size <= offsetof(struct sockaddr_un, sun_path)) | |
219 | return false; | |
220 | ||
221 | if ((a->sockaddr.un.sun_path[0] == 0) != (b->sockaddr.un.sun_path[0] == 0)) | |
222 | return false; | |
223 | ||
224 | if (a->sockaddr.un.sun_path[0]) { | |
225 | if (!path_equal_or_inode_same(a->sockaddr.un.sun_path, b->sockaddr.un.sun_path, 0)) | |
226 | return false; | |
227 | } else { | |
228 | if (a->size != b->size) | |
229 | return false; | |
230 | ||
231 | if (memcmp(a->sockaddr.un.sun_path, b->sockaddr.un.sun_path, a->size) != 0) | |
232 | return false; | |
233 | } | |
234 | ||
235 | break; | |
236 | ||
237 | case AF_NETLINK: | |
238 | if (a->protocol != b->protocol) | |
239 | return false; | |
240 | ||
241 | if (a->sockaddr.nl.nl_groups != b->sockaddr.nl.nl_groups) | |
242 | return false; | |
243 | ||
244 | break; | |
245 | ||
246 | case AF_VSOCK: | |
247 | if (a->sockaddr.vm.svm_cid != b->sockaddr.vm.svm_cid) | |
248 | return false; | |
249 | ||
250 | if (a->sockaddr.vm.svm_port != b->sockaddr.vm.svm_port) | |
251 | return false; | |
252 | ||
253 | break; | |
254 | ||
255 | default: | |
256 | /* Cannot compare, so we assume the addresses are different */ | |
257 | return false; | |
258 | } | |
259 | ||
260 | return true; | |
261 | } | |
262 | ||
263 | const char* socket_address_get_path(const SocketAddress *a) { | |
264 | assert(a); | |
265 | ||
266 | if (socket_address_family(a) != AF_UNIX) | |
267 | return NULL; | |
268 | ||
269 | if (a->sockaddr.un.sun_path[0] == 0) | |
270 | return NULL; | |
271 | ||
272 | /* Note that this is only safe because we know that there's an extra NUL byte after the sockaddr_un | |
273 | * structure. On Linux AF_UNIX file system socket addresses don't have to be NUL terminated if they take up the | |
274 | * full sun_path space. */ | |
275 | assert_cc(sizeof(union sockaddr_union) >= sizeof(struct sockaddr_un)+1); | |
276 | return a->sockaddr.un.sun_path; | |
277 | } | |
278 | ||
279 | bool socket_ipv6_is_supported(void) { | |
280 | static int cached = -1; | |
281 | ||
282 | if (cached < 0) { | |
283 | ||
284 | if (access("/proc/net/if_inet6", F_OK) < 0) { | |
285 | ||
286 | if (errno != ENOENT) { | |
287 | log_debug_errno(errno, "Unexpected error when checking whether /proc/net/if_inet6 exists: %m"); | |
288 | return false; | |
289 | } | |
290 | ||
291 | cached = false; | |
292 | } else | |
293 | cached = true; | |
294 | } | |
295 | ||
296 | return cached; | |
297 | } | |
298 | ||
299 | bool socket_ipv6_is_enabled(void) { | |
300 | _cleanup_free_ char *v = NULL; | |
301 | int r; | |
302 | ||
303 | /* Much like socket_ipv6_is_supported(), but also checks that the sysctl that disables IPv6 on all | |
304 | * interfaces isn't turned on */ | |
305 | ||
306 | if (!socket_ipv6_is_supported()) | |
307 | return false; | |
308 | ||
309 | r = sysctl_read_ip_property(AF_INET6, "all", "disable_ipv6", &v); | |
310 | if (r < 0) { | |
311 | log_debug_errno(r, "Unexpected error reading 'net.ipv6.conf.all.disable_ipv6' sysctl: %m"); | |
312 | return true; | |
313 | } | |
314 | ||
315 | r = parse_boolean(v); | |
316 | if (r < 0) { | |
317 | log_debug_errno(r, "Failed to pare 'net.ipv6.conf.all.disable_ipv6' sysctl: %m"); | |
318 | return true; | |
319 | } | |
320 | ||
321 | return !r; | |
322 | } | |
323 | ||
324 | bool socket_address_matches_fd(const SocketAddress *a, int fd) { | |
325 | SocketAddress b; | |
326 | socklen_t solen; | |
327 | ||
328 | assert(a); | |
329 | assert(fd >= 0); | |
330 | ||
331 | b.size = sizeof(b.sockaddr); | |
332 | if (getsockname(fd, &b.sockaddr.sa, &b.size) < 0) | |
333 | return false; | |
334 | ||
335 | if (b.sockaddr.sa.sa_family != a->sockaddr.sa.sa_family) | |
336 | return false; | |
337 | ||
338 | solen = sizeof(b.type); | |
339 | if (getsockopt(fd, SOL_SOCKET, SO_TYPE, &b.type, &solen) < 0) | |
340 | return false; | |
341 | ||
342 | if (b.type != a->type) | |
343 | return false; | |
344 | ||
345 | if (a->protocol != 0) { | |
346 | solen = sizeof(b.protocol); | |
347 | if (getsockopt(fd, SOL_SOCKET, SO_PROTOCOL, &b.protocol, &solen) < 0) | |
348 | return false; | |
349 | ||
350 | if (b.protocol != a->protocol) | |
351 | return false; | |
352 | } | |
353 | ||
354 | return socket_address_equal(a, &b); | |
355 | } | |
356 | ||
357 | int sockaddr_port(const struct sockaddr *_sa, unsigned *ret_port) { | |
358 | const union sockaddr_union *sa = (const union sockaddr_union*) _sa; | |
359 | ||
360 | /* Note, this returns the port as 'unsigned' rather than 'uint16_t', as AF_VSOCK knows larger ports */ | |
361 | ||
362 | assert(sa); | |
363 | ||
364 | switch (sa->sa.sa_family) { | |
365 | ||
366 | case AF_INET: | |
367 | *ret_port = be16toh(sa->in.sin_port); | |
368 | return 0; | |
369 | ||
370 | case AF_INET6: | |
371 | *ret_port = be16toh(sa->in6.sin6_port); | |
372 | return 0; | |
373 | ||
374 | case AF_VSOCK: | |
375 | *ret_port = sa->vm.svm_port; | |
376 | return 0; | |
377 | ||
378 | default: | |
379 | return -EAFNOSUPPORT; | |
380 | } | |
381 | } | |
382 | ||
383 | const union in_addr_union *sockaddr_in_addr(const struct sockaddr *_sa) { | |
384 | const union sockaddr_union *sa = (const union sockaddr_union*) _sa; | |
385 | ||
386 | if (!sa) | |
387 | return NULL; | |
388 | ||
389 | switch (sa->sa.sa_family) { | |
390 | ||
391 | case AF_INET: | |
392 | return (const union in_addr_union*) &sa->in.sin_addr; | |
393 | ||
394 | case AF_INET6: | |
395 | return (const union in_addr_union*) &sa->in6.sin6_addr; | |
396 | ||
397 | default: | |
398 | return NULL; | |
399 | } | |
400 | } | |
401 | ||
402 | int sockaddr_set_in_addr( | |
403 | union sockaddr_union *u, | |
404 | int family, | |
405 | const union in_addr_union *a, | |
406 | uint16_t port) { | |
407 | ||
408 | assert(u); | |
409 | assert(a); | |
410 | ||
411 | switch (family) { | |
412 | ||
413 | case AF_INET: | |
414 | u->in = (struct sockaddr_in) { | |
415 | .sin_family = AF_INET, | |
416 | .sin_addr = a->in, | |
417 | .sin_port = htobe16(port), | |
418 | }; | |
419 | ||
420 | return 0; | |
421 | ||
422 | case AF_INET6: | |
423 | u->in6 = (struct sockaddr_in6) { | |
424 | .sin6_family = AF_INET6, | |
425 | .sin6_addr = a->in6, | |
426 | .sin6_port = htobe16(port), | |
427 | }; | |
428 | ||
429 | return 0; | |
430 | ||
431 | default: | |
432 | return -EAFNOSUPPORT; | |
433 | ||
434 | } | |
435 | } | |
436 | ||
437 | int sockaddr_pretty( | |
438 | const struct sockaddr *_sa, | |
439 | socklen_t salen, | |
440 | bool translate_ipv6, | |
441 | bool include_port, | |
442 | char **ret) { | |
443 | ||
444 | union sockaddr_union *sa = (union sockaddr_union*) _sa; | |
445 | char *p; | |
446 | int r; | |
447 | ||
448 | assert(sa); | |
449 | assert(salen >= sizeof(sa->sa.sa_family)); | |
450 | assert(ret); | |
451 | ||
452 | switch (sa->sa.sa_family) { | |
453 | ||
454 | case AF_INET: { | |
455 | uint32_t a; | |
456 | ||
457 | a = be32toh(sa->in.sin_addr.s_addr); | |
458 | ||
459 | if (include_port) | |
460 | r = asprintf(&p, | |
461 | "%u.%u.%u.%u:%u", | |
462 | a >> 24, (a >> 16) & 0xFF, (a >> 8) & 0xFF, a & 0xFF, | |
463 | be16toh(sa->in.sin_port)); | |
464 | else | |
465 | r = asprintf(&p, | |
466 | "%u.%u.%u.%u", | |
467 | a >> 24, (a >> 16) & 0xFF, (a >> 8) & 0xFF, a & 0xFF); | |
468 | if (r < 0) | |
469 | return -ENOMEM; | |
470 | break; | |
471 | } | |
