]> git.ipfire.org Git - thirdparty/systemd.git/blame_incremental - src/basic/stat-util.c
systemd-path: return accumulated error instead of last result
[thirdparty/systemd.git] / src / basic / stat-util.c
... / ...
CommitLineData
1/* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3#include <fcntl.h>
4#include <linux/magic.h>
5#include <sys/statvfs.h>
6#include <unistd.h>
7
8#include "alloc-util.h"
9#include "chase.h"
10#include "dirent-util.h"
11#include "errno-util.h"
12#include "fd-util.h"
13#include "filesystems.h"
14#include "fs-util.h"
15#include "hash-funcs.h"
16#include "log.h"
17#include "mountpoint-util.h"
18#include "path-util.h"
19#include "siphash24.h"
20#include "stat-util.h"
21#include "string-util.h"
22#include "time-util.h"
23
24static int verify_stat_at(
25 int fd,
26 const char *path,
27 bool follow,
28 int (*verify_func)(const struct stat *st),
29 bool verify) {
30
31 struct stat st;
32 int r;
33
34 assert(fd >= 0 || fd == AT_FDCWD);
35 assert(!isempty(path) || !follow);
36 assert(verify_func);
37
38 if (fstatat(fd, strempty(path), &st,
39 (isempty(path) ? AT_EMPTY_PATH : 0) | (follow ? 0 : AT_SYMLINK_NOFOLLOW)) < 0)
40 return -errno;
41
42 r = verify_func(&st);
43 return verify ? r : r >= 0;
44}
45
46int stat_verify_regular(const struct stat *st) {
47 assert(st);
48
49 /* Checks whether the specified stat() structure refers to a regular file. If not returns an
50 * appropriate error code. */
51
52 if (S_ISDIR(st->st_mode))
53 return -EISDIR;
54
55 if (S_ISLNK(st->st_mode))
56 return -ELOOP;
57
58 if (!S_ISREG(st->st_mode))
59 return -EBADFD;
60
61 return 0;
62}
63
64int verify_regular_at(int fd, const char *path, bool follow) {
65 return verify_stat_at(fd, path, follow, stat_verify_regular, true);
66}
67
68int fd_verify_regular(int fd) {
69 assert(fd >= 0);
70 return verify_regular_at(fd, NULL, false);
71}
72
73int stat_verify_directory(const struct stat *st) {
74 assert(st);
75
76 if (S_ISLNK(st->st_mode))
77 return -ELOOP;
78
79 if (!S_ISDIR(st->st_mode))
80 return -ENOTDIR;
81
82 return 0;
83}
84
85int fd_verify_directory(int fd) {
86 assert(fd >= 0);
87 return verify_stat_at(fd, NULL, false, stat_verify_directory, true);
88}
89
90int is_dir_at(int fd, const char *path, bool follow) {
91 return verify_stat_at(fd, path, follow, stat_verify_directory, false);
92}
93
94int is_dir(const char *path, bool follow) {
95 assert(!isempty(path));
96 return is_dir_at(AT_FDCWD, path, follow);
97}
98
99int stat_verify_symlink(const struct stat *st) {
100 assert(st);
101
102 if (S_ISDIR(st->st_mode))
103 return -EISDIR;
104
105 if (!S_ISLNK(st->st_mode))
106 return -ENOLINK;
107
108 return 0;
109}
110
111int is_symlink(const char *path) {
112 assert(!isempty(path));
113 return verify_stat_at(AT_FDCWD, path, false, stat_verify_symlink, false);
114}
115
116int stat_verify_linked(const struct stat *st) {
117 assert(st);
118
119 if (st->st_nlink <= 0)
120 return -EIDRM; /* recognizable error. */
