]> git.ipfire.org Git - thirdparty/systemd.git/blame_incremental - src/core/execute.c
service: allow freeing the fdstore via cleaning
[thirdparty/systemd.git] / src / core / execute.c
... / ...
CommitLineData
1/* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3#include <errno.h>
4#include <fcntl.h>
5#include <poll.h>
6#include <sys/eventfd.h>
7#include <sys/ioctl.h>
8#include <sys/mman.h>
9#include <sys/mount.h>
10#include <sys/personality.h>
11#include <sys/prctl.h>
12#include <sys/shm.h>
13#include <sys/types.h>
14#include <sys/un.h>
15#include <unistd.h>
16#include <utmpx.h>
17
18#if HAVE_PAM
19#include <security/pam_appl.h>
20#endif
21
22#if HAVE_SELINUX
23#include <selinux/selinux.h>
24#endif
25
26#if HAVE_SECCOMP
27#include <seccomp.h>
28#endif
29
30#if HAVE_APPARMOR
31#include <sys/apparmor.h>
32#endif
33
34#include "sd-messages.h"
35
36#include "acl-util.h"
37#include "af-list.h"
38#include "alloc-util.h"
39#if HAVE_APPARMOR
40#include "apparmor-util.h"
41#endif
42#include "argv-util.h"
43#include "async.h"
44#include "barrier.h"
45#include "bpf-lsm.h"
46#include "cap-list.h"
47#include "capability-util.h"
48#include "cgroup-setup.h"
49#include "chase.h"
50#include "chown-recursive.h"
51#include "constants.h"
52#include "cpu-set-util.h"
53#include "creds-util.h"
54#include "data-fd-util.h"
55#include "env-file.h"
56#include "env-util.h"
57#include "errno-list.h"
58#include "escape.h"
59#include "execute.h"
60#include "exit-status.h"
61#include "fd-util.h"
62#include "fileio.h"
63#include "format-util.h"
64#include "glob-util.h"
65#include "hexdecoct.h"
66#include "io-util.h"
67#include "ioprio-util.h"
68#include "label.h"
69#include "log.h"
70#include "macro.h"
71#include "manager.h"
72#include "manager-dump.h"
73#include "memory-util.h"
74#include "missing_fs.h"
75#include "missing_ioprio.h"
76#include "missing_prctl.h"
77#include "mkdir-label.h"
78#include "mount-util.h"
79#include "mountpoint-util.h"
80#include "namespace.h"
81#include "parse-util.h"
82#include "path-util.h"
83#include "proc-cmdline.h"
84#include "process-util.h"
85#include "psi-util.h"
86#include "random-util.h"
87#include "recurse-dir.h"
88#include "rlimit-util.h"
89#include "rm-rf.h"
90#if HAVE_SECCOMP
91#include "seccomp-util.h"
92#endif
93#include "securebits-util.h"
94#include "selinux-util.h"
95#include "signal-util.h"
96#include "smack-util.h"
97#include "socket-util.h"
98#include "sort-util.h"
99#include "special.h"
100#include "stat-util.h"
101#include "string-table.h"
102#include "string-util.h"
103#include "strv.h"
104#include "syslog-util.h"
105#include "terminal-util.h"
106#include "tmpfile-util.h"
107#include "umask-util.h"
108#include "unit-serialize.h"
109#include "user-util.h"
110#include "utmp-wtmp.h"
111
112#define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC)
113#define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC)
114
115#define SNDBUF_SIZE (8*1024*1024)
116
117static int shift_fds(int fds[], size_t n_fds) {
118 if (n_fds <= 0)
119 return 0;
120
121 /* Modifies the fds array! (sorts it) */
122
123 assert(fds);
124
125 for (int start = 0;;) {
126 int restart_from = -1;
127
128 for (int i = start; i < (int) n_fds; i++) {
129 int nfd;
130
131 /* Already at right index? */
132 if (fds[i] == i+3)
133 continue;
134
135 nfd = fcntl(fds[i], F_DUPFD, i + 3);
136 if (nfd < 0)
137 return -errno;
138
139 safe_close(fds[i]);
140 fds[i] = nfd;
141
142 /* Hmm, the fd we wanted isn't free? Then
143 * let's remember that and try again from here */
144 if (nfd != i+3 && restart_from < 0)
145 restart_from = i;
146 }
147
148 if (restart_from < 0)
149 break;
150
151 start = restart_from;
152 }
153
154 return 0;
155}
156
157static int flags_fds(
158 const int fds[],
159 size_t n_socket_fds,
160 size_t n_fds,
161 bool nonblock) {
162
163 int r;
164
165 if (n_fds <= 0)
166 return 0;
167
168 assert(fds);
169
170 /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags.
171 * O_NONBLOCK only applies to socket activation though. */
172
173 for (size_t i = 0; i < n_fds; i++) {
174
175 if (i < n_socket_fds) {
176 r = fd_nonblock(fds[i], nonblock);
177 if (r < 0)
178 return r;
179 }
180
181 /* We unconditionally drop FD_CLOEXEC from the fds,
182 * since after all we want to pass these fds to our
183 * children */
184
185 r = fd_cloexec(fds[i], false);
186 if (r < 0)
187 return r;
188 }
189
190 return 0;
191}
192
193static const char *exec_context_tty_path(const ExecContext *context) {
194 assert(context);
195
196 if (context->stdio_as_fds)
197 return NULL;
198
199 if (context->tty_path)
200 return context->tty_path;
201
202 return "/dev/console";
203}
204
205static int exec_context_tty_size(const ExecContext *context, unsigned *ret_rows, unsigned *ret_cols) {
206 _cleanup_free_ char *rowskey = NULL, *rowsvalue = NULL, *colskey = NULL, *colsvalue = NULL;
207 unsigned rows, cols;
208 const char *tty;
209 int r;
210
211 assert(context);
212 assert(ret_rows);
213 assert(ret_cols);
214
215 rows = context->tty_rows;
216 cols = context->tty_cols;
217
218 tty = exec_context_tty_path(context);
219 if (!tty || (rows != UINT_MAX && cols != UINT_MAX)) {
220 *ret_rows = rows;
221 *ret_cols = cols;
222 return 0;
223 }
224
225 tty = skip_dev_prefix(tty);
226 if (!in_charset(tty, ALPHANUMERICAL)) {
227 log_debug("%s contains non-alphanumeric characters, ignoring", tty);
228 *ret_rows = rows;
229 *ret_cols = cols;
230 return 0;
231 }
232
233 rowskey = strjoin("systemd.tty.rows.", tty);
234 if (!rowskey)
235 return -ENOMEM;
236
237 colskey = strjoin("systemd.tty.columns.", tty);
238 if (!colskey)
239 return -ENOMEM;
240
241 r = proc_cmdline_get_key_many(/* flags = */ 0,
242 rowskey, &rowsvalue,
243 colskey, &colsvalue);
244 if (r < 0)
245 log_debug_errno(r, "Failed to read TTY size of %s from kernel cmdline, ignoring: %m", tty);
246
247 if (rows == UINT_MAX && rowsvalue) {
248 r = safe_atou(rowsvalue, &rows);
249 if (r < 0)
250 log_debug_errno(r, "Failed to parse %s=%s, ignoring: %m", rowskey, rowsvalue);
251 }
252
253 if (cols == UINT_MAX && colsvalue) {
254 r = safe_atou(colsvalue, &cols);
255 if (r < 0)
256 log_debug_errno(r, "Failed to parse %s=%s, ignoring: %m", colskey, colsvalue);
257 }
258
259 *ret_rows = rows;
260 *ret_cols = cols;
261
262 return 0;
263}
264
265static void exec_context_tty_reset(const ExecContext *context, const ExecParameters *p) {
266 const char *path;
267
268 assert(context);
269
270 path = exec_context_tty_path(context);
271
272 if (context->tty_vhangup) {
273 if (p && p->stdin_fd >= 0)
274 (void) terminal_vhangup_fd(p->stdin_fd);
275 else if (path)
276 (void) terminal_vhangup(path);
277 }
278
279 if (context->tty_reset) {
280 if (p && p->stdin_fd >= 0)
281 (void) reset_terminal_fd(p->stdin_fd, true);
282 else if (path)
283 (void) reset_terminal(path);
284 }
285
286 if (p && p->stdin_fd >= 0) {
287 unsigned rows = context->tty_rows, cols = context->tty_cols;
288
289 (void) exec_context_tty_size(context, &rows, &cols);
290 (void) terminal_set_size_fd(p->stdin_fd, path, rows, cols);
291 }
292
293 if (context->tty_vt_disallocate && path)
294 (void) vt_disallocate(path);
295}
296
297static bool is_terminal_input(ExecInput i) {
298 return IN_SET(i,
299 EXEC_INPUT_TTY,
300 EXEC_INPUT_TTY_FORCE,
301 EXEC_INPUT_TTY_FAIL);
302}
303
304static bool is_terminal_output(ExecOutput o) {
305 return IN_SET(o,
306 EXEC_OUTPUT_TTY,
307 EXEC_OUTPUT_KMSG_AND_CONSOLE,
308 EXEC_OUTPUT_JOURNAL_AND_CONSOLE);
309}
310
311static bool is_kmsg_output(ExecOutput o) {
312 return IN_SET(o,
313 EXEC_OUTPUT_KMSG,
314 EXEC_OUTPUT_KMSG_AND_CONSOLE);
315}
316
317static bool exec_context_needs_term(const ExecContext *c) {
318 assert(c);
319
320 /* Return true if the execution context suggests we should set $TERM to something useful. */
321
322 if (is_terminal_input(c->std_input))
323 return true;
324
325 if (is_terminal_output(c->std_output))
326 return true;
327
328 if (is_terminal_output(c->std_error))
329 return true;
330
331 return !!c->tty_path;
332}
333
334static int open_null_as(int flags, int nfd) {
335 int fd;
336
337 assert(nfd >= 0);
338
339 fd = open("/dev/null", flags|O_NOCTTY);
340 if (fd < 0)
341 return -errno;
342
343 return move_fd(fd, nfd, false);
344}
345
346static int connect_journal_socket(
347 int fd,
348 const char *log_namespace,
349 uid_t uid,
350 gid_t gid) {
351
352 uid_t olduid = UID_INVALID;
353 gid_t oldgid = GID_INVALID;
354 const char *j;
355 int r;
356
357 j = log_namespace ?
358 strjoina("/run/systemd/journal.", log_namespace, "/stdout") :
359 "/run/systemd/journal/stdout";
360
361 if (gid_is_valid(gid)) {
362 oldgid = getgid();
363
364 if (setegid(gid) < 0)
365 return -errno;
366 }
367
368 if (uid_is_valid(uid)) {
369 olduid = getuid();
370
371 if (seteuid(uid) < 0) {
372 r = -errno;
373 goto restore_gid;
374 }
375 }
376
377 r = connect_unix_path(fd, AT_FDCWD, j);
378
379 /* If we fail to restore the uid or gid, things will likely fail later on. This should only happen if
380 an LSM interferes. */
381
382 if (uid_is_valid(uid))
383 (void) seteuid(olduid);
384
385 restore_gid:
386 if (gid_is_valid(gid))
387 (void) setegid(oldgid);
388
389 return r;
390}
391
392static int connect_logger_as(
393 const Unit *unit,
394 const ExecContext *context,
395 const ExecParameters *params,
396 ExecOutput output,
397 const char *ident,
398 int nfd,
399 uid_t uid,
400 gid_t gid) {
401
402 _cleanup_close_ int fd = -EBADF;
403 int r;
404
405 assert(context);
406 assert(params);
407 assert(output < _EXEC_OUTPUT_MAX);
408 assert(ident);
409 assert(nfd >= 0);
410
411 fd = socket(AF_UNIX, SOCK_STREAM, 0);
412 if (fd < 0)
413 return -errno;
414
415 r = connect_journal_socket(fd, context->log_namespace, uid, gid);
416 if (r < 0)
417 return r;
418
419 if (shutdown(fd, SHUT_RD) < 0)
420 return -errno;
421
422 (void) fd_inc_sndbuf(fd, SNDBUF_SIZE);
423
424 if (dprintf(fd,
425 "%s\n"
426 "%s\n"
427 "%i\n"
428 "%i\n"
429 "%i\n"
430 "%i\n"
431 "%i\n",
432 context->syslog_identifier ?: ident,
433 params->flags & EXEC_PASS_LOG_UNIT ? unit->id : "",
434 context->syslog_priority,
435 !!context->syslog_level_prefix,
436 false,
437 is_kmsg_output(output),
438 is_terminal_output(output)) < 0)
439 return -errno;
440
441 return move_fd(TAKE_FD(fd), nfd, false);
442}
443
444static int open_terminal_as(const char *path, int flags, int nfd) {
445 int fd;
446
447 assert(path);
448 assert(nfd >= 0);
449
450 fd = open_terminal(path, flags | O_NOCTTY);
451 if (fd < 0)
452 return fd;
453
454 return move_fd(fd, nfd, false);
455}
456
457static int acquire_path(const char *path, int flags, mode_t mode) {
458 _cleanup_close_ int fd = -EBADF;
459 int r;
460
461 assert(path);
462
463 if (IN_SET(flags & O_ACCMODE, O_WRONLY, O_RDWR))
464 flags |= O_CREAT;
465
466 fd = open(path, flags|O_NOCTTY, mode);
467 if (fd >= 0)
468 return TAKE_FD(fd);
469
470 if (errno != ENXIO) /* ENXIO is returned when we try to open() an AF_UNIX file system socket on Linux */
471 return -errno;
472
473 /* So, it appears the specified path could be an AF_UNIX socket. Let's see if we can connect to it. */
474
475 fd = socket(AF_UNIX, SOCK_STREAM, 0);
476 if (fd < 0)
477 return -errno;
478
479 r = connect_unix_path(fd, AT_FDCWD, path);
480 if (IN_SET(r, -ENOTSOCK, -EINVAL))
481 /* Propagate initial error if we get ENOTSOCK or EINVAL, i.e. we have indication that this
482 * wasn't an AF_UNIX socket after all */
483 return -ENXIO;
484 if (r < 0)
485 return r;
486
487 if ((flags & O_ACCMODE) == O_RDONLY)
488 r = shutdown(fd, SHUT_WR);
489 else if ((flags & O_ACCMODE) == O_WRONLY)
490 r = shutdown(fd, SHUT_RD);
491 else
492 r = 0;
493 if (r < 0)
494 return -errno;
495
496 return TAKE_FD(fd);
497}
498
499static int fixup_input(
500 const ExecContext *context,
501 int socket_fd,
502 bool apply_tty_stdin) {
503
504 ExecInput std_input;
505
506 assert(context);
507
508 std_input = context->std_input;
509
510 if (is_terminal_input(std_input) && !apply_tty_stdin)
511 return EXEC_INPUT_NULL;
512
513 if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0)
514 return EXEC_INPUT_NULL;
515
516 if (std_input == EXEC_INPUT_DATA && context->stdin_data_size == 0)
517 return EXEC_INPUT_NULL;
518
519 return std_input;
520}
521
522static int fixup_output(ExecOutput output, int socket_fd) {
523
524 if (output == EXEC_OUTPUT_SOCKET && socket_fd < 0)
525 return EXEC_OUTPUT_INHERIT;
526
527 return output;
528}
529
530static int setup_input(
531 const ExecContext *context,
532 const ExecParameters *params,
533 int socket_fd,
534 const int named_iofds[static 3]) {
535
536 ExecInput i;
537 int r;
538
539 assert(context);
540 assert(params);
541 assert(named_iofds);
542
543 if (params->stdin_fd >= 0) {
544 if (dup2(params->stdin_fd, STDIN_FILENO) < 0)
545 return -errno;
546
547 /* Try to make this the controlling tty, if it is a tty, and reset it */
548 if (isatty(STDIN_FILENO)) {
549 unsigned rows = context->tty_rows, cols = context->tty_cols;
550
551 (void) exec_context_tty_size(context, &rows, &cols);
552 (void) ioctl(STDIN_FILENO, TIOCSCTTY, context->std_input == EXEC_INPUT_TTY_FORCE);
553 (void) reset_terminal_fd(STDIN_FILENO, true);
554 (void) terminal_set_size_fd(STDIN_FILENO, NULL, rows, cols);
555 }
556
557 return STDIN_FILENO;
558 }
559
560 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
561
562 switch (i) {
563
564 case EXEC_INPUT_NULL:
565 return open_null_as(O_RDONLY, STDIN_FILENO);
566
567 case EXEC_INPUT_TTY:
568 case EXEC_INPUT_TTY_FORCE:
569 case EXEC_INPUT_TTY_FAIL: {
570 unsigned rows, cols;
571 int fd;
572
573 fd = acquire_terminal(exec_context_tty_path(context),
574 i == EXEC_INPUT_TTY_FAIL ? ACQUIRE_TERMINAL_TRY :
575 i == EXEC_INPUT_TTY_FORCE ? ACQUIRE_TERMINAL_FORCE :
576 ACQUIRE_TERMINAL_WAIT,
577 USEC_INFINITY);
578 if (fd < 0)
579 return fd;
580
581 r = exec_context_tty_size(context, &rows, &cols);
582 if (r < 0)
583 return r;
584
585 r = terminal_set_size_fd(fd, exec_context_tty_path(context), rows, cols);
586 if (r < 0)
587 return r;
588
589 return move_fd(fd, STDIN_FILENO, false);
590 }
591
592 case EXEC_INPUT_SOCKET:
593 assert(socket_fd >= 0);
594
595 return RET_NERRNO(dup2(socket_fd, STDIN_FILENO));
596
597 case EXEC_INPUT_NAMED_FD:
598 assert(named_iofds[STDIN_FILENO] >= 0);
599
600 (void) fd_nonblock(named_iofds[STDIN_FILENO], false);
601 return RET_NERRNO(dup2(named_iofds[STDIN_FILENO], STDIN_FILENO));
602
603 case EXEC_INPUT_DATA: {
604 int fd;
605
606 fd = acquire_data_fd(context->stdin_data, context->stdin_data_size, 0);
607 if (fd < 0)
608 return fd;
609
610 return move_fd(fd, STDIN_FILENO, false);
611 }
612
613 case EXEC_INPUT_FILE: {
614 bool rw;
615 int fd;
616
617 assert(context->stdio_file[STDIN_FILENO]);
618
619 rw = (context->std_output == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDOUT_FILENO])) ||
620 (context->std_error == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDERR_FILENO]));
621
622 fd = acquire_path(context->stdio_file[STDIN_FILENO], rw ? O_RDWR : O_RDONLY, 0666 & ~context->umask);
623 if (fd < 0)
624 return fd;
625
626 return move_fd(fd, STDIN_FILENO, false);
627 }
628
629 default:
630 assert_not_reached();
631 }
632}
633
634static bool can_inherit_stderr_from_stdout(
635 const ExecContext *context,
636 ExecOutput o,
637 ExecOutput e) {
638
639 assert(context);
640
641 /* Returns true, if given the specified STDERR and STDOUT output we can directly dup() the stdout fd to the
642 * stderr fd */
643
644 if (e == EXEC_OUTPUT_INHERIT)
645 return true;
646 if (e != o)
647 return false;
648
649 if (e == EXEC_OUTPUT_NAMED_FD)
650 return streq_ptr(context->stdio_fdname[STDOUT_FILENO], context->stdio_fdname[STDERR_FILENO]);
651
652 if (IN_SET(e, EXEC_OUTPUT_FILE, EXEC_OUTPUT_FILE_APPEND, EXEC_OUTPUT_FILE_TRUNCATE))
653 return streq_ptr(context->stdio_file[STDOUT_FILENO], context->stdio_file[STDERR_FILENO]);
654
655 return true;
656}
657
658static int setup_output(
659 const Unit *unit,
660 const ExecContext *context,
661 const ExecParameters *params,
662 int fileno,
663 int socket_fd,
664 const int named_iofds[static 3],
665 const char *ident,
666 uid_t uid,
667 gid_t gid,
668 dev_t *journal_stream_dev,
669 ino_t *journal_stream_ino) {
670
671 ExecOutput o;
672 ExecInput i;
673 int r;
674
675 assert(unit);
676 assert(context);
677 assert(params);
678 assert(ident);
679 assert(journal_stream_dev);
680 assert(journal_stream_ino);
681
682 if (fileno == STDOUT_FILENO && params->stdout_fd >= 0) {
683
684 if (dup2(params->stdout_fd, STDOUT_FILENO) < 0)
685 return -errno;
686
687 return STDOUT_FILENO;
688 }
689
690 if (fileno == STDERR_FILENO && params->stderr_fd >= 0) {
691 if (dup2(params->stderr_fd, STDERR_FILENO) < 0)
692 return -errno;
693
694 return STDERR_FILENO;
695 }
696
697 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
698 o = fixup_output(context->std_output, socket_fd);
699
700 if (fileno == STDERR_FILENO) {
701 ExecOutput e;
702 e = fixup_output(context->std_error, socket_fd);
703
704 /* This expects the input and output are already set up */
705
706 /* Don't change the stderr file descriptor if we inherit all
707 * the way and are not on a tty */
708 if (e == EXEC_OUTPUT_INHERIT &&
709 o == EXEC_OUTPUT_INHERIT &&
710 i == EXEC_INPUT_NULL &&
711 !is_terminal_input(context->std_input) &&
712 getppid() != 1)
713 return fileno;
714
715 /* Duplicate from stdout if possible */
716 if (can_inherit_stderr_from_stdout(context, o, e))
717 return RET_NERRNO(dup2(STDOUT_FILENO, fileno));
718
719 o = e;
720
721 } else if (o == EXEC_OUTPUT_INHERIT) {
722 /* If input got downgraded, inherit the original value */
723 if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input))
724 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
725
726 /* If the input is connected to anything that's not a /dev/null or a data fd, inherit that... */
727 if (!IN_SET(i, EXEC_INPUT_NULL, EXEC_INPUT_DATA))
728 return RET_NERRNO(dup2(STDIN_FILENO, fileno));
729
730 /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */
731 if (getppid() != 1)
732 return fileno;
733
734 /* We need to open /dev/null here anew, to get the right access mode. */
735 return open_null_as(O_WRONLY, fileno);
736 }
737
738 switch (o) {
739
740 case EXEC_OUTPUT_NULL:
741 return open_null_as(O_WRONLY, fileno);
742
743 case EXEC_OUTPUT_TTY:
744 if (is_terminal_input(i))
745 return RET_NERRNO(dup2(STDIN_FILENO, fileno));
746
747 /* We don't reset the terminal if this is just about output */
748 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
749
750 case EXEC_OUTPUT_KMSG:
751 case EXEC_OUTPUT_KMSG_AND_CONSOLE:
752 case EXEC_OUTPUT_JOURNAL:
753 case EXEC_OUTPUT_JOURNAL_AND_CONSOLE:
754 r = connect_logger_as(unit, context, params, o, ident, fileno, uid, gid);
755 if (r < 0) {
756 log_unit_warning_errno(unit, r, "Failed to connect %s to the journal socket, ignoring: %m",
757 fileno == STDOUT_FILENO ? "stdout" : "stderr");
758 r = open_null_as(O_WRONLY, fileno);
759 } else {
760 struct stat st;
761
762 /* If we connected this fd to the journal via a stream, patch the device/inode into the passed
763 * parameters, but only then. This is useful so that we can set $JOURNAL_STREAM that permits
764 * services to detect whether they are connected to the journal or not.