472 | ||
473 | case AF_INET6: { | |
474 | static const unsigned char ipv4_prefix[] = { | |
475 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF | |
476 | }; | |
477 | ||
478 | if (translate_ipv6 && | |
479 | memcmp(&sa->in6.sin6_addr, ipv4_prefix, sizeof(ipv4_prefix)) == 0) { | |
480 | const uint8_t *a = sa->in6.sin6_addr.s6_addr+12; | |
481 | if (include_port) | |
482 | r = asprintf(&p, | |
483 | "%u.%u.%u.%u:%u", | |
484 | a[0], a[1], a[2], a[3], | |
485 | be16toh(sa->in6.sin6_port)); | |
486 | else | |
487 | r = asprintf(&p, | |
488 | "%u.%u.%u.%u", | |
489 | a[0], a[1], a[2], a[3]); | |
490 | if (r < 0) | |
491 | return -ENOMEM; | |
492 | } else { | |
493 | const char *a = IN6_ADDR_TO_STRING(&sa->in6.sin6_addr); | |
494 | ||
495 | if (include_port) { | |
496 | if (asprintf(&p, | |
497 | "[%s]:%u%s%s", | |
498 | a, | |
499 | be16toh(sa->in6.sin6_port), | |
500 | sa->in6.sin6_scope_id != 0 ? "%" : "", | |
501 | FORMAT_IFNAME_FULL(sa->in6.sin6_scope_id, FORMAT_IFNAME_IFINDEX)) < 0) | |
502 | return -ENOMEM; | |
503 | } else { | |
504 | if (sa->in6.sin6_scope_id != 0) | |
505 | p = strjoin(a, "%", FORMAT_IFNAME_FULL(sa->in6.sin6_scope_id, FORMAT_IFNAME_IFINDEX)); | |
506 | else | |
507 | p = strdup(a); | |
508 | if (!p) | |
509 | return -ENOMEM; | |
510 | } | |
511 | } | |
512 | ||
513 | break; | |
514 | } | |
515 | ||
516 | case AF_UNIX: | |
517 | if (salen <= offsetof(struct sockaddr_un, sun_path) || | |
518 | (sa->un.sun_path[0] == 0 && salen == offsetof(struct sockaddr_un, sun_path) + 1)) | |
519 | /* The name must have at least one character (and the leading NUL does not count) */ | |
520 | p = strdup("<unnamed>"); | |
521 | else { | |
522 | /* Note that we calculate the path pointer here through the .un_buffer[] field, in order to | |
523 | * outtrick bounds checking tools such as ubsan, which are too smart for their own good: on | |
524 | * Linux the kernel may return sun_path[] data one byte longer than the declared size of the | |
525 | * field. */ | |
526 | char *path = (char*) sa->un_buffer + offsetof(struct sockaddr_un, sun_path); | |
527 | size_t path_len = salen - offsetof(struct sockaddr_un, sun_path); | |
528 | ||
529 | if (path[0] == 0) { | |
530 | /* Abstract socket. When parsing address information from, we | |
531 | * explicitly reject overly long paths and paths with embedded NULs. | |
532 | * But we might get such a socket from the outside. Let's return | |
533 | * something meaningful and printable in this case. */ | |
534 | ||
535 | _cleanup_free_ char *e = NULL; | |
536 | ||
537 | e = cescape_length(path + 1, path_len - 1); | |
538 | if (!e) | |
539 | return -ENOMEM; | |
540 | ||
541 | p = strjoin("@", e); | |
542 | } else { | |
543 | if (path[path_len - 1] == '\0') | |
544 | /* We expect a terminating NUL and don't print it */ | |
545 | path_len--; | |
546 | ||
547 | p = cescape_length(path, path_len); | |
548 | } | |
549 | } | |
550 | if (!p) | |
551 | return -ENOMEM; | |
552 | ||
553 | break; | |
554 | ||
555 | case AF_VSOCK: | |
556 | if (include_port) { | |
557 | if (sa->vm.svm_cid == VMADDR_CID_ANY) | |
558 | r = asprintf(&p, "vsock::%u", sa->vm.svm_port); | |
559 | else | |
560 | r = asprintf(&p, "vsock:%u:%u", sa->vm.svm_cid, sa->vm.svm_port); | |
561 | } else | |
562 | r = asprintf(&p, "vsock:%u", sa->vm.svm_cid); | |
563 | if (r < 0) | |
564 | return -ENOMEM; | |
565 | break; | |
566 | ||
567 | default: | |
568 | return -EOPNOTSUPP; | |
569 | } | |
570 | ||
571 | *ret = p; | |
572 | return 0; | |
573 | } | |
574 | ||
575 | int getpeername_pretty(int fd, bool include_port, char **ret) { | |
576 | union sockaddr_union sa; | |
577 | socklen_t salen = sizeof(sa); | |
578 | int r; | |
579 | ||
580 | assert(fd >= 0); | |
581 | assert(ret); | |
582 | ||
583 | if (getpeername(fd, &sa.sa, &salen) < 0) | |
584 | return -errno; | |
585 | ||
586 | if (sa.sa.sa_family == AF_UNIX) { | |
587 | struct ucred ucred = UCRED_INVALID; | |
588 | ||
589 | /* UNIX connection sockets are anonymous, so let's use | |
590 | * PID/UID as pretty credentials instead */ | |
591 | ||
592 | r = getpeercred(fd, &ucred); | |
593 | if (r < 0) | |
594 | return r; | |
595 | ||
596 | if (asprintf(ret, "PID "PID_FMT"/UID "UID_FMT, ucred.pid, ucred.uid) < 0) | |
597 | return -ENOMEM; | |
598 | ||
599 | return 0; | |
600 | } | |
601 | ||
602 | /* For remote sockets we translate IPv6 addresses back to IPv4 | |
603 | * if applicable, since that's nicer. */ | |
604 | ||
605 | return sockaddr_pretty(&sa.sa, salen, true, include_port, ret); | |
606 | } | |
607 | ||
608 | int getsockname_pretty(int fd, char **ret) { | |
609 | union sockaddr_union sa; | |
610 | socklen_t salen = sizeof(sa); | |
611 | ||
612 | assert(fd >= 0); | |
613 | assert(ret); | |
614 | ||
615 | if (getsockname(fd, &sa.sa, &salen) < 0) | |
616 | return -errno; | |
617 | ||
618 | /* For local sockets we do not translate IPv6 addresses back | |
619 | * to IPv6 if applicable, since this is usually used for | |
620 | * listening sockets where the difference between IPv4 and | |
621 | * IPv6 matters. */ | |
622 | ||
623 | return sockaddr_pretty(&sa.sa, salen, false, true, ret); | |
624 | } | |
625 | ||
626 | int socknameinfo_pretty(const struct sockaddr *sa, socklen_t salen, char **ret) { | |
627 | char host[NI_MAXHOST]; | |
628 | int r; | |
629 | ||
630 | assert(sa); | |
631 | assert(salen >= sizeof(sa_family_t)); | |
632 | assert(ret); | |
633 | ||
634 | r = getnameinfo(sa, salen, host, sizeof(host), /* service= */ NULL, /* service_len= */ 0, IDN_FLAGS); | |
635 | if (r != 0) { | |
636 | if (r == EAI_MEMORY) | |
637 | return log_oom_debug(); | |
638 | if (r == EAI_SYSTEM) | |
639 | log_debug_errno(errno, "getnameinfo() failed, ignoring: %m"); | |
640 | else | |
641 | log_debug("getnameinfo() failed, ignoring: %s", gai_strerror(r)); | |
642 | ||
643 | return sockaddr_pretty(sa, salen, /* translate_ipv6= */ true, /* include_port= */ true, ret); | |
644 | } | |
645 | ||
646 | return strdup_to(ret, host); | |
647 | } | |
648 | ||
649 | static const char* const netlink_family_table[] = { | |
650 | [NETLINK_ROUTE] = "route", | |
651 | [NETLINK_FIREWALL] = "firewall", | |
652 | [NETLINK_INET_DIAG] = "inet-diag", | |
653 | [NETLINK_NFLOG] = "nflog", | |
654 | [NETLINK_XFRM] = "xfrm", | |
655 | [NETLINK_SELINUX] = "selinux", | |
656 | [NETLINK_ISCSI] = "iscsi", | |
657 | [NETLINK_AUDIT] = "audit", | |
658 | [NETLINK_FIB_LOOKUP] = "fib-lookup", | |
659 | [NETLINK_CONNECTOR] = "connector", | |
660 | [NETLINK_NETFILTER] = "netfilter", | |
661 | [NETLINK_IP6_FW] = "ip6-fw", | |
662 | [NETLINK_DNRTMSG] = "dnrtmsg", | |
663 | [NETLINK_KOBJECT_UEVENT] = "kobject-uevent", | |
664 | [NETLINK_GENERIC] = "generic", | |
665 | [NETLINK_SCSITRANSPORT] = "scsitransport", | |
666 | [NETLINK_ECRYPTFS] = "ecryptfs", | |
667 | [NETLINK_RDMA] = "rdma", | |
668 | }; | |
669 | ||
670 | DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(netlink_family, int, INT_MAX); | |
671 | ||
672 | static const char* const socket_address_bind_ipv6_only_table[_SOCKET_ADDRESS_BIND_IPV6_ONLY_MAX] = { | |
673 | [SOCKET_ADDRESS_DEFAULT] = "default", | |
674 | [SOCKET_ADDRESS_BOTH] = "both", | |
675 | [SOCKET_ADDRESS_IPV6_ONLY] = "ipv6-only" | |
676 | }; | |
677 | ||
678 | DEFINE_STRING_TABLE_LOOKUP(socket_address_bind_ipv6_only, SocketAddressBindIPv6Only); | |
