]>
| Commit | Line | Data |
|---|---|---|
| 1 | /* SPDX-License-Identifier: LGPL-2.1-or-later */ | |
| 2 | ||
| 3 | #include <fcntl.h> | |
| 4 | #include <linux/magic.h> | |
| 5 | #include <sys/statvfs.h> | |
| 6 | #include <unistd.h> | |
| 7 | ||
| 8 | #include "alloc-util.h" | |
| 9 | #include "chase.h" | |
| 10 | #include "dirent-util.h" | |
| 11 | #include "errno-util.h" | |
| 12 | #include "fd-util.h" | |
| 13 | #include "filesystems.h" | |
| 14 | #include "fs-util.h" | |
| 15 | #include "hash-funcs.h" | |
| 16 | #include "log.h" | |
| 17 | #include "mountpoint-util.h" | |
| 18 | #include "path-util.h" | |
| 19 | #include "siphash24.h" | |
| 20 | #include "stat-util.h" | |
| 21 | #include "string-util.h" | |
| 22 | #include "time-util.h" | |
| 23 | ||
| 24 | static int verify_stat_at( | |
| 25 | int fd, | |
| 26 | const char *path, | |
| 27 | bool follow, | |
| 28 | int (*verify_func)(const struct stat *st), | |
| 29 | bool verify) { | |
| 30 | ||
| 31 | struct stat st; | |
| 32 | int r; | |
| 33 | ||
| 34 | assert(fd >= 0 || fd == AT_FDCWD); | |
| 35 | assert(!isempty(path) || !follow); | |
| 36 | assert(verify_func); | |
| 37 | ||
| 38 | if (fstatat(fd, strempty(path), &st, | |
| 39 | (isempty(path) ? AT_EMPTY_PATH : 0) | (follow ? 0 : AT_SYMLINK_NOFOLLOW)) < 0) | |
| 40 | return -errno; | |
| 41 | ||
| 42 | r = verify_func(&st); | |
| 43 | return verify ? r : r >= 0; | |
| 44 | } | |
| 45 | ||
| 46 | int stat_verify_regular(const struct stat *st) { | |
| 47 | assert(st); | |
| 48 | ||
| 49 | /* Checks whether the specified stat() structure refers to a regular file. If not returns an | |
| 50 | * appropriate error code. */ | |
| 51 | ||
| 52 | if (S_ISDIR(st->st_mode)) | |
| 53 | return -EISDIR; | |
| 54 | ||
| 55 | if (S_ISLNK(st->st_mode)) | |
| 56 | return -ELOOP; | |
| 57 | ||
| 58 | if (!S_ISREG(st->st_mode)) | |
| 59 | return -EBADFD; | |
| 60 | ||
| 61 | return 0; | |
| 62 | } | |
| 63 | ||
| 64 | int verify_regular_at(int fd, const char *path, bool follow) { | |
| 65 | return verify_stat_at(fd, path, follow, stat_verify_regular, true); | |
| 66 | } | |
| 67 | ||
| 68 | int fd_verify_regular(int fd) { | |
| 69 | assert(fd >= 0); | |
| 70 | return verify_regular_at(fd, NULL, false); | |
| 71 | } | |
| 72 | ||
| 73 | int stat_verify_directory(const struct stat *st) { | |
| 74 | assert(st); | |
| 75 | ||
| 76 | if (S_ISLNK(st->st_mode)) | |
| 77 | return -ELOOP; | |
| 78 | ||
| 79 | if (!S_ISDIR(st->st_mode)) | |
| 80 | return -ENOTDIR; | |
| 81 | ||
| 82 | return 0; | |
| 83 | } | |
| 84 | ||
| 85 | int fd_verify_directory(int fd) { | |
| 86 | assert(fd >= 0); | |
| 87 | return verify_stat_at(fd, NULL, false, stat_verify_directory, true); | |
| 88 | } | |
| 89 | ||
| 90 | int is_dir_at(int fd, const char *path, bool follow) { | |
| 91 | return verify_stat_at(fd, path, follow, stat_verify_directory, false); | |
| 92 | } | |
| 93 | ||
| 94 | int is_dir(const char *path, bool follow) { | |