765 *
766 * If both stdout and stderr are connected to a stream then let's make sure to store the data
767 * about STDERR as that's usually the best way to do logging. */
768
769 if (fstat(fileno, &st) >= 0 &&
770 (*journal_stream_ino == 0 || fileno == STDERR_FILENO)) {
771 *journal_stream_dev = st.st_dev;
772 *journal_stream_ino = st.st_ino;
773 }
774 }
775 return r;
776
777 case EXEC_OUTPUT_SOCKET:
778 assert(socket_fd >= 0);
779
780 return RET_NERRNO(dup2(socket_fd, fileno));
781
782 case EXEC_OUTPUT_NAMED_FD:
783 assert(named_iofds[fileno] >= 0);
784
785 (void) fd_nonblock(named_iofds[fileno], false);
786 return RET_NERRNO(dup2(named_iofds[fileno], fileno));
787
788 case EXEC_OUTPUT_FILE:
789 case EXEC_OUTPUT_FILE_APPEND:
790 case EXEC_OUTPUT_FILE_TRUNCATE: {
791 bool rw;
792 int fd, flags;
793
794 assert(context->stdio_file[fileno]);
795
796 rw = context->std_input == EXEC_INPUT_FILE &&
797 streq_ptr(context->stdio_file[fileno], context->stdio_file[STDIN_FILENO]);
798
799 if (rw)
800 return RET_NERRNO(dup2(STDIN_FILENO, fileno));
801
802 flags = O_WRONLY;
803 if (o == EXEC_OUTPUT_FILE_APPEND)
804 flags |= O_APPEND;
805 else if (o == EXEC_OUTPUT_FILE_TRUNCATE)
806 flags |= O_TRUNC;
807
808 fd = acquire_path(context->stdio_file[fileno], flags, 0666 & ~context->umask);
809 if (fd < 0)
810 return fd;
811
812 return move_fd(fd, fileno, 0);
813 }
814
815 default:
816 assert_not_reached();
817 }
818}
819
820static int chown_terminal(int fd, uid_t uid) {
821 int r;
822
823 assert(fd >= 0);
824
825 /* Before we chown/chmod the TTY, let's ensure this is actually a tty */
826 if (isatty(fd) < 1) {
827 if (IN_SET(errno, EINVAL, ENOTTY))
828 return 0; /* not a tty */
829
830 return -errno;
831 }
832
833 /* This might fail. What matters are the results. */
834 r = fchmod_and_chown(fd, TTY_MODE, uid, GID_INVALID);
835 if (r < 0)
836 return r;
837
838 return 1;
839}
840
841static int setup_confirm_stdio(
842 const ExecContext *context,
843 const char *vc,
844 int *ret_saved_stdin,
845 int *ret_saved_stdout) {
846
847 _cleanup_close_ int fd = -EBADF, saved_stdin = -EBADF, saved_stdout = -EBADF;
848 unsigned rows, cols;
849 int r;
850
851 assert(ret_saved_stdin);
852 assert(ret_saved_stdout);
853
854 saved_stdin = fcntl(STDIN_FILENO, F_DUPFD, 3);
855 if (saved_stdin < 0)
856 return -errno;
857
858 saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD, 3);
859 if (saved_stdout < 0)
860 return -errno;
861
862 fd = acquire_terminal(vc, ACQUIRE_TERMINAL_WAIT, DEFAULT_CONFIRM_USEC);
863 if (fd < 0)
864 return fd;
865
866 r = chown_terminal(fd, getuid());
867 if (r < 0)
868 return r;
869
870 r = reset_terminal_fd(fd, true);
871 if (r < 0)
872 return r;
873
874 r = exec_context_tty_size(context, &rows, &cols);
875 if (r < 0)
876 return r;
877
878 r = terminal_set_size_fd(fd, vc, rows, cols);
879 if (r < 0)
880 return r;
881
882 r = rearrange_stdio(fd, fd, STDERR_FILENO); /* Invalidates 'fd' also on failure */
883 TAKE_FD(fd);
884 if (r < 0)
885 return r;
886
887 *ret_saved_stdin = TAKE_FD(saved_stdin);
888 *ret_saved_stdout = TAKE_FD(saved_stdout);
889 return 0;
890}
891
892static void write_confirm_error_fd(int err, int fd, const Unit *u) {
893 assert(err < 0);
894
895 if (err == -ETIMEDOUT)
896 dprintf(fd, "Confirmation question timed out for %s, assuming positive response.\n", u->id);
897 else {
898 errno = -err;
899 dprintf(fd, "Couldn't ask confirmation for %s: %m, assuming positive response.\n", u->id);
900 }
901}
902
903static void write_confirm_error(int err, const char *vc, const Unit *u) {
904 _cleanup_close_ int fd = -EBADF;
905
906 assert(vc);
907
908 fd = open_terminal(vc, O_WRONLY|O_NOCTTY|O_CLOEXEC);
909 if (fd < 0)
910 return;
911
912 write_confirm_error_fd(err, fd, u);
913}
914
915static int restore_confirm_stdio(int *saved_stdin, int *saved_stdout) {
916 int r = 0;
917
918 assert(saved_stdin);
919 assert(saved_stdout);
920
921 release_terminal();
922
923 if (*saved_stdin >= 0)
924 if (dup2(*saved_stdin, STDIN_FILENO) < 0)
925 r = -errno;
926
927 if (*saved_stdout >= 0)
928 if (dup2(*saved_stdout, STDOUT_FILENO) < 0)
929 r = -errno;
930
931 *saved_stdin = safe_close(*saved_stdin);
932 *saved_stdout = safe_close(*saved_stdout);
933
934 return r;
935}
936
937enum {
938 CONFIRM_PRETEND_FAILURE = -1,
939 CONFIRM_PRETEND_SUCCESS = 0,
940 CONFIRM_EXECUTE = 1,
941};
942
943static int ask_for_confirmation(const ExecContext *context, const char *vc, Unit *u, const char *cmdline) {
944 int saved_stdout = -1, saved_stdin = -1, r;
945 _cleanup_free_ char *e = NULL;
946 char c;
947
948 /* For any internal errors, assume a positive response. */
949 r = setup_confirm_stdio(context, vc, &saved_stdin, &saved_stdout);
950 if (r < 0) {
951 write_confirm_error(r, vc, u);
952 return CONFIRM_EXECUTE;
953 }
954
955 /* confirm_spawn might have been disabled while we were sleeping. */
956 if (manager_is_confirm_spawn_disabled(u->manager)) {
957 r = 1;
958 goto restore_stdio;
959 }
960
961 e = ellipsize(cmdline, 60, 100);
962 if (!e) {
963 log_oom();
964 r = CONFIRM_EXECUTE;
965 goto restore_stdio;
966 }
967
968 for (;;) {
969 r = ask_char(&c, "yfshiDjcn", "Execute %s? [y, f, s – h for help] ", e);
970 if (r < 0) {
971 write_confirm_error_fd(r, STDOUT_FILENO, u);
972 r = CONFIRM_EXECUTE;
973 goto restore_stdio;
974 }
975
976 switch (c) {
977 case 'c':
978 printf("Resuming normal execution.\n");
979 manager_disable_confirm_spawn();
980 r = 1;
981 break;
982 case 'D':
983 unit_dump(u, stdout, " ");
984 continue; /* ask again */
985 case 'f':
986 printf("Failing execution.\n");
987 r = CONFIRM_PRETEND_FAILURE;
988 break;
989 case 'h':
990 printf(" c - continue, proceed without asking anymore\n"
991 " D - dump, show the state of the unit\n"
992 " f - fail, don't execute the command and pretend it failed\n"
993 " h - help\n"
994 " i - info, show a short summary of the unit\n"
995 " j - jobs, show jobs that are in progress\n"
996 " s - skip, don't execute the command and pretend it succeeded\n"
997 " y - yes, execute the command\n");
998 continue; /* ask again */
999 case 'i':
1000 printf(" Description: %s\n"
1001 " Unit: %s\n"
1002 " Command: %s\n",
1003 u->id, u->description, cmdline);
1004 continue; /* ask again */
1005 case 'j':
1006 manager_dump_jobs(u->manager, stdout, /* patterns= */ NULL, " ");
1007 continue; /* ask again */
1008 case 'n':
1009 /* 'n' was removed in favor of 'f'. */
1010 printf("Didn't understand 'n', did you mean 'f'?\n");
1011 continue; /* ask again */
1012 case 's':
1013 printf("Skipping execution.\n");
1014 r = CONFIRM_PRETEND_SUCCESS;
1015 break;
1016 case 'y':
1017 r = CONFIRM_EXECUTE;
1018 break;
1019 default:
1020 assert_not_reached();
1021 }
1022 break;
1023 }
1024
1025restore_stdio:
1026 restore_confirm_stdio(&saved_stdin, &saved_stdout);
1027 return r;
1028}
1029
1030static int get_fixed_user(const ExecContext *c, const char **user,
1031 uid_t *uid, gid_t *gid,
1032 const char **home, const char **shell) {
1033 int r;
1034 const char *name;
1035
1036 assert(c);
1037
1038 if (!c->user)
1039 return 0;
1040
1041 /* Note that we don't set $HOME or $SHELL if they are not particularly enlightening anyway
1042 * (i.e. are "/" or "/bin/nologin"). */
1043
1044 name = c->user;
1045 r = get_user_creds(&name, uid, gid, home, shell, USER_CREDS_CLEAN);
1046 if (r < 0)
1047 return r;
1048
1049 *user = name;
1050 return 0;
1051}
1052
1053static int get_fixed_group(const ExecContext *c, const char **group, gid_t *gid) {
1054 int r;
1055 const char *name;
1056
1057 assert(c);
1058
1059 if (!c->group)
1060 return 0;
1061
1062 name = c->group;
1063 r = get_group_creds(&name, gid, 0);
1064 if (r < 0)
1065 return r;
1066
1067 *group = name;
1068 return 0;
1069}
1070
1071static int get_supplementary_groups(const ExecContext *c, const char *user,
1072 const char *group, gid_t gid,
1073 gid_t **supplementary_gids, int *ngids) {
1074 int r, k = 0;
1075 int ngroups_max;
1076 bool keep_groups = false;
1077 gid_t *groups = NULL;
1078 _cleanup_free_ gid_t *l_gids = NULL;
1079
1080 assert(c);
1081
1082 /*
1083 * If user is given, then lookup GID and supplementary groups list.
1084 * We avoid NSS lookups for gid=0. Also we have to initialize groups
1085 * here and as early as possible so we keep the list of supplementary
1086 * groups of the caller.
1087 */
1088 if (user && gid_is_valid(gid) && gid != 0) {
1089 /* First step, initialize groups from /etc/groups */
1090 if (initgroups(user, gid) < 0)
1091 return -errno;
1092
1093 keep_groups = true;
1094 }
1095
1096 if (strv_isempty(c->supplementary_groups))
1097 return 0;
1098
1099 /*
1100 * If SupplementaryGroups= was passed then NGROUPS_MAX has to
1101 * be positive, otherwise fail.
1102 */
1103 errno = 0;
1104 ngroups_max = (int) sysconf(_SC_NGROUPS_MAX);
1105 if (ngroups_max <= 0)
1106 return errno_or_else(EOPNOTSUPP);
1107
1108 l_gids = new(gid_t, ngroups_max);
1109 if (!l_gids)
1110 return -ENOMEM;
1111
1112 if (keep_groups) {
1113 /*
1114 * Lookup the list of groups that the user belongs to, we
1115 * avoid NSS lookups here too for gid=0.
1116 */
1117 k = ngroups_max;
1118 if (getgrouplist(user, gid, l_gids, &k) < 0)
1119 return -EINVAL;
1120 } else
1121 k = 0;
1122
1123 STRV_FOREACH(i, c->supplementary_groups) {
1124 const char *g;
1125
1126 if (k >= ngroups_max)
1127 return -E2BIG;
1128
1129 g = *i;
1130 r = get_group_creds(&g, l_gids+k, 0);
1131 if (r < 0)
1132 return r;
1133
1134 k++;
1135 }
1136
1137 /*
1138 * Sets ngids to zero to drop all supplementary groups, happens
1139 * when we are under root and SupplementaryGroups= is empty.
1140 */
1141 if (k == 0) {
1142 *ngids = 0;
1143 return 0;
1144 }
1145
1146 /* Otherwise get the final list of supplementary groups */
1147 groups = memdup(l_gids, sizeof(gid_t) * k);
1148 if (!groups)
1149 return -ENOMEM;
1150
1151 *supplementary_gids = groups;
1152 *ngids = k;
1153
1154 groups = NULL;
1155
1156 return 0;
1157}
1158
1159static int enforce_groups(gid_t gid, const gid_t *supplementary_gids, int ngids) {
1160 int r;
1161
1162 /* Handle SupplementaryGroups= if it is not empty */
1163 if (ngids > 0) {
1164 r = maybe_setgroups(ngids, supplementary_gids);
1165 if (r < 0)
1166 return r;
1167 }
1168
1169 if (gid_is_valid(gid)) {
1170 /* Then set our gids */
1171 if (setresgid(gid, gid, gid) < 0)
1172 return -errno;
1173 }
1174
1175 return 0;
1176}
1177
1178static int set_securebits(unsigned bits, unsigned mask) {
1179 unsigned applied;
1180 int current;
1181
1182 current = prctl(PR_GET_SECUREBITS);
1183 if (current < 0)
1184 return -errno;
1185
1186 /* Clear all securebits defined in mask and set bits */
1187 applied = ((unsigned) current & ~mask) | bits;
1188 if ((unsigned) current == applied)
1189 return 0;
1190
1191 if (prctl(PR_SET_SECUREBITS, applied) < 0)
1192 return -errno;
1193
1194 return 1;
1195}
1196
1197static int enforce_user(
1198 const ExecContext *context,
1199 uid_t uid,
1200 uint64_t capability_ambient_set) {
1201 assert(context);
1202 int r;
1203
1204 if (!uid_is_valid(uid))
1205 return 0;
1206
1207 /* Sets (but doesn't look up) the UIS and makes sure we keep the capabilities while doing so. For
1208 * setting secure bits the capability CAP_SETPCAP is required, so we also need keep-caps in this
1209 * case. */
1210
1211 if ((capability_ambient_set != 0 || context->secure_bits != 0) && uid != 0) {
1212
1213 /* First step: If we need to keep capabilities but drop privileges we need to make sure we
1214 * keep our caps, while we drop privileges. Add KEEP_CAPS to the securebits */
1215 r = set_securebits(1U << SECURE_KEEP_CAPS, 0);
1216 if (r < 0)
1217 return r;
1218 }
1219
1220 /* Second step: actually set the uids */
1221 if (setresuid(uid, uid, uid) < 0)
1222 return -errno;
1223
1224 /* At this point we should have all necessary capabilities but are otherwise a normal user. However,
1225 * the caps might got corrupted due to the setresuid() so we need clean them up later. This is done
1226 * outside of this call. */
1227 return 0;
1228}
1229
1230#if HAVE_PAM
1231
1232static int null_conv(
1233 int num_msg,
1234 const struct pam_message **msg,
1235 struct pam_response **resp,
1236 void *appdata_ptr) {
1237
1238 /* We don't support conversations */
1239
1240 return PAM_CONV_ERR;
1241}
1242
1243#endif
1244
1245static int setup_pam(
1246 const char *name,
1247 const char *user,
1248 uid_t uid,
1249 gid_t gid,
1250 const char *tty,
1251 char ***env, /* updated on success */
1252 const int fds[], size_t n_fds) {
1253
1254#if HAVE_PAM
1255
1256 static const struct pam_conv conv = {
1257 .conv = null_conv,
1258 .appdata_ptr = NULL
1259 };
1260
1261 _cleanup_(barrier_destroy) Barrier barrier = BARRIER_NULL;
1262 _cleanup_strv_free_ char **e = NULL;
1263 pam_handle_t *handle = NULL;
1264 sigset_t old_ss;
1265 int pam_code = PAM_SUCCESS, r;
1266 bool close_session = false;
1267 pid_t pam_pid = 0, parent_pid;
1268 int flags = 0;
1269
1270 assert(name);
1271 assert(user);
1272 assert(env);
1273
1274 /* We set up PAM in the parent process, then fork. The child
1275 * will then stay around until killed via PR_GET_PDEATHSIG or
1276 * systemd via the cgroup logic. It will then remove the PAM
1277 * session again. The parent process will exec() the actual
1278 * daemon. We do things this way to ensure that the main PID
1279 * of the daemon is the one we initially fork()ed. */
1280
1281 r = barrier_create(&barrier);
1282 if (r < 0)
1283 goto fail;
1284
1285 if (log_get_max_level() < LOG_DEBUG)
1286 flags |= PAM_SILENT;
1287
1288 pam_code = pam_start(name, user, &conv, &handle);
1289 if (pam_code != PAM_SUCCESS) {
1290 handle = NULL;
1291 goto fail;
1292 }
1293
1294 if (!tty) {
1295 _cleanup_free_ char *q = NULL;
1296
1297 /* Hmm, so no TTY was explicitly passed, but an fd passed to us directly might be a TTY. Let's figure
1298 * out if that's the case, and read the TTY off it. */
1299
1300 if (getttyname_malloc(STDIN_FILENO, &q) >= 0)
1301 tty = strjoina("/dev/", q);
1302 }
1303
1304 if (tty) {
1305 pam_code = pam_set_item(handle, PAM_TTY, tty);
1306 if (pam_code != PAM_SUCCESS)
1307 goto fail;
1308 }
1309
1310 STRV_FOREACH(nv, *env) {
1311 pam_code = pam_putenv(handle, *nv);
1312 if (pam_code != PAM_SUCCESS)
1313 goto fail;
1314 }
1315
1316 pam_code = pam_acct_mgmt(handle, flags);
1317 if (pam_code != PAM_SUCCESS)
1318 goto fail;
1319
1320 pam_code = pam_setcred(handle, PAM_ESTABLISH_CRED | flags);
1321 if (pam_code != PAM_SUCCESS)
1322 log_debug("pam_setcred() failed, ignoring: %s", pam_strerror(handle, pam_code));
1323
1324 pam_code = pam_open_session(handle, flags);
1325 if (pam_code != PAM_SUCCESS)
1326 goto fail;
1327
1328 close_session = true;
1329
1330 e = pam_getenvlist(handle);
1331 if (!e) {
1332 pam_code = PAM_BUF_ERR;
1333 goto fail;
1334 }
1335
1336 /* Block SIGTERM, so that we know that it won't get lost in the child */
1337
1338 assert_se(sigprocmask_many(SIG_BLOCK, &old_ss, SIGTERM, -1) >= 0);
1339
1340 parent_pid = getpid_cached();
1341
1342 r = safe_fork("(sd-pam)", 0, &pam_pid);
1343 if (r < 0)
1344 goto fail;
1345 if (r == 0) {
1346 int sig, ret = EXIT_PAM;
1347
1348 /* The child's job is to reset the PAM session on termination */
1349 barrier_set_role(&barrier, BARRIER_CHILD);
1350
1351 /* Make sure we don't keep open the passed fds in this child. We assume that otherwise only
1352 * those fds are open here that have been opened by PAM. */
1353 (void) close_many(fds, n_fds);
1354
1355 /* Drop privileges - we don't need any to pam_close_session and this will make
1356 * PR_SET_PDEATHSIG work in most cases. If this fails, ignore the error - but expect sd-pam
1357 * threads to fail to exit normally */
1358
1359 r = maybe_setgroups(0, NULL);
1360 if (r < 0)
1361 log_warning_errno(r, "Failed to setgroups() in sd-pam: %m");
1362 if (setresgid(gid, gid, gid) < 0)
1363 log_warning_errno(errno, "Failed to setresgid() in sd-pam: %m");
1364 if (setresuid(uid, uid, uid) < 0)
1365 log_warning_errno(errno, "Failed to setresuid() in sd-pam: %m");
1366
1367 (void) ignore_signals(SIGPIPE);
1368
1369 /* Wait until our parent died. This will only work if the above setresuid() succeeds,
1370 * otherwise the kernel will not allow unprivileged parents kill their privileged children
1371 * this way. We rely on the control groups kill logic to do the rest for us. */
1372 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
1373 goto child_finish;
1374
1375 /* Tell the parent that our setup is done. This is especially important regarding dropping
1376 * privileges. Otherwise, unit setup might race against our setresuid(2) call.
