]>
Commit | Line | Data |
---|---|---|
1 | /* SPDX-License-Identifier: LGPL-2.1-or-later */ | |
2 | ||
3 | #include <grp.h> | |
4 | #include <linux/ioprio.h> | |
5 | #include <linux/prctl.h> | |
6 | #include <linux/sched.h> | |
7 | #include <linux/securebits.h> | |
8 | #include <poll.h> | |
9 | #include <sys/eventfd.h> | |
10 | #include <sys/ioctl.h> | |
11 | #include <sys/mount.h> | |
12 | #include <sys/prctl.h> | |
13 | #include <unistd.h> | |
14 | ||
15 | #if HAVE_PAM | |
16 | #include <security/pam_appl.h> | |
17 | #endif | |
18 | ||
19 | #include "sd-messages.h" | |
20 | ||
21 | #include "apparmor-util.h" | |
22 | #include "argv-util.h" | |
23 | #include "ask-password-api.h" | |
24 | #include "barrier.h" | |
25 | #include "bitfield.h" | |
26 | #include "bpf-dlopen.h" | |
27 | #include "bpf-restrict-fs.h" | |
28 | #include "btrfs-util.h" | |
29 | #include "capability-util.h" | |
30 | #include "cgroup-setup.h" | |
31 | #include "cgroup.h" | |
32 | #include "chase.h" | |
33 | #include "chown-recursive.h" | |
34 | #include "constants.h" | |
35 | #include "copy.h" | |
36 | #include "coredump-util.h" | |
37 | #include "dissect-image.h" | |
38 | #include "dynamic-user.h" | |
39 | #include "env-util.h" | |
40 | #include "escape.h" | |
41 | #include "exec-credential.h" | |
42 | #include "exec-invoke.h" | |
43 | #include "execute.h" | |
44 | #include "exit-status.h" | |
45 | #include "fd-util.h" | |
46 | #include "fs-util.h" | |
47 | #include "hexdecoct.h" | |
48 | #include "hostname-setup.h" | |
49 | #include "image-policy.h" | |
50 | #include "io-util.h" | |
51 | #include "iovec-util.h" | |
52 | #include "journal-send.h" | |
53 | #include "manager.h" | |
54 | #include "memfd-util.h" | |
55 | #include "missing_syscall.h" | |
56 | #include "mkdir-label.h" | |
57 | #include "mount-util.h" | |
58 | #include "namespace-util.h" | |
59 | #include "nsflags.h" | |
60 | #include "open-file.h" | |
61 | #include "osc-context.h" | |
62 | #include "path-util.h" | |
63 | #include "pidref.h" | |
64 | #include "proc-cmdline.h" | |
65 | #include "process-util.h" | |
66 | #include "psi-util.h" | |
67 | #include "rlimit-util.h" | |
68 | #include "seccomp-util.h" | |
69 | #include "selinux-util.h" | |
70 | #include "set.h" | |
71 | #include "signal-util.h" | |
72 | #include "smack-util.h" | |
73 | #include "socket-util.h" | |
74 | #include "stat-util.h" | |
75 | #include "string-table.h" | |
76 | #include "strv.h" | |
77 | #include "terminal-util.h" | |
78 | #include "user-util.h" | |
79 | #include "utmp-wtmp.h" | |
80 | #include "vpick.h" | |
81 | ||
82 | #define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC) | |
83 | #define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC) | |
84 | ||
85 | #define SNDBUF_SIZE (8*1024*1024) | |
86 | ||
87 | static int flag_fds( | |
88 | const int fds[], | |
89 | size_t n_socket_fds, | |
90 | size_t n_fds, | |
91 | bool nonblock) { | |
92 | ||
93 | int r; | |
94 | ||
95 | assert(fds || n_fds == 0); | |
96 | ||
97 | /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags. | |
98 | * O_NONBLOCK only applies to socket activation though. */ | |
99 | ||
100 | for (size_t i = 0; i < n_fds; i++) { | |
101 | ||
102 | if (i < n_socket_fds) { | |
103 | r = fd_nonblock(fds[i], nonblock); | |
104 | if (r < 0) | |
105 | return r; | |
106 | } | |
107 | ||
108 | /* We unconditionally drop FD_CLOEXEC from the fds, | |
109 | * since after all we want to pass these fds to our | |
110 | * children */ | |
111 | ||
112 | r = fd_cloexec(fds[i], false); | |
113 | if (r < 0) | |
114 | return r; | |
115 | } | |
116 | ||
117 | return 0; | |
118 | } | |
119 | ||
120 | static bool is_terminal_input(ExecInput i) { | |
121 | return IN_SET(i, | |
122 | EXEC_INPUT_TTY, | |
123 | EXEC_INPUT_TTY_FORCE, | |
124 | EXEC_INPUT_TTY_FAIL); | |
125 | } | |
126 | ||
127 | static bool is_terminal_output(ExecOutput o) { | |
128 | return IN_SET(o, | |
129 | EXEC_OUTPUT_TTY, | |
130 | EXEC_OUTPUT_KMSG_AND_CONSOLE, | |
131 | EXEC_OUTPUT_JOURNAL_AND_CONSOLE); | |
132 | } | |
133 | ||
134 | static bool is_kmsg_output(ExecOutput o) { | |
135 | return IN_SET(o, | |
136 | EXEC_OUTPUT_KMSG, | |
137 | EXEC_OUTPUT_KMSG_AND_CONSOLE); | |
138 | } | |
139 | ||
140 | static int open_null_as(int flags, int nfd) { | |
141 | int fd; | |
142 | ||
143 | assert(nfd >= 0); | |
144 | ||
145 | fd = open("/dev/null", flags|O_NOCTTY); | |
146 | if (fd < 0) | |
147 | return -errno; | |
148 | ||
149 | return move_fd(fd, nfd, false); | |
150 | } | |
151 | ||
152 | static int connect_journal_socket( | |
153 | int fd, | |
154 | const char *log_namespace, | |
155 | uid_t uid, | |
156 | gid_t gid) { | |
157 | ||
158 | uid_t olduid = UID_INVALID; | |
159 | gid_t oldgid = GID_INVALID; | |
160 | const char *j; | |
161 | int r; | |
162 | ||
163 | assert(fd >= 0); | |
164 | ||
165 | j = journal_stream_path(log_namespace); | |
166 | if (!j) | |
167 | return -EINVAL; | |
168 | ||
169 | if (gid_is_valid(gid)) { | |
170 | oldgid = getgid(); | |
171 | ||
172 | if (setegid(gid) < 0) | |
173 | return -errno; | |
174 | } | |
175 | ||
176 | if (uid_is_valid(uid)) { | |
177 | olduid = getuid(); | |
178 | ||
179 | if (seteuid(uid) < 0) { | |
180 | r = -errno; | |
181 | goto restore_gid; | |
182 | } | |
183 | } | |
184 | ||
185 | r = connect_unix_path(fd, AT_FDCWD, j); | |
186 | ||
187 | /* If we fail to restore the uid or gid, things will likely fail later on. This should only happen if | |
188 | an LSM interferes. */ | |
189 | ||
190 | if (uid_is_valid(uid)) | |
191 | (void) seteuid(olduid); | |
192 | ||
193 | restore_gid: | |
194 | if (gid_is_valid(gid)) | |
195 | (void) setegid(oldgid); | |
196 | ||
197 | return r; | |
198 | } | |
199 | ||
200 | static int connect_logger_as( | |
201 | const ExecContext *context, | |
202 | const ExecParameters *params, | |
203 | ExecOutput output, | |
204 | const char *ident, | |
205 | int nfd, | |
206 | uid_t uid, | |
207 | gid_t gid) { | |
208 | ||
209 | _cleanup_close_ int fd = -EBADF; | |
210 | int r; | |
211 | ||
212 | assert(context); | |
213 | assert(params); | |
214 | assert(output < _EXEC_OUTPUT_MAX); | |
215 | assert(ident); | |
216 | assert(nfd >= 0); | |
217 | ||
218 | fd = socket(AF_UNIX, SOCK_STREAM, 0); | |
219 | if (fd < 0) | |
220 | return -errno; | |
221 | ||
222 | r = connect_journal_socket(fd, context->log_namespace, uid, gid); | |
223 | if (r < 0) | |
224 | return r; | |
225 | ||
226 | if (shutdown(fd, SHUT_RD) < 0) | |
227 | return -errno; | |
228 | ||
229 | (void) fd_inc_sndbuf(fd, SNDBUF_SIZE); | |
230 | ||
231 | if (dprintf(fd, | |
232 | "%s\n" | |
233 | "%s\n" | |
234 | "%i\n" | |
235 | "%i\n" | |
236 | "%i\n" | |
237 | "%i\n" | |
238 | "%i\n", | |
239 | context->syslog_identifier ?: ident, | |
240 | params->flags & EXEC_PASS_LOG_UNIT ? params->unit_id : "", | |
241 | context->syslog_priority, | |
242 | !!context->syslog_level_prefix, | |
243 | false, | |
244 | is_kmsg_output(output), | |
245 | is_terminal_output(output)) < 0) | |
246 | return -errno; | |
247 | ||
248 | return move_fd(TAKE_FD(fd), nfd, false); | |
249 | } | |
250 | ||
251 | static int open_terminal_as(const char *path, int flags, int nfd) { | |
252 | int fd; | |
253 | ||
254 | assert(path); | |
255 | assert(nfd >= 0); | |
256 | ||
257 | fd = open_terminal(path, flags | O_NOCTTY); | |
258 | if (fd < 0) | |
259 | return fd; | |
260 | ||
261 | return move_fd(fd, nfd, false); | |
262 | } | |
263 | ||
264 | static int acquire_path(const char *path, int flags, mode_t mode) { | |
265 | _cleanup_close_ int fd = -EBADF; | |
266 | int r; | |
267 | ||
268 | assert(path); | |
269 | ||
270 | if (IN_SET(flags & O_ACCMODE_STRICT, O_WRONLY, O_RDWR)) | |
271 | flags |= O_CREAT; | |
272 | ||
273 | fd = open(path, flags|O_NOCTTY, mode); | |
274 | if (fd >= 0) | |
275 | return TAKE_FD(fd); | |
276 | ||
277 | if (errno != ENXIO) /* ENXIO is returned when we try to open() an AF_UNIX file system socket on Linux */ | |
278 | return -errno; | |
279 | ||
280 | /* So, it appears the specified path could be an AF_UNIX socket. Let's see if we can connect to it. */ | |
281 | ||
282 | fd = socket(AF_UNIX, SOCK_STREAM, 0); | |
283 | if (fd < 0) | |
284 | return -errno; | |
285 | ||
286 | r = connect_unix_path(fd, AT_FDCWD, path); | |
287 | if (IN_SET(r, -ENOTSOCK, -EINVAL)) | |
288 | /* Propagate initial error if we get ENOTSOCK or EINVAL, i.e. we have indication that this | |
289 | * wasn't an AF_UNIX socket after all */ | |
290 | return -ENXIO; | |
291 | if (r < 0) | |
292 | return r; | |
293 | ||
294 | if ((flags & O_ACCMODE_STRICT) == O_RDONLY) | |
295 | r = shutdown(fd, SHUT_WR); | |
296 | else if ((flags & O_ACCMODE_STRICT) == O_WRONLY) | |
297 | r = shutdown(fd, SHUT_RD); | |
298 | else | |
299 | r = 0; | |
300 | if (r < 0) | |
301 | return -errno; | |
302 | ||
303 | return TAKE_FD(fd); | |
304 | } | |
305 | ||
306 | static int fixup_input( | |
307 | const ExecContext *context, | |
308 | int socket_fd, | |
309 | bool apply_tty_stdin) { | |
310 | ||
311 | ExecInput std_input; | |
312 | ||
313 | assert(context); | |
314 | ||
315 | std_input = context->std_input; | |
316 | ||
317 | if (is_terminal_input(std_input) && !apply_tty_stdin) | |
318 | return EXEC_INPUT_NULL; | |
319 | ||
320 | if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0) | |
321 | return EXEC_INPUT_NULL; | |
322 | ||
323 | if (std_input == EXEC_INPUT_DATA && context->stdin_data_size == 0) | |
324 | return EXEC_INPUT_NULL; | |
325 | ||
326 | return std_input; | |
327 | } | |
328 | ||
329 | static int fixup_output(ExecOutput output, int socket_fd) { | |
330 | ||
331 | if (output == EXEC_OUTPUT_SOCKET && socket_fd < 0) | |
332 | return EXEC_OUTPUT_INHERIT; | |
333 | ||
334 | return output; | |
335 | } | |
336 | ||
337 | static int setup_input( | |
338 | const ExecContext *context, | |
339 | const ExecParameters *params, | |
340 | int socket_fd, | |
341 | const int named_iofds[static 3]) { | |
342 | ||
343 | ExecInput i; | |
344 | int r; | |
345 | ||
346 | assert(context); | |
347 | assert(params); | |
348 | assert(named_iofds); | |
349 | ||
350 | if (params->stdin_fd >= 0) { | |
351 | if (dup2(params->stdin_fd, STDIN_FILENO) < 0) | |
352 | return -errno; | |
353 | ||
354 | /* Try to make this our controlling tty, if it is a tty */ | |
355 | if (isatty_safe(STDIN_FILENO) && ioctl(STDIN_FILENO, TIOCSCTTY, context->std_input == EXEC_INPUT_TTY_FORCE) < 0) | |
356 | log_debug_errno(errno, "Failed to make standard input TTY our controlling terminal: %m"); | |
357 | ||
358 | return STDIN_FILENO; | |
359 | } | |
360 | ||
361 | i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN); | |
362 | ||
363 | switch (i) { | |
364 | ||
365 | case EXEC_INPUT_NULL: | |
366 | return open_null_as(O_RDONLY, STDIN_FILENO); | |
367 | ||
368 | case EXEC_INPUT_TTY: | |
369 | case EXEC_INPUT_TTY_FORCE: | |
370 | case EXEC_INPUT_TTY_FAIL: { | |
371 | _cleanup_close_ int tty_fd = -EBADF; | |
372 | _cleanup_free_ char *resolved = NULL; | |
373 | const char *tty_path; | |
374 | ||
375 | tty_path = ASSERT_PTR(exec_context_tty_path(context)); | |
376 | ||
377 | if (tty_is_console(tty_path)) { | |
378 | r = resolve_dev_console(&resolved); | |
379 | if (r < 0) | |
380 | log_debug_errno(r, "Failed to resolve /dev/console, ignoring: %m"); | |
381 | else { | |
382 | log_debug("Resolved /dev/console to %s", resolved); | |
383 | tty_path = resolved; | |
384 | } | |
385 | } | |
386 | ||
387 | tty_fd = acquire_terminal(tty_path, | |
388 | i == EXEC_INPUT_TTY_FAIL ? ACQUIRE_TERMINAL_TRY : | |
389 | i == EXEC_INPUT_TTY_FORCE ? ACQUIRE_TERMINAL_FORCE : | |
390 | ACQUIRE_TERMINAL_WAIT, | |
391 | USEC_INFINITY); | |
392 | if (tty_fd < 0) | |
393 | return tty_fd; | |
394 | ||
395 | r = move_fd(tty_fd, STDIN_FILENO, /* cloexec= */ false); | |
396 | if (r < 0) | |
397 | return r; | |
398 | ||
399 | TAKE_FD(tty_fd); | |
400 | return r; | |
401 | } | |
402 | ||
403 | case EXEC_INPUT_SOCKET: | |
404 | assert(socket_fd >= 0); | |
405 | ||
406 | return RET_NERRNO(dup2(socket_fd, STDIN_FILENO)); | |
407 | ||
408 | case EXEC_INPUT_NAMED_FD: | |
409 | assert(named_iofds[STDIN_FILENO] >= 0); | |
410 | ||
411 | (void) fd_nonblock(named_iofds[STDIN_FILENO], false); | |
412 | return RET_NERRNO(dup2(named_iofds[STDIN_FILENO], STDIN_FILENO)); | |
413 | ||
414 | case EXEC_INPUT_DATA: { | |
415 | int fd; | |
416 | ||
417 | fd = memfd_new_and_seal("exec-input", context->stdin_data, context->stdin_data_size); | |
418 | if (fd < 0) | |
419 | return fd; | |
420 | ||
421 | return move_fd(fd, STDIN_FILENO, false); | |
422 | } | |
423 | ||
424 | case EXEC_INPUT_FILE: { | |
425 | bool rw; | |
426 | int fd; | |
427 | ||
428 | assert(context->stdio_file[STDIN_FILENO]); | |
429 | ||
430 | rw = (context->std_output == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDOUT_FILENO])) || | |
431 | (context->std_error == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDERR_FILENO])); | |
432 | ||
433 | fd = acquire_path(context->stdio_file[STDIN_FILENO], rw ? O_RDWR : O_RDONLY, 0666 & ~context->umask); | |
434 | if (fd < 0) | |
435 | return fd; | |
436 | ||
437 | return move_fd(fd, STDIN_FILENO, false); | |
438 | } | |
439 | ||
440 | default: | |
441 | assert_not_reached(); | |
442 | } | |
443 | } | |
444 | ||
445 | static bool can_inherit_stderr_from_stdout( | |
446 | const ExecContext *context, | |
447 | ExecOutput o, | |
448 | ExecOutput e) { | |
449 | ||
450 | assert(context); | |
451 | ||
452 | /* Returns true, if given the specified STDERR and STDOUT output we can directly dup() the stdout fd to the | |
453 | * stderr fd */ | |
454 | ||
455 | if (e == EXEC_OUTPUT_INHERIT) | |
456 | return true; | |
457 | if (e != o) | |
458 | return false; | |
459 | ||
460 | if (e == EXEC_OUTPUT_NAMED_FD) | |
461 | return streq_ptr(context->stdio_fdname[STDOUT_FILENO], context->stdio_fdname[STDERR_FILENO]); | |
462 | ||
463 | if (IN_SET(e, EXEC_OUTPUT_FILE, EXEC_OUTPUT_FILE_APPEND, EXEC_OUTPUT_FILE_TRUNCATE)) | |
464 | return streq_ptr(context->stdio_file[STDOUT_FILENO], context->stdio_file[STDERR_FILENO]); | |
465 | ||
466 | return true; | |
467 | } | |
468 | ||
469 | static int setup_output( | |
470 | const ExecContext *context, | |
471 | const ExecParameters *params, | |
472 | int fileno, | |
473 | int socket_fd, | |
474 | const int named_iofds[static 3], | |
475 | const char *ident, | |
476 | uid_t uid, | |
477 | gid_t gid, | |
478 | dev_t *journal_stream_dev, | |
479 | ino_t *journal_stream_ino) { | |
480 | ||
481 | ExecOutput o; | |
482 | ExecInput i; | |
483 | int r; | |
484 | ||
485 | assert(context); | |
486 | assert(params); | |
487 | assert(ident); | |
488 | assert(journal_stream_dev); | |
489 | assert(journal_stream_ino); | |
490 | ||
491 | if (fileno == STDOUT_FILENO && params->stdout_fd >= 0) { | |
492 | ||
493 | if (dup2(params->stdout_fd, STDOUT_FILENO) < 0) | |
494 | return -errno; | |
495 | ||
496 | return STDOUT_FILENO; | |
497 | } | |
498 | ||
499 | if (fileno == STDERR_FILENO && params->stderr_fd >= 0) { | |
500 | if (dup2(params->stderr_fd, STDERR_FILENO) < 0) | |
501 | return -errno; | |
502 | ||
503 | return STDERR_FILENO; | |
504 | } | |
505 | ||
506 | i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN); | |
507 | o = fixup_output(context->std_output, socket_fd); | |
508 | ||
509 | // FIXME: we probably should spend some time here to verify that if we inherit an fd from stdin | |
510 | // (possibly indirect via inheritance from stdout) it is actually opened for write! | |
511 | ||
512 | if (fileno == STDERR_FILENO) { | |
513 | ExecOutput e; | |
514 | e = fixup_output(context->std_error, socket_fd); | |
515 | ||
516 | /* This expects the input and output are already set up */ | |
517 | ||
518 | /* Don't change the stderr file descriptor if we inherit all | |
519 | * the way and are not on a tty */ | |
520 | if (e == EXEC_OUTPUT_INHERIT && | |
521 | o == EXEC_OUTPUT_INHERIT && | |
522 | i == EXEC_INPUT_NULL && | |
523 | !is_terminal_input(context->std_input) && | |
524 | getppid() != 1) | |
525 | return fileno; | |
526 | ||
527 | /* Duplicate from stdout if possible */ | |
528 | if (can_inherit_stderr_from_stdout(context, o, e)) | |
529 | return RET_NERRNO(dup2(STDOUT_FILENO, fileno)); | |
530 | ||
531 | o = e; | |
532 | ||
533 | } else if (o == EXEC_OUTPUT_INHERIT) { | |
534 | /* If input got downgraded, inherit the original value */ | |
535 | if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input)) | |
536 | return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno); | |
537 | ||
538 | /* If the input is connected to anything that's not a /dev/null or a data fd, inherit that... */ | |
539 | if (!IN_SET(i, EXEC_INPUT_NULL, EXEC_INPUT_DATA)) | |
540 | return RET_NERRNO(dup2(STDIN_FILENO, fileno)); | |
541 | ||
542 | /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */ | |
543 | if (getppid() != 1) | |
544 | return fileno; | |
545 | ||
546 | /* We need to open /dev/null here anew, to get the right access mode. */ | |
547 | return open_null_as(O_WRONLY, fileno); | |
548 | } | |
549 | ||
550 | switch (o) { | |
551 | ||
552 | case EXEC_OUTPUT_NULL: | |
553 | return open_null_as(O_WRONLY, fileno); | |
554 | ||
555 | case EXEC_OUTPUT_TTY: | |
556 | if (is_terminal_input(i)) | |
557 | return RET_NERRNO(dup2(STDIN_FILENO, fileno)); | |
558 | ||
559 | return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno); | |
560 | ||
561 | case EXEC_OUTPUT_KMSG: | |
562 | case EXEC_OUTPUT_KMSG_AND_CONSOLE: | |
563 | case EXEC_OUTPUT_JOURNAL: | |
564 | case EXEC_OUTPUT_JOURNAL_AND_CONSOLE: | |
565 | r = connect_logger_as(context, params, o, ident, fileno, uid, gid); | |
566 | if (r < 0) { | |
567 | log_warning_errno(r, "Failed to connect %s to the journal socket, ignoring: %m", | |
568 | fileno == STDOUT_FILENO ? "stdout" : "stderr"); | |
569 | r = open_null_as(O_WRONLY, fileno); | |
570 | } else { | |
571 | struct stat st; | |
572 | ||
573 | /* If we connected this fd to the journal via a stream, patch the device/inode into the passed | |
574 | * parameters, but only then. This is useful so that we can set $JOURNAL_STREAM that permits | |
575 | * services to detect whether they are connected to the journal or not. | |
576 | * | |
577 | * If both stdout and stderr are connected to a stream then let's make sure to store the data | |
578 | * about STDERR as that's usually the best way to do logging. */ | |
579 | ||
580 | if (fstat(fileno, &st) >= 0 && | |
581 | (*journal_stream_ino == 0 || fileno == STDERR_FILENO)) { | |
582 | *journal_stream_dev = st.st_dev; | |
583 | *journal_stream_ino = st.st_ino; | |
584 | } | |
585 | } | |
586 | return r; | |
587 | ||
588 | case EXEC_OUTPUT_SOCKET: | |
589 | assert(socket_fd >= 0); | |
590 | ||
591 | return RET_NERRNO(dup2(socket_fd, fileno)); | |
592 | ||
593 | case EXEC_OUTPUT_NAMED_FD: | |
594 | assert(named_iofds[fileno] >= 0); | |
595 | ||
596 | (void) fd_nonblock(named_iofds[fileno], false); | |
597 | return RET_NERRNO(dup2(named_iofds[fileno], fileno)); | |
598 | ||
599 | case EXEC_OUTPUT_FILE: | |
600 | case EXEC_OUTPUT_FILE_APPEND: | |
601 | case EXEC_OUTPUT_FILE_TRUNCATE: { | |
602 | bool rw; | |
603 | int fd, flags; | |
604 | ||
605 | assert(context->stdio_file[fileno]); | |
606 | ||
607 | rw = context->std_input == EXEC_INPUT_FILE && | |
608 | streq_ptr(context->stdio_file[fileno], context->stdio_file[STDIN_FILENO]); | |
609 | ||
610 | if (rw) | |
611 | return RET_NERRNO(dup2(STDIN_FILENO, fileno)); | |
612 | ||
613 | flags = O_WRONLY; | |
614 | if (o == EXEC_OUTPUT_FILE_APPEND) | |
615 | flags |= O_APPEND; | |
616 | else if (o == EXEC_OUTPUT_FILE_TRUNCATE) | |
617 | flags |= O_TRUNC; | |
618 | ||
619 | fd = acquire_path(context->stdio_file[fileno], flags, 0666 & ~context->umask); | |
620 | if (fd < 0) | |
621 | return fd; | |
622 | ||
623 | return move_fd(fd, fileno, 0); | |
624 | } | |
625 | ||
626 | default: | |
627 | assert_not_reached(); | |
628 | } | |
629 | } | |
630 | ||
631 | static int chown_terminal(int fd, uid_t uid) { | |
632 | int r; | |
633 | ||
634 | assert(fd >= 0); | |
635 | ||
636 | /* Before we chown/chmod the TTY, let's ensure this is actually a tty */ | |
637 | if (!isatty_safe(fd)) | |
638 | return 0; | |
639 | ||
640 | /* This might fail. What matters are the results. */ | |
641 | r = fchmod_and_chown(fd, TTY_MODE, uid, GID_INVALID); | |
642 | if (r < 0) | |
643 | return r; | |
644 | ||
645 | return 1; | |
646 | } | |
647 | ||
648 | static int setup_confirm_stdio( | |
649 | const ExecContext *context, | |
650 | const char *vc, | |
651 | int *ret_saved_stdin, | |
652 | int *ret_saved_stdout) { | |
653 | ||
654 | _cleanup_close_ int fd = -EBADF, saved_stdin = -EBADF, saved_stdout = -EBADF; | |
655 | int r; | |
656 | ||
657 | assert(context); | |
658 | assert(ret_saved_stdin); | |
659 | assert(ret_saved_stdout); | |
660 | ||
661 | saved_stdin = fcntl(STDIN_FILENO, F_DUPFD_CLOEXEC, 3); | |
662 | if (saved_stdin < 0) | |
663 | return -errno; | |
664 | ||
665 | saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD_CLOEXEC, 3); | |
666 | if (saved_stdout < 0) | |
667 | return -errno; | |
668 | ||
669 | fd = acquire_terminal(vc, ACQUIRE_TERMINAL_WAIT, DEFAULT_CONFIRM_USEC); | |
670 | if (fd < 0) | |
671 | return fd; | |
672 | ||
673 | _cleanup_close_ int lock_fd = lock_dev_console(); | |
674 | if (lock_fd < 0) | |
675 | log_debug_errno(lock_fd, "Failed to lock /dev/console, ignoring: %m"); | |
676 | ||
677 | r = chown_terminal(fd, getuid()); | |
678 | if (r < 0) | |
679 | return r; | |
680 | ||
681 | r = terminal_reset_defensive(fd, TERMINAL_RESET_SWITCH_TO_TEXT); | |
682 | if (r < 0) | |
683 | return r; | |
684 | ||
685 | r = exec_context_apply_tty_size(context, fd, fd, vc); | |
686 | if (r < 0) | |
687 | return r; | |
688 | ||
689 | r = rearrange_stdio(fd, fd, STDERR_FILENO); /* Invalidates 'fd' also on failure */ | |
690 | TAKE_FD(fd); | |
691 | if (r < 0) | |
692 | return r; | |
693 | ||
694 | *ret_saved_stdin = TAKE_FD(saved_stdin); | |
695 | *ret_saved_stdout = TAKE_FD(saved_stdout); | |
696 | return 0; | |
697 | } | |
698 | ||
699 | static void write_confirm_error_fd(int err, int fd, const char *unit_id) { | |
700 | assert(err != 0); | |
701 | assert(fd >= 0); | |
702 | assert(unit_id); | |
703 | ||
704 | errno = abs(err); | |
705 | ||
706 | if (errno == ETIMEDOUT) | |
707 | dprintf(fd, "Confirmation question timed out for %s, assuming positive response.\n", unit_id); | |
708 | else | |
709 | dprintf(fd, "Couldn't ask confirmation for %s, assuming positive response: %m\n", unit_id); | |
710 | } | |
711 | ||
712 | static void write_confirm_error(int err, const char *vc, const char *unit_id) { | |
713 | _cleanup_close_ int fd = -EBADF; | |
714 | ||
715 | assert(vc); | |
716 | ||
717 | fd = open_terminal(vc, O_WRONLY|O_NOCTTY|O_CLOEXEC); | |
718 | if (fd < 0) | |
719 | return; | |
720 | ||
721 | write_confirm_error_fd(err, fd, unit_id); | |
722 | } | |
723 | ||
724 | static int restore_confirm_stdio(int *saved_stdin, int *saved_stdout) { | |
725 | int r = 0; | |
726 | ||
727 | assert(saved_stdin); | |
728 | assert(saved_stdout); | |
729 | ||
730 | release_terminal(); | |
731 | ||
732 | if (*saved_stdin >= 0) | |
733 | if (dup2(*saved_stdin, STDIN_FILENO) < 0) | |
734 | r = -errno; | |
735 | ||
736 | if (*saved_stdout >= 0) | |
737 | if (dup2(*saved_stdout, STDOUT_FILENO) < 0) | |
738 | r = -errno; | |
739 | ||
740 | *saved_stdin = safe_close(*saved_stdin); | |
741 | *saved_stdout = safe_close(*saved_stdout); | |
742 | ||
743 | return r; | |
744 | } | |
745 | ||
746 | enum { | |
747 | CONFIRM_PRETEND_FAILURE = -1, | |
748 | CONFIRM_PRETEND_SUCCESS = 0, | |
749 | CONFIRM_EXECUTE = 1, | |
750 | }; | |
751 | ||
752 | static bool confirm_spawn_disabled(void) { | |
753 | return access("/run/systemd/confirm_spawn_disabled", F_OK) >= 0; | |
754 | } | |
755 | ||
756 | static int ask_for_confirmation(const ExecContext *context, const ExecParameters *params, const char *cmdline) { | |
757 | int saved_stdout = -EBADF, saved_stdin = -EBADF, r; | |
758 | _cleanup_free_ char *e = NULL; | |
759 | char c; | |
760 | ||
761 | assert(context); | |
762 | assert(params); | |
763 | ||
764 | /* For any internal errors, assume a positive response. */ | |
765 | r = setup_confirm_stdio(context, params->confirm_spawn, &saved_stdin, &saved_stdout); | |
766 | if (r < 0) { | |
767 | write_confirm_error(r, params->confirm_spawn, params->unit_id); | |
768 | return CONFIRM_EXECUTE; | |
769 | } | |
770 | ||
771 | /* confirm_spawn might have been disabled while we were sleeping. */ | |
772 | if (!params->confirm_spawn || confirm_spawn_disabled()) { | |
773 | r = 1; | |
774 | goto restore_stdio; | |
775 | } | |
776 | ||
777 | e = ellipsize(cmdline, 60, 100); | |
778 | if (!e) { | |
779 | log_oom(); | |
780 | r = CONFIRM_EXECUTE; | |
781 | goto restore_stdio; | |
782 | } | |
783 | ||
784 | for (;;) { | |
785 | r = ask_char(&c, "yfshiDjcn", "Execute %s? [y, f, s – h for help] ", e); | |
786 | if (r < 0) { | |
787 | write_confirm_error_fd(r, STDOUT_FILENO, params->unit_id); | |
788 | r = CONFIRM_EXECUTE; | |
789 | goto restore_stdio; | |
790 | } | |
791 | ||
792 | switch (c) { | |
793 | case 'c': | |
794 | printf("Resuming normal execution.\n"); | |
795 | manager_disable_confirm_spawn(); | |
796 | r = 1; | |
797 | break; | |
798 | case 'D': | |
799 | printf(" Unit: %s\n", | |
800 | params->unit_id); | |
801 | exec_context_dump(context, stdout, " "); | |
802 | exec_params_dump(params, stdout, " "); | |
803 | continue; /* ask again */ | |
804 | case 'f': | |
805 | printf("Failing execution.\n"); | |
806 | r = CONFIRM_PRETEND_FAILURE; | |
807 | break; | |
808 | case 'h': | |
809 | printf(" c - continue, proceed without asking anymore\n" | |
810 | " D - dump, show the state of the unit\n" | |
811 | " f - fail, don't execute the command and pretend it failed\n" | |
812 | " h - help\n" | |
813 | " i - info, show a short summary of the unit\n" | |
814 | " j - jobs, show jobs that are in progress\n" | |
815 | " s - skip, don't execute the command and pretend it succeeded\n" | |
816 | " y - yes, execute the command\n"); | |
817 | continue; /* ask again */ | |
818 | case 'i': | |
819 | printf(" Unit: %s\n" | |
820 | " Command: %s\n", | |
821 | params->unit_id, cmdline); | |
822 | continue; /* ask again */ | |
823 | case 'j': | |
824 | if (sigqueue(getppid(), | |
825 | SIGRTMIN+18, | |
826 | (const union sigval) { .sival_int = MANAGER_SIGNAL_COMMAND_DUMP_JOBS }) < 0) | |
827 | return -errno; | |
828 | ||
829 | continue; /* ask again */ | |
830 | case 'n': | |
831 | /* 'n' was removed in favor of 'f'. */ | |
832 | printf("Didn't understand 'n', did you mean 'f'?\n"); | |
833 | continue; /* ask again */ | |
834 | case 's': | |
835 | printf("Skipping execution.\n"); | |
836 | r = CONFIRM_PRETEND_SUCCESS; | |
837 | break; | |
838 | case 'y': | |
839 | r = CONFIRM_EXECUTE; | |
840 | break; | |
841 | default: | |
842 | assert_not_reached(); | |
843 | } | |
844 | break; | |
845 | } | |
846 | ||
847 | restore_stdio: | |
848 | restore_confirm_stdio(&saved_stdin, &saved_stdout); | |
849 | return r; | |
850 | } | |
851 | ||
852 | static int get_fixed_user( | |
853 | const char *user_or_uid, | |
854 | bool prefer_nss, | |
855 | const char **ret_username, | |
856 | uid_t *ret_uid, | |
857 | gid_t *ret_gid, | |
858 | const char **ret_home, | |
859 | const char **ret_shell) { | |
860 | ||
861 | int r; | |
862 | ||
863 | assert(user_or_uid); | |
864 | assert(ret_username); | |
865 | ||
866 | r = get_user_creds(&user_or_uid, ret_uid, ret_gid, ret_home, ret_shell, | |
867 | USER_CREDS_CLEAN|(prefer_nss ? USER_CREDS_PREFER_NSS : 0)); | |
868 | if (r < 0) | |
869 | return r; | |
870 | ||
871 | /* user_or_uid is normalized by get_user_creds to username */ | |
872 | *ret_username = user_or_uid; | |
873 | ||
874 | return 0; | |
875 | } | |
876 | ||
877 | static int get_fixed_group( | |
878 | const char *group_or_gid, | |
879 | const char **ret_groupname, | |
880 | gid_t *ret_gid) { | |
881 | ||
882 | int r; | |
883 | ||
884 | assert(group_or_gid); | |
885 | assert(ret_groupname); | |
886 | ||
887 | r = get_group_creds(&group_or_gid, ret_gid, /* flags = */ 0); | |
888 | if (r < 0) | |
889 | return r; | |
890 | ||
891 | /* group_or_gid is normalized by get_group_creds to groupname */ | |
892 | *ret_groupname = group_or_gid; | |
893 | ||
894 | return 0; | |
895 | } | |
896 | ||
897 | static int get_supplementary_groups( | |
898 | const ExecContext *c, | |
899 | const char *user, | |
900 | gid_t gid, | |
901 | gid_t **ret_gids) { | |
902 | ||
903 | int r; | |
904 | ||
905 | assert(c); | |
906 | assert(ret_gids); | |
907 | ||
908 | /* | |
909 | * If user is given, then lookup GID and supplementary groups list. | |
910 | * We avoid NSS lookups for gid=0. Also we have to initialize groups | |
911 | * here and as early as possible so we keep the list of supplementary | |
912 | * groups of the caller. | |
913 | */ | |
914 | bool keep_groups = false; | |
915 | if (user && gid_is_valid(gid) && gid != 0) { | |
916 | /* First step, initialize groups from /etc/groups */ | |
917 | if (initgroups(user, gid) < 0) | |
918 | return -errno; | |
919 | ||
920 | keep_groups = true; | |
921 | } | |
922 | ||
923 | if (strv_isempty(c->supplementary_groups)) { | |
924 | *ret_gids = NULL; | |
925 | return 0; | |
926 | } | |
927 | ||
928 | /* | |
929 | * If SupplementaryGroups= was passed then NGROUPS_MAX has to | |
930 | * be positive, otherwise fail. | |
931 | */ | |
932 | errno = 0; | |
933 | int ngroups_max = (int) sysconf(_SC_NGROUPS_MAX); | |
934 | if (ngroups_max <= 0) | |
935 | return errno_or_else(EOPNOTSUPP); | |
936 | ||
937 | _cleanup_free_ gid_t *l_gids = new(gid_t, ngroups_max); | |
938 | if (!l_gids) | |
939 | return -ENOMEM; | |
940 | ||