679 | ||
680 | SocketAddressBindIPv6Only socket_address_bind_ipv6_only_or_bool_from_string(const char *n) { | |
681 | int r; | |
682 | ||
683 | r = parse_boolean(n); | |
684 | if (r > 0) | |
685 | return SOCKET_ADDRESS_IPV6_ONLY; | |
686 | if (r == 0) | |
687 | return SOCKET_ADDRESS_BOTH; | |
688 | ||
689 | return socket_address_bind_ipv6_only_from_string(n); | |
690 | } | |
691 | ||
692 | bool sockaddr_equal(const union sockaddr_union *a, const union sockaddr_union *b) { | |
693 | assert(a); | |
694 | assert(b); | |
695 | ||
696 | if (a->sa.sa_family != b->sa.sa_family) | |
697 | return false; | |
698 | ||
699 | if (a->sa.sa_family == AF_INET) | |
700 | return a->in.sin_addr.s_addr == b->in.sin_addr.s_addr; | |
701 | ||
702 | if (a->sa.sa_family == AF_INET6) | |
703 | return memcmp(&a->in6.sin6_addr, &b->in6.sin6_addr, sizeof(a->in6.sin6_addr)) == 0; | |
704 | ||
705 | if (a->sa.sa_family == AF_VSOCK) | |
706 | return a->vm.svm_cid == b->vm.svm_cid; | |
707 | ||
708 | return false; | |
709 | } | |
710 | ||
711 | int fd_set_sndbuf(int fd, size_t n, bool increase) { | |
712 | int r, value; | |
713 | socklen_t l = sizeof(value); | |
714 | ||
715 | if (n > INT_MAX) | |
716 | return -ERANGE; | |
717 | ||
718 | r = getsockopt(fd, SOL_SOCKET, SO_SNDBUF, &value, &l); | |
719 | if (r >= 0 && l == sizeof(value) && increase ? (size_t) value >= n*2 : (size_t) value == n*2) | |
720 | return 0; | |
721 | ||
722 | /* First, try to set the buffer size with SO_SNDBUF. */ | |
723 | r = setsockopt_int(fd, SOL_SOCKET, SO_SNDBUF, n); | |
724 | if (r < 0) | |
725 | return r; | |
726 | ||
727 | /* SO_SNDBUF above may set to the kernel limit, instead of the requested size. | |
728 | * So, we need to check the actual buffer size here. */ | |
729 | l = sizeof(value); | |
730 | r = getsockopt(fd, SOL_SOCKET, SO_SNDBUF, &value, &l); | |
731 | if (r >= 0 && l == sizeof(value) && increase ? (size_t) value >= n*2 : (size_t) value == n*2) | |
732 | return 1; | |
733 | ||
734 | /* If we have the privileges we will ignore the kernel limit. */ | |
735 | r = setsockopt_int(fd, SOL_SOCKET, SO_SNDBUFFORCE, n); | |
736 | if (r < 0) | |
737 | return r; | |
738 | ||
739 | return 1; | |
740 | } | |
741 | ||
742 | int fd_set_rcvbuf(int fd, size_t n, bool increase) { | |
743 | int r, value; | |
744 | socklen_t l = sizeof(value); | |
745 | ||
746 | if (n > INT_MAX) | |
747 | return -ERANGE; | |
748 | ||
749 | r = getsockopt(fd, SOL_SOCKET, SO_RCVBUF, &value, &l); | |
750 | if (r >= 0 && l == sizeof(value) && increase ? (size_t) value >= n*2 : (size_t) value == n*2) | |
751 | return 0; | |
752 | ||
753 | /* First, try to set the buffer size with SO_RCVBUF. */ | |
754 | r = setsockopt_int(fd, SOL_SOCKET, SO_RCVBUF, n); | |
755 | if (r < 0) | |
756 | return r; | |
757 | ||
758 | /* SO_RCVBUF above may set to the kernel limit, instead of the requested size. | |
759 | * So, we need to check the actual buffer size here. */ | |
760 | l = sizeof(value); | |
761 | r = getsockopt(fd, SOL_SOCKET, SO_RCVBUF, &value, &l); | |
762 | if (r >= 0 && l == sizeof(value) && increase ? (size_t) value >= n*2 : (size_t) value == n*2) | |
763 | return 1; | |
764 | ||
765 | /* If we have the privileges we will ignore the kernel limit. */ | |
766 | r = setsockopt_int(fd, SOL_SOCKET, SO_RCVBUFFORCE, n); | |
767 | if (r < 0) | |
768 | return r; | |
769 | ||
770 | return 1; | |
771 | } | |
772 | ||
773 | static const char* const ip_tos_table[] = { | |
774 | [IPTOS_LOWDELAY] = "low-delay", | |
775 | [IPTOS_THROUGHPUT] = "throughput", | |
776 | [IPTOS_RELIABILITY] = "reliability", | |
777 | [IPTOS_LOWCOST] = "low-cost", | |
778 | }; | |
779 | ||
780 | DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(ip_tos, int, 0xff); | |
781 | ||
782 | bool ifname_valid_char(char a) { | |
783 | if ((unsigned char) a >= 127U) | |
784 | return false; | |
785 | ||
786 | if ((unsigned char) a <= 32U) | |
787 | return false; | |
788 | ||
789 | if (IN_SET(a, | |
790 | ':', /* colons are used by the legacy "alias" interface logic */ | |
791 | '/', /* slashes cannot work, since we need to use network interfaces in sysfs paths, and in paths slashes are separators */ | |
792 | '%')) /* %d is used in the kernel's weird foo%d format string naming feature which we really really don't want to ever run into by accident */ | |
793 | return false; | |
794 | ||
795 | return true; | |
796 | } | |
797 | ||
798 | bool ifname_valid_full(const char *p, IfnameValidFlags flags) { | |
799 | bool numeric = true; | |
800 | ||
801 | /* Checks whether a network interface name is valid. This is inspired by dev_valid_name() in the kernel sources | |
802 | * but slightly stricter, as we only allow non-control, non-space ASCII characters in the interface name. We | |
803 | * also don't permit names that only container numbers, to avoid confusion with numeric interface indexes. */ | |
804 | ||
805 | assert(!(flags & ~_IFNAME_VALID_ALL)); | |
806 | ||
807 | if (isempty(p)) | |
808 | return false; | |
809 | ||
810 | /* A valid ifindex? If so, it's valid iff IFNAME_VALID_NUMERIC is set */ | |
811 | if (parse_ifindex(p) >= 0) | |
812 | return flags & IFNAME_VALID_NUMERIC; | |
813 | ||
814 | if (flags & IFNAME_VALID_ALTERNATIVE) { | |
815 | if (strlen(p) >= ALTIFNAMSIZ) | |
816 | return false; | |
817 | } else { | |
818 | if (strlen(p) >= IFNAMSIZ) | |
819 | return false; | |
820 | } | |
821 | ||
822 | if (dot_or_dot_dot(p)) | |
823 | return false; | |
824 | ||
825 | /* Let's refuse "all" and "default" as interface name, to avoid collisions with the special sysctl | |
826 | * directories /proc/sys/net/{ipv4,ipv6}/conf/{all,default} */ | |
827 | if (!FLAGS_SET(flags, IFNAME_VALID_SPECIAL) && STR_IN_SET(p, "all", "default")) | |
828 | return false; | |
829 | ||
830 | for (const char *t = p; *t; t++) { | |
831 | if (!ifname_valid_char(*t)) | |
832 | return false; | |
833 | ||
834 | numeric = numeric && ascii_isdigit(*t); | |
835 | } | |
836 | ||
837 | /* It's fully numeric but didn't parse as valid ifindex above? if so, it must be too large or zero or | |
838 | * so, let's refuse that. */ | |
839 | if (numeric) | |
840 | return false; | |
841 | ||
842 | return true; | |
843 | } | |
844 | ||
845 | bool address_label_valid(const char *p) { | |
846 | ||
847 | if (isempty(p)) | |
848 | return false; | |
849 | ||
850 | if (strlen(p) >= IFNAMSIZ) | |
851 | return false; | |
852 | ||
853 | while (*p) { | |
854 | if ((uint8_t) *p >= 127U) | |
855 | return false; | |
856 | ||
857 | if ((uint8_t) *p <= 31U) | |
858 | return false; | |
859 | p++; | |
860 | } | |
861 | ||
862 | return true; | |
863 | } | |
864 | ||
865 | int getpeercred(int fd, struct ucred *ucred) { | |
866 | socklen_t n = sizeof(struct ucred); | |
867 | struct ucred u; | |
868 | ||
869 | assert(fd >= 0); | |
870 | assert(ucred); | |
871 | ||
872 | if (getsockopt(fd, SOL_SOCKET, SO_PEERCRED, &u, &n) < 0) | |
873 | return -errno; | |
874 | ||
875 | if (n != sizeof(struct ucred)) | |
876 | return -EIO; | |
877 | ||
878 | /* Check if the data is actually useful and not suppressed due to namespacing issues */ | |
879 | if (!pid_is_valid(u.pid)) | |
880 | return -ENODATA; | |
881 | ||
882 | /* Note that we don't check UID/GID here, as namespace translation works differently there: instead of | |