1377 *
1378 * If the parent aborted, we'll detect this below, hence ignore return failure here. */
1379 (void) barrier_place(&barrier);
1380
1381 /* Check if our parent process might already have died? */
1382 if (getppid() == parent_pid) {
1383 sigset_t ss;
1384
1385 assert_se(sigemptyset(&ss) >= 0);
1386 assert_se(sigaddset(&ss, SIGTERM) >= 0);
1387
1388 for (;;) {
1389 if (sigwait(&ss, &sig) < 0) {
1390 if (errno == EINTR)
1391 continue;
1392
1393 goto child_finish;
1394 }
1395
1396 assert(sig == SIGTERM);
1397 break;
1398 }
1399 }
1400
1401 pam_code = pam_setcred(handle, PAM_DELETE_CRED | flags);
1402 if (pam_code != PAM_SUCCESS)
1403 goto child_finish;
1404
1405 /* If our parent died we'll end the session */
1406 if (getppid() != parent_pid) {
1407 pam_code = pam_close_session(handle, flags);
1408 if (pam_code != PAM_SUCCESS)
1409 goto child_finish;
1410 }
1411
1412 ret = 0;
1413
1414 child_finish:
1415 /* NB: pam_end() when called in child processes should set PAM_DATA_SILENT to let the module
1416 * know about this. See pam_end(3) */
1417 (void) pam_end(handle, pam_code | flags | PAM_DATA_SILENT);
1418 _exit(ret);
1419 }
1420
1421 barrier_set_role(&barrier, BARRIER_PARENT);
1422
1423 /* If the child was forked off successfully it will do all the cleanups, so forget about the handle
1424 * here. */
1425 handle = NULL;
1426
1427 /* Unblock SIGTERM again in the parent */
1428 assert_se(sigprocmask(SIG_SETMASK, &old_ss, NULL) >= 0);
1429
1430 /* We close the log explicitly here, since the PAM modules might have opened it, but we don't want
1431 * this fd around. */
1432 closelog();
1433
1434 /* Synchronously wait for the child to initialize. We don't care for errors as we cannot
1435 * recover. However, warn loudly if it happens. */
1436 if (!barrier_place_and_sync(&barrier))
1437 log_error("PAM initialization failed");
1438
1439 return strv_free_and_replace(*env, e);
1440
1441fail:
1442 if (pam_code != PAM_SUCCESS) {
1443 log_error("PAM failed: %s", pam_strerror(handle, pam_code));
1444 r = -EPERM; /* PAM errors do not map to errno */
1445 } else
1446 log_error_errno(r, "PAM failed: %m");
1447
1448 if (handle) {
1449 if (close_session)
1450 pam_code = pam_close_session(handle, flags);
1451
1452 (void) pam_end(handle, pam_code | flags);
1453 }
1454
1455 closelog();
1456 return r;
1457#else
1458 return 0;
1459#endif
1460}
1461
1462static void rename_process_from_path(const char *path) {
1463 _cleanup_free_ char *buf = NULL;
1464 const char *p;
1465
1466 assert(path);
1467
1468 /* This resulting string must fit in 10 chars (i.e. the length of "/sbin/init") to look pretty in
1469 * /bin/ps */
1470
1471 if (path_extract_filename(path, &buf) < 0) {
1472 rename_process("(...)");
1473 return;
1474 }
1475
1476 size_t l = strlen(buf);
1477 if (l > 8) {
1478 /* The end of the process name is usually more interesting, since the first bit might just be
1479 * "systemd-" */
1480 p = buf + l - 8;
1481 l = 8;
1482 } else
1483 p = buf;
1484
1485 char process_name[11];
1486 process_name[0] = '(';
1487 memcpy(process_name+1, p, l);
1488 process_name[1+l] = ')';
1489 process_name[1+l+1] = 0;
1490
1491 rename_process(process_name);
1492}
1493
1494static bool context_has_address_families(const ExecContext *c) {
1495 assert(c);
1496
1497 return c->address_families_allow_list ||
1498 !set_isempty(c->address_families);
1499}
1500
1501static bool context_has_syscall_filters(const ExecContext *c) {
1502 assert(c);
1503
1504 return c->syscall_allow_list ||
1505 !hashmap_isempty(c->syscall_filter);
1506}
1507
1508static bool context_has_syscall_logs(const ExecContext *c) {
1509 assert(c);
1510
1511 return c->syscall_log_allow_list ||
1512 !hashmap_isempty(c->syscall_log);
1513}
1514
1515static bool context_has_no_new_privileges(const ExecContext *c) {
1516 assert(c);
1517
1518 if (c->no_new_privileges)
1519 return true;
1520
1521 if (have_effective_cap(CAP_SYS_ADMIN) > 0) /* if we are privileged, we don't need NNP */
1522 return false;
1523
1524 /* We need NNP if we have any form of seccomp and are unprivileged */
1525 return c->lock_personality ||
1526 c->memory_deny_write_execute ||
1527 c->private_devices ||
1528 c->protect_clock ||
1529 c->protect_hostname ||
1530 c->protect_kernel_tunables ||
1531 c->protect_kernel_modules ||
1532 c->protect_kernel_logs ||
1533 context_has_address_families(c) ||
1534 exec_context_restrict_namespaces_set(c) ||
1535 c->restrict_realtime ||
1536 c->restrict_suid_sgid ||
1537 !set_isempty(c->syscall_archs) ||
1538 context_has_syscall_filters(c) ||
1539 context_has_syscall_logs(c);
1540}
1541
1542static bool exec_context_has_credentials(const ExecContext *context) {
1543
1544 assert(context);
1545
1546 return !hashmap_isempty(context->set_credentials) ||
1547 !hashmap_isempty(context->load_credentials);
1548}
1549
1550#if HAVE_SECCOMP
1551
1552static bool skip_seccomp_unavailable(const Unit* u, const char* msg) {
1553
1554 if (is_seccomp_available())
1555 return false;
1556
1557 log_unit_debug(u, "SECCOMP features not detected in the kernel, skipping %s", msg);
1558 return true;
1559}
1560
1561static int apply_syscall_filter(const Unit* u, const ExecContext *c, bool needs_ambient_hack) {
1562 uint32_t negative_action, default_action, action;
1563 int r;
1564
1565 assert(u);
1566 assert(c);
1567
1568 if (!context_has_syscall_filters(c))
1569 return 0;
1570
1571 if (skip_seccomp_unavailable(u, "SystemCallFilter="))
1572 return 0;
1573
1574 negative_action = c->syscall_errno == SECCOMP_ERROR_NUMBER_KILL ? scmp_act_kill_process() : SCMP_ACT_ERRNO(c->syscall_errno);
1575
1576 if (c->syscall_allow_list) {
1577 default_action = negative_action;
1578 action = SCMP_ACT_ALLOW;
1579 } else {
1580 default_action = SCMP_ACT_ALLOW;
1581 action = negative_action;
1582 }
1583
1584 if (needs_ambient_hack) {
1585 r = seccomp_filter_set_add(c->syscall_filter, c->syscall_allow_list, syscall_filter_sets + SYSCALL_FILTER_SET_SETUID);
1586 if (r < 0)
1587 return r;
1588 }
1589
1590 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_filter, action, false);
1591}
1592
1593static int apply_syscall_log(const Unit* u, const ExecContext *c) {
1594#ifdef SCMP_ACT_LOG
1595 uint32_t default_action, action;
1596#endif
1597
1598 assert(u);
1599 assert(c);
1600
1601 if (!context_has_syscall_logs(c))
1602 return 0;
1603
1604#ifdef SCMP_ACT_LOG
1605 if (skip_seccomp_unavailable(u, "SystemCallLog="))
1606 return 0;
1607
1608 if (c->syscall_log_allow_list) {
1609 /* Log nothing but the ones listed */
1610 default_action = SCMP_ACT_ALLOW;
1611 action = SCMP_ACT_LOG;
1612 } else {
1613 /* Log everything but the ones listed */
1614 default_action = SCMP_ACT_LOG;
1615 action = SCMP_ACT_ALLOW;
1616 }
1617
1618 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_log, action, false);
1619#else
1620 /* old libseccomp */
1621 log_unit_debug(u, "SECCOMP feature SCMP_ACT_LOG not available, skipping SystemCallLog=");
1622 return 0;
1623#endif
1624}
1625
1626static int apply_syscall_archs(const Unit *u, const ExecContext *c) {
1627 assert(u);
1628 assert(c);
1629
1630 if (set_isempty(c->syscall_archs))
1631 return 0;
1632
1633 if (skip_seccomp_unavailable(u, "SystemCallArchitectures="))
1634 return 0;
1635
1636 return seccomp_restrict_archs(c->syscall_archs);
1637}
1638
1639static int apply_address_families(const Unit* u, const ExecContext *c) {
1640 assert(u);
1641 assert(c);
1642
1643 if (!context_has_address_families(c))
1644 return 0;
1645
1646 if (skip_seccomp_unavailable(u, "RestrictAddressFamilies="))
1647 return 0;
1648
1649 return seccomp_restrict_address_families(c->address_families, c->address_families_allow_list);
1650}
1651
1652static int apply_memory_deny_write_execute(const Unit* u, const ExecContext *c) {
1653 int r;
1654
1655 assert(u);
1656 assert(c);
1657
1658 if (!c->memory_deny_write_execute)
1659 return 0;
1660
1661 /* use prctl() if kernel supports it (6.3) */
1662 r = prctl(PR_SET_MDWE, PR_MDWE_REFUSE_EXEC_GAIN, 0, 0, 0);
1663 if (r == 0) {
1664 log_unit_debug(u, "Enabled MemoryDenyWriteExecute= with PR_SET_MDWE");
1665 return 0;
1666 }
1667 if (r < 0 && errno != EINVAL)
1668 return log_unit_debug_errno(u, errno, "Failed to enable MemoryDenyWriteExecute= with PR_SET_MDWE: %m");
1669 /* else use seccomp */
1670 log_unit_debug(u, "Kernel doesn't support PR_SET_MDWE: falling back to seccomp");
1671
1672 if (skip_seccomp_unavailable(u, "MemoryDenyWriteExecute="))
1673 return 0;
1674
1675 return seccomp_memory_deny_write_execute();
1676}
1677
1678static int apply_restrict_realtime(const Unit* u, const ExecContext *c) {
1679 assert(u);
1680 assert(c);
1681
1682 if (!c->restrict_realtime)
1683 return 0;
1684
1685 if (skip_seccomp_unavailable(u, "RestrictRealtime="))
1686 return 0;
1687
1688 return seccomp_restrict_realtime();
1689}
1690
1691static int apply_restrict_suid_sgid(const Unit* u, const ExecContext *c) {
1692 assert(u);
1693 assert(c);
1694
1695 if (!c->restrict_suid_sgid)
1696 return 0;
1697
1698 if (skip_seccomp_unavailable(u, "RestrictSUIDSGID="))
1699 return 0;
1700
1701 return seccomp_restrict_suid_sgid();
1702}
1703
1704static int apply_protect_sysctl(const Unit *u, const ExecContext *c) {
1705 assert(u);
1706 assert(c);
1707
1708 /* Turn off the legacy sysctl() system call. Many distributions turn this off while building the kernel, but
1709 * let's protect even those systems where this is left on in the kernel. */
1710
1711 if (!c->protect_kernel_tunables)
1712 return 0;
1713
1714 if (skip_seccomp_unavailable(u, "ProtectKernelTunables="))
1715 return 0;
1716
1717 return seccomp_protect_sysctl();
1718}
1719
1720static int apply_protect_kernel_modules(const Unit *u, const ExecContext *c) {
1721 assert(u);
1722 assert(c);
1723
1724 /* Turn off module syscalls on ProtectKernelModules=yes */
1725
1726 if (!c->protect_kernel_modules)
1727 return 0;
1728
1729 if (skip_seccomp_unavailable(u, "ProtectKernelModules="))
1730 return 0;
1731
1732 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_MODULE, SCMP_ACT_ERRNO(EPERM), false);
1733}
1734
1735static int apply_protect_kernel_logs(const Unit *u, const ExecContext *c) {
1736 assert(u);
1737 assert(c);
1738
1739 if (!c->protect_kernel_logs)
1740 return 0;
1741
1742 if (skip_seccomp_unavailable(u, "ProtectKernelLogs="))
1743 return 0;
1744
1745 return seccomp_protect_syslog();
1746}
1747
1748static int apply_protect_clock(const Unit *u, const ExecContext *c) {
1749 assert(u);
1750 assert(c);
1751
1752 if (!c->protect_clock)
1753 return 0;
1754
1755 if (skip_seccomp_unavailable(u, "ProtectClock="))
1756 return 0;
1757
1758 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_CLOCK, SCMP_ACT_ERRNO(EPERM), false);
1759}
1760
1761static int apply_private_devices(const Unit *u, const ExecContext *c) {
1762 assert(u);
1763 assert(c);
1764
1765 /* If PrivateDevices= is set, also turn off iopl and all @raw-io syscalls. */
1766
1767 if (!c->private_devices)
1768 return 0;
1769
1770 if (skip_seccomp_unavailable(u, "PrivateDevices="))
1771 return 0;
1772
1773 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_RAW_IO, SCMP_ACT_ERRNO(EPERM), false);
1774}
1775
1776static int apply_restrict_namespaces(const Unit *u, const ExecContext *c) {
1777 assert(u);
1778 assert(c);
1779
1780 if (!exec_context_restrict_namespaces_set(c))
1781 return 0;
1782
1783 if (skip_seccomp_unavailable(u, "RestrictNamespaces="))
1784 return 0;
1785
1786 return seccomp_restrict_namespaces(c->restrict_namespaces);
1787}
1788
1789static int apply_lock_personality(const Unit* u, const ExecContext *c) {
1790 unsigned long personality;
1791 int r;
1792
1793 assert(u);
1794 assert(c);
1795
1796 if (!c->lock_personality)
1797 return 0;
1798
1799 if (skip_seccomp_unavailable(u, "LockPersonality="))
1800 return 0;
1801
1802 personality = c->personality;
1803
1804 /* If personality is not specified, use either PER_LINUX or PER_LINUX32 depending on what is currently set. */
1805 if (personality == PERSONALITY_INVALID) {
1806
1807 r = opinionated_personality(&personality);
1808 if (r < 0)
1809 return r;
1810 }
1811
1812 return seccomp_lock_personality(personality);
1813}
1814
1815#endif
1816
1817#if HAVE_LIBBPF
1818static int apply_restrict_filesystems(Unit *u, const ExecContext *c) {
1819 assert(u);
1820 assert(c);
1821
1822 if (!exec_context_restrict_filesystems_set(c))
1823 return 0;
1824
1825 if (!u->manager->restrict_fs) {
1826 /* LSM BPF is unsupported or lsm_bpf_setup failed */
1827 log_unit_debug(u, "LSM BPF not supported, skipping RestrictFileSystems=");
1828 return 0;
1829 }
1830
1831 return lsm_bpf_unit_restrict_filesystems(u, c->restrict_filesystems, c->restrict_filesystems_allow_list);
1832}
1833#endif
1834
1835static int apply_protect_hostname(const Unit *u, const ExecContext *c, int *ret_exit_status) {
1836 assert(u);
1837 assert(c);
1838
1839 if (!c->protect_hostname)
1840 return 0;
1841
1842 if (ns_type_supported(NAMESPACE_UTS)) {
1843 if (unshare(CLONE_NEWUTS) < 0) {
1844 if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno)) {
1845 *ret_exit_status = EXIT_NAMESPACE;
1846 return log_unit_error_errno(u, errno, "Failed to set up UTS namespacing: %m");
1847 }
1848
1849 log_unit_warning(u, "ProtectHostname=yes is configured, but UTS namespace setup is prohibited (container manager?), ignoring namespace setup.");
1850 }
1851 } else
1852 log_unit_warning(u, "ProtectHostname=yes is configured, but the kernel does not support UTS namespaces, ignoring namespace setup.");
1853
1854#if HAVE_SECCOMP
1855 int r;
1856
1857 if (skip_seccomp_unavailable(u, "ProtectHostname="))
1858 return 0;
1859
1860 r = seccomp_protect_hostname();
1861 if (r < 0) {
1862 *ret_exit_status = EXIT_SECCOMP;
1863 return log_unit_error_errno(u, r, "Failed to apply hostname restrictions: %m");
1864 }
1865#endif
1866
1867 return 0;
1868}
1869
1870static void do_idle_pipe_dance(int idle_pipe[static 4]) {
1871 assert(idle_pipe);
1872
1873 idle_pipe[1] = safe_close(idle_pipe[1]);
1874 idle_pipe[2] = safe_close(idle_pipe[2]);
1875
1876 if (idle_pipe[0] >= 0) {
1877 int r;
1878
1879 r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC);
1880
1881 if (idle_pipe[3] >= 0 && r == 0 /* timeout */) {
1882 ssize_t n;
1883
1884 /* Signal systemd that we are bored and want to continue. */
1885 n = write(idle_pipe[3], "x", 1);
1886 if (n > 0)
1887 /* Wait for systemd to react to the signal above. */
1888 (void) fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC);
1889 }
1890
1891 idle_pipe[0] = safe_close(idle_pipe[0]);
1892
1893 }
1894
1895 idle_pipe[3] = safe_close(idle_pipe[3]);
1896}
1897
1898static const char *exec_directory_env_name_to_string(ExecDirectoryType t);
1899
1900static int build_environment(
1901 const Unit *u,
1902 const ExecContext *c,
1903 const ExecParameters *p,
1904 const CGroupContext *cgroup_context,
1905 size_t n_fds,
1906 char **fdnames,
1907 const char *home,
1908 const char *username,
1909 const char *shell,
1910 dev_t journal_stream_dev,
1911 ino_t journal_stream_ino,
1912 const char *memory_pressure_path,
1913 char ***ret) {
1914
1915 _cleanup_strv_free_ char **our_env = NULL;
1916 size_t n_env = 0;
1917 char *x;
1918 int r;
1919
1920 assert(u);
1921 assert(c);
1922 assert(p);
1923 assert(ret);
1924
1925#define N_ENV_VARS 19
1926 our_env = new0(char*, N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
1927 if (!our_env)
1928 return -ENOMEM;
1929
1930 if (n_fds > 0) {
1931 _cleanup_free_ char *joined = NULL;
1932
1933 if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid_cached()) < 0)
1934 return -ENOMEM;
1935 our_env[n_env++] = x;
1936
1937 if (asprintf(&x, "LISTEN_FDS=%zu", n_fds) < 0)
1938 return -ENOMEM;
1939 our_env[n_env++] = x;
1940
1941 joined = strv_join(fdnames, ":");
1942 if (!joined)
1943 return -ENOMEM;
1944
1945 x = strjoin("LISTEN_FDNAMES=", joined);
1946 if (!x)
1947 return -ENOMEM;
1948 our_env[n_env++] = x;
1949 }
1950
1951 if ((p->flags & EXEC_SET_WATCHDOG) && p->watchdog_usec > 0) {
1952 if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid_cached()) < 0)
1953 return -ENOMEM;
1954 our_env[n_env++] = x;
1955
1956 if (asprintf(&x, "WATCHDOG_USEC="USEC_FMT, p->watchdog_usec) < 0)
1957 return -ENOMEM;
1958 our_env[n_env++] = x;
1959 }
1960
1961 /* If this is D-Bus, tell the nss-systemd module, since it relies on being able to use blocking
1962 * Varlink calls back to us for look up dynamic users in PID 1. Break the deadlock between D-Bus and
1963 * PID 1 by disabling use of PID1' NSS interface for looking up dynamic users. */
1964 if (p->flags & EXEC_NSS_DYNAMIC_BYPASS) {
1965 x = strdup("SYSTEMD_NSS_DYNAMIC_BYPASS=1");
1966 if (!x)
1967 return -ENOMEM;
1968 our_env[n_env++] = x;
1969 }
1970
1971 if (home) {
1972 x = strjoin("HOME=", home);
1973 if (!x)
1974 return -ENOMEM;
1975
1976 path_simplify(x + 5);
1977 our_env[n_env++] = x;
1978 }
1979
1980 if (username) {
1981 x = strjoin("LOGNAME=", username);
1982 if (!x)
1983 return -ENOMEM;
1984 our_env[n_env++] = x;
1985
1986 x = strjoin("USER=", username);
1987 if (!x)
1988 return -ENOMEM;
1989 our_env[n_env++] = x;
1990 }
1991
1992 if (shell) {
1993 x = strjoin("SHELL=", shell);
1994 if (!x)
1995 return -ENOMEM;
1996
1997 path_simplify(x + 6);
1998 our_env[n_env++] = x;
1999 }
2000
2001 if (!sd_id128_is_null(u->invocation_id)) {
2002 if (asprintf(&x, "INVOCATION_ID=" SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id)) < 0)
2003 return -ENOMEM;
2004
2005 our_env[n_env++] = x;
2006 }
2007
2008 if (exec_context_needs_term(c)) {
2009 _cleanup_free_ char *cmdline = NULL;
2010 const char *tty_path, *term = NULL;
2011
2012 tty_path = exec_context_tty_path(c);
2013
2014 /* If we are forked off PID 1 and we are supposed to operate on /dev/console, then let's try
2015 * to inherit the $TERM set for PID 1. This is useful for containers so that the $TERM the
2016 * container manager passes to PID 1 ends up all the way in the console login shown. */
2017
2018 if (path_equal_ptr(tty_path, "/dev/console") && getppid() == 1)
2019 term = getenv("TERM");
2020 else if (tty_path && in_charset(skip_dev_prefix(tty_path), ALPHANUMERICAL)) {
2021 _cleanup_free_ char *key = NULL;
2022
2023 key = strjoin("systemd.tty.term.", skip_dev_prefix(tty_path));
2024 if (!key)
2025 return -ENOMEM;
2026
2027 r = proc_cmdline_get_key(key, 0, &cmdline);
2028 if (r < 0)
2029 log_debug_errno(r, "Failed to read %s from kernel cmdline, ignoring: %m", key);
2030 else if (r > 0)
2031 term = cmdline;
2032 }
2033
2034 if (!term)
2035 term = default_term_for_tty(tty_path);
2036
2037 x = strjoin("TERM=", term);
2038 if (!x)
2039 return -ENOMEM;
2040 our_env[n_env++] = x;
2041 }
2042
2043 if (journal_stream_dev != 0 && journal_stream_ino != 0) {
2044 if (asprintf(&x, "JOURNAL_STREAM=" DEV_FMT ":" INO_FMT, journal_stream_dev, journal_stream_ino) < 0)
2045 return -ENOMEM;
2046
2047 our_env[n_env++] = x;
2048 }
2049
2050 if (c->log_namespace) {
2051 x = strjoin("LOG_NAMESPACE=", c->log_namespace);
2052 if (!x)
2053 return -ENOMEM;
2054
2055 our_env[n_env++] = x;
2056 }
2057
2058 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2059 _cleanup_free_ char *joined = NULL;
2060 const char *n;
2061
2062 if (!p->prefix[t])
2063 continue;
2064
2065 if (c->directories[t].n_items == 0)
2066 continue;
2067
2068 n = exec_directory_env_name_to_string(t);
2069 if (!n)
2070 continue;
2071
2072 for (size_t i = 0; i < c->directories[t].n_items; i++) {
2073 _cleanup_free_ char *prefixed = NULL;
2074
2075 prefixed = path_join(p->prefix[t], c->directories[t].items[i].path);
2076 if (!prefixed)
2077 return -ENOMEM;
2078
2079 if (!strextend_with_separator(&joined, ":", prefixed))
2080 return -ENOMEM;
2081 }
2082
2083 x = strjoin(n, "=", joined);
2084 if (!x)
2085 return -ENOMEM;
2086
2087 our_env[n_env++] = x;
2088 }
2089
2090 if (exec_context_has_credentials(c) && p->prefix[EXEC_DIRECTORY_RUNTIME]) {
2091 x = strjoin("CREDENTIALS_DIRECTORY=", p->prefix[EXEC_DIRECTORY_RUNTIME], "/credentials/", u->id);
2092 if (!x)
2093 return -ENOMEM;
2094
2095 our_env[n_env++] = x;
2096 }
2097
2098 if (asprintf(&x, "SYSTEMD_EXEC_PID=" PID_FMT, getpid_cached()) < 0)
2099 return -ENOMEM;
2100
2101 our_env[n_env++] = x;
2102
2103 if (memory_pressure_path) {
2104 x = strjoin("MEMORY_PRESSURE_WATCH=", memory_pressure_path);
2105 if (!x)
2106 return -ENOMEM;
2107
2108 our_env[n_env++] = x;
2109
2110 if (cgroup_context && !path_equal(memory_pressure_path, "/dev/null")) {
2111 _cleanup_free_ char *b = NULL, *e = NULL;
2112
2113 if (asprintf(&b, "%s " USEC_FMT " " USEC_FMT,
2114 MEMORY_PRESSURE_DEFAULT_TYPE,
2115 cgroup_context->memory_pressure_threshold_usec == USEC_INFINITY ? MEMORY_PRESSURE_DEFAULT_THRESHOLD_USEC :
2116 CLAMP(cgroup_context->memory_pressure_threshold_usec, 1U, MEMORY_PRESSURE_DEFAULT_WINDOW_USEC),
2117 MEMORY_PRESSURE_DEFAULT_WINDOW_USEC) < 0)
2118 return -ENOMEM;
2119
2120 if (base64mem(b, strlen(b) + 1, &e) < 0)
2121 return -ENOMEM;
2122
2123 x = strjoin("MEMORY_PRESSURE_WRITE=", e);
2124 if (!x)
2125 return -ENOMEM;
2126
2127 our_env[n_env++] = x;
2128 }
2129 }
2130
2131 assert(n_env < N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
2132#undef N_ENV_VARS
2133
2134 *ret = TAKE_PTR(our_env);
2135
2136 return 0;
2137}
2138
2139static int build_pass_environment(const ExecContext *c, char ***ret) {
2140 _cleanup_strv_free_ char **pass_env = NULL;
2141 size_t n_env = 0;
2142
2143 STRV_FOREACH(i, c->pass_environment) {
2144 _cleanup_free_ char *x = NULL;
2145 char *v;
2146
2147 v = getenv(*i);
2148 if (!v)
2149 continue;
2150 x = strjoin(*i, "=", v);
2151 if (!x)
2152 return -ENOMEM;
2153
2154 if (!GREEDY_REALLOC(pass_env, n_env + 2))
2155 return -ENOMEM;
2156
2157 pass_env[n_env++] = TAKE_PTR(x);
2158 pass_env[n_env] = NULL;
2159 }
2160
2161 *ret = TAKE_PTR(pass_env);
2162
2163 return 0;
2164}
2165
2166bool exec_needs_network_namespace(const ExecContext *context) {
2167 assert(context);
2168
2169 return context->private_network || context->network_namespace_path;
2170}
2171
2172static bool exec_needs_ipc_namespace(const ExecContext *context) {
2173 assert(context);
2174
2175 return context->private_ipc || context->ipc_namespace_path;
2176}
2177
2178bool exec_needs_mount_namespace(
2179 const ExecContext *context,
2180 const ExecParameters *params,
2181 const ExecRuntime *runtime) {
2182
2183 assert(context);
2184
2185 if (context->root_image)
2186 return true;
2187
2188 if (!strv_isempty(context->read_write_paths) ||
2189 !strv_isempty(context->read_only_paths) ||
2190 !strv_isempty(context->inaccessible_paths) ||
2191 !strv_isempty(context->exec_paths) ||
2192 !strv_isempty(context->no_exec_paths))
2193 return true;
2194
2195 if (context->n_bind_mounts > 0)
2196 return true;
2197
2198 if (context->n_temporary_filesystems > 0)
2199 return true;
2200
2201 if (context->n_mount_images > 0)
2202 return true;
2203
2204 if (context->n_extension_images > 0)
2205 return true;
2206
2207 if (!strv_isempty(context->extension_directories))
2208 return true;
2209
2210 if (!IN_SET(context->mount_propagation_flag, 0, MS_SHARED))
2211 return true;
2212
2213 if (context->private_tmp && runtime && runtime->shared && (runtime->shared->tmp_dir || runtime->shared->var_tmp_dir))
2214 return true;
2215
2216 if (context->private_devices ||
2217 context->private_mounts > 0 ||
2218 (context->private_mounts < 0 && exec_needs_network_namespace(context)) ||
2219 context->protect_system != PROTECT_SYSTEM_NO ||
2220 context->protect_home != PROTECT_HOME_NO ||
2221 context->protect_kernel_tunables ||
2222 context->protect_kernel_modules ||
2223 context->protect_kernel_logs ||
2224 context->protect_control_groups ||
2225 context->protect_proc != PROTECT_PROC_DEFAULT ||
2226 context->proc_subset != PROC_SUBSET_ALL ||
2227 exec_needs_ipc_namespace(context))
2228 return true;
2229
2230 if (context->root_directory) {
2231 if (exec_context_get_effective_mount_apivfs(context))
2232 return true;
2233
2234 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2235 if (params && !params->prefix[t])
2236 continue;
2237
2238 if (context->directories[t].n_items > 0)
2239 return true;
2240 }
2241 }
2242
2243 if (context->dynamic_user &&
2244 (context->directories[EXEC_DIRECTORY_STATE].n_items > 0 ||
2245 context->directories[EXEC_DIRECTORY_CACHE].n_items > 0 ||
2246 context->directories[EXEC_DIRECTORY_LOGS].n_items > 0))
2247 return true;
2248
2249 if (context->log_namespace)
2250 return true;
2251
2252 return false;
2253}
2254
2255static int setup_private_users(uid_t ouid, gid_t ogid, uid_t uid, gid_t gid) {
2256 _cleanup_free_ char *uid_map = NULL, *gid_map = NULL;
2257 _cleanup_close_pair_ int errno_pipe[2] = PIPE_EBADF;
2258 _cleanup_close_ int unshare_ready_fd = -EBADF;
2259 _cleanup_(sigkill_waitp) pid_t pid = 0;
2260 uint64_t c = 1;
2261 ssize_t n;
2262 int r;
2263
2264 /* Set up a user namespace and map the original UID/GID (IDs from before any user or group changes, i.e.
2265 * the IDs from the user or system manager(s)) to itself, the selected UID/GID to itself, and everything else to
2266 * nobody. In order to be able to write this mapping we need CAP_SETUID in the original user namespace, which
2267 * we however lack after opening the user namespace. To work around this we fork() a temporary child process,
2268 * which waits for the parent to create the new user namespace while staying in the original namespace. The
2269 * child then writes the UID mapping, under full privileges. The parent waits for the child to finish and
2270 * continues execution normally.