| 95 | assert(!isempty(path)); | |
| 96 | return is_dir_at(AT_FDCWD, path, follow); | |
| 97 | } | |
| 98 | ||
| 99 | int stat_verify_symlink(const struct stat *st) { | |
| 100 | assert(st); | |
| 101 | ||
| 102 | if (S_ISDIR(st->st_mode)) | |
| 103 | return -EISDIR; | |
| 104 | ||
| 105 | if (!S_ISLNK(st->st_mode)) | |
| 106 | return -ENOLINK; | |
| 107 | ||
| 108 | return 0; | |
| 109 | } | |
| 110 | ||
| 111 | int fd_verify_symlink(int fd) { | |
| 112 | return verify_stat_at(fd, /* path= */ NULL, /* follow= */ false, stat_verify_symlink, /* verify= */ true); | |
| 113 | } | |
| 114 | ||
| 115 | int is_symlink(const char *path) { | |
| 116 | assert(!isempty(path)); | |
| 117 | return verify_stat_at(AT_FDCWD, path, false, stat_verify_symlink, false); | |
| 118 | } | |
| 119 | ||
| 120 | int stat_verify_linked(const struct stat *st) { | |
| 121 | assert(st); | |
| 122 | ||
| 123 | if (st->st_nlink <= 0) | |
| 124 | return -EIDRM; /* recognizable error. */ | |
| 125 | ||
| 126 | return 0; | |
| 127 | } | |
| 128 | ||
| 129 | int fd_verify_linked(int fd) { | |
| 130 | assert(fd >= 0); | |
| 131 | return verify_stat_at(fd, NULL, false, stat_verify_linked, true); | |
| 132 | } | |
| 133 | ||
| 134 | int stat_verify_device_node(const struct stat *st) { | |
| 135 | assert(st); | |
| 136 | ||
| 137 | if (S_ISLNK(st->st_mode)) | |
| 138 | return -ELOOP; | |
| 139 | ||
| 140 | if (S_ISDIR(st->st_mode)) | |
| 141 | return -EISDIR; | |
| 142 | ||
| 143 | if (!S_ISBLK(st->st_mode) && !S_ISCHR(st->st_mode)) | |
| 144 | return -ENOTTY; | |
| 145 | ||
| 146 | return 0; | |
| 147 | } | |
| 148 | ||
| 149 | int is_device_node(const char *path) { | |
| 150 | assert(!isempty(path)); | |
| 151 | return verify_stat_at(AT_FDCWD, path, false, stat_verify_device_node, false); | |
| 152 | } | |
| 153 | ||
| 154 | int dir_is_empty_at(int dir_fd, const char *path, bool ignore_hidden_or_backup) { | |
| 155 | _cleanup_close_ int fd = -EBADF; | |
| 156 | struct dirent *buf; | |
| 157 | size_t m; | |
| 158 | ||
| 159 | fd = xopenat(dir_fd, path, O_DIRECTORY|O_CLOEXEC); | |
| 160 | if (fd < 0) | |
| 161 | return fd; | |
| 162 | ||
| 163 | /* Allocate space for at least 3 full dirents, since every dir has at least two entries ("." + | |
| 164 | * ".."), and only once we have seen if there's a third we know whether the dir is empty or not. If | |
| 165 | * 'ignore_hidden_or_backup' is true we'll allocate a bit more, since we might skip over a bunch of | |
| 166 | * entries that we end up ignoring. */ | |
| 167 | m = (ignore_hidden_or_backup ? 16 : 3) * DIRENT_SIZE_MAX; | |
| 168 | buf = alloca(m); | |
| 169 | ||
| 170 | for (;;) { | |
| 171 | struct dirent *de; | |
| 172 | ssize_t n; | |
| 173 | ||
| 174 | n = getdents64(fd, buf, m); | |
| 175 | if (n < 0) | |
| 176 | return -errno; | |
| 177 | if (n == 0) | |
| 178 | break; | |
| 179 | ||
| 180 | assert((size_t) n <= m); | |
| 181 | msan_unpoison(buf, n); | |
| 182 | ||