883 | * receiving in "invalid" user/group we get the overflow UID/GID. */ | |
884 | ||
885 | *ucred = u; | |
886 | return 0; | |
887 | } | |
888 | ||
889 | int getpeersec(int fd, char **ret) { | |
890 | _cleanup_free_ char *s = NULL; | |
891 | socklen_t n = 64; | |
892 | ||
893 | assert(fd >= 0); | |
894 | assert(ret); | |
895 | ||
896 | for (;;) { | |
897 | s = new0(char, n+1); | |
898 | if (!s) | |
899 | return -ENOMEM; | |
900 | ||
901 | if (getsockopt(fd, SOL_SOCKET, SO_PEERSEC, s, &n) >= 0) { | |
902 | s[n] = 0; | |
903 | break; | |
904 | } | |
905 | ||
906 | if (errno != ERANGE) | |
907 | return -errno; | |
908 | ||
909 | s = mfree(s); | |
910 | } | |
911 | ||
912 | if (isempty(s)) | |
913 | return -EOPNOTSUPP; | |
914 | ||
915 | *ret = TAKE_PTR(s); | |
916 | ||
917 | return 0; | |
918 | } | |
919 | ||
920 | int getpeergroups(int fd, gid_t **ret) { | |
921 | socklen_t n = sizeof(gid_t) * 64U; | |
922 | _cleanup_free_ gid_t *d = NULL; | |
923 | ||
924 | assert(fd >= 0); | |
925 | assert(ret); | |
926 | ||
927 | long ngroups_max = sysconf(_SC_NGROUPS_MAX); | |
928 | if (ngroups_max > 0) | |
929 | n = MAX(n, sizeof(gid_t) * (socklen_t) ngroups_max); | |
930 | ||
931 | for (;;) { | |
932 | d = malloc(n); | |
933 | if (!d) | |
934 | return -ENOMEM; | |
935 | ||
936 | if (getsockopt(fd, SOL_SOCKET, SO_PEERGROUPS, d, &n) >= 0) | |
937 | break; | |
938 | ||
939 | if (errno != ERANGE) | |
940 | return -errno; | |
941 | ||
942 | d = mfree(d); | |
943 | } | |
944 | ||
945 | assert_se(n % sizeof(gid_t) == 0); | |
946 | n /= sizeof(gid_t); | |
947 | ||
948 | if (n > INT_MAX) | |
949 | return -E2BIG; | |
950 | ||
951 | *ret = TAKE_PTR(d); | |
952 | ||
953 | return (int) n; | |
954 | } | |
955 | ||
956 | int getpeerpidfd(int fd) { | |
957 | socklen_t n = sizeof(int); | |
958 | int pidfd = -EBADF; | |
959 | ||
960 | assert(fd >= 0); | |
961 | ||
962 | if (getsockopt(fd, SOL_SOCKET, SO_PEERPIDFD, &pidfd, &n) < 0) | |
963 | return -errno; | |
964 | ||
965 | if (n != sizeof(int)) | |
966 | return -EIO; | |
967 | ||
968 | return pidfd; | |
969 | } | |
970 | ||
971 | int getpeerpidref(int fd, PidRef *ret) { | |
972 | int r; | |
973 | ||
974 | assert(fd >= 0); | |
975 | assert(ret); | |
976 | ||
977 | int pidfd = getpeerpidfd(fd); | |
978 | if (pidfd < 0) { | |
979 | if (!ERRNO_IS_NEG_NOT_SUPPORTED(pidfd)) | |
980 | return pidfd; | |
981 | ||
982 | struct ucred ucred; | |
983 | r = getpeercred(fd, &ucred); | |
984 | if (r < 0) | |
985 | return r; | |
986 | ||
987 | return pidref_set_pid(ret, ucred.pid); | |
988 | } | |
989 | ||
990 | return pidref_set_pidfd_consume(ret, pidfd); | |
991 | } | |
992 | ||
993 | ssize_t send_many_fds_iov_sa( | |
994 | int transport_fd, | |
995 | int *fds_array, size_t n_fds_array, | |
996 | const struct iovec *iov, size_t iovlen, | |
997 | const struct sockaddr *sa, socklen_t len, | |
998 | int flags) { | |
999 | ||
1000 | _cleanup_free_ struct cmsghdr *cmsg = NULL; | |
1001 | struct msghdr mh = { | |
1002 | .msg_name = (struct sockaddr*) sa, | |
1003 | .msg_namelen = len, | |
1004 | .msg_iov = (struct iovec *)iov, | |
1005 | .msg_iovlen = iovlen, | |
1006 | }; | |
1007 | ssize_t k; | |
1008 | ||
1009 | assert(transport_fd >= 0); | |
1010 | assert(fds_array || n_fds_array == 0); | |
1011 | ||
1012 | /* The kernel will reject sending more than SCM_MAX_FD FDs at once */ | |
1013 | if (n_fds_array > SCM_MAX_FD) | |
1014 | return -E2BIG; | |
1015 | ||
1016 | /* We need either an FD array or data to send. If there's nothing, return an error. */ | |
1017 | if (n_fds_array == 0 && !iov) | |
1018 | return -EINVAL; | |
1019 | ||
1020 | if (n_fds_array > 0) { | |
1021 | mh.msg_controllen = CMSG_SPACE(sizeof(int) * n_fds_array); | |
1022 | mh.msg_control = cmsg = malloc(mh.msg_controllen); | |
1023 | if (!cmsg) | |
1024 | return -ENOMEM; | |
1025 | ||
1026 | *cmsg = (struct cmsghdr) { | |
1027 | .cmsg_len = CMSG_LEN(sizeof(int) * n_fds_array), | |
1028 | .cmsg_level = SOL_SOCKET, | |
1029 | .cmsg_type = SCM_RIGHTS, | |
1030 | }; | |
1031 | memcpy(CMSG_DATA(cmsg), fds_array, sizeof(int) * n_fds_array); | |
1032 | } | |
1033 | k = sendmsg(transport_fd, &mh, MSG_NOSIGNAL | flags); | |
1034 | if (k < 0) | |
1035 | return (ssize_t) -errno; | |
1036 | ||
1037 | return k; | |
1038 | } | |
1039 | ||
1040 | ssize_t send_one_fd_iov_sa( | |
1041 | int transport_fd, | |
1042 | int fd, | |
1043 | const struct iovec *iov, size_t iovlen, | |
1044 | const struct sockaddr *sa, socklen_t len, | |
1045 | int flags) { | |
1046 | ||
1047 | CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(int))) control = {}; | |
1048 | struct msghdr mh = { | |
1049 | .msg_name = (struct sockaddr*) sa, | |
1050 | .msg_namelen = len, | |
1051 | .msg_iov = (struct iovec *)iov, | |
1052 | .msg_iovlen = iovlen, | |
1053 | }; | |
1054 | ssize_t k; | |
1055 | ||
1056 | assert(transport_fd >= 0); | |
1057 | ||
1058 | /* | |
1059 | * We need either an FD or data to send. | |
1060 | * If there's nothing, return an error. | |
1061 | */ | |
1062 | if (fd < 0 && !iov) | |
1063 | return -EINVAL; | |
1064 | ||
1065 | if (fd >= 0) { | |
1066 | struct cmsghdr *cmsg; | |
1067 | ||
1068 | mh.msg_control = &control; | |
1069 | mh.msg_controllen = sizeof(control); | |
1070 | ||
1071 | cmsg = CMSG_FIRSTHDR(&mh); | |
1072 | cmsg->cmsg_level = SOL_SOCKET; | |
1073 | cmsg->cmsg_type = SCM_RIGHTS; | |
1074 | cmsg->cmsg_len = CMSG_LEN(sizeof(int)); | |
1075 | memcpy(CMSG_DATA(cmsg), &fd, sizeof(int)); | |
1076 | } | |
1077 | k = sendmsg(transport_fd, &mh, MSG_NOSIGNAL | flags); | |
1078 | if (k < 0) | |
1079 | return (ssize_t) -errno; | |
1080 | ||
1081 | return k; | |
1082 | } | |
1083 | ||
1084 | int send_one_fd_sa( | |
1085 | int transport_fd, | |
1086 | int fd, | |
1087 | const struct sockaddr *sa, socklen_t len, | |
1088 | int flags) { | |
1089 | ||
1090 | assert(fd >= 0); | |
1091 | ||
1092 | return (int) send_one_fd_iov_sa(transport_fd, fd, NULL, 0, sa, len, flags); | |
1093 | } | |
1094 | ||
1095 | ssize_t receive_many_fds_iov( | |
1096 | int transport_fd, | |
1097 | struct iovec *iov, size_t iovlen, | |
1098 | int **ret_fds_array, size_t *ret_n_fds_array, | |
1099 | int flags) { | |
1100 | ||
1101 | CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(int) * SCM_MAX_FD)) control; | |
1102 | struct msghdr mh = { | |
1103 | .msg_control = &control, | |
1104 | .msg_controllen = sizeof(control), | |
1105 | .msg_iov = iov, | |
1106 | .msg_iovlen = iovlen, | |
1107 | }; | |
1108 | _cleanup_free_ int *fds_array = NULL; | |
1109 | size_t n_fds_array = 0; | |
1110 | struct cmsghdr *cmsg; | |
1111 | ssize_t k; | |
1112 | ||
1113 | assert(transport_fd >= 0); | |
1114 | assert(ret_fds_array); | |
1115 | assert(ret_n_fds_array); | |
1116 | ||
1117 | /* | |
1118 | * Receive many FDs via @transport_fd. We don't care for the transport-type. We retrieve all the FDs | |
1119 | * at once. This is best used in combination with send_many_fds(). | |
1120 | */ | |
1121 | ||
1122 | k = recvmsg_safe(transport_fd, &mh, MSG_CMSG_CLOEXEC | flags); | |
1123 | if (k < 0) | |
1124 | return k; | |
1125 | ||
1126 | CMSG_FOREACH(cmsg, &mh) | |
1127 | if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { | |
1128 | size_t n = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(int); | |
1129 | ||