2271 * For unprivileged users (i.e. without capabilities), the root to root mapping is excluded. As such, it
2272 * does not need CAP_SETUID to write the single line mapping to itself. */
2273
2274 /* Can only set up multiple mappings with CAP_SETUID. */
2275 if (have_effective_cap(CAP_SETUID) > 0 && uid != ouid && uid_is_valid(uid))
2276 r = asprintf(&uid_map,
2277 UID_FMT " " UID_FMT " 1\n" /* Map $OUID → $OUID */
2278 UID_FMT " " UID_FMT " 1\n", /* Map $UID → $UID */
2279 ouid, ouid, uid, uid);
2280 else
2281 r = asprintf(&uid_map,
2282 UID_FMT " " UID_FMT " 1\n", /* Map $OUID → $OUID */
2283 ouid, ouid);
2284
2285 if (r < 0)
2286 return -ENOMEM;
2287
2288 /* Can only set up multiple mappings with CAP_SETGID. */
2289 if (have_effective_cap(CAP_SETGID) > 0 && gid != ogid && gid_is_valid(gid))
2290 r = asprintf(&gid_map,
2291 GID_FMT " " GID_FMT " 1\n" /* Map $OGID → $OGID */
2292 GID_FMT " " GID_FMT " 1\n", /* Map $GID → $GID */
2293 ogid, ogid, gid, gid);
2294 else
2295 r = asprintf(&gid_map,
2296 GID_FMT " " GID_FMT " 1\n", /* Map $OGID -> $OGID */
2297 ogid, ogid);
2298
2299 if (r < 0)
2300 return -ENOMEM;
2301
2302 /* Create a communication channel so that the parent can tell the child when it finished creating the user
2303 * namespace. */
2304 unshare_ready_fd = eventfd(0, EFD_CLOEXEC);
2305 if (unshare_ready_fd < 0)
2306 return -errno;
2307
2308 /* Create a communication channel so that the child can tell the parent a proper error code in case it
2309 * failed. */
2310 if (pipe2(errno_pipe, O_CLOEXEC) < 0)
2311 return -errno;
2312
2313 r = safe_fork("(sd-userns)", FORK_RESET_SIGNALS|FORK_DEATHSIG, &pid);
2314 if (r < 0)
2315 return r;
2316 if (r == 0) {
2317 _cleanup_close_ int fd = -EBADF;
2318 const char *a;
2319 pid_t ppid;
2320
2321 /* Child process, running in the original user namespace. Let's update the parent's UID/GID map from
2322 * here, after the parent opened its own user namespace. */
2323
2324 ppid = getppid();
2325 errno_pipe[0] = safe_close(errno_pipe[0]);
2326
2327 /* Wait until the parent unshared the user namespace */
2328 if (read(unshare_ready_fd, &c, sizeof(c)) < 0) {
2329 r = -errno;
2330 goto child_fail;
2331 }
2332
2333 /* Disable the setgroups() system call in the child user namespace, for good. */
2334 a = procfs_file_alloca(ppid, "setgroups");
2335 fd = open(a, O_WRONLY|O_CLOEXEC);
2336 if (fd < 0) {
2337 if (errno != ENOENT) {
2338 r = -errno;
2339 goto child_fail;
2340 }
2341
2342 /* If the file is missing the kernel is too old, let's continue anyway. */
2343 } else {
2344 if (write(fd, "deny\n", 5) < 0) {
2345 r = -errno;
2346 goto child_fail;
2347 }
2348
2349 fd = safe_close(fd);
2350 }
2351
2352 /* First write the GID map */
2353 a = procfs_file_alloca(ppid, "gid_map");
2354 fd = open(a, O_WRONLY|O_CLOEXEC);
2355 if (fd < 0) {
2356 r = -errno;
2357 goto child_fail;
2358 }
2359 if (write(fd, gid_map, strlen(gid_map)) < 0) {
2360 r = -errno;
2361 goto child_fail;
2362 }
2363 fd = safe_close(fd);
2364
2365 /* The write the UID map */
2366 a = procfs_file_alloca(ppid, "uid_map");
2367 fd = open(a, O_WRONLY|O_CLOEXEC);
2368 if (fd < 0) {
2369 r = -errno;
2370 goto child_fail;
2371 }
2372 if (write(fd, uid_map, strlen(uid_map)) < 0) {
2373 r = -errno;
2374 goto child_fail;
2375 }
2376
2377 _exit(EXIT_SUCCESS);
2378
2379 child_fail:
2380 (void) write(errno_pipe[1], &r, sizeof(r));
2381 _exit(EXIT_FAILURE);
2382 }
2383
2384 errno_pipe[1] = safe_close(errno_pipe[1]);
2385
2386 if (unshare(CLONE_NEWUSER) < 0)
2387 return -errno;
2388
2389 /* Let the child know that the namespace is ready now */
2390 if (write(unshare_ready_fd, &c, sizeof(c)) < 0)
2391 return -errno;
2392
2393 /* Try to read an error code from the child */
2394 n = read(errno_pipe[0], &r, sizeof(r));
2395 if (n < 0)
2396 return -errno;
2397 if (n == sizeof(r)) { /* an error code was sent to us */
2398 if (r < 0)
2399 return r;
2400 return -EIO;
2401 }
2402 if (n != 0) /* on success we should have read 0 bytes */
2403 return -EIO;
2404
2405 r = wait_for_terminate_and_check("(sd-userns)", TAKE_PID(pid), 0);
2406 if (r < 0)
2407 return r;
2408 if (r != EXIT_SUCCESS) /* If something strange happened with the child, let's consider this fatal, too */
2409 return -EIO;
2410
2411 return 0;
2412}
2413
2414static bool exec_directory_is_private(const ExecContext *context, ExecDirectoryType type) {
2415 assert(context);
2416
2417 if (!context->dynamic_user)
2418 return false;
2419
2420 if (type == EXEC_DIRECTORY_CONFIGURATION)
2421 return false;
2422
2423 if (type == EXEC_DIRECTORY_RUNTIME && context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO)
2424 return false;
2425
2426 return true;
2427}
2428
2429static int create_many_symlinks(const char *root, const char *source, char **symlinks) {
2430 _cleanup_free_ char *src_abs = NULL;
2431 int r;
2432
2433 assert(source);
2434
2435 src_abs = path_join(root, source);
2436 if (!src_abs)
2437 return -ENOMEM;
2438
2439 STRV_FOREACH(dst, symlinks) {
2440 _cleanup_free_ char *dst_abs = NULL;
2441
2442 dst_abs = path_join(root, *dst);
2443 if (!dst_abs)
2444 return -ENOMEM;
2445
2446 r = mkdir_parents_label(dst_abs, 0755);
2447 if (r < 0)
2448 return r;
2449
2450 r = symlink_idempotent(src_abs, dst_abs, true);
2451 if (r < 0)
2452 return r;
2453 }
2454
2455 return 0;
2456}
2457
2458static int setup_exec_directory(
2459 const ExecContext *context,
2460 const ExecParameters *params,
2461 uid_t uid,
2462 gid_t gid,
2463 ExecDirectoryType type,
2464 bool needs_mount_namespace,
2465 int *exit_status) {
2466
2467 static const int exit_status_table[_EXEC_DIRECTORY_TYPE_MAX] = {
2468 [EXEC_DIRECTORY_RUNTIME] = EXIT_RUNTIME_DIRECTORY,
2469 [EXEC_DIRECTORY_STATE] = EXIT_STATE_DIRECTORY,
2470 [EXEC_DIRECTORY_CACHE] = EXIT_CACHE_DIRECTORY,
2471 [EXEC_DIRECTORY_LOGS] = EXIT_LOGS_DIRECTORY,
2472 [EXEC_DIRECTORY_CONFIGURATION] = EXIT_CONFIGURATION_DIRECTORY,
2473 };
2474 int r;
2475
2476 assert(context);
2477 assert(params);
2478 assert(type >= 0 && type < _EXEC_DIRECTORY_TYPE_MAX);
2479 assert(exit_status);
2480
2481 if (!params->prefix[type])
2482 return 0;
2483
2484 if (params->flags & EXEC_CHOWN_DIRECTORIES) {
2485 if (!uid_is_valid(uid))
2486 uid = 0;
2487 if (!gid_is_valid(gid))
2488 gid = 0;
2489 }
2490
2491 for (size_t i = 0; i < context->directories[type].n_items; i++) {
2492 _cleanup_free_ char *p = NULL, *pp = NULL;
2493
2494 p = path_join(params->prefix[type], context->directories[type].items[i].path);
2495 if (!p) {
2496 r = -ENOMEM;
2497 goto fail;
2498 }
2499
2500 r = mkdir_parents_label(p, 0755);
2501 if (r < 0)
2502 goto fail;
2503
2504 if (exec_directory_is_private(context, type)) {
2505 /* So, here's one extra complication when dealing with DynamicUser=1 units. In that
2506 * case we want to avoid leaving a directory around fully accessible that is owned by
2507 * a dynamic user whose UID is later on reused. To lock this down we use the same
2508 * trick used by container managers to prohibit host users to get access to files of
2509 * the same UID in containers: we place everything inside a directory that has an
2510 * access mode of 0700 and is owned root:root, so that it acts as security boundary
2511 * for unprivileged host code. We then use fs namespacing to make this directory
2512 * permeable for the service itself.
2513 *
2514 * Specifically: for a service which wants a special directory "foo/" we first create
2515 * a directory "private/" with access mode 0700 owned by root:root. Then we place
2516 * "foo" inside of that directory (i.e. "private/foo/"), and make "foo" a symlink to
2517 * "private/foo". This way, privileged host users can access "foo/" as usual, but
2518 * unprivileged host users can't look into it. Inside of the namespace of the unit
2519 * "private/" is replaced by a more liberally accessible tmpfs, into which the host's
2520 * "private/foo/" is mounted under the same name, thus disabling the access boundary
2521 * for the service and making sure it only gets access to the dirs it needs but no
2522 * others. Tricky? Yes, absolutely, but it works!
2523 *
2524 * Note that we don't do this for EXEC_DIRECTORY_CONFIGURATION as that's assumed not
2525 * to be owned by the service itself.
2526 *
2527 * Also, note that we don't do this for EXEC_DIRECTORY_RUNTIME as that's often used
2528 * for sharing files or sockets with other services. */
2529
2530 pp = path_join(params->prefix[type], "private");
2531 if (!pp) {
2532 r = -ENOMEM;
2533 goto fail;
2534 }
2535
2536 /* First set up private root if it doesn't exist yet, with access mode 0700 and owned by root:root */
2537 r = mkdir_safe_label(pp, 0700, 0, 0, MKDIR_WARN_MODE);
2538 if (r < 0)
2539 goto fail;
2540
2541 if (!path_extend(&pp, context->directories[type].items[i].path)) {
2542 r = -ENOMEM;
2543 goto fail;
2544 }
2545
2546 /* Create all directories between the configured directory and this private root, and mark them 0755 */
2547 r = mkdir_parents_label(pp, 0755);
2548 if (r < 0)
2549 goto fail;
2550
2551 if (is_dir(p, false) > 0 &&
2552 (laccess(pp, F_OK) < 0 && errno == ENOENT)) {
2553
2554 /* Hmm, the private directory doesn't exist yet, but the normal one exists? If so, move
2555 * it over. Most likely the service has been upgraded from one that didn't use
2556 * DynamicUser=1, to one that does. */
2557
2558 log_info("Found pre-existing public %s= directory %s, migrating to %s.\n"
2559 "Apparently, service previously had DynamicUser= turned off, and has now turned it on.",
2560 exec_directory_type_to_string(type), p, pp);
2561
2562 if (rename(p, pp) < 0) {
2563 r = -errno;
2564 goto fail;
2565 }
2566 } else {
2567 /* Otherwise, create the actual directory for the service */
2568
2569 r = mkdir_label(pp, context->directories[type].mode);
2570 if (r < 0 && r != -EEXIST)
2571 goto fail;
2572 }
2573
2574 if (!context->directories[type].items[i].only_create) {
2575 /* And link it up from the original place.
2576 * Notes
2577 * 1) If a mount namespace is going to be used, then this symlink remains on
2578 * the host, and a new one for the child namespace will be created later.
2579 * 2) It is not necessary to create this symlink when one of its parent
2580 * directories is specified and already created. E.g.
2581 * StateDirectory=foo foo/bar
2582 * In that case, the inode points to pp and p for "foo/bar" are the same:
2583 * pp = "/var/lib/private/foo/bar"
2584 * p = "/var/lib/foo/bar"
2585 * and, /var/lib/foo is a symlink to /var/lib/private/foo. So, not only
2586 * we do not need to create the symlink, but we cannot create the symlink.
2587 * See issue #24783. */
2588 r = symlink_idempotent(pp, p, true);
2589 if (r < 0)
2590 goto fail;
2591 }
2592
2593 } else {
2594 _cleanup_free_ char *target = NULL;
2595
2596 if (type != EXEC_DIRECTORY_CONFIGURATION &&
2597 readlink_and_make_absolute(p, &target) >= 0) {
2598 _cleanup_free_ char *q = NULL, *q_resolved = NULL, *target_resolved = NULL;
2599
2600 /* This already exists and is a symlink? Interesting. Maybe it's one created
2601 * by DynamicUser=1 (see above)?
2602 *
2603 * We do this for all directory types except for ConfigurationDirectory=,
2604 * since they all support the private/ symlink logic at least in some
2605 * configurations, see above. */
2606
2607 r = chase(target, NULL, 0, &target_resolved, NULL);
2608 if (r < 0)
2609 goto fail;
2610
2611 q = path_join(params->prefix[type], "private", context->directories[type].items[i].path);
2612 if (!q) {
2613 r = -ENOMEM;
2614 goto fail;
2615 }
2616
2617 /* /var/lib or friends may be symlinks. So, let's chase them also. */
2618 r = chase(q, NULL, CHASE_NONEXISTENT, &q_resolved, NULL);
2619 if (r < 0)
2620 goto fail;
2621
2622 if (path_equal(q_resolved, target_resolved)) {
2623
2624 /* Hmm, apparently DynamicUser= was once turned on for this service,
2625 * but is no longer. Let's move the directory back up. */
2626
2627 log_info("Found pre-existing private %s= directory %s, migrating to %s.\n"
2628 "Apparently, service previously had DynamicUser= turned on, and has now turned it off.",
2629 exec_directory_type_to_string(type), q, p);
2630
2631 if (unlink(p) < 0) {
2632 r = -errno;
2633 goto fail;
2634 }
2635
2636 if (rename(q, p) < 0) {
2637 r = -errno;
2638 goto fail;
2639 }
2640 }
2641 }
2642
2643 r = mkdir_label(p, context->directories[type].mode);
2644 if (r < 0) {
2645 if (r != -EEXIST)
2646 goto fail;
2647
2648 if (type == EXEC_DIRECTORY_CONFIGURATION) {
2649 struct stat st;
2650
2651 /* Don't change the owner/access mode of the configuration directory,
2652 * as in the common case it is not written to by a service, and shall
2653 * not be writable. */
2654
2655 if (stat(p, &st) < 0) {
2656 r = -errno;
2657 goto fail;
2658 }
2659
2660 /* Still complain if the access mode doesn't match */
2661 if (((st.st_mode ^ context->directories[type].mode) & 07777) != 0)
2662 log_warning("%s \'%s\' already exists but the mode is different. "
2663 "(File system: %o %sMode: %o)",
2664 exec_directory_type_to_string(type), context->directories[type].items[i].path,
2665 st.st_mode & 07777, exec_directory_type_to_string(type), context->directories[type].mode & 07777);
2666
2667 continue;
2668 }
2669 }
2670 }
2671
2672 /* Lock down the access mode (we use chmod_and_chown() to make this idempotent. We don't
2673 * specify UID/GID here, so that path_chown_recursive() can optimize things depending on the
2674 * current UID/GID ownership.) */
2675 r = chmod_and_chown(pp ?: p, context->directories[type].mode, UID_INVALID, GID_INVALID);
2676 if (r < 0)
2677 goto fail;
2678
2679 /* Then, change the ownership of the whole tree, if necessary. When dynamic users are used we
2680 * drop the suid/sgid bits, since we really don't want SUID/SGID files for dynamic UID/GID
2681 * assignments to exist. */
2682 r = path_chown_recursive(pp ?: p, uid, gid, context->dynamic_user ? 01777 : 07777);
2683 if (r < 0)
2684 goto fail;
2685 }
2686
2687 /* If we are not going to run in a namespace, set up the symlinks - otherwise
2688 * they are set up later, to allow configuring empty var/run/etc. */
2689 if (!needs_mount_namespace)
2690 for (size_t i = 0; i < context->directories[type].n_items; i++) {
2691 r = create_many_symlinks(params->prefix[type],
2692 context->directories[type].items[i].path,
2693 context->directories[type].items[i].symlinks);
2694 if (r < 0)
2695 goto fail;
2696 }
2697
2698 return 0;
2699
2700fail:
2701 *exit_status = exit_status_table[type];
2702 return r;
2703}
2704
2705static int write_credential(
2706 int dfd,
2707 const char *id,
2708 const void *data,
2709 size_t size,
2710 uid_t uid,
2711 bool ownership_ok) {
2712
2713 _cleanup_(unlink_and_freep) char *tmp = NULL;
2714 _cleanup_close_ int fd = -EBADF;
2715 int r;
2716
2717 r = tempfn_random_child("", "cred", &tmp);
2718 if (r < 0)
2719 return r;
2720
2721 fd = openat(dfd, tmp, O_CREAT|O_RDWR|O_CLOEXEC|O_EXCL|O_NOFOLLOW|O_NOCTTY, 0600);
2722 if (fd < 0) {
2723 tmp = mfree(tmp);
2724 return -errno;
2725 }
2726
2727 r = loop_write(fd, data, size, /* do_poll = */ false);
2728 if (r < 0)
2729 return r;
2730
2731 if (fchmod(fd, 0400) < 0) /* Take away "w" bit */
2732 return -errno;
2733
2734 if (uid_is_valid(uid) && uid != getuid()) {
2735 r = fd_add_uid_acl_permission(fd, uid, ACL_READ);
2736 if (r < 0) {
2737 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2738 return r;
2739
2740 if (!ownership_ok) /* Ideally we use ACLs, since we can neatly express what we want
2741 * to express: that the user gets read access and nothing
2742 * else. But if the backing fs can't support that (e.g. ramfs)
2743 * then we can use file ownership instead. But that's only safe if
2744 * we can then re-mount the whole thing read-only, so that the
2745 * user can no longer chmod() the file to gain write access. */
2746 return r;
2747
2748 if (fchown(fd, uid, GID_INVALID) < 0)
2749 return -errno;
2750 }
2751 }
2752
2753 if (renameat(dfd, tmp, dfd, id) < 0)
2754 return -errno;
2755
2756 tmp = mfree(tmp);
2757 return 0;
2758}
2759
2760static char **credential_search_path(
2761 const ExecParameters *params,
2762 bool encrypted) {
2763
2764 _cleanup_strv_free_ char **l = NULL;
2765
2766 assert(params);
2767
2768 /* Assemble a search path to find credentials in. We'll look in /etc/credstore/ (and similar
2769 * directories in /usr/lib/ + /run/) for all types of credentials. If we are looking for encrypted
2770 * credentials, also look in /etc/credstore.encrypted/ (and similar dirs). */
2771
2772 if (encrypted) {
2773 if (strv_extend(&l, params->received_encrypted_credentials_directory) < 0)
2774 return NULL;
2775
2776 if (strv_extend_strv(&l, CONF_PATHS_STRV("credstore.encrypted"), /* filter_duplicates= */ true) < 0)
2777 return NULL;
2778 }
2779
2780 if (params->received_credentials_directory)
2781 if (strv_extend(&l, params->received_credentials_directory) < 0)
2782 return NULL;
2783
2784 if (strv_extend_strv(&l, CONF_PATHS_STRV("credstore"), /* filter_duplicates= */ true) < 0)
2785 return NULL;
2786
2787 if (DEBUG_LOGGING) {
2788 _cleanup_free_ char *t = strv_join(l, ":");
2789
2790 log_debug("Credential search path is: %s", t);
2791 }
2792
2793 return TAKE_PTR(l);
2794}
2795
2796static int load_credential(
2797 const ExecContext *context,
2798 const ExecParameters *params,
2799 const char *id,
2800 const char *path,
2801 bool encrypted,
2802 const char *unit,
2803 int read_dfd,
2804 int write_dfd,
2805 uid_t uid,
2806 bool ownership_ok,
2807 uint64_t *left) {
2808
2809 ReadFullFileFlags flags = READ_FULL_FILE_SECURE|READ_FULL_FILE_FAIL_WHEN_LARGER;
2810 _cleanup_strv_free_ char **search_path = NULL;
2811 _cleanup_(erase_and_freep) char *data = NULL;
2812 _cleanup_free_ char *bindname = NULL;
2813 const char *source = NULL;
2814 bool missing_ok = true;
2815 size_t size, add, maxsz;
2816 int r;
2817
2818 assert(context);
2819 assert(params);
2820 assert(id);
2821 assert(path);
2822 assert(unit);
2823 assert(read_dfd >= 0 || read_dfd == AT_FDCWD);
2824 assert(write_dfd >= 0);
2825 assert(left);
2826
2827 if (read_dfd >= 0) {
2828 /* If a directory fd is specified, then read the file directly from that dir. In this case we
2829 * won't do AF_UNIX stuff (we simply don't want to recursively iterate down a tree of AF_UNIX
2830 * IPC sockets). It's OK if a file vanishes here in the time we enumerate it and intend to
2831 * open it. */
2832
2833 if (!filename_is_valid(path)) /* safety check */
2834 return -EINVAL;
2835
2836 missing_ok = true;
2837 source = path;
2838
2839 } else if (path_is_absolute(path)) {
2840 /* If this is an absolute path, read the data directly from it, and support AF_UNIX
2841 * sockets */
2842
2843 if (!path_is_valid(path)) /* safety check */
2844 return -EINVAL;
2845
2846 flags |= READ_FULL_FILE_CONNECT_SOCKET;
2847
2848 /* Pass some minimal info about the unit and the credential name we are looking to acquire
2849 * via the source socket address in case we read off an AF_UNIX socket. */
2850 if (asprintf(&bindname, "@%" PRIx64"/unit/%s/%s", random_u64(), unit, id) < 0)
2851 return -ENOMEM;
2852
2853 missing_ok = false;
2854 source = path;
2855
2856 } else if (credential_name_valid(path)) {
2857 /* If this is a relative path, take it as credential name relative to the credentials
2858 * directory we received ourselves. We don't support the AF_UNIX stuff in this mode, since we
2859 * are operating on a credential store, i.e. this is guaranteed to be regular files. */
2860
2861 search_path = credential_search_path(params, encrypted);
2862 if (!search_path)
2863 return -ENOMEM;
2864
2865 missing_ok = true;
2866 } else
2867 source = NULL;
2868
2869 if (encrypted)
2870 flags |= READ_FULL_FILE_UNBASE64;
2871
2872 maxsz = encrypted ? CREDENTIAL_ENCRYPTED_SIZE_MAX : CREDENTIAL_SIZE_MAX;
2873
2874 if (search_path) {
2875 STRV_FOREACH(d, search_path) {
2876 _cleanup_free_ char *j = NULL;
2877
2878 j = path_join(*d, path);
2879 if (!j)
2880 return -ENOMEM;
2881
2882 r = read_full_file_full(
2883 AT_FDCWD, j, /* path is absolute, hence pass AT_FDCWD as nop dir fd here */
2884 UINT64_MAX,
2885 maxsz,
2886 flags,
2887 NULL,
2888 &data, &size);
2889 if (r != -ENOENT)
2890 break;
2891 }
2892 } else if (source)
2893 r = read_full_file_full(
2894 read_dfd, source,
2895 UINT64_MAX,
2896 maxsz,
2897 flags,
2898 bindname,
2899 &data, &size);
2900 else
2901 r = -ENOENT;
2902
2903 if (r == -ENOENT && (missing_ok || hashmap_contains(context->set_credentials, id))) {
2904 /* Make a missing inherited credential non-fatal, let's just continue. After all apps
2905 * will get clear errors if we don't pass such a missing credential on as they
2906 * themselves will get ENOENT when trying to read them, which should not be much
2907 * worse than when we handle the error here and make it fatal.
