]>
Commit | Line | Data |
---|---|---|
1 | /* SPDX-License-Identifier: LGPL-2.1-or-later */ | |
2 | ||
3 | #include <fcntl.h> | |
4 | #include <sys/statvfs.h> | |
5 | #include <unistd.h> | |
6 | ||
7 | #include "alloc-util.h" | |
8 | #include "chase.h" | |
9 | #include "dirent-util.h" | |
10 | #include "errno-util.h" | |
11 | #include "fd-util.h" | |
12 | #include "filesystems.h" | |
13 | #include "fs-util.h" | |
14 | #include "hash-funcs.h" | |
15 | #include "log.h" | |
16 | #include "missing_magic.h" | |
17 | #include "mountpoint-util.h" | |
18 | #include "path-util.h" | |
19 | #include "siphash24.h" | |
20 | #include "stat-util.h" | |
21 | #include "string-util.h" | |
22 | #include "time-util.h" | |
23 | ||
24 | static int verify_stat_at( | |
25 | int fd, | |
26 | const char *path, | |
27 | bool follow, | |
28 | int (*verify_func)(const struct stat *st), | |
29 | bool verify) { | |
30 | ||
31 | struct stat st; | |
32 | int r; | |
33 | ||
34 | assert(fd >= 0 || fd == AT_FDCWD); | |
35 | assert(!isempty(path) || !follow); | |
36 | assert(verify_func); | |
37 | ||
38 | if (fstatat(fd, strempty(path), &st, | |
39 | (isempty(path) ? AT_EMPTY_PATH : 0) | (follow ? 0 : AT_SYMLINK_NOFOLLOW)) < 0) | |
40 | return -errno; | |
41 | ||
42 | r = verify_func(&st); | |
43 | return verify ? r : r >= 0; | |
44 | } | |
45 | ||
46 | int stat_verify_regular(const struct stat *st) { | |
47 | assert(st); | |
48 | ||
49 | /* Checks whether the specified stat() structure refers to a regular file. If not returns an | |
50 | * appropriate error code. */ | |
51 | ||
52 | if (S_ISDIR(st->st_mode)) | |
53 | return -EISDIR; | |
54 | ||
55 | if (S_ISLNK(st->st_mode)) | |
56 | return -ELOOP; | |
57 | ||
58 | if (!S_ISREG(st->st_mode)) | |
59 | return -EBADFD; | |
60 | ||
61 | return 0; | |
62 | } | |
63 | ||
64 | int verify_regular_at(int fd, const char *path, bool follow) { | |
65 | return verify_stat_at(fd, path, follow, stat_verify_regular, true); | |
66 | } | |
67 | ||
68 | int fd_verify_regular(int fd) { | |
69 | assert(fd >= 0); | |
70 | return verify_regular_at(fd, NULL, false); | |
71 | } | |
72 | ||
73 | int stat_verify_directory(const struct stat *st) { | |
74 | assert(st); | |
75 | ||
76 | if (S_ISLNK(st->st_mode)) | |
77 | return -ELOOP; | |
78 | ||
79 | if (!S_ISDIR(st->st_mode)) | |
80 | return -ENOTDIR; | |
81 | ||
82 | return 0; | |
83 | } | |
84 | ||
85 | int fd_verify_directory(int fd) { | |
86 | assert(fd >= 0); | |
87 | return verify_stat_at(fd, NULL, false, stat_verify_directory, true); | |
88 | } | |
89 | ||
90 | int is_dir_at(int fd, const char *path, bool follow) { | |
91 | return verify_stat_at(fd, path, follow, stat_verify_directory, false); | |
92 | } | |
93 | ||
94 | int is_dir(const char *path, bool follow) { | |
95 | assert(!isempty(path)); | |
96 | return is_dir_at(AT_FDCWD, path, follow); | |
97 | } | |
98 | ||
99 | int stat_verify_symlink(const struct stat *st) { | |
100 | assert(st); | |
101 | ||
102 | if (S_ISDIR(st->st_mode)) | |
103 | return -EISDIR; | |
104 | ||
105 | if (!S_ISLNK(st->st_mode)) | |
106 | return -ENOLINK; | |
107 | ||
108 | return 0; | |
109 | } | |
110 | ||
111 | int is_symlink(const char *path) { | |
112 | assert(!isempty(path)); | |