1130 | if (!GREEDY_REALLOC_APPEND(fds_array, n_fds_array, CMSG_TYPED_DATA(cmsg, int), n)) { | |
1131 | cmsg_close_all(&mh); | |
1132 | return -ENOMEM; | |
1133 | } | |
1134 | } | |
1135 | ||
1136 | if (n_fds_array == 0) { | |
1137 | cmsg_close_all(&mh); | |
1138 | ||
1139 | /* If didn't receive an FD or any data, return an error. */ | |
1140 | if (k == 0) | |
1141 | return -EIO; | |
1142 | } | |
1143 | ||
1144 | *ret_fds_array = TAKE_PTR(fds_array); | |
1145 | *ret_n_fds_array = n_fds_array; | |
1146 | ||
1147 | return k; | |
1148 | } | |
1149 | ||
1150 | int receive_many_fds(int transport_fd, int **ret_fds_array, size_t *ret_n_fds_array, int flags) { | |
1151 | ssize_t k; | |
1152 | ||
1153 | k = receive_many_fds_iov(transport_fd, NULL, 0, ret_fds_array, ret_n_fds_array, flags); | |
1154 | if (k == 0) | |
1155 | return 0; | |
1156 | ||
1157 | /* k must be negative, since receive_many_fds_iov() only returns a positive value if data was received | |
1158 | * through the iov. */ | |
1159 | assert(k < 0); | |
1160 | return (int) k; | |
1161 | } | |
1162 | ||
1163 | ssize_t receive_one_fd_iov( | |
1164 | int transport_fd, | |
1165 | struct iovec *iov, size_t iovlen, | |
1166 | int flags, | |
1167 | int *ret_fd) { | |
1168 | ||
1169 | CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(int))) control; | |
1170 | struct msghdr mh = { | |
1171 | .msg_control = &control, | |
1172 | .msg_controllen = sizeof(control), | |
1173 | .msg_iov = iov, | |
1174 | .msg_iovlen = iovlen, | |
1175 | }; | |
1176 | struct cmsghdr *found; | |
1177 | ssize_t k; | |
1178 | ||
1179 | assert(transport_fd >= 0); | |
1180 | assert(ret_fd); | |
1181 | ||
1182 | /* | |
1183 | * Receive a single FD via @transport_fd. We don't care for | |
1184 | * the transport-type. We retrieve a single FD at most, so for | |
1185 | * packet-based transports, the caller must ensure to send | |
1186 | * only a single FD per packet. This is best used in | |
1187 | * combination with send_one_fd(). | |
1188 | */ | |
1189 | ||
1190 | k = recvmsg_safe(transport_fd, &mh, MSG_CMSG_CLOEXEC | flags); | |
1191 | if (k < 0) | |
1192 | return k; | |
1193 | ||
1194 | found = cmsg_find(&mh, SOL_SOCKET, SCM_RIGHTS, CMSG_LEN(sizeof(int))); | |
1195 | if (!found) { | |
1196 | cmsg_close_all(&mh); | |
1197 | ||
1198 | /* If didn't receive an FD or any data, return an error. */ | |
1199 | if (k == 0) | |
1200 | return -EIO; | |
1201 | } | |
1202 | ||
1203 | if (found) | |
1204 | *ret_fd = *CMSG_TYPED_DATA(found, int); | |
1205 | else | |
1206 | *ret_fd = -EBADF; | |
1207 | ||
1208 | return k; | |
1209 | } | |
1210 | ||
1211 | int receive_one_fd(int transport_fd, int flags) { | |
1212 | int fd; | |
1213 | ssize_t k; | |
1214 | ||
1215 | k = receive_one_fd_iov(transport_fd, NULL, 0, flags, &fd); | |
1216 | if (k == 0) | |
1217 | return fd; | |
1218 | ||
1219 | /* k must be negative, since receive_one_fd_iov() only returns | |
1220 | * a positive value if data was received through the iov. */ | |
1221 | assert(k < 0); | |
1222 | return (int) k; | |
1223 | } | |
1224 | ||
1225 | ssize_t next_datagram_size_fd(int fd) { | |
1226 | ssize_t l; | |
1227 | int k; | |
1228 | ||
1229 | /* This is a bit like FIONREAD/SIOCINQ, however a bit more powerful. The difference being: recv(MSG_PEEK) will | |
1230 | * actually cause the next datagram in the queue to be validated regarding checksums, which FIONREAD doesn't | |
1231 | * do. This difference is actually of major importance as we need to be sure that the size returned here | |
1232 | * actually matches what we will read with recvmsg() next, as otherwise we might end up allocating a buffer of | |
1233 | * the wrong size. */ | |
1234 | ||
1235 | l = recv(fd, NULL, 0, MSG_PEEK|MSG_TRUNC); | |
1236 | if (l < 0) { | |
1237 | if (IN_SET(errno, EOPNOTSUPP, EFAULT)) | |
1238 | goto fallback; | |
1239 | ||
1240 | return -errno; | |
1241 | } | |
1242 | if (l == 0) | |
1243 | goto fallback; | |
1244 | ||
1245 | return l; | |
1246 | ||
1247 | fallback: | |
1248 | k = 0; | |
1249 | ||
1250 | /* Some sockets (AF_PACKET) do not support null-sized recv() with MSG_TRUNC set, let's fall back to FIONREAD | |
1251 | * for them. Checksums don't matter for raw sockets anyway, hence this should be fine. */ | |
1252 | ||
1253 | if (ioctl(fd, FIONREAD, &k) < 0) | |
1254 | return -errno; | |
1255 | ||
1256 | return (ssize_t) k; | |
1257 | } | |
1258 | ||
1259 | /* Put a limit on how many times will attempt to call accept4(). We loop | |
1260 | * only on "transient" errors, but let's make sure we don't loop forever. */ | |
1261 | #define MAX_FLUSH_ITERATIONS 1024 | |
1262 | ||
1263 | int flush_accept(int fd) { | |
1264 | ||
1265 | int r, b; | |
1266 | socklen_t l = sizeof(b); | |
1267 | ||
1268 | /* Similar to flush_fd() but flushes all incoming connections by accepting and immediately closing | |
1269 | * them. */ | |
1270 | ||
1271 | if (getsockopt(fd, SOL_SOCKET, SO_ACCEPTCONN, &b, &l) < 0) | |
1272 | return -errno; | |
1273 | ||
1274 | assert(l == sizeof(b)); | |
1275 | if (!b) /* Let's check if this socket accepts connections before calling accept(). accept4() can | |
1276 | * return EOPNOTSUPP if the fd is not a listening socket, which we should treat as a fatal | |
1277 | * error, or in case the incoming TCP connection triggered a network issue, which we want to | |
1278 | * treat as a transient error. Thus, let's rule out the first reason for EOPNOTSUPP early, so | |
1279 | * we can loop safely on transient errors below. */ | |
1280 | return -ENOTTY; | |
1281 | ||
1282 | for (unsigned iteration = 0;; iteration++) { | |
1283 | int cfd; | |
1284 | ||
1285 | r = fd_wait_for_event(fd, POLLIN, 0); | |
1286 | if (r < 0) { | |
1287 | if (r == -EINTR) | |
1288 | continue; | |
1289 | ||
1290 | return r; | |
1291 | } | |
1292 | if (r == 0) | |
1293 | return 0; | |
1294 | ||
1295 | if (iteration >= MAX_FLUSH_ITERATIONS) | |
1296 | return log_debug_errno(SYNTHETIC_ERRNO(EBUSY), | |
1297 | "Failed to flush connections within " STRINGIFY(MAX_FLUSH_ITERATIONS) " iterations."); | |
1298 | ||
1299 | cfd = accept4(fd, NULL, NULL, SOCK_NONBLOCK|SOCK_CLOEXEC); | |
1300 | if (cfd < 0) { | |
1301 | if (errno == EAGAIN) | |
1302 | return 0; | |
1303 | ||
1304 | if (ERRNO_IS_ACCEPT_AGAIN(errno)) | |
1305 | continue; | |
1306 | ||
1307 | return -errno; | |
1308 | } | |
1309 | ||
1310 | safe_close(cfd); | |
1311 | } | |
1312 | } | |
1313 | ||
1314 | ssize_t flush_mqueue(int fd) { | |
1315 | _cleanup_free_ char *buf = NULL; | |
1316 | struct mq_attr attr; | |
1317 | ssize_t count = 0; | |
1318 | int r; | |
1319 | ||
1320 | assert(fd >= 0); | |
1321 | ||
1322 | /* Similar to flush_fd() but flushes all messages from a POSIX message queue. */ | |
1323 | ||
1324 | for (;;) { | |
1325 | ssize_t l; | |
1326 | ||
1327 | r = fd_wait_for_event(fd, POLLIN, /* timeout= */ 0); | |
1328 | if (r < 0) { | |
1329 | if (r == -EINTR) | |
1330 | continue; | |
1331 | ||
1332 | return r; | |
1333 | } | |
1334 | if (r == 0) | |
1335 | return count; | |
1336 | ||
1337 | if (!buf) { | |
1338 | /* Buffer must be at least as large as mq_msgsize. */ | |
1339 | if (mq_getattr(fd, &attr) < 0) | |
1340 | return -errno; | |
1341 | ||
1342 | buf = malloc(attr.mq_msgsize); | |
1343 | if (!buf) | |
1344 | return -ENOMEM; | |
1345 | } | |
1346 | ||