121
122 return 0;
123}
124
125int fd_verify_linked(int fd) {
126 assert(fd >= 0);
127 return verify_stat_at(fd, NULL, false, stat_verify_linked, true);
128}
129
130int stat_verify_device_node(const struct stat *st) {
131 assert(st);
132
133 if (S_ISLNK(st->st_mode))
134 return -ELOOP;
135
136 if (S_ISDIR(st->st_mode))
137 return -EISDIR;
138
139 if (!S_ISBLK(st->st_mode) && !S_ISCHR(st->st_mode))
140 return -ENOTTY;
141
142 return 0;
143}
144
145int is_device_node(const char *path) {
146 assert(!isempty(path));
147 return verify_stat_at(AT_FDCWD, path, false, stat_verify_device_node, false);
148}
149
150int dir_is_empty_at(int dir_fd, const char *path, bool ignore_hidden_or_backup) {
151 _cleanup_close_ int fd = -EBADF;
152 struct dirent *buf;
153 size_t m;
154
155 fd = xopenat(dir_fd, path, O_DIRECTORY|O_CLOEXEC);
156 if (fd < 0)
157 return fd;
158
159 /* Allocate space for at least 3 full dirents, since every dir has at least two entries ("." +
160 * ".."), and only once we have seen if there's a third we know whether the dir is empty or not. If
161 * 'ignore_hidden_or_backup' is true we'll allocate a bit more, since we might skip over a bunch of
162 * entries that we end up ignoring. */
163 m = (ignore_hidden_or_backup ? 16 : 3) * DIRENT_SIZE_MAX;
164 buf = alloca(m);
165
166 for (;;) {
167 struct dirent *de;
168 ssize_t n;
169
170 n = getdents64(fd, buf, m);
171 if (n < 0)
172 return -errno;
173 if (n == 0)
174 break;
175
176 assert((size_t) n <= m);
177 msan_unpoison(buf, n);
178
179 FOREACH_DIRENT_IN_BUFFER(de, buf, n)
180 if (!(ignore_hidden_or_backup ? hidden_or_backup_file(de->d_name) : dot_or_dot_dot(de->d_name)))
181 return 0;
182 }
183
184 return 1;
185}
186
187bool stat_may_be_dev_null(struct stat *st) {
188 assert(st);
189
190 /* We don't want to hardcode the major/minor of /dev/null, hence we do a simpler "is this a character
191 * device node?" check. */
192
193 return S_ISCHR(st->st_mode);
194}
195
196bool stat_is_empty(struct stat *st) {
197 assert(st);
198
199 return S_ISREG(st->st_mode) && st->st_size <= 0;
200}
201
202int null_or_empty_path_with_root(const char *fn, const char *root) {
203 struct stat st;
204 int r;
205
206 assert(fn);
207
208 /* A symlink to /dev/null or an empty file?
209 * When looking under root_dir, we can't expect /dev/ to be mounted,
210 * so let's see if the path is a (possibly dangling) symlink to /dev/null. */
211
212 if (path_equal(path_startswith(fn, root ?: "/"), "dev/null"))
213 return true;
214
215 r = chase_and_stat(fn, root, CHASE_PREFIX_ROOT, NULL, &st);
216 if (r < 0)
217 return r;
218
219 return null_or_empty(&st);
220}
221
222int fd_is_read_only_fs(int fd) {
223 struct statfs st;
224
225 assert(fd >= 0);
226
227 if (fstatfs(fd, &st) < 0)
228 return -errno;
229
230 if (st.f_flags & ST_RDONLY)
231 return true;
232
233 if (is_network_fs(&st)) {
234 /* On NFS, fstatfs() might not reflect whether we can actually write to the remote share.