2908 *
2909 * Also, if the source file doesn't exist, but a fallback is set via SetCredentials=
2910 * we are fine, too. */
2911 log_debug_errno(r, "Couldn't read inherited credential '%s', skipping: %m", path);
2912 return 0;
2913 }
2914 if (r < 0)
2915 return log_debug_errno(r, "Failed to read credential '%s': %m", path);
2916
2917 if (encrypted) {
2918 _cleanup_free_ void *plaintext = NULL;
2919 size_t plaintext_size = 0;
2920
2921 r = decrypt_credential_and_warn(id, now(CLOCK_REALTIME), NULL, NULL, data, size, &plaintext, &plaintext_size);
2922 if (r < 0)
2923 return r;
2924
2925 free_and_replace(data, plaintext);
2926 size = plaintext_size;
2927 }
2928
2929 add = strlen(id) + size;
2930 if (add > *left)
2931 return -E2BIG;
2932
2933 r = write_credential(write_dfd, id, data, size, uid, ownership_ok);
2934 if (r < 0)
2935 return log_debug_errno(r, "Failed to write credential '%s': %m", id);
2936
2937 *left -= add;
2938 return 0;
2939}
2940
2941struct load_cred_args {
2942 const ExecContext *context;
2943 const ExecParameters *params;
2944 bool encrypted;
2945 const char *unit;
2946 int dfd;
2947 uid_t uid;
2948 bool ownership_ok;
2949 uint64_t *left;
2950};
2951
2952static int load_cred_recurse_dir_cb(
2953 RecurseDirEvent event,
2954 const char *path,
2955 int dir_fd,
2956 int inode_fd,
2957 const struct dirent *de,
2958 const struct statx *sx,
2959 void *userdata) {
2960
2961 struct load_cred_args *args = ASSERT_PTR(userdata);
2962 _cleanup_free_ char *sub_id = NULL;
2963 int r;
2964
2965 if (event != RECURSE_DIR_ENTRY)
2966 return RECURSE_DIR_CONTINUE;
2967
2968 if (!IN_SET(de->d_type, DT_REG, DT_SOCK))
2969 return RECURSE_DIR_CONTINUE;
2970
2971 sub_id = strreplace(path, "/", "_");
2972 if (!sub_id)
2973 return -ENOMEM;
2974
2975 if (!credential_name_valid(sub_id))
2976 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Credential would get ID %s, which is not valid, refusing", sub_id);
2977
2978 if (faccessat(args->dfd, sub_id, F_OK, AT_SYMLINK_NOFOLLOW) >= 0) {
2979 log_debug("Skipping credential with duplicated ID %s at %s", sub_id, path);
2980 return RECURSE_DIR_CONTINUE;
2981 }
2982 if (errno != ENOENT)
2983 return log_debug_errno(errno, "Failed to test if credential %s exists: %m", sub_id);
2984
2985 r = load_credential(
2986 args->context,
2987 args->params,
2988 sub_id,
2989 de->d_name,
2990 args->encrypted,
2991 args->unit,
2992 dir_fd,
2993 args->dfd,
2994 args->uid,
2995 args->ownership_ok,
2996 args->left);
2997 if (r < 0)
2998 return r;
2999
3000 return RECURSE_DIR_CONTINUE;
3001}
3002
3003static int acquire_credentials(
3004 const ExecContext *context,
3005 const ExecParameters *params,
3006 const char *unit,
3007 const char *p,
3008 uid_t uid,
3009 bool ownership_ok) {
3010
3011 uint64_t left = CREDENTIALS_TOTAL_SIZE_MAX;
3012 _cleanup_close_ int dfd = -EBADF;
3013 ExecLoadCredential *lc;
3014 ExecSetCredential *sc;
3015 int r;
3016
3017 assert(context);
3018 assert(p);
3019
3020 dfd = open(p, O_DIRECTORY|O_CLOEXEC);
3021 if (dfd < 0)
3022 return -errno;
3023
3024 /* First, load credentials off disk (or acquire via AF_UNIX socket) */
3025 HASHMAP_FOREACH(lc, context->load_credentials) {
3026 _cleanup_close_ int sub_fd = -EBADF;
3027
3028 /* If this is an absolute path, then try to open it as a directory. If that works, then we'll
3029 * recurse into it. If it is an absolute path but it isn't a directory, then we'll open it as
3030 * a regular file. Finally, if it's a relative path we will use it as a credential name to
3031 * propagate a credential passed to us from further up. */
3032
3033 if (path_is_absolute(lc->path)) {
3034 sub_fd = open(lc->path, O_DIRECTORY|O_CLOEXEC|O_RDONLY);
3035 if (sub_fd < 0 && !IN_SET(errno,
3036 ENOTDIR, /* Not a directory */
3037 ENOENT)) /* Doesn't exist? */
3038 return log_debug_errno(errno, "Failed to open '%s': %m", lc->path);
3039 }
3040
3041 if (sub_fd < 0)
3042 /* Regular file (incl. a credential passed in from higher up) */
3043 r = load_credential(
3044 context,
3045 params,
3046 lc->id,
3047 lc->path,
3048 lc->encrypted,
3049 unit,
3050 AT_FDCWD,
3051 dfd,
3052 uid,
3053 ownership_ok,
3054 &left);
3055 else
3056 /* Directory */
3057 r = recurse_dir(
3058 sub_fd,
3059 /* path= */ lc->id, /* recurse_dir() will suffix the subdir paths from here to the top-level id */
3060 /* statx_mask= */ 0,
3061 /* n_depth_max= */ UINT_MAX,
3062 RECURSE_DIR_SORT|RECURSE_DIR_IGNORE_DOT|RECURSE_DIR_ENSURE_TYPE,
3063 load_cred_recurse_dir_cb,
3064 &(struct load_cred_args) {
3065 .context = context,
3066 .params = params,
3067 .encrypted = lc->encrypted,
3068 .unit = unit,
3069 .dfd = dfd,
3070 .uid = uid,
3071 .ownership_ok = ownership_ok,
3072 .left = &left,
3073 });
3074 if (r < 0)
3075 return r;
3076 }
3077
3078 /* Second, we add in literally specified credentials. If the credentials already exist, we'll not add
3079 * them, so that they can act as a "default" if the same credential is specified multiple times. */
3080 HASHMAP_FOREACH(sc, context->set_credentials) {
3081 _cleanup_(erase_and_freep) void *plaintext = NULL;
3082 const char *data;
3083 size_t size, add;
3084
3085 /* Note that we check ahead of time here instead of relying on O_EXCL|O_CREAT later to return
3086 * EEXIST if the credential already exists. That's because the TPM2-based decryption is kinda
3087 * slow and involved, hence it's nice to be able to skip that if the credential already
3088 * exists anyway. */
3089 if (faccessat(dfd, sc->id, F_OK, AT_SYMLINK_NOFOLLOW) >= 0)
3090 continue;
3091 if (errno != ENOENT)
3092 return log_debug_errno(errno, "Failed to test if credential %s exists: %m", sc->id);
3093
3094 if (sc->encrypted) {
3095 r = decrypt_credential_and_warn(sc->id, now(CLOCK_REALTIME), NULL, NULL, sc->data, sc->size, &plaintext, &size);
3096 if (r < 0)
3097 return r;
3098
3099 data = plaintext;
3100 } else {
3101 data = sc->data;
3102 size = sc->size;
3103 }
3104
3105 add = strlen(sc->id) + size;
3106 if (add > left)
3107 return -E2BIG;
3108
3109 r = write_credential(dfd, sc->id, data, size, uid, ownership_ok);
3110 if (r < 0)
3111 return r;
3112
3113 left -= add;
3114 }
3115
3116 if (fchmod(dfd, 0500) < 0) /* Now take away the "w" bit */
3117 return -errno;
3118
3119 /* After we created all keys with the right perms, also make sure the credential store as a whole is
3120 * accessible */
3121
3122 if (uid_is_valid(uid) && uid != getuid()) {
3123 r = fd_add_uid_acl_permission(dfd, uid, ACL_READ | ACL_EXECUTE);
3124 if (r < 0) {
3125 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
3126 return r;
3127
3128 if (!ownership_ok)
3129 return r;
3130
3131 if (fchown(dfd, uid, GID_INVALID) < 0)
3132 return -errno;
3133 }
3134 }
3135
3136 return 0;
3137}
3138
3139static int setup_credentials_internal(
3140 const ExecContext *context,
3141 const ExecParameters *params,
3142 const char *unit,
3143 const char *final, /* This is where the credential store shall eventually end up at */
3144 const char *workspace, /* This is where we can prepare it before moving it to the final place */
3145 bool reuse_workspace, /* Whether to reuse any existing workspace mount if it already is a mount */
3146 bool must_mount, /* Whether to require that we mount something, it's not OK to use the plain directory fall back */
3147 uid_t uid) {
3148
3149 int r, workspace_mounted; /* negative if we don't know yet whether we have/can mount something; true
3150 * if we mounted something; false if we definitely can't mount anything */
3151 bool final_mounted;
3152 const char *where;
3153
3154 assert(context);
3155 assert(final);
3156 assert(workspace);
3157
3158 if (reuse_workspace) {
3159 r = path_is_mount_point(workspace, NULL, 0);
3160 if (r < 0)
3161 return r;
3162 if (r > 0)
3163 workspace_mounted = true; /* If this is already a mount, and we are supposed to reuse it, let's keep this in mind */
3164 else
3165 workspace_mounted = -1; /* We need to figure out if we can mount something to the workspace */
3166 } else
3167 workspace_mounted = -1; /* ditto */
3168
3169 r = path_is_mount_point(final, NULL, 0);
3170 if (r < 0)
3171 return r;
3172 if (r > 0) {
3173 /* If the final place already has something mounted, we use that. If the workspace also has
3174 * something mounted we assume it's actually the same mount (but with MS_RDONLY
3175 * different). */
3176 final_mounted = true;
3177
3178 if (workspace_mounted < 0) {
3179 /* If the final place is mounted, but the workspace isn't, then let's bind mount
3180 * the final version to the workspace, and make it writable, so that we can make
3181 * changes */
3182
3183 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
3184 if (r < 0)
3185 return r;
3186
3187 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
3188 if (r < 0)
3189 return r;
3190
3191 workspace_mounted = true;
3192 }
3193 } else
3194 final_mounted = false;
3195
3196 if (workspace_mounted < 0) {
3197 /* Nothing is mounted on the workspace yet, let's try to mount something now */
3198 for (int try = 0;; try++) {
3199
3200 if (try == 0) {
3201 /* Try "ramfs" first, since it's not swap backed */
3202 r = mount_nofollow_verbose(LOG_DEBUG, "ramfs", workspace, "ramfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, "mode=0700");
3203 if (r >= 0) {
3204 workspace_mounted = true;
3205 break;
3206 }
3207
3208 } else if (try == 1) {
3209 _cleanup_free_ char *opts = NULL;
3210
3211 if (asprintf(&opts, "mode=0700,nr_inodes=1024,size=%zu", (size_t) CREDENTIALS_TOTAL_SIZE_MAX) < 0)
3212 return -ENOMEM;
3213
3214 /* Fall back to "tmpfs" otherwise */
3215 r = mount_nofollow_verbose(LOG_DEBUG, "tmpfs", workspace, "tmpfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, opts);
3216 if (r >= 0) {
3217 workspace_mounted = true;
3218 break;
3219 }
3220
3221 } else {
3222 /* If that didn't work, try to make a bind mount from the final to the workspace, so that we can make it writable there. */
3223 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
3224 if (r < 0) {
3225 if (!ERRNO_IS_PRIVILEGE(r)) /* Propagate anything that isn't a permission problem */
3226 return r;
3227
3228 if (must_mount) /* If we it's not OK to use the plain directory
3229 * fallback, propagate all errors too */
3230 return r;
3231
3232 /* If we lack privileges to bind mount stuff, then let's gracefully
3233 * proceed for compat with container envs, and just use the final dir
3234 * as is. */
3235
3236 workspace_mounted = false;
3237 break;
3238 }
3239
3240 /* Make the new bind mount writable (i.e. drop MS_RDONLY) */
3241 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
3242 if (r < 0)
3243 return r;
3244
3245 workspace_mounted = true;
3246 break;
3247 }
3248 }
3249 }
3250
3251 assert(!must_mount || workspace_mounted > 0);
3252 where = workspace_mounted ? workspace : final;
3253
3254 (void) label_fix_full(AT_FDCWD, where, final, 0);
3255
3256 r = acquire_credentials(context, params, unit, where, uid, workspace_mounted);
3257 if (r < 0)
3258 return r;
3259
3260 if (workspace_mounted) {
3261 /* Make workspace read-only now, so that any bind mount we make from it defaults to read-only too */
3262 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_RDONLY|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
3263 if (r < 0)
3264 return r;
3265
3266 /* And mount it to the final place, read-only */
3267 if (final_mounted)
3268 r = umount_verbose(LOG_DEBUG, workspace, MNT_DETACH|UMOUNT_NOFOLLOW);
3269 else
3270 r = mount_nofollow_verbose(LOG_DEBUG, workspace, final, NULL, MS_MOVE, NULL);
3271 if (r < 0)
3272 return r;
3273 } else {
3274 _cleanup_free_ char *parent = NULL;
3275
3276 /* If we do not have our own mount put used the plain directory fallback, then we need to
3277 * open access to the top-level credential directory and the per-service directory now */
3278
3279 r = path_extract_directory(final, &parent);
3280 if (r < 0)
3281 return r;
3282 if (chmod(parent, 0755) < 0)
3283 return -errno;
3284 }
3285
3286 return 0;
3287}
3288
3289static int setup_credentials(
3290 const ExecContext *context,
3291 const ExecParameters *params,
3292 const char *unit,
3293 uid_t uid) {
3294
3295 _cleanup_free_ char *p = NULL, *q = NULL;
3296 int r;
3297
3298 assert(context);
3299 assert(params);
3300
3301 if (!exec_context_has_credentials(context))
3302 return 0;
3303
3304 if (!params->prefix[EXEC_DIRECTORY_RUNTIME])
3305 return -EINVAL;
3306
3307 /* This where we'll place stuff when we are done; this main credentials directory is world-readable,
3308 * and the subdir we mount over with a read-only file system readable by the service's user */
3309 q = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials");
3310 if (!q)
3311 return -ENOMEM;
3312
3313 r = mkdir_label(q, 0755); /* top-level dir: world readable/searchable */
3314 if (r < 0 && r != -EEXIST)
3315 return r;
3316
3317 p = path_join(q, unit);
3318 if (!p)
3319 return -ENOMEM;
3320
3321 r = mkdir_label(p, 0700); /* per-unit dir: private to user */
3322 if (r < 0 && r != -EEXIST)
3323 return r;
3324
3325 r = safe_fork("(sd-mkdcreds)", FORK_DEATHSIG|FORK_WAIT|FORK_NEW_MOUNTNS, NULL);
3326 if (r < 0) {
3327 _cleanup_free_ char *t = NULL, *u = NULL;
3328
3329 /* If this is not a privilege or support issue then propagate the error */
3330 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
3331 return r;
3332
3333 /* Temporary workspace, that remains inaccessible all the time. We prepare stuff there before moving
3334 * it into place, so that users can't access half-initialized credential stores. */
3335 t = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "systemd/temporary-credentials");
3336 if (!t)
3337 return -ENOMEM;
3338
3339 /* We can't set up a mount namespace. In that case operate on a fixed, inaccessible per-unit
3340 * directory outside of /run/credentials/ first, and then move it over to /run/credentials/
3341 * after it is fully set up */
3342 u = path_join(t, unit);
3343 if (!u)
3344 return -ENOMEM;
3345
3346 FOREACH_STRING(i, t, u) {
3347 r = mkdir_label(i, 0700);
3348 if (r < 0 && r != -EEXIST)
3349 return r;
3350 }
3351
3352 r = setup_credentials_internal(
3353 context,
3354 params,
3355 unit,
3356 p, /* final mount point */
3357 u, /* temporary workspace to overmount */
3358 true, /* reuse the workspace if it is already a mount */
3359 false, /* it's OK to fall back to a plain directory if we can't mount anything */
3360 uid);
3361
3362 (void) rmdir(u); /* remove the workspace again if we can. */
3363
3364 if (r < 0)
3365 return r;
3366
3367 } else if (r == 0) {
3368
3369 /* We managed to set up a mount namespace, and are now in a child. That's great. In this case
3370 * we can use the same directory for all cases, after turning off propagation. Question
3371 * though is: where do we turn off propagation exactly, and where do we place the workspace
3372 * directory? We need some place that is guaranteed to be a mount point in the host, and
3373 * which is guaranteed to have a subdir we can mount over. /run/ is not suitable for this,
3374 * since we ultimately want to move the resulting file system there, i.e. we need propagation
3375 * for /run/ eventually. We could use our own /run/systemd/bind mount on itself, but that
3376 * would be visible in the host mount table all the time, which we want to avoid. Hence, what
3377 * we do here instead we use /dev/ and /dev/shm/ for our purposes. We know for sure that
3378 * /dev/ is a mount point and we now for sure that /dev/shm/ exists. Hence we can turn off
3379 * propagation on the former, and then overmount the latter.
3380 *
3381 * Yes it's nasty playing games with /dev/ and /dev/shm/ like this, since it does not exist
3382 * for this purpose, but there are few other candidates that work equally well for us, and
3383 * given that the we do this in a privately namespaced short-lived single-threaded process
3384 * that no one else sees this should be OK to do. */
3385
3386 r = mount_nofollow_verbose(LOG_DEBUG, NULL, "/dev", NULL, MS_SLAVE|MS_REC, NULL); /* Turn off propagation from our namespace to host */
3387 if (r < 0)
3388 goto child_fail;
3389
3390 r = setup_credentials_internal(
3391 context,
3392 params,
3393 unit,
3394 p, /* final mount point */
3395 "/dev/shm", /* temporary workspace to overmount */
3396 false, /* do not reuse /dev/shm if it is already a mount, under no circumstances */
3397 true, /* insist that something is mounted, do not allow fallback to plain directory */
3398 uid);
3399 if (r < 0)
3400 goto child_fail;
3401
3402 _exit(EXIT_SUCCESS);
3403
3404 child_fail:
3405 _exit(EXIT_FAILURE);
3406 }
3407
3408 return 0;
3409}
3410
3411#if ENABLE_SMACK
3412static int setup_smack(
3413 const Manager *manager,
3414 const ExecContext *context,
3415 int executable_fd) {
3416 int r;
3417
3418 assert(context);
3419 assert(executable_fd >= 0);
3420
3421 if (context->smack_process_label) {
3422 r = mac_smack_apply_pid(0, context->smack_process_label);
3423 if (r < 0)
3424 return r;
3425 } else if (manager->default_smack_process_label) {
3426 _cleanup_free_ char *exec_label = NULL;
3427
3428 r = mac_smack_read_fd(executable_fd, SMACK_ATTR_EXEC, &exec_label);
3429 if (r < 0 && !ERRNO_IS_XATTR_ABSENT(r))
3430 return r;
3431
3432 r = mac_smack_apply_pid(0, exec_label ?: manager->default_smack_process_label);
3433 if (r < 0)
3434 return r;
3435 }
3436
3437 return 0;
3438}
3439#endif
3440
3441static int compile_bind_mounts(
3442 const ExecContext *context,
3443 const ExecParameters *params,
3444 BindMount **ret_bind_mounts,
3445 size_t *ret_n_bind_mounts,
3446 char ***ret_empty_directories) {
3447
3448 _cleanup_strv_free_ char **empty_directories = NULL;
3449 BindMount *bind_mounts = NULL;
3450 size_t n, h = 0;
3451 int r;
3452
3453 assert(context);
3454 assert(params);
3455 assert(ret_bind_mounts);
3456 assert(ret_n_bind_mounts);
3457 assert(ret_empty_directories);
3458
3459 CLEANUP_ARRAY(bind_mounts, h, bind_mount_free_many);
3460
3461 n = context->n_bind_mounts;
3462 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
3463 if (!params->prefix[t])
3464 continue;
3465
3466 for (size_t i = 0; i < context->directories[t].n_items; i++)
3467 n += !context->directories[t].items[i].only_create;
3468 }
3469
3470 if (n <= 0) {
3471 *ret_bind_mounts = NULL;
3472 *ret_n_bind_mounts = 0;
3473 *ret_empty_directories = NULL;
3474 return 0;
3475 }
3476
3477 bind_mounts = new(BindMount, n);
3478 if (!bind_mounts)
3479 return -ENOMEM;
3480
3481 for (size_t i = 0; i < context->n_bind_mounts; i++) {
3482 BindMount *item = context->bind_mounts + i;
3483 _cleanup_free_ char *s = NULL, *d = NULL;
3484
3485 s = strdup(item->source);
3486 if (!s)
3487 return -ENOMEM;
3488
3489 d = strdup(item->destination);
3490 if (!d)
3491 return -ENOMEM;
3492
3493 bind_mounts[h++] = (BindMount) {
3494 .source = TAKE_PTR(s),
3495 .destination = TAKE_PTR(d),
3496 .read_only = item->read_only,
3497 .recursive = item->recursive,
3498 .ignore_enoent = item->ignore_enoent,
3499 };
3500 }
3501
3502 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
3503 if (!params->prefix[t])
3504 continue;
3505
3506 if (context->directories[t].n_items == 0)
3507 continue;
3508
3509 if (exec_directory_is_private(context, t) &&
3510 !exec_context_with_rootfs(context)) {
3511 char *private_root;
3512
3513 /* So this is for a dynamic user, and we need to make sure the process can access its own
3514 * directory. For that we overmount the usually inaccessible "private" subdirectory with a
3515 * tmpfs that makes it accessible and is empty except for the submounts we do this for. */
3516
3517 private_root = path_join(params->prefix[t], "private");
3518 if (!private_root)
3519 return -ENOMEM;
3520
3521 r = strv_consume(&empty_directories, private_root);
3522 if (r < 0)
3523 return r;
3524 }
3525
3526 for (size_t i = 0; i < context->directories[t].n_items; i++) {
3527 _cleanup_free_ char *s = NULL, *d = NULL;
3528
3529 /* When one of the parent directories is in the list, we cannot create the symlink
3530 * for the child directory. See also the comments in setup_exec_directory(). */
3531 if (context->directories[t].items[i].only_create)
3532 continue;
3533
3534 if (exec_directory_is_private(context, t))
3535 s = path_join(params->prefix[t], "private", context->directories[t].items[i].path);
3536 else
3537 s = path_join(params->prefix[t], context->directories[t].items[i].path);
3538 if (!s)
3539 return -ENOMEM;
3540
3541 if (exec_directory_is_private(context, t) &&
3542 exec_context_with_rootfs(context))
3543 /* When RootDirectory= or RootImage= are set, then the symbolic link to the private
3544 * directory is not created on the root directory. So, let's bind-mount the directory
3545 * on the 'non-private' place. */
3546 d = path_join(params->prefix[t], context->directories[t].items[i].path);
3547 else
3548 d = strdup(s);
3549 if (!d)
3550 return -ENOMEM;
3551
3552 bind_mounts[h++] = (BindMount) {
3553 .source = TAKE_PTR(s),
3554 .destination = TAKE_PTR(d),
3555 .read_only = false,
3556 .nosuid = context->dynamic_user, /* don't allow suid/sgid when DynamicUser= is on */
3557 .recursive = true,
3558 .ignore_enoent = false,
3559 };
3560 }
3561 }
3562
3563 assert(h == n);
3564
3565 *ret_bind_mounts = TAKE_PTR(bind_mounts);
3566 *ret_n_bind_mounts = n;
3567 *ret_empty_directories = TAKE_PTR(empty_directories);
3568
3569 return (int) n;
3570}
3571
3572/* ret_symlinks will contain a list of pairs src:dest that describes
3573 * the symlinks to create later on. For example, the symlinks needed
3574 * to safely give private directories to DynamicUser=1 users. */
3575static int compile_symlinks(
3576 const ExecContext *context,
3577 const ExecParameters *params,
3578 char ***ret_symlinks) {
3579
3580 _cleanup_strv_free_ char **symlinks = NULL;
3581 int r;
3582
3583 assert(context);
3584 assert(params);
3585 assert(ret_symlinks);
3586
3587 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
3588 for (size_t i = 0; i < context->directories[dt].n_items; i++) {
3589 _cleanup_free_ char *private_path = NULL, *path = NULL;
3590
3591 STRV_FOREACH(symlink, context->directories[dt].items[i].symlinks) {
3592 _cleanup_free_ char *src_abs = NULL, *dst_abs = NULL;
3593
3594 src_abs = path_join(params->prefix[dt], context->directories[dt].items[i].path);
3595 dst_abs = path_join(params->prefix[dt], *symlink);
3596 if (!src_abs || !dst_abs)
3597 return -ENOMEM;
3598
3599 r = strv_consume_pair(&symlinks, TAKE_PTR(src_abs), TAKE_PTR(dst_abs));
3600 if (r < 0)
3601 return r;
3602 }
3603
3604 if (!exec_directory_is_private(context, dt) ||
3605 exec_context_with_rootfs(context) ||
3606 context->directories[dt].items[i].only_create)
3607 continue;
3608
3609 private_path = path_join(params->prefix[dt], "private", context->directories[dt].items[i].path);
3610 if (!private_path)
3611 return -ENOMEM;
3612
3613 path = path_join(params->prefix[dt], context->directories[dt].items[i].path);
3614 if (!path)
3615 return -ENOMEM;
3616
3617 r = strv_consume_pair(&symlinks, TAKE_PTR(private_path), TAKE_PTR(path));
3618 if (r < 0)
3619 return r;
3620 }
3621 }
3622
3623 *ret_symlinks = TAKE_PTR(symlinks);
3624
3625 return 0;
3626}
3627
3628static bool insist_on_sandboxing(
3629 const ExecContext *context,
3630 const char *root_dir,
3631 const char *root_image,
3632 const BindMount *bind_mounts,
3633 size_t n_bind_mounts) {
3634
3635 assert(context);
3636 assert(n_bind_mounts == 0 || bind_mounts);
3637
3638 /* Checks whether we need to insist on fs namespacing. i.e. whether we have settings configured that
3639 * would alter the view on the file system beyond making things read-only or invisible, i.e. would
3640 * rearrange stuff in a way we cannot ignore gracefully. */
3641
3642 if (context->n_temporary_filesystems > 0)
3643 return true;
3644
3645 if (root_dir || root_image)
3646 return true;
3647
3648 if (context->n_mount_images > 0)
3649 return true;
3650
3651 if (context->dynamic_user)
3652 return true;
3653
3654 if (context->n_extension_images > 0 || !strv_isempty(context->extension_directories))
3655 return true;
3656
3657 /* If there are any bind mounts set that don't map back onto themselves, fs namespacing becomes
3658 * essential. */
3659 for (size_t i = 0; i < n_bind_mounts; i++)
3660 if (!path_equal(bind_mounts[i].source, bind_mounts[i].destination))
3661 return true;
3662
3663 if (context->log_namespace)
3664 return true;
3665
3666 return false;
3667}
3668
3669static int apply_mount_namespace(
3670 const Unit *u,
3671 ExecCommandFlags command_flags,
3672 const ExecContext *context,
3673 const ExecParameters *params,
3674 const ExecRuntime *runtime,
3675 const char *memory_pressure_path,
3676 char **error_path) {
3677
3678 _cleanup_strv_free_ char **empty_directories = NULL, **symlinks = NULL,
3679 **read_write_paths_cleanup = NULL;
3680 const char *tmp_dir = NULL, *var_tmp_dir = NULL;
3681 const char *root_dir = NULL, *root_image = NULL;
3682 _cleanup_free_ char *creds_path = NULL, *incoming_dir = NULL, *propagate_dir = NULL,
3683 *extension_dir = NULL;
3684 char **read_write_paths;
3685 NamespaceInfo ns_info;
3686 bool needs_sandboxing;
3687 BindMount *bind_mounts = NULL;
3688 size_t n_bind_mounts = 0;
3689 int r;
3690
3691 assert(context);
3692
3693 CLEANUP_ARRAY(bind_mounts, n_bind_mounts, bind_mount_free_many);
3694
3695 if (params->flags & EXEC_APPLY_CHROOT) {
3696 root_image = context->root_image;
3697
3698 if (!root_image)
3699 root_dir = context->root_directory;
3700 }
3701
3702 r = compile_bind_mounts(context, params, &bind_mounts, &n_bind_mounts, &empty_directories);
3703 if (r < 0)
3704 return r;
3705
3706 /* Symlinks for exec dirs are set up after other mounts, before they are made read-only. */
3707 r = compile_symlinks(context, params, &symlinks);
3708 if (r < 0)
3709 return r;
3710
3711 /* We need to make the pressure path writable even if /sys/fs/cgroups is made read-only, as the
3712 * service will need to write to it in order to start the notifications. */
3713 if (context->protect_control_groups && memory_pressure_path && !streq(memory_pressure_path, "/dev/null")) {
3714 read_write_paths_cleanup = strv_copy(context->read_write_paths);
3715 if (!read_write_paths_cleanup)
3716 return -ENOMEM;
3717
3718 r = strv_extend(&read_write_paths_cleanup, memory_pressure_path);
3719 if (r < 0)
3720 return r;
3721
3722 read_write_paths = read_write_paths_cleanup;
3723 } else
3724 read_write_paths = context->read_write_paths;
3725
3726 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command_flags & EXEC_COMMAND_FULLY_PRIVILEGED);
3727 if (needs_sandboxing) {
3728 /* The runtime struct only contains the parent of the private /tmp,
3729 * which is non-accessible to world users. Inside of it there's a /tmp
3730 * that is sticky, and that's the one we want to use here.