| 183 | FOREACH_DIRENT_IN_BUFFER(de, buf, n) | |
| 184 | if (!(ignore_hidden_or_backup ? hidden_or_backup_file(de->d_name) : dot_or_dot_dot(de->d_name))) | |
| 185 | return 0; | |
| 186 | } | |
| 187 | ||
| 188 | return 1; | |
| 189 | } | |
| 190 | ||
| 191 | bool stat_may_be_dev_null(struct stat *st) { | |
| 192 | assert(st); | |
| 193 | ||
| 194 | /* We don't want to hardcode the major/minor of /dev/null, hence we do a simpler "is this a character | |
| 195 | * device node?" check. */ | |
| 196 | ||
| 197 | return S_ISCHR(st->st_mode); | |
| 198 | } | |
| 199 | ||
| 200 | bool stat_is_empty(struct stat *st) { | |
| 201 | assert(st); | |
| 202 | ||
| 203 | return S_ISREG(st->st_mode) && st->st_size <= 0; | |
| 204 | } | |
| 205 | ||
| 206 | int null_or_empty_path_with_root(const char *fn, const char *root) { | |
| 207 | struct stat st; | |
| 208 | int r; | |
| 209 | ||
| 210 | assert(fn); | |
| 211 | ||
| 212 | /* A symlink to /dev/null or an empty file? | |
| 213 | * When looking under root_dir, we can't expect /dev/ to be mounted, | |
| 214 | * so let's see if the path is a (possibly dangling) symlink to /dev/null. */ | |
| 215 | ||
| 216 | if (path_equal(path_startswith(fn, root ?: "/"), "dev/null")) | |
| 217 | return true; | |
| 218 | ||
| 219 | r = chase_and_stat(fn, root, CHASE_PREFIX_ROOT, NULL, &st); | |
| 220 | if (r < 0) | |
| 221 | return r; | |
| 222 | ||
| 223 | return null_or_empty(&st); | |
| 224 | } | |
| 225 | ||
| 226 | int fd_is_read_only_fs(int fd) { | |
| 227 | struct statfs st; | |
| 228 | ||
| 229 | assert(fd >= 0); | |
| 230 | ||
| 231 | if (fstatfs(fd, &st) < 0) | |
| 232 | return -errno; | |
| 233 | ||
| 234 | if (st.f_flags & ST_RDONLY) | |
| 235 | return true; | |
| 236 | ||
| 237 | if (is_network_fs(&st)) { | |
| 238 | /* On NFS, fstatfs() might not reflect whether we can actually write to the remote share. | |
| 239 | * Let's try again with access(W_OK) which is more reliable, at least sometimes. */ | |
| 240 | if (access_fd(fd, W_OK) == -EROFS) | |
| 241 | return true; | |
| 242 | } | |
| 243 | ||
| 244 | return false; | |
| 245 | } | |
| 246 | ||
| 247 | int path_is_read_only_fs(const char *path) { | |
| 248 | _cleanup_close_ int fd = -EBADF; | |
| 249 | ||
| 250 | assert(path); | |
| 251 | ||
| 252 | fd = open(path, O_CLOEXEC | O_PATH); | |
| 253 | if (fd < 0) | |
| 254 | return -errno; | |
| 255 | ||
| 256 | return fd_is_read_only_fs(fd); | |
| 257 | } | |
| 258 | ||
| 259 | int inode_same_at(int fda, const char *filea, int fdb, const char *fileb, int flags) { | |
| 260 | struct stat sta, stb; | |
| 261 | int r; | |
| 262 | ||
| 263 | assert(fda >= 0 || fda == AT_FDCWD); | |
| 264 | assert(fdb >= 0 || fdb == AT_FDCWD); | |
| 265 | assert((flags & ~(AT_EMPTY_PATH|AT_SYMLINK_NOFOLLOW|AT_NO_AUTOMOUNT)) == 0); | |
| 266 | ||
| 267 | /* Refuse an unset filea or fileb early unless AT_EMPTY_PATH is set */ | |
| 268 | if ((isempty(filea) || isempty(fileb)) && !FLAGS_SET(flags, AT_EMPTY_PATH)) | |