1347 | l = mq_receive(fd, buf, attr.mq_msgsize, /* msg_prio = */ NULL); | |
1348 | if (l < 0) { | |
1349 | if (errno == EINTR) | |
1350 | continue; | |
1351 | ||
1352 | if (errno == EAGAIN) | |
1353 | return count; | |
1354 | ||
1355 | return -errno; | |
1356 | } | |
1357 | ||
1358 | count += l; | |
1359 | } | |
1360 | } | |
1361 | ||
1362 | struct cmsghdr* cmsg_find(struct msghdr *mh, int level, int type, socklen_t length) { | |
1363 | struct cmsghdr *cmsg; | |
1364 | ||
1365 | assert(mh); | |
1366 | ||
1367 | CMSG_FOREACH(cmsg, mh) | |
1368 | if (cmsg->cmsg_level == level && | |
1369 | cmsg->cmsg_type == type && | |
1370 | (length == (socklen_t) -1 || length == cmsg->cmsg_len)) | |
1371 | return cmsg; | |
1372 | ||
1373 | return NULL; | |
1374 | } | |
1375 | ||
1376 | void* cmsg_find_and_copy_data(struct msghdr *mh, int level, int type, void *buf, size_t buf_len) { | |
1377 | struct cmsghdr *cmsg; | |
1378 | ||
1379 | assert(mh); | |
1380 | assert(buf); | |
1381 | assert(buf_len > 0); | |
1382 | ||
1383 | /* This is similar to cmsg_find_data(), but copy the found data to buf. This should be typically used | |
1384 | * when reading possibly unaligned data such as timestamp, as time_t is 64-bit and size_t is 32-bit on | |
1385 | * RISCV32. See issue #27241. */ | |
1386 | ||
1387 | cmsg = cmsg_find(mh, level, type, CMSG_LEN(buf_len)); | |
1388 | if (!cmsg) | |
1389 | return NULL; | |
1390 | ||
1391 | return memcpy_safe(buf, CMSG_DATA(cmsg), buf_len); | |
1392 | } | |
1393 | ||
1394 | size_t sockaddr_ll_len(const struct sockaddr_ll *sa) { | |
1395 | /* Certain hardware address types (e.g Infiniband) do not fit into sll_addr | |
1396 | * (8 bytes) and run over the structure. This function returns the correct size that | |
1397 | * must be passed to kernel. */ | |
1398 | ||
1399 | assert(sa->sll_family == AF_PACKET); | |
1400 | ||
1401 | size_t mac_len = sizeof(sa->sll_addr); | |
1402 | ||
1403 | if (be16toh(sa->sll_hatype) == ARPHRD_ETHER) | |
1404 | mac_len = MAX(mac_len, (size_t) ETH_ALEN); | |
1405 | if (be16toh(sa->sll_hatype) == ARPHRD_INFINIBAND) | |
1406 | mac_len = MAX(mac_len, (size_t) INFINIBAND_ALEN); | |
1407 | ||
1408 | return offsetof(struct sockaddr_ll, sll_addr) + mac_len; | |
1409 | } | |
1410 | ||
1411 | size_t sockaddr_un_len(const struct sockaddr_un *sa) { | |
1412 | /* Covers only file system and abstract AF_UNIX socket addresses, but not unnamed socket addresses. */ | |
1413 | ||
1414 | assert(sa->sun_family == AF_UNIX); | |
1415 | ||
1416 | return offsetof(struct sockaddr_un, sun_path) + | |
1417 | (sa->sun_path[0] == 0 ? | |
1418 | 1 + strnlen(sa->sun_path+1, sizeof(sa->sun_path)-1) : | |
1419 | strnlen(sa->sun_path, sizeof(sa->sun_path))+1); | |
1420 | } | |
1421 | ||
1422 | size_t sockaddr_len(const union sockaddr_union *sa) { | |
1423 | switch (sa->sa.sa_family) { | |
1424 | case AF_INET: | |
1425 | return sizeof(struct sockaddr_in); | |
1426 | case AF_INET6: | |
1427 | return sizeof(struct sockaddr_in6); | |
1428 | case AF_UNIX: | |
1429 | return sockaddr_un_len(&sa->un); | |
1430 | case AF_PACKET: | |
1431 | return sockaddr_ll_len(&sa->ll); | |
1432 | case AF_NETLINK: | |
1433 | return sizeof(struct sockaddr_nl); | |
1434 | case AF_VSOCK: | |
1435 | return sizeof(struct sockaddr_vm); | |
1436 | default: | |
1437 | assert_not_reached(); | |
1438 | } | |
1439 | } | |
1440 | ||
1441 | int socket_ioctl_fd(void) { | |
1442 | int fd; | |
1443 | ||
1444 | /* Create a socket to invoke the various network interface ioctl()s on. Traditionally only AF_INET was good for | |
1445 | * that. Since kernel 4.6 AF_NETLINK works for this too. We first try to use AF_INET hence, but if that's not | |
1446 | * available (for example, because it is made unavailable via SECCOMP or such), we'll fall back to the more | |
1447 | * generic AF_NETLINK. */ | |
1448 | ||
1449 | fd = socket(AF_INET, SOCK_DGRAM|SOCK_CLOEXEC, 0); | |
1450 | if (fd < 0) | |
1451 | fd = socket(AF_NETLINK, SOCK_RAW|SOCK_CLOEXEC, NETLINK_GENERIC); | |
1452 | if (fd < 0) | |
1453 | return -errno; | |
1454 | ||
1455 | return fd; | |
1456 | } | |
1457 | ||
1458 | int sockaddr_un_unlink(const struct sockaddr_un *sa) { | |
1459 | const char *p, * nul; | |
1460 | ||
1461 | assert(sa); | |
1462 | ||
1463 | if (sa->sun_family != AF_UNIX) | |
1464 | return -EPROTOTYPE; | |
1465 | ||
1466 | if (sa->sun_path[0] == 0) /* Nothing to do for abstract sockets */ | |
1467 | return 0; | |
1468 | ||
1469 | /* The path in .sun_path is not necessarily NUL terminated. Let's fix that. */ | |
1470 | nul = memchr(sa->sun_path, 0, sizeof(sa->sun_path)); | |
1471 | if (nul) | |
1472 | p = sa->sun_path; | |
1473 | else | |
1474 | p = memdupa_suffix0(sa->sun_path, sizeof(sa->sun_path)); | |
1475 | ||
1476 | if (unlink(p) < 0) | |
1477 | return -errno; | |
1478 | ||
1479 | return 1; | |
1480 | } | |
1481 | ||
1482 | int sockaddr_un_set_path(struct sockaddr_un *ret, const char *path) { | |
1483 | size_t l; | |
1484 | ||
1485 | assert(ret); | |
1486 | assert(path); | |
1487 | ||
1488 | /* Initialize ret->sun_path from the specified argument. This will interpret paths starting with '@' as | |
1489 | * abstract namespace sockets, and those starting with '/' as regular filesystem sockets. It won't accept | |
1490 | * anything else (i.e. no relative paths), to avoid ambiguities. Note that this function cannot be used to | |
1491 | * reference paths in the abstract namespace that include NUL bytes in the name. */ | |
1492 | ||
1493 | l = strlen(path); | |
1494 | if (l < 2) | |
1495 | return -EINVAL; | |
1496 | if (!IN_SET(path[0], '/', '@')) | |
1497 | return -EINVAL; | |
1498 | ||
1499 | /* Don't allow paths larger than the space in sockaddr_un. Note that we are a tiny bit more restrictive than | |
1500 | * the kernel is: we insist on NUL termination (both for abstract namespace and regular file system socket | |
1501 | * addresses!), which the kernel doesn't. We do this to reduce chance of incompatibility with other apps that | |
1502 | * do not expect non-NUL terminated file system path. */ | |
1503 | if (l+1 > sizeof(ret->sun_path)) | |
1504 | return path[0] == '@' ? -EINVAL : -ENAMETOOLONG; /* return a recognizable error if this is | |
1505 | * too long to fit into a sockaddr_un, but | |
1506 | * is a file system path, and thus might be | |
1507 | * connectible via O_PATH indirection. */ | |
1508 | ||
1509 | *ret = (struct sockaddr_un) { | |
1510 | .sun_family = AF_UNIX, | |
1511 | }; | |
1512 | ||
1513 | if (path[0] == '@') { | |
1514 | /* Abstract namespace socket */ | |
1515 | memcpy(ret->sun_path + 1, path + 1, l); /* copy *with* trailing NUL byte */ | |
1516 | return (int) (offsetof(struct sockaddr_un, sun_path) + l); /* 🔥 *don't* 🔥 include trailing NUL in size */ | |
1517 | ||
1518 | } else { | |
1519 | assert(path[0] == '/'); | |
1520 | ||
1521 | /* File system socket */ | |
1522 | memcpy(ret->sun_path, path, l + 1); /* copy *with* trailing NUL byte */ | |
1523 | return (int) (offsetof(struct sockaddr_un, sun_path) + l + 1); /* include trailing NUL in size */ | |
1524 | } | |
1525 | } | |
1526 | ||
1527 | int getsockopt_int(int fd, int level, int optname, int *ret) { | |
1528 | int v; | |
1529 | socklen_t sl = sizeof(v); | |
1530 | ||
1531 | assert(fd >= 0); | |
1532 | assert(ret); | |
1533 | ||