3731 * This does not apply when we are using /run/systemd/empty as fallback. */
3732
3733 if (context->private_tmp && runtime && runtime->shared) {
3734 if (streq_ptr(runtime->shared->tmp_dir, RUN_SYSTEMD_EMPTY))
3735 tmp_dir = runtime->shared->tmp_dir;
3736 else if (runtime->shared->tmp_dir)
3737 tmp_dir = strjoina(runtime->shared->tmp_dir, "/tmp");
3738
3739 if (streq_ptr(runtime->shared->var_tmp_dir, RUN_SYSTEMD_EMPTY))
3740 var_tmp_dir = runtime->shared->var_tmp_dir;
3741 else if (runtime->shared->var_tmp_dir)
3742 var_tmp_dir = strjoina(runtime->shared->var_tmp_dir, "/tmp");
3743 }
3744
3745 ns_info = (NamespaceInfo) {
3746 .ignore_protect_paths = false,
3747 .private_dev = context->private_devices,
3748 .protect_control_groups = context->protect_control_groups,
3749 .protect_kernel_tunables = context->protect_kernel_tunables,
3750 .protect_kernel_modules = context->protect_kernel_modules,
3751 .protect_kernel_logs = context->protect_kernel_logs,
3752 .protect_hostname = context->protect_hostname,
3753 .mount_apivfs = exec_context_get_effective_mount_apivfs(context),
3754 .protect_home = context->protect_home,
3755 .protect_system = context->protect_system,
3756 .protect_proc = context->protect_proc,
3757 .proc_subset = context->proc_subset,
3758 .private_network = exec_needs_network_namespace(context),
3759 .private_ipc = exec_needs_ipc_namespace(context),
3760 /* If NNP is on, we can turn on MS_NOSUID, since it won't have any effect anymore. */
3761 .mount_nosuid = context->no_new_privileges && !mac_selinux_use(),
3762 };
3763 } else if (!context->dynamic_user && root_dir)
3764 /*
3765 * If DynamicUser=no and RootDirectory= is set then lets pass a relaxed
3766 * sandbox info, otherwise enforce it, don't ignore protected paths and
3767 * fail if we are enable to apply the sandbox inside the mount namespace.
3768 */
3769 ns_info = (NamespaceInfo) {
3770 .ignore_protect_paths = true,
3771 };
3772 else
3773 ns_info = (NamespaceInfo) {};
3774
3775 if (context->mount_propagation_flag == MS_SHARED)
3776 log_unit_debug(u, "shared mount propagation hidden by other fs namespacing unit settings: ignoring");
3777
3778 if (exec_context_has_credentials(context) &&
3779 params->prefix[EXEC_DIRECTORY_RUNTIME] &&
3780 FLAGS_SET(params->flags, EXEC_WRITE_CREDENTIALS)) {
3781 creds_path = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials", u->id);
3782 if (!creds_path)
3783 return -ENOMEM;
3784 }
3785
3786 if (MANAGER_IS_SYSTEM(u->manager)) {
3787 propagate_dir = path_join("/run/systemd/propagate/", u->id);
3788 if (!propagate_dir)
3789 return -ENOMEM;
3790
3791 incoming_dir = strdup("/run/systemd/incoming");
3792 if (!incoming_dir)
3793 return -ENOMEM;
3794
3795 extension_dir = strdup("/run/systemd/unit-extensions");
3796 if (!extension_dir)
3797 return -ENOMEM;
3798 } else
3799 if (asprintf(&extension_dir, "/run/user/" UID_FMT "/systemd/unit-extensions", geteuid()) < 0)
3800 return -ENOMEM;
3801
3802 r = setup_namespace(
3803 root_dir,
3804 root_image,
3805 context->root_image_options,
3806 context->root_image_policy ?: &image_policy_service,
3807 &ns_info,
3808 read_write_paths,
3809 needs_sandboxing ? context->read_only_paths : NULL,
3810 needs_sandboxing ? context->inaccessible_paths : NULL,
3811 needs_sandboxing ? context->exec_paths : NULL,
3812 needs_sandboxing ? context->no_exec_paths : NULL,
3813 empty_directories,
3814 symlinks,
3815 bind_mounts,
3816 n_bind_mounts,
3817 context->temporary_filesystems,
3818 context->n_temporary_filesystems,
3819 context->mount_images,
3820 context->n_mount_images,
3821 context->mount_image_policy ?: &image_policy_service,
3822 tmp_dir,
3823 var_tmp_dir,
3824 creds_path,
3825 context->log_namespace,
3826 context->mount_propagation_flag,
3827 context->root_hash, context->root_hash_size, context->root_hash_path,
3828 context->root_hash_sig, context->root_hash_sig_size, context->root_hash_sig_path,
3829 context->root_verity,
3830 context->extension_images,
3831 context->n_extension_images,
3832 context->extension_image_policy ?: &image_policy_sysext,
3833 context->extension_directories,
3834 propagate_dir,
3835 incoming_dir,
3836 extension_dir,
3837 root_dir || root_image ? params->notify_socket : NULL,
3838 error_path);
3839
3840 /* If we couldn't set up the namespace this is probably due to a missing capability. setup_namespace() reports
3841 * that with a special, recognizable error ENOANO. In this case, silently proceed, but only if exclusively
3842 * sandboxing options were used, i.e. nothing such as RootDirectory= or BindMount= that would result in a
3843 * completely different execution environment. */
3844 if (r == -ENOANO) {
3845 if (insist_on_sandboxing(
3846 context,
3847 root_dir, root_image,
3848 bind_mounts,
3849 n_bind_mounts))
3850 return log_unit_debug_errno(u,
3851 SYNTHETIC_ERRNO(EOPNOTSUPP),
3852 "Failed to set up namespace, and refusing to continue since "
3853 "the selected namespacing options alter mount environment non-trivially.\n"
3854 "Bind mounts: %zu, temporary filesystems: %zu, root directory: %s, root image: %s, dynamic user: %s",
3855 n_bind_mounts,
3856 context->n_temporary_filesystems,
3857 yes_no(root_dir),
3858 yes_no(root_image),
3859 yes_no(context->dynamic_user));
3860
3861 log_unit_debug(u, "Failed to set up namespace, assuming containerized execution and ignoring.");
3862 return 0;
3863 }
3864
3865 return r;
3866}
3867
3868static int apply_working_directory(
3869 const ExecContext *context,
3870 const ExecParameters *params,
3871 const char *home,
3872 int *exit_status) {
3873
3874 const char *d, *wd;
3875
3876 assert(context);
3877 assert(exit_status);
3878
3879 if (context->working_directory_home) {
3880
3881 if (!home) {
3882 *exit_status = EXIT_CHDIR;
3883 return -ENXIO;
3884 }
3885
3886 wd = home;
3887
3888 } else
3889 wd = empty_to_root(context->working_directory);
3890
3891 if (params->flags & EXEC_APPLY_CHROOT)
3892 d = wd;
3893 else
3894 d = prefix_roota(context->root_directory, wd);
3895
3896 if (chdir(d) < 0 && !context->working_directory_missing_ok) {
3897 *exit_status = EXIT_CHDIR;
3898 return -errno;
3899 }
3900
3901 return 0;
3902}
3903
3904static int apply_root_directory(
3905 const ExecContext *context,
3906 const ExecParameters *params,
3907 const bool needs_mount_ns,
3908 int *exit_status) {
3909
3910 assert(context);
3911 assert(exit_status);
3912
3913 if (params->flags & EXEC_APPLY_CHROOT)
3914 if (!needs_mount_ns && context->root_directory)
3915 if (chroot(context->root_directory) < 0) {
3916 *exit_status = EXIT_CHROOT;
3917 return -errno;
3918 }
3919
3920 return 0;
3921}
3922
3923static int setup_keyring(
3924 const Unit *u,
3925 const ExecContext *context,
3926 const ExecParameters *p,
3927 uid_t uid, gid_t gid) {
3928
3929 key_serial_t keyring;
3930 int r = 0;
3931 uid_t saved_uid;
3932 gid_t saved_gid;
3933
3934 assert(u);
3935 assert(context);
3936 assert(p);
3937
3938 /* Let's set up a new per-service "session" kernel keyring for each system service. This has the benefit that
3939 * each service runs with its own keyring shared among all processes of the service, but with no hook-up beyond
3940 * that scope, and in particular no link to the per-UID keyring. If we don't do this the keyring will be
3941 * automatically created on-demand and then linked to the per-UID keyring, by the kernel. The kernel's built-in
3942 * on-demand behaviour is very appropriate for login users, but probably not so much for system services, where
3943 * UIDs are not necessarily specific to a service but reused (at least in the case of UID 0). */
3944
3945 if (context->keyring_mode == EXEC_KEYRING_INHERIT)
3946 return 0;
3947
3948 /* Acquiring a reference to the user keyring is nasty. We briefly change identity in order to get things set up
3949 * properly by the kernel. If we don't do that then we can't create it atomically, and that sucks for parallel
3950 * execution. This mimics what pam_keyinit does, too. Setting up session keyring, to be owned by the right user
3951 * & group is just as nasty as acquiring a reference to the user keyring. */
3952
3953 saved_uid = getuid();
3954 saved_gid = getgid();
3955
3956 if (gid_is_valid(gid) && gid != saved_gid) {
3957 if (setregid(gid, -1) < 0)
3958 return log_unit_error_errno(u, errno, "Failed to change GID for user keyring: %m");
3959 }
3960
3961 if (uid_is_valid(uid) && uid != saved_uid) {
3962 if (setreuid(uid, -1) < 0) {
3963 r = log_unit_error_errno(u, errno, "Failed to change UID for user keyring: %m");
3964 goto out;
3965 }
3966 }
3967
3968 keyring = keyctl(KEYCTL_JOIN_SESSION_KEYRING, 0, 0, 0, 0);
3969 if (keyring == -1) {
3970 if (errno == ENOSYS)
3971 log_unit_debug_errno(u, errno, "Kernel keyring not supported, ignoring.");
3972 else if (ERRNO_IS_PRIVILEGE(errno))
3973 log_unit_debug_errno(u, errno, "Kernel keyring access prohibited, ignoring.");
3974 else if (errno == EDQUOT)
3975 log_unit_debug_errno(u, errno, "Out of kernel keyrings to allocate, ignoring.");
3976 else
3977 r = log_unit_error_errno(u, errno, "Setting up kernel keyring failed: %m");
3978
3979 goto out;
3980 }
3981
3982 /* When requested link the user keyring into the session keyring. */
3983 if (context->keyring_mode == EXEC_KEYRING_SHARED) {
3984
3985 if (keyctl(KEYCTL_LINK,
3986 KEY_SPEC_USER_KEYRING,
3987 KEY_SPEC_SESSION_KEYRING, 0, 0) < 0) {
3988 r = log_unit_error_errno(u, errno, "Failed to link user keyring into session keyring: %m");
3989 goto out;
3990 }
3991 }
3992
3993 /* Restore uid/gid back */
3994 if (uid_is_valid(uid) && uid != saved_uid) {
3995 if (setreuid(saved_uid, -1) < 0) {
3996 r = log_unit_error_errno(u, errno, "Failed to change UID back for user keyring: %m");
3997 goto out;
3998 }
3999 }
4000
4001 if (gid_is_valid(gid) && gid != saved_gid) {
4002 if (setregid(saved_gid, -1) < 0)
4003 return log_unit_error_errno(u, errno, "Failed to change GID back for user keyring: %m");
4004 }
4005
4006 /* Populate they keyring with the invocation ID by default, as original saved_uid. */
4007 if (!sd_id128_is_null(u->invocation_id)) {
4008 key_serial_t key;
4009
4010 key = add_key("user", "invocation_id", &u->invocation_id, sizeof(u->invocation_id), KEY_SPEC_SESSION_KEYRING);
4011 if (key == -1)
4012 log_unit_debug_errno(u, errno, "Failed to add invocation ID to keyring, ignoring: %m");
4013 else {
4014 if (keyctl(KEYCTL_SETPERM, key,
4015 KEY_POS_VIEW|KEY_POS_READ|KEY_POS_SEARCH|
4016 KEY_USR_VIEW|KEY_USR_READ|KEY_USR_SEARCH, 0, 0) < 0)
4017 r = log_unit_error_errno(u, errno, "Failed to restrict invocation ID permission: %m");
4018 }
4019 }
4020
4021out:
4022 /* Revert back uid & gid for the last time, and exit */
4023 /* no extra logging, as only the first already reported error matters */
4024 if (getuid() != saved_uid)
4025 (void) setreuid(saved_uid, -1);
4026
4027 if (getgid() != saved_gid)
4028 (void) setregid(saved_gid, -1);
4029
4030 return r;
4031}
4032
4033static void append_socket_pair(int *array, size_t *n, const int pair[static 2]) {
4034 assert(array);
4035 assert(n);
4036 assert(pair);
4037
4038 if (pair[0] >= 0)
4039 array[(*n)++] = pair[0];
4040 if (pair[1] >= 0)
4041 array[(*n)++] = pair[1];
4042}
4043
4044static int close_remaining_fds(
4045 const ExecParameters *params,
4046 const ExecRuntime *runtime,
4047 int user_lookup_fd,
4048 int socket_fd,
4049 const int *fds, size_t n_fds) {
4050
4051 size_t n_dont_close = 0;
4052 int dont_close[n_fds + 12];
4053
4054 assert(params);
4055
4056 if (params->stdin_fd >= 0)
4057 dont_close[n_dont_close++] = params->stdin_fd;
4058 if (params->stdout_fd >= 0)
4059 dont_close[n_dont_close++] = params->stdout_fd;
4060 if (params->stderr_fd >= 0)
4061 dont_close[n_dont_close++] = params->stderr_fd;
4062
4063 if (socket_fd >= 0)
4064 dont_close[n_dont_close++] = socket_fd;
4065 if (n_fds > 0) {
4066 memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds);
4067 n_dont_close += n_fds;
4068 }
4069
4070 if (runtime && runtime->shared) {
4071 append_socket_pair(dont_close, &n_dont_close, runtime->shared->netns_storage_socket);
4072 append_socket_pair(dont_close, &n_dont_close, runtime->shared->ipcns_storage_socket);
4073 }
4074
4075 if (runtime && runtime->dynamic_creds) {
4076 if (runtime->dynamic_creds->user)
4077 append_socket_pair(dont_close, &n_dont_close, runtime->dynamic_creds->user->storage_socket);
4078 if (runtime->dynamic_creds->group)
4079 append_socket_pair(dont_close, &n_dont_close, runtime->dynamic_creds->group->storage_socket);
4080 }
4081
4082 if (user_lookup_fd >= 0)
4083 dont_close[n_dont_close++] = user_lookup_fd;
4084
4085 return close_all_fds(dont_close, n_dont_close);
4086}
4087
4088static int send_user_lookup(
4089 Unit *unit,
4090 int user_lookup_fd,
4091 uid_t uid,
4092 gid_t gid) {
4093
4094 assert(unit);
4095
4096 /* Send the resolved UID/GID to PID 1 after we learnt it. We send a single datagram, containing the UID/GID
4097 * data as well as the unit name. Note that we suppress sending this if no user/group to resolve was
4098 * specified. */
4099
4100 if (user_lookup_fd < 0)
4101 return 0;
4102
4103 if (!uid_is_valid(uid) && !gid_is_valid(gid))
4104 return 0;
4105
4106 if (writev(user_lookup_fd,
4107 (struct iovec[]) {
4108 IOVEC_MAKE(&uid, sizeof(uid)),
4109 IOVEC_MAKE(&gid, sizeof(gid)),
4110 IOVEC_MAKE_STRING(unit->id) }, 3) < 0)
4111 return -errno;
4112
4113 return 0;
4114}
4115
4116static int acquire_home(const ExecContext *c, uid_t uid, const char** home, char **buf) {
4117 int r;
4118
4119 assert(c);
4120 assert(home);
4121 assert(buf);
4122
4123 /* If WorkingDirectory=~ is set, try to acquire a usable home directory. */
4124
4125 if (*home)
4126 return 0;
4127
4128 if (!c->working_directory_home)
4129 return 0;
4130
4131 r = get_home_dir(buf);
4132 if (r < 0)
4133 return r;
4134
4135 *home = *buf;
4136 return 1;
4137}
4138
4139static int compile_suggested_paths(const ExecContext *c, const ExecParameters *p, char ***ret) {
4140 _cleanup_strv_free_ char ** list = NULL;
4141 int r;
4142
4143 assert(c);
4144 assert(p);
4145 assert(ret);
4146
4147 assert(c->dynamic_user);
4148
4149 /* Compile a list of paths that it might make sense to read the owning UID from to use as initial candidate for
4150 * dynamic UID allocation, in order to save us from doing costly recursive chown()s of the special
4151 * directories. */
4152
4153 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
4154 if (t == EXEC_DIRECTORY_CONFIGURATION)
4155 continue;
4156
4157 if (!p->prefix[t])
4158 continue;
4159
4160 for (size_t i = 0; i < c->directories[t].n_items; i++) {
4161 char *e;
4162
4163 if (exec_directory_is_private(c, t))
4164 e = path_join(p->prefix[t], "private", c->directories[t].items[i].path);
4165 else
4166 e = path_join(p->prefix[t], c->directories[t].items[i].path);
4167 if (!e)
4168 return -ENOMEM;
4169
4170 r = strv_consume(&list, e);
4171 if (r < 0)
4172 return r;
4173 }
4174 }
4175
4176 *ret = TAKE_PTR(list);
4177
4178 return 0;
4179}
4180
4181static int exec_parameters_get_cgroup_path(const ExecParameters *params, char **ret) {
4182 bool using_subcgroup;
4183 char *p;
4184
4185 assert(params);
4186 assert(ret);
4187
4188 if (!params->cgroup_path)
4189 return -EINVAL;
4190
4191 /* If we are called for a unit where cgroup delegation is on, and the payload created its own populated
4192 * subcgroup (which we expect it to do, after all it asked for delegation), then we cannot place the control
4193 * processes started after the main unit's process in the unit's main cgroup because it is now an inner one,
4194 * and inner cgroups may not contain processes. Hence, if delegation is on, and this is a control process,
4195 * let's use ".control" as subcgroup instead. Note that we do so only for ExecStartPost=, ExecReload=,
4196 * ExecStop=, ExecStopPost=, i.e. for the commands where the main process is already forked. For ExecStartPre=
4197 * this is not necessary, the cgroup is still empty. We distinguish these cases with the EXEC_CONTROL_CGROUP
4198 * flag, which is only passed for the former statements, not for the latter. */
4199
4200 using_subcgroup = FLAGS_SET(params->flags, EXEC_CONTROL_CGROUP|EXEC_CGROUP_DELEGATE|EXEC_IS_CONTROL);
4201 if (using_subcgroup)
4202 p = path_join(params->cgroup_path, ".control");
4203 else
4204 p = strdup(params->cgroup_path);
4205 if (!p)
4206 return -ENOMEM;
4207
4208 *ret = p;
4209 return using_subcgroup;
4210}
4211
4212static int exec_context_cpu_affinity_from_numa(const ExecContext *c, CPUSet *ret) {
4213 _cleanup_(cpu_set_reset) CPUSet s = {};
4214 int r;
4215
4216 assert(c);
4217 assert(ret);
4218
4219 if (!c->numa_policy.nodes.set) {
4220 log_debug("Can't derive CPU affinity mask from NUMA mask because NUMA mask is not set, ignoring");
4221 return 0;
4222 }
4223
4224 r = numa_to_cpu_set(&c->numa_policy, &s);
4225 if (r < 0)
4226 return r;
4227
4228 cpu_set_reset(ret);
4229
4230 return cpu_set_add_all(ret, &s);
4231}
4232
4233bool exec_context_get_cpu_affinity_from_numa(const ExecContext *c) {
4234 assert(c);
4235
4236 return c->cpu_affinity_from_numa;
4237}
4238
4239static int add_shifted_fd(int *fds, size_t fds_size, size_t *n_fds, int fd, int *ret_fd) {
4240 int r;
4241
4242 assert(fds);
4243 assert(n_fds);
4244 assert(*n_fds < fds_size);
4245 assert(ret_fd);
4246
4247 if (fd < 0) {
4248 *ret_fd = -EBADF;
4249 return 0;
4250 }
4251
4252 if (fd < 3 + (int) *n_fds) {
4253 /* Let's move the fd up, so that it's outside of the fd range we will use to store
4254 * the fds we pass to the process (or which are closed only during execve). */
4255
4256 r = fcntl(fd, F_DUPFD_CLOEXEC, 3 + (int) *n_fds);
4257 if (r < 0)
4258 return -errno;
4259
4260 close_and_replace(fd, r);
4261 }
4262
4263 *ret_fd = fds[*n_fds] = fd;
4264 (*n_fds) ++;
4265 return 1;
4266}
4267
4268static int connect_unix_harder(Unit *u, const OpenFile *of, int ofd) {
4269 union sockaddr_union addr = {
4270 .un.sun_family = AF_UNIX,
4271 };
4272 socklen_t sa_len;
4273 static const int socket_types[] = { SOCK_DGRAM, SOCK_STREAM, SOCK_SEQPACKET };
4274 int r;
4275
4276 assert(u);
4277 assert(of);
4278 assert(ofd >= 0);
4279
4280 r = sockaddr_un_set_path(&addr.un, FORMAT_PROC_FD_PATH(ofd));
4281 if (r < 0)
4282 return log_unit_error_errno(u, r, "Failed to set sockaddr for %s: %m", of->path);
4283
4284 sa_len = r;
4285
4286 for (size_t i = 0; i < ELEMENTSOF(socket_types); i++) {
4287 _cleanup_close_ int fd = -EBADF;
4288
4289 fd = socket(AF_UNIX, socket_types[i] | SOCK_CLOEXEC, 0);
4290 if (fd < 0)
4291 return log_unit_error_errno(u, errno, "Failed to create socket for %s: %m", of->path);
4292
4293 r = RET_NERRNO(connect(fd, &addr.sa, sa_len));
4294 if (r == -EPROTOTYPE)
4295 continue;
4296 if (r < 0)
4297 return log_unit_error_errno(u, r, "Failed to connect socket for %s: %m", of->path);
4298
4299 return TAKE_FD(fd);
4300 }
4301