941 | int k = 0; | |
942 | if (keep_groups) { | |
943 | /* | |
944 | * Lookup the list of groups that the user belongs to, we | |
945 | * avoid NSS lookups here too for gid=0. | |
946 | */ | |
947 | k = ngroups_max; | |
948 | if (getgrouplist(user, gid, l_gids, &k) < 0) | |
949 | return -EINVAL; | |
950 | } | |
951 | ||
952 | STRV_FOREACH(i, c->supplementary_groups) { | |
953 | if (k >= ngroups_max) | |
954 | return -E2BIG; | |
955 | ||
956 | const char *g = *i; | |
957 | r = get_group_creds(&g, l_gids + k, /* flags = */ 0); | |
958 | if (r < 0) | |
959 | return r; | |
960 | ||
961 | k++; | |
962 | } | |
963 | ||
964 | if (k == 0) { | |
965 | *ret_gids = NULL; | |
966 | return 0; | |
967 | } | |
968 | ||
969 | /* Otherwise get the final list of supplementary groups */ | |
970 | gid_t *groups = newdup(gid_t, l_gids, k); | |
971 | if (!groups) | |
972 | return -ENOMEM; | |
973 | ||
974 | *ret_gids = groups; | |
975 | return k; | |
976 | } | |
977 | ||
978 | static int enforce_groups(gid_t gid, const gid_t *supplementary_gids, int ngids) { | |
979 | int r; | |
980 | ||
981 | /* Handle SupplementaryGroups= if it is not empty */ | |
982 | if (ngids > 0) { | |
983 | r = maybe_setgroups(ngids, supplementary_gids); | |
984 | if (r < 0) | |
985 | return r; | |
986 | } | |
987 | ||
988 | if (gid_is_valid(gid)) { | |
989 | /* Then set our gids */ | |
990 | if (setresgid(gid, gid, gid) < 0) | |
991 | return -errno; | |
992 | } | |
993 | ||
994 | return 0; | |
995 | } | |
996 | ||
997 | static int set_securebits(unsigned bits, unsigned mask) { | |
998 | unsigned applied; | |
999 | int current; | |
1000 | ||
1001 | current = prctl(PR_GET_SECUREBITS); | |
1002 | if (current < 0) | |
1003 | return -errno; | |
1004 | ||
1005 | /* Clear all securebits defined in mask and set bits */ | |
1006 | applied = ((unsigned) current & ~mask) | bits; | |
1007 | if ((unsigned) current == applied) | |
1008 | return 0; | |
1009 | ||
1010 | if (prctl(PR_SET_SECUREBITS, applied) < 0) | |
1011 | return -errno; | |
1012 | ||
1013 | return 1; | |
1014 | } | |
1015 | ||
1016 | static int enforce_user( | |
1017 | const ExecContext *context, | |
1018 | uid_t uid, | |
1019 | uint64_t capability_ambient_set) { | |
1020 | ||
1021 | int r; | |
1022 | ||
1023 | assert(context); | |
1024 | ||
1025 | if (!uid_is_valid(uid)) | |
1026 | return 0; | |
1027 | ||
1028 | /* Sets (but doesn't look up) the UIS and makes sure we keep the capabilities while doing so. For | |
1029 | * setting secure bits the capability CAP_SETPCAP is required, so we also need keep-caps in this | |
1030 | * case. */ | |
1031 | ||
1032 | if ((capability_ambient_set != 0 || context->secure_bits != 0) && uid != 0) { | |
1033 | ||
1034 | /* First step: If we need to keep capabilities but drop privileges we need to make sure we | |
1035 | * keep our caps, while we drop privileges. Add KEEP_CAPS to the securebits */ | |
1036 | r = set_securebits(1U << SECURE_KEEP_CAPS, 0); | |
1037 | if (r < 0) | |
1038 | return r; | |
1039 | } | |
1040 | ||
1041 | /* Second step: actually set the uids */ | |
1042 | if (setresuid(uid, uid, uid) < 0) | |
1043 | return -errno; | |
1044 | ||
1045 | /* At this point we should have all necessary capabilities but are otherwise a normal user. However, | |
1046 | * the caps might got corrupted due to the setresuid() so we need clean them up later. This is done | |
1047 | * outside of this call. */ | |
1048 | return 0; | |
1049 | } | |
1050 | ||
1051 | #if HAVE_PAM | |
1052 | ||
1053 | static void pam_response_free_array(struct pam_response *responses, size_t n_responses) { | |
1054 | assert(responses || n_responses == 0); | |
1055 | ||
1056 | FOREACH_ARRAY(resp, responses, n_responses) | |
1057 | erase_and_free(resp->resp); | |
1058 | ||
1059 | free(responses); | |
1060 | } | |
1061 | ||
1062 | typedef struct AskPasswordConvData { | |
1063 | const ExecContext *context; | |
1064 | const ExecParameters *params; | |
1065 | } AskPasswordConvData; | |
1066 | ||
1067 | static int ask_password_conv( | |
1068 | int num_msg, | |
1069 | const struct pam_message *msg[], | |
1070 | struct pam_response **ret, | |
1071 | void *userdata) { | |
1072 | ||
1073 | AskPasswordConvData *data = ASSERT_PTR(userdata); | |
1074 | bool set_credential_env_var = false; | |
1075 | int r; | |
1076 | ||
1077 | assert(num_msg >= 0); | |
1078 | assert(msg); | |
1079 | assert(data->context); | |
1080 | assert(data->params); | |
1081 | ||
1082 | size_t n = num_msg; | |
1083 | struct pam_response *responses = new0(struct pam_response, n); | |
1084 | if (!responses) | |
1085 | return PAM_BUF_ERR; | |
1086 | CLEANUP_ARRAY(responses, n, pam_response_free_array); | |
1087 | ||
1088 | for (size_t i = 0; i < n; i++) { | |
1089 | const struct pam_message *mi = *msg + i; | |
1090 | ||
1091 | switch (mi->msg_style) { | |
1092 | ||
1093 | case PAM_PROMPT_ECHO_ON: | |
1094 | case PAM_PROMPT_ECHO_OFF: { | |
1095 | ||
1096 | /* Locally set the $CREDENTIALS_DIRECTORY to the credentials directory we just populated */ | |
1097 | if (!set_credential_env_var) { | |
1098 | _cleanup_free_ char *creds_dir = NULL; | |
1099 | r = exec_context_get_credential_directory(data->context, data->params, data->params->unit_id, &creds_dir); | |
1100 | if (r < 0) | |
1101 | return log_error_errno(r, "Failed to determine credentials directory: %m"); | |
1102 | ||
1103 | if (creds_dir) { | |
1104 | if (setenv("CREDENTIALS_DIRECTORY", creds_dir, /* overwrite= */ true) < 0) | |
1105 | return log_error_errno(r, "Failed to set $CREDENTIALS_DIRECTORY: %m"); | |
1106 | } else | |
1107 | (void) unsetenv("CREDENTIALS_DIRECTORY"); | |
1108 | ||
1109 | set_credential_env_var = true; | |
1110 | } | |
1111 | ||
1112 | _cleanup_free_ char *credential_name = strjoin("pam.authtok.", data->context->pam_name); | |
1113 | if (!credential_name) | |
1114 | return log_oom(); | |
1115 | ||
1116 | AskPasswordRequest req = { | |
1117 | .message = mi->msg, | |
1118 | .credential = credential_name, | |
1119 | .tty_fd = -EBADF, | |
1120 | .hup_fd = -EBADF, | |
1121 | .until = usec_add(now(CLOCK_MONOTONIC), 15 * USEC_PER_SEC), | |
1122 | }; | |
1123 | ||
1124 | _cleanup_strv_free_erase_ char **acquired = NULL; | |
1125 | r = ask_password_auto( | |
1126 | &req, | |
1127 | ASK_PASSWORD_ACCEPT_CACHED| | |
1128 | ASK_PASSWORD_NO_TTY| | |
1129 | (mi->msg_style == PAM_PROMPT_ECHO_ON ? ASK_PASSWORD_ECHO : 0), | |
1130 | &acquired); | |
1131 | if (r < 0) { | |
1132 | log_error_errno(r, "Failed to query for password: %m"); | |
1133 | return PAM_CONV_ERR; | |
1134 | } | |
1135 | ||
1136 | responses[i].resp = strdup(ASSERT_PTR(acquired[0])); | |
1137 | if (!responses[i].resp) { | |
1138 | log_oom(); | |
1139 | return PAM_BUF_ERR; | |
1140 | } | |
1141 | break; | |
1142 | } | |
1143 | ||
1144 | case PAM_ERROR_MSG: | |
1145 | log_error("PAM: %s", mi->msg); | |
1146 | break; | |
1147 | ||
1148 | case PAM_TEXT_INFO: | |
1149 | log_info("PAM: %s", mi->msg); | |
1150 | break; | |
1151 | ||
1152 | default: | |
1153 | return PAM_CONV_ERR; | |
1154 | } | |
1155 | } | |
1156 | ||
1157 | *ret = TAKE_PTR(responses); | |
1158 | n = 0; | |
1159 | ||
1160 | return PAM_SUCCESS; | |
1161 | } | |
1162 | ||
1163 | static int pam_close_session_and_delete_credentials(pam_handle_t *handle, int flags) { | |
1164 | int r, s; | |
1165 | ||
1166 | assert(handle); | |
1167 | ||
1168 | r = pam_close_session(handle, flags); | |
1169 | if (r != PAM_SUCCESS) | |
1170 | log_debug("pam_close_session() failed: %s", pam_strerror(handle, r)); | |
1171 | ||
1172 | s = pam_setcred(handle, PAM_DELETE_CRED | flags); | |
1173 | if (s != PAM_SUCCESS) | |
1174 | log_debug("pam_setcred(PAM_DELETE_CRED) failed: %s", pam_strerror(handle, s)); | |
1175 | ||
1176 | return r != PAM_SUCCESS ? r : s; | |
1177 | } | |
1178 | #endif | |
1179 | ||
1180 | static int attach_to_subcgroup( | |
1181 | const ExecContext *context, | |
1182 | const CGroupContext *cgroup_context, | |
1183 | const ExecParameters *params, | |
1184 | const char *prefix) { | |
1185 | ||
1186 | _cleanup_free_ char *subgroup = NULL; | |
1187 | int r; | |
1188 | ||
1189 | assert(context); | |
1190 | assert(cgroup_context); | |
1191 | assert(params); | |
1192 | ||
1193 | /* If we're a control process that needs a subgroup, we've already been spawned into it as otherwise | |
1194 | * we'd violate the "no inner processes" rule, so no need to do anything. */ | |
1195 | if (exec_params_needs_control_subcgroup(params)) | |
1196 | return 0; | |
1197 | ||
1198 | r = exec_params_get_cgroup_path(params, cgroup_context, prefix, &subgroup); | |
1199 | if (r < 0) | |
1200 | return log_error_errno(r, "Failed to acquire cgroup path: %m"); | |
1201 | /* No subgroup required? Then there's nothing to do. */ | |
1202 | if (r == 0) | |
1203 | return 0; | |
1204 | ||
1205 | r = cg_attach(subgroup, 0); | |
1206 | if (r == -EUCLEAN) | |
1207 | return log_error_errno(r, | |
1208 | "Failed to attach process " PID_FMT " to cgroup '%s', " | |
1209 | "because the cgroup or one of its parents or " | |
1210 | "siblings is in the threaded mode.", | |
1211 | getpid_cached(), subgroup); | |
1212 | if (r < 0) | |
1213 | return log_error_errno(r, | |
1214 | "Failed to attach process " PID_FMT " to cgroup %s: %m", | |
1215 | getpid_cached(), subgroup); | |
1216 | ||
1217 | return 0; | |
1218 | } | |
1219 | ||
1220 | static int setup_pam( | |
1221 | const ExecContext *context, | |
1222 | const CGroupContext *cgroup_context, | |
1223 | ExecParameters *params, | |
1224 | const char *user, | |
1225 | uid_t uid, | |
1226 | gid_t gid, | |
1227 | char ***env, /* updated on success */ | |
1228 | const int fds[], size_t n_fds, | |
1229 | bool needs_sandboxing, | |
1230 | int exec_fd) { | |
1231 | ||
1232 | #if HAVE_PAM | |
1233 | AskPasswordConvData conv_data = { | |
1234 | .context = context, | |
1235 | .params = params, | |
1236 | }; | |
1237 | ||
1238 | const struct pam_conv conv = { | |
1239 | .conv = ask_password_conv, | |
1240 | .appdata_ptr = &conv_data, | |
1241 | }; | |
1242 | ||
1243 | _cleanup_(barrier_destroy) Barrier barrier = BARRIER_NULL; | |
1244 | _cleanup_strv_free_ char **e = NULL; | |
1245 | _cleanup_free_ char *tty = NULL; | |
1246 | pam_handle_t *handle = NULL; | |
1247 | sigset_t old_ss; | |
1248 | int pam_code = PAM_SUCCESS, r; | |
1249 | bool close_session = false; | |
1250 | pid_t parent_pid; | |
1251 | int flags = 0; | |
1252 | ||
1253 | assert(context); | |
1254 | assert(params); | |
1255 | assert(user); | |
1256 | assert(uid_is_valid(uid)); | |
1257 | assert(gid_is_valid(gid)); | |
1258 | assert(fds || n_fds == 0); | |
1259 | assert(env); | |
1260 | ||
1261 | /* We set up PAM in the parent process, then fork. The child | |
1262 | * will then stay around until killed via PR_GET_PDEATHSIG or | |
1263 | * systemd via the cgroup logic. It will then remove the PAM | |
1264 | * session again. The parent process will exec() the actual | |
1265 | * daemon. We do things this way to ensure that the main PID | |
1266 | * of the daemon is the one we initially fork()ed. */ | |
1267 | ||
1268 | r = barrier_create(&barrier); | |
1269 | if (r < 0) | |
1270 | goto fail; | |
1271 | ||
1272 | if (log_get_max_level() < LOG_DEBUG) | |
1273 | flags |= PAM_SILENT; | |
1274 | ||
1275 | pam_code = pam_start(context->pam_name, user, &conv, &handle); | |
1276 | if (pam_code != PAM_SUCCESS) { | |
1277 | handle = NULL; | |
1278 | goto fail; | |
1279 | } | |
1280 | ||
1281 | if (getttyname_malloc(STDIN_FILENO, &tty) >= 0) { | |
1282 | _cleanup_free_ char *q = path_join("/dev", tty); | |
1283 | if (!q) { | |
1284 | r = -ENOMEM; | |
1285 | goto fail; | |
1286 | } | |
1287 | ||
1288 | free_and_replace(tty, q); | |
1289 | } | |
1290 | ||
1291 | if (tty) { | |
1292 | pam_code = pam_set_item(handle, PAM_TTY, tty); | |
1293 | if (pam_code != PAM_SUCCESS) | |
1294 | goto fail; | |
1295 | } | |
1296 | ||
1297 | STRV_FOREACH(nv, *env) { | |
1298 | pam_code = pam_putenv(handle, *nv); | |
1299 | if (pam_code != PAM_SUCCESS) | |
1300 | goto fail; | |
1301 | } | |
1302 | ||
1303 | pam_code = pam_acct_mgmt(handle, flags); | |
1304 | if (pam_code != PAM_SUCCESS) | |
1305 | goto fail; | |
1306 | ||
1307 | pam_code = pam_setcred(handle, PAM_ESTABLISH_CRED | flags); | |
1308 | if (pam_code != PAM_SUCCESS) | |
1309 | log_debug("pam_setcred(PAM_ESTABLISH_CRED) failed, ignoring: %s", pam_strerror(handle, pam_code)); | |
1310 | ||
1311 | pam_code = pam_open_session(handle, flags); | |
1312 | if (pam_code != PAM_SUCCESS) | |
1313 | goto fail; | |
1314 | ||
1315 | close_session = true; | |
1316 | ||
1317 | e = pam_getenvlist(handle); | |
1318 | if (!e) { | |
1319 | pam_code = PAM_BUF_ERR; | |
1320 | goto fail; | |
1321 | } | |
1322 | ||
1323 | /* Block SIGTERM, so that we know that it won't get lost in the child */ | |
1324 | ||
1325 | assert_se(sigprocmask_many(SIG_BLOCK, &old_ss, SIGTERM) >= 0); | |
1326 | ||
1327 | parent_pid = getpid_cached(); | |
1328 | ||
1329 | r = safe_fork("(sd-pam)", 0, NULL); | |
1330 | if (r < 0) | |
1331 | goto fail; | |
1332 | if (r == 0) { | |
1333 | int ret = EXIT_PAM; | |
1334 | ||
1335 | if (needs_sandboxing && exec_needs_cgroup_namespace(context) && params->cgroup_path) { | |
1336 | /* Move PAM process into subgroup immediately if the main process hasn't been moved | |
1337 | * into the subgroup yet (when cgroup namespacing is enabled) and a subgroup is | |
1338 | * configured. */ | |
1339 | r = attach_to_subcgroup(context, cgroup_context, params, params->cgroup_path); | |
1340 | if (r < 0) | |
1341 | return r; | |
1342 | } | |
1343 | ||
1344 | /* The child's job is to reset the PAM session on termination */ | |
1345 | barrier_set_role(&barrier, BARRIER_CHILD); | |
1346 | ||
1347 | /* Make sure we don't keep open the passed fds in this child. We assume that otherwise only | |
1348 | * those fds are open here that have been opened by PAM. */ | |
1349 | (void) close_many(fds, n_fds); | |
1350 | ||
1351 | /* Also close the 'exec_fd' in the child, since the service manager waits for the EOF induced | |
1352 | * by the execve() to wait for completion, and if we'd keep the fd open here in the child | |
1353 | * we'd never signal completion. */ | |
1354 | exec_fd = safe_close(exec_fd); | |
1355 | ||
1356 | /* Drop privileges - we don't need any to pam_close_session and this will make | |
1357 | * PR_SET_PDEATHSIG work in most cases. If this fails, ignore the error - but expect sd-pam | |
1358 | * threads to fail to exit normally */ | |
1359 | ||
1360 | r = fully_set_uid_gid(uid, gid, /* supplementary_gids= */ NULL, /* n_supplementary_gids= */ 0); | |
1361 | if (r < 0) | |
1362 | log_warning_errno(r, "Failed to drop privileges in sd-pam: %m"); | |
1363 | ||
1364 | (void) ignore_signals(SIGPIPE); | |
1365 | ||
1366 | /* Wait until our parent died. This will only work if the above setresuid() succeeds, | |
1367 | * otherwise the kernel will not allow unprivileged parents kill their privileged children | |
1368 | * this way. We rely on the control groups kill logic to do the rest for us. */ | |
1369 | if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0) | |
1370 | goto child_finish; | |
1371 | ||
1372 | /* Tell the parent that our setup is done. This is especially important regarding dropping | |
1373 | * privileges. Otherwise, unit setup might race against our setresuid(2) call. | |
1374 | * | |
1375 | * If the parent aborted, we'll detect this below, hence ignore return failure here. */ | |
1376 | (void) barrier_place(&barrier); | |
1377 | ||
1378 | /* Check if our parent process might already have died? */ | |
1379 | if (getppid() == parent_pid) { | |
1380 | sigset_t ss; | |
1381 | int sig; | |
1382 | ||
1383 | assert_se(sigemptyset(&ss) >= 0); | |
1384 | assert_se(sigaddset(&ss, SIGTERM) >= 0); | |
1385 | ||
1386 | assert_se(sigwait(&ss, &sig) == 0); | |
1387 | assert(sig == SIGTERM); | |
1388 | } | |
1389 | ||
1390 | /* If our parent died we'll end the session */ | |
1391 | if (getppid() != parent_pid) { | |
1392 | pam_code = pam_close_session_and_delete_credentials(handle, flags); | |
1393 | if (pam_code != PAM_SUCCESS) | |
1394 | goto child_finish; | |
1395 | } | |
1396 | ||
1397 | ret = 0; | |
1398 | ||
1399 | child_finish: | |
1400 | /* NB: pam_end() when called in child processes should set PAM_DATA_SILENT to let the module | |
1401 | * know about this. See pam_end(3) */ | |
1402 | (void) pam_end(handle, pam_code | flags | PAM_DATA_SILENT); | |
1403 | _exit(ret); | |
1404 | } | |
1405 | ||
1406 | barrier_set_role(&barrier, BARRIER_PARENT); | |
1407 | ||
1408 | /* If the child was forked off successfully it will do all the cleanups, so forget about the handle | |
1409 | * here. */ | |
1410 | handle = NULL; | |
1411 | ||
1412 | /* Unblock SIGTERM again in the parent */ | |
1413 | assert_se(sigprocmask(SIG_SETMASK, &old_ss, NULL) >= 0); | |
1414 | ||
1415 | /* We close the log explicitly here, since the PAM modules might have opened it, but we don't want | |
1416 | * this fd around. */ | |
1417 | closelog(); | |
1418 | ||
1419 | /* Synchronously wait for the child to initialize. We don't care for errors as we cannot | |
1420 | * recover. However, warn loudly if it happens. */ | |
1421 | if (!barrier_place_and_sync(&barrier)) | |
1422 | log_error("PAM initialization failed"); | |
1423 | ||
1424 | return strv_free_and_replace(*env, e); | |
1425 | ||
1426 | fail: | |
1427 | if (pam_code != PAM_SUCCESS) { | |
1428 | log_error("PAM failed: %s", pam_strerror(handle, pam_code)); | |
1429 | r = -EPERM; /* PAM errors do not map to errno */ | |
1430 | } else | |
1431 | log_error_errno(r, "PAM failed: %m"); | |
1432 | ||
1433 | if (handle) { | |
1434 | if (close_session) | |
1435 | pam_code = pam_close_session_and_delete_credentials(handle, flags); | |
1436 | ||
1437 | (void) pam_end(handle, pam_code | flags); | |
1438 | } | |
1439 | ||
1440 | closelog(); | |
1441 | return r; | |
1442 | #else | |
1443 | return 0; | |
1444 | #endif | |
1445 | } | |
1446 | ||
1447 | static void rename_process_from_path(const char *path) { | |
1448 | _cleanup_free_ char *buf = NULL; | |
1449 | const char *p; | |
1450 | ||
1451 | assert(path); | |
1452 | ||
1453 | /* This resulting string must fit in 10 chars (i.e. the length of "/sbin/init") to look pretty in | |
1454 | * /bin/ps */ | |
1455 | ||
1456 | if (path_extract_filename(path, &buf) < 0) { | |
1457 | rename_process("(...)"); | |
1458 | return; | |
1459 | } | |
1460 | ||
1461 | size_t l = strlen(buf); | |
1462 | if (l > 8) { | |
1463 | /* The end of the process name is usually more interesting, since the first bit might just be | |
1464 | * "systemd-" */ | |
1465 | p = buf + l - 8; | |
1466 | l = 8; | |
1467 | } else | |
1468 | p = buf; | |
1469 | ||
1470 | char process_name[11]; | |
1471 | process_name[0] = '('; | |
1472 | memcpy(process_name+1, p, l); | |
1473 | process_name[1+l] = ')'; | |
1474 | process_name[1+l+1] = 0; | |
1475 | ||
1476 | (void) rename_process(process_name); | |
1477 | } | |
1478 | ||
1479 | static bool context_has_address_families(const ExecContext *c) { | |
1480 | assert(c); | |
1481 | ||
1482 | return c->address_families_allow_list || | |
1483 | !set_isempty(c->address_families); | |
1484 | } | |
1485 | ||
1486 | static bool context_has_syscall_filters(const ExecContext *c) { | |
1487 | assert(c); | |
1488 | ||
1489 | return c->syscall_allow_list || | |
1490 | !hashmap_isempty(c->syscall_filter); | |
1491 | } | |
1492 | ||
1493 | static bool context_has_syscall_logs(const ExecContext *c) { | |
1494 | assert(c); | |
1495 | ||
1496 | return c->syscall_log_allow_list || | |
1497 | !hashmap_isempty(c->syscall_log); | |
1498 | } | |
1499 | ||
1500 | static bool context_has_seccomp(const ExecContext *c) { | |
1501 | assert(c); | |
1502 | ||
1503 | /* We need NNP if we have any form of seccomp and are unprivileged */ | |
1504 | return c->lock_personality || | |
1505 | c->memory_deny_write_execute || | |
1506 | c->private_devices || | |
1507 | c->protect_clock || | |
1508 | c->protect_hostname == PROTECT_HOSTNAME_YES || | |
1509 | c->protect_kernel_tunables || | |
1510 | c->protect_kernel_modules || | |
1511 | c->protect_kernel_logs || | |
1512 | context_has_address_families(c) || | |
1513 | exec_context_restrict_namespaces_set(c) || | |
1514 | c->restrict_realtime || | |
1515 | c->restrict_suid_sgid || | |
1516 | !set_isempty(c->syscall_archs) || | |
1517 | context_has_syscall_filters(c) || | |
1518 | context_has_syscall_logs(c); | |
1519 | } | |
1520 | ||
1521 | static bool context_has_no_new_privileges(const ExecContext *c) { | |
1522 | assert(c); | |
1523 | ||
1524 | if (c->no_new_privileges) | |
1525 | return true; | |
1526 | ||
1527 | if (have_effective_cap(CAP_SYS_ADMIN) > 0) /* if we are privileged, we don't need NNP */ | |
1528 | return false; | |
1529 | ||
1530 | return context_has_seccomp(c); | |
1531 | } | |
1532 | ||
1533 | #if HAVE_SECCOMP | |
1534 | ||
1535 | static bool seccomp_allows_drop_privileges(const ExecContext *c) { | |
1536 | void *id, *val; | |
1537 | bool have_capget = false, have_capset = false, have_prctl = false; | |
1538 | ||
1539 | assert(c); | |
1540 | ||
1541 | /* No syscall filter, we are allowed to drop privileges */ | |
1542 | if (hashmap_isempty(c->syscall_filter)) | |
1543 | return true; | |
1544 | ||
1545 | HASHMAP_FOREACH_KEY(val, id, c->syscall_filter) { | |
1546 | _cleanup_free_ char *name = NULL; | |
1547 | ||
1548 | name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1); | |
1549 | ||
1550 | if (streq(name, "capget")) | |
1551 | have_capget = true; | |
1552 | else if (streq(name, "capset")) | |
1553 | have_capset = true; | |
1554 | else if (streq(name, "prctl")) | |
1555 | have_prctl = true; | |
1556 | } | |
1557 | ||
1558 | if (c->syscall_allow_list) | |
1559 | return have_capget && have_capset && have_prctl; | |
1560 | else | |
1561 | return !(have_capget || have_capset || have_prctl); | |
1562 | } | |
1563 | ||
1564 | static bool skip_seccomp_unavailable(const char *msg) { | |
1565 | assert(msg); | |
1566 | ||
1567 | if (is_seccomp_available()) | |
1568 | return false; | |
1569 | ||
1570 | log_debug("SECCOMP features not detected in the kernel, skipping %s", msg); | |
1571 | return true; | |
1572 | } | |
1573 | ||
1574 | static int apply_syscall_filter(const ExecContext *c, const ExecParameters *p) { | |
1575 | uint32_t negative_action, default_action, action; | |
1576 | int r; | |
1577 | ||
1578 | assert(c); | |
1579 | assert(p); | |
1580 | ||
1581 | if (!context_has_syscall_filters(c)) | |
1582 | return 0; | |
1583 | ||
1584 | if (skip_seccomp_unavailable("SystemCallFilter=")) | |
1585 | return 0; | |
1586 | ||
1587 | negative_action = c->syscall_errno == SECCOMP_ERROR_NUMBER_KILL ? scmp_act_kill_process() : SCMP_ACT_ERRNO(c->syscall_errno); | |
1588 | ||
1589 | if (c->syscall_allow_list) { | |
1590 | default_action = negative_action; | |
1591 | action = SCMP_ACT_ALLOW; | |
1592 | } else { | |
1593 | default_action = SCMP_ACT_ALLOW; | |
1594 | action = negative_action; | |
1595 | } | |
1596 | ||
1597 | /* Sending over exec_fd or handoff_timestamp_fd requires write() syscall. */ | |
1598 | if (p->exec_fd >= 0 || p->handoff_timestamp_fd >= 0) { | |
1599 | r = seccomp_filter_set_add_by_name(c->syscall_filter, c->syscall_allow_list, "write"); | |
1600 | if (r < 0) | |
1601 | return r; | |
1602 | } | |
1603 | ||
1604 | return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_filter, action, false); | |
1605 | } | |
1606 | ||
1607 | static int apply_syscall_log(const ExecContext *c, const ExecParameters *p) { | |
1608 | #ifdef SCMP_ACT_LOG | |
1609 | uint32_t default_action, action; | |
1610 | #endif | |
1611 | ||
1612 | assert(c); | |
1613 | assert(p); | |
1614 | ||
1615 | if (!context_has_syscall_logs(c)) | |
1616 | return 0; | |
1617 | ||
1618 | #ifdef SCMP_ACT_LOG | |
1619 | if (skip_seccomp_unavailable("SystemCallLog=")) | |
1620 | return 0; | |
1621 | ||
1622 | if (c->syscall_log_allow_list) { | |
1623 | /* Log nothing but the ones listed */ | |
1624 | default_action = SCMP_ACT_ALLOW; | |
1625 | action = SCMP_ACT_LOG; | |
1626 | } else { | |
1627 | /* Log everything but the ones listed */ | |
1628 | default_action = SCMP_ACT_LOG; | |
1629 | action = SCMP_ACT_ALLOW; | |
1630 | } | |
1631 | ||
1632 | return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_log, action, false); | |
1633 | #else | |
1634 | /* old libseccomp */ | |
1635 | log_debug( "SECCOMP feature SCMP_ACT_LOG not available, skipping SystemCallLog="); | |
1636 | return 0; | |
1637 | #endif | |
1638 | } | |
1639 | ||
1640 | static int apply_syscall_archs(const ExecContext *c, const ExecParameters *p) { | |
1641 | assert(c); | |
1642 | assert(p); | |
1643 | ||
1644 | if (set_isempty(c->syscall_archs)) | |
1645 | return 0; | |
1646 | ||
1647 | if (skip_seccomp_unavailable("SystemCallArchitectures=")) | |
1648 | return 0; | |
1649 | ||
1650 | return seccomp_restrict_archs(c->syscall_archs); | |
1651 | } | |
1652 | ||
1653 | static int apply_address_families(const ExecContext *c, const ExecParameters *p) { | |
1654 | assert(c); | |
1655 | assert(p); | |
1656 | ||
1657 | if (!context_has_address_families(c)) | |
1658 | return 0; | |
1659 | ||
1660 | if (skip_seccomp_unavailable("RestrictAddressFamilies=")) | |
1661 | return 0; | |
1662 | ||
1663 | return seccomp_restrict_address_families(c->address_families, c->address_families_allow_list); | |
1664 | } | |
1665 | ||
1666 | static int apply_memory_deny_write_execute(const ExecContext *c, const ExecParameters *p) { | |
1667 | int r; | |
1668 | ||
1669 | assert(c); | |
1670 | assert(p); | |
1671 | ||
1672 | if (!c->memory_deny_write_execute) | |
1673 | return 0; | |
1674 | ||
1675 | /* use prctl() if kernel supports it (6.3) */ | |
1676 | r = prctl(PR_SET_MDWE, PR_MDWE_REFUSE_EXEC_GAIN, 0, 0, 0); | |
1677 | if (r == 0) { | |
1678 | log_debug("Enabled MemoryDenyWriteExecute= with PR_SET_MDWE"); | |
1679 | return 0; | |
1680 | } | |
1681 | if (r < 0 && errno != EINVAL) | |
1682 | return log_debug_errno(errno, "Failed to enable MemoryDenyWriteExecute= with PR_SET_MDWE: %m"); | |
1683 | /* else use seccomp */ | |
1684 | log_debug("Kernel doesn't support PR_SET_MDWE: falling back to seccomp"); | |
1685 | ||
1686 | if (skip_seccomp_unavailable("MemoryDenyWriteExecute=")) | |
1687 | return 0; | |
1688 | ||
1689 | return seccomp_memory_deny_write_execute(); | |
1690 | } | |
1691 | ||
1692 | static int apply_restrict_realtime(const ExecContext *c, const ExecParameters *p) { | |
1693 | assert(c); | |
1694 | assert(p); | |
1695 | ||
1696 | if (!c->restrict_realtime) | |
1697 | return 0; | |
1698 | ||
1699 | if (skip_seccomp_unavailable("RestrictRealtime=")) | |
1700 | return 0; | |
1701 | ||
1702 | return seccomp_restrict_realtime(); | |
1703 | } | |
1704 | ||
1705 | static int apply_restrict_suid_sgid(const ExecContext *c, const ExecParameters *p) { | |
1706 | assert(c); | |
1707 | assert(p); | |
1708 | ||
1709 | if (!c->restrict_suid_sgid) | |
1710 | return 0; | |
1711 | ||
1712 | if (skip_seccomp_unavailable("RestrictSUIDSGID=")) | |
1713 | return 0; | |
1714 | ||
1715 | return seccomp_restrict_suid_sgid(); | |
1716 | } | |
1717 | ||
1718 | static int apply_protect_sysctl(const ExecContext *c, const ExecParameters *p) { | |
1719 | assert(c); | |
1720 | assert(p); | |
1721 | ||
1722 | /* Turn off the legacy sysctl() system call. Many distributions turn this off while building the kernel, but | |
1723 | * let's protect even those systems where this is left on in the kernel. */ | |
1724 | ||
1725 | if (!c->protect_kernel_tunables) | |
1726 | return 0; | |
1727 | ||
1728 | if (skip_seccomp_unavailable("ProtectKernelTunables=")) | |
1729 | return 0; | |
1730 | ||
1731 | return seccomp_protect_sysctl(); | |
1732 | } | |
1733 | ||
1734 | static int apply_protect_kernel_modules(const ExecContext *c, const ExecParameters *p) { | |
1735 | assert(c); | |
1736 | assert(p); | |
1737 | ||
1738 | /* Turn off module syscalls on ProtectKernelModules=yes */ | |
1739 | ||
1740 | if (!c->protect_kernel_modules) | |
1741 | return 0; | |
1742 | ||
1743 | if (skip_seccomp_unavailable("ProtectKernelModules=")) | |
1744 | return 0; | |
1745 | ||
1746 | return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_MODULE, SCMP_ACT_ERRNO(EPERM), false); | |
1747 | } | |
1748 | ||
1749 | static int apply_protect_kernel_logs(const ExecContext *c, const ExecParameters *p) { | |
1750 | assert(c); | |
1751 | assert(p); | |
1752 | ||
1753 | if (!c->protect_kernel_logs) | |
1754 | return 0; | |
1755 | ||
1756 | if (skip_seccomp_unavailable("ProtectKernelLogs=")) | |
1757 | return 0; | |
1758 | ||
1759 | return seccomp_protect_syslog(); | |
1760 | } | |
1761 | ||
1762 | static int apply_protect_clock(const ExecContext *c, const ExecParameters *p) { | |
1763 | assert(c); | |
1764 | assert(p); | |
1765 | ||
1766 | if (!c->protect_clock) | |
1767 | return 0; | |
1768 | ||
1769 | if (skip_seccomp_unavailable("ProtectClock=")) | |
1770 | return 0; | |
1771 | ||
1772 | return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_CLOCK, SCMP_ACT_ERRNO(EPERM), false); | |
1773 | } | |
1774 | ||
1775 | static int apply_private_devices(const ExecContext *c, const ExecParameters *p) { | |
1776 | assert(c); | |
1777 | assert(p); | |
1778 | ||
1779 | /* If PrivateDevices= is set, also turn off iopl and all @raw-io syscalls. */ | |
1780 | ||
1781 | if (!c->private_devices) | |
1782 | return 0; | |
1783 | ||
1784 | if (skip_seccomp_unavailable("PrivateDevices=")) | |
1785 | return 0; | |
1786 | ||
1787 | return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_RAW_IO, SCMP_ACT_ERRNO(EPERM), false); | |
1788 | } | |
1789 | ||
1790 | static int apply_restrict_namespaces(const ExecContext *c, const ExecParameters *p) { | |