| 269 | return -EINVAL; | |
| 270 | ||
| 271 | /* Shortcut: comparing the same fd with itself means we can return true */ | |
| 272 | if (fda >= 0 && fda == fdb && isempty(filea) && isempty(fileb) && FLAGS_SET(flags, AT_SYMLINK_NOFOLLOW)) | |
| 273 | return true; | |
| 274 | ||
| 275 | _cleanup_close_ int pin_a = -EBADF, pin_b = -EBADF; | |
| 276 | if (!FLAGS_SET(flags, AT_NO_AUTOMOUNT)) { | |
| 277 | /* Let's try to use the name_to_handle_at() AT_HANDLE_FID API to identify identical | |
| 278 | * inodes. We have to issue multiple calls on the same file for that (first, to acquire the | |
| 279 | * FID, and then to check if .st_dev is actually the same). Hence let's pin the inode in | |
| 280 | * between via O_PATH, unless we already have an fd for it. */ | |
| 281 | ||
| 282 | if (!isempty(filea)) { | |
| 283 | pin_a = openat(fda, filea, O_PATH|O_CLOEXEC|(FLAGS_SET(flags, AT_SYMLINK_NOFOLLOW) ? O_NOFOLLOW : 0)); | |
| 284 | if (pin_a < 0) | |
| 285 | return -errno; | |
| 286 | ||
| 287 | fda = pin_a; | |
| 288 | filea = NULL; | |
| 289 | flags |= AT_EMPTY_PATH; | |
| 290 | } | |
| 291 | ||
| 292 | if (!isempty(fileb)) { | |
| 293 | pin_b = openat(fdb, fileb, O_PATH|O_CLOEXEC|(FLAGS_SET(flags, AT_SYMLINK_NOFOLLOW) ? O_NOFOLLOW : 0)); | |
| 294 | if (pin_b < 0) | |
| 295 | return -errno; | |
| 296 | ||
| 297 | fdb = pin_b; | |
| 298 | fileb = NULL; | |
| 299 | flags |= AT_EMPTY_PATH; | |
| 300 | } | |
| 301 | ||
| 302 | int ntha_flags = at_flags_normalize_follow(flags) & (AT_EMPTY_PATH|AT_SYMLINK_FOLLOW); | |
| 303 | _cleanup_free_ struct file_handle *ha = NULL, *hb = NULL; | |
| 304 | int mntida = -1, mntidb = -1; | |
| 305 | ||
| 306 | r = name_to_handle_at_try_fid( | |
| 307 | fda, | |
| 308 | filea, | |
| 309 | &ha, | |
| 310 | &mntida, | |
| 311 | ntha_flags); | |
| 312 | if (r < 0) { | |
| 313 | if (is_name_to_handle_at_fatal_error(r)) | |
| 314 | return r; | |
| 315 | ||
| 316 | goto fallback; | |
| 317 | } | |
| 318 | ||
| 319 | r = name_to_handle_at_try_fid( | |
| 320 | fdb, | |
| 321 | fileb, | |
| 322 | &hb, | |
| 323 | &mntidb, | |
| 324 | ntha_flags); | |
| 325 | if (r < 0) { | |
| 326 | if (is_name_to_handle_at_fatal_error(r)) | |
| 327 | return r; | |
| 328 | ||
| 329 | goto fallback; | |
| 330 | } | |
| 331 | ||
| 332 | /* Now compare the two file handles */ | |
| 333 | if (!file_handle_equal(ha, hb)) | |
| 334 | return false; | |
| 335 | ||
| 336 | /* If the file handles are the same and they come from the same mount ID? Great, then we are | |
| 337 | * good, they are definitely the same */ | |
| 338 | if (mntida == mntidb) | |
| 339 | return true; | |
| 340 | ||
| 341 | /* File handles are the same, they are not on the same mount id. This might either be because | |
| 342 | * they are on two entirely different file systems, that just happen to have the same FIDs | |
| 343 | * (because they originally where created off the same disk images), or it could be because | |