113 | return verify_stat_at(AT_FDCWD, path, false, stat_verify_symlink, false); | |
114 | } | |
115 | ||
116 | int stat_verify_linked(const struct stat *st) { | |
117 | assert(st); | |
118 | ||
119 | if (st->st_nlink <= 0) | |
120 | return -EIDRM; /* recognizable error. */ | |
121 | ||
122 | return 0; | |
123 | } | |
124 | ||
125 | int fd_verify_linked(int fd) { | |
126 | assert(fd >= 0); | |
127 | return verify_stat_at(fd, NULL, false, stat_verify_linked, true); | |
128 | } | |
129 | ||
130 | int stat_verify_device_node(const struct stat *st) { | |
131 | assert(st); | |
132 | ||
133 | if (S_ISLNK(st->st_mode)) | |
134 | return -ELOOP; | |
135 | ||
136 | if (S_ISDIR(st->st_mode)) | |
137 | return -EISDIR; | |
138 | ||
139 | if (!S_ISBLK(st->st_mode) && !S_ISCHR(st->st_mode)) | |
140 | return -ENOTTY; | |
141 | ||
142 | return 0; | |
143 | } | |
144 | ||
145 | int is_device_node(const char *path) { | |
146 | assert(!isempty(path)); | |
147 | return verify_stat_at(AT_FDCWD, path, false, stat_verify_device_node, false); | |
148 | } | |
149 | ||
150 | int dir_is_empty_at(int dir_fd, const char *path, bool ignore_hidden_or_backup) { | |
151 | _cleanup_close_ int fd = -EBADF; | |
152 | struct dirent *buf; | |
153 | size_t m; | |
154 | ||
155 | fd = xopenat(dir_fd, path, O_DIRECTORY|O_CLOEXEC); | |
156 | if (fd < 0) | |
157 | return fd; | |
158 | ||
159 | /* Allocate space for at least 3 full dirents, since every dir has at least two entries ("." + | |
160 | * ".."), and only once we have seen if there's a third we know whether the dir is empty or not. If | |
161 | * 'ignore_hidden_or_backup' is true we'll allocate a bit more, since we might skip over a bunch of | |
162 | * entries that we end up ignoring. */ | |
163 | m = (ignore_hidden_or_backup ? 16 : 3) * DIRENT_SIZE_MAX; | |
164 | buf = alloca(m); | |
165 | ||
166 | for (;;) { | |
167 | struct dirent *de; | |
168 | ssize_t n; | |
169 | ||
170 | n = getdents64(fd, buf, m); | |
171 | if (n < 0) | |
172 | return -errno; | |
173 | if (n == 0) | |
174 | break; | |
175 | ||
176 | assert((size_t) n <= m); | |
177 | msan_unpoison(buf, n); | |
178 | ||
179 | FOREACH_DIRENT_IN_BUFFER(de, buf, n) | |
180 | if (!(ignore_hidden_or_backup ? hidden_or_backup_file(de->d_name) : dot_or_dot_dot(de->d_name))) | |
181 | return 0; | |
182 | } | |
183 | ||
184 | return 1; | |
185 | } | |
186 | ||
187 | bool stat_may_be_dev_null(struct stat *st) { | |
188 | assert(st); | |
189 | ||
190 | /* We don't want to hardcode the major/minor of /dev/null, hence we do a simpler "is this a character | |
191 | * device node?" check. */ | |
192 | ||
193 | return S_ISCHR(st->st_mode); | |
194 | } | |
195 | ||
196 | bool stat_is_empty(struct stat *st) { | |
197 | assert(st); | |
198 | ||
199 | return S_ISREG(st->st_mode) && st->st_size <= 0; | |
200 | } | |
201 | ||
202 | int null_or_empty_path_with_root(const char *fn, const char *root) { | |
203 | struct stat st; | |
204 | int r; | |
205 | ||
206 | assert(fn); | |
207 | ||
208 | /* A symlink to /dev/null or an empty file? | |
209 | * When looking under root_dir, we can't expect /dev/ to be mounted, | |
210 | * so let's see if the path is a (possibly dangling) symlink to /dev/null. */ | |