1791 | assert(c); | |
1792 | assert(p); | |
1793 | ||
1794 | if (!exec_context_restrict_namespaces_set(c)) | |
1795 | return 0; | |
1796 | ||
1797 | if (skip_seccomp_unavailable("RestrictNamespaces=")) | |
1798 | return 0; | |
1799 | ||
1800 | return seccomp_restrict_namespaces(c->restrict_namespaces); | |
1801 | } | |
1802 | ||
1803 | static int apply_lock_personality(const ExecContext *c, const ExecParameters *p) { | |
1804 | unsigned long personality; | |
1805 | int r; | |
1806 | ||
1807 | assert(c); | |
1808 | assert(p); | |
1809 | ||
1810 | if (!c->lock_personality) | |
1811 | return 0; | |
1812 | ||
1813 | if (skip_seccomp_unavailable("LockPersonality=")) | |
1814 | return 0; | |
1815 | ||
1816 | personality = c->personality; | |
1817 | ||
1818 | /* If personality is not specified, use either PER_LINUX or PER_LINUX32 depending on what is currently set. */ | |
1819 | if (personality == PERSONALITY_INVALID) { | |
1820 | ||
1821 | r = opinionated_personality(&personality); | |
1822 | if (r < 0) | |
1823 | return r; | |
1824 | } | |
1825 | ||
1826 | return seccomp_lock_personality(personality); | |
1827 | } | |
1828 | ||
1829 | #endif | |
1830 | ||
1831 | #if HAVE_LIBBPF | |
1832 | static int apply_restrict_filesystems(const ExecContext *c, const ExecParameters *p) { | |
1833 | int r; | |
1834 | ||
1835 | assert(c); | |
1836 | assert(p); | |
1837 | ||
1838 | if (!exec_context_restrict_filesystems_set(c)) | |
1839 | return 0; | |
1840 | ||
1841 | if (p->bpf_restrict_fs_map_fd < 0) { | |
1842 | /* LSM BPF is unsupported or lsm_bpf_setup failed */ | |
1843 | log_debug("LSM BPF not supported, skipping RestrictFileSystems="); | |
1844 | return 0; | |
1845 | } | |
1846 | ||
1847 | /* We are in a new binary, so dl-open again */ | |
1848 | r = dlopen_bpf(); | |
1849 | if (r < 0) | |
1850 | return r; | |
1851 | ||
1852 | return bpf_restrict_fs_update(c->restrict_filesystems, p->cgroup_id, p->bpf_restrict_fs_map_fd, c->restrict_filesystems_allow_list); | |
1853 | } | |
1854 | #endif | |
1855 | ||
1856 | static int apply_protect_hostname(const ExecContext *c, const ExecParameters *p, int *ret_exit_status) { | |
1857 | int r; | |
1858 | ||
1859 | assert(c); | |
1860 | assert(p); | |
1861 | assert(ret_exit_status); | |
1862 | ||
1863 | if (c->protect_hostname == PROTECT_HOSTNAME_NO) | |
1864 | return 0; | |
1865 | ||
1866 | if (namespace_type_supported(NAMESPACE_UTS)) { | |
1867 | if (unshare(CLONE_NEWUTS) < 0) { | |
1868 | if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno)) { | |
1869 | *ret_exit_status = EXIT_NAMESPACE; | |
1870 | return log_error_errno(errno, "Failed to set up UTS namespacing: %m"); | |
1871 | } | |
1872 | ||
1873 | log_warning("ProtectHostname=%s is configured, but UTS namespace setup is prohibited (container manager?), ignoring namespace setup.", | |
1874 | protect_hostname_to_string(c->protect_hostname)); | |
1875 | ||
1876 | } else if (c->private_hostname) { | |
1877 | r = sethostname_idempotent(c->private_hostname); | |
1878 | if (r < 0) { | |
1879 | *ret_exit_status = EXIT_NAMESPACE; | |
1880 | return log_error_errno(r, "Failed to set private hostname '%s': %m", c->private_hostname); | |
1881 | } | |
1882 | } | |
1883 | } else | |
1884 | log_warning("ProtectHostname=%s is configured, but the kernel does not support UTS namespaces, ignoring namespace setup.", | |
1885 | protect_hostname_to_string(c->protect_hostname)); | |
1886 | ||
1887 | #if HAVE_SECCOMP | |
1888 | if (c->protect_hostname == PROTECT_HOSTNAME_YES) { | |
1889 | if (skip_seccomp_unavailable("ProtectHostname=")) | |
1890 | return 0; | |
1891 | ||
1892 | r = seccomp_protect_hostname(); | |
1893 | if (r < 0) { | |
1894 | *ret_exit_status = EXIT_SECCOMP; | |
1895 | return log_error_errno(r, "Failed to apply hostname restrictions: %m"); | |
1896 | } | |
1897 | } | |
1898 | #endif | |
1899 | ||
1900 | return 1; | |
1901 | } | |
1902 | ||
1903 | static void do_idle_pipe_dance(int idle_pipe[static 4]) { | |
1904 | assert(idle_pipe); | |
1905 | ||
1906 | idle_pipe[1] = safe_close(idle_pipe[1]); | |
1907 | idle_pipe[2] = safe_close(idle_pipe[2]); | |
1908 | ||
1909 | if (idle_pipe[0] >= 0) { | |
1910 | int r; | |
1911 | ||
1912 | r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC); | |
1913 | ||
1914 | if (idle_pipe[3] >= 0 && r == 0 /* timeout */) { | |
1915 | ssize_t n; | |
1916 | ||
1917 | /* Signal systemd that we are bored and want to continue. */ | |
1918 | n = write(idle_pipe[3], "x", 1); | |
1919 | if (n > 0) | |
1920 | /* Wait for systemd to react to the signal above. */ | |
1921 | (void) fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC); | |
1922 | } | |
1923 | ||
1924 | idle_pipe[0] = safe_close(idle_pipe[0]); | |
1925 | ||
1926 | } | |
1927 | ||
1928 | idle_pipe[3] = safe_close(idle_pipe[3]); | |
1929 | } | |
1930 | ||
1931 | static const char *exec_directory_env_name_to_string(ExecDirectoryType t); | |
1932 | ||
1933 | /* And this table also maps ExecDirectoryType, to the environment variable we pass the selected directory to | |
1934 | * the service payload in. */ | |
1935 | static const char* const exec_directory_env_name_table[_EXEC_DIRECTORY_TYPE_MAX] = { | |
1936 | [EXEC_DIRECTORY_RUNTIME] = "RUNTIME_DIRECTORY", | |
1937 | [EXEC_DIRECTORY_STATE] = "STATE_DIRECTORY", | |
1938 | [EXEC_DIRECTORY_CACHE] = "CACHE_DIRECTORY", | |
1939 | [EXEC_DIRECTORY_LOGS] = "LOGS_DIRECTORY", | |
1940 | [EXEC_DIRECTORY_CONFIGURATION] = "CONFIGURATION_DIRECTORY", | |
1941 | }; | |
1942 | ||
1943 | DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(exec_directory_env_name, ExecDirectoryType); | |
1944 | ||
1945 | static int build_environment( | |
1946 | const ExecContext *c, | |
1947 | const ExecParameters *p, | |
1948 | const CGroupContext *cgroup_context, | |
1949 | size_t n_fds, | |
1950 | const char *home, | |
1951 | const char *username, | |
1952 | const char *shell, | |
1953 | dev_t journal_stream_dev, | |
1954 | ino_t journal_stream_ino, | |
1955 | const char *memory_pressure_path, | |
1956 | bool needs_sandboxing, | |
1957 | char ***ret) { | |
1958 | ||
1959 | _cleanup_strv_free_ char **our_env = NULL; | |
1960 | size_t n_env = 0; | |
1961 | char *x; | |
1962 | int r; | |
1963 | ||
1964 | assert(c); | |
1965 | assert(p); | |
1966 | assert(cgroup_context); | |
1967 | assert(ret); | |
1968 | ||
1969 | #define N_ENV_VARS 19 | |
1970 | our_env = new0(char*, N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX + 1); | |
1971 | if (!our_env) | |
1972 | return -ENOMEM; | |
1973 | ||
1974 | if (n_fds > 0) { | |
1975 | _cleanup_free_ char *joined = NULL; | |
1976 | ||
1977 | if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid_cached()) < 0) | |
1978 | return -ENOMEM; | |
1979 | our_env[n_env++] = x; | |
1980 | ||
1981 | if (asprintf(&x, "LISTEN_FDS=%zu", n_fds) < 0) | |
1982 | return -ENOMEM; | |
1983 | our_env[n_env++] = x; | |
1984 | ||
1985 | joined = strv_join(p->fd_names, ":"); | |
1986 | if (!joined) | |
1987 | return -ENOMEM; | |
1988 | ||
1989 | x = strjoin("LISTEN_FDNAMES=", joined); | |
1990 | if (!x) | |
1991 | return -ENOMEM; | |
1992 | our_env[n_env++] = x; | |
1993 | } | |
1994 | ||
1995 | if ((p->flags & EXEC_SET_WATCHDOG) && p->watchdog_usec > 0) { | |
1996 | if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid_cached()) < 0) | |
1997 | return -ENOMEM; | |
1998 | our_env[n_env++] = x; | |
1999 | ||
2000 | if (asprintf(&x, "WATCHDOG_USEC="USEC_FMT, p->watchdog_usec) < 0) | |
2001 | return -ENOMEM; | |
2002 | our_env[n_env++] = x; | |
2003 | } | |
2004 | ||
2005 | /* If this is D-Bus, tell the nss-systemd module, since it relies on being able to use blocking | |
2006 | * Varlink calls back to us for look up dynamic users in PID 1. Break the deadlock between D-Bus and | |
2007 | * PID 1 by disabling use of PID1' NSS interface for looking up dynamic users. */ | |
2008 | if (p->flags & EXEC_NSS_DYNAMIC_BYPASS) { | |
2009 | x = strdup("SYSTEMD_NSS_DYNAMIC_BYPASS=1"); | |
2010 | if (!x) | |
2011 | return -ENOMEM; | |
2012 | our_env[n_env++] = x; | |
2013 | } | |
2014 | ||
2015 | /* We query "root" if this is a system unit and User= is not specified. $USER is always set. $HOME | |
2016 | * could cause problem for e.g. getty, since login doesn't override $HOME, and $LOGNAME and $SHELL don't | |
2017 | * really make much sense since we're not logged in. Hence we conditionalize the three based on | |
2018 | * SetLoginEnvironment= switch. */ | |
2019 | if (!username && !c->dynamic_user && p->runtime_scope == RUNTIME_SCOPE_SYSTEM) { | |
2020 | assert(!c->user); | |
2021 | ||
2022 | r = get_fixed_user("root", /* prefer_nss = */ false, &username, NULL, NULL, &home, &shell); | |
2023 | if (r < 0) | |
2024 | return log_debug_errno(r, "Failed to determine user credentials for root: %m"); | |
2025 | } | |
2026 | ||
2027 | bool set_user_login_env = exec_context_get_set_login_environment(c); | |
2028 | ||
2029 | if (username) { | |
2030 | x = strjoin("USER=", username); | |
2031 | if (!x) | |
2032 | return -ENOMEM; | |
2033 | our_env[n_env++] = x; | |
2034 | ||
2035 | if (set_user_login_env) { | |
2036 | x = strjoin("LOGNAME=", username); | |
2037 | if (!x) | |
2038 | return -ENOMEM; | |
2039 | our_env[n_env++] = x; | |
2040 | } | |
2041 | } | |
2042 | ||
2043 | /* Note that we don't set $HOME or $SHELL if they are not particularly enlightening anyway | |
2044 | * (i.e. are "/" or "/bin/nologin"). */ | |
2045 | ||
2046 | if (home && set_user_login_env && !empty_or_root(home)) { | |
2047 | x = strjoin("HOME=", home); | |
2048 | if (!x) | |
2049 | return -ENOMEM; | |
2050 | ||
2051 | path_simplify(x + 5); | |
2052 | our_env[n_env++] = x; | |
2053 | } | |
2054 | ||
2055 | if (shell && set_user_login_env && !shell_is_placeholder(shell)) { | |
2056 | x = strjoin("SHELL=", shell); | |
2057 | if (!x) | |
2058 | return -ENOMEM; | |
2059 | ||
2060 | path_simplify(x + 6); | |
2061 | our_env[n_env++] = x; | |
2062 | } | |
2063 | ||
2064 | if (!sd_id128_is_null(p->invocation_id)) { | |
2065 | assert(p->invocation_id_string); | |
2066 | ||
2067 | x = strjoin("INVOCATION_ID=", p->invocation_id_string); | |
2068 | if (!x) | |
2069 | return -ENOMEM; | |
2070 | ||
2071 | our_env[n_env++] = x; | |
2072 | } | |
2073 | ||
2074 | if (journal_stream_dev != 0 && journal_stream_ino != 0) { | |
2075 | if (asprintf(&x, "JOURNAL_STREAM=" DEV_FMT ":" INO_FMT, journal_stream_dev, journal_stream_ino) < 0) | |
2076 | return -ENOMEM; | |
2077 | ||
2078 | our_env[n_env++] = x; | |
2079 | } | |
2080 | ||
2081 | if (c->log_namespace) { | |
2082 | x = strjoin("LOG_NAMESPACE=", c->log_namespace); | |
2083 | if (!x) | |
2084 | return -ENOMEM; | |
2085 | ||
2086 | our_env[n_env++] = x; | |
2087 | } | |
2088 | ||
2089 | for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) { | |
2090 | _cleanup_free_ char *joined = NULL; | |
2091 | const char *n; | |
2092 | ||
2093 | if (!p->prefix[t]) | |
2094 | continue; | |
2095 | ||
2096 | if (c->directories[t].n_items == 0) | |
2097 | continue; | |
2098 | ||
2099 | n = exec_directory_env_name_to_string(t); | |
2100 | if (!n) | |
2101 | continue; | |
2102 | ||
2103 | for (size_t i = 0; i < c->directories[t].n_items; i++) { | |
2104 | _cleanup_free_ char *prefixed = NULL; | |
2105 | ||
2106 | prefixed = path_join(p->prefix[t], c->directories[t].items[i].path); | |
2107 | if (!prefixed) | |
2108 | return -ENOMEM; | |
2109 | ||
2110 | if (!strextend_with_separator(&joined, ":", prefixed)) | |
2111 | return -ENOMEM; | |
2112 | } | |
2113 | ||
2114 | x = strjoin(n, "=", joined); | |
2115 | if (!x) | |
2116 | return -ENOMEM; | |
2117 | ||
2118 | our_env[n_env++] = x; | |
2119 | } | |
2120 | ||
2121 | _cleanup_free_ char *creds_dir = NULL; | |
2122 | r = exec_context_get_credential_directory(c, p, p->unit_id, &creds_dir); | |
2123 | if (r < 0) | |
2124 | return r; | |
2125 | if (r > 0) { | |
2126 | x = strjoin("CREDENTIALS_DIRECTORY=", creds_dir); | |
2127 | if (!x) | |
2128 | return -ENOMEM; | |
2129 | ||
2130 | our_env[n_env++] = x; | |
2131 | } | |
2132 | ||
2133 | if (asprintf(&x, "SYSTEMD_EXEC_PID=" PID_FMT, getpid_cached()) < 0) | |
2134 | return -ENOMEM; | |
2135 | ||
2136 | our_env[n_env++] = x; | |
2137 | ||
2138 | if (memory_pressure_path) { | |
2139 | x = strjoin("MEMORY_PRESSURE_WATCH=", memory_pressure_path); | |
2140 | if (!x) | |
2141 | return -ENOMEM; | |
2142 | ||
2143 | our_env[n_env++] = x; | |
2144 | ||
2145 | if (!path_equal(memory_pressure_path, "/dev/null")) { | |
2146 | _cleanup_free_ char *b = NULL, *e = NULL; | |
2147 | ||
2148 | if (asprintf(&b, "%s " USEC_FMT " " USEC_FMT, | |
2149 | MEMORY_PRESSURE_DEFAULT_TYPE, | |
2150 | cgroup_context->memory_pressure_threshold_usec == USEC_INFINITY ? MEMORY_PRESSURE_DEFAULT_THRESHOLD_USEC : | |
2151 | CLAMP(cgroup_context->memory_pressure_threshold_usec, 1U, MEMORY_PRESSURE_DEFAULT_WINDOW_USEC), | |
2152 | MEMORY_PRESSURE_DEFAULT_WINDOW_USEC) < 0) | |
2153 | return -ENOMEM; | |
2154 | ||
2155 | if (base64mem(b, strlen(b) + 1, &e) < 0) | |
2156 | return -ENOMEM; | |
2157 | ||
2158 | x = strjoin("MEMORY_PRESSURE_WRITE=", e); | |
2159 | if (!x) | |
2160 | return -ENOMEM; | |
2161 | ||
2162 | our_env[n_env++] = x; | |
2163 | } | |
2164 | } | |
2165 | ||
2166 | if (p->notify_socket) { | |
2167 | x = strjoin("NOTIFY_SOCKET=", exec_get_private_notify_socket_path(c, p, needs_sandboxing) ?: p->notify_socket); | |
2168 | if (!x) | |
2169 | return -ENOMEM; | |
2170 | ||
2171 | our_env[n_env++] = x; | |
2172 | } | |
2173 | ||
2174 | assert(c->private_var_tmp >= 0 && c->private_var_tmp < _PRIVATE_TMP_MAX); | |
2175 | if (needs_sandboxing && c->private_tmp != c->private_var_tmp) { | |
2176 | assert(c->private_tmp == PRIVATE_TMP_DISCONNECTED); | |
2177 | assert(c->private_var_tmp == PRIVATE_TMP_NO); | |
2178 | ||
2179 | /* When private tmpfs is enabled only on /tmp/, then explicitly set $TMPDIR to suggest the | |
2180 | * service to use /tmp/. */ | |
2181 | ||
2182 | x = strdup("TMPDIR=/tmp"); | |
2183 | if (!x) | |
2184 | return -ENOMEM; | |
2185 | ||
2186 | our_env[n_env++] = x; | |
2187 | } | |
2188 | ||
2189 | assert(n_env <= N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX); | |
2190 | #undef N_ENV_VARS | |
2191 | ||
2192 | *ret = TAKE_PTR(our_env); | |
2193 | ||
2194 | return 0; | |
2195 | } | |
2196 | ||
2197 | static int build_pass_environment(const ExecContext *c, char ***ret) { | |
2198 | _cleanup_strv_free_ char **pass_env = NULL; | |
2199 | size_t n_env = 0; | |
2200 | ||
2201 | assert(c); | |
2202 | assert(ret); | |
2203 | ||
2204 | STRV_FOREACH(i, c->pass_environment) { | |
2205 | _cleanup_free_ char *x = NULL; | |
2206 | char *v; | |
2207 | ||
2208 | v = getenv(*i); | |
2209 | if (!v) | |
2210 | continue; | |
2211 | x = strjoin(*i, "=", v); | |
2212 | if (!x) | |
2213 | return -ENOMEM; | |
2214 | ||
2215 | if (!GREEDY_REALLOC(pass_env, n_env + 2)) | |
2216 | return -ENOMEM; | |
2217 | ||
2218 | pass_env[n_env++] = TAKE_PTR(x); | |
2219 | pass_env[n_env] = NULL; | |
2220 | } | |
2221 | ||
2222 | *ret = TAKE_PTR(pass_env); | |
2223 | return 0; | |
2224 | } | |
2225 | ||
2226 | static int setup_private_users(PrivateUsers private_users, uid_t ouid, gid_t ogid, uid_t uid, gid_t gid, bool allow_setgroups) { | |
2227 | _cleanup_free_ char *uid_map = NULL, *gid_map = NULL; | |
2228 | _cleanup_close_pair_ int errno_pipe[2] = EBADF_PAIR; | |
2229 | _cleanup_close_ int unshare_ready_fd = -EBADF; | |
2230 | _cleanup_(sigkill_waitp) pid_t pid = 0; | |
2231 | uint64_t c = 1; | |
2232 | ssize_t n; | |
2233 | int r; | |
2234 | ||
2235 | /* Set up a user namespace and map the original UID/GID (IDs from before any user or group changes, i.e. | |
2236 | * the IDs from the user or system manager(s)) to itself, the selected UID/GID to itself, and everything else to | |
2237 | * nobody. In order to be able to write this mapping we need CAP_SETUID in the original user namespace, which | |
2238 | * we however lack after opening the user namespace. To work around this we fork() a temporary child process, | |
2239 | * which waits for the parent to create the new user namespace while staying in the original namespace. The | |
2240 | * child then writes the UID mapping, under full privileges. The parent waits for the child to finish and | |
2241 | * continues execution normally. | |
2242 | * For unprivileged users (i.e. without capabilities), the root to root mapping is excluded. As such, it | |
2243 | * does not need CAP_SETUID to write the single line mapping to itself. */ | |
2244 | ||
2245 | if (private_users == PRIVATE_USERS_NO) | |
2246 | return 0; | |
2247 | ||
2248 | if (private_users == PRIVATE_USERS_IDENTITY) { | |
2249 | uid_map = strdup("0 0 65536\n"); | |
2250 | if (!uid_map) | |
2251 | return -ENOMEM; | |
2252 | } else if (private_users == PRIVATE_USERS_FULL) { | |
2253 | /* Map all UID/GID from original to new user namespace. We can't use `0 0 UINT32_MAX` because | |
2254 | * this is the same UID/GID map as the init user namespace and systemd's running_in_userns() | |
2255 | * checks whether its in a user namespace by comparing uid_map/gid_map to `0 0 UINT32_MAX`. | |
2256 | * Thus, we still map all UIDs/GIDs but do it using two extents to differentiate the new user | |
2257 | * namespace from the init namespace: | |
2258 | * 0 0 1 | |
2259 | * 1 1 UINT32_MAX - 1 | |
2260 | * | |
2261 | * systemd will remove the heuristic in running_in_userns() and use namespace inodes in version 258 | |
2262 | * (PR #35382). But some users may be running a container image with older systemd < 258 so we keep | |
2263 | * this uid_map/gid_map hack until version 259 for version N-1 compatibility. | |
2264 | * | |
2265 | * TODO: Switch to `0 0 UINT32_MAX` in systemd v259. | |
2266 | * | |
2267 | * Note the kernel defines the UID range between 0 and UINT32_MAX so we map all UIDs even though | |
2268 | * the UID range beyond INT32_MAX (e.g. i.e. the range above the signed 32-bit range) is | |
2269 | * icky. For example, setfsuid() returns the old UID as signed integer. But units can decide to | |
2270 | * use these UIDs/GIDs so we need to map them. */ | |
2271 | r = asprintf(&uid_map, "0 0 1\n" | |
2272 | "1 1 " UID_FMT "\n", (uid_t) (UINT32_MAX - 1)); | |
2273 | if (r < 0) | |
2274 | return -ENOMEM; | |
2275 | /* Can only set up multiple mappings with CAP_SETUID. */ | |
2276 | } else if (have_effective_cap(CAP_SETUID) > 0 && uid != ouid && uid_is_valid(uid)) { | |
2277 | r = asprintf(&uid_map, | |
2278 | UID_FMT " " UID_FMT " 1\n" /* Map $OUID → $OUID */ | |
2279 | UID_FMT " " UID_FMT " 1\n", /* Map $UID → $UID */ | |
2280 | ouid, ouid, uid, uid); | |
2281 | if (r < 0) | |
2282 | return -ENOMEM; | |
2283 | } else { | |
2284 | r = asprintf(&uid_map, | |
2285 | UID_FMT " " UID_FMT " 1\n", /* Map $OUID → $OUID */ | |
2286 | ouid, ouid); | |
2287 | if (r < 0) | |
2288 | return -ENOMEM; | |
2289 | } | |
2290 | ||
2291 | if (private_users == PRIVATE_USERS_IDENTITY) { | |
2292 | gid_map = strdup("0 0 65536\n"); | |
2293 | if (!gid_map) | |
2294 | return -ENOMEM; | |
2295 | } else if (private_users == PRIVATE_USERS_FULL) { | |
2296 | r = asprintf(&gid_map, "0 0 1\n" | |
2297 | "1 1 " GID_FMT "\n", (gid_t) (UINT32_MAX - 1)); | |
2298 | if (r < 0) | |
2299 | return -ENOMEM; | |
2300 | /* Can only set up multiple mappings with CAP_SETGID. */ | |
2301 | } else if (have_effective_cap(CAP_SETGID) > 0 && gid != ogid && gid_is_valid(gid)) { | |
2302 | r = asprintf(&gid_map, | |
2303 | GID_FMT " " GID_FMT " 1\n" /* Map $OGID → $OGID */ | |
2304 | GID_FMT " " GID_FMT " 1\n", /* Map $GID → $GID */ | |
2305 | ogid, ogid, gid, gid); | |
2306 | if (r < 0) | |
2307 | return -ENOMEM; | |
2308 | } else { | |
2309 | r = asprintf(&gid_map, | |
2310 | GID_FMT " " GID_FMT " 1\n", /* Map $OGID -> $OGID */ | |
2311 | ogid, ogid); | |
2312 | if (r < 0) | |
2313 | return -ENOMEM; | |
2314 | } | |
2315 | ||
2316 | /* Create a communication channel so that the parent can tell the child when it finished creating the user | |
2317 | * namespace. */ | |
2318 | unshare_ready_fd = eventfd(0, EFD_CLOEXEC); | |
2319 | if (unshare_ready_fd < 0) | |
2320 | return -errno; | |
2321 | ||
2322 | /* Create a communication channel so that the child can tell the parent a proper error code in case it | |
2323 | * failed. */ | |
2324 | if (pipe2(errno_pipe, O_CLOEXEC) < 0) | |
2325 | return -errno; | |
2326 | ||
2327 | r = safe_fork("(sd-userns)", FORK_RESET_SIGNALS|FORK_DEATHSIG_SIGKILL, &pid); | |
2328 | if (r < 0) | |
2329 | return r; | |
2330 | if (r == 0) { | |
2331 | _cleanup_close_ int fd = -EBADF; | |
2332 | const char *a; | |
2333 | pid_t ppid; | |
2334 | ||
2335 | /* Child process, running in the original user namespace. Let's update the parent's UID/GID map from | |
2336 | * here, after the parent opened its own user namespace. */ | |
2337 | ||
2338 | ppid = getppid(); | |
2339 | errno_pipe[0] = safe_close(errno_pipe[0]); | |
2340 | ||
2341 | /* Wait until the parent unshared the user namespace */ | |
2342 | if (read(unshare_ready_fd, &c, sizeof(c)) < 0) | |
2343 | report_errno_and_exit(errno_pipe[1], -errno); | |
2344 | ||
2345 | /* Disable the setgroups() system call in the child user namespace, for good, unless PrivateUsers=full | |
2346 | * and using the system service manager. */ | |
2347 | a = procfs_file_alloca(ppid, "setgroups"); | |
2348 | fd = open(a, O_WRONLY|O_CLOEXEC); | |
2349 | if (fd < 0) { | |
2350 | if (errno != ENOENT) { | |
2351 | r = log_debug_errno(errno, "Failed to open %s: %m", a); | |
2352 | report_errno_and_exit(errno_pipe[1], r); | |
2353 | } | |
2354 | ||
2355 | /* If the file is missing the kernel is too old, let's continue anyway. */ | |
2356 | } else { | |
2357 | const char *setgroups = allow_setgroups ? "allow\n" : "deny\n"; | |
2358 | if (write(fd, setgroups, strlen(setgroups)) < 0) { | |
2359 | r = log_debug_errno(errno, "Failed to write '%s' to %s: %m", setgroups, a); | |
2360 | report_errno_and_exit(errno_pipe[1], r); | |
2361 | } | |
2362 | ||
2363 | fd = safe_close(fd); | |
2364 | } | |
2365 | ||
2366 | /* First write the GID map */ | |
2367 | a = procfs_file_alloca(ppid, "gid_map"); | |
2368 | fd = open(a, O_WRONLY|O_CLOEXEC); | |
2369 | if (fd < 0) { | |
2370 | r = log_debug_errno(errno, "Failed to open %s: %m", a); | |
2371 | report_errno_and_exit(errno_pipe[1], r); | |
2372 | } | |
2373 | ||
2374 | if (write(fd, gid_map, strlen(gid_map)) < 0) { | |
2375 | r = log_debug_errno(errno, "Failed to write GID map to %s: %m", a); | |
2376 | report_errno_and_exit(errno_pipe[1], r); | |
2377 | } | |
2378 | ||
2379 | fd = safe_close(fd); | |
2380 | ||
2381 | /* The write the UID map */ | |
2382 | a = procfs_file_alloca(ppid, "uid_map"); | |
2383 | fd = open(a, O_WRONLY|O_CLOEXEC); | |
2384 | if (fd < 0) { | |
2385 | r = log_debug_errno(errno, "Failed to open %s: %m", a); | |
2386 | report_errno_and_exit(errno_pipe[1], r); | |
2387 | } | |
2388 | ||
2389 | if (write(fd, uid_map, strlen(uid_map)) < 0) { | |
2390 | r = log_debug_errno(errno, "Failed to write UID map to %s: %m", a); | |
2391 | report_errno_and_exit(errno_pipe[1], r); | |
2392 | } | |
2393 | ||
2394 | _exit(EXIT_SUCCESS); | |
2395 | } | |
2396 | ||
2397 | errno_pipe[1] = safe_close(errno_pipe[1]); | |
2398 | ||
2399 | if (unshare(CLONE_NEWUSER) < 0) | |
2400 | return log_debug_errno(errno, "Failed to unshare user namespace: %m"); | |
2401 | ||
2402 | /* Let the child know that the namespace is ready now */ | |
2403 | if (write(unshare_ready_fd, &c, sizeof(c)) < 0) | |
2404 | return -errno; | |
2405 | ||
2406 | /* Try to read an error code from the child */ | |
2407 | n = read(errno_pipe[0], &r, sizeof(r)); | |
2408 | if (n < 0) | |
2409 | return -errno; | |
2410 | if (n == sizeof(r)) { /* an error code was sent to us */ | |
2411 | if (r < 0) | |
2412 | return r; | |
2413 | return -EIO; | |
2414 | } | |
2415 | if (n != 0) /* on success we should have read 0 bytes */ | |
2416 | return -EIO; | |
2417 | ||
2418 | r = wait_for_terminate_and_check("(sd-userns)", TAKE_PID(pid), 0); | |
2419 | if (r < 0) | |
2420 | return r; | |
2421 | if (r != EXIT_SUCCESS) /* If something strange happened with the child, let's consider this fatal, too */ | |
2422 | return -EIO; | |
2423 | ||
2424 | return 1; | |
2425 | } | |
2426 | ||
2427 | static int can_mount_proc(void) { | |
2428 | _cleanup_close_pair_ int errno_pipe[2] = EBADF_PAIR; | |
2429 | _cleanup_(sigkill_waitp) pid_t pid = 0; | |
2430 | ssize_t n; | |
2431 | int r; | |
2432 | ||
2433 | /* If running via unprivileged user manager and /proc/ is masked (e.g. /proc/kmsg is over-mounted with tmpfs | |
2434 | * like systemd-nspawn does), then mounting /proc/ will fail with EPERM. This is due to a kernel restriction | |
2435 | * where unprivileged user namespaces cannot mount a less restrictive instance of /proc. */ | |
2436 | ||
2437 | /* Create a communication channel so that the child can tell the parent a proper error code in case it | |
2438 | * failed. */ | |
2439 | if (pipe2(errno_pipe, O_CLOEXEC) < 0) | |
2440 | return log_debug_errno(errno, "Failed to create pipe for communicating with child process (sd-proc-check): %m"); | |
2441 | ||
2442 | /* Fork a child process into its own mount and PID namespace. Note safe_fork() already remounts / as SLAVE | |
2443 | * with FORK_MOUNTNS_SLAVE. */ | |
2444 | r = safe_fork("(sd-proc-check)", | |
2445 | FORK_RESET_SIGNALS|FORK_DEATHSIG_SIGKILL|FORK_NEW_MOUNTNS|FORK_MOUNTNS_SLAVE|FORK_NEW_PIDNS, &pid); | |
2446 | if (r < 0) | |
2447 | return log_debug_errno(r, "Failed to fork child process (sd-proc-check): %m"); | |
2448 | if (r == 0) { | |
2449 | errno_pipe[0] = safe_close(errno_pipe[0]); | |
2450 | ||
2451 | /* Try mounting /proc on /dev/shm/. No need to clean up the mount since the mount | |
2452 | * namespace will be cleaned up once the process exits. */ | |
2453 | r = mount_follow_verbose(LOG_DEBUG, "proc", "/dev/shm/", "proc", MS_NOSUID|MS_NOEXEC|MS_NODEV, NULL); | |
2454 | if (r < 0) { | |
2455 | (void) write(errno_pipe[1], &r, sizeof(r)); | |
2456 | _exit(EXIT_FAILURE); | |
2457 | } | |
2458 | ||
2459 | _exit(EXIT_SUCCESS); | |
2460 | } | |
2461 | ||
2462 | errno_pipe[1] = safe_close(errno_pipe[1]); | |
2463 | ||
2464 | /* Try to read an error code from the child */ | |
2465 | n = read(errno_pipe[0], &r, sizeof(r)); | |
2466 | if (n < 0) | |
2467 | return log_debug_errno(errno, "Failed to read errno from pipe with child process (sd-proc-check): %m"); | |
2468 | if (n == sizeof(r)) { /* an error code was sent to us */ | |
2469 | /* This is the expected case where proc cannot be mounted due to permissions. */ | |
2470 | if (ERRNO_IS_NEG_PRIVILEGE(r)) | |
2471 | return 0; | |
2472 | if (r < 0) | |
2473 | return r; | |
2474 | ||
2475 | return -EIO; | |
2476 | } | |
2477 | if (n != 0) /* on success we should have read 0 bytes */ | |
2478 | return -EIO; | |
2479 | ||
2480 | r = wait_for_terminate_and_check("(sd-proc-check)", TAKE_PID(pid), 0 /* flags= */); | |
2481 | if (r < 0) | |
2482 | return log_debug_errno(r, "Failed to wait for (sd-proc-check) child process to terminate: %m"); | |
2483 | if (r != EXIT_SUCCESS) /* If something strange happened with the child, let's consider this fatal, too */ | |
2484 | return log_debug_errno(SYNTHETIC_ERRNO(EIO), "Child process (sd-proc-check) exited with unexpected exit status '%d'.", r); | |
2485 | ||
2486 | return 1; | |
2487 | } | |
2488 | ||
2489 | static int setup_private_pids(const ExecContext *c, ExecParameters *p) { | |
2490 | _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL; | |
2491 | _cleanup_close_pair_ int errno_pipe[2] = EBADF_PAIR; | |
2492 | ssize_t n; | |
2493 | int r, q; | |
2494 | ||
2495 | assert(c); | |
2496 | assert(p); | |
2497 | assert(p->pidref_transport_fd >= 0); | |
2498 | ||
2499 | /* The first process created after unsharing a pid namespace becomes PID 1 in the pid namespace, so | |
2500 | * we have to fork after unsharing the pid namespace to become PID 1. The parent sends the child | |
2501 | * pidref to the manager and exits while the child process continues with the rest of exec_invoke() | |
2502 | * and finally executes the actual payload. */ | |
2503 | ||
2504 | /* Create a communication channel so that the parent can tell the child a proper error code in case it | |
2505 | * failed to send child pidref to the manager. */ | |
2506 | if (pipe2(errno_pipe, O_CLOEXEC) < 0) | |
2507 | return log_debug_errno(errno, "Failed to create pipe for communicating with parent process: %m"); | |
2508 | ||
2509 | /* Set FORK_DETACH to immediately re-parent the child process to the invoking manager process. */ | |
2510 | r = pidref_safe_fork("(sd-pidns-child)", FORK_NEW_PIDNS|FORK_DETACH, &pidref); | |
2511 | if (r < 0) | |
2512 | return log_debug_errno(r, "Failed to fork child into new pid namespace: %m"); | |
2513 | if (r > 0) { | |
2514 | errno_pipe[0] = safe_close(errno_pipe[0]); | |
2515 | ||
2516 | /* In the parent process, we send the child pidref to the manager and exit. | |
2517 | * If PIDFD is not supported, only the child PID is sent. The server then | |
2518 | * uses the child PID to set the new exec main process. */ | |
2519 | q = send_one_fd_iov( | |
2520 | p->pidref_transport_fd, | |
2521 | pidref.fd, | |
2522 | &IOVEC_MAKE(&pidref.pid, sizeof(pidref.pid)), | |
2523 | /*iovlen=*/ 1, | |
2524 | /*flags=*/ 0); | |
2525 | /* Send error code to child process. */ | |
2526 | (void) write(errno_pipe[1], &q, sizeof(q)); | |
2527 | /* Exit here so we only go through the destructors in exec_invoke only once - in the child - as | |
2528 | * some destructors have external effects. The main codepaths continue in the child process. */ | |
2529 | _exit(q < 0 ? EXIT_FAILURE : EXIT_SUCCESS); | |
2530 | } | |
2531 | ||