235 * Let's try again with access(W_OK) which is more reliable, at least sometimes. */
236 if (access_fd(fd, W_OK) == -EROFS)
237 return true;
238 }
239
240 return false;
241}
242
243int path_is_read_only_fs(const char *path) {
244 _cleanup_close_ int fd = -EBADF;
245
246 assert(path);
247
248 fd = open(path, O_CLOEXEC | O_PATH);
249 if (fd < 0)
250 return -errno;
251
252 return fd_is_read_only_fs(fd);
253}
254
255int inode_same_at(int fda, const char *filea, int fdb, const char *fileb, int flags) {
256 struct stat sta, stb;
257 int r;
258
259 assert(fda >= 0 || fda == AT_FDCWD);
260 assert(fdb >= 0 || fdb == AT_FDCWD);
261 assert((flags & ~(AT_EMPTY_PATH|AT_SYMLINK_NOFOLLOW|AT_NO_AUTOMOUNT)) == 0);
262
263 /* Refuse an unset filea or fileb early unless AT_EMPTY_PATH is set */
264 if ((isempty(filea) || isempty(fileb)) && !FLAGS_SET(flags, AT_EMPTY_PATH))
265 return -EINVAL;
266
267 /* Shortcut: comparing the same fd with itself means we can return true */
268 if (fda >= 0 && fda == fdb && isempty(filea) && isempty(fileb) && FLAGS_SET(flags, AT_SYMLINK_NOFOLLOW))
269 return true;
270
271 _cleanup_close_ int pin_a = -EBADF, pin_b = -EBADF;
272 if (!FLAGS_SET(flags, AT_NO_AUTOMOUNT)) {
273 /* Let's try to use the name_to_handle_at() AT_HANDLE_FID API to identify identical
274 * inodes. We have to issue multiple calls on the same file for that (first, to acquire the
275 * FID, and then to check if .st_dev is actually the same). Hence let's pin the inode in
276 * between via O_PATH, unless we already have an fd for it. */
277
278 if (!isempty(filea)) {
279 pin_a = openat(fda, filea, O_PATH|O_CLOEXEC|(FLAGS_SET(flags, AT_SYMLINK_NOFOLLOW) ? O_NOFOLLOW : 0));
280 if (pin_a < 0)
281 return -errno;
282
283 fda = pin_a;
284 filea = NULL;
285 flags |= AT_EMPTY_PATH;
286 }
287
288 if (!isempty(fileb)) {
289 pin_b = openat(fdb, fileb, O_PATH|O_CLOEXEC|(FLAGS_SET(flags, AT_SYMLINK_NOFOLLOW) ? O_NOFOLLOW : 0));
290 if (pin_b < 0)
291 return -errno;
292
293 fdb = pin_b;
294 fileb = NULL;
295 flags |= AT_EMPTY_PATH;
296 }
297
298 int ntha_flags = at_flags_normalize_follow(flags) & (AT_EMPTY_PATH|AT_SYMLINK_FOLLOW);
299 _cleanup_free_ struct file_handle *ha = NULL, *hb = NULL;
300 int mntida = -1, mntidb = -1;
301
302 r = name_to_handle_at_try_fid(
303 fda,
304 filea,
305 &ha,
306 &mntida,
307 ntha_flags);
308 if (r < 0) {
309 if (is_name_to_handle_at_fatal_error(r))
310 return r;
311
312 goto fallback;
313 }
314
315 r = name_to_handle_at_try_fid(
316 fdb,
317 fileb,
318 &hb,
319 &mntidb,
320 ntha_flags);
321 if (r < 0) {
322 if (is_name_to_handle_at_fatal_error(r))
323 return r;
324
325 goto fallback;
326 }
327
328 /* Now compare the two file handles */
329 if (!file_handle_equal(ha, hb))
330 return false;
331
332 /* If the file handles are the same and they come from the same mount ID? Great, then we are
333 * good, they are definitely the same */
334 if (mntida == mntidb)
335 return true;
336
337 /* File handles are the same, they are not on the same mount id. This might either be because
338 * they are on two entirely different file systems, that just happen to have the same FIDs