211 | ||
212 | if (path_equal(path_startswith(fn, root ?: "/"), "dev/null")) | |
213 | return true; | |
214 | ||
215 | r = chase_and_stat(fn, root, CHASE_PREFIX_ROOT, NULL, &st); | |
216 | if (r < 0) | |
217 | return r; | |
218 | ||
219 | return null_or_empty(&st); | |
220 | } | |
221 | ||
222 | int fd_is_read_only_fs(int fd) { | |
223 | struct statvfs st; | |
224 | ||
225 | assert(fd >= 0); | |
226 | ||
227 | if (fstatvfs(fd, &st) < 0) | |
228 | return -errno; | |
229 | ||
230 | if (st.f_flag & ST_RDONLY) | |
231 | return true; | |
232 | ||
233 | /* On NFS, fstatvfs() might not reflect whether we can actually write to the remote share. Let's try | |
234 | * again with access(W_OK) which is more reliable, at least sometimes. */ | |
235 | if (access_fd(fd, W_OK) == -EROFS) | |
236 | return true; | |
237 | ||
238 | return false; | |
239 | } | |
240 | ||
241 | int path_is_read_only_fs(const char *path) { | |
242 | _cleanup_close_ int fd = -EBADF; | |
243 | ||
244 | assert(path); | |
245 | ||
246 | fd = open(path, O_CLOEXEC | O_PATH); | |
247 | if (fd < 0) | |
248 | return -errno; | |
249 | ||
250 | return fd_is_read_only_fs(fd); | |
251 | } | |
252 | ||
253 | int inode_same_at(int fda, const char *filea, int fdb, const char *fileb, int flags) { | |
254 | struct stat sta, stb; | |
255 | int r; | |
256 | ||
257 | assert(fda >= 0 || fda == AT_FDCWD); | |
258 | assert(fdb >= 0 || fdb == AT_FDCWD); | |
259 | assert((flags & ~(AT_EMPTY_PATH|AT_SYMLINK_NOFOLLOW|AT_NO_AUTOMOUNT)) == 0); | |
260 | ||
261 | /* Refuse an unset filea or fileb early unless AT_EMPTY_PATH is set */ | |
262 | if ((isempty(filea) || isempty(fileb)) && !FLAGS_SET(flags, AT_EMPTY_PATH)) | |
263 | return -EINVAL; | |
264 | ||
265 | /* Shortcut: comparing the same fd with itself means we can return true */ | |
266 | if (fda >= 0 && fda == fdb && isempty(filea) && isempty(fileb) && FLAGS_SET(flags, AT_SYMLINK_NOFOLLOW)) | |
267 | return true; | |
268 | ||
269 | _cleanup_close_ int pin_a = -EBADF, pin_b = -EBADF; | |
270 | if (!FLAGS_SET(flags, AT_NO_AUTOMOUNT)) { | |
271 | /* Let's try to use the name_to_handle_at() AT_HANDLE_FID API to identify identical | |
272 | * inodes. We have to issue multiple calls on the same file for that (first, to acquire the | |
273 | * FID, and then to check if .st_dev is actually the same). Hence let's pin the inode in | |
274 | * between via O_PATH, unless we already have an fd for it. */ | |
275 | ||
276 | if (!isempty(filea)) { | |
277 | pin_a = openat(fda, filea, O_PATH|O_CLOEXEC|(FLAGS_SET(flags, AT_SYMLINK_NOFOLLOW) ? O_NOFOLLOW : 0)); | |
278 | if (pin_a < 0) | |
279 | return -errno; | |
280 | ||
281 | fda = pin_a; | |
282 | filea = NULL; | |
283 | flags |= AT_EMPTY_PATH; | |
284 | } | |
285 | ||
286 | if (!isempty(fileb)) { | |
287 | pin_b = openat(fdb, fileb, O_PATH|O_CLOEXEC|(FLAGS_SET(flags, AT_SYMLINK_NOFOLLOW) ? O_NOFOLLOW : 0)); | |
288 | if (pin_b < 0) | |
289 | return -errno; | |
290 | ||
291 | fdb = pin_b; | |
292 | fileb = NULL; | |
293 | flags |= AT_EMPTY_PATH; | |
294 | } | |
295 | ||
296 | int ntha_flags = at_flags_normalize_follow(flags) & (AT_EMPTY_PATH|AT_SYMLINK_FOLLOW); | |
297 | _cleanup_free_ struct file_handle *ha = NULL, *hb = NULL; | |