2532 | errno_pipe[1] = safe_close(errno_pipe[1]); | |
2533 | p->pidref_transport_fd = safe_close(p->pidref_transport_fd); | |
2534 | ||
2535 | /* Try to read an error code from the parent. Note a child process cannot wait for the parent so we always | |
2536 | * receive an errno even on success. */ | |
2537 | n = read(errno_pipe[0], &r, sizeof(r)); | |
2538 | if (n < 0) | |
2539 | return log_debug_errno(errno, "Failed to read errno from pipe with parent process: %m"); | |
2540 | if (n != sizeof(r)) | |
2541 | return log_debug_errno(SYNTHETIC_ERRNO(EIO), "Failed to read enough bytes from pipe with parent process"); | |
2542 | if (r < 0) | |
2543 | return log_debug_errno(r, "Failed to send child pidref to manager: %m"); | |
2544 | ||
2545 | /* NOTE! This function returns in the child process only. */ | |
2546 | return r; | |
2547 | } | |
2548 | ||
2549 | static int create_many_symlinks(const char *root, const char *source, char **symlinks) { | |
2550 | _cleanup_free_ char *src_abs = NULL; | |
2551 | int r; | |
2552 | ||
2553 | assert(source); | |
2554 | ||
2555 | src_abs = path_join(root, source); | |
2556 | if (!src_abs) | |
2557 | return -ENOMEM; | |
2558 | ||
2559 | STRV_FOREACH(dst, symlinks) { | |
2560 | _cleanup_free_ char *dst_abs = NULL; | |
2561 | ||
2562 | dst_abs = path_join(root, *dst); | |
2563 | if (!dst_abs) | |
2564 | return -ENOMEM; | |
2565 | ||
2566 | r = mkdir_parents_label(dst_abs, 0755); | |
2567 | if (r < 0) | |
2568 | return r; | |
2569 | ||
2570 | r = symlink_idempotent(src_abs, dst_abs, true); | |
2571 | if (r < 0) | |
2572 | return r; | |
2573 | } | |
2574 | ||
2575 | return 0; | |
2576 | } | |
2577 | ||
2578 | static int setup_exec_directory( | |
2579 | const ExecContext *context, | |
2580 | const ExecParameters *params, | |
2581 | uid_t uid, | |
2582 | gid_t gid, | |
2583 | ExecDirectoryType type, | |
2584 | bool needs_mount_namespace, | |
2585 | int *exit_status) { | |
2586 | ||
2587 | static const int exit_status_table[_EXEC_DIRECTORY_TYPE_MAX] = { | |
2588 | [EXEC_DIRECTORY_RUNTIME] = EXIT_RUNTIME_DIRECTORY, | |
2589 | [EXEC_DIRECTORY_STATE] = EXIT_STATE_DIRECTORY, | |
2590 | [EXEC_DIRECTORY_CACHE] = EXIT_CACHE_DIRECTORY, | |
2591 | [EXEC_DIRECTORY_LOGS] = EXIT_LOGS_DIRECTORY, | |
2592 | [EXEC_DIRECTORY_CONFIGURATION] = EXIT_CONFIGURATION_DIRECTORY, | |
2593 | }; | |
2594 | int r; | |
2595 | ||
2596 | assert(context); | |
2597 | assert(params); | |
2598 | assert(type >= 0 && type < _EXEC_DIRECTORY_TYPE_MAX); | |
2599 | assert(exit_status); | |
2600 | ||
2601 | if (!params->prefix[type]) | |
2602 | return 0; | |
2603 | ||
2604 | if (params->flags & EXEC_CHOWN_DIRECTORIES) { | |
2605 | if (!uid_is_valid(uid)) | |
2606 | uid = 0; | |
2607 | if (!gid_is_valid(gid)) | |
2608 | gid = 0; | |
2609 | } | |
2610 | ||
2611 | FOREACH_ARRAY(i, context->directories[type].items, context->directories[type].n_items) { | |
2612 | _cleanup_free_ char *p = NULL, *pp = NULL; | |
2613 | ||
2614 | p = path_join(params->prefix[type], i->path); | |
2615 | if (!p) { | |
2616 | r = -ENOMEM; | |
2617 | goto fail; | |
2618 | } | |
2619 | ||
2620 | r = mkdir_parents_label(p, 0755); | |
2621 | if (r < 0) | |
2622 | goto fail; | |
2623 | ||
2624 | if (IN_SET(type, EXEC_DIRECTORY_STATE, EXEC_DIRECTORY_LOGS) && params->runtime_scope == RUNTIME_SCOPE_USER) { | |
2625 | ||
2626 | /* If we are in user mode, and a configuration directory exists but a state directory | |
2627 | * doesn't exist, then we likely are upgrading from an older systemd version that | |
2628 | * didn't know the more recent addition to the xdg-basedir spec: the $XDG_STATE_HOME | |
2629 | * directory. In older systemd versions EXEC_DIRECTORY_STATE was aliased to | |
2630 | * EXEC_DIRECTORY_CONFIGURATION, with the advent of $XDG_STATE_HOME it is now | |
2631 | * separated. If a service has both dirs configured but only the configuration dir | |
2632 | * exists and the state dir does not, we assume we are looking at an update | |
2633 | * situation. Hence, create a compatibility symlink, so that all expectations are | |
2634 | * met. | |
2635 | * | |
2636 | * (We also do something similar with the log directory, which still doesn't exist in | |
2637 | * the xdg basedir spec. We'll make it a subdir of the state dir.) */ | |
2638 | ||
2639 | /* this assumes the state dir is always created before the configuration dir */ | |
2640 | assert_cc(EXEC_DIRECTORY_STATE < EXEC_DIRECTORY_LOGS); | |
2641 | assert_cc(EXEC_DIRECTORY_LOGS < EXEC_DIRECTORY_CONFIGURATION); | |
2642 | ||
2643 | r = access_nofollow(p, F_OK); | |
2644 | if (r == -ENOENT) { | |
2645 | _cleanup_free_ char *q = NULL; | |
2646 | ||
2647 | /* OK, we know that the state dir does not exist. Let's see if the dir exists | |
2648 | * under the configuration hierarchy. */ | |
2649 | ||
2650 | if (type == EXEC_DIRECTORY_STATE) | |
2651 | q = path_join(params->prefix[EXEC_DIRECTORY_CONFIGURATION], i->path); | |
2652 | else if (type == EXEC_DIRECTORY_LOGS) | |
2653 | q = path_join(params->prefix[EXEC_DIRECTORY_CONFIGURATION], "log", i->path); | |
2654 | else | |
2655 | assert_not_reached(); | |
2656 | if (!q) { | |
2657 | r = -ENOMEM; | |
2658 | goto fail; | |
2659 | } | |
2660 | ||
2661 | r = access_nofollow(q, F_OK); | |
2662 | if (r >= 0) { | |
2663 | /* It does exist! This hence looks like an update. Symlink the | |
2664 | * configuration directory into the state directory. */ | |
2665 | ||
2666 | r = symlink_idempotent(q, p, /* make_relative= */ true); | |
2667 | if (r < 0) | |
2668 | goto fail; | |
2669 | ||
2670 | log_notice("Unit state directory %s missing but matching configuration directory %s exists, assuming update from systemd 253 or older, creating compatibility symlink.", p, q); | |
2671 | continue; | |
2672 | } else if (r != -ENOENT) | |
2673 | log_warning_errno(r, "Unable to detect whether unit configuration directory '%s' exists, assuming not: %m", q); | |
2674 | ||
2675 | } else if (r < 0) | |
2676 | log_warning_errno(r, "Unable to detect whether unit state directory '%s' is missing, assuming it is: %m", p); | |
2677 | } | |
2678 | ||
2679 | if (exec_directory_is_private(context, type)) { | |
2680 | /* So, here's one extra complication when dealing with DynamicUser=1 units. In that | |
2681 | * case we want to avoid leaving a directory around fully accessible that is owned by | |
2682 | * a dynamic user whose UID is later on reused. To lock this down we use the same | |
2683 | * trick used by container managers to prohibit host users to get access to files of | |
2684 | * the same UID in containers: we place everything inside a directory that has an | |
2685 | * access mode of 0700 and is owned root:root, so that it acts as security boundary | |
2686 | * for unprivileged host code. We then use fs namespacing to make this directory | |
2687 | * permeable for the service itself. | |
2688 | * | |
2689 | * Specifically: for a service which wants a special directory "foo/" we first create | |
2690 | * a directory "private/" with access mode 0700 owned by root:root. Then we place | |
2691 | * "foo" inside of that directory (i.e. "private/foo/"), and make "foo" a symlink to | |
2692 | * "private/foo". This way, privileged host users can access "foo/" as usual, but | |
2693 | * unprivileged host users can't look into it. Inside of the namespace of the unit | |
2694 | * "private/" is replaced by a more liberally accessible tmpfs, into which the host's | |
2695 | * "private/foo/" is mounted under the same name, thus disabling the access boundary | |
2696 | * for the service and making sure it only gets access to the dirs it needs but no | |
2697 | * others. Tricky? Yes, absolutely, but it works! | |
2698 | * | |
2699 | * Note that we don't do this for EXEC_DIRECTORY_CONFIGURATION as that's assumed not | |
2700 | * to be owned by the service itself. | |
2701 | * | |
2702 | * Also, note that we don't do this for EXEC_DIRECTORY_RUNTIME as that's often used | |
2703 | * for sharing files or sockets with other services. */ | |
2704 | ||
2705 | pp = path_join(params->prefix[type], "private"); | |
2706 | if (!pp) { | |
2707 | r = -ENOMEM; | |
2708 | goto fail; | |
2709 | } | |
2710 | ||
2711 | /* First set up private root if it doesn't exist yet, with access mode 0700 and owned by root:root */ | |
2712 | r = mkdir_safe_label(pp, 0700, 0, 0, MKDIR_WARN_MODE); | |
2713 | if (r < 0) | |
2714 | goto fail; | |
2715 | ||
2716 | if (!path_extend(&pp, i->path)) { | |
2717 | r = -ENOMEM; | |
2718 | goto fail; | |
2719 | } | |
2720 | ||
2721 | /* Create all directories between the configured directory and this private root, and mark them 0755 */ | |
2722 | r = mkdir_parents_label(pp, 0755); | |
2723 | if (r < 0) | |
2724 | goto fail; | |
2725 | ||
2726 | if (is_dir(p, false) > 0 && | |
2727 | (access_nofollow(pp, F_OK) == -ENOENT)) { | |
2728 | ||
2729 | /* Hmm, the private directory doesn't exist yet, but the normal one exists? If so, move | |
2730 | * it over. Most likely the service has been upgraded from one that didn't use | |
2731 | * DynamicUser=1, to one that does. */ | |
2732 | ||
2733 | log_info("Found pre-existing public %s= directory %s, migrating to %s.\n" | |
2734 | "Apparently, service previously had DynamicUser= turned off, and has now turned it on.", | |
2735 | exec_directory_type_to_string(type), p, pp); | |
2736 | ||
2737 | r = RET_NERRNO(rename(p, pp)); | |
2738 | if (r < 0) | |
2739 | goto fail; | |
2740 | } else { | |
2741 | /* Otherwise, create the actual directory for the service */ | |
2742 | ||
2743 | r = mkdir_label(pp, context->directories[type].mode); | |
2744 | if (r < 0 && r != -EEXIST) | |
2745 | goto fail; | |
2746 | } | |
2747 | ||
2748 | if (!FLAGS_SET(i->flags, EXEC_DIRECTORY_ONLY_CREATE)) { | |
2749 | /* And link it up from the original place. | |
2750 | * Notes | |
2751 | * 1) If a mount namespace is going to be used, then this symlink remains on | |
2752 | * the host, and a new one for the child namespace will be created later. | |
2753 | * 2) It is not necessary to create this symlink when one of its parent | |
2754 | * directories is specified and already created. E.g. | |
2755 | * StateDirectory=foo foo/bar | |
2756 | * In that case, the inode points to pp and p for "foo/bar" are the same: | |
2757 | * pp = "/var/lib/private/foo/bar" | |
2758 | * p = "/var/lib/foo/bar" | |
2759 | * and, /var/lib/foo is a symlink to /var/lib/private/foo. So, not only | |
2760 | * we do not need to create the symlink, but we cannot create the symlink. | |
2761 | * See issue #24783. */ | |
2762 | r = symlink_idempotent(pp, p, true); | |
2763 | if (r < 0) | |
2764 | goto fail; | |
2765 | } | |
2766 | ||
2767 | } else { | |
2768 | _cleanup_free_ char *target = NULL; | |
2769 | ||
2770 | if (EXEC_DIRECTORY_TYPE_SHALL_CHOWN(type) && | |
2771 | readlink_and_make_absolute(p, &target) >= 0) { | |
2772 | _cleanup_free_ char *q = NULL, *q_resolved = NULL, *target_resolved = NULL; | |
2773 | ||
2774 | /* This already exists and is a symlink? Interesting. Maybe it's one created | |
2775 | * by DynamicUser=1 (see above)? | |
2776 | * | |
2777 | * We do this for all directory types except for ConfigurationDirectory=, | |
2778 | * since they all support the private/ symlink logic at least in some | |
2779 | * configurations, see above. */ | |
2780 | ||
2781 | r = chase(target, NULL, 0, &target_resolved, NULL); | |
2782 | if (r < 0) | |
2783 | goto fail; | |
2784 | ||
2785 | q = path_join(params->prefix[type], "private", i->path); | |
2786 | if (!q) { | |
2787 | r = -ENOMEM; | |
2788 | goto fail; | |
2789 | } | |
2790 | ||
2791 | /* /var/lib or friends may be symlinks. So, let's chase them also. */ | |
2792 | r = chase(q, NULL, CHASE_NONEXISTENT, &q_resolved, NULL); | |
2793 | if (r < 0) | |
2794 | goto fail; | |
2795 | ||
2796 | if (path_equal(q_resolved, target_resolved)) { | |
2797 | ||
2798 | /* Hmm, apparently DynamicUser= was once turned on for this service, | |
2799 | * but is no longer. Let's move the directory back up. */ | |
2800 | ||
2801 | log_info("Found pre-existing private %s= directory %s, migrating to %s.\n" | |
2802 | "Apparently, service previously had DynamicUser= turned on, and has now turned it off.", | |
2803 | exec_directory_type_to_string(type), q, p); | |
2804 | ||
2805 | r = RET_NERRNO(unlink(p)); | |
2806 | if (r < 0) | |
2807 | goto fail; | |
2808 | ||
2809 | r = RET_NERRNO(rename(q, p)); | |
2810 | if (r < 0) | |
2811 | goto fail; | |
2812 | } | |
2813 | } | |
2814 | ||
2815 | r = mkdir_label(p, context->directories[type].mode); | |
2816 | if (r < 0) { | |
2817 | if (r != -EEXIST) | |
2818 | goto fail; | |
2819 | ||
2820 | if (!EXEC_DIRECTORY_TYPE_SHALL_CHOWN(type)) { | |
2821 | struct stat st; | |
2822 | ||
2823 | /* Don't change the owner/access mode of the configuration directory, | |
2824 | * as in the common case it is not written to by a service, and shall | |
2825 | * not be writable. */ | |
2826 | ||
2827 | r = RET_NERRNO(stat(p, &st)); | |
2828 | if (r < 0) | |
2829 | goto fail; | |
2830 | ||
2831 | /* Still complain if the access mode doesn't match */ | |
2832 | if (((st.st_mode ^ context->directories[type].mode) & 07777) != 0) | |
2833 | log_warning("%s \'%s\' already exists but the mode is different. " | |
2834 | "(File system: %o %sMode: %o)", | |
2835 | exec_directory_type_to_string(type), i->path, | |
2836 | st.st_mode & 07777, exec_directory_type_to_string(type), context->directories[type].mode & 07777); | |
2837 | ||
2838 | continue; | |
2839 | } | |
2840 | } | |
2841 | } | |
2842 | ||
2843 | /* Lock down the access mode (we use chmod_and_chown() to make this idempotent. We don't | |
2844 | * specify UID/GID here, so that path_chown_recursive() can optimize things depending on the | |
2845 | * current UID/GID ownership.) */ | |
2846 | const char *target_dir = pp ?: p; | |
2847 | r = chmod_and_chown(target_dir, context->directories[type].mode, UID_INVALID, GID_INVALID); | |
2848 | if (r < 0) | |
2849 | goto fail; | |
2850 | ||
2851 | /* Skip the rest (which deals with ownership) in user mode, since ownership changes are not | |
2852 | * available to user code anyway */ | |
2853 | if (params->runtime_scope != RUNTIME_SCOPE_SYSTEM) | |
2854 | continue; | |
2855 | ||
2856 | int idmapping_supported = is_idmapping_supported(target_dir); | |
2857 | if (idmapping_supported < 0) { | |
2858 | r = log_debug_errno(idmapping_supported, "Unable to determine if ID mapping is supported on mount '%s': %m", target_dir); | |
2859 | goto fail; | |
2860 | } | |
2861 | ||
2862 | log_debug("ID-mapping is%ssupported for exec directory %s", idmapping_supported ? " " : " not ", target_dir); | |
2863 | ||
2864 | /* Change the ownership of the whole tree, if necessary. When dynamic users are used we | |
2865 | * drop the suid/sgid bits, since we really don't want SUID/SGID files for dynamic UID/GID | |
2866 | * assignments to exist. */ | |
2867 | uid_t chown_uid = uid; | |
2868 | gid_t chown_gid = gid; | |
2869 | bool do_chown = false; | |
2870 | ||
2871 | if (uid == 0 || gid == 0 || !idmapping_supported) { | |
2872 | do_chown = true; | |
2873 | i->idmapped = false; | |
2874 | } else { | |
2875 | /* Use 'nobody' uid/gid for exec directories if ID-mapping is supported. For backward compatibility, | |
2876 | * continue doing chmod/chown if the directory was chmod/chowned before (if uid/gid is not 'nobody') */ | |
2877 | struct stat st; | |
2878 | r = RET_NERRNO(stat(target_dir, &st)); | |
2879 | if (r < 0) | |
2880 | goto fail; | |
2881 | ||
2882 | if (st.st_uid == UID_NOBODY && st.st_gid == GID_NOBODY) { | |
2883 | do_chown = false; | |
2884 | i->idmapped = true; | |
2885 | } else if (exec_directory_is_private(context, type) && st.st_uid == 0 && st.st_gid == 0) { | |
2886 | chown_uid = UID_NOBODY; | |
2887 | chown_gid = GID_NOBODY; | |
2888 | do_chown = true; | |
2889 | i->idmapped = true; | |
2890 | } else { | |
2891 | do_chown = true; | |
2892 | i->idmapped = false; | |
2893 | } | |
2894 | } | |
2895 | ||
2896 | if (do_chown) { | |
2897 | r = path_chown_recursive(target_dir, chown_uid, chown_gid, context->dynamic_user ? 01777 : 07777, AT_SYMLINK_FOLLOW); | |
2898 | if (r < 0) | |
2899 | goto fail; | |
2900 | } | |
2901 | } | |
2902 | ||
2903 | /* If we are not going to run in a namespace, set up the symlinks - otherwise | |
2904 | * they are set up later, to allow configuring empty var/run/etc. */ | |
2905 | if (!needs_mount_namespace) | |
2906 | FOREACH_ARRAY(i, context->directories[type].items, context->directories[type].n_items) { | |
2907 | r = create_many_symlinks(params->prefix[type], i->path, i->symlinks); | |
2908 | if (r < 0) | |
2909 | goto fail; | |
2910 | } | |
2911 | ||
2912 | return 0; | |
2913 | ||
2914 | fail: | |
2915 | *exit_status = exit_status_table[type]; | |
2916 | return r; | |
2917 | } | |
2918 | ||
2919 | #if ENABLE_SMACK | |
2920 | static int setup_smack( | |
2921 | const ExecContext *context, | |
2922 | const ExecParameters *params, | |
2923 | int executable_fd) { | |
2924 | int r; | |
2925 | ||
2926 | assert(context); | |
2927 | assert(params); | |
2928 | assert(executable_fd >= 0); | |
2929 | ||
2930 | if (context->smack_process_label) { | |
2931 | r = mac_smack_apply_pid(0, context->smack_process_label); | |
2932 | if (r < 0) | |
2933 | return r; | |
2934 | } else if (params->fallback_smack_process_label) { | |
2935 | _cleanup_free_ char *exec_label = NULL; | |
2936 | ||
2937 | r = mac_smack_read_fd(executable_fd, SMACK_ATTR_EXEC, &exec_label); | |
2938 | if (r < 0 && !ERRNO_IS_XATTR_ABSENT(r)) | |
2939 | return r; | |
2940 | ||
2941 | r = mac_smack_apply_pid(0, exec_label ?: params->fallback_smack_process_label); | |
2942 | if (r < 0) | |
2943 | return r; | |
2944 | } | |
2945 | ||
2946 | return 0; | |
2947 | } | |
2948 | #endif | |
2949 | ||
2950 | static int compile_bind_mounts( | |
2951 | const ExecContext *context, | |
2952 | const ExecParameters *params, | |
2953 | uid_t exec_directory_uid, /* only used for id-mapped mounts Exec directories */ | |
2954 | gid_t exec_directory_gid, /* only used for id-mapped mounts Exec directories */ | |
2955 | BindMount **ret_bind_mounts, | |
2956 | size_t *ret_n_bind_mounts, | |
2957 | char ***ret_empty_directories) { | |
2958 | ||
2959 | _cleanup_strv_free_ char **empty_directories = NULL; | |
2960 | BindMount *bind_mounts = NULL; | |
2961 | size_t n, h = 0; | |
2962 | int r; | |
2963 | ||
2964 | assert(context); | |
2965 | assert(params); | |
2966 | assert(ret_bind_mounts); | |
2967 | assert(ret_n_bind_mounts); | |
2968 | assert(ret_empty_directories); | |
2969 | ||
2970 | CLEANUP_ARRAY(bind_mounts, h, bind_mount_free_many); | |
2971 | ||
2972 | n = context->n_bind_mounts; | |
2973 | for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) { | |
2974 | if (!params->prefix[t]) | |
2975 | continue; | |
2976 | ||
2977 | FOREACH_ARRAY(i, context->directories[t].items, context->directories[t].n_items) | |
2978 | n += !FLAGS_SET(i->flags, EXEC_DIRECTORY_ONLY_CREATE) || FLAGS_SET(i->flags, EXEC_DIRECTORY_READ_ONLY); | |
2979 | } | |
2980 | ||
2981 | if (n <= 0) { | |
2982 | *ret_bind_mounts = NULL; | |
2983 | *ret_n_bind_mounts = 0; | |
2984 | *ret_empty_directories = NULL; | |
2985 | return 0; | |
2986 | } | |
2987 | ||
2988 | bind_mounts = new(BindMount, n); | |
2989 | if (!bind_mounts) | |
2990 | return -ENOMEM; | |
2991 | ||
2992 | FOREACH_ARRAY(item, context->bind_mounts, context->n_bind_mounts) { | |
2993 | r = bind_mount_add(&bind_mounts, &h, item); | |
2994 | if (r < 0) | |
2995 | return r; | |
2996 | } | |
2997 | ||
2998 | for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) { | |
2999 | if (!params->prefix[t]) | |
3000 | continue; | |
3001 | ||
3002 | if (context->directories[t].n_items == 0) | |
3003 | continue; | |
3004 | ||
3005 | if (exec_directory_is_private(context, t) && | |
3006 | !exec_context_with_rootfs(context)) { | |
3007 | char *private_root; | |
3008 | ||
3009 | /* So this is for a dynamic user, and we need to make sure the process can access its own | |
3010 | * directory. For that we overmount the usually inaccessible "private" subdirectory with a | |
3011 | * tmpfs that makes it accessible and is empty except for the submounts we do this for. */ | |
3012 | ||
3013 | private_root = path_join(params->prefix[t], "private"); | |
3014 | if (!private_root) | |
3015 | return -ENOMEM; | |
3016 | ||
3017 | r = strv_consume(&empty_directories, private_root); | |
3018 | if (r < 0) | |
3019 | return r; | |
3020 | } | |
3021 | ||
3022 | FOREACH_ARRAY(i, context->directories[t].items, context->directories[t].n_items) { | |
3023 | _cleanup_free_ char *s = NULL, *d = NULL; | |
3024 | ||
3025 | /* When one of the parent directories is in the list, we cannot create the symlink | |
3026 | * for the child directory. See also the comments in setup_exec_directory(). | |
3027 | * But if it needs to be read only, then we have to create a bind mount anyway to | |
3028 | * make it so. */ | |
3029 | if (FLAGS_SET(i->flags, EXEC_DIRECTORY_ONLY_CREATE) && !FLAGS_SET(i->flags, EXEC_DIRECTORY_READ_ONLY)) | |
3030 | continue; | |
3031 | ||
3032 | if (exec_directory_is_private(context, t)) | |
3033 | s = path_join(params->prefix[t], "private", i->path); | |
3034 | else | |
3035 | s = path_join(params->prefix[t], i->path); | |
3036 | if (!s) | |
3037 | return -ENOMEM; | |
3038 | ||
3039 | if (exec_directory_is_private(context, t) && | |
3040 | exec_context_with_rootfs(context)) | |
3041 | /* When RootDirectory= or RootImage= are set, then the symbolic link to the private | |
3042 | * directory is not created on the root directory. So, let's bind-mount the directory | |
3043 | * on the 'non-private' place. */ | |
3044 | d = path_join(params->prefix[t], i->path); | |
3045 | else | |
3046 | d = strdup(s); | |
3047 | if (!d) | |
3048 | return -ENOMEM; | |
3049 | ||
3050 | bind_mounts[h++] = (BindMount) { | |
3051 | .source = TAKE_PTR(s), | |
3052 | .destination = TAKE_PTR(d), | |
3053 | .nosuid = context->dynamic_user, /* don't allow suid/sgid when DynamicUser= is on */ | |
3054 | .recursive = true, | |
3055 | .read_only = FLAGS_SET(i->flags, EXEC_DIRECTORY_READ_ONLY), | |
3056 | .idmapped = i->idmapped, | |
3057 | .uid = exec_directory_uid, | |
3058 | .gid = exec_directory_gid, | |
3059 | }; | |
3060 | } | |
3061 | } | |
3062 | ||
3063 | assert(h == n); | |
3064 | ||
3065 | *ret_bind_mounts = TAKE_PTR(bind_mounts); | |
3066 | *ret_n_bind_mounts = n; | |
3067 | *ret_empty_directories = TAKE_PTR(empty_directories); | |
3068 | ||
3069 | return (int) n; | |
3070 | } | |
3071 | ||
3072 | /* ret_symlinks will contain a list of pairs src:dest that describes | |
3073 | * the symlinks to create later on. For example, the symlinks needed | |
3074 | * to safely give private directories to DynamicUser=1 users. */ | |
3075 | static int compile_symlinks( | |
3076 | const ExecContext *context, | |
3077 | const ExecParameters *params, | |
3078 | bool setup_os_release_symlink, | |
3079 | char ***ret_symlinks) { | |
3080 | ||
3081 | _cleanup_strv_free_ char **symlinks = NULL; | |
3082 | int r; | |
3083 | ||
3084 | assert(context); | |
3085 | assert(params); | |
3086 | assert(ret_symlinks); | |
3087 | ||
3088 | for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) | |
3089 | FOREACH_ARRAY(i, context->directories[dt].items, context->directories[dt].n_items) { | |
3090 | _cleanup_free_ char *private_path = NULL, *path = NULL; | |
3091 | ||
3092 | STRV_FOREACH(symlink, i->symlinks) { | |
3093 | _cleanup_free_ char *src_abs = NULL, *dst_abs = NULL; | |
3094 | ||
3095 | src_abs = path_join(params->prefix[dt], i->path); | |
3096 | dst_abs = path_join(params->prefix[dt], *symlink); | |
3097 | if (!src_abs || !dst_abs) | |
3098 | return -ENOMEM; | |
3099 | ||
3100 | r = strv_consume_pair(&symlinks, TAKE_PTR(src_abs), TAKE_PTR(dst_abs)); | |
3101 | if (r < 0) | |
3102 | return r; | |
3103 | } | |
3104 | ||
3105 | if (!exec_directory_is_private(context, dt) || | |
3106 | exec_context_with_rootfs(context) || | |
3107 | FLAGS_SET(i->flags, EXEC_DIRECTORY_ONLY_CREATE)) | |
3108 | continue; | |
3109 | ||
3110 | private_path = path_join(params->prefix[dt], "private", i->path); | |
3111 | if (!private_path) | |
3112 | return -ENOMEM; | |
3113 | ||
3114 | path = path_join(params->prefix[dt], i->path); | |
3115 | if (!path) | |
3116 | return -ENOMEM; | |
3117 | ||
3118 | r = strv_consume_pair(&symlinks, TAKE_PTR(private_path), TAKE_PTR(path)); | |
3119 | if (r < 0) | |
3120 | return r; | |
3121 | } | |
3122 | ||
3123 | /* We make the host's os-release available via a symlink, so that we can copy it atomically | |
3124 | * and readers will never get a half-written version. Note that, while the paths specified here are | |
3125 | * absolute, when they are processed in namespace.c they will be made relative automatically, i.e.: | |
3126 | * 'os-release -> .os-release-stage/os-release' is what will be created. */ | |
3127 | if (setup_os_release_symlink) { | |
3128 | r = strv_extend_many( | |
3129 | &symlinks, | |
3130 | "/run/host/.os-release-stage/os-release", | |
3131 | "/run/host/os-release"); | |
3132 | if (r < 0) | |
3133 | return r; | |
3134 | } | |
3135 | ||
3136 | *ret_symlinks = TAKE_PTR(symlinks); | |
3137 | ||
3138 | return 0; | |
3139 | } | |
3140 | ||
3141 | static bool insist_on_sandboxing( | |
3142 | const ExecContext *context, | |
3143 | const char *root_dir, | |
3144 | const char *root_image, | |
3145 | const BindMount *bind_mounts, | |
3146 | size_t n_bind_mounts) { | |
3147 | ||
3148 | assert(context); | |
3149 | assert(n_bind_mounts == 0 || bind_mounts); | |
3150 | ||
3151 | /* Checks whether we need to insist on fs namespacing. i.e. whether we have settings configured that | |
3152 | * would alter the view on the file system beyond making things read-only or invisible, i.e. would | |
3153 | * rearrange stuff in a way we cannot ignore gracefully. */ | |
3154 | ||
3155 | if (context->n_temporary_filesystems > 0) | |
3156 | return true; | |
3157 | ||
3158 | if (root_dir || root_image) | |
3159 | return true; | |
3160 | ||
3161 | if (context->n_mount_images > 0) | |
3162 | return true; | |
3163 | ||
3164 | if (context->dynamic_user) | |
3165 | return true; | |
3166 | ||
3167 | if (context->n_extension_images > 0 || !strv_isempty(context->extension_directories)) | |
3168 | return true; | |
3169 | ||
3170 | /* If there are any bind mounts set that don't map back onto themselves, fs namespacing becomes | |
3171 | * essential. */ | |
3172 | FOREACH_ARRAY(i, bind_mounts, n_bind_mounts) | |
3173 | if (!path_equal(i->source, i->destination)) | |
3174 | return true; | |
3175 | ||
3176 | if (context->log_namespace) | |
3177 | return true; | |
3178 | ||
3179 | return false; | |
3180 | } | |
3181 | ||
3182 | static int setup_ephemeral( | |
3183 | const ExecContext *context, | |
3184 | ExecRuntime *runtime, | |
3185 | char **root_image, /* both input and output! modified if ephemeral logic enabled */ | |
3186 | char **root_directory, /* ditto */ | |
3187 | char **reterr_path) { | |
3188 | ||
3189 | _cleanup_close_ int fd = -EBADF; | |
3190 | _cleanup_free_ char *new_root = NULL; | |
3191 | int r; | |
3192 | ||
3193 | assert(context); | |
3194 | assert(runtime); | |
3195 | assert(root_image); | |
3196 | assert(root_directory); | |
3197 | ||
3198 | if (!*root_image && !*root_directory) | |
3199 | return 0; | |
3200 | ||
3201 | if (!runtime->ephemeral_copy) | |
3202 | return 0; | |
3203 | ||
3204 | assert(runtime->ephemeral_storage_socket[0] >= 0); | |
3205 | assert(runtime->ephemeral_storage_socket[1] >= 0); | |
3206 | ||
3207 | new_root = strdup(runtime->ephemeral_copy); | |
3208 | if (!new_root) | |
3209 | return log_oom_debug(); | |
3210 | ||
3211 | r = posix_lock(runtime->ephemeral_storage_socket[0], LOCK_EX); | |
3212 | if (r < 0) | |
3213 | return log_debug_errno(r, "Failed to lock ephemeral storage socket: %m"); | |
3214 | ||
3215 | CLEANUP_POSIX_UNLOCK(runtime->ephemeral_storage_socket[0]); | |
3216 | ||
3217 | fd = receive_one_fd(runtime->ephemeral_storage_socket[0], MSG_PEEK|MSG_DONTWAIT); | |
3218 | if (fd >= 0) | |
3219 | /* We got an fd! That means ephemeral has already been set up, so nothing to do here. */ | |
3220 | return 0; | |
3221 | if (fd != -EAGAIN) | |
3222 | return log_debug_errno(fd, "Failed to receive file descriptor queued on ephemeral storage socket: %m"); | |
3223 | ||
3224 | if (*root_image) { | |
3225 | log_debug("Making ephemeral copy of %s to %s", *root_image, new_root); | |
3226 | ||
3227 | fd = copy_file(*root_image, new_root, O_EXCL, 0600, | |
3228 | COPY_LOCK_BSD|COPY_REFLINK|COPY_CRTIME|COPY_NOCOW_AFTER); | |
3229 | if (fd < 0) { | |
3230 | *reterr_path = strdup(*root_image); | |
3231 | return log_debug_errno(fd, "Failed to copy image %s to %s: %m", | |
3232 | *root_image, new_root); | |
3233 | } | |
3234 | } else { | |
3235 | assert(*root_directory); | |
3236 | ||
3237 | log_debug("Making ephemeral snapshot of %s to %s", *root_directory, new_root); | |
3238 | ||
3239 | fd = btrfs_subvol_snapshot_at( | |
3240 | AT_FDCWD, *root_directory, | |
3241 | AT_FDCWD, new_root, | |
3242 | BTRFS_SNAPSHOT_FALLBACK_COPY | | |
3243 | BTRFS_SNAPSHOT_FALLBACK_DIRECTORY | | |
3244 | BTRFS_SNAPSHOT_RECURSIVE | | |
3245 | BTRFS_SNAPSHOT_LOCK_BSD); | |
3246 | if (fd < 0) { | |
3247 | *reterr_path = strdup(*root_directory); | |
3248 | return log_debug_errno(fd, "Failed to snapshot directory %s to %s: %m", | |
3249 | *root_directory, new_root); | |
3250 | } | |
3251 | } | |
3252 | ||
3253 | r = send_one_fd(runtime->ephemeral_storage_socket[1], fd, MSG_DONTWAIT); | |
3254 | if (r < 0) | |
3255 | return log_debug_errno(r, "Failed to queue file descriptor on ephemeral storage socket: %m"); | |
3256 | ||
3257 | if (*root_image) | |