4302 return log_unit_error_errno(u, SYNTHETIC_ERRNO(EPROTOTYPE), "Failed to connect socket for \"%s\".", of->path);
4303}
4304
4305static int get_open_file_fd(Unit *u, const OpenFile *of) {
4306 struct stat st;
4307 _cleanup_close_ int fd = -EBADF, ofd = -EBADF;
4308
4309 assert(u);
4310 assert(of);
4311
4312 ofd = open(of->path, O_PATH | O_CLOEXEC);
4313 if (ofd < 0)
4314 return log_unit_error_errno(u, errno, "Could not open \"%s\": %m", of->path);
4315
4316 if (fstat(ofd, &st) < 0)
4317 return log_unit_error_errno(u, errno, "Failed to stat %s: %m", of->path);
4318
4319 if (S_ISSOCK(st.st_mode)) {
4320 fd = connect_unix_harder(u, of, ofd);
4321 if (fd < 0)
4322 return fd;
4323
4324 if (FLAGS_SET(of->flags, OPENFILE_READ_ONLY) && shutdown(fd, SHUT_WR) < 0)
4325 return log_unit_error_errno(u, errno, "Failed to shutdown send for socket %s: %m",
4326 of->path);
4327
4328 log_unit_debug(u, "socket %s opened (fd=%d)", of->path, fd);
4329 } else {
4330 int flags = FLAGS_SET(of->flags, OPENFILE_READ_ONLY) ? O_RDONLY : O_RDWR;
4331 if (FLAGS_SET(of->flags, OPENFILE_APPEND))
4332 flags |= O_APPEND;
4333 else if (FLAGS_SET(of->flags, OPENFILE_TRUNCATE))
4334 flags |= O_TRUNC;
4335
4336 fd = fd_reopen(ofd, flags | O_CLOEXEC);
4337 if (fd < 0)
4338 return log_unit_error_errno(u, fd, "Failed to open file %s: %m", of->path);
4339
4340 log_unit_debug(u, "file %s opened (fd=%d)", of->path, fd);
4341 }
4342
4343 return TAKE_FD(fd);
4344}
4345
4346static int collect_open_file_fds(
4347 Unit *u,
4348 OpenFile* open_files,
4349 int **fds,
4350 char ***fdnames,
4351 size_t *n_fds) {
4352 int r;
4353
4354 assert(u);
4355 assert(fds);
4356 assert(fdnames);
4357 assert(n_fds);
4358
4359 LIST_FOREACH(open_files, of, open_files) {
4360 _cleanup_close_ int fd = -EBADF;
4361
4362 fd = get_open_file_fd(u, of);
4363 if (fd < 0) {
4364 if (FLAGS_SET(of->flags, OPENFILE_GRACEFUL)) {
4365 log_unit_debug_errno(u, fd, "Failed to get OpenFile= file descriptor for %s, ignoring: %m", of->path);
4366 continue;
4367 }
4368
4369 return fd;
4370 }
4371
4372 if (!GREEDY_REALLOC(*fds, *n_fds + 1))
4373 return -ENOMEM;
4374
4375 r = strv_extend(fdnames, of->fdname);
4376 if (r < 0)
4377 return r;
4378
4379 (*fds)[*n_fds] = TAKE_FD(fd);
4380
4381 (*n_fds)++;
4382 }
4383
4384 return 0;
4385}
4386
4387static void log_command_line(Unit *unit, const char *msg, const char *executable, char **argv) {
4388 assert(unit);
4389 assert(msg);
4390 assert(executable);
4391
4392 if (!DEBUG_LOGGING)
4393 return;
4394
4395 _cleanup_free_ char *cmdline = quote_command_line(argv, SHELL_ESCAPE_EMPTY);
4396
4397 log_unit_struct(unit, LOG_DEBUG,
4398 "EXECUTABLE=%s", executable,
4399 LOG_UNIT_MESSAGE(unit, "%s: %s", msg, strnull(cmdline)),
4400 LOG_UNIT_INVOCATION_ID(unit));
4401}
4402
4403static int exec_child(
4404 Unit *unit,
4405 const ExecCommand *command,
4406 const ExecContext *context,
4407 const ExecParameters *params,
4408 ExecRuntime *runtime,
4409 const CGroupContext *cgroup_context,
4410 int socket_fd,
4411 const int named_iofds[static 3],
4412 int *params_fds,
4413 size_t n_socket_fds,
4414 size_t n_storage_fds,
4415 char **files_env,
4416 int user_lookup_fd,
4417 int *exit_status) {
4418
4419 _cleanup_strv_free_ char **our_env = NULL, **pass_env = NULL, **joined_exec_search_path = NULL, **accum_env = NULL, **replaced_argv = NULL;
4420 int r, ngids = 0, exec_fd;
4421 _cleanup_free_ gid_t *supplementary_gids = NULL;
4422 const char *username = NULL, *groupname = NULL;
4423 _cleanup_free_ char *home_buffer = NULL, *memory_pressure_path = NULL;
4424 const char *home = NULL, *shell = NULL;
4425 char **final_argv = NULL;
4426 dev_t journal_stream_dev = 0;
4427 ino_t journal_stream_ino = 0;
4428 bool userns_set_up = false;
4429 bool needs_sandboxing, /* Do we need to set up full sandboxing? (i.e. all namespacing, all MAC stuff, caps, yadda yadda */
4430 needs_setuid, /* Do we need to do the actual setresuid()/setresgid() calls? */
4431 needs_mount_namespace, /* Do we need to set up a mount namespace for this kernel? */
4432 needs_ambient_hack; /* Do we need to apply the ambient capabilities hack? */
4433#if HAVE_SELINUX
4434 _cleanup_free_ char *mac_selinux_context_net = NULL;
4435 bool use_selinux = false;
4436#endif
4437#if ENABLE_SMACK
4438 bool use_smack = false;
4439#endif
4440#if HAVE_APPARMOR
4441 bool use_apparmor = false;
4442#endif
4443 uid_t saved_uid = getuid();
4444 gid_t saved_gid = getgid();
4445 uid_t uid = UID_INVALID;
4446 gid_t gid = GID_INVALID;
4447 size_t n_fds = n_socket_fds + n_storage_fds, /* fds to pass to the child */
4448 n_keep_fds; /* total number of fds not to close */
4449 int secure_bits;
4450 _cleanup_free_ gid_t *gids_after_pam = NULL;
4451 int ngids_after_pam = 0;
4452 _cleanup_free_ int *fds = NULL;
4453 _cleanup_strv_free_ char **fdnames = NULL;
4454
4455 assert(unit);
4456 assert(command);
4457 assert(context);
4458 assert(params);
4459 assert(exit_status);
4460
4461 /* Explicitly test for CVE-2021-4034 inspired invocations */
4462 assert(command->path);
4463 assert(!strv_isempty(command->argv));
4464
4465 rename_process_from_path(command->path);
4466
4467 /* We reset exactly these signals, since they are the only ones we set to SIG_IGN in the main
4468 * daemon. All others we leave untouched because we set them to SIG_DFL or a valid handler initially,
4469 * both of which will be demoted to SIG_DFL. */
4470 (void) default_signals(SIGNALS_CRASH_HANDLER,
4471 SIGNALS_IGNORE);
4472
4473 if (context->ignore_sigpipe)
4474 (void) ignore_signals(SIGPIPE);
4475
4476 r = reset_signal_mask();
4477 if (r < 0) {
4478 *exit_status = EXIT_SIGNAL_MASK;
4479 return log_unit_error_errno(unit, r, "Failed to set process signal mask: %m");
4480 }
4481
4482 if (params->idle_pipe)
4483 do_idle_pipe_dance(params->idle_pipe);
4484
4485 /* Close fds we don't need very early to make sure we don't block init reexecution because it cannot bind its
4486 * sockets. Among the fds we close are the logging fds, and we want to keep them closed, so that we don't have
4487 * any fds open we don't really want open during the transition. In order to make logging work, we switch the
4488 * log subsystem into open_when_needed mode, so that it reopens the logs on every single log call. */
4489
4490 log_forget_fds();
4491 log_set_open_when_needed(true);
4492 log_settle_target();
4493
4494 /* In case anything used libc syslog(), close this here, too */
4495 closelog();
4496
4497 fds = newdup(int, params_fds, n_fds);
4498 if (!fds) {
4499 *exit_status = EXIT_MEMORY;
4500 return log_oom();
4501 }
4502
4503 fdnames = strv_copy((char**) params->fd_names);
4504 if (!fdnames) {
4505 *exit_status = EXIT_MEMORY;
4506 return log_oom();
4507 }
4508
4509 r = collect_open_file_fds(unit, params->open_files, &fds, &fdnames, &n_fds);
4510 if (r < 0) {
4511 *exit_status = EXIT_FDS;
4512 return log_unit_error_errno(unit, r, "Failed to get OpenFile= file descriptors: %m");
4513 }
4514
4515 int keep_fds[n_fds + 3];
4516 memcpy_safe(keep_fds, fds, n_fds * sizeof(int));
4517 n_keep_fds = n_fds;
4518
4519 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, params->exec_fd, &exec_fd);
4520 if (r < 0) {
4521 *exit_status = EXIT_FDS;
4522 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
4523 }
4524
4525#if HAVE_LIBBPF
4526 if (unit->manager->restrict_fs) {
4527 int bpf_map_fd = lsm_bpf_map_restrict_fs_fd(unit);
4528 if (bpf_map_fd < 0) {
4529 *exit_status = EXIT_FDS;
4530 return log_unit_error_errno(unit, bpf_map_fd, "Failed to get restrict filesystems BPF map fd: %m");
4531 }
4532
4533 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, bpf_map_fd, &bpf_map_fd);
4534 if (r < 0) {
4535 *exit_status = EXIT_FDS;
4536 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
4537 }
4538 }
4539#endif
4540
4541 r = close_remaining_fds(params, runtime, user_lookup_fd, socket_fd, keep_fds, n_keep_fds);
4542 if (r < 0) {
4543 *exit_status = EXIT_FDS;
4544 return log_unit_error_errno(unit, r, "Failed to close unwanted file descriptors: %m");
4545 }
4546
4547 if (!context->same_pgrp &&
4548 setsid() < 0) {
4549 *exit_status = EXIT_SETSID;
4550 return log_unit_error_errno(unit, errno, "Failed to create new process session: %m");
4551 }
4552
4553 exec_context_tty_reset(context, params);
4554
4555 if (unit_shall_confirm_spawn(unit)) {
4556 _cleanup_free_ char *cmdline = NULL;
4557
4558 cmdline = quote_command_line(command->argv, SHELL_ESCAPE_EMPTY);
4559 if (!cmdline) {
4560 *exit_status = EXIT_MEMORY;
4561 return log_oom();
4562 }
4563
4564 r = ask_for_confirmation(context, params->confirm_spawn, unit, cmdline);
4565 if (r != CONFIRM_EXECUTE) {
4566 if (r == CONFIRM_PRETEND_SUCCESS) {
4567 *exit_status = EXIT_SUCCESS;
4568 return 0;
4569 }
4570 *exit_status = EXIT_CONFIRM;
4571 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ECANCELED),
4572 "Execution cancelled by the user");
4573 }
4574 }
4575
4576 /* We are about to invoke NSS and PAM modules. Let's tell them what we are doing here, maybe they care. This is
4577 * used by nss-resolve to disable itself when we are about to start systemd-resolved, to avoid deadlocks. Note
4578 * that these env vars do not survive the execve(), which means they really only apply to the PAM and NSS
4579 * invocations themselves. Also note that while we'll only invoke NSS modules involved in user management they
4580 * might internally call into other NSS modules that are involved in hostname resolution, we never know. */
4581 if (setenv("SYSTEMD_ACTIVATION_UNIT", unit->id, true) != 0 ||
4582 setenv("SYSTEMD_ACTIVATION_SCOPE", runtime_scope_to_string(unit->manager->runtime_scope), true) != 0) {
4583 *exit_status = EXIT_MEMORY;
4584 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
4585 }
4586
4587 if (context->dynamic_user && runtime && runtime->dynamic_creds) {
4588 _cleanup_strv_free_ char **suggested_paths = NULL;
4589
4590 /* On top of that, make sure we bypass our own NSS module nss-systemd comprehensively for any NSS
4591 * checks, if DynamicUser=1 is used, as we shouldn't create a feedback loop with ourselves here. */
4592 if (putenv((char*) "SYSTEMD_NSS_DYNAMIC_BYPASS=1") != 0) {
4593 *exit_status = EXIT_USER;
4594 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
4595 }
4596
4597 r = compile_suggested_paths(context, params, &suggested_paths);
4598 if (r < 0) {
4599 *exit_status = EXIT_MEMORY;
4600 return log_oom();
4601 }
4602
4603 r = dynamic_creds_realize(runtime->dynamic_creds, suggested_paths, &uid, &gid);
4604 if (r < 0) {
4605 *exit_status = EXIT_USER;
4606 if (r == -EILSEQ)
4607 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
4608 "Failed to update dynamic user credentials: User or group with specified name already exists.");
4609 return log_unit_error_errno(unit, r, "Failed to update dynamic user credentials: %m");
4610 }
4611
4612 if (!uid_is_valid(uid)) {
4613 *exit_status = EXIT_USER;
4614 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ESRCH), "UID validation failed for \""UID_FMT"\"", uid);
4615 }
4616
4617 if (!gid_is_valid(gid)) {
4618 *exit_status = EXIT_USER;
4619 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ESRCH), "GID validation failed for \""GID_FMT"\"", gid);
4620 }
4621
4622 if (runtime->dynamic_creds->user)
4623 username = runtime->dynamic_creds->user->name;
4624
4625 } else {
4626 r = get_fixed_user(context, &username, &uid, &gid, &home, &shell);
4627 if (r < 0) {
4628 *exit_status = EXIT_USER;
4629 return log_unit_error_errno(unit, r, "Failed to determine user credentials: %m");
4630 }
4631
4632 r = get_fixed_group(context, &groupname, &gid);
4633 if (r < 0) {
4634 *exit_status = EXIT_GROUP;
4635 return log_unit_error_errno(unit, r, "Failed to determine group credentials: %m");
4636 }
4637 }
4638
4639 /* Initialize user supplementary groups and get SupplementaryGroups= ones */
4640 r = get_supplementary_groups(context, username, groupname, gid,
4641 &supplementary_gids, &ngids);
4642 if (r < 0) {
4643 *exit_status = EXIT_GROUP;
4644 return log_unit_error_errno(unit, r, "Failed to determine supplementary groups: %m");
4645 }
4646
4647 r = send_user_lookup(unit, user_lookup_fd, uid, gid);
4648 if (r < 0) {
4649 *exit_status = EXIT_USER;
4650 return log_unit_error_errno(unit, r, "Failed to send user credentials to PID1: %m");
4651 }
4652
4653 user_lookup_fd = safe_close(user_lookup_fd);
4654
4655 r = acquire_home(context, uid, &home, &home_buffer);
4656 if (r < 0) {
4657 *exit_status = EXIT_CHDIR;
4658 return log_unit_error_errno(unit, r, "Failed to determine $HOME for user: %m");
4659 }
4660
4661 /* If a socket is connected to STDIN/STDOUT/STDERR, we must drop O_NONBLOCK */
4662 if (socket_fd >= 0)
4663 (void) fd_nonblock(socket_fd, false);
4664
4665 /* Journald will try to look-up our cgroup in order to populate _SYSTEMD_CGROUP and _SYSTEMD_UNIT fields.
4666 * Hence we need to migrate to the target cgroup from init.scope before connecting to journald */
4667 if (params->cgroup_path) {
4668 _cleanup_free_ char *p = NULL;
4669
4670 r = exec_parameters_get_cgroup_path(params, &p);
4671 if (r < 0) {
4672 *exit_status = EXIT_CGROUP;
4673 return log_unit_error_errno(unit, r, "Failed to acquire cgroup path: %m");
4674 }
4675
4676 r = cg_attach_everywhere(params->cgroup_supported, p, 0, NULL, NULL);
4677 if (r == -EUCLEAN) {
4678 *exit_status = EXIT_CGROUP;
4679 return log_unit_error_errno(unit, r, "Failed to attach process to cgroup %s "
4680 "because the cgroup or one of its parents or "
4681 "siblings is in the threaded mode: %m", p);
4682 }
4683 if (r < 0) {
4684 *exit_status = EXIT_CGROUP;
4685 return log_unit_error_errno(unit, r, "Failed to attach to cgroup %s: %m", p);
4686 }
4687 }
4688
4689 if (context->network_namespace_path && runtime && runtime->shared && runtime->shared->netns_storage_socket[0] >= 0) {
4690 r = open_shareable_ns_path(runtime->shared->netns_storage_socket, context->network_namespace_path, CLONE_NEWNET);
4691 if (r < 0) {
4692 *exit_status = EXIT_NETWORK;
4693 return log_unit_error_errno(unit, r, "Failed to open network namespace path %s: %m", context->network_namespace_path);
4694 }
4695 }
4696
4697 if (context->ipc_namespace_path && runtime && runtime->shared && runtime->shared->ipcns_storage_socket[0] >= 0) {
4698 r = open_shareable_ns_path(runtime->shared->ipcns_storage_socket, context->ipc_namespace_path, CLONE_NEWIPC);
4699 if (r < 0) {
4700 *exit_status = EXIT_NAMESPACE;
4701 return log_unit_error_errno(unit, r, "Failed to open IPC namespace path %s: %m", context->ipc_namespace_path);
4702 }
4703 }
4704
4705 r = setup_input(context, params, socket_fd, named_iofds);
4706 if (r < 0) {
4707 *exit_status = EXIT_STDIN;
4708 return log_unit_error_errno(unit, r, "Failed to set up standard input: %m");
4709 }
4710
4711 r = setup_output(unit, context, params, STDOUT_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
4712 if (r < 0) {
4713 *exit_status = EXIT_STDOUT;
4714 return log_unit_error_errno(unit, r, "Failed to set up standard output: %m");
4715 }
4716
4717 r = setup_output(unit, context, params, STDERR_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
4718 if (r < 0) {
4719 *exit_status = EXIT_STDERR;
4720 return log_unit_error_errno(unit, r, "Failed to set up standard error output: %m");
4721 }
4722
4723 if (context->oom_score_adjust_set) {
4724 /* When we can't make this change due to EPERM, then let's silently skip over it. User namespaces
4725 * prohibit write access to this file, and we shouldn't trip up over that. */
4726 r = set_oom_score_adjust(context->oom_score_adjust);
4727 if (ERRNO_IS_PRIVILEGE(r))
4728 log_unit_debug_errno(unit, r, "Failed to adjust OOM setting, assuming containerized execution, ignoring: %m");
4729 else if (r < 0) {
4730 *exit_status = EXIT_OOM_ADJUST;
4731 return log_unit_error_errno(unit, r, "Failed to adjust OOM setting: %m");
4732 }
4733 }
4734
4735 if (context->coredump_filter_set) {
4736 r = set_coredump_filter(context->coredump_filter);
4737 if (ERRNO_IS_PRIVILEGE(r))
4738 log_unit_debug_errno(unit, r, "Failed to adjust coredump_filter, ignoring: %m");
4739 else if (r < 0)
4740 return log_unit_error_errno(unit, r, "Failed to adjust coredump_filter: %m");
4741 }
4742
4743 if (context->nice_set) {
4744 r = setpriority_closest(context->nice);
4745 if (r < 0)
4746 return log_unit_error_errno(unit, r, "Failed to set up process scheduling priority (nice level): %m");
4747 }
4748
4749 if (context->cpu_sched_set) {
4750 struct sched_param param = {
4751 .sched_priority = context->cpu_sched_priority,
4752 };
4753
4754 r = sched_setscheduler(0,
4755 context->cpu_sched_policy |
4756 (context->cpu_sched_reset_on_fork ?
4757 SCHED_RESET_ON_FORK : 0),
4758 &param);
4759 if (r < 0) {
4760 *exit_status = EXIT_SETSCHEDULER;
4761 return log_unit_error_errno(unit, errno, "Failed to set up CPU scheduling: %m");
4762 }
4763 }
4764
4765 if (context->cpu_affinity_from_numa || context->cpu_set.set) {
4766 _cleanup_(cpu_set_reset) CPUSet converted_cpu_set = {};
4767 const CPUSet *cpu_set;
4768
4769 if (context->cpu_affinity_from_numa) {
4770 r = exec_context_cpu_affinity_from_numa(context, &converted_cpu_set);
4771 if (r < 0) {
4772 *exit_status = EXIT_CPUAFFINITY;
4773 return log_unit_error_errno(unit, r, "Failed to derive CPU affinity mask from NUMA mask: %m");
4774 }
4775
4776 cpu_set = &converted_cpu_set;
4777 } else
4778 cpu_set = &context->cpu_set;
4779
4780 if (sched_setaffinity(0, cpu_set->allocated, cpu_set->set) < 0) {
4781 *exit_status = EXIT_CPUAFFINITY;
4782 return log_unit_error_errno(unit, errno, "Failed to set up CPU affinity: %m");
4783 }
4784 }
4785
4786 if (mpol_is_valid(numa_policy_get_type(&context->numa_policy))) {
4787 r = apply_numa_policy(&context->numa_policy);
4788 if (r < 0) {
4789 if (ERRNO_IS_NOT_SUPPORTED(r))
4790 log_unit_debug_errno(unit, r, "NUMA support not available, ignoring.");
4791 else {
4792 *exit_status = EXIT_NUMA_POLICY;
4793 return log_unit_error_errno(unit, r, "Failed to set NUMA memory policy: %m");
4794 }
4795 }
4796 }
4797
4798 if (context->ioprio_set)
4799 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) {
4800 *exit_status = EXIT_IOPRIO;
4801 return log_unit_error_errno(unit, errno, "Failed to set up IO scheduling priority: %m");
4802 }
4803
4804 if (context->timer_slack_nsec != NSEC_INFINITY)
4805 if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) {
4806 *exit_status = EXIT_TIMERSLACK;
4807 return log_unit_error_errno(unit, errno, "Failed to set up timer slack: %m");
4808 }
4809
4810 if (context->personality != PERSONALITY_INVALID) {
4811 r = safe_personality(context->personality);
4812 if (r < 0) {
4813 *exit_status = EXIT_PERSONALITY;
4814 return log_unit_error_errno(unit, r, "Failed to set up execution domain (personality): %m");
4815 }
4816 }
4817
4818 if (context->utmp_id) {
4819 const char *line = context->tty_path ?