298 | int mntida = -1, mntidb = -1; | |
299 | ||
300 | r = name_to_handle_at_try_fid( | |
301 | fda, | |
302 | filea, | |
303 | &ha, | |
304 | &mntida, | |
305 | ntha_flags); | |
306 | if (r < 0) { | |
307 | if (is_name_to_handle_at_fatal_error(r)) | |
308 | return r; | |
309 | ||
310 | goto fallback; | |
311 | } | |
312 | ||
313 | r = name_to_handle_at_try_fid( | |
314 | fdb, | |
315 | fileb, | |
316 | &hb, | |
317 | &mntidb, | |
318 | ntha_flags); | |
319 | if (r < 0) { | |
320 | if (is_name_to_handle_at_fatal_error(r)) | |
321 | return r; | |
322 | ||
323 | goto fallback; | |
324 | } | |
325 | ||
326 | /* Now compare the two file handles */ | |
327 | if (!file_handle_equal(ha, hb)) | |
328 | return false; | |
329 | ||
330 | /* If the file handles are the same and they come from the same mount ID? Great, then we are | |
331 | * good, they are definitely the same */ | |
332 | if (mntida == mntidb) | |
333 | return true; | |
334 | ||
335 | /* File handles are the same, they are not on the same mount id. This might either be because | |
336 | * they are on two entirely different file systems, that just happen to have the same FIDs | |
337 | * (because they originally where created off the same disk images), or it could be because | |
338 | * they are located on two distinct bind mounts of the same fs. To check that, let's look at | |
339 | * .st_rdev of the inode. We simply reuse the fallback codepath for that, since it checks | |
340 | * exactly that (it checks slightly more, but we don't care.) */ | |
341 | } | |
342 | ||
343 | fallback: | |
344 | if (fstatat(fda, strempty(filea), &sta, flags) < 0) | |
345 | return log_debug_errno(errno, "Cannot stat %s: %m", strna(filea)); | |
346 | ||
347 | if (fstatat(fdb, strempty(fileb), &stb, flags) < 0) | |
348 | return log_debug_errno(errno, "Cannot stat %s: %m", strna(fileb)); | |
349 | ||
350 | return stat_inode_same(&sta, &stb); | |
351 | } | |
352 | ||
353 | bool is_fs_type(const struct statfs *s, statfs_f_type_t magic_value) { | |
354 | assert(s); | |
355 | assert_cc(sizeof(statfs_f_type_t) >= sizeof(s->f_type)); | |
356 | ||
357 | return F_TYPE_EQUAL(s->f_type, magic_value); | |
358 | } | |
359 | ||
360 | int is_fs_type_at(int dir_fd, const char *path, statfs_f_type_t magic_value) { | |
361 | struct statfs s; | |
362 | int r; | |
363 | ||
364 | r = xstatfsat(dir_fd, path, &s); | |
365 | if (r < 0) | |
366 | return r; | |
367 | ||
368 | return is_fs_type(&s, magic_value); | |
369 | } | |
370 | ||
371 | bool is_temporary_fs(const struct statfs *s) { | |
372 | return fs_in_group(s, FILESYSTEM_SET_TEMPORARY); | |
373 | } | |
374 | ||
375 | bool is_network_fs(const struct statfs *s) { | |
376 | return fs_in_group(s, FILESYSTEM_SET_NETWORK); | |
377 | } | |
378 | ||
379 | int fd_is_temporary_fs(int fd) { | |
380 | struct statfs s; | |
381 | ||
382 | if (fstatfs(fd, &s) < 0) | |
383 | return -errno; | |
384 | ||
385 | return is_temporary_fs(&s); | |
386 | } | |
387 | ||
388 | int fd_is_network_fs(int fd) { | |
389 | struct statfs s; | |
390 | ||
391 | if (fstatfs(fd, &s) < 0) | |
392 | return -errno; | |
393 | ||
394 | return is_network_fs(&s); | |
395 | } | |
396 | ||
397 | int path_is_temporary_fs(const char *path) { | |