3258 | free_and_replace(*root_image, new_root); | |
3259 | else { | |
3260 | assert(*root_directory); | |
3261 | free_and_replace(*root_directory, new_root); | |
3262 | } | |
3263 | ||
3264 | return 1; | |
3265 | } | |
3266 | ||
3267 | static int verity_settings_prepare( | |
3268 | VeritySettings *verity, | |
3269 | const char *root_image, | |
3270 | const void *root_hash, | |
3271 | size_t root_hash_size, | |
3272 | const char *root_hash_path, | |
3273 | const void *root_hash_sig, | |
3274 | size_t root_hash_sig_size, | |
3275 | const char *root_hash_sig_path, | |
3276 | const char *verity_data_path) { | |
3277 | ||
3278 | int r; | |
3279 | ||
3280 | assert(verity); | |
3281 | ||
3282 | if (root_hash) { | |
3283 | void *d; | |
3284 | ||
3285 | d = memdup(root_hash, root_hash_size); | |
3286 | if (!d) | |
3287 | return -ENOMEM; | |
3288 | ||
3289 | free_and_replace(verity->root_hash, d); | |
3290 | verity->root_hash_size = root_hash_size; | |
3291 | verity->designator = PARTITION_ROOT; | |
3292 | } | |
3293 | ||
3294 | if (root_hash_sig) { | |
3295 | void *d; | |
3296 | ||
3297 | d = memdup(root_hash_sig, root_hash_sig_size); | |
3298 | if (!d) | |
3299 | return -ENOMEM; | |
3300 | ||
3301 | free_and_replace(verity->root_hash_sig, d); | |
3302 | verity->root_hash_sig_size = root_hash_sig_size; | |
3303 | verity->designator = PARTITION_ROOT; | |
3304 | } | |
3305 | ||
3306 | if (verity_data_path) { | |
3307 | r = free_and_strdup(&verity->data_path, verity_data_path); | |
3308 | if (r < 0) | |
3309 | return r; | |
3310 | } | |
3311 | ||
3312 | r = verity_settings_load( | |
3313 | verity, | |
3314 | root_image, | |
3315 | root_hash_path, | |
3316 | root_hash_sig_path); | |
3317 | if (r < 0) | |
3318 | return log_debug_errno(r, "Failed to load root hash: %m"); | |
3319 | ||
3320 | return 0; | |
3321 | } | |
3322 | ||
3323 | static int pick_versions( | |
3324 | const ExecContext *context, | |
3325 | const ExecParameters *params, | |
3326 | char **ret_root_image, | |
3327 | char **ret_root_directory, | |
3328 | char **reterr_path) { | |
3329 | ||
3330 | int r; | |
3331 | ||
3332 | assert(context); | |
3333 | assert(params); | |
3334 | assert(ret_root_image); | |
3335 | assert(ret_root_directory); | |
3336 | ||
3337 | if (context->root_image) { | |
3338 | _cleanup_(pick_result_done) PickResult result = PICK_RESULT_NULL; | |
3339 | ||
3340 | r = path_pick(/* toplevel_path= */ NULL, | |
3341 | /* toplevel_fd= */ AT_FDCWD, | |
3342 | context->root_image, | |
3343 | &pick_filter_image_raw, | |
3344 | PICK_ARCHITECTURE|PICK_TRIES|PICK_RESOLVE, | |
3345 | &result); | |
3346 | if (r < 0) { | |
3347 | *reterr_path = strdup(context->root_image); | |
3348 | return r; | |
3349 | } | |
3350 | ||
3351 | if (!result.path) { | |
3352 | *reterr_path = strdup(context->root_image); | |
3353 | return log_debug_errno(SYNTHETIC_ERRNO(ENOENT), "No matching entry in .v/ directory %s found.", context->root_image); | |
3354 | } | |
3355 | ||
3356 | *ret_root_image = TAKE_PTR(result.path); | |
3357 | *ret_root_directory = NULL; | |
3358 | return r; | |
3359 | } | |
3360 | ||
3361 | if (context->root_directory) { | |
3362 | _cleanup_(pick_result_done) PickResult result = PICK_RESULT_NULL; | |
3363 | ||
3364 | r = path_pick(/* toplevel_path= */ NULL, | |
3365 | /* toplevel_fd= */ AT_FDCWD, | |
3366 | context->root_directory, | |
3367 | &pick_filter_image_dir, | |
3368 | PICK_ARCHITECTURE|PICK_TRIES|PICK_RESOLVE, | |
3369 | &result); | |
3370 | if (r < 0) { | |
3371 | *reterr_path = strdup(context->root_directory); | |
3372 | return r; | |
3373 | } | |
3374 | ||
3375 | if (!result.path) { | |
3376 | *reterr_path = strdup(context->root_directory); | |
3377 | return log_debug_errno(SYNTHETIC_ERRNO(ENOENT), "No matching entry in .v/ directory %s found.", context->root_directory); | |
3378 | } | |
3379 | ||
3380 | *ret_root_image = NULL; | |
3381 | *ret_root_directory = TAKE_PTR(result.path); | |
3382 | return r; | |
3383 | } | |
3384 | ||
3385 | *ret_root_image = *ret_root_directory = NULL; | |
3386 | return 0; | |
3387 | } | |
3388 | ||
3389 | static int apply_mount_namespace( | |
3390 | ExecCommandFlags command_flags, | |
3391 | const ExecContext *context, | |
3392 | const ExecParameters *params, | |
3393 | ExecRuntime *runtime, | |
3394 | const char *memory_pressure_path, | |
3395 | bool needs_sandboxing, | |
3396 | char **reterr_path, | |
3397 | uid_t exec_directory_uid, | |
3398 | gid_t exec_directory_gid) { | |
3399 | ||
3400 | _cleanup_(verity_settings_done) VeritySettings verity = VERITY_SETTINGS_DEFAULT; | |
3401 | _cleanup_strv_free_ char **empty_directories = NULL, **symlinks = NULL, | |
3402 | **read_write_paths_cleanup = NULL; | |
3403 | _cleanup_free_ char *creds_path = NULL, *incoming_dir = NULL, *propagate_dir = NULL, | |
3404 | *private_namespace_dir = NULL, *host_os_release_stage = NULL, *root_image = NULL, *root_dir = NULL; | |
3405 | const char *tmp_dir = NULL, *var_tmp_dir = NULL; | |
3406 | char **read_write_paths; | |
3407 | bool setup_os_release_symlink; | |
3408 | BindMount *bind_mounts = NULL; | |
3409 | size_t n_bind_mounts = 0; | |
3410 | int r; | |
3411 | ||
3412 | assert(context); | |
3413 | assert(params); | |
3414 | assert(runtime); | |
3415 | ||
3416 | CLEANUP_ARRAY(bind_mounts, n_bind_mounts, bind_mount_free_many); | |
3417 | ||
3418 | if (params->flags & EXEC_APPLY_CHROOT) { | |
3419 | r = pick_versions( | |
3420 | context, | |
3421 | params, | |
3422 | &root_image, | |
3423 | &root_dir, | |
3424 | reterr_path); | |
3425 | if (r < 0) | |
3426 | return r; | |
3427 | ||
3428 | r = setup_ephemeral( | |
3429 | context, | |
3430 | runtime, | |
3431 | &root_image, | |
3432 | &root_dir, | |
3433 | reterr_path); | |
3434 | if (r < 0) | |
3435 | return r; | |
3436 | } | |
3437 | ||
3438 | r = compile_bind_mounts(context, params, exec_directory_uid, exec_directory_gid, &bind_mounts, &n_bind_mounts, &empty_directories); | |
3439 | if (r < 0) | |
3440 | return r; | |
3441 | ||
3442 | /* We need to make the pressure path writable even if /sys/fs/cgroups is made read-only, as the | |
3443 | * service will need to write to it in order to start the notifications. */ | |
3444 | if (exec_is_cgroup_mount_read_only(context) && memory_pressure_path && !streq(memory_pressure_path, "/dev/null")) { | |
3445 | read_write_paths_cleanup = strv_copy(context->read_write_paths); | |
3446 | if (!read_write_paths_cleanup) | |
3447 | return -ENOMEM; | |
3448 | ||
3449 | r = strv_extend(&read_write_paths_cleanup, memory_pressure_path); | |
3450 | if (r < 0) | |
3451 | return r; | |
3452 | ||
3453 | read_write_paths = read_write_paths_cleanup; | |
3454 | } else | |
3455 | read_write_paths = context->read_write_paths; | |
3456 | ||
3457 | if (needs_sandboxing) { | |
3458 | /* The runtime struct only contains the parent of the private /tmp, which is non-accessible | |
3459 | * to world users. Inside of it there's a /tmp that is sticky, and that's the one we want to | |
3460 | * use here. This does not apply when we are using /run/systemd/empty as fallback. */ | |
3461 | ||
3462 | if (context->private_tmp == PRIVATE_TMP_CONNECTED && runtime->shared) { | |
3463 | if (streq_ptr(runtime->shared->tmp_dir, RUN_SYSTEMD_EMPTY)) | |
3464 | tmp_dir = runtime->shared->tmp_dir; | |
3465 | else if (runtime->shared->tmp_dir) | |
3466 | tmp_dir = strjoina(runtime->shared->tmp_dir, "/tmp"); | |
3467 | ||
3468 | if (streq_ptr(runtime->shared->var_tmp_dir, RUN_SYSTEMD_EMPTY)) | |
3469 | var_tmp_dir = runtime->shared->var_tmp_dir; | |
3470 | else if (runtime->shared->var_tmp_dir) | |
3471 | var_tmp_dir = strjoina(runtime->shared->var_tmp_dir, "/tmp"); | |
3472 | } | |
3473 | } | |
3474 | ||
3475 | /* Symlinks (exec dirs, os-release) are set up after other mounts, before they are made read-only. */ | |
3476 | setup_os_release_symlink = needs_sandboxing && exec_context_get_effective_mount_apivfs(context) && (root_dir || root_image); | |
3477 | r = compile_symlinks(context, params, setup_os_release_symlink, &symlinks); | |
3478 | if (r < 0) | |
3479 | return r; | |
3480 | ||
3481 | if (context->mount_propagation_flag == MS_SHARED) | |
3482 | log_debug("shared mount propagation hidden by other fs namespacing unit settings: ignoring"); | |
3483 | ||
3484 | r = exec_context_get_credential_directory(context, params, params->unit_id, &creds_path); | |
3485 | if (r < 0) | |
3486 | return r; | |
3487 | ||
3488 | if (params->runtime_scope == RUNTIME_SCOPE_SYSTEM) { | |
3489 | propagate_dir = path_join("/run/systemd/propagate/", params->unit_id); | |
3490 | if (!propagate_dir) | |
3491 | return -ENOMEM; | |
3492 | ||
3493 | incoming_dir = strdup("/run/systemd/incoming"); | |
3494 | if (!incoming_dir) | |
3495 | return -ENOMEM; | |
3496 | ||
3497 | private_namespace_dir = strdup("/run/systemd"); | |
3498 | if (!private_namespace_dir) | |
3499 | return -ENOMEM; | |
3500 | ||
3501 | /* If running under a different root filesystem, propagate the host's os-release. We make a | |
3502 | * copy rather than just bind mounting it, so that it can be updated on soft-reboot. */ | |
3503 | if (setup_os_release_symlink) { | |
3504 | host_os_release_stage = strdup("/run/systemd/propagate/.os-release-stage"); | |
3505 | if (!host_os_release_stage) | |
3506 | return -ENOMEM; | |
3507 | } | |
3508 | } else { | |
3509 | assert(params->runtime_scope == RUNTIME_SCOPE_USER); | |
3510 | ||
3511 | if (asprintf(&private_namespace_dir, "/run/user/" UID_FMT "/systemd", geteuid()) < 0) | |
3512 | return -ENOMEM; | |
3513 | ||
3514 | if (setup_os_release_symlink) { | |
3515 | if (asprintf(&host_os_release_stage, | |
3516 | "/run/user/" UID_FMT "/systemd/propagate/.os-release-stage", | |
3517 | geteuid()) < 0) | |
3518 | return -ENOMEM; | |
3519 | } | |
3520 | } | |
3521 | ||
3522 | if (root_image) { | |
3523 | r = verity_settings_prepare( | |
3524 | &verity, | |
3525 | root_image, | |
3526 | context->root_hash, context->root_hash_size, context->root_hash_path, | |
3527 | context->root_hash_sig, context->root_hash_sig_size, context->root_hash_sig_path, | |
3528 | context->root_verity); | |
3529 | if (r < 0) | |
3530 | return r; | |
3531 | } | |
3532 | ||
3533 | NamespaceParameters parameters = { | |
3534 | .runtime_scope = params->runtime_scope, | |
3535 | ||
3536 | .root_directory = root_dir, | |
3537 | .root_image = root_image, | |
3538 | .root_image_options = context->root_image_options, | |
3539 | .root_image_policy = context->root_image_policy ?: &image_policy_service, | |
3540 | ||
3541 | .read_write_paths = read_write_paths, | |
3542 | .read_only_paths = needs_sandboxing ? context->read_only_paths : NULL, | |
3543 | .inaccessible_paths = needs_sandboxing ? context->inaccessible_paths : NULL, | |
3544 | ||
3545 | .exec_paths = needs_sandboxing ? context->exec_paths : NULL, | |
3546 | .no_exec_paths = needs_sandboxing ? context->no_exec_paths : NULL, | |
3547 | ||
3548 | .empty_directories = empty_directories, | |
3549 | .symlinks = symlinks, | |
3550 | ||
3551 | .bind_mounts = bind_mounts, | |
3552 | .n_bind_mounts = n_bind_mounts, | |
3553 | ||
3554 | .temporary_filesystems = context->temporary_filesystems, | |
3555 | .n_temporary_filesystems = context->n_temporary_filesystems, | |
3556 | ||
3557 | .mount_images = context->mount_images, | |
3558 | .n_mount_images = context->n_mount_images, | |
3559 | .mount_image_policy = context->mount_image_policy ?: &image_policy_service, | |
3560 | ||
3561 | .tmp_dir = tmp_dir, | |
3562 | .var_tmp_dir = var_tmp_dir, | |
3563 | ||
3564 | .creds_path = creds_path, | |
3565 | .log_namespace = context->log_namespace, | |
3566 | .mount_propagation_flag = context->mount_propagation_flag, | |
3567 | ||
3568 | .verity = &verity, | |
3569 | ||
3570 | .extension_images = context->extension_images, | |
3571 | .n_extension_images = context->n_extension_images, | |
3572 | .extension_image_policy = context->extension_image_policy ?: &image_policy_sysext, | |
3573 | .extension_directories = context->extension_directories, | |
3574 | ||
3575 | .propagate_dir = propagate_dir, | |
3576 | .incoming_dir = incoming_dir, | |
3577 | .private_namespace_dir = private_namespace_dir, | |
3578 | .host_notify_socket = params->notify_socket, | |
3579 | .notify_socket_path = exec_get_private_notify_socket_path(context, params, needs_sandboxing), | |
3580 | .host_os_release_stage = host_os_release_stage, | |
3581 | ||
3582 | /* If DynamicUser=no and RootDirectory= is set then lets pass a relaxed sandbox info, | |
3583 | * otherwise enforce it, don't ignore protected paths and fail if we are enable to apply the | |
3584 | * sandbox inside the mount namespace. */ | |
3585 | .ignore_protect_paths = !needs_sandboxing && !context->dynamic_user && root_dir, | |
3586 | ||
3587 | .protect_control_groups = needs_sandboxing ? exec_get_protect_control_groups(context) : PROTECT_CONTROL_GROUPS_NO, | |
3588 | .protect_kernel_tunables = needs_sandboxing && context->protect_kernel_tunables, | |
3589 | .protect_kernel_modules = needs_sandboxing && context->protect_kernel_modules, | |
3590 | .protect_kernel_logs = needs_sandboxing && context->protect_kernel_logs, | |
3591 | ||
3592 | .private_dev = needs_sandboxing && context->private_devices, | |
3593 | .private_network = needs_sandboxing && exec_needs_network_namespace(context), | |
3594 | .private_ipc = needs_sandboxing && exec_needs_ipc_namespace(context), | |
3595 | .private_pids = needs_sandboxing && exec_needs_pid_namespace(context, params) ? context->private_pids : PRIVATE_PIDS_NO, | |
3596 | .private_tmp = needs_sandboxing ? context->private_tmp : PRIVATE_TMP_NO, | |
3597 | .private_var_tmp = needs_sandboxing ? context->private_var_tmp : PRIVATE_TMP_NO, | |
3598 | ||
3599 | .mount_apivfs = needs_sandboxing && exec_context_get_effective_mount_apivfs(context), | |
3600 | .bind_log_sockets = needs_sandboxing && exec_context_get_effective_bind_log_sockets(context), | |
3601 | ||
3602 | /* If NNP is on, we can turn on MS_NOSUID, since it won't have any effect anymore. */ | |
3603 | .mount_nosuid = needs_sandboxing && context->no_new_privileges && !mac_selinux_use(), | |
3604 | ||
3605 | .protect_home = needs_sandboxing ? context->protect_home : PROTECT_HOME_NO, | |
3606 | .protect_hostname = needs_sandboxing ? context->protect_hostname : PROTECT_HOSTNAME_NO, | |
3607 | .protect_system = needs_sandboxing ? context->protect_system : PROTECT_SYSTEM_NO, | |
3608 | .protect_proc = needs_sandboxing ? context->protect_proc : PROTECT_PROC_DEFAULT, | |
3609 | .proc_subset = needs_sandboxing ? context->proc_subset : PROC_SUBSET_ALL, | |
3610 | }; | |
3611 | ||
3612 | r = setup_namespace(¶meters, reterr_path); | |
3613 | /* If we couldn't set up the namespace this is probably due to a missing capability. setup_namespace() reports | |
3614 | * that with a special, recognizable error ENOANO. In this case, silently proceed, but only if exclusively | |
3615 | * sandboxing options were used, i.e. nothing such as RootDirectory= or BindMount= that would result in a | |
3616 | * completely different execution environment. */ | |
3617 | if (r == -ENOANO) { | |
3618 | if (insist_on_sandboxing( | |
3619 | context, | |
3620 | root_dir, root_image, | |
3621 | bind_mounts, | |
3622 | n_bind_mounts)) | |
3623 | return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), | |
3624 | "Failed to set up namespace, and refusing to continue since " | |
3625 | "the selected namespacing options alter mount environment non-trivially.\n" | |
3626 | "Bind mounts: %zu, temporary filesystems: %zu, root directory: %s, root image: %s, dynamic user: %s", | |
3627 | n_bind_mounts, | |
3628 | context->n_temporary_filesystems, | |
3629 | yes_no(root_dir), | |
3630 | yes_no(root_image), | |
3631 | yes_no(context->dynamic_user)); | |
3632 | ||
3633 | log_debug("Failed to set up namespace, assuming containerized execution and ignoring."); | |
3634 | return 0; | |
3635 | } | |
3636 | ||
3637 | return r; | |
3638 | } | |
3639 | ||
3640 | static int apply_working_directory( | |
3641 | const ExecContext *context, | |
3642 | const ExecParameters *params, | |
3643 | ExecRuntime *runtime, | |
3644 | const char *pwent_home, | |
3645 | char * const *env) { | |
3646 | ||
3647 | const char *wd; | |
3648 | int r; | |
3649 | ||
3650 | assert(context); | |
3651 | assert(params); | |
3652 | assert(runtime); | |
3653 | ||
3654 | if (context->working_directory_home) { | |
3655 | /* Preferably use the data from $HOME, in case it was updated by a PAM module */ | |
3656 | wd = strv_env_get(env, "HOME"); | |
3657 | if (!wd) { | |
3658 | /* If that's not available, use the data from the struct passwd entry: */ | |
3659 | if (!pwent_home) | |
3660 | return -ENXIO; | |
3661 | ||
3662 | wd = pwent_home; | |
3663 | } | |
3664 | } else | |
3665 | wd = empty_to_root(context->working_directory); | |
3666 | ||
3667 | if (params->flags & EXEC_APPLY_CHROOT) | |
3668 | r = RET_NERRNO(chdir(wd)); | |
3669 | else { | |
3670 | _cleanup_close_ int dfd = -EBADF; | |
3671 | ||
3672 | r = chase(wd, | |
3673 | runtime->ephemeral_copy ?: context->root_directory, | |
3674 | CHASE_PREFIX_ROOT|CHASE_AT_RESOLVE_IN_ROOT, | |
3675 | /* ret_path= */ NULL, | |
3676 | &dfd); | |
3677 | if (r >= 0) | |
3678 | r = RET_NERRNO(fchdir(dfd)); | |
3679 | } | |
3680 | return context->working_directory_missing_ok ? 0 : r; | |
3681 | } | |
3682 | ||
3683 | static int apply_root_directory( | |
3684 | const ExecContext *context, | |
3685 | const ExecParameters *params, | |
3686 | ExecRuntime *runtime, | |
3687 | const bool needs_mount_ns, | |
3688 | int *exit_status) { | |
3689 | ||
3690 | assert(context); | |
3691 | assert(params); | |
3692 | assert(runtime); | |
3693 | assert(exit_status); | |
3694 | ||
3695 | if (params->flags & EXEC_APPLY_CHROOT) | |
3696 | if (!needs_mount_ns && context->root_directory) | |
3697 | if (chroot(runtime->ephemeral_copy ?: context->root_directory) < 0) { | |
3698 | *exit_status = EXIT_CHROOT; | |
3699 | return -errno; | |
3700 | } | |
3701 | ||
3702 | return 0; | |
3703 | } | |
3704 | ||
3705 | static int setup_keyring( | |
3706 | const ExecContext *context, | |
3707 | const ExecParameters *p, | |
3708 | uid_t uid, | |
3709 | gid_t gid) { | |
3710 | ||
3711 | key_serial_t keyring; | |
3712 | int r = 0; | |
3713 | uid_t saved_uid; | |
3714 | gid_t saved_gid; | |
3715 | ||
3716 | assert(context); | |
3717 | assert(p); | |
3718 | ||
3719 | /* Let's set up a new per-service "session" kernel keyring for each system service. This has the benefit that | |
3720 | * each service runs with its own keyring shared among all processes of the service, but with no hook-up beyond | |
3721 | * that scope, and in particular no link to the per-UID keyring. If we don't do this the keyring will be | |
3722 | * automatically created on-demand and then linked to the per-UID keyring, by the kernel. The kernel's built-in | |
3723 | * on-demand behaviour is very appropriate for login users, but probably not so much for system services, where | |
3724 | * UIDs are not necessarily specific to a service but reused (at least in the case of UID 0). */ | |
3725 | ||
3726 | if (context->keyring_mode == EXEC_KEYRING_INHERIT) | |
3727 | return 0; | |
3728 | ||
3729 | /* Acquiring a reference to the user keyring is nasty. We briefly change identity in order to get things set up | |
3730 | * properly by the kernel. If we don't do that then we can't create it atomically, and that sucks for parallel | |
3731 | * execution. This mimics what pam_keyinit does, too. Setting up session keyring, to be owned by the right user | |
3732 | * & group is just as nasty as acquiring a reference to the user keyring. */ | |
3733 | ||
3734 | saved_uid = getuid(); | |
3735 | saved_gid = getgid(); | |
3736 | ||
3737 | if (gid_is_valid(gid) && gid != saved_gid) { | |
3738 | if (setregid(gid, -1) < 0) | |
3739 | return log_error_errno(errno, "Failed to change GID for user keyring: %m"); | |
3740 | } | |
3741 | ||
3742 | if (uid_is_valid(uid) && uid != saved_uid) { | |
3743 | if (setreuid(uid, -1) < 0) { | |
3744 | r = log_error_errno(errno, "Failed to change UID for user keyring: %m"); | |
3745 | goto out; | |
3746 | } | |
3747 | } | |
3748 | ||
3749 | keyring = keyctl(KEYCTL_JOIN_SESSION_KEYRING, 0, 0, 0, 0); | |
3750 | if (keyring == -1) { | |
3751 | if (errno == ENOSYS) | |
3752 | log_debug_errno(errno, "Kernel keyring not supported, ignoring."); | |
3753 | else if (ERRNO_IS_PRIVILEGE(errno)) | |
3754 | log_debug_errno(errno, "Kernel keyring access prohibited, ignoring."); | |
3755 | else if (errno == EDQUOT) | |
3756 | log_debug_errno(errno, "Out of kernel keyrings to allocate, ignoring."); | |
3757 | else | |
3758 | r = log_error_errno(errno, "Setting up kernel keyring failed: %m"); | |
3759 | ||
3760 | goto out; | |
3761 | } | |
3762 | ||
3763 | /* When requested link the user keyring into the session keyring. */ | |
3764 | if (context->keyring_mode == EXEC_KEYRING_SHARED) { | |
3765 | ||
3766 | if (keyctl(KEYCTL_LINK, | |
3767 | KEY_SPEC_USER_KEYRING, | |
3768 | KEY_SPEC_SESSION_KEYRING, 0, 0) < 0) { | |
3769 | r = log_error_errno(errno, "Failed to link user keyring into session keyring: %m"); | |
3770 | goto out; | |
3771 | } | |
3772 | } | |
3773 | ||
3774 | /* Restore uid/gid back */ | |
3775 | if (uid_is_valid(uid) && uid != saved_uid) { | |
3776 | if (setreuid(saved_uid, -1) < 0) { | |
3777 | r = log_error_errno(errno, "Failed to change UID back for user keyring: %m"); | |
3778 | goto out; | |
3779 | } | |
3780 | } | |
3781 | ||
3782 | if (gid_is_valid(gid) && gid != saved_gid) { | |
3783 | if (setregid(saved_gid, -1) < 0) | |
3784 | return log_error_errno(errno, "Failed to change GID back for user keyring: %m"); | |
3785 | } | |
3786 | ||
3787 | /* Populate they keyring with the invocation ID by default, as original saved_uid. */ | |
3788 | if (!sd_id128_is_null(p->invocation_id)) { | |
3789 | key_serial_t key; | |
3790 | ||
3791 | key = add_key("user", | |
3792 | "invocation_id", | |
3793 | &p->invocation_id, | |
3794 | sizeof(p->invocation_id), | |
3795 | KEY_SPEC_SESSION_KEYRING); | |
3796 | if (key == -1) | |
3797 | log_debug_errno(errno, "Failed to add invocation ID to keyring, ignoring: %m"); | |
3798 | else { | |
3799 | if (keyctl(KEYCTL_SETPERM, key, | |
3800 | KEY_POS_VIEW|KEY_POS_READ|KEY_POS_SEARCH| | |
3801 | KEY_USR_VIEW|KEY_USR_READ|KEY_USR_SEARCH, 0, 0) < 0) | |
3802 | r = log_error_errno(errno, "Failed to restrict invocation ID permission: %m"); | |
3803 | } | |
3804 | } | |
3805 | ||
3806 | out: | |
3807 | /* Revert back uid & gid for the last time, and exit */ | |
3808 | /* no extra logging, as only the first already reported error matters */ | |
3809 | if (getuid() != saved_uid) | |
3810 | (void) setreuid(saved_uid, -1); | |
3811 | ||
3812 | if (getgid() != saved_gid) | |
3813 | (void) setregid(saved_gid, -1); | |
3814 | ||
3815 | return r; | |
3816 | } | |
3817 | ||
3818 | static void append_socket_pair(int *array, size_t *n, const int pair[static 2]) { | |
3819 | assert(array); | |
3820 | assert(n); | |
3821 | assert(pair); | |
3822 | ||
3823 | if (pair[0] >= 0) | |
3824 | array[(*n)++] = pair[0]; | |
3825 | if (pair[1] >= 0) | |
3826 | array[(*n)++] = pair[1]; | |
3827 | } | |
3828 | ||
3829 | static int close_remaining_fds( | |
3830 | const ExecParameters *params, | |
3831 | const ExecRuntime *runtime, | |
3832 | int socket_fd, | |
3833 | const int *fds, | |
3834 | size_t n_fds) { | |
3835 | ||
3836 | size_t n_dont_close = 0; | |
3837 | int dont_close[n_fds + 17]; | |
3838 | ||
3839 | assert(params); | |
3840 | assert(runtime); | |
3841 | ||
3842 | if (params->stdin_fd >= 0) | |
3843 | dont_close[n_dont_close++] = params->stdin_fd; | |
3844 | if (params->stdout_fd >= 0) | |
3845 | dont_close[n_dont_close++] = params->stdout_fd; | |
3846 | if (params->stderr_fd >= 0) | |
3847 | dont_close[n_dont_close++] = params->stderr_fd; | |
3848 | ||
3849 | if (socket_fd >= 0) | |
3850 | dont_close[n_dont_close++] = socket_fd; | |
3851 | if (n_fds > 0) { | |
3852 | memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds); | |
3853 | n_dont_close += n_fds; | |
3854 | } | |
3855 | ||
3856 | append_socket_pair(dont_close, &n_dont_close, runtime->ephemeral_storage_socket); | |
3857 | ||
3858 | if (runtime->shared) { | |
3859 | append_socket_pair(dont_close, &n_dont_close, runtime->shared->netns_storage_socket); | |
3860 | append_socket_pair(dont_close, &n_dont_close, runtime->shared->ipcns_storage_socket); | |
3861 | } | |
3862 | ||
3863 | if (runtime->dynamic_creds) { | |
3864 | if (runtime->dynamic_creds->user) | |
3865 | append_socket_pair(dont_close, &n_dont_close, runtime->dynamic_creds->user->storage_socket); | |
3866 | if (runtime->dynamic_creds->group) | |
3867 | append_socket_pair(dont_close, &n_dont_close, runtime->dynamic_creds->group->storage_socket); | |
3868 | } | |
3869 | ||
3870 | if (params->user_lookup_fd >= 0) | |
3871 | dont_close[n_dont_close++] = params->user_lookup_fd; | |
3872 | ||
3873 | if (params->handoff_timestamp_fd >= 0) | |
3874 | dont_close[n_dont_close++] = params->handoff_timestamp_fd; | |
3875 | ||
3876 | if (params->pidref_transport_fd >= 0) | |
3877 | dont_close[n_dont_close++] = params->pidref_transport_fd; | |
3878 | ||
3879 | assert(n_dont_close <= ELEMENTSOF(dont_close)); | |
3880 | ||
3881 | return close_all_fds(dont_close, n_dont_close); | |
3882 | } | |
3883 | ||
3884 | static int send_user_lookup( | |
3885 | const char *unit_id, | |
3886 | int user_lookup_fd, | |
3887 | uid_t uid, | |
3888 | gid_t gid) { | |
3889 | ||
3890 | assert(unit_id); | |
3891 | ||
3892 | /* Send the resolved UID/GID to PID 1 after we learnt it. We send a single datagram, containing the UID/GID | |
3893 | * data as well as the unit name. Note that we suppress sending this if no user/group to resolve was | |
3894 | * specified. */ | |
3895 | ||
3896 | if (user_lookup_fd < 0) | |
3897 | return 0; | |
3898 | ||
3899 | if (!uid_is_valid(uid) && !gid_is_valid(gid)) | |
3900 | return 0; | |
3901 | ||
3902 | if (writev(user_lookup_fd, | |
3903 | (struct iovec[]) { | |
3904 | IOVEC_MAKE(&uid, sizeof(uid)), | |
3905 | IOVEC_MAKE(&gid, sizeof(gid)), | |
3906 | IOVEC_MAKE_STRING(unit_id) }, 3) < 0) | |
3907 | return -errno; | |
3908 | ||
3909 | return 0; | |
3910 | } | |
3911 | ||
3912 | static int acquire_home(const ExecContext *c, const char **home, char **ret_buf) { | |
3913 | int r; | |
3914 | ||
3915 | assert(c); | |
3916 | assert(home); | |
3917 | assert(ret_buf); | |
3918 | ||
3919 | /* If WorkingDirectory=~ is set, try to acquire a usable home directory. */ | |
3920 | ||
3921 | if (*home) /* Already acquired from get_fixed_user()? */ | |
3922 | return 0; | |
3923 | ||
3924 | if (!c->working_directory_home) | |
3925 | return 0; | |
3926 | ||
3927 | if (c->dynamic_user || (c->user && is_this_me(c->user) <= 0)) | |
3928 | return -EADDRNOTAVAIL; | |
3929 | ||
3930 | r = get_home_dir(ret_buf); | |
3931 | if (r < 0) | |
3932 | return r; | |
3933 | ||
3934 | *home = *ret_buf; | |
3935 | return 1; | |
3936 | } | |
3937 | ||
3938 | static int compile_suggested_paths(const ExecContext *c, const ExecParameters *p, char ***ret) { | |
3939 | _cleanup_strv_free_ char ** list = NULL; | |
3940 | int r; | |
3941 | ||
3942 | assert(c); | |
3943 | assert(p); | |
3944 | assert(ret); | |
3945 | ||
3946 | assert(c->dynamic_user); | |
3947 | ||
3948 | /* Compile a list of paths that it might make sense to read the owning UID from to use as initial candidate for | |
3949 | * dynamic UID allocation, in order to save us from doing costly recursive chown()s of the special | |
3950 | * directories. */ | |
3951 | ||
3952 | for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) { | |
3953 | ||
3954 | if (!EXEC_DIRECTORY_TYPE_SHALL_CHOWN(t)) | |
3955 | continue; | |
3956 | ||
3957 | if (!p->prefix[t]) | |
3958 | continue; | |
3959 | ||
3960 | for (size_t i = 0; i < c->directories[t].n_items; i++) { | |
3961 | char *e; | |
3962 | ||
3963 | if (exec_directory_is_private(c, t)) | |
3964 | e = path_join(p->prefix[t], "private", c->directories[t].items[i].path); | |
3965 | else | |
3966 | e = path_join(p->prefix[t], c->directories[t].items[i].path); | |
3967 | if (!e) | |
3968 | return -ENOMEM; | |
3969 | ||
3970 | r = strv_consume(&list, e); | |
3971 | if (r < 0) | |
3972 | return r; | |
3973 | } | |
3974 | } | |
3975 | ||
3976 | *ret = TAKE_PTR(list); | |
3977 | ||
3978 | return 0; | |
3979 | } | |
3980 | ||
3981 | static int exec_context_cpu_affinity_from_numa(const ExecContext *c, CPUSet *ret) { | |
3982 | int r; | |
3983 | ||
3984 | assert(c); | |
3985 | assert(ret); | |
3986 | ||
3987 | if (!c->numa_policy.nodes.set) { | |
3988 | log_debug("Can't derive CPU affinity mask from NUMA mask because NUMA mask is not set, ignoring"); | |
3989 | *ret = (CPUSet) {}; | |
3990 | return 0; | |
3991 | } | |
3992 | ||
3993 | _cleanup_(cpu_set_done) CPUSet s = {}; | |
3994 | r = numa_to_cpu_set(&c->numa_policy, &s); | |
3995 | if (r < 0) | |
3996 | return r; | |
3997 | ||
3998 | *ret = TAKE_STRUCT(s); | |
3999 | return 0; | |
4000 | } | |
4001 | ||
4002 | static int add_shifted_fd(int *fds, size_t fds_size, size_t *n_fds, int *fd) { | |
4003 | int r; | |
4004 | ||
4005 | assert(fds); | |
4006 | assert(n_fds); | |
4007 | assert(*n_fds < fds_size); | |
4008 | assert(fd); | |
4009 | ||
4010 | if (*fd < 0) | |
4011 | return 0; | |
4012 | ||
4013 | if (*fd < 3 + (int) *n_fds) { | |
4014 | /* Let's move the fd up, so that it's outside of the fd range we will use to store | |
4015 | * the fds we pass to the process (or which are closed only during execve). */ | |
4016 | ||
4017 | r = fcntl(*fd, F_DUPFD_CLOEXEC, 3 + (int) *n_fds); | |
4018 | if (r < 0) | |