| 344 | * they are located on two distinct bind mounts of the same fs. To check that, let's look at | |
| 345 | * .st_rdev of the inode. We simply reuse the fallback codepath for that, since it checks | |
| 346 | * exactly that (it checks slightly more, but we don't care.) */ | |
| 347 | } | |
| 348 | ||
| 349 | fallback: | |
| 350 | if (fstatat(fda, strempty(filea), &sta, flags) < 0) | |
| 351 | return log_debug_errno(errno, "Cannot stat %s: %m", strna(filea)); | |
| 352 | ||
| 353 | if (fstatat(fdb, strempty(fileb), &stb, flags) < 0) | |
| 354 | return log_debug_errno(errno, "Cannot stat %s: %m", strna(fileb)); | |
| 355 | ||
| 356 | return stat_inode_same(&sta, &stb); | |
| 357 | } | |
| 358 | ||
| 359 | bool is_fs_type(const struct statfs *s, statfs_f_type_t magic_value) { | |
| 360 | assert(s); | |
| 361 | assert_cc(sizeof(statfs_f_type_t) >= sizeof(s->f_type)); | |
| 362 | ||
| 363 | return F_TYPE_EQUAL(s->f_type, magic_value); | |
| 364 | } | |
| 365 | ||
| 366 | int is_fs_type_at(int dir_fd, const char *path, statfs_f_type_t magic_value) { | |
| 367 | struct statfs s; | |
| 368 | int r; | |
| 369 | ||
| 370 | r = xstatfsat(dir_fd, path, &s); | |
| 371 | if (r < 0) | |
| 372 | return r; | |
| 373 | ||
| 374 | return is_fs_type(&s, magic_value); | |
| 375 | } | |
| 376 | ||
| 377 | bool is_temporary_fs(const struct statfs *s) { | |
| 378 | return fs_in_group(s, FILESYSTEM_SET_TEMPORARY); | |
| 379 | } | |
| 380 | ||
| 381 | bool is_network_fs(const struct statfs *s) { | |
| 382 | return fs_in_group(s, FILESYSTEM_SET_NETWORK); | |
| 383 | } | |
| 384 | ||
| 385 | int fd_is_temporary_fs(int fd) { | |
| 386 | struct statfs s; | |
| 387 | ||
| 388 | if (fstatfs(fd, &s) < 0) | |
| 389 | return -errno; | |
| 390 | ||
| 391 | return is_temporary_fs(&s); | |
| 392 | } | |
| 393 | ||
| 394 | int fd_is_network_fs(int fd) { | |
| 395 | struct statfs s; | |
| 396 | ||
| 397 | if (fstatfs(fd, &s) < 0) | |
| 398 | return -errno; | |
| 399 | ||
| 400 | return is_network_fs(&s); | |
| 401 | } | |
| 402 | ||
| 403 | int path_is_temporary_fs(const char *path) { | |
| 404 | struct statfs s; | |
| 405 | ||
| 406 | if (statfs(path, &s) < 0) | |
| 407 | return -errno; | |
| 408 | ||
| 409 | return is_temporary_fs(&s); | |
| 410 | } | |
| 411 | ||
| 412 | int path_is_network_fs(const char *path) { | |
| 413 | struct statfs s; | |
| 414 | ||
| 415 | if (statfs(path, &s) < 0) | |
| 416 | return -errno; | |
| 417 | ||
| 418 | return is_network_fs(&s); | |
| 419 | } | |
| 420 | ||
| 421 | int proc_mounted(void) { | |
| 422 | int r; | |
| 423 | ||
| 424 | /* A quick check of procfs is properly mounted */ | |
| 425 | ||
| 426 | r = path_is_fs_type("/proc/", PROC_SUPER_MAGIC); | |
| 427 | if (r == -ENOENT) /* not mounted at all */ | |
| 428 | return false; | |
| 429 | ||
| 430 | return r; | |
| 431 | } | |
| 432 | ||
| 433 | bool stat_inode_same(const struct stat *a, const struct stat *b) { | |
| 434 | ||