398 | struct statfs s; | |
399 | ||
400 | if (statfs(path, &s) < 0) | |
401 | return -errno; | |
402 | ||
403 | return is_temporary_fs(&s); | |
404 | } | |
405 | ||
406 | int path_is_network_fs(const char *path) { | |
407 | struct statfs s; | |
408 | ||
409 | if (statfs(path, &s) < 0) | |
410 | return -errno; | |
411 | ||
412 | return is_network_fs(&s); | |
413 | } | |
414 | ||
415 | int proc_mounted(void) { | |
416 | int r; | |
417 | ||
418 | /* A quick check of procfs is properly mounted */ | |
419 | ||
420 | r = path_is_fs_type("/proc/", PROC_SUPER_MAGIC); | |
421 | if (r == -ENOENT) /* not mounted at all */ | |
422 | return false; | |
423 | ||
424 | return r; | |
425 | } | |
426 | ||
427 | bool stat_inode_same(const struct stat *a, const struct stat *b) { | |
428 | ||
429 | /* Returns if the specified stat structure references the same (though possibly modified) inode. Does | |
430 | * a thorough check, comparing inode nr, backing device and if the inode is still of the same type. */ | |
431 | ||
432 | return stat_is_set(a) && stat_is_set(b) && | |
433 | ((a->st_mode ^ b->st_mode) & S_IFMT) == 0 && /* same inode type */ | |
434 | a->st_dev == b->st_dev && | |
435 | a->st_ino == b->st_ino; | |
436 | } | |
437 | ||
438 | bool stat_inode_unmodified(const struct stat *a, const struct stat *b) { | |
439 | ||
440 | /* Returns if the specified stat structures reference the same, unmodified inode. This check tries to | |
441 | * be reasonably careful when detecting changes: we check both inode and mtime, to cater for file | |
442 | * systems where mtimes are fixed to 0 (think: ostree/nixos type installations). We also check file | |
443 | * size, backing device, inode type and if this refers to a device not the major/minor. | |
444 | * | |
445 | * Note that we don't care if file attributes such as ownership or access mode change, this here is | |
446 | * about contents of the file. The purpose here is to detect file contents changes, and nothing | |
447 | * else. */ | |
448 | ||
449 | return stat_inode_same(a, b) && | |
450 | a->st_mtim.tv_sec == b->st_mtim.tv_sec && | |
451 | a->st_mtim.tv_nsec == b->st_mtim.tv_nsec && | |
452 | (!S_ISREG(a->st_mode) || a->st_size == b->st_size) && /* if regular file, compare file size */ | |
453 | (!(S_ISCHR(a->st_mode) || S_ISBLK(a->st_mode)) || a->st_rdev == b->st_rdev); /* if device node, also compare major/minor, because we can */ | |
454 | } | |
455 | ||
456 | bool statx_inode_same(const struct statx *a, const struct statx *b) { | |
457 | ||
458 | /* Same as stat_inode_same() but for struct statx */ | |
459 | ||
460 | return statx_is_set(a) && statx_is_set(b) && | |
461 | FLAGS_SET(a->stx_mask, STATX_TYPE|STATX_INO) && FLAGS_SET(b->stx_mask, STATX_TYPE|STATX_INO) && | |
462 | ((a->stx_mode ^ b->stx_mode) & S_IFMT) == 0 && | |
463 | a->stx_dev_major == b->stx_dev_major && | |
464 | a->stx_dev_minor == b->stx_dev_minor && | |
465 | a->stx_ino == b->stx_ino; | |
466 | } | |
467 | ||
468 | bool statx_mount_same(const struct statx *a, const struct statx *b) { | |
469 | if (!statx_is_set(a) || !statx_is_set(b)) | |
470 | return false; | |
471 | ||
472 | /* if we have the mount ID, that's all we need */ | |