4019 | return -errno; | |
4020 | ||
4021 | close_and_replace(*fd, r); | |
4022 | } | |
4023 | ||
4024 | fds[(*n_fds)++] = *fd; | |
4025 | return 1; | |
4026 | } | |
4027 | ||
4028 | static int connect_unix_harder(const OpenFile *of, int ofd) { | |
4029 | static const int socket_types[] = { SOCK_DGRAM, SOCK_STREAM, SOCK_SEQPACKET }; | |
4030 | ||
4031 | union sockaddr_union addr = { | |
4032 | .un.sun_family = AF_UNIX, | |
4033 | }; | |
4034 | socklen_t sa_len; | |
4035 | int r; | |
4036 | ||
4037 | assert(of); | |
4038 | assert(ofd >= 0); | |
4039 | ||
4040 | r = sockaddr_un_set_path(&addr.un, FORMAT_PROC_FD_PATH(ofd)); | |
4041 | if (r < 0) | |
4042 | return log_debug_errno(r, "Failed to set sockaddr for '%s': %m", of->path); | |
4043 | sa_len = r; | |
4044 | ||
4045 | FOREACH_ELEMENT(i, socket_types) { | |
4046 | _cleanup_close_ int fd = -EBADF; | |
4047 | ||
4048 | fd = socket(AF_UNIX, *i|SOCK_CLOEXEC, 0); | |
4049 | if (fd < 0) | |
4050 | return log_debug_errno(errno, "Failed to create socket for '%s': %m", of->path); | |
4051 | ||
4052 | r = RET_NERRNO(connect(fd, &addr.sa, sa_len)); | |
4053 | if (r >= 0) | |
4054 | return TAKE_FD(fd); | |
4055 | if (r != -EPROTOTYPE) | |
4056 | return log_debug_errno(r, "Failed to connect to socket for '%s': %m", of->path); | |
4057 | } | |
4058 | ||
4059 | return log_debug_errno(SYNTHETIC_ERRNO(EPROTOTYPE), "No suitable socket type to connect to socket '%s'.", of->path); | |
4060 | } | |
4061 | ||
4062 | static int get_open_file_fd(const OpenFile *of) { | |
4063 | _cleanup_close_ int fd = -EBADF, ofd = -EBADF; | |
4064 | struct stat st; | |
4065 | ||
4066 | assert(of); | |
4067 | ||
4068 | ofd = open(of->path, O_PATH | O_CLOEXEC); | |
4069 | if (ofd < 0) | |
4070 | return log_debug_errno(errno, "Failed to open '%s' as O_PATH: %m", of->path); | |
4071 | ||
4072 | if (fstat(ofd, &st) < 0) | |
4073 | return log_debug_errno( errno, "Failed to stat '%s': %m", of->path); | |
4074 | ||
4075 | if (S_ISSOCK(st.st_mode)) { | |
4076 | fd = connect_unix_harder(of, ofd); | |
4077 | if (fd < 0) | |
4078 | return fd; | |
4079 | ||
4080 | if (FLAGS_SET(of->flags, OPENFILE_READ_ONLY) && shutdown(fd, SHUT_WR) < 0) | |
4081 | return log_debug_errno(errno, "Failed to shutdown send for socket '%s': %m", of->path); | |
4082 | ||
4083 | log_debug("Opened socket '%s' as fd %d.", of->path, fd); | |
4084 | } else { | |
4085 | int flags = FLAGS_SET(of->flags, OPENFILE_READ_ONLY) ? O_RDONLY : O_RDWR; | |
4086 | if (FLAGS_SET(of->flags, OPENFILE_APPEND)) | |
4087 | flags |= O_APPEND; | |
4088 | else if (FLAGS_SET(of->flags, OPENFILE_TRUNCATE)) | |
4089 | flags |= O_TRUNC; | |
4090 | ||
4091 | fd = fd_reopen(ofd, flags|O_NOCTTY|O_CLOEXEC); | |
4092 | if (fd < 0) | |
4093 | return log_debug_errno(fd, "Failed to reopen file '%s': %m", of->path); | |
4094 | ||
4095 | log_debug("Opened file '%s' as fd %d.", of->path, fd); | |
4096 | } | |
4097 | ||
4098 | return TAKE_FD(fd); | |
4099 | } | |
4100 | ||
4101 | static int collect_open_file_fds(ExecParameters *p, size_t *n_fds) { | |
4102 | assert(p); | |
4103 | assert(n_fds); | |
4104 | ||
4105 | LIST_FOREACH(open_files, of, p->open_files) { | |
4106 | _cleanup_close_ int fd = -EBADF; | |
4107 | ||
4108 | fd = get_open_file_fd(of); | |
4109 | if (fd < 0) { | |
4110 | if (FLAGS_SET(of->flags, OPENFILE_GRACEFUL)) { | |
4111 | log_full_errno(fd == -ENOENT || ERRNO_IS_NEG_PRIVILEGE(fd) ? LOG_DEBUG : LOG_WARNING, | |
4112 | fd, | |
4113 | "Failed to get OpenFile= file descriptor for '%s', ignoring: %m", | |
4114 | of->path); | |
4115 | continue; | |
4116 | } | |
4117 | ||
4118 | return log_error_errno(fd, "Failed to get OpenFile= file descriptor for '%s': %m", of->path); | |
4119 | } | |
4120 | ||
4121 | if (!GREEDY_REALLOC(p->fds, *n_fds + 1)) | |
4122 | return log_oom(); | |
4123 | ||
4124 | if (strv_extend(&p->fd_names, of->fdname) < 0) | |
4125 | return log_oom(); | |
4126 | ||
4127 | p->fds[(*n_fds)++] = TAKE_FD(fd); | |
4128 | } | |
4129 | ||
4130 | return 0; | |
4131 | } | |
4132 | ||
4133 | static void log_command_line( | |
4134 | const ExecContext *context, | |
4135 | const ExecParameters *params, | |
4136 | const char *msg, | |
4137 | const char *executable, | |
4138 | char **argv) { | |
4139 | ||
4140 | assert(context); | |
4141 | assert(params); | |
4142 | assert(msg); | |
4143 | assert(executable); | |
4144 | ||
4145 | if (!DEBUG_LOGGING) | |
4146 | return; | |
4147 | ||
4148 | _cleanup_free_ char *cmdline = quote_command_line(argv, SHELL_ESCAPE_EMPTY); | |
4149 | ||
4150 | log_struct(LOG_DEBUG, | |
4151 | LOG_ITEM("EXECUTABLE=%s", executable), | |
4152 | LOG_EXEC_MESSAGE(params, "%s: %s", msg, strnull(cmdline)), | |
4153 | LOG_EXEC_INVOCATION_ID(params)); | |
4154 | } | |
4155 | ||
4156 | static bool exec_needs_cap_sys_admin(const ExecContext *context, const ExecParameters *params) { | |
4157 | assert(context); | |
4158 | ||
4159 | return context->private_users != PRIVATE_USERS_NO || | |
4160 | context->private_tmp != PRIVATE_TMP_NO || | |
4161 | context->private_devices || | |
4162 | context->private_network || | |
4163 | context->network_namespace_path || | |
4164 | context->private_ipc || | |
4165 | context->ipc_namespace_path || | |
4166 | context->private_mounts > 0 || | |
4167 | context->mount_apivfs > 0 || | |
4168 | context->bind_log_sockets > 0 || | |
4169 | context->n_bind_mounts > 0 || | |
4170 | context->n_temporary_filesystems > 0 || | |
4171 | context->root_directory || | |
4172 | !strv_isempty(context->extension_directories) || | |
4173 | context->protect_system != PROTECT_SYSTEM_NO || | |
4174 | context->protect_home != PROTECT_HOME_NO || | |
4175 | exec_needs_pid_namespace(context, params) || | |
4176 | context->protect_kernel_tunables || | |
4177 | context->protect_kernel_modules || | |
4178 | context->protect_kernel_logs || | |
4179 | exec_needs_cgroup_mount(context) || | |
4180 | context->protect_clock || | |
4181 | context->protect_hostname != PROTECT_HOSTNAME_NO || | |
4182 | !strv_isempty(context->read_write_paths) || | |
4183 | !strv_isempty(context->read_only_paths) || | |
4184 | !strv_isempty(context->inaccessible_paths) || | |
4185 | !strv_isempty(context->exec_paths) || | |
4186 | !strv_isempty(context->no_exec_paths) || | |
4187 | context->delegate_namespaces != NAMESPACE_FLAGS_INITIAL; | |
4188 | } | |
4189 | ||
4190 | static PrivateUsers exec_context_get_effective_private_users( | |
4191 | const ExecContext *context, | |
4192 | const ExecParameters *params) { | |
4193 | ||
4194 | assert(context); | |
4195 | assert(params); | |
4196 | ||
4197 | if (context->private_users != PRIVATE_USERS_NO) | |
4198 | return context->private_users; | |
4199 | ||
4200 | /* If any namespace is delegated with DelegateNamespaces=, always set up a user namespace. */ | |
4201 | if (context->delegate_namespaces != NAMESPACE_FLAGS_INITIAL) | |
4202 | return PRIVATE_USERS_SELF; | |
4203 | ||
4204 | return PRIVATE_USERS_NO; | |
4205 | } | |
4206 | ||
4207 | static bool exec_namespace_is_delegated( | |
4208 | const ExecContext *context, | |
4209 | const ExecParameters *params, | |
4210 | bool have_cap_sys_admin, | |
4211 | unsigned long namespace) { | |
4212 | ||
4213 | assert(context); | |
4214 | assert(params); | |
4215 | assert(namespace != CLONE_NEWUSER); | |
4216 | ||
4217 | /* If we need unprivileged private users, we've already unshared a user namespace by the time we call | |
4218 | * setup_delegated_namespaces() for the first time so let's make sure we do all other namespace | |
4219 | * unsharing in the first call to setup_delegated_namespaces() by returning false here. */ | |
4220 | if (!have_cap_sys_admin && exec_needs_cap_sys_admin(context, params)) | |
4221 | return false; | |
4222 | ||
4223 | if (context->delegate_namespaces == NAMESPACE_FLAGS_INITIAL) | |
4224 | return params->runtime_scope == RUNTIME_SCOPE_USER; | |
4225 | ||
4226 | if (FLAGS_SET(context->delegate_namespaces, namespace)) | |
4227 | return true; | |
4228 | ||
4229 | /* Various namespaces imply mountns for private procfs/sysfs/cgroupfs instances, which means when | |
4230 | * those are delegated mountns must be deferred too. | |
4231 | * | |
4232 | * The list should stay in sync with exec_needs_mount_namespace(). */ | |
4233 | if (namespace == CLONE_NEWNS) | |
4234 | return context->delegate_namespaces & (CLONE_NEWPID|CLONE_NEWCGROUP|CLONE_NEWNET); | |
4235 | ||
4236 | return false; | |
4237 | } | |
4238 | ||
4239 | static int setup_delegated_namespaces( | |
4240 | const ExecContext *context, | |
4241 | ExecParameters *params, | |
4242 | ExecRuntime *runtime, | |
4243 | bool delegate, | |
4244 | const char *memory_pressure_path, | |
4245 | uid_t uid, | |
4246 | uid_t gid, | |
4247 | const ExecCommand *command, | |
4248 | bool needs_sandboxing, | |
4249 | bool have_cap_sys_admin, | |
4250 | int *reterr_exit_status) { | |
4251 | ||
4252 | int r; | |
4253 | ||
4254 | /* This function is called twice, once before unsharing the user namespace, and once after unsharing | |
4255 | * the user namespace. When called before unsharing the user namespace, "delegate" is set to "false". | |
4256 | * When called after unsharing the user namespace, "delegate" is set to "true". The net effect is | |
4257 | * that all namespaces that should not be delegated are unshared when this function is called the | |
4258 | * first time and all namespaces that should be delegated are unshared when this function is called | |
4259 | * the second time. */ | |
4260 | ||
4261 | assert(context); | |
4262 | assert(params); | |
4263 | assert(runtime); | |
4264 | assert(reterr_exit_status); | |
4265 | ||
4266 | if (exec_needs_network_namespace(context) && | |
4267 | exec_namespace_is_delegated(context, params, have_cap_sys_admin, CLONE_NEWNET) == delegate && | |
4268 | runtime->shared && runtime->shared->netns_storage_socket[0] >= 0) { | |
4269 | ||
4270 | /* Try to enable network namespacing if network namespacing is available and we have | |
4271 | * CAP_NET_ADMIN in the current user namespace (either the system manager one or the unit's | |
4272 | * own user namespace). We need CAP_NET_ADMIN to be able to configure the loopback device in | |
4273 | * the new network namespace. And if we don't have that, then we could only create a network | |
4274 | * namespace without the ability to set up "lo". Hence gracefully skip things then. */ | |
4275 | if (namespace_type_supported(NAMESPACE_NET) && have_effective_cap(CAP_NET_ADMIN) > 0) { | |
4276 | r = setup_shareable_ns(runtime->shared->netns_storage_socket, CLONE_NEWNET); | |
4277 | if (ERRNO_IS_NEG_PRIVILEGE(r)) | |
4278 | log_notice_errno(r, "PrivateNetwork=yes is configured, but network namespace setup not permitted, proceeding without: %m"); | |
4279 | else if (r < 0) { | |
4280 | *reterr_exit_status = EXIT_NETWORK; | |
4281 | return log_error_errno(r, "Failed to set up network namespacing: %m"); | |
4282 | } else | |
4283 | log_debug("Set up %snetwork namespace", delegate ? "delegated " : ""); | |
4284 | } else if (context->network_namespace_path) { | |
4285 | *reterr_exit_status = EXIT_NETWORK; | |
4286 | return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "NetworkNamespacePath= is not supported, refusing."); | |
4287 | } else | |
4288 | log_notice("PrivateNetwork=yes is configured, but the kernel does not support or we lack privileges for network namespace, proceeding without."); | |
4289 | } | |
4290 | ||
4291 | if (exec_needs_ipc_namespace(context) && | |
4292 | exec_namespace_is_delegated(context, params, have_cap_sys_admin, CLONE_NEWIPC) == delegate && | |
4293 | runtime->shared && runtime->shared->ipcns_storage_socket[0] >= 0) { | |
4294 | ||
4295 | if (namespace_type_supported(NAMESPACE_IPC)) { | |
4296 | r = setup_shareable_ns(runtime->shared->ipcns_storage_socket, CLONE_NEWIPC); | |
4297 | if (ERRNO_IS_NEG_PRIVILEGE(r)) | |
4298 | log_warning_errno(r, "PrivateIPC=yes is configured, but IPC namespace setup failed, ignoring: %m"); | |
4299 | else if (r < 0) { | |
4300 | *reterr_exit_status = EXIT_NAMESPACE; | |
4301 | return log_error_errno(r, "Failed to set up IPC namespacing: %m"); | |
4302 | } else | |
4303 | log_debug("Set up %sIPC namespace", delegate ? "delegated " : ""); | |
4304 | } else if (context->ipc_namespace_path) { | |
4305 | *reterr_exit_status = EXIT_NAMESPACE; | |
4306 | return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "IPCNamespacePath= is not supported, refusing."); | |
4307 | } else | |
4308 | log_warning("PrivateIPC=yes is configured, but the kernel does not support IPC namespaces, ignoring."); | |
4309 | } | |
4310 | ||
4311 | if (needs_sandboxing && exec_needs_cgroup_namespace(context) && | |
4312 | exec_namespace_is_delegated(context, params, have_cap_sys_admin, CLONE_NEWCGROUP) == delegate) { | |
4313 | if (unshare(CLONE_NEWCGROUP) < 0) { | |
4314 | *reterr_exit_status = EXIT_NAMESPACE; | |
4315 | return log_error_errno(errno, "Failed to set up cgroup namespacing: %m"); | |
4316 | } | |
4317 | ||
4318 | log_debug("Set up %scgroup namespace", delegate ? "delegated " : ""); | |
4319 | } | |
4320 | ||
4321 | /* Unshare a new PID namespace before setting up mounts to ensure /proc/ is mounted with only processes in PID namespace visible. | |
4322 | * Note PrivatePIDs=yes implies MountAPIVFS=yes so we'll always ensure procfs is remounted. */ | |
4323 | if (needs_sandboxing && exec_needs_pid_namespace(context, params) && | |
4324 | exec_namespace_is_delegated(context, params, have_cap_sys_admin, CLONE_NEWPID) == delegate) { | |
4325 | if (params->pidref_transport_fd < 0) { | |
4326 | *reterr_exit_status = EXIT_NAMESPACE; | |
4327 | return log_error_errno(SYNTHETIC_ERRNO(ENOTCONN), "PidRef socket is not set up: %m"); | |
4328 | } | |
4329 | ||
4330 | /* If we had CAP_SYS_ADMIN prior to joining the user namespace, then we are privileged and don't need | |
4331 | * to check if we can mount /proc/. | |
4332 | * | |
4333 | * We need to check prior to entering the user namespace because if we're running unprivileged or in a | |
4334 | * system without CAP_SYS_ADMIN, then we can have CAP_SYS_ADMIN in the current user namespace but not | |
4335 | * once we unshare a mount namespace. */ | |
4336 | if (!have_cap_sys_admin || delegate) { | |
4337 | r = can_mount_proc(); | |
4338 | if (r < 0) { | |
4339 | *reterr_exit_status = EXIT_NAMESPACE; | |
4340 | return log_error_errno(r, "Failed to detect if /proc/ can be remounted: %m"); | |
4341 | } | |
4342 | if (r == 0) { | |
4343 | *reterr_exit_status = EXIT_NAMESPACE; | |
4344 | return log_error_errno(SYNTHETIC_ERRNO(EPERM), | |
4345 | "PrivatePIDs=yes is configured, but /proc/ cannot be re-mounted due to lack of privileges, refusing."); | |
4346 | } | |
4347 | } | |
4348 | ||
4349 | r = setup_private_pids(context, params); | |
4350 | if (r < 0) { | |
4351 | *reterr_exit_status = EXIT_NAMESPACE; | |
4352 | return log_error_errno(r, "Failed to set up pid namespace: %m"); | |
4353 | } | |
4354 | ||
4355 | log_debug("Set up %spid namespace", delegate ? "delegated " : ""); | |
4356 | } | |
4357 | ||
4358 | /* If PrivatePIDs= yes is configured, we're now running as pid 1 in a pid namespace! */ | |
4359 | ||
4360 | if (exec_needs_mount_namespace(context, params, runtime) && | |
4361 | exec_namespace_is_delegated(context, params, have_cap_sys_admin, CLONE_NEWNS) == delegate) { | |
4362 | _cleanup_free_ char *error_path = NULL; | |
4363 | ||
4364 | r = apply_mount_namespace(command->flags, | |
4365 | context, | |
4366 | params, | |
4367 | runtime, | |
4368 | memory_pressure_path, | |
4369 | needs_sandboxing, | |
4370 | &error_path, | |
4371 | uid, | |
4372 | gid); | |
4373 | if (r < 0) { | |
4374 | *reterr_exit_status = EXIT_NAMESPACE; | |
4375 | return log_error_errno(r, "Failed to set up mount namespacing%s%s: %m", | |
4376 | error_path ? ": " : "", strempty(error_path)); | |
4377 | } | |
4378 | ||
4379 | log_debug("Set up %smount namespace", delegate ? "delegated " : ""); | |
4380 | } | |
4381 | ||
4382 | if (needs_sandboxing && | |
4383 | exec_namespace_is_delegated(context, params, have_cap_sys_admin, CLONE_NEWUTS) == delegate) { | |
4384 | r = apply_protect_hostname(context, params, reterr_exit_status); | |
4385 | if (r < 0) | |
4386 | return r; | |
4387 | if (r > 0) | |
4388 | log_debug("Set up %sUTS namespace", delegate ? "delegated " : ""); | |
4389 | } | |
4390 | ||
4391 | return 0; | |
4392 | } | |
4393 | ||
4394 | static bool exec_context_shall_confirm_spawn(const ExecContext *context) { | |
4395 | assert(context); | |
4396 | ||
4397 | if (confirm_spawn_disabled()) | |
4398 | return false; | |
4399 | ||
4400 | /* For some reasons units remaining in the same process group | |
4401 | * as PID 1 fail to acquire the console even if it's not used | |
4402 | * by any process. So skip the confirmation question for them. */ | |
4403 | return !context->same_pgrp; | |
4404 | } | |
4405 | ||
4406 | static int exec_context_named_iofds( | |
4407 | const ExecContext *c, | |
4408 | const ExecParameters *p, | |
4409 | int named_iofds[static 3]) { | |
4410 | ||
4411 | size_t targets; | |
4412 | const char* stdio_fdname[3]; | |
4413 | size_t n_fds; | |
4414 | ||
4415 | assert(c); | |
4416 | assert(p); | |
4417 | assert(named_iofds); | |
4418 | ||
4419 | targets = (c->std_input == EXEC_INPUT_NAMED_FD) + | |
4420 | (c->std_output == EXEC_OUTPUT_NAMED_FD) + | |
4421 | (c->std_error == EXEC_OUTPUT_NAMED_FD); | |
4422 | ||
4423 | for (size_t i = 0; i < 3; i++) | |
4424 | stdio_fdname[i] = exec_context_fdname(c, i); | |
4425 | ||
4426 | n_fds = p->n_storage_fds + p->n_socket_fds + p->n_extra_fds; | |
4427 | ||
4428 | for (size_t i = 0; i < n_fds && targets > 0; i++) | |
4429 | if (named_iofds[STDIN_FILENO] < 0 && | |
4430 | c->std_input == EXEC_INPUT_NAMED_FD && | |
4431 | stdio_fdname[STDIN_FILENO] && | |
4432 | streq(p->fd_names[i], stdio_fdname[STDIN_FILENO])) { | |
4433 | ||
4434 | named_iofds[STDIN_FILENO] = p->fds[i]; | |
4435 | targets--; | |
4436 | ||
4437 | } else if (named_iofds[STDOUT_FILENO] < 0 && | |
4438 | c->std_output == EXEC_OUTPUT_NAMED_FD && | |
4439 | stdio_fdname[STDOUT_FILENO] && | |
4440 | streq(p->fd_names[i], stdio_fdname[STDOUT_FILENO])) { | |
4441 | ||
4442 | named_iofds[STDOUT_FILENO] = p->fds[i]; | |
4443 | targets--; | |
4444 | ||
4445 | } else if (named_iofds[STDERR_FILENO] < 0 && | |
4446 | c->std_error == EXEC_OUTPUT_NAMED_FD && | |
4447 | stdio_fdname[STDERR_FILENO] && | |
4448 | streq(p->fd_names[i], stdio_fdname[STDERR_FILENO])) { | |
4449 | ||
4450 | named_iofds[STDERR_FILENO] = p->fds[i]; | |
4451 | targets--; | |
4452 | } | |
4453 | ||
4454 | return targets == 0 ? 0 : -ENOENT; | |
4455 | } | |
4456 | ||
4457 | static void exec_shared_runtime_close(ExecSharedRuntime *shared) { | |
4458 | if (!shared) | |
4459 | return; | |
4460 | ||
4461 | safe_close_pair(shared->netns_storage_socket); | |
4462 | safe_close_pair(shared->ipcns_storage_socket); | |
4463 | } | |
4464 | ||
4465 | static void exec_runtime_close(ExecRuntime *rt) { | |
4466 | if (!rt) | |
4467 | return; | |
4468 | ||
4469 | safe_close_pair(rt->ephemeral_storage_socket); | |
4470 | ||
4471 | exec_shared_runtime_close(rt->shared); | |
4472 | dynamic_creds_close(rt->dynamic_creds); | |
4473 | } | |
4474 | ||
4475 | static void exec_params_close(ExecParameters *p) { | |
4476 | if (!p) | |
4477 | return; | |
4478 | ||
4479 | p->stdin_fd = safe_close(p->stdin_fd); | |
4480 | p->stdout_fd = safe_close(p->stdout_fd); | |
4481 | p->stderr_fd = safe_close(p->stderr_fd); | |
4482 | } | |
4483 | ||
4484 | static int exec_fd_mark_hot( | |
4485 | const ExecContext *c, | |
4486 | ExecParameters *p, | |
4487 | bool hot, | |
4488 | int *reterr_exit_status) { | |
4489 | ||
4490 | assert(c); | |
4491 | assert(p); | |
4492 | ||
4493 | if (p->exec_fd < 0) | |
4494 | return 0; | |
4495 | ||
4496 | uint8_t x = hot; | |
4497 | ||
4498 | if (write(p->exec_fd, &x, sizeof(x)) < 0) { | |
4499 | if (reterr_exit_status) | |
4500 | *reterr_exit_status = EXIT_EXEC; | |
4501 | return log_error_errno(errno, "Failed to mark exec_fd as %s: %m", hot ? "hot" : "cold"); | |
4502 | } | |
4503 | ||
4504 | return 1; | |
4505 | } | |
4506 | ||
4507 | static int send_handoff_timestamp( | |
4508 | const ExecContext *c, | |
4509 | ExecParameters *p, | |
4510 | int *reterr_exit_status) { | |
4511 | ||
4512 | assert(c); | |
4513 | assert(p); | |
4514 | ||
4515 | if (p->handoff_timestamp_fd < 0) | |
4516 | return 0; | |
4517 | ||
4518 | dual_timestamp dt; | |
4519 | dual_timestamp_now(&dt); | |
4520 | ||
4521 | if (write(p->handoff_timestamp_fd, (const usec_t[2]) { dt.realtime, dt.monotonic }, sizeof(usec_t) * 2) < 0) { | |
4522 | if (reterr_exit_status) | |
4523 | *reterr_exit_status = EXIT_EXEC; | |
4524 | return log_error_errno(errno, "Failed to send handoff timestamp: %m"); | |
4525 | } | |
4526 | ||
4527 | return 1; | |
4528 | } | |
4529 | ||
4530 | static void prepare_terminal( | |
4531 | const ExecContext *context, | |
4532 | ExecParameters *p) { | |
4533 | ||
4534 | _cleanup_close_ int lock_fd = -EBADF; | |
4535 | ||
4536 | /* This is the "constructive" reset, i.e. is about preparing things for our invocation rather than | |
4537 | * cleaning up things from older invocations. */ | |
4538 | ||
4539 | assert(context); | |
4540 | assert(p); | |
4541 | ||
4542 | /* We only try to reset things if we there's the chance our stdout points to a TTY */ | |
4543 | if (!(is_terminal_output(context->std_output) || | |
4544 | (context->std_output == EXEC_OUTPUT_INHERIT && is_terminal_input(context->std_input)) || | |
4545 | context->std_output == EXEC_OUTPUT_NAMED_FD || | |
4546 | p->stdout_fd >= 0)) | |
4547 | return; | |
4548 | ||
4549 | /* Let's explicitly determine whether to reset via ANSI sequences or not, taking our ExecContext | |
4550 | * information into account */ | |
4551 | bool use_ansi = exec_context_shall_ansi_seq_reset(context); | |
4552 | ||
4553 | if (context->tty_reset) { | |
4554 | /* When we are resetting the TTY, then let's create a lock first, to synchronize access. This | |
4555 | * in particular matters as concurrent resets and the TTY size ANSI DSR logic done by the | |
4556 | * exec_context_apply_tty_size() below might interfere */ | |
4557 | lock_fd = lock_dev_console(); | |
4558 | if (lock_fd < 0) | |
4559 | log_debug_errno(lock_fd, "Failed to lock /dev/console, ignoring: %m"); | |
4560 | ||
4561 | /* We explicitly control whether to send ansi sequences or not here, since we want to consult | |
4562 | * the env vars explicitly configured in the ExecContext, rather than our own environment | |
4563 | * block. */ | |
4564 | (void) terminal_reset_defensive(STDOUT_FILENO, use_ansi ? TERMINAL_RESET_FORCE_ANSI_SEQ : TERMINAL_RESET_AVOID_ANSI_SEQ); | |
4565 | } | |
4566 | ||
4567 | (void) exec_context_apply_tty_size(context, STDIN_FILENO, STDOUT_FILENO, /* tty_path= */ NULL); | |
4568 | ||
4569 | if (use_ansi) | |
4570 | (void) osc_context_open_service(p->unit_id, p->invocation_id, /* ret_seq= */ NULL); | |
4571 | } | |
4572 | ||
4573 | static int setup_term_environment(const ExecContext *context, char ***env) { | |
4574 | int r; | |
4575 | ||
4576 | assert(context); | |
4577 | assert(env); | |
4578 | ||
4579 | /* Already specified by user? */ | |
4580 | if (strv_env_get(*env, "TERM")) | |
4581 | return 0; | |
4582 | ||
4583 | /* Do we need $TERM at all? */ | |
4584 | if (!is_terminal_input(context->std_input) && | |
4585 | !is_terminal_output(context->std_output) && | |
4586 | !is_terminal_output(context->std_error) && | |
4587 | !context->tty_path) | |
4588 | return 0; | |
4589 | ||
4590 | const char *tty_path = exec_context_tty_path(context); | |
4591 | if (tty_path) { | |
4592 | /* If we are forked off PID 1 and we are supposed to operate on /dev/console, then let's try | |
4593 | * to inherit the $TERM set for PID 1. This is useful for containers so that the $TERM the | |
4594 | * container manager passes to PID 1 ends up all the way in the console login shown. | |
4595 | * | |
4596 | * Note that if this doesn't work out we won't bother with querying systemd.tty.term.console | |
4597 | * kernel cmdline option or DCS anymore either, because pid1 also imports $TERM based on those | |
4598 | * and it should have showed up as our $TERM if there were anything. */ | |
4599 | if (tty_is_console(tty_path) && getppid() == 1) { | |
4600 | const char *term = strv_find_prefix(environ, "TERM="); | |
4601 | if (term) { | |
4602 | r = strv_env_replace_strdup(env, term); | |
4603 | if (r < 0) | |
4604 | return r; | |
4605 | ||
4606 | FOREACH_STRING(i, "COLORTERM=", "NO_COLOR=") { | |
4607 | const char *s = strv_find_prefix(environ, i); | |
4608 | if (!s) | |
4609 | continue; | |
4610 | ||
4611 | r = strv_env_replace_strdup(env, s); | |
4612 | if (r < 0) | |
4613 | return r; | |
4614 | } | |
4615 | ||
4616 | return 1; | |
4617 | } | |
4618 | ||
4619 | } else { | |
4620 | if (in_charset(skip_dev_prefix(tty_path), ALPHANUMERICAL)) { | |
4621 | _cleanup_free_ char *key = NULL, *cmdline = NULL; | |
4622 | ||
4623 | key = strjoin("systemd.tty.term.", skip_dev_prefix(tty_path)); | |
4624 | if (!key) | |
4625 | return -ENOMEM; | |
4626 | ||
4627 | r = proc_cmdline_get_key(key, /* flags = */ 0, &cmdline); | |
4628 | if (r > 0) | |
4629 | return strv_env_assign(env, "TERM", cmdline); | |
4630 | if (r < 0) | |
4631 | log_debug_errno(r, "Failed to read '%s' from kernel cmdline, ignoring: %m", key); | |
4632 | } | |
4633 | ||
4634 | /* This handles real virtual terminals (returning "linux") and | |
4635 | * any terminals which support the DCS +q query sequence. */ | |
4636 | _cleanup_free_ char *dcs_term = NULL; | |
4637 | r = query_term_for_tty(tty_path, &dcs_term); | |
4638 | if (r >= 0) | |
4639 | return strv_env_assign(env, "TERM", dcs_term); | |
4640 | } | |
4641 | } | |
4642 | ||
4643 | /* If $TERM is not known and we pick a fallback default, then let's also set | |
4644 | * $COLORTERM=truecolor. That's because our fallback default is vt220, which is | |
4645 | * generally a safe bet (as it supports PageUp/PageDown unlike vt100, and is quite | |
4646 | * universally available in terminfo/termcap), except for the fact that real DEC | |
4647 | * vt220 gear never actually supported color. Most tools these days generate color on | |
4648 | * vt220 anyway, ignoring the physical capabilities of the real hardware, but some | |
4649 | * tools actually believe in the historical truth. Which is unfortunate since *we* | |
4650 | * *don't* care about the historical truth, we just want sane defaults if nothing | |
4651 | * better is explicitly configured. It's 2025 after all, at the time of writing, | |
4652 | * pretty much all terminal emulators actually *do* support color, hence if we don't | |
4653 | * know any better let's explicitly claim color support via $COLORTERM. Or in other | |
4654 | * words: we now explicitly claim to be connected to a franken-vt220 with true color | |
4655 | * support. */ | |
4656 | r = strv_env_replace_strdup(env, "COLORTERM=truecolor"); | |
4657 | if (r < 0) | |
4658 | return r; | |
4659 | ||
4660 | return strv_env_replace_strdup(env, "TERM=" FALLBACK_TERM); | |
4661 | } | |
4662 | ||
4663 | int exec_invoke( | |
4664 | const ExecCommand *command, | |
4665 | const ExecContext *context, | |
4666 | ExecParameters *params, | |
4667 | ExecRuntime *runtime, | |
4668 | const CGroupContext *cgroup_context, | |
4669 | int *exit_status) { | |
4670 | ||
4671 | _cleanup_strv_free_ char **our_env = NULL, **pass_env = NULL, **joined_exec_search_path = NULL, **accum_env = NULL; | |
4672 | int r; | |
4673 | const char *username = NULL, *groupname = NULL; | |
4674 | _cleanup_free_ char *home_buffer = NULL, *memory_pressure_path = NULL, *own_user = NULL; | |
4675 | const char *pwent_home = NULL, *shell = NULL; | |
4676 | dev_t journal_stream_dev = 0; | |
4677 | ino_t journal_stream_ino = 0; | |
4678 | bool needs_sandboxing, /* Do we need to set up full sandboxing? (i.e. all namespacing, all MAC stuff, caps, yadda yadda */ | |
4679 | needs_setuid, /* Do we need to do the actual setresuid()/setresgid() calls? */ | |
4680 | needs_mount_namespace, /* Do we need to set up a mount namespace for this kernel? */ | |
4681 | have_cap_sys_admin, | |
4682 | userns_set_up = false, | |
4683 | keep_seccomp_privileges = false; | |
4684 | #if HAVE_SELINUX | |
4685 | _cleanup_free_ char *mac_selinux_context_net = NULL; | |
4686 | bool use_selinux = false; | |
4687 | #endif | |
4688 | #if ENABLE_SMACK | |
4689 | bool use_smack = false; | |
4690 | #endif | |
4691 | #if HAVE_APPARMOR | |
4692 | bool use_apparmor = false; | |
4693 | #endif | |
4694 | #if HAVE_SECCOMP | |
4695 | uint64_t saved_bset = 0; | |
4696 | #endif | |
4697 | uid_t saved_uid = getuid(); | |
4698 | gid_t saved_gid = getgid(); | |
4699 | uid_t uid = UID_INVALID; | |
4700 | gid_t gid = GID_INVALID; | |
4701 | size_t n_fds, /* fds to pass to the child */ | |
4702 | n_keep_fds; /* total number of fds not to close */ | |
4703 | int secure_bits; | |
4704 | _cleanup_free_ gid_t *gids = NULL, *gids_after_pam = NULL; | |
4705 | int ngids = 0, ngids_after_pam = 0; | |
4706 | int socket_fd = -EBADF, named_iofds[3] = EBADF_TRIPLET; | |
4707 | size_t n_storage_fds, n_socket_fds, n_extra_fds; | |
4708 | ||
4709 | assert(command); | |
4710 | assert(context); | |
4711 | assert(params); | |
4712 | assert(runtime); | |
4713 | assert(cgroup_context); | |
4714 | assert(exit_status); | |
4715 | ||
4716 | LOG_CONTEXT_PUSH_EXEC(context, params); | |
4717 | ||
4718 | /* Explicitly test for CVE-2021-4034 inspired invocations */ | |
4719 | if (!command->path || strv_isempty(command->argv)) { | |
4720 | *exit_status = EXIT_EXEC; | |