1534 | if (getsockopt(fd, level, optname, &v, &sl) < 0) | |
1535 | return negative_errno(); | |
1536 | if (sl != sizeof(v)) | |
1537 | return -EIO; | |
1538 | ||
1539 | *ret = v; | |
1540 | return 0; | |
1541 | } | |
1542 | ||
1543 | int socket_bind_to_ifname(int fd, const char *ifname) { | |
1544 | assert(fd >= 0); | |
1545 | ||
1546 | /* Call with NULL to drop binding */ | |
1547 | ||
1548 | return RET_NERRNO(setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, ifname, strlen_ptr(ifname))); | |
1549 | } | |
1550 | ||
1551 | int socket_bind_to_ifindex(int fd, int ifindex) { | |
1552 | assert(fd >= 0); | |
1553 | ||
1554 | if (ifindex <= 0) | |
1555 | /* Drop binding */ | |
1556 | return RET_NERRNO(setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, NULL, 0)); | |
1557 | ||
1558 | return setsockopt_int(fd, SOL_SOCKET, SO_BINDTOIFINDEX, ifindex); | |
1559 | } | |
1560 | ||
1561 | int socket_autobind(int fd, char **ret_name) { | |
1562 | _cleanup_free_ char *name = NULL; | |
1563 | uint64_t random; | |
1564 | int r; | |
1565 | ||
1566 | /* Generate a random abstract socket name and bind fd to it. This is modeled after the kernel | |
1567 | * "autobind" feature, but uses 64-bit random number internally. */ | |
1568 | ||
1569 | assert(fd >= 0); | |
1570 | ||
1571 | random = random_u64(); | |
1572 | ||
1573 | if (asprintf(&name, "@%" PRIu64, random) < 0) | |
1574 | return -ENOMEM; | |
1575 | ||
1576 | union sockaddr_union sa; | |
1577 | assert_cc(DECIMAL_STR_MAX(uint64_t) < sizeof(sa.un.sun_path)); | |
1578 | ||
1579 | r = sockaddr_un_set_path(&sa.un, name); | |
1580 | if (r < 0) | |
1581 | return r; | |
1582 | ||
1583 | if (bind(fd, &sa.sa, r) < 0) | |
1584 | return -errno; | |
1585 | ||
1586 | if (ret_name) | |
1587 | *ret_name = TAKE_PTR(name); | |
1588 | return 0; | |
1589 | } | |
1590 | ||
1591 | ssize_t recvmsg_safe(int sockfd, struct msghdr *msg, int flags) { | |
1592 | ssize_t n; | |
1593 | ||
1594 | /* A wrapper around recvmsg() that checks for MSG_CTRUNC and MSG_TRUNC, and turns them into an error, | |
1595 | * in a reasonably safe way, closing any received fds in the error path. | |
1596 | * | |
1597 | * Note that unlike our usual coding style this might modify *msg on failure. */ | |
1598 | ||
1599 | assert(sockfd >= 0); | |
1600 | assert(msg); | |
1601 | ||
1602 | n = recvmsg(sockfd, msg, flags); | |
1603 | if (n < 0) | |
1604 | return -errno; | |
1605 | ||
1606 | if (FLAGS_SET(msg->msg_flags, MSG_CTRUNC) || | |
1607 | (!FLAGS_SET(flags, MSG_PEEK) && FLAGS_SET(msg->msg_flags, MSG_TRUNC))) { | |
1608 | cmsg_close_all(msg); | |
1609 | return FLAGS_SET(msg->msg_flags, MSG_CTRUNC) ? -ECHRNG : -EXFULL; | |
1610 | } | |
1611 | ||
1612 | return n; | |
1613 | } | |
1614 | ||
1615 | int socket_get_family(int fd) { | |
1616 | int af; | |
1617 | socklen_t sl = sizeof(af); | |
1618 | ||
1619 | if (getsockopt(fd, SOL_SOCKET, SO_DOMAIN, &af, &sl) < 0) | |
1620 | return -errno; | |
1621 | ||
1622 | if (sl != sizeof(af)) | |
1623 | return -EINVAL; | |
1624 | ||
1625 | return af; | |
1626 | } | |
1627 | ||
1628 | int socket_set_recvpktinfo(int fd, int af, bool b) { | |
1629 | ||
1630 | if (af == AF_UNSPEC) { | |
1631 | af = socket_get_family(fd); | |
1632 | if (af < 0) | |
1633 | return af; | |
1634 | } | |
1635 | ||
1636 | switch (af) { | |
1637 | ||
1638 | case AF_INET: | |
1639 | return setsockopt_int(fd, IPPROTO_IP, IP_PKTINFO, b); | |
1640 | ||
1641 | case AF_INET6: | |
1642 | return setsockopt_int(fd, IPPROTO_IPV6, IPV6_RECVPKTINFO, b); | |
1643 | ||
1644 | case AF_NETLINK: | |
1645 | return setsockopt_int(fd, SOL_NETLINK, NETLINK_PKTINFO, b); | |
1646 | ||
1647 | case AF_PACKET: | |
1648 | return setsockopt_int(fd, SOL_PACKET, PACKET_AUXDATA, b); | |
1649 | ||
1650 | default: | |
1651 | return -EAFNOSUPPORT; | |
1652 | } | |
1653 | } | |
1654 | ||
1655 | int socket_set_unicast_if(int fd, int af, int ifi) { | |
1656 | be32_t ifindex_be = htobe32(ifi); | |
1657 | ||
1658 | if (af == AF_UNSPEC) { | |
1659 | af = socket_get_family(fd); | |
1660 | if (af < 0) | |
1661 | return af; | |
1662 | } | |
1663 | ||
1664 | switch (af) { | |
1665 | ||
1666 | case AF_INET: | |
1667 | return RET_NERRNO(setsockopt(fd, IPPROTO_IP, IP_UNICAST_IF, &ifindex_be, sizeof(ifindex_be))); | |
1668 | ||
1669 | case AF_INET6: | |
1670 | return RET_NERRNO(setsockopt(fd, IPPROTO_IPV6, IPV6_UNICAST_IF, &ifindex_be, sizeof(ifindex_be))); | |
1671 | ||
1672 | default: | |
1673 | return -EAFNOSUPPORT; | |
1674 | } | |
1675 | } | |
1676 | ||
1677 | int socket_set_option(int fd, int af, int opt_ipv4, int opt_ipv6, int val) { | |
1678 | if (af == AF_UNSPEC) { | |
1679 | af = socket_get_family(fd); | |
1680 | if (af < 0) | |
1681 | return af; | |
1682 | } | |
1683 | ||
1684 | switch (af) { | |
1685 | ||
1686 | case AF_INET: | |
1687 | return setsockopt_int(fd, IPPROTO_IP, opt_ipv4, val); | |
1688 | ||
1689 | case AF_INET6: | |
1690 | return setsockopt_int(fd, IPPROTO_IPV6, opt_ipv6, val); | |
1691 | ||
1692 | default: | |
1693 | return -EAFNOSUPPORT; | |
1694 | } | |
1695 | } | |
1696 | ||
1697 | int socket_get_mtu(int fd, int af, size_t *ret) { | |
1698 | int mtu, r; | |
1699 | ||
1700 | if (af == AF_UNSPEC) { | |
1701 | af = socket_get_family(fd); | |
1702 | if (af < 0) | |
1703 | return af; | |
1704 | } | |
1705 | ||
1706 | switch (af) { | |
1707 | ||
1708 | case AF_INET: | |
1709 | r = getsockopt_int(fd, IPPROTO_IP, IP_MTU, &mtu); | |
1710 | break; | |
1711 | ||
1712 | case AF_INET6: | |
1713 | r = getsockopt_int(fd, IPPROTO_IPV6, IPV6_MTU, &mtu); | |
1714 | break; | |
1715 | ||
1716 | default: | |
1717 | return -EAFNOSUPPORT; | |
1718 | } | |
1719 | ||
1720 | if (r < 0) | |
1721 | return r; | |
1722 | if (mtu <= 0) | |
1723 | return -EINVAL; | |
1724 | ||
1725 | *ret = (size_t) mtu; | |
1726 | return 0; | |
1727 | } | |
1728 | ||
1729 | static int connect_unix_path_simple(int fd, const char *path) { | |
1730 | union sockaddr_union sa = { | |
1731 | .un.sun_family = AF_UNIX, | |
1732 | }; | |
1733 | size_t l; | |
1734 | ||
1735 | assert(fd >= 0); | |
1736 | assert(path); | |
1737 | ||
1738 | l = strlen(path); | |
1739 | assert(l > 0); | |
1740 | assert(l < sizeof(sa.un.sun_path)); | |
1741 | ||
1742 | memcpy(sa.un.sun_path, path, l + 1); | |
1743 | return RET_NERRNO(connect(fd, &sa.sa, offsetof(struct sockaddr_un, sun_path) + l + 1)); | |
1744 | } | |
1745 | ||
1746 | static int connect_unix_inode(int fd, int inode_fd) { | |
1747 | assert(fd >= 0); | |
1748 | assert(inode_fd >= 0); | |
1749 | ||
1750 | return connect_unix_path_simple(fd, FORMAT_PROC_FD_PATH(inode_fd)); | |
1751 | } | |
1752 | ||
1753 | int connect_unix_path(int fd, int dir_fd, const char *path) { | |
1754 | _cleanup_close_ int inode_fd = -EBADF; | |
1755 | ||
1756 | assert(fd >= 0); | |
1757 | assert(dir_fd == AT_FDCWD || dir_fd >= 0); | |
1758 | ||
1759 | /* Connects to the specified AF_UNIX socket in the file system. Works around the 108 byte size limit | |
1760 | * in sockaddr_un, by going via O_PATH if needed. This hence works for any kind of path. */ | |
1761 | ||
1762 | if (!path) | |
1763 | return connect_unix_inode(fd, dir_fd); /* If no path is specified, then dir_fd refers to the socket inode to connect to. */ | |
1764 | ||
1765 | /* Refuse zero length path early, to make sure AF_UNIX stack won't mistake this for an abstract | |