473 | if (FLAGS_SET(a->stx_mask, STATX_MNT_ID) && FLAGS_SET(b->stx_mask, STATX_MNT_ID)) | |
474 | return a->stx_mnt_id == b->stx_mnt_id; | |
475 | ||
476 | /* Otherwise, major/minor of backing device must match */ | |
477 | return a->stx_dev_major == b->stx_dev_major && | |
478 | a->stx_dev_minor == b->stx_dev_minor; | |
479 | } | |
480 | ||
481 | int xstatfsat(int dir_fd, const char *path, struct statfs *ret) { | |
482 | _cleanup_close_ int fd = -EBADF; | |
483 | ||
484 | assert(dir_fd >= 0 || dir_fd == AT_FDCWD); | |
485 | assert(ret); | |
486 | ||
487 | if (!isempty(path)) { | |
488 | fd = xopenat(dir_fd, path, O_PATH|O_CLOEXEC|O_NOCTTY); | |
489 | if (fd < 0) | |
490 | return fd; | |
491 | dir_fd = fd; | |
492 | } | |
493 | ||
494 | return RET_NERRNO(fstatfs(dir_fd, ret)); | |
495 | } | |
496 | ||
497 | usec_t statx_timestamp_load(const struct statx_timestamp *ts) { | |
498 | return timespec_load(&(const struct timespec) { .tv_sec = ts->tv_sec, .tv_nsec = ts->tv_nsec }); | |
499 | } | |
500 | nsec_t statx_timestamp_load_nsec(const struct statx_timestamp *ts) { | |
501 | return timespec_load_nsec(&(const struct timespec) { .tv_sec = ts->tv_sec, .tv_nsec = ts->tv_nsec }); | |
502 | } | |
503 | ||
504 | void inode_hash_func(const struct stat *q, struct siphash *state) { | |
505 | siphash24_compress_typesafe(q->st_dev, state); | |
506 | siphash24_compress_typesafe(q->st_ino, state); | |
507 | } | |
508 | ||
509 | int inode_compare_func(const struct stat *a, const struct stat *b) { | |
510 | int r; | |
511 | ||
512 | r = CMP(a->st_dev, b->st_dev); | |
513 | if (r != 0) | |
514 | return r; | |
515 | ||
516 | return CMP(a->st_ino, b->st_ino); | |
517 | } | |
518 | ||
519 | DEFINE_HASH_OPS_WITH_KEY_DESTRUCTOR(inode_hash_ops, struct stat, inode_hash_func, inode_compare_func, free); | |
520 | ||
521 | const char* inode_type_to_string(mode_t m) { | |
522 | ||
523 | /* Returns a short string for the inode type. We use the same name as the underlying macros for each | |
524 | * inode type. */ | |
525 | ||
526 | switch (m & S_IFMT) { | |
527 | case S_IFREG: | |
528 | return "reg"; | |
529 | case S_IFDIR: | |
530 | return "dir"; | |
531 | case S_IFLNK: | |
532 | return "lnk"; | |
533 | case S_IFCHR: | |
534 | return "chr"; | |
535 | case S_IFBLK: | |
536 | return "blk"; | |
537 | case S_IFIFO: | |
538 | return "fifo"; | |
539 | case S_IFSOCK: | |
540 | return "sock"; | |
541 | } | |
542 | ||
543 | /* Note anonymous inodes in the kernel will have a zero type. Hence fstat() of an eventfd() will | |
544 | * return an .st_mode where we'll return NULL here! */ | |
545 | return NULL; | |
546 | } | |
547 | ||
548 | mode_t inode_type_from_string(const char *s) { | |
549 | if (!s) | |
550 | return MODE_INVALID; | |
551 | ||
552 | if (streq(s, "reg")) | |
553 | return S_IFREG; | |
554 | if (streq(s, "dir")) | |
555 | return S_IFDIR; | |
556 | if (streq(s, "lnk")) | |
557 | return S_IFLNK; | |
558 | if (streq(s, "chr")) | |
559 | return S_IFCHR; | |
560 | if (streq(s, "blk")) | |
561 | return S_IFBLK; | |
562 | if (streq(s, "fifo")) | |
563 | return S_IFIFO; | |
564 | if (streq(s, "sock")) | |
565 | return S_IFSOCK; | |
566 | ||
567 | return MODE_INVALID; | |
568 | } |