| 435 | /* Returns if the specified stat structure references the same (though possibly modified) inode. Does | |
| 436 | * a thorough check, comparing inode nr, backing device and if the inode is still of the same type. */ | |
| 437 | ||
| 438 | return stat_is_set(a) && stat_is_set(b) && | |
| 439 | ((a->st_mode ^ b->st_mode) & S_IFMT) == 0 && /* same inode type */ | |
| 440 | a->st_dev == b->st_dev && | |
| 441 | a->st_ino == b->st_ino; | |
| 442 | } | |
| 443 | ||
| 444 | bool stat_inode_unmodified(const struct stat *a, const struct stat *b) { | |
| 445 | ||
| 446 | /* Returns if the specified stat structures reference the same, unmodified inode. This check tries to | |
| 447 | * be reasonably careful when detecting changes: we check both inode and mtime, to cater for file | |
| 448 | * systems where mtimes are fixed to 0 (think: ostree/nixos type installations). We also check file | |
| 449 | * size, backing device, inode type and if this refers to a device not the major/minor. | |
| 450 | * | |
| 451 | * Note that we don't care if file attributes such as ownership or access mode change, this here is | |
| 452 | * about contents of the file. The purpose here is to detect file contents changes, and nothing | |
| 453 | * else. */ | |
| 454 | ||
| 455 | return stat_inode_same(a, b) && | |
| 456 | a->st_mtim.tv_sec == b->st_mtim.tv_sec && | |
| 457 | a->st_mtim.tv_nsec == b->st_mtim.tv_nsec && | |
| 458 | (!S_ISREG(a->st_mode) || a->st_size == b->st_size) && /* if regular file, compare file size */ | |
| 459 | (!(S_ISCHR(a->st_mode) || S_ISBLK(a->st_mode)) || a->st_rdev == b->st_rdev); /* if device node, also compare major/minor, because we can */ | |
| 460 | } | |
| 461 | ||
| 462 | bool statx_inode_same(const struct statx *a, const struct statx *b) { | |
| 463 | ||
| 464 | /* Same as stat_inode_same() but for struct statx */ | |
| 465 | ||
| 466 | return statx_is_set(a) && statx_is_set(b) && | |
| 467 | FLAGS_SET(a->stx_mask, STATX_TYPE|STATX_INO) && FLAGS_SET(b->stx_mask, STATX_TYPE|STATX_INO) && | |
| 468 | ((a->stx_mode ^ b->stx_mode) & S_IFMT) == 0 && | |
| 469 | a->stx_dev_major == b->stx_dev_major && | |
| 470 | a->stx_dev_minor == b->stx_dev_minor && | |
| 471 | a->stx_ino == b->stx_ino; | |
| 472 | } | |
| 473 | ||
| 474 | bool statx_mount_same(const struct statx *a, const struct statx *b) { | |
| 475 | if (!statx_is_set(a) || !statx_is_set(b)) | |
| 476 | return false; | |
| 477 | ||
| 478 | /* if we have the mount ID, that's all we need */ | |
| 479 | if (FLAGS_SET(a->stx_mask, STATX_MNT_ID) && FLAGS_SET(b->stx_mask, STATX_MNT_ID)) | |
| 480 | return a->stx_mnt_id == b->stx_mnt_id; | |
| 481 | ||
| 482 | /* Otherwise, major/minor of backing device must match */ | |
| 483 | return a->stx_dev_major == b->stx_dev_major && | |
| 484 | a->stx_dev_minor == b->stx_dev_minor; | |
| 485 | } | |
| 486 | ||
| 487 | int xstatfsat(int dir_fd, const char *path, struct statfs *ret) { | |