339 * (because they originally where created off the same disk images), or it could be because
340 * they are located on two distinct bind mounts of the same fs. To check that, let's look at
341 * .st_rdev of the inode. We simply reuse the fallback codepath for that, since it checks
342 * exactly that (it checks slightly more, but we don't care.) */
343 }
344
345fallback:
346 if (fstatat(fda, strempty(filea), &sta, flags) < 0)
347 return log_debug_errno(errno, "Cannot stat %s: %m", strna(filea));
348
349 if (fstatat(fdb, strempty(fileb), &stb, flags) < 0)
350 return log_debug_errno(errno, "Cannot stat %s: %m", strna(fileb));
351
352 return stat_inode_same(&sta, &stb);
353}
354
355bool is_fs_type(const struct statfs *s, statfs_f_type_t magic_value) {
356 assert(s);
357 assert_cc(sizeof(statfs_f_type_t) >= sizeof(s->f_type));
358
359 return F_TYPE_EQUAL(s->f_type, magic_value);
360}
361
362int is_fs_type_at(int dir_fd, const char *path, statfs_f_type_t magic_value) {
363 struct statfs s;
364 int r;
365
366 r = xstatfsat(dir_fd, path, &s);
367 if (r < 0)
368 return r;
369
370 return is_fs_type(&s, magic_value);
371}
372
373bool is_temporary_fs(const struct statfs *s) {
374 return fs_in_group(s, FILESYSTEM_SET_TEMPORARY);
375}
376
377bool is_network_fs(const struct statfs *s) {
378 return fs_in_group(s, FILESYSTEM_SET_NETWORK);
379}
380
381int fd_is_temporary_fs(int fd) {
382 struct statfs s;
383
384 if (fstatfs(fd, &s) < 0)
385 return -errno;
386
387 return is_temporary_fs(&s);
388}
389
390int fd_is_network_fs(int fd) {
391 struct statfs s;
392
393 if (fstatfs(fd, &s) < 0)
394 return -errno;
395
396 return is_network_fs(&s);
397}
398
399int path_is_temporary_fs(const char *path) {
400 struct statfs s;
401
402 if (statfs(path, &s) < 0)
403 return -errno;
404
405 return is_temporary_fs(&s);
406}
407
408int path_is_network_fs(const char *path) {
409 struct statfs s;
410
411 if (statfs(path, &s) < 0)
412 return -errno;
413
414 return is_network_fs(&s);
415}
416
417int proc_mounted(void) {
418 int r;
419
420 /* A quick check of procfs is properly mounted */
421
422 r = path_is_fs_type("/proc/", PROC_SUPER_MAGIC);
423 if (r == -ENOENT) /* not mounted at all */
424 return false;
425
426 return r;
427}
428
429bool stat_inode_same(const struct stat *a, const struct stat *b) {
430
431 /* Returns if the specified stat structure references the same (though possibly modified) inode. Does
432 * a thorough check, comparing inode nr, backing device and if the inode is still of the same type. */
433
434 return stat_is_set(a) && stat_is_set(b) &&
435 ((a->st_mode ^ b->st_mode) & S_IFMT) == 0 && /* same inode type */
436 a->st_dev == b->st_dev &&
437 a->st_ino == b->st_ino;
438}
439
440bool stat_inode_unmodified(const struct stat *a, const struct stat *b) {
441
442 /* Returns if the specified stat structures reference the same, unmodified inode. This check tries to
443 * be reasonably careful when detecting changes: we check both inode and mtime, to cater for file
444 * systems where mtimes are fixed to 0 (think: ostree/nixos type installations). We also check file
445 * size, backing device, inode type and if this refers to a device not the major/minor.