4721 | return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Invalid command line arguments."); | |
4722 | } | |
4723 | ||
4724 | if (context->std_input == EXEC_INPUT_SOCKET || | |
4725 | context->std_output == EXEC_OUTPUT_SOCKET || | |
4726 | context->std_error == EXEC_OUTPUT_SOCKET) { | |
4727 | ||
4728 | if (params->n_socket_fds > 1) | |
4729 | return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Got more than one socket."); | |
4730 | ||
4731 | if (params->n_socket_fds == 0) | |
4732 | return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Got no socket."); | |
4733 | ||
4734 | socket_fd = params->fds[0]; | |
4735 | n_storage_fds = n_socket_fds = n_extra_fds = 0; | |
4736 | } else { | |
4737 | n_socket_fds = params->n_socket_fds; | |
4738 | n_storage_fds = params->n_storage_fds; | |
4739 | n_extra_fds = params->n_extra_fds; | |
4740 | } | |
4741 | n_fds = n_socket_fds + n_storage_fds + n_extra_fds; | |
4742 | ||
4743 | r = exec_context_named_iofds(context, params, named_iofds); | |
4744 | if (r < 0) | |
4745 | return log_error_errno(r, "Failed to load a named file descriptor: %m"); | |
4746 | ||
4747 | rename_process_from_path(command->path); | |
4748 | ||
4749 | /* We reset exactly these signals, since they are the only ones we set to SIG_IGN in the main | |
4750 | * daemon. All others we leave untouched because we set them to SIG_DFL or a valid handler initially, | |
4751 | * both of which will be demoted to SIG_DFL. */ | |
4752 | (void) default_signals(SIGNALS_CRASH_HANDLER, | |
4753 | SIGNALS_IGNORE); | |
4754 | ||
4755 | if (context->ignore_sigpipe) | |
4756 | (void) ignore_signals(SIGPIPE); | |
4757 | ||
4758 | r = reset_signal_mask(); | |
4759 | if (r < 0) { | |
4760 | *exit_status = EXIT_SIGNAL_MASK; | |
4761 | return log_error_errno(r, "Failed to set process signal mask: %m"); | |
4762 | } | |
4763 | ||
4764 | if (params->idle_pipe) | |
4765 | do_idle_pipe_dance(params->idle_pipe); | |
4766 | ||
4767 | /* Close fds we don't need very early to make sure we don't block init reexecution because it cannot bind its | |
4768 | * sockets. Among the fds we close are the logging fds, and we want to keep them closed, so that we don't have | |
4769 | * any fds open we don't really want open during the transition. In order to make logging work, we switch the | |
4770 | * log subsystem into open_when_needed mode, so that it reopens the logs on every single log call. */ | |
4771 | ||
4772 | log_forget_fds(); | |
4773 | log_set_open_when_needed(true); | |
4774 | log_settle_target(); | |
4775 | ||
4776 | /* In case anything used libc syslog(), close this here, too */ | |
4777 | closelog(); | |
4778 | ||
4779 | r = collect_open_file_fds(params, &n_fds); | |
4780 | if (r < 0) { | |
4781 | *exit_status = EXIT_FDS; | |
4782 | return log_error_errno(r, "Failed to get OpenFile= file descriptors: %m"); | |
4783 | } | |
4784 | ||
4785 | int keep_fds[n_fds + 4]; | |
4786 | memcpy_safe(keep_fds, params->fds, n_fds * sizeof(int)); | |
4787 | n_keep_fds = n_fds; | |
4788 | ||
4789 | r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, ¶ms->exec_fd); | |
4790 | if (r < 0) { | |
4791 | *exit_status = EXIT_FDS; | |
4792 | return log_error_errno(r, "Failed to collect shifted fd: %m"); | |
4793 | } | |
4794 | ||
4795 | r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, ¶ms->handoff_timestamp_fd); | |
4796 | if (r < 0) { | |
4797 | *exit_status = EXIT_FDS; | |
4798 | return log_error_errno(r, "Failed to collect shifted fd: %m"); | |
4799 | } | |
4800 | ||
4801 | #if HAVE_LIBBPF | |
4802 | r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, ¶ms->bpf_restrict_fs_map_fd); | |
4803 | if (r < 0) { | |
4804 | *exit_status = EXIT_FDS; | |
4805 | return log_error_errno(r, "Failed to collect shifted fd: %m"); | |
4806 | } | |
4807 | #endif | |
4808 | ||
4809 | r = close_remaining_fds(params, runtime, socket_fd, keep_fds, n_keep_fds); | |
4810 | if (r < 0) { | |
4811 | *exit_status = EXIT_FDS; | |
4812 | return log_error_errno(r, "Failed to close unwanted file descriptors: %m"); | |
4813 | } | |
4814 | ||
4815 | if (!context->same_pgrp && | |
4816 | setsid() < 0) { | |
4817 | *exit_status = EXIT_SETSID; | |
4818 | return log_error_errno(errno, "Failed to create new process session: %m"); | |
4819 | } | |
4820 | ||
4821 | /* Now, reset the TTY associated to this service "destructively" (i.e. possibly even hang up or | |
4822 | * disallocate the VT), to get rid of any prior uses of the device. Note that we do not keep any fd | |
4823 | * open here, hence some of the settings made here might vanish again, depending on the TTY driver | |
4824 | * used. A 2nd ("constructive") initialization after we opened the input/output fds we actually want | |
4825 | * will fix this. Note that we pass a NULL invocation ID here – as exec_context_tty_reset() expects | |
4826 | * the invocation ID associated with the OSC 3008 context ID to close. But we don't want to close any | |
4827 | * OSC 3008 context here, and opening a fresh OSC 3008 context happens a bit further down. */ | |
4828 | exec_context_tty_reset(context, params, /* invocation_id= */ SD_ID128_NULL); | |
4829 | ||
4830 | if (params->shall_confirm_spawn && exec_context_shall_confirm_spawn(context)) { | |
4831 | _cleanup_free_ char *cmdline = NULL; | |
4832 | ||
4833 | cmdline = quote_command_line(command->argv, SHELL_ESCAPE_EMPTY); | |
4834 | if (!cmdline) { | |
4835 | *exit_status = EXIT_MEMORY; | |
4836 | return log_oom(); | |
4837 | } | |
4838 | ||
4839 | r = ask_for_confirmation(context, params, cmdline); | |
4840 | if (r != CONFIRM_EXECUTE) { | |
4841 | if (r == CONFIRM_PRETEND_SUCCESS) { | |
4842 | *exit_status = EXIT_SUCCESS; | |
4843 | return 0; | |
4844 | } | |
4845 | ||
4846 | *exit_status = EXIT_CONFIRM; | |
4847 | return log_error_errno(SYNTHETIC_ERRNO(ECANCELED), "Execution cancelled by the user."); | |
4848 | } | |
4849 | } | |
4850 | ||
4851 | /* We are about to invoke NSS and PAM modules. Let's tell them what we are doing here, maybe they care. This is | |
4852 | * used by nss-resolve to disable itself when we are about to start systemd-resolved, to avoid deadlocks. Note | |
4853 | * that these env vars do not survive the execve(), which means they really only apply to the PAM and NSS | |
4854 | * invocations themselves. Also note that while we'll only invoke NSS modules involved in user management they | |
4855 | * might internally call into other NSS modules that are involved in hostname resolution, we never know. */ | |
4856 | if (setenv("SYSTEMD_ACTIVATION_UNIT", params->unit_id, true) != 0 || | |
4857 | setenv("SYSTEMD_ACTIVATION_SCOPE", runtime_scope_to_string(params->runtime_scope), true) != 0) { | |
4858 | *exit_status = EXIT_MEMORY; | |
4859 | return log_error_errno(errno, "Failed to update environment: %m"); | |
4860 | } | |
4861 | ||
4862 | if (context->dynamic_user && runtime->dynamic_creds) { | |
4863 | _cleanup_strv_free_ char **suggested_paths = NULL; | |
4864 | ||
4865 | /* On top of that, make sure we bypass our own NSS module nss-systemd comprehensively for any NSS | |
4866 | * checks, if DynamicUser=1 is used, as we shouldn't create a feedback loop with ourselves here. */ | |
4867 | if (putenv((char*) "SYSTEMD_NSS_DYNAMIC_BYPASS=1") != 0) { | |
4868 | *exit_status = EXIT_USER; | |
4869 | return log_error_errno(errno, "Failed to update environment: %m"); | |
4870 | } | |
4871 | ||
4872 | r = compile_suggested_paths(context, params, &suggested_paths); | |
4873 | if (r < 0) { | |
4874 | *exit_status = EXIT_MEMORY; | |
4875 | return log_oom(); | |
4876 | } | |
4877 | ||
4878 | r = dynamic_creds_realize(runtime->dynamic_creds, suggested_paths, &uid, &gid); | |
4879 | if (r < 0) { | |
4880 | *exit_status = EXIT_USER; | |
4881 | if (r == -EILSEQ) | |
4882 | return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), | |
4883 | "Failed to update dynamic user credentials: User or group with specified name already exists."); | |
4884 | return log_error_errno(r, "Failed to update dynamic user credentials: %m"); | |
4885 | } | |
4886 | ||
4887 | if (!uid_is_valid(uid)) { | |
4888 | *exit_status = EXIT_USER; | |
4889 | return log_error_errno(SYNTHETIC_ERRNO(ESRCH), "UID validation failed for \""UID_FMT"\".", uid); | |
4890 | } | |
4891 | ||
4892 | if (!gid_is_valid(gid)) { | |
4893 | *exit_status = EXIT_USER; | |
4894 | return log_error_errno(SYNTHETIC_ERRNO(ESRCH), "GID validation failed for \""GID_FMT"\".", gid); | |
4895 | } | |
4896 | ||
4897 | if (runtime->dynamic_creds->user) | |
4898 | username = runtime->dynamic_creds->user->name; | |
4899 | ||
4900 | } else { | |
4901 | const char *u; | |
4902 | ||
4903 | if (context->user) | |
4904 | u = context->user; | |
4905 | else if (context->pam_name || FLAGS_SET(command->flags, EXEC_COMMAND_VIA_SHELL)) { | |
4906 | /* If PAM is enabled but no user name is explicitly selected, then use our own one. */ | |
4907 | own_user = getusername_malloc(); | |
4908 | if (!own_user) { | |
4909 | *exit_status = EXIT_USER; | |
4910 | return log_error_errno(r, "Failed to determine my own user ID: %m"); | |
4911 | } | |
4912 | u = own_user; | |
4913 | } else | |
4914 | u = NULL; | |
4915 | ||
4916 | if (u) { | |
4917 | /* We can't use nss unconditionally for root without risking deadlocks if some IPC services | |
4918 | * will be started by pid1 and are ordered after us. But if SetLoginEnvironment= is | |
4919 | * enabled *explicitly* (i.e. no exec_context_get_set_login_environment() here), | |
4920 | * or PAM shall be invoked, let's consult NSS even for root, so that the user | |
4921 | * gets accurate $SHELL in session(-like) contexts. */ | |
4922 | r = get_fixed_user(u, | |
4923 | /* prefer_nss = */ context->set_login_environment > 0 || context->pam_name, | |
4924 | &username, &uid, &gid, &pwent_home, &shell); | |
4925 | if (r < 0) { | |
4926 | *exit_status = EXIT_USER; | |
4927 | return log_error_errno(r, "Failed to determine user credentials: %m"); | |
4928 | } | |
4929 | } | |
4930 | ||
4931 | if (context->group) { | |
4932 | r = get_fixed_group(context->group, &groupname, &gid); | |
4933 | if (r < 0) { | |
4934 | *exit_status = EXIT_GROUP; | |
4935 | return log_error_errno(r, "Failed to determine group credentials: %m"); | |
4936 | } | |
4937 | } | |
4938 | } | |
4939 | ||
4940 | /* Initialize user supplementary groups and get SupplementaryGroups= ones */ | |
4941 | ngids = get_supplementary_groups(context, username, gid, &gids); | |
4942 | if (ngids < 0) { | |
4943 | *exit_status = EXIT_GROUP; | |
4944 | return log_error_errno(ngids, "Failed to determine supplementary groups: %m"); | |
4945 | } | |
4946 | ||
4947 | r = send_user_lookup(params->unit_id, params->user_lookup_fd, uid, gid); | |
4948 | if (r < 0) { | |
4949 | *exit_status = EXIT_USER; | |
4950 | return log_error_errno(r, "Failed to send user credentials to PID1: %m"); | |
4951 | } | |
4952 | ||
4953 | params->user_lookup_fd = safe_close(params->user_lookup_fd); | |
4954 | ||
4955 | r = acquire_home(context, &pwent_home, &home_buffer); | |
4956 | if (r < 0) { | |
4957 | *exit_status = EXIT_CHDIR; | |
4958 | return log_error_errno(r, "Failed to determine $HOME for the invoking user: %m"); | |
4959 | } | |
4960 | ||
4961 | /* If a socket is connected to STDIN/STDOUT/STDERR, we must drop O_NONBLOCK */ | |
4962 | if (socket_fd >= 0) | |
4963 | (void) fd_nonblock(socket_fd, false); | |
4964 | ||
4965 | /* We need sandboxing if the caller asked us to apply it and the command isn't explicitly excepted | |
4966 | * from it. */ | |
4967 | needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED); | |
4968 | ||
4969 | /* Journald will try to look-up our cgroup in order to populate _SYSTEMD_CGROUP and _SYSTEMD_UNIT fields. | |
4970 | * Hence we need to migrate to the target cgroup from init.scope before connecting to journald */ | |
4971 | if (params->cgroup_path) { | |
4972 | _cleanup_free_ char *subcgroup = NULL; | |
4973 | ||
4974 | r = exec_params_get_cgroup_path(params, cgroup_context, params->cgroup_path, &subcgroup); | |
4975 | if (r < 0) { | |
4976 | *exit_status = EXIT_CGROUP; | |
4977 | return log_error_errno(r, "Failed to acquire cgroup path: %m"); | |
4978 | } | |
4979 | if (r > 0) { | |
4980 | /* If there is a subcgroup required, let's make sure to create it now. */ | |
4981 | r = cg_create(subcgroup); | |
4982 | if (r < 0) | |
4983 | return log_error_errno(r, "Failed to create subcgroup '%s': %m", subcgroup); | |
4984 | } | |
4985 | ||
4986 | /* If we need a cgroup namespace, we cannot yet move the service to its configured subgroup, | |
4987 | * as unsharing the cgroup namespace later on makes the current cgroup the root of the | |
4988 | * namespace and we want the root of the namespace to be the main service cgroup and not the | |
4989 | * subgroup. One edge case is if we're a control process that needs to be spawned in a | |
4990 | * subgroup, in this case, we have no choice as moving into the main service cgroup might | |
4991 | * violate the no inner processes rule of cgroupv2. */ | |
4992 | const char *cgtarget = needs_sandboxing && exec_needs_cgroup_namespace(context) && | |
4993 | !exec_params_needs_control_subcgroup(params) | |
4994 | ? params->cgroup_path : subcgroup; | |
4995 | ||
4996 | r = cg_attach(cgtarget, 0); | |
4997 | if (r == -EUCLEAN) { | |
4998 | *exit_status = EXIT_CGROUP; | |
4999 | return log_error_errno(r, | |
5000 | "Failed to attach process to cgroup '%s', " | |
5001 | "because the cgroup or one of its parents or " | |
5002 | "siblings is in the threaded mode.", cgtarget); | |
5003 | } | |
5004 | if (r < 0) { | |
5005 | *exit_status = EXIT_CGROUP; | |
5006 | return log_error_errno(r, "Failed to attach to cgroup %s: %m", cgtarget); | |
5007 | } | |
5008 | } | |
5009 | ||
5010 | if (context->network_namespace_path && runtime->shared && runtime->shared->netns_storage_socket[0] >= 0) { | |
5011 | r = open_shareable_ns_path(runtime->shared->netns_storage_socket, context->network_namespace_path, CLONE_NEWNET); | |
5012 | if (r < 0) { | |
5013 | *exit_status = EXIT_NETWORK; | |
5014 | return log_error_errno(r, "Failed to open network namespace path %s: %m", context->network_namespace_path); | |
5015 | } | |
5016 | } | |
5017 | ||
5018 | if (context->ipc_namespace_path && runtime->shared && runtime->shared->ipcns_storage_socket[0] >= 0) { | |
5019 | r = open_shareable_ns_path(runtime->shared->ipcns_storage_socket, context->ipc_namespace_path, CLONE_NEWIPC); | |
5020 | if (r < 0) { | |
5021 | *exit_status = EXIT_NAMESPACE; | |
5022 | return log_error_errno(r, "Failed to open IPC namespace path %s: %m", context->ipc_namespace_path); | |
5023 | } | |
5024 | } | |
5025 | ||
5026 | r = setup_input(context, params, socket_fd, named_iofds); | |
5027 | if (r < 0) { | |
5028 | *exit_status = EXIT_STDIN; | |
5029 | return log_error_errno(r, "Failed to set up standard input: %m"); | |
5030 | } | |
5031 | ||
5032 | _cleanup_free_ char *fname = NULL; | |
5033 | r = path_extract_filename(command->path, &fname); | |
5034 | if (r < 0) { | |
5035 | *exit_status = EXIT_STDOUT; | |
5036 | return log_error_errno(r, "Failed to extract filename from path %s: %m", command->path); | |
5037 | } | |
5038 | ||
5039 | r = setup_output(context, params, STDOUT_FILENO, socket_fd, named_iofds, fname, uid, gid, &journal_stream_dev, &journal_stream_ino); | |
5040 | if (r < 0) { | |
5041 | *exit_status = EXIT_STDOUT; | |
5042 | return log_error_errno(r, "Failed to set up standard output: %m"); | |
5043 | } | |
5044 | ||
5045 | r = setup_output(context, params, STDERR_FILENO, socket_fd, named_iofds, fname, uid, gid, &journal_stream_dev, &journal_stream_ino); | |
5046 | if (r < 0) { | |
5047 | *exit_status = EXIT_STDERR; | |
5048 | return log_error_errno(r, "Failed to set up standard error output: %m"); | |
5049 | } | |
5050 | ||
5051 | /* Now that stdin/stdout are definiely opened, properly initialize it with our desired | |
5052 | * settings. Note: this is a "constructive" reset, it prepares things for us to use. This is | |
5053 | * different from the "destructive" TTY reset further up. Also note: we apply this on stdin/stdout in | |
5054 | * case this is a tty, regardless if we opened it ourselves or got it passed in pre-opened. */ | |
5055 | prepare_terminal(context, params); | |
5056 | ||
5057 | if (context->oom_score_adjust_set) { | |
5058 | /* When we can't make this change due to EPERM, then let's silently skip over it. User | |
5059 | * namespaces prohibit write access to this file, and we shouldn't trip up over that. */ | |
5060 | r = set_oom_score_adjust(context->oom_score_adjust); | |
5061 | if (ERRNO_IS_NEG_PRIVILEGE(r)) | |
5062 | log_debug_errno(r, "Failed to adjust OOM setting, assuming containerized execution, ignoring: %m"); | |
5063 | else if (r < 0) { | |
5064 | *exit_status = EXIT_OOM_ADJUST; | |
5065 | return log_error_errno(r, "Failed to adjust OOM setting: %m"); | |
5066 | } | |
5067 | } | |
5068 | ||
5069 | if (context->coredump_filter_set) { | |
5070 | r = set_coredump_filter(context->coredump_filter); | |
5071 | if (ERRNO_IS_NEG_PRIVILEGE(r)) | |
5072 | log_debug_errno(r, "Failed to adjust coredump_filter, ignoring: %m"); | |
5073 | else if (r < 0) { | |
5074 | *exit_status = EXIT_LIMITS; | |
5075 | return log_error_errno(r, "Failed to adjust coredump_filter: %m"); | |
5076 | } | |
5077 | } | |
5078 | ||
5079 | if (context->cpu_sched_set) { | |
5080 | struct sched_attr attr = { | |
5081 | .size = sizeof(attr), | |
5082 | .sched_policy = context->cpu_sched_policy, | |
5083 | .sched_priority = context->cpu_sched_priority, | |
5084 | .sched_flags = context->cpu_sched_reset_on_fork ? SCHED_FLAG_RESET_ON_FORK : 0, | |
5085 | }; | |
5086 | ||
5087 | r = sched_setattr(/* pid= */ 0, &attr, /* flags= */ 0); | |
5088 | if (r < 0) { | |
5089 | *exit_status = EXIT_SETSCHEDULER; | |
5090 | return log_error_errno(errno, "Failed to set up CPU scheduling: %m"); | |
5091 | } | |
5092 | } | |
5093 | ||
5094 | /* | |
5095 | * Set nice value _after_ the call to sched_setattr() because struct sched_attr includes sched_nice | |
5096 | * which we do not set, thus it will clobber any previously set nice value. Scheduling policy might | |
5097 | * be reasonably set together with nice value e.g. in case of SCHED_BATCH (see sched(7)). | |
5098 | * It would be ideal to set both with the same call, but we cannot easily do so because of all the | |
5099 | * extra logic in setpriority_closest(). | |
5100 | */ | |
5101 | if (context->nice_set) { | |
5102 | r = setpriority_closest(context->nice); | |
5103 | if (r < 0) { | |
5104 | *exit_status = EXIT_NICE; | |
5105 | return log_error_errno(r, "Failed to set up process scheduling priority (nice level): %m"); | |
5106 | } | |
5107 | } | |
5108 | ||
5109 | if (context->cpu_affinity_from_numa || context->cpu_set.set) { | |
5110 | _cleanup_(cpu_set_done) CPUSet converted_cpu_set = {}; | |
5111 | const CPUSet *cpu_set; | |
5112 | ||
5113 | if (context->cpu_affinity_from_numa) { | |
5114 | r = exec_context_cpu_affinity_from_numa(context, &converted_cpu_set); | |
5115 | if (r < 0) { | |
5116 | *exit_status = EXIT_CPUAFFINITY; | |
5117 | return log_error_errno(r, "Failed to derive CPU affinity mask from NUMA mask: %m"); | |
5118 | } | |
5119 | ||
5120 | cpu_set = &converted_cpu_set; | |
5121 | } else | |
5122 | cpu_set = &context->cpu_set; | |
5123 | ||
5124 | if (sched_setaffinity(0, cpu_set->allocated, cpu_set->set) < 0) { | |
5125 | *exit_status = EXIT_CPUAFFINITY; | |
5126 | return log_error_errno(errno, "Failed to set up CPU affinity: %m"); | |
5127 | } | |
5128 | } | |
5129 | ||
5130 | if (mpol_is_valid(numa_policy_get_type(&context->numa_policy))) { | |
5131 | r = apply_numa_policy(&context->numa_policy); | |
5132 | if (ERRNO_IS_NEG_NOT_SUPPORTED(r)) | |
5133 | log_debug_errno(r, "NUMA support not available, ignoring."); | |
5134 | else if (r < 0) { | |
5135 | *exit_status = EXIT_NUMA_POLICY; | |
5136 | return log_error_errno(r, "Failed to set NUMA memory policy: %m"); | |
5137 | } | |
5138 | } | |
5139 | ||
5140 | if (context->ioprio_set) | |
5141 | if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) { | |
5142 | *exit_status = EXIT_IOPRIO; | |
5143 | return log_error_errno(errno, "Failed to set up IO scheduling priority: %m"); | |
5144 | } | |
5145 | ||
5146 | if (context->timer_slack_nsec != NSEC_INFINITY) | |
5147 | if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) { | |
5148 | *exit_status = EXIT_TIMERSLACK; | |
5149 | return log_error_errno(errno, "Failed to set up timer slack: %m"); | |
5150 | } | |
5151 | ||
5152 | if (context->personality != PERSONALITY_INVALID) { | |
5153 | r = safe_personality(context->personality); | |
5154 | if (r < 0) { | |
5155 | *exit_status = EXIT_PERSONALITY; | |
5156 | return log_error_errno(r, "Failed to set up execution domain (personality): %m"); | |
5157 | } | |
5158 | } | |
5159 | ||
5160 | if (context->memory_ksm >= 0) | |
5161 | if (prctl(PR_SET_MEMORY_MERGE, context->memory_ksm, 0, 0, 0) < 0) { | |
5162 | if (ERRNO_IS_NOT_SUPPORTED(errno)) | |
5163 | log_debug_errno(errno, "KSM support not available, ignoring."); | |
5164 | else { | |
5165 | *exit_status = EXIT_KSM; | |
5166 | return log_error_errno(errno, "Failed to set KSM: %m"); | |
5167 | } | |
5168 | } | |
5169 | ||
5170 | #if ENABLE_UTMP | |
5171 | if (context->utmp_id) { | |
5172 | _cleanup_free_ char *username_alloc = NULL; | |
5173 | ||
5174 | if (!username && context->utmp_mode == EXEC_UTMP_USER) { | |
5175 | username_alloc = uid_to_name(uid_is_valid(uid) ? uid : saved_uid); | |
5176 | if (!username_alloc) { | |
5177 | *exit_status = EXIT_USER; | |
5178 | return log_oom(); | |
5179 | } | |
5180 | } | |
5181 | ||
5182 | const char *line = context->tty_path ? | |
5183 | (path_startswith(context->tty_path, "/dev/") ?: context->tty_path) : | |
5184 | NULL; | |
5185 | utmp_put_init_process(context->utmp_id, getpid_cached(), getsid(0), | |
5186 | line, | |
5187 | context->utmp_mode == EXEC_UTMP_INIT ? INIT_PROCESS : | |
5188 | context->utmp_mode == EXEC_UTMP_LOGIN ? LOGIN_PROCESS : | |
5189 | USER_PROCESS, | |
5190 | username ?: username_alloc); | |
5191 | } | |
5192 | #endif | |
5193 | ||
5194 | if (uid_is_valid(uid)) { | |
5195 | r = chown_terminal(STDIN_FILENO, uid); | |
5196 | if (r < 0) { | |
5197 | *exit_status = EXIT_STDIN; | |
5198 | return log_error_errno(r, "Failed to change ownership of terminal: %m"); | |
5199 | } | |
5200 | } | |
5201 | ||
5202 | if (params->cgroup_path) { | |
5203 | /* If delegation is enabled we'll pass ownership of the cgroup to the user of the new process. On cgroup v1 | |
5204 | * this is only about systemd's own hierarchy, i.e. not the controller hierarchies, simply because that's not | |
5205 | * safe. On cgroup v2 there's only one hierarchy anyway, and delegation is safe there, hence in that case only | |
5206 | * touch a single hierarchy too. */ | |
5207 | ||
5208 | if (params->flags & EXEC_CGROUP_DELEGATE) { | |
5209 | _cleanup_free_ char *p = NULL; | |
5210 | ||
5211 | r = cg_set_access(params->cgroup_path, uid, gid); | |
5212 | if (r < 0) { | |
5213 | *exit_status = EXIT_CGROUP; | |
5214 | return log_error_errno(r, "Failed to adjust control group access: %m"); | |
5215 | } | |
5216 | ||
5217 | r = exec_params_get_cgroup_path(params, cgroup_context, params->cgroup_path, &p); | |
5218 | if (r < 0) { | |
5219 | *exit_status = EXIT_CGROUP; | |
5220 | return log_error_errno(r, "Failed to acquire cgroup path: %m"); | |
5221 | } | |
5222 | if (r > 0) { | |
5223 | r = cg_set_access_recursive(p, uid, gid); | |
5224 | if (r < 0) { | |
5225 | *exit_status = EXIT_CGROUP; | |
5226 | return log_error_errno(r, "Failed to adjust control subgroup access: %m"); | |
5227 | } | |
5228 | } | |
5229 | } | |
5230 | ||
5231 | if (is_pressure_supported() > 0) { | |
5232 | if (cgroup_context_want_memory_pressure(cgroup_context)) { | |
5233 | r = cg_get_path("memory", params->cgroup_path, "memory.pressure", &memory_pressure_path); | |
5234 | if (r < 0) { | |
5235 | *exit_status = EXIT_MEMORY; | |
5236 | return log_oom(); | |
5237 | } | |
5238 | ||
5239 | r = chmod_and_chown(memory_pressure_path, 0644, uid, gid); | |
5240 | if (r < 0) { | |
5241 | log_full_errno(r == -ENOENT || ERRNO_IS_PRIVILEGE(r) ? LOG_DEBUG : LOG_WARNING, r, | |
5242 | "Failed to adjust ownership of '%s', ignoring: %m", memory_pressure_path); | |
5243 | memory_pressure_path = mfree(memory_pressure_path); | |
5244 | } | |
5245 | /* First we use the current cgroup path to chmod and chown the memory pressure path, then pass the path relative | |
5246 | * to the cgroup namespace to environment variables and mounts. If chown/chmod fails, we should not pass memory | |
5247 | * pressure path environment variable or read-write mount to the unit. This is why we check if | |
5248 | * memory_pressure_path != NULL in the conditional below. */ | |
5249 | if (memory_pressure_path && needs_sandboxing && exec_needs_cgroup_namespace(context)) { | |
5250 | memory_pressure_path = mfree(memory_pressure_path); | |
5251 | r = cg_get_path("memory", "", "memory.pressure", &memory_pressure_path); | |
5252 | if (r < 0) { | |
5253 | *exit_status = EXIT_MEMORY; | |
5254 | return log_oom(); | |
5255 | } | |
5256 | } | |
5257 | } else if (cgroup_context->memory_pressure_watch == CGROUP_PRESSURE_WATCH_NO) { | |
5258 | memory_pressure_path = strdup("/dev/null"); /* /dev/null is explicit indicator for turning of memory pressure watch */ | |
5259 | if (!memory_pressure_path) { | |
5260 | *exit_status = EXIT_MEMORY; | |
5261 | return log_oom(); | |
5262 | } | |
5263 | } | |
5264 | } | |
5265 | } | |
5266 | ||
5267 | needs_mount_namespace = exec_needs_mount_namespace(context, params, runtime); | |
5268 | ||
5269 | for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) { | |
5270 | r = setup_exec_directory(context, params, uid, gid, dt, needs_mount_namespace, exit_status); | |
5271 | if (r < 0) | |
5272 | return log_error_errno(r, "Failed to set up special execution directory in %s: %m", params->prefix[dt]); | |
5273 | } | |
5274 | ||
5275 | r = exec_setup_credentials(context, cgroup_context, params, params->unit_id, uid, gid); | |
5276 | if (r < 0) { | |
5277 | *exit_status = EXIT_CREDENTIALS; | |
5278 | return log_error_errno(r, "Failed to set up credentials: %m"); | |
5279 | } | |
5280 | ||
5281 | r = build_environment( | |
5282 | context, | |
5283 | params, | |
5284 | cgroup_context, | |
5285 | n_fds, | |
5286 | pwent_home, | |
5287 | username, | |
5288 | shell, | |
5289 | journal_stream_dev, | |
5290 | journal_stream_ino, | |
5291 | memory_pressure_path, | |
5292 | needs_sandboxing, | |
5293 | &our_env); | |
5294 | if (r < 0) { | |
5295 | *exit_status = EXIT_MEMORY; | |
5296 | return log_oom(); | |
5297 | } | |
5298 | ||
5299 | r = build_pass_environment(context, &pass_env); | |
5300 | if (r < 0) { | |
5301 | *exit_status = EXIT_MEMORY; | |
5302 | return log_oom(); | |
5303 | } | |
5304 | ||
5305 | /* The $PATH variable is set to the default path in params->environment. However, this is overridden | |
5306 | * if user-specified fields have $PATH set. The intention is to also override $PATH if the unit does | |
5307 | * not specify PATH but the unit has ExecSearchPath. */ | |
5308 | if (!strv_isempty(context->exec_search_path)) { | |
5309 | _cleanup_free_ char *joined = NULL; | |
5310 | ||
5311 | joined = strv_join(context->exec_search_path, ":"); | |
5312 | if (!joined) { | |
5313 | *exit_status = EXIT_MEMORY; | |
5314 | return log_oom(); | |
5315 | } | |
5316 | ||
5317 | r = strv_env_assign(&joined_exec_search_path, "PATH", joined); | |
5318 | if (r < 0) { | |
5319 | *exit_status = EXIT_MEMORY; | |
5320 | return log_oom(); | |
5321 | } | |
5322 | } | |
5323 | ||
5324 | accum_env = strv_env_merge(params->environment, | |
5325 | our_env, | |
5326 | joined_exec_search_path, | |
5327 | pass_env, | |
5328 | context->environment, | |
5329 | params->files_env); | |
5330 | if (!accum_env) { | |
5331 | *exit_status = EXIT_MEMORY; | |
5332 | return log_oom(); | |
5333 | } | |
5334 | strv_env_clean(accum_env); | |
5335 | ||
5336 | (void) umask(context->umask); | |
5337 | ||
5338 | r = setup_term_environment(context, &accum_env); | |
5339 | if (r < 0) { | |
5340 | *exit_status = EXIT_MEMORY; | |
5341 | return log_error_errno(r, "Failed to construct $TERM: %m"); | |
5342 | } | |
5343 | ||
5344 | r = setup_keyring(context, params, uid, gid); | |
5345 | if (r < 0) { | |
5346 | *exit_status = EXIT_KEYRING; | |
5347 | return log_error_errno(r, "Failed to set up kernel keyring: %m"); | |
5348 | } | |
5349 | ||
5350 | /* We need setresuid() if the caller asked us to apply sandboxing and the command isn't explicitly | |
5351 | * excepted from either whole sandboxing or just setresuid() itself. */ | |
5352 | needs_setuid = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & (EXEC_COMMAND_FULLY_PRIVILEGED|EXEC_COMMAND_NO_SETUID)); | |
5353 | ||
5354 | uint64_t capability_ambient_set = context->capability_ambient_set; | |
5355 | ||
5356 | /* Check CAP_SYS_ADMIN before we enter user namespace to see if we can mount /proc even though its masked. */ | |
5357 | have_cap_sys_admin = have_effective_cap(CAP_SYS_ADMIN) > 0; | |
5358 | ||
5359 | if (needs_sandboxing) { | |
5360 | /* MAC enablement checks need to be done before a new mount ns is created, as they rely on | |
5361 | * /sys being present. The actual MAC context application will happen later, as late as | |
5362 | * possible, to avoid impacting our own code paths. */ | |
5363 | ||
5364 | #if HAVE_SELINUX | |
5365 | use_selinux = mac_selinux_use(); | |
5366 | #endif | |
5367 | #if ENABLE_SMACK | |
5368 | use_smack = mac_smack_use(); | |
5369 | #endif | |
5370 | #if HAVE_APPARMOR | |
5371 | if (mac_apparmor_use()) { | |