4820 (path_startswith(context->tty_path, "/dev/") ?: context->tty_path) :
4821 NULL;
4822 utmp_put_init_process(context->utmp_id, getpid_cached(), getsid(0),
4823 line,
4824 context->utmp_mode == EXEC_UTMP_INIT ? INIT_PROCESS :
4825 context->utmp_mode == EXEC_UTMP_LOGIN ? LOGIN_PROCESS :
4826 USER_PROCESS,
4827 username);
4828 }
4829
4830 if (uid_is_valid(uid)) {
4831 r = chown_terminal(STDIN_FILENO, uid);
4832 if (r < 0) {
4833 *exit_status = EXIT_STDIN;
4834 return log_unit_error_errno(unit, r, "Failed to change ownership of terminal: %m");
4835 }
4836 }
4837
4838 if (params->cgroup_path) {
4839 /* If delegation is enabled we'll pass ownership of the cgroup to the user of the new process. On cgroup v1
4840 * this is only about systemd's own hierarchy, i.e. not the controller hierarchies, simply because that's not
4841 * safe. On cgroup v2 there's only one hierarchy anyway, and delegation is safe there, hence in that case only
4842 * touch a single hierarchy too. */
4843
4844 if (params->flags & EXEC_CGROUP_DELEGATE) {
4845 r = cg_set_access(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, uid, gid);
4846 if (r < 0) {
4847 *exit_status = EXIT_CGROUP;
4848 return log_unit_error_errno(unit, r, "Failed to adjust control group access: %m");
4849 }
4850 }
4851
4852 if (cgroup_context && cg_unified() > 0 && is_pressure_supported() > 0) {
4853 if (cgroup_context_want_memory_pressure(cgroup_context)) {
4854 r = cg_get_path("memory", params->cgroup_path, "memory.pressure", &memory_pressure_path);
4855 if (r < 0) {
4856 *exit_status = EXIT_MEMORY;
4857 return log_oom();
4858 }
4859
4860 r = chmod_and_chown(memory_pressure_path, 0644, uid, gid);
4861 if (r < 0) {
4862 log_unit_full_errno(unit, r == -ENOENT || ERRNO_IS_PRIVILEGE(r) ? LOG_DEBUG : LOG_WARNING, r,
4863 "Failed to adjust ownership of '%s', ignoring: %m", memory_pressure_path);
4864 memory_pressure_path = mfree(memory_pressure_path);
4865 }
4866 } else if (cgroup_context->memory_pressure_watch == CGROUP_PRESSURE_WATCH_OFF) {
4867 memory_pressure_path = strdup("/dev/null"); /* /dev/null is explicit indicator for turning of memory pressure watch */
4868 if (!memory_pressure_path) {
4869 *exit_status = EXIT_MEMORY;
4870 return log_oom();
4871 }
4872 }
4873 }
4874 }
4875
4876 needs_mount_namespace = exec_needs_mount_namespace(context, params, runtime);
4877
4878 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
4879 r = setup_exec_directory(context, params, uid, gid, dt, needs_mount_namespace, exit_status);
4880 if (r < 0)
4881 return log_unit_error_errno(unit, r, "Failed to set up special execution directory in %s: %m", params->prefix[dt]);
4882 }
4883
4884 if (FLAGS_SET(params->flags, EXEC_WRITE_CREDENTIALS)) {
4885 r = setup_credentials(context, params, unit->id, uid);
4886 if (r < 0) {
4887 *exit_status = EXIT_CREDENTIALS;
4888 return log_unit_error_errno(unit, r, "Failed to set up credentials: %m");
4889 }
4890 }
4891
4892 r = build_environment(
4893 unit,
4894 context,
4895 params,
4896 cgroup_context,
4897 n_fds,
4898 fdnames,
4899 home,
4900 username,
4901 shell,
4902 journal_stream_dev,
4903 journal_stream_ino,
4904 memory_pressure_path,
4905 &our_env);
4906 if (r < 0) {
4907 *exit_status = EXIT_MEMORY;
4908 return log_oom();
4909 }
4910
4911 r = build_pass_environment(context, &pass_env);
4912 if (r < 0) {
4913 *exit_status = EXIT_MEMORY;
4914 return log_oom();
4915 }
4916
4917 /* The $PATH variable is set to the default path in params->environment. However, this is overridden
4918 * if user-specified fields have $PATH set. The intention is to also override $PATH if the unit does
4919 * not specify PATH but the unit has ExecSearchPath. */
4920 if (!strv_isempty(context->exec_search_path)) {
4921 _cleanup_free_ char *joined = NULL;
4922
4923 joined = strv_join(context->exec_search_path, ":");
4924 if (!joined) {
4925 *exit_status = EXIT_MEMORY;
4926 return log_oom();
4927 }
4928
4929 r = strv_env_assign(&joined_exec_search_path, "PATH", joined);
4930 if (r < 0) {
4931 *exit_status = EXIT_MEMORY;
4932 return log_oom();
4933 }
4934 }
4935
4936 accum_env = strv_env_merge(params->environment,
4937 our_env,
4938 joined_exec_search_path,
4939 pass_env,
4940 context->environment,
4941 files_env);
4942 if (!accum_env) {
4943 *exit_status = EXIT_MEMORY;
4944 return log_oom();
4945 }
4946 accum_env = strv_env_clean(accum_env);
4947
4948 (void) umask(context->umask);
4949
4950 r = setup_keyring(unit, context, params, uid, gid);
4951 if (r < 0) {
4952 *exit_status = EXIT_KEYRING;
4953 return log_unit_error_errno(unit, r, "Failed to set up kernel keyring: %m");
4954 }
4955
4956 /* We need sandboxing if the caller asked us to apply it and the command isn't explicitly excepted
4957 * from it. */
4958 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
4959
4960 /* We need the ambient capability hack, if the caller asked us to apply it and the command is marked
4961 * for it, and the kernel doesn't actually support ambient caps. */
4962 needs_ambient_hack = (params->flags & EXEC_APPLY_SANDBOXING) && (command->flags & EXEC_COMMAND_AMBIENT_MAGIC) && !ambient_capabilities_supported();
4963
4964 /* We need setresuid() if the caller asked us to apply sandboxing and the command isn't explicitly
4965 * excepted from either whole sandboxing or just setresuid() itself, and the ambient hack is not
4966 * desired. */
4967 if (needs_ambient_hack)
4968 needs_setuid = false;
4969 else
4970 needs_setuid = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & (EXEC_COMMAND_FULLY_PRIVILEGED|EXEC_COMMAND_NO_SETUID));
4971
4972 uint64_t capability_ambient_set = context->capability_ambient_set;
4973
4974 if (needs_sandboxing) {
4975 /* MAC enablement checks need to be done before a new mount ns is created, as they rely on
4976 * /sys being present. The actual MAC context application will happen later, as late as
4977 * possible, to avoid impacting our own code paths. */
4978
4979#if HAVE_SELINUX
4980 use_selinux = mac_selinux_use();
4981#endif
4982#if ENABLE_SMACK
4983 use_smack = mac_smack_use();
4984#endif
4985#if HAVE_APPARMOR
4986 use_apparmor = mac_apparmor_use();
4987#endif
4988 }
4989
4990 if (needs_sandboxing) {
4991 int which_failed;
4992
4993 /* Let's set the resource limits before we call into PAM, so that pam_limits wins over what
4994 * is set here. (See below.) */
4995
4996 r = setrlimit_closest_all((const struct rlimit* const *) context->rlimit, &which_failed);
4997 if (r < 0) {
4998 *exit_status = EXIT_LIMITS;
4999 return log_unit_error_errno(unit, r, "Failed to adjust resource limit RLIMIT_%s: %m", rlimit_to_string(which_failed));
5000 }
5001 }
5002
5003 if (needs_setuid && context->pam_name && username) {
5004 /* Let's call into PAM after we set up our own idea of resource limits to that pam_limits
5005 * wins here. (See above.) */
5006
5007 /* All fds passed in the fds array will be closed in the pam child process. */
5008 r = setup_pam(context->pam_name, username, uid, gid, context->tty_path, &accum_env, fds, n_fds);
5009 if (r < 0) {
5010 *exit_status = EXIT_PAM;
5011 return log_unit_error_errno(unit, r, "Failed to set up PAM session: %m");
5012 }
5013
5014 if (ambient_capabilities_supported()) {
5015 uint64_t ambient_after_pam;
5016
5017 /* PAM modules might have set some ambient caps. Query them here and merge them into
5018 * the caps we want to set in the end, so that we don't end up unsetting them. */
5019 r = capability_get_ambient(&ambient_after_pam);
5020 if (r < 0) {
5021 *exit_status = EXIT_CAPABILITIES;
5022 return log_unit_error_errno(unit, r, "Failed to query ambient caps: %m");
5023 }
5024
5025 capability_ambient_set |= ambient_after_pam;
5026 }
5027
5028 ngids_after_pam = getgroups_alloc(&gids_after_pam);
5029 if (ngids_after_pam < 0) {
5030 *exit_status = EXIT_MEMORY;
5031 return log_unit_error_errno(unit, ngids_after_pam, "Failed to obtain groups after setting up PAM: %m");
5032 }
5033 }
5034
5035 if (needs_sandboxing && context->private_users && have_effective_cap(CAP_SYS_ADMIN) <= 0) {
5036 /* If we're unprivileged, set up the user namespace first to enable use of the other namespaces.
5037 * Users with CAP_SYS_ADMIN can set up user namespaces last because they will be able to
5038 * set up the all of the other namespaces (i.e. network, mount, UTS) without a user namespace. */
5039
5040 userns_set_up = true;
5041 r = setup_private_users(saved_uid, saved_gid, uid, gid);
5042 if (r < 0) {
5043 *exit_status = EXIT_USER;
5044 return log_unit_error_errno(unit, r, "Failed to set up user namespacing for unprivileged user: %m");
5045 }
5046 }
5047
5048 if (exec_needs_network_namespace(context) && runtime && runtime->shared && runtime->shared->netns_storage_socket[0] >= 0) {
5049
5050 if (ns_type_supported(NAMESPACE_NET)) {
5051 r = setup_shareable_ns(runtime->shared->netns_storage_socket, CLONE_NEWNET);
5052 if (r < 0) {
5053 if (ERRNO_IS_PRIVILEGE(r))
5054 log_unit_warning_errno(unit, r,
5055 "PrivateNetwork=yes is configured, but network namespace setup failed, ignoring: %m");
5056 else {
5057 *exit_status = EXIT_NETWORK;
5058 return log_unit_error_errno(unit, r, "Failed to set up network namespacing: %m");
5059 }
5060 }
5061 } else if (context->network_namespace_path) {
5062 *exit_status = EXIT_NETWORK;
5063 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
5064 "NetworkNamespacePath= is not supported, refusing.");
5065 } else
5066 log_unit_warning(unit, "PrivateNetwork=yes is configured, but the kernel does not support network namespaces, ignoring.");
5067 }
5068
5069 if (exec_needs_ipc_namespace(context) && runtime && runtime->shared && runtime->shared->ipcns_storage_socket[0] >= 0) {
5070
5071 if (ns_type_supported(NAMESPACE_IPC)) {
5072 r = setup_shareable_ns(runtime->shared->ipcns_storage_socket, CLONE_NEWIPC);
5073 if (r == -EPERM)
5074 log_unit_warning_errno(unit, r,
5075 "PrivateIPC=yes is configured, but IPC namespace setup failed, ignoring: %m");
5076 else if (r < 0) {
5077 *exit_status = EXIT_NAMESPACE;
5078 return log_unit_error_errno(unit, r, "Failed to set up IPC namespacing: %m");
5079 }
5080 } else if (context->ipc_namespace_path) {
5081 *exit_status = EXIT_NAMESPACE;
5082 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
5083 "IPCNamespacePath= is not supported, refusing.");
5084 } else
5085 log_unit_warning(unit, "PrivateIPC=yes is configured, but the kernel does not support IPC namespaces, ignoring.");
5086 }
5087
5088 if (needs_mount_namespace) {
5089 _cleanup_free_ char *error_path = NULL;
5090
5091 r = apply_mount_namespace(unit, command->flags, context, params, runtime, memory_pressure_path, &error_path);
5092 if (r < 0) {
5093 *exit_status = EXIT_NAMESPACE;
5094 return log_unit_error_errno(unit, r, "Failed to set up mount namespacing%s%s: %m",
5095 error_path ? ": " : "", strempty(error_path));
5096 }
5097 }
5098
5099 if (needs_sandboxing) {
5100 r = apply_protect_hostname(unit, context, exit_status);
5101 if (r < 0)
5102 return r;
5103 }
5104
5105 /* Drop groups as early as possible.
5106 * This needs to be done after PrivateDevices=y setup as device nodes should be owned by the host's root.
5107 * For non-root in a userns, devices will be owned by the user/group before the group change, and nobody. */
5108 if (needs_setuid) {
5109 _cleanup_free_ gid_t *gids_to_enforce = NULL;
5110 int ngids_to_enforce = 0;
5111
5112 ngids_to_enforce = merge_gid_lists(supplementary_gids,
5113 ngids,
5114 gids_after_pam,
5115 ngids_after_pam,
5116 &gids_to_enforce);
5117 if (ngids_to_enforce < 0) {
5118 *exit_status = EXIT_MEMORY;
5119 return log_unit_error_errno(unit,
5120 ngids_to_enforce,
5121 "Failed to merge group lists. Group membership might be incorrect: %m");
5122 }
5123
5124 r = enforce_groups(gid, gids_to_enforce, ngids_to_enforce);
5125 if (r < 0) {
5126 *exit_status = EXIT_GROUP;
5127 return log_unit_error_errno(unit, r, "Changing group credentials failed: %m");
5128 }
5129 }
5130
5131 /* If the user namespace was not set up above, try to do it now.
5132 * It's preferred to set up the user namespace later (after all other namespaces) so as not to be
5133 * restricted by rules pertaining to combining user namespaces with other namespaces (e.g. in the
5134 * case of mount namespaces being less privileged when the mount point list is copied from a
5135 * different user namespace). */
5136
5137 if (needs_sandboxing && context->private_users && !userns_set_up) {
5138 r = setup_private_users(saved_uid, saved_gid, uid, gid);
5139 if (r < 0) {
5140 *exit_status = EXIT_USER;
5141 return log_unit_error_errno(unit, r, "Failed to set up user namespacing: %m");
5142 }
5143 }
5144
5145 /* Now that the mount namespace has been set up and privileges adjusted, let's look for the thing we
5146 * shall execute. */
5147
5148 _cleanup_free_ char *executable = NULL;
5149 _cleanup_close_ int executable_fd = -EBADF;
5150 r = find_executable_full(command->path, /* root= */ NULL, context->exec_search_path, false, &executable, &executable_fd);
5151 if (r < 0) {
5152 if (r != -ENOMEM && (command->flags & EXEC_COMMAND_IGNORE_FAILURE)) {
5153 log_unit_struct_errno(unit, LOG_INFO, r,
5154 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
5155 LOG_UNIT_INVOCATION_ID(unit),
5156 LOG_UNIT_MESSAGE(unit, "Executable %s missing, skipping: %m",
5157 command->path),
5158 "EXECUTABLE=%s", command->path);
5159 return 0;
5160 }
5161
5162 *exit_status = EXIT_EXEC;
5163
5164 return log_unit_struct_errno(unit, LOG_INFO, r,
5165 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
5166 LOG_UNIT_INVOCATION_ID(unit),
5167 LOG_UNIT_MESSAGE(unit, "Failed to locate executable %s: %m",
5168 command->path),
5169 "EXECUTABLE=%s", command->path);
5170 }
5171
5172 r = add_shifted_fd(keep_fds, ELEMENTSOF(keep_fds), &n_keep_fds, executable_fd, &executable_fd);
5173 if (r < 0) {
5174 *exit_status = EXIT_FDS;
5175 return log_unit_error_errno(unit, r, "Failed to shift fd and set FD_CLOEXEC: %m");
5176 }
5177
5178#if HAVE_SELINUX
5179 if (needs_sandboxing && use_selinux && params->selinux_context_net) {
5180 int fd = -EBADF;
5181
5182 if (socket_fd >= 0)
5183 fd = socket_fd;
5184 else if (params->n_socket_fds == 1)
5185 /* If stdin is not connected to a socket but we are triggered by exactly one socket unit then we
5186 * use context from that fd to compute the label. */
5187 fd = params->fds[0];
5188
5189 if (fd >= 0) {
5190 r = mac_selinux_get_child_mls_label(fd, executable, context->selinux_context, &mac_selinux_context_net);
5191 if (r < 0) {
5192 if (!context->selinux_context_ignore) {
5193 *exit_status = EXIT_SELINUX_CONTEXT;
5194 return log_unit_error_errno(unit, r, "Failed to determine SELinux context: %m");
5195 }
5196 log_unit_debug_errno(unit, r, "Failed to determine SELinux context, ignoring: %m");
5197 }
5198 }
5199 }
5200#endif
5201
5202 /* We repeat the fd closing here, to make sure that nothing is leaked from the PAM modules. Note that
5203 * we are more aggressive this time, since we don't need socket_fd and the netns and ipcns fds any
5204 * more. We do keep exec_fd however, if we have it, since we need to keep it open until the final
5205 * execve(). */
5206
5207 r = close_all_fds(keep_fds, n_keep_fds);
5208 if (r >= 0)
5209 r = shift_fds(fds, n_fds);
5210 if (r >= 0)
5211 r = flags_fds(fds, n_socket_fds, n_fds, context->non_blocking);
5212 if (r < 0) {
5213 *exit_status = EXIT_FDS;
5214 return log_unit_error_errno(unit, r, "Failed to adjust passed file descriptors: %m");
5215 }
5216
5217 /* At this point, the fds we want to pass to the program are all ready and set up, with O_CLOEXEC turned off
5218 * and at the right fd numbers. The are no other fds open, with one exception: the exec_fd if it is defined,
5219 * and it has O_CLOEXEC set, after all we want it to be closed by the execve(), so that our parent knows we
5220 * came this far. */
5221
5222 secure_bits = context->secure_bits;
5223
5224 if (needs_sandboxing) {
5225 uint64_t bset;
5226
5227 /* Set the RTPRIO resource limit to 0, but only if nothing else was explicitly requested.
5228 * (Note this is placed after the general resource limit initialization, see above, in order
5229 * to take precedence.) */
5230 if (context->restrict_realtime && !context->rlimit[RLIMIT_RTPRIO]) {
5231 if (setrlimit(RLIMIT_RTPRIO, &RLIMIT_MAKE_CONST(0)) < 0) {
5232 *exit_status = EXIT_LIMITS;
5233 return log_unit_error_errno(unit, errno, "Failed to adjust RLIMIT_RTPRIO resource limit: %m");
5234 }
5235 }
5236
5237#if ENABLE_SMACK
5238 /* LSM Smack needs the capability CAP_MAC_ADMIN to change the current execution security context of the
5239 * process. This is the latest place before dropping capabilities. Other MAC context are set later. */
5240 if (use_smack) {
5241 r = setup_smack(unit->manager, context, executable_fd);
5242 if (r < 0 && !context->smack_process_label_ignore) {
5243 *exit_status = EXIT_SMACK_PROCESS_LABEL;
5244 return log_unit_error_errno(unit, r, "Failed to set SMACK process label: %m");
5245 }
5246 }
5247#endif
5248
5249 bset = context->capability_bounding_set;
5250 /* If the ambient caps hack is enabled (which means the kernel can't do them, and the user asked for
5251 * our magic fallback), then let's add some extra caps, so that the service can drop privs of its own,
5252 * instead of us doing that */
5253 if (needs_ambient_hack)
5254 bset |= (UINT64_C(1) << CAP_SETPCAP) |
5255 (UINT64_C(1) << CAP_SETUID) |
5256 (UINT64_C(1) << CAP_SETGID);
5257
5258 if (!cap_test_all(bset)) {
5259 r = capability_bounding_set_drop(bset, /* right_now= */ false);
5260 if (r < 0) {
5261 *exit_status = EXIT_CAPABILITIES;
5262 return log_unit_error_errno(unit, r, "Failed to drop capabilities: %m");
5263 }
5264 }
5265
5266 /* Ambient capabilities are cleared during setresuid() (in enforce_user()) even with
5267 * keep-caps set.
5268 *
5269 * To be able to raise the ambient capabilities after setresuid() they have to be added to
5270 * the inherited set and keep caps has to be set (done in enforce_user()). After setresuid()
5271 * the ambient capabilities can be raised as they are present in the permitted and
5272 * inhertiable set. However it is possible that someone wants to set ambient capabilities
5273 * without changing the user, so we also set the ambient capabilities here.
5274 *
5275 * The requested ambient capabilities are raised in the inheritable set if the second
5276 * argument is true. */
5277 if (!needs_ambient_hack) {
5278 r = capability_ambient_set_apply(capability_ambient_set, /* also_inherit= */ true);
5279 if (r < 0) {
5280 *exit_status = EXIT_CAPABILITIES;
5281 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (before UID change): %m");
5282 }
5283 }
5284 }
5285
5286 /* chroot to root directory first, before we lose the ability to chroot */
5287 r = apply_root_directory(context, params, needs_mount_namespace, exit_status);
5288 if (r < 0)
5289 return log_unit_error_errno(unit, r, "Chrooting to the requested root directory failed: %m");
5290
5291 if (needs_setuid) {
5292 if (uid_is_valid(uid)) {
5293 r = enforce_user(context, uid, capability_ambient_set);
5294 if (r < 0) {
5295 *exit_status = EXIT_USER;
5296 return log_unit_error_errno(unit, r, "Failed to change UID to " UID_FMT ": %m", uid);
5297 }
5298
5299 if (!needs_ambient_hack && capability_ambient_set != 0) {
5300
5301 /* Raise the ambient capabilities after user change. */
5302 r = capability_ambient_set_apply(capability_ambient_set, /* also_inherit= */ false);
5303 if (r < 0) {
5304 *exit_status = EXIT_CAPABILITIES;
5305 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (after UID change): %m");
5306 }
5307 }
5308 }
5309 }
5310
5311 /* Apply working directory here, because the working directory might be on NFS and only the user running
5312 * this service might have the correct privilege to change to the working directory */
5313 r = apply_working_directory(context, params, home, exit_status);
5314 if (r < 0)
5315 return log_unit_error_errno(unit, r, "Changing to the requested working directory failed: %m");
5316
5317 if (needs_sandboxing) {
5318 /* Apply other MAC contexts late, but before seccomp syscall filtering, as those should really be last to
5319 * influence our own codepaths as little as possible. Moreover, applying MAC contexts usually requires
5320 * syscalls that are subject to seccomp filtering, hence should probably be applied before the syscalls
5321 * are restricted. */
5322
5323#if HAVE_SELINUX
5324 if (use_selinux) {
5325 char *exec_context = mac_selinux_context_net ?: context->selinux_context;
5326
5327 if (exec_context) {
5328 r = setexeccon(exec_context);
5329 if (r < 0) {
5330 if (!context->selinux_context_ignore) {
5331 *exit_status = EXIT_SELINUX_CONTEXT;
5332 return log_unit_error_errno(unit, r, "Failed to change SELinux context to %s: %m", exec_context);
5333 }
5334 log_unit_debug_errno(unit, r, "Failed to change SELinux context to %s, ignoring: %m", exec_context);
5335 }
5336 }
5337 }
5338#endif
5339
5340#if HAVE_APPARMOR
5341 if (use_apparmor && context->apparmor_profile) {
5342 r = aa_change_onexec(context->apparmor_profile);
5343 if (r < 0 && !context->apparmor_profile_ignore) {
5344 *exit_status = EXIT_APPARMOR_PROFILE;
5345 return log_unit_error_errno(unit, errno, "Failed to prepare AppArmor profile change to %s: %m", context->apparmor_profile);
5346 }
5347 }
5348#endif
5349
5350 /* PR_GET_SECUREBITS is not privileged, while PR_SET_SECUREBITS is. So to suppress potential
5351 * EPERMs we'll try not to call PR_SET_SECUREBITS unless necessary. Setting securebits
5352 * requires CAP_SETPCAP. */
5353 if (prctl(PR_GET_SECUREBITS) != secure_bits) {
5354 /* CAP_SETPCAP is required to set securebits. This capability is raised into the
5355 * effective set here.
5356 *
5357 * The effective set is overwritten during execve() with the following values:
5358 *
5359 * - ambient set (for non-root processes)
5360 *
5361 * - (inheritable | bounding) set for root processes)
5362 *
5363 * Hence there is no security impact to raise it in the effective set before execve
5364 */
5365 r = capability_gain_cap_setpcap(/* return_caps= */ NULL);
5366 if (r < 0) {
5367 *exit_status = EXIT_CAPABILITIES;
5368 return log_unit_error_errno(unit, r, "Failed to gain CAP_SETPCAP for setting secure bits");
5369 }
5370 if (prctl(PR_SET_SECUREBITS, secure_bits) < 0) {
5371 *exit_status = EXIT_SECUREBITS;
5372 return log_unit_error_errno(unit, errno, "Failed to set process secure bits: %m");
5373 }
5374 }
5375
5376 if (context_has_no_new_privileges(context))
5377 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
5378 *exit_status = EXIT_NO_NEW_PRIVILEGES;
5379 return log_unit_error_errno(unit, errno, "Failed to disable new privileges: %m");
5380 }
5381
5382#if HAVE_SECCOMP
5383 r = apply_address_families(unit, context);
5384 if (r < 0) {
5385 *exit_status = EXIT_ADDRESS_FAMILIES;
5386 return log_unit_error_errno(unit, r, "Failed to restrict address families: %m");
5387 }
5388
5389 r = apply_memory_deny_write_execute(unit, context);
5390 if (r < 0) {
5391 *exit_status = EXIT_SECCOMP;
5392 return log_unit_error_errno(unit, r, "Failed to disable writing to executable memory: %m");
5393 }
5394
5395 r = apply_restrict_realtime(unit, context);
5396 if (r < 0) {
5397 *exit_status = EXIT_SECCOMP;
5398 return log_unit_error_errno(unit, r, "Failed to apply realtime restrictions: %m");
5399 }
5400
5401 r = apply_restrict_suid_sgid(unit, context);
5402 if (r < 0) {
5403 *exit_status = EXIT_SECCOMP;
5404 return log_unit_error_errno(unit, r, "Failed to apply SUID/SGID restrictions: %m");
5405 }
5406
5407 r = apply_restrict_namespaces(unit, context);
5408 if (r < 0) {
5409 *exit_status = EXIT_SECCOMP;
5410 return log_unit_error_errno(unit, r, "Failed to apply namespace restrictions: %m");
5411 }
5412
5413 r = apply_protect_sysctl(unit, context);
5414 if (r < 0) {
5415 *exit_status = EXIT_SECCOMP;
5416 return log_unit_error_errno(unit, r, "Failed to apply sysctl restrictions: %m");
5417 }
5418
5419 r = apply_protect_kernel_modules(unit, context);
5420 if (r < 0) {
5421 *exit_status = EXIT_SECCOMP;
5422 return log_unit_error_errno(unit, r, "Failed to apply module loading restrictions: %m");
5423 }
5424
5425 r = apply_protect_kernel_logs(unit, context);
5426 if (r < 0) {
5427 *exit_status = EXIT_SECCOMP;
5428 return log_unit_error_errno(unit, r, "Failed to apply kernel log restrictions: %m");
5429 }
5430
5431 r = apply_protect_clock(unit, context);
5432 if (r < 0) {
5433 *exit_status = EXIT_SECCOMP;
5434 return log_unit_error_errno(unit, r, "Failed to apply clock restrictions: %m");
5435 }
5436
5437 r = apply_private_devices(unit, context);
5438 if (r < 0) {
5439 *exit_status = EXIT_SECCOMP;
5440 return log_unit_error_errno(unit, r, "Failed to set up private devices: %m");
5441 }
5442
5443 r = apply_syscall_archs(unit, context);
5444 if (r < 0) {
5445 *exit_status = EXIT_SECCOMP;
5446 return log_unit_error_errno(unit, r, "Failed to apply syscall architecture restrictions: %m");
5447 }
5448
5449 r = apply_lock_personality(unit, context);
5450 if (r < 0) {
5451 *exit_status = EXIT_SECCOMP;
5452 return log_unit_error_errno(unit, r, "Failed to lock personalities: %m");
5453 }
5454
5455 r = apply_syscall_log(unit, context);
5456 if (r < 0) {
5457 *exit_status = EXIT_SECCOMP;
5458 return log_unit_error_errno(unit, r, "Failed to apply system call log filters: %m");
5459 }
5460
5461 /* This really should remain the last step before the execve(), to make sure our own code is unaffected
5462 * by the filter as little as possible. */
5463 r = apply_syscall_filter(unit, context, needs_ambient_hack);
5464 if (r < 0) {
5465 *exit_status = EXIT_SECCOMP;
5466 return log_unit_error_errno(unit, r, "Failed to apply system call filters: %m");
5467 }
5468#endif
5469
5470#if HAVE_LIBBPF
5471 r = apply_restrict_filesystems(unit, context);
5472 if (r < 0) {
5473 *exit_status = EXIT_BPF;
5474 return log_unit_error_errno(unit, r, "Failed to restrict filesystems: %m");
5475 }
5476#endif
5477
5478 }
5479
5480 if (!strv_isempty(context->unset_environment)) {
5481 char **ee = NULL;
5482
5483 ee = strv_env_delete(accum_env, 1, context->unset_environment);
5484 if (!ee) {
5485 *exit_status = EXIT_MEMORY;
5486 return log_oom();
5487 }
5488
5489 strv_free_and_replace(accum_env, ee);
5490 }
5491
5492 if (!FLAGS_SET(command->flags, EXEC_COMMAND_NO_ENV_EXPAND)) {
5493 replaced_argv = replace_env_argv(command->argv, accum_env);
5494 if (!replaced_argv) {
5495 *exit_status = EXIT_MEMORY;
5496 return log_oom();
5497