446 *
447 * Note that we don't care if file attributes such as ownership or access mode change, this here is
448 * about contents of the file. The purpose here is to detect file contents changes, and nothing
449 * else. */
450
451 return stat_inode_same(a, b) &&
452 a->st_mtim.tv_sec == b->st_mtim.tv_sec &&
453 a->st_mtim.tv_nsec == b->st_mtim.tv_nsec &&
454 (!S_ISREG(a->st_mode) || a->st_size == b->st_size) && /* if regular file, compare file size */
455 (!(S_ISCHR(a->st_mode) || S_ISBLK(a->st_mode)) || a->st_rdev == b->st_rdev); /* if device node, also compare major/minor, because we can */
456}
457
458bool statx_inode_same(const struct statx *a, const struct statx *b) {
459
460 /* Same as stat_inode_same() but for struct statx */
461
462 return statx_is_set(a) && statx_is_set(b) &&
463 FLAGS_SET(a->stx_mask, STATX_TYPE|STATX_INO) && FLAGS_SET(b->stx_mask, STATX_TYPE|STATX_INO) &&
464 ((a->stx_mode ^ b->stx_mode) & S_IFMT) == 0 &&
465 a->stx_dev_major == b->stx_dev_major &&
466 a->stx_dev_minor == b->stx_dev_minor &&
467 a->stx_ino == b->stx_ino;
468}
469
470bool statx_mount_same(const struct statx *a, const struct statx *b) {
471 if (!statx_is_set(a) || !statx_is_set(b))
472 return false;
473
474 /* if we have the mount ID, that's all we need */
475 if (FLAGS_SET(a->stx_mask, STATX_MNT_ID) && FLAGS_SET(b->stx_mask, STATX_MNT_ID))
476 return a->stx_mnt_id == b->stx_mnt_id;
477
478 /* Otherwise, major/minor of backing device must match */
479 return a->stx_dev_major == b->stx_dev_major &&
480 a->stx_dev_minor == b->stx_dev_minor;
481}
482
483int xstatfsat(int dir_fd, const char *path, struct statfs *ret) {
484 _cleanup_close_ int fd = -EBADF;
485
486 assert(dir_fd >= 0 || dir_fd == AT_FDCWD);
487 assert(ret);
488
489 if (!isempty(path)) {
490 fd = xopenat(dir_fd, path, O_PATH|O_CLOEXEC|O_NOCTTY);
491 if (fd < 0)
492 return fd;
493 dir_fd = fd;
494 }
495
496 return RET_NERRNO(fstatfs(dir_fd, ret));
497}
498
499usec_t statx_timestamp_load(const struct statx_timestamp *ts) {
500 return timespec_load(&(const struct timespec) { .tv_sec = ts->tv_sec, .tv_nsec = ts->tv_nsec });
501}
502nsec_t statx_timestamp_load_nsec(const struct statx_timestamp *ts) {
503 return timespec_load_nsec(&(const struct timespec) { .tv_sec = ts->tv_sec, .tv_nsec = ts->tv_nsec });
504}
505
506void inode_hash_func(const struct stat *q, struct siphash *state) {
507 siphash24_compress_typesafe(q->st_dev, state);
508 siphash24_compress_typesafe(q->st_ino, state);
509}
510
511int inode_compare_func(const struct stat *a, const struct stat *b) {
512 int r;
513
514 r = CMP(a->st_dev, b->st_dev);
515 if (r != 0)
516 return r;
517
518 return CMP(a->st_ino, b->st_ino);
519}
520
521DEFINE_HASH_OPS_WITH_KEY_DESTRUCTOR(inode_hash_ops, struct stat, inode_hash_func, inode_compare_func, free);
522
523const char* inode_type_to_string(mode_t m) {
524
525 /* Returns a short string for the inode type. We use the same name as the underlying macros for each
526 * inode type. */
527
528 switch (m & S_IFMT) {
529 case S_IFREG:
530 return "reg";
531 case S_IFDIR:
532 return "dir";
533 case S_IFLNK:
534 return "lnk";
535 case S_IFCHR:
536 return "chr";
537 case S_IFBLK:
538 return "blk";
539 case S_IFIFO:
540 return "fifo";
541 case S_IFSOCK:
542 return "sock";
543 }
544
545 /* Note anonymous inodes in the kernel will have a zero type. Hence fstat() of an eventfd() will
546 * return an .st_mode where we'll return NULL here! */
547 return NULL;
548}
549
550mode_t inode_type_from_string(const char *s) {
551 if (!s)
552 return MODE_INVALID;
553
554 if (streq(s, "reg"))
555 return S_IFREG;
556 if (streq(s, "dir"))
557 return S_IFDIR;
558 if (streq(s, "lnk"))
559 return S_IFLNK;
560 if (streq(s, "chr"))
561 return S_IFCHR;
562 if (streq(s, "blk"))
563 return S_IFBLK;
564 if (streq(s, "fifo"))
565 return S_IFIFO;
566 if (streq(s, "sock"))
567 return S_IFSOCK;
568
569 return MODE_INVALID;
570}