| 488 | _cleanup_close_ int fd = -EBADF; | |
| 489 | ||
| 490 | assert(dir_fd >= 0 || dir_fd == AT_FDCWD); | |
| 491 | assert(ret); | |
| 492 | ||
| 493 | if (!isempty(path)) { | |
| 494 | fd = xopenat(dir_fd, path, O_PATH|O_CLOEXEC|O_NOCTTY); | |
| 495 | if (fd < 0) | |
| 496 | return fd; | |
| 497 | dir_fd = fd; | |
| 498 | } | |
| 499 | ||
| 500 | return RET_NERRNO(fstatfs(dir_fd, ret)); | |
| 501 | } | |
| 502 | ||
| 503 | usec_t statx_timestamp_load(const struct statx_timestamp *ts) { | |
| 504 | return timespec_load(&(const struct timespec) { .tv_sec = ts->tv_sec, .tv_nsec = ts->tv_nsec }); | |
| 505 | } | |
| 506 | nsec_t statx_timestamp_load_nsec(const struct statx_timestamp *ts) { | |
| 507 | return timespec_load_nsec(&(const struct timespec) { .tv_sec = ts->tv_sec, .tv_nsec = ts->tv_nsec }); | |
| 508 | } | |
| 509 | ||
| 510 | void inode_hash_func(const struct stat *q, struct siphash *state) { | |
| 511 | siphash24_compress_typesafe(q->st_dev, state); | |
| 512 | siphash24_compress_typesafe(q->st_ino, state); | |
| 513 | } | |
| 514 | ||
| 515 | int inode_compare_func(const struct stat *a, const struct stat *b) { | |
| 516 | int r; | |
| 517 | ||
| 518 | r = CMP(a->st_dev, b->st_dev); | |
| 519 | if (r != 0) | |
| 520 | return r; | |
| 521 | ||
| 522 | return CMP(a->st_ino, b->st_ino); | |
| 523 | } | |
| 524 | ||
| 525 | DEFINE_HASH_OPS_WITH_KEY_DESTRUCTOR(inode_hash_ops, struct stat, inode_hash_func, inode_compare_func, free); | |
| 526 | ||
| 527 | const char* inode_type_to_string(mode_t m) { | |
| 528 | ||
| 529 | /* Returns a short string for the inode type. We use the same name as the underlying macros for each | |
| 530 | * inode type. */ | |
| 531 | ||
| 532 | switch (m & S_IFMT) { | |
| 533 | case S_IFREG: | |
| 534 | return "reg"; | |
| 535 | case S_IFDIR: | |
| 536 | return "dir"; | |
| 537 | case S_IFLNK: | |
| 538 | return "lnk"; | |
| 539 | case S_IFCHR: | |
| 540 | return "chr"; | |
| 541 | case S_IFBLK: | |
| 542 | return "blk"; | |
| 543 | case S_IFIFO: | |
| 544 | return "fifo"; | |
| 545 | case S_IFSOCK: | |
| 546 | return "sock"; | |
| 547 | } | |
| 548 | ||
| 549 | /* Note anonymous inodes in the kernel will have a zero type. Hence fstat() of an eventfd() will | |
| 550 | * return an .st_mode where we'll return NULL here! */ | |
| 551 | return NULL; | |
| 552 | } | |
| 553 | ||
| 554 | mode_t inode_type_from_string(const char *s) { | |
| 555 | if (!s) | |
| 556 | return MODE_INVALID; | |
| 557 | ||
| 558 | if (streq(s, "reg")) | |
| 559 | return S_IFREG; | |
| 560 | if (streq(s, "dir")) | |
| 561 | return S_IFDIR; | |
| 562 | if (streq(s, "lnk")) | |
| 563 | return S_IFLNK; | |
| 564 | if (streq(s, "chr")) | |
| 565 | return S_IFCHR; | |
| 566 | if (streq(s, "blk")) | |
| 567 | return S_IFBLK; | |
| 568 | if (streq(s, "fifo")) | |
| 569 | return S_IFIFO; | |
| 570 | if (streq(s, "sock")) | |
| 571 | return S_IFSOCK; | |
| 572 | ||
| 573 | return MODE_INVALID; | |
| 574 | } |