5372 | r = dlopen_libapparmor(); | |
5373 | if (r < 0 && !ERRNO_IS_NEG_NOT_SUPPORTED(r)) | |
5374 | log_warning_errno(r, "Failed to load libapparmor, ignoring: %m"); | |
5375 | use_apparmor = r >= 0; | |
5376 | } | |
5377 | #endif | |
5378 | } | |
5379 | ||
5380 | if (needs_sandboxing) { | |
5381 | int which_failed; | |
5382 | ||
5383 | /* Let's set the resource limits before we call into PAM, so that pam_limits wins over what | |
5384 | * is set here. (See below.) */ | |
5385 | ||
5386 | r = setrlimit_closest_all((const struct rlimit* const *) context->rlimit, &which_failed); | |
5387 | if (r < 0) { | |
5388 | *exit_status = EXIT_LIMITS; | |
5389 | return log_error_errno(r, "Failed to adjust resource limit RLIMIT_%s: %m", rlimit_to_string(which_failed)); | |
5390 | } | |
5391 | } | |
5392 | ||
5393 | if (needs_setuid && context->pam_name && username) { | |
5394 | /* Let's call into PAM after we set up our own idea of resource limits so that pam_limits | |
5395 | * wins here. (See above.) */ | |
5396 | ||
5397 | /* All fds passed in the fds array will be closed in the pam child process. */ | |
5398 | r = setup_pam(context, cgroup_context, params, username, uid, gid, &accum_env, | |
5399 | params->fds, n_fds, needs_sandboxing, params->exec_fd); | |
5400 | if (r < 0) { | |
5401 | *exit_status = EXIT_PAM; | |
5402 | return log_error_errno(r, "Failed to set up PAM session: %m"); | |
5403 | } | |
5404 | ||
5405 | /* PAM modules might have set some ambient caps. Query them here and merge them into | |
5406 | * the caps we want to set in the end, so that we don't end up unsetting them. */ | |
5407 | uint64_t ambient_after_pam; | |
5408 | r = capability_get_ambient(&ambient_after_pam); | |
5409 | if (r < 0) { | |
5410 | *exit_status = EXIT_CAPABILITIES; | |
5411 | return log_error_errno(r, "Failed to query ambient caps: %m"); | |
5412 | } | |
5413 | ||
5414 | capability_ambient_set |= ambient_after_pam; | |
5415 | ||
5416 | ngids_after_pam = getgroups_alloc(&gids_after_pam); | |
5417 | if (ngids_after_pam < 0) { | |
5418 | *exit_status = EXIT_GROUP; | |
5419 | return log_error_errno(ngids_after_pam, "Failed to obtain groups after setting up PAM: %m"); | |
5420 | } | |
5421 | } | |
5422 | ||
5423 | if (needs_sandboxing && !have_cap_sys_admin && exec_needs_cap_sys_admin(context, params)) { | |
5424 | /* If we're unprivileged, set up the user namespace first to enable use of the other namespaces. | |
5425 | * Users with CAP_SYS_ADMIN can set up user namespaces last because they will be able to | |
5426 | * set up all of the other namespaces (i.e. network, mount, UTS) without a user namespace. */ | |
5427 | PrivateUsers pu = exec_context_get_effective_private_users(context, params); | |
5428 | if (pu == PRIVATE_USERS_NO) | |
5429 | pu = PRIVATE_USERS_SELF; | |
5430 | ||
5431 | /* The kernel requires /proc/pid/setgroups be set to "deny" prior to writing /proc/pid/gid_map in | |
5432 | * unprivileged user namespaces. */ | |
5433 | r = setup_private_users(pu, saved_uid, saved_gid, uid, gid, /* allow_setgroups= */ false); | |
5434 | /* If it was requested explicitly and we can't set it up, fail early. Otherwise, continue and let | |
5435 | * the actual requested operations fail (or silently continue). */ | |
5436 | if (r < 0 && context->private_users != PRIVATE_USERS_NO) { | |
5437 | *exit_status = EXIT_USER; | |
5438 | return log_error_errno(r, "Failed to set up user namespacing for unprivileged user: %m"); | |
5439 | } | |
5440 | if (r < 0) | |
5441 | log_info_errno(r, "Failed to set up user namespacing for unprivileged user, ignoring: %m"); | |
5442 | else { | |
5443 | assert(r > 0); | |
5444 | userns_set_up = true; | |
5445 | log_debug("Set up unprivileged user namespace"); | |
5446 | } | |
5447 | } | |
5448 | ||
5449 | /* Call setup_delegated_namespaces() the first time to unshare all non-delegated namespaces. */ | |
5450 | r = setup_delegated_namespaces( | |
5451 | context, | |
5452 | params, | |
5453 | runtime, | |
5454 | /* delegate= */ false, | |
5455 | memory_pressure_path, | |
5456 | uid, | |
5457 | gid, | |
5458 | command, | |
5459 | needs_sandboxing, | |
5460 | have_cap_sys_admin, | |
5461 | exit_status); | |
5462 | if (r < 0) | |
5463 | return r; | |
5464 | ||
5465 | /* Drop groups as early as possible. | |
5466 | * This needs to be done after PrivateDevices=yes setup as device nodes should be owned by the host's root. | |
5467 | * For non-root in a userns, devices will be owned by the user/group before the group change, and nobody. */ | |
5468 | if (needs_setuid) { | |
5469 | _cleanup_free_ gid_t *gids_to_enforce = NULL; | |
5470 | int ngids_to_enforce; | |
5471 | ||
5472 | ngids_to_enforce = merge_gid_lists(gids, | |
5473 | ngids, | |
5474 | gids_after_pam, | |
5475 | ngids_after_pam, | |
5476 | &gids_to_enforce); | |
5477 | if (ngids_to_enforce < 0) { | |
5478 | *exit_status = EXIT_GROUP; | |
5479 | return log_error_errno(ngids_to_enforce, "Failed to merge group lists. Group membership might be incorrect: %m"); | |
5480 | } | |
5481 | ||
5482 | r = enforce_groups(gid, gids_to_enforce, ngids_to_enforce); | |
5483 | if (r < 0) { | |
5484 | *exit_status = EXIT_GROUP; | |
5485 | return log_error_errno(r, "Changing group credentials failed: %m"); | |
5486 | } | |
5487 | } | |
5488 | ||
5489 | /* If the user namespace was not set up above, try to do it now. | |
5490 | * It's preferred to set up the user namespace later (after all other namespaces) so as not to be | |
5491 | * restricted by rules pertaining to combining user namespaces with other namespaces (e.g. in the | |
5492 | * case of mount namespaces being less privileged when the mount point list is copied from a | |
5493 | * different user namespace). */ | |
5494 | ||
5495 | if (needs_sandboxing && !userns_set_up) { | |
5496 | PrivateUsers pu = exec_context_get_effective_private_users(context, params); | |
5497 | ||
5498 | r = setup_private_users(pu, saved_uid, saved_gid, uid, gid, | |
5499 | /* allow_setgroups= */ pu == PRIVATE_USERS_FULL); | |
5500 | if (r < 0) { | |
5501 | *exit_status = EXIT_USER; | |
5502 | return log_error_errno(r, "Failed to set up user namespacing: %m"); | |
5503 | } | |
5504 | if (r > 0) | |
5505 | log_debug("Set up privileged user namespace"); | |
5506 | } | |
5507 | ||
5508 | /* Call setup_delegated_namespaces() the second time to unshare all delegated namespaces. */ | |
5509 | r = setup_delegated_namespaces( | |
5510 | context, | |
5511 | params, | |
5512 | runtime, | |
5513 | /* delegate= */ true, | |
5514 | memory_pressure_path, | |
5515 | uid, | |
5516 | gid, | |
5517 | command, | |
5518 | needs_sandboxing, | |
5519 | have_cap_sys_admin, | |
5520 | exit_status); | |
5521 | if (r < 0) | |
5522 | return r; | |
5523 | ||
5524 | if (needs_sandboxing && exec_needs_cgroup_namespace(context) && params->cgroup_path) { | |
5525 | /* Move ourselves into the subcgroup now *after* we've unshared the cgroup namespace, which | |
5526 | * ensures the root of the cgroup namespace is the top level service cgroup and not the | |
5527 | * subcgroup. Adjust the prefix accordingly since we're in a cgroup namespace now. */ | |
5528 | r = attach_to_subcgroup(context, cgroup_context, params, /* prefix= */ NULL); | |
5529 | if (r < 0) { | |
5530 | *exit_status = EXIT_CGROUP; | |
5531 | return r; | |
5532 | } | |
5533 | } | |
5534 | ||
5535 | /* Now that the mount namespace has been set up and privileges adjusted, let's look for the thing we | |
5536 | * shall execute. */ | |
5537 | ||
5538 | const char *path = command->path; | |
5539 | ||
5540 | if (FLAGS_SET(command->flags, EXEC_COMMAND_VIA_SHELL)) { | |
5541 | if (shell_is_placeholder(shell)) { | |
5542 | log_debug("Shell prefixing requested for user without default shell, using /bin/sh: %s", | |
5543 | strna(username)); | |
5544 | assert(streq(path, _PATH_BSHELL)); | |
5545 | } else | |
5546 | path = shell; | |
5547 | } | |
5548 | ||
5549 | _cleanup_free_ char *executable = NULL; | |
5550 | _cleanup_close_ int executable_fd = -EBADF; | |
5551 | r = find_executable_full(path, /* root= */ NULL, context->exec_search_path, false, &executable, &executable_fd); | |
5552 | if (r < 0) { | |
5553 | *exit_status = EXIT_EXEC; | |
5554 | log_struct_errno(LOG_NOTICE, r, | |
5555 | LOG_MESSAGE_ID(SD_MESSAGE_SPAWN_FAILED_STR), | |
5556 | LOG_EXEC_MESSAGE(params, "Unable to locate executable '%s': %m", path), | |
5557 | LOG_ITEM("EXECUTABLE=%s", path)); | |
5558 | /* If the error will be ignored by manager, tune down the log level here. Missing executable | |
5559 | * is very much expected in this case. */ | |
5560 | return r != -ENOMEM && FLAGS_SET(command->flags, EXEC_COMMAND_IGNORE_FAILURE) ? 1 : r; | |
5561 | } | |
5562 | ||
5563 | r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, &executable_fd); | |
5564 | if (r < 0) { | |
5565 | *exit_status = EXIT_FDS; | |
5566 | return log_error_errno(r, "Failed to collect shifted fd: %m"); | |
5567 | } | |
5568 | ||
5569 | #if HAVE_SELINUX | |
5570 | if (needs_sandboxing && use_selinux && params->selinux_context_net) { | |
5571 | int fd = -EBADF; | |
5572 | ||
5573 | if (socket_fd >= 0) | |
5574 | fd = socket_fd; | |
5575 | else if (params->n_socket_fds == 1) | |
5576 | /* If stdin is not connected to a socket but we are triggered by exactly one socket unit then we | |
5577 | * use context from that fd to compute the label. */ | |
5578 | fd = params->fds[0]; | |
5579 | ||
5580 | if (fd >= 0) { | |
5581 | r = mac_selinux_get_child_mls_label(fd, executable, context->selinux_context, &mac_selinux_context_net); | |
5582 | if (r < 0) { | |
5583 | if (!context->selinux_context_ignore) { | |
5584 | *exit_status = EXIT_SELINUX_CONTEXT; | |
5585 | return log_error_errno(r, "Failed to determine SELinux context: %m"); | |
5586 | } | |
5587 | log_debug_errno(r, "Failed to determine SELinux context, ignoring: %m"); | |
5588 | } | |
5589 | } | |
5590 | } | |
5591 | #endif | |
5592 | ||
5593 | /* We repeat the fd closing here, to make sure that nothing is leaked from the PAM modules. Note that | |
5594 | * we are more aggressive this time, since we don't need socket_fd and the netns and ipcns fds any | |
5595 | * more. We do keep exec_fd and handoff_timestamp_fd however, if we have it, since we need to keep | |
5596 | * them open until the final execve(). But first, close the remaining sockets in the context | |
5597 | * objects. */ | |
5598 | ||
5599 | exec_runtime_close(runtime); | |
5600 | exec_params_close(params); | |
5601 | ||
5602 | r = close_all_fds(keep_fds, n_keep_fds); | |
5603 | if (r >= 0) | |
5604 | r = pack_fds(params->fds, n_fds); | |
5605 | if (r >= 0) | |
5606 | r = flag_fds(params->fds, n_socket_fds, n_fds, context->non_blocking); | |
5607 | if (r < 0) { | |
5608 | *exit_status = EXIT_FDS; | |
5609 | return log_error_errno(r, "Failed to adjust passed file descriptors: %m"); | |
5610 | } | |
5611 | ||
5612 | /* At this point, the fds we want to pass to the program are all ready and set up, with O_CLOEXEC turned off | |
5613 | * and at the right fd numbers. The are no other fds open, with one exception: the exec_fd if it is defined, | |
5614 | * and it has O_CLOEXEC set, after all we want it to be closed by the execve(), so that our parent knows we | |
5615 | * came this far. */ | |
5616 | ||
5617 | secure_bits = context->secure_bits; | |
5618 | ||
5619 | if (needs_sandboxing) { | |
5620 | uint64_t bset; | |
5621 | ||
5622 | /* Set the RTPRIO resource limit to 0, but only if nothing else was explicitly requested. | |
5623 | * (Note this is placed after the general resource limit initialization, see above, in order | |
5624 | * to take precedence.) */ | |
5625 | if (context->restrict_realtime && !context->rlimit[RLIMIT_RTPRIO]) { | |
5626 | if (setrlimit(RLIMIT_RTPRIO, &RLIMIT_MAKE_CONST(0)) < 0) { | |
5627 | *exit_status = EXIT_LIMITS; | |
5628 | return log_error_errno(errno, "Failed to adjust RLIMIT_RTPRIO resource limit: %m"); | |
5629 | } | |
5630 | } | |
5631 | ||
5632 | #if ENABLE_SMACK | |
5633 | /* LSM Smack needs the capability CAP_MAC_ADMIN to change the current execution security context of the | |
5634 | * process. This is the latest place before dropping capabilities. Other MAC context are set later. */ | |
5635 | if (use_smack) { | |
5636 | r = setup_smack(context, params, executable_fd); | |
5637 | if (r < 0 && !context->smack_process_label_ignore) { | |
5638 | *exit_status = EXIT_SMACK_PROCESS_LABEL; | |
5639 | return log_error_errno(r, "Failed to set SMACK process label: %m"); | |
5640 | } | |
5641 | } | |
5642 | #endif | |
5643 | ||
5644 | bset = context->capability_bounding_set; | |
5645 | ||
5646 | #if HAVE_SECCOMP | |
5647 | /* If the service has any form of a seccomp filter and it allows dropping privileges, we'll | |
5648 | * keep the needed privileges to apply it even if we're not root. */ | |
5649 | if (needs_setuid && | |
5650 | uid_is_valid(uid) && | |
5651 | context_has_seccomp(context) && | |
5652 | seccomp_allows_drop_privileges(context)) { | |
5653 | keep_seccomp_privileges = true; | |
5654 | ||
5655 | if (prctl(PR_SET_KEEPCAPS, 1) < 0) { | |
5656 | *exit_status = EXIT_USER; | |
5657 | return log_error_errno(errno, "Failed to enable keep capabilities flag: %m"); | |
5658 | } | |
5659 | ||
5660 | /* Save the current bounding set so we can restore it after applying the seccomp | |
5661 | * filter */ | |
5662 | saved_bset = bset; | |
5663 | bset |= (UINT64_C(1) << CAP_SYS_ADMIN) | | |
5664 | (UINT64_C(1) << CAP_SETPCAP); | |
5665 | } | |
5666 | #endif | |
5667 | ||
5668 | if (!cap_test_all(bset)) { | |
5669 | r = capability_bounding_set_drop(bset, /* right_now= */ false); | |
5670 | if (r < 0) { | |
5671 | *exit_status = EXIT_CAPABILITIES; | |
5672 | return log_error_errno(r, "Failed to drop capabilities: %m"); | |
5673 | } | |
5674 | } | |
5675 | ||
5676 | /* Ambient capabilities are cleared during setresuid() (in enforce_user()) even with | |
5677 | * keep-caps set. | |
5678 | * | |
5679 | * To be able to raise the ambient capabilities after setresuid() they have to be added to | |
5680 | * the inherited set and keep caps has to be set (done in enforce_user()). After setresuid() | |
5681 | * the ambient capabilities can be raised as they are present in the permitted and | |
5682 | * inhertiable set. However it is possible that someone wants to set ambient capabilities | |
5683 | * without changing the user, so we also set the ambient capabilities here. | |
5684 | * | |
5685 | * The requested ambient capabilities are raised in the inheritable set if the second | |
5686 | * argument is true. */ | |
5687 | if (capability_ambient_set != 0) { | |
5688 | r = capability_ambient_set_apply(capability_ambient_set, /* also_inherit= */ true); | |
5689 | if (r < 0) { | |
5690 | *exit_status = EXIT_CAPABILITIES; | |
5691 | return log_error_errno(r, "Failed to apply ambient capabilities (before UID change): %m"); | |
5692 | } | |
5693 | } | |
5694 | } | |
5695 | ||
5696 | /* chroot to root directory first, before we lose the ability to chroot */ | |
5697 | r = apply_root_directory(context, params, runtime, needs_mount_namespace, exit_status); | |
5698 | if (r < 0) | |
5699 | return log_error_errno(r, "Chrooting to the requested root directory failed: %m"); | |
5700 | ||
5701 | if (needs_setuid) { | |
5702 | if (uid_is_valid(uid)) { | |
5703 | r = enforce_user(context, uid, capability_ambient_set); | |
5704 | if (r < 0) { | |
5705 | *exit_status = EXIT_USER; | |
5706 | return log_error_errno(r, "Failed to change UID to " UID_FMT ": %m", uid); | |
5707 | } | |
5708 | ||
5709 | if (keep_seccomp_privileges) { | |
5710 | if (!BIT_SET(capability_ambient_set, CAP_SETUID)) { | |
5711 | r = drop_capability(CAP_SETUID); | |
5712 | if (r < 0) { | |
5713 | *exit_status = EXIT_USER; | |
5714 | return log_error_errno(r, "Failed to drop CAP_SETUID: %m"); | |
5715 | } | |
5716 | } | |
5717 | ||
5718 | r = keep_capability(CAP_SYS_ADMIN); | |
5719 | if (r < 0) { | |
5720 | *exit_status = EXIT_USER; | |
5721 | return log_error_errno(r, "Failed to keep CAP_SYS_ADMIN: %m"); | |
5722 | } | |
5723 | ||
5724 | r = keep_capability(CAP_SETPCAP); | |
5725 | if (r < 0) { | |
5726 | *exit_status = EXIT_USER; | |
5727 | return log_error_errno(r, "Failed to keep CAP_SETPCAP: %m"); | |
5728 | } | |
5729 | } | |
5730 | ||
5731 | if (capability_ambient_set != 0) { | |
5732 | ||
5733 | /* Raise the ambient capabilities after user change. */ | |
5734 | r = capability_ambient_set_apply(capability_ambient_set, /* also_inherit= */ false); | |
5735 | if (r < 0) { | |
5736 | *exit_status = EXIT_CAPABILITIES; | |
5737 | return log_error_errno(r, "Failed to apply ambient capabilities (after UID change): %m"); | |
5738 | } | |
5739 | } | |
5740 | } | |
5741 | } | |
5742 | ||
5743 | /* Apply working directory here, because the working directory might be on NFS and only the user | |
5744 | * running this service might have the correct privilege to change to the working directory. Also, it | |
5745 | * is absolutely 💣 crucial 💣 we applied all mount namespacing rearrangements before this, so that | |
5746 | * the cwd cannot be used to pin directories outside of the sandbox. */ | |
5747 | r = apply_working_directory(context, params, runtime, pwent_home, accum_env); | |
5748 | if (r < 0) { | |
5749 | *exit_status = EXIT_CHDIR; | |
5750 | return log_error_errno(r, "Changing to the requested working directory failed: %m"); | |
5751 | } | |
5752 | ||
5753 | if (needs_sandboxing) { | |
5754 | /* Apply other MAC contexts late, but before seccomp syscall filtering, as those should really be last to | |
5755 | * influence our own codepaths as little as possible. Moreover, applying MAC contexts usually requires | |
5756 | * syscalls that are subject to seccomp filtering, hence should probably be applied before the syscalls | |
5757 | * are restricted. */ | |
5758 | ||
5759 | #if HAVE_SELINUX | |
5760 | if (use_selinux) { | |
5761 | char *exec_context = mac_selinux_context_net ?: context->selinux_context; | |
5762 | ||
5763 | if (exec_context) { | |
5764 | r = setexeccon(exec_context); | |
5765 | if (r < 0) { | |
5766 | if (!context->selinux_context_ignore) { | |
5767 | *exit_status = EXIT_SELINUX_CONTEXT; | |
5768 | return log_error_errno(r, "Failed to change SELinux context to %s: %m", exec_context); | |
5769 | } | |
5770 | log_debug_errno(r, "Failed to change SELinux context to %s, ignoring: %m", exec_context); | |
5771 | } | |
5772 | } | |
5773 | } | |
5774 | #endif | |
5775 | ||
5776 | #if HAVE_APPARMOR | |
5777 | if (use_apparmor && context->apparmor_profile) { | |
5778 | r = ASSERT_PTR(sym_aa_change_onexec)(context->apparmor_profile); | |
5779 | if (r < 0 && !context->apparmor_profile_ignore) { | |
5780 | *exit_status = EXIT_APPARMOR_PROFILE; | |
5781 | return log_error_errno(errno, "Failed to prepare AppArmor profile change to %s: %m", | |
5782 | context->apparmor_profile); | |
5783 | } | |
5784 | } | |
5785 | #endif | |
5786 | ||
5787 | /* PR_GET_SECUREBITS is not privileged, while PR_SET_SECUREBITS is. So to suppress potential | |
5788 | * EPERMs we'll try not to call PR_SET_SECUREBITS unless necessary. Setting securebits | |
5789 | * requires CAP_SETPCAP. */ | |
5790 | if (prctl(PR_GET_SECUREBITS) != secure_bits) { | |
5791 | /* CAP_SETPCAP is required to set securebits. This capability is raised into the | |
5792 | * effective set here. | |
5793 | * | |
5794 | * The effective set is overwritten during execve() with the following values: | |
5795 | * | |
5796 | * - ambient set (for non-root processes) | |
5797 | * | |
5798 | * - (inheritable | bounding) set for root processes) | |
5799 | * | |
5800 | * Hence there is no security impact to raise it in the effective set before execve | |
5801 | */ | |
5802 | r = capability_gain_cap_setpcap(/* ret_before_caps = */ NULL); | |
5803 | if (r < 0) { | |
5804 | *exit_status = EXIT_CAPABILITIES; | |
5805 | return log_error_errno(r, "Failed to gain CAP_SETPCAP for setting secure bits"); | |
5806 | } | |
5807 | if (prctl(PR_SET_SECUREBITS, secure_bits) < 0) { | |
5808 | *exit_status = EXIT_SECUREBITS; | |
5809 | return log_error_errno(errno, "Failed to set process secure bits: %m"); | |
5810 | } | |
5811 | } | |
5812 | ||
5813 | if (context_has_no_new_privileges(context)) | |
5814 | if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) { | |
5815 | *exit_status = EXIT_NO_NEW_PRIVILEGES; | |
5816 | return log_error_errno(errno, "Failed to disable new privileges: %m"); | |
5817 | } | |
5818 | ||
5819 | #if HAVE_SECCOMP | |
5820 | r = apply_address_families(context, params); | |
5821 | if (r < 0) { | |
5822 | *exit_status = EXIT_ADDRESS_FAMILIES; | |
5823 | return log_error_errno(r, "Failed to restrict address families: %m"); | |
5824 | } | |
5825 | ||
5826 | r = apply_memory_deny_write_execute(context, params); | |
5827 | if (r < 0) { | |
5828 | *exit_status = EXIT_SECCOMP; | |
5829 | return log_error_errno(r, "Failed to disable writing to executable memory: %m"); | |
5830 | } | |
5831 | ||
5832 | r = apply_restrict_realtime(context, params); | |
5833 | if (r < 0) { | |
5834 | *exit_status = EXIT_SECCOMP; | |
5835 | return log_error_errno(r, "Failed to apply realtime restrictions: %m"); | |
5836 | } | |
5837 | ||
5838 | r = apply_restrict_suid_sgid(context, params); | |
5839 | if (r < 0) { | |
5840 | *exit_status = EXIT_SECCOMP; | |
5841 | return log_error_errno(r, "Failed to apply SUID/SGID restrictions: %m"); | |
5842 | } | |
5843 | ||
5844 | r = apply_restrict_namespaces(context, params); | |
5845 | if (r < 0) { | |
5846 | *exit_status = EXIT_SECCOMP; | |
5847 | return log_error_errno(r, "Failed to apply namespace restrictions: %m"); | |
5848 | } | |
5849 | ||
5850 | r = apply_protect_sysctl(context, params); | |
5851 | if (r < 0) { | |
5852 | *exit_status = EXIT_SECCOMP; | |
5853 | return log_error_errno(r, "Failed to apply sysctl restrictions: %m"); | |
5854 | } | |
5855 | ||
5856 | r = apply_protect_kernel_modules(context, params); | |
5857 | if (r < 0) { | |
5858 | *exit_status = EXIT_SECCOMP; | |
5859 | return log_error_errno(r, "Failed to apply module loading restrictions: %m"); | |
5860 | } | |
5861 | ||
5862 | r = apply_protect_kernel_logs(context, params); | |
5863 | if (r < 0) { | |
5864 | *exit_status = EXIT_SECCOMP; | |
5865 | return log_error_errno(r, "Failed to apply kernel log restrictions: %m"); | |
5866 | } | |
5867 | ||
5868 | r = apply_protect_clock(context, params); | |
5869 | if (r < 0) { | |
5870 | *exit_status = EXIT_SECCOMP; | |
5871 | return log_error_errno(r, "Failed to apply clock restrictions: %m"); | |
5872 | } | |
5873 | ||
5874 | r = apply_private_devices(context, params); | |
5875 | if (r < 0) { | |
5876 | *exit_status = EXIT_SECCOMP; | |
5877 | return log_error_errno(r, "Failed to set up private devices: %m"); | |
5878 | } | |
5879 | ||
5880 | r = apply_syscall_archs(context, params); | |
5881 | if (r < 0) { | |
5882 | *exit_status = EXIT_SECCOMP; | |
5883 | return log_error_errno(r, "Failed to apply syscall architecture restrictions: %m"); | |
5884 | } | |
5885 | ||
5886 | r = apply_lock_personality(context, params); | |
5887 | if (r < 0) { | |
5888 | *exit_status = EXIT_SECCOMP; | |
5889 | return log_error_errno(r, "Failed to lock personalities: %m"); | |
5890 | } | |
5891 | ||
5892 | r = apply_syscall_log(context, params); | |
5893 | if (r < 0) { | |
5894 | *exit_status = EXIT_SECCOMP; | |
5895 | return log_error_errno(r, "Failed to apply system call log filters: %m"); | |
5896 | } | |
5897 | #endif | |
5898 | ||
5899 | #if HAVE_LIBBPF | |
5900 | r = apply_restrict_filesystems(context, params); | |
5901 | if (r < 0) { | |
5902 | *exit_status = EXIT_BPF; | |
5903 | return log_error_errno(r, "Failed to restrict filesystems: %m"); | |
5904 | } | |
5905 | #endif | |
5906 | ||
5907 | #if HAVE_SECCOMP | |
5908 | /* This really should remain as close to the execve() as possible, to make sure our own code is affected | |
5909 | * by the filter as little as possible. */ | |
5910 | r = apply_syscall_filter(context, params); | |
5911 | if (r < 0) { | |
5912 | *exit_status = EXIT_SECCOMP; | |
5913 | return log_error_errno(r, "Failed to apply system call filters: %m"); | |
5914 | } | |
5915 | ||
5916 | if (keep_seccomp_privileges) { | |
5917 | /* Restore the capability bounding set with what's expected from the service + the | |
5918 | * ambient capabilities hack */ | |
5919 | if (!cap_test_all(saved_bset)) { | |
5920 | r = capability_bounding_set_drop(saved_bset, /* right_now= */ false); | |
5921 | if (r < 0) { | |
5922 | *exit_status = EXIT_CAPABILITIES; | |
5923 | return log_error_errno(r, "Failed to drop bset capabilities: %m"); | |
5924 | } | |
5925 | } | |
5926 | ||
5927 | /* Only drop CAP_SYS_ADMIN if it's not in the bounding set, otherwise we'll break | |
5928 | * applications that use it. */ | |
5929 | if (!BIT_SET(saved_bset, CAP_SYS_ADMIN)) { | |
5930 | r = drop_capability(CAP_SYS_ADMIN); | |
5931 | if (r < 0) { | |
5932 | *exit_status = EXIT_USER; | |
5933 | return log_error_errno(r, "Failed to drop CAP_SYS_ADMIN: %m"); | |
5934 | } | |
5935 | } | |
5936 | ||
5937 | /* Only drop CAP_SETPCAP if it's not in the bounding set, otherwise we'll break | |
5938 | * applications that use it. */ | |
5939 | if (!BIT_SET(saved_bset, CAP_SETPCAP)) { | |
5940 | r = drop_capability(CAP_SETPCAP); | |
5941 | if (r < 0) { | |
5942 | *exit_status = EXIT_USER; | |
5943 | return log_error_errno(r, "Failed to drop CAP_SETPCAP: %m"); | |
5944 | } | |
5945 | } | |
5946 | ||
5947 | if (prctl(PR_SET_KEEPCAPS, 0) < 0) { | |
5948 | *exit_status = EXIT_USER; | |
5949 | return log_error_errno(errno, "Failed to drop keep capabilities flag: %m"); | |
5950 | } | |
5951 | } | |
5952 | #endif | |
5953 | ||
5954 | } | |
5955 | ||
5956 | if (!strv_isempty(context->unset_environment)) { | |
5957 | char **ee = NULL; | |
5958 | ||
5959 | ee = strv_env_delete(accum_env, 1, context->unset_environment); | |
5960 | if (!ee) { | |
5961 | *exit_status = EXIT_MEMORY; | |
5962 | return log_oom(); | |
5963 | } | |
5964 | ||
5965 | strv_free_and_replace(accum_env, ee); | |
5966 | } | |
5967 | ||
5968 | _cleanup_strv_free_ char **replaced_argv = NULL, **argv_via_shell = NULL; | |
5969 | char **final_argv = FLAGS_SET(command->flags, EXEC_COMMAND_VIA_SHELL) ? strv_skip(command->argv, 1) : command->argv; | |
5970 | ||
5971 | if (final_argv && !FLAGS_SET(command->flags, EXEC_COMMAND_NO_ENV_EXPAND)) { | |
5972 | _cleanup_strv_free_ char **unset_variables = NULL, **bad_variables = NULL; | |
5973 | ||
5974 | r = replace_env_argv(final_argv, accum_env, &replaced_argv, &unset_variables, &bad_variables); | |
5975 | if (r < 0) { | |
5976 | *exit_status = EXIT_MEMORY; | |
5977 | return log_error_errno(r, "Failed to replace environment variables: %m"); | |
5978 | } | |
5979 | final_argv = replaced_argv; | |
5980 | ||
5981 | if (!strv_isempty(unset_variables)) { | |
5982 | _cleanup_free_ char *ju = strv_join(unset_variables, ", "); | |
5983 | log_warning("Referenced but unset environment variable evaluates to an empty string: %s", strna(ju)); | |
5984 | } | |
5985 | ||
5986 | if (!strv_isempty(bad_variables)) { | |
5987 | _cleanup_free_ char *jb = strv_join(bad_variables, ", "); | |
5988 | log_warning("Invalid environment variable name evaluates to an empty string: %s", strna(jb)); | |
5989 | } | |
5990 | } | |
5991 | ||
5992 | if (FLAGS_SET(command->flags, EXEC_COMMAND_VIA_SHELL)) { | |
5993 | r = strv_extendf(&argv_via_shell, "%s%s", command->argv[0][0] == '-' ? "-" : "", path); | |
5994 | if (r < 0) { | |
5995 | *exit_status = EXIT_MEMORY; | |
5996 | return log_oom(); | |
5997 | } | |
5998 | ||
5999 | if (!strv_isempty(final_argv)) { | |
6000 | _cleanup_free_ char *cmdline_joined = NULL; | |
6001 | ||
6002 | cmdline_joined = strv_join(final_argv, " "); | |
6003 | if (!cmdline_joined) { | |
6004 | *exit_status = EXIT_MEMORY; | |
6005 | return log_oom(); | |
6006 | } | |
6007 | ||
6008 | r = strv_extend_many(&argv_via_shell, "-c", cmdline_joined); | |
6009 | if (r < 0) { | |
6010 | *exit_status = EXIT_MEMORY; | |
6011 | return log_oom(); | |
6012 | } | |
6013 | } | |
6014 | ||
6015 | final_argv = argv_via_shell; | |
6016 | } | |
6017 | ||
6018 | log_command_line(context, params, "Executing", executable, final_argv); | |
6019 | ||
6020 | /* We have finished with all our initializations. Let's now let the manager know that. From this | |
6021 | * point on, if the manager sees POLLHUP on the exec_fd, then execve() was successful. */ | |
6022 | ||
6023 | r = exec_fd_mark_hot(context, params, /* hot= */ true, exit_status); | |
6024 | if (r < 0) | |
6025 | return r; | |
6026 | ||
6027 | /* As last thing before the execve(), let's send the handoff timestamp */ | |
6028 | r = send_handoff_timestamp(context, params, exit_status); | |
6029 | if (r < 0) { | |
6030 | /* If this handoff timestamp failed, let's undo the marking as hot */ | |
6031 | (void) exec_fd_mark_hot(context, params, /* hot= */ false, /* reterr_exit_status= */ NULL); | |
6032 | return r; | |
6033 | } | |
6034 | ||
6035 | /* NB: we leave executable_fd, exec_fd, handoff_timestamp_fd open here. This is safe, because they | |
6036 | * have O_CLOEXEC set, and the execve() below will thus automatically close them. In fact, for | |
6037 | * exec_fd this is pretty much the whole raison d'etre. */ | |
6038 | ||
6039 | r = fexecve_or_execve(executable_fd, executable, final_argv, accum_env); | |
6040 | ||
6041 | /* The execve() failed, let's undo the marking as hot */ | |
6042 | (void) exec_fd_mark_hot(context, params, /* hot= */ false, /* reterr_exit_status= */ NULL); | |
6043 | ||
6044 | *exit_status = EXIT_EXEC; | |
6045 | return log_error_errno(r, "Failed to execute %s: %m", executable); | |
6046 | } |