1766 | * namespace path, since first char is NUL */ | |
1767 | if (isempty(path)) | |
1768 | return -EINVAL; | |
1769 | ||
1770 | /* Shortcut for the simple case */ | |
1771 | if (dir_fd == AT_FDCWD && strlen(path) < sizeof_field(struct sockaddr_un, sun_path)) | |
1772 | return connect_unix_path_simple(fd, path); | |
1773 | ||
1774 | /* If dir_fd is specified, then we need to go the indirect O_PATH route, because connectat() does not | |
1775 | * exist. If the path is too long, we also need to take the indirect route, since we can't fit this | |
1776 | * into a sockaddr_un directly. */ | |
1777 | ||
1778 | inode_fd = openat(dir_fd, path, O_PATH|O_CLOEXEC); | |
1779 | if (inode_fd < 0) | |
1780 | return -errno; | |
1781 | ||
1782 | return connect_unix_inode(fd, inode_fd); | |
1783 | } | |
1784 | ||
1785 | int socket_address_parse_unix(SocketAddress *ret_address, const char *s) { | |
1786 | struct sockaddr_un un; | |
1787 | int r; | |
1788 | ||
1789 | assert(ret_address); | |
1790 | assert(s); | |
1791 | ||
1792 | if (!IN_SET(*s, '/', '@')) | |
1793 | return -EPROTO; | |
1794 | ||
1795 | r = sockaddr_un_set_path(&un, s); | |
1796 | if (r < 0) | |
1797 | return r; | |
1798 | ||
1799 | *ret_address = (SocketAddress) { | |
1800 | .sockaddr.un = un, | |
1801 | .size = r, | |
1802 | }; | |
1803 | ||
1804 | return 0; | |
1805 | } | |
1806 | ||
1807 | int socket_address_equal_unix(const char *a, const char *b) { | |
1808 | SocketAddress socket_a, socket_b; | |
1809 | int r; | |
1810 | ||
1811 | assert(a); | |
1812 | assert(b); | |
1813 | ||
1814 | r = socket_address_parse_unix(&socket_a, a); | |
1815 | if (r < 0) | |
1816 | return r; | |
1817 | ||
1818 | r = socket_address_parse_unix(&socket_b, b); | |
1819 | if (r < 0) | |
1820 | return r; | |
1821 | ||
1822 | return sockaddr_equal(&socket_a.sockaddr, &socket_b.sockaddr); | |
1823 | } | |
1824 | ||
1825 | int vsock_parse_port(const char *s, unsigned *ret) { | |
1826 | int r; | |
1827 | ||
1828 | assert(ret); | |
1829 | ||
1830 | if (!s) | |
1831 | return -EINVAL; | |
1832 | ||
1833 | unsigned u; | |
1834 | r = safe_atou(s, &u); | |
1835 | if (r < 0) | |
1836 | return r; | |
1837 | ||
1838 | /* Port 0 is apparently valid and not special in AF_VSOCK (unlike on IP). But VMADDR_PORT_ANY | |
1839 | * (UINT32_MAX) is. Hence refuse that. */ | |
1840 | ||
1841 | if (u == VMADDR_PORT_ANY) | |
1842 | return -EINVAL; | |
1843 | ||
1844 | *ret = u; | |
1845 | return 0; | |
1846 | } | |
1847 | ||
1848 | int vsock_parse_cid(const char *s, unsigned *ret) { | |
1849 | assert(ret); | |
1850 | ||
1851 | if (!s) | |
1852 | return -EINVAL; | |
1853 | ||
1854 | /* Parsed an AF_VSOCK "CID". This is a 32bit entity, and the usual type is "unsigned". We recognize | |
1855 | * the three special CIDs as strings, and otherwise parse the numeric CIDs. */ | |
1856 | ||
1857 | if (streq(s, "hypervisor")) | |
1858 | *ret = VMADDR_CID_HYPERVISOR; | |
1859 | else if (streq(s, "local")) | |
1860 | *ret = VMADDR_CID_LOCAL; | |
1861 | else if (streq(s, "host")) | |
1862 | *ret = VMADDR_CID_HOST; | |
1863 | else | |
1864 | return safe_atou(s, ret); | |
1865 | ||
1866 | return 0; | |
1867 | } | |
1868 | ||
1869 | int socket_address_parse_vsock(SocketAddress *ret_address, const char *s) { | |
1870 | /* AF_VSOCK socket in vsock:cid:port notation */ | |
1871 | _cleanup_free_ char *n = NULL; | |
1872 | char *e, *cid_start; | |
1873 | unsigned port, cid; | |
1874 | int type, r; | |
1875 | ||
1876 | assert(ret_address); | |
1877 | assert(s); | |
1878 | ||
1879 | if ((cid_start = startswith(s, "vsock:"))) | |
1880 | type = 0; | |
1881 | else if ((cid_start = startswith(s, "vsock-dgram:"))) | |
1882 | type = SOCK_DGRAM; | |
1883 | else if ((cid_start = startswith(s, "vsock-seqpacket:"))) | |
1884 | type = SOCK_SEQPACKET; | |
1885 | else if ((cid_start = startswith(s, "vsock-stream:"))) | |
1886 | type = SOCK_STREAM; | |
1887 | else | |
1888 | return -EPROTO; | |
1889 | ||
1890 | e = strchr(cid_start, ':'); | |
1891 | if (!e) | |
1892 | return -EINVAL; | |
1893 | ||
1894 | r = vsock_parse_port(e+1, &port); | |
1895 | if (r < 0) | |
1896 | return r; | |
1897 | ||
1898 | n = strndup(cid_start, e - cid_start); | |
1899 | if (!n) | |
1900 | return -ENOMEM; | |
1901 | ||
1902 | if (isempty(n)) | |
1903 | cid = VMADDR_CID_ANY; | |
1904 | else { | |
1905 | r = vsock_parse_cid(n, &cid); | |
1906 | if (r < 0) | |
1907 | return r; | |
1908 | } | |
1909 | ||
1910 | *ret_address = (SocketAddress) { | |
1911 | .sockaddr.vm = { | |
1912 | .svm_family = AF_VSOCK, | |
1913 | .svm_cid = cid, | |
1914 | .svm_port = port, | |
1915 | }, | |
1916 | .type = type, | |
1917 | .size = sizeof(struct sockaddr_vm), | |
1918 | }; | |
1919 | ||
1920 | return 0; | |
1921 | } | |
1922 | ||
1923 | int vsock_get_local_cid(unsigned *ret) { | |
1924 | _cleanup_close_ int vsock_fd = -EBADF; | |
1925 | ||
1926 | vsock_fd = open("/dev/vsock", O_RDONLY|O_CLOEXEC); | |
1927 | if (vsock_fd < 0) | |
1928 | return log_debug_errno(errno, "Failed to open %s: %m", "/dev/vsock"); | |
1929 | ||
1930 | unsigned tmp; | |
1931 | if (ioctl(vsock_fd, IOCTL_VM_SOCKETS_GET_LOCAL_CID, ret ?: &tmp) < 0) | |
1932 | return log_debug_errno(errno, "Failed to query local AF_VSOCK CID: %m"); | |
1933 | ||
1934 | return 0; | |
1935 | } | |
1936 | ||
1937 | int netlink_socket_get_multicast_groups(int fd, size_t *ret_len, uint32_t **ret_groups) { | |
1938 | _cleanup_free_ uint32_t *groups = NULL; | |
1939 | socklen_t len = 0, old_len; | |
1940 | ||
1941 | assert(fd >= 0); | |
1942 | ||
1943 | if (getsockopt(fd, SOL_NETLINK, NETLINK_LIST_MEMBERSHIPS, NULL, &len) < 0) | |
1944 | return -errno; | |
1945 | ||
1946 | if (len == 0) | |
1947 | goto finalize; | |
1948 | ||
1949 | groups = new0(uint32_t, len); | |
1950 | if (!groups) | |
1951 | return -ENOMEM; | |
1952 | ||
1953 | old_len = len; | |
1954 | ||
1955 | if (getsockopt(fd, SOL_NETLINK, NETLINK_LIST_MEMBERSHIPS, groups, &len) < 0) | |
1956 | return -errno; | |
1957 | ||
1958 | if (old_len != len) | |
1959 | return -EIO; | |
1960 | ||
1961 | finalize: | |
1962 | if (ret_len) | |
1963 | *ret_len = len; | |
1964 | if (ret_groups) | |
1965 | *ret_groups = TAKE_PTR(groups); | |
1966 | ||
1967 | return 0; | |
1968 | } | |
1969 | ||
1970 | int socket_get_cookie(int fd, uint64_t *ret) { | |
1971 | assert(fd >= 0); | |
1972 | ||
1973 | uint64_t cookie = 0; | |
1974 | socklen_t cookie_len = sizeof(cookie); | |
1975 | if (getsockopt(fd, SOL_SOCKET, SO_COOKIE, &cookie, &cookie_len) < 0) | |
1976 | return -errno; | |
1977 | ||
1978 | assert(cookie_len == sizeof(cookie)); | |
1979 | if (ret) | |
1980 | *ret = cookie; | |
1981 | ||
1982 | return 0; | |
1983 | } | |
1984 | ||
1985 | void cmsg_close_all(struct msghdr *mh) { | |
1986 | assert(mh); | |
1987 | ||
1988 | struct cmsghdr *cmsg; | |
1989 | CMSG_FOREACH(cmsg, mh) { | |
1990 | if (cmsg->cmsg_level != SOL_SOCKET) | |
1991 | continue; | |
1992 | ||
1993 | if (cmsg->cmsg_type == SCM_RIGHTS) | |
1994 | close_many(CMSG_TYPED_DATA(cmsg, int), | |
1995 | (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(int)); | |
1996 | else if (cmsg->cmsg_type == SCM_PIDFD) { | |
1997 | assert(cmsg->cmsg_len == CMSG_LEN(sizeof(int))); | |
1998 | safe_close(*CMSG_TYPED_DATA(cmsg, int)); | |
1999 | } | |
2000 | } | |
2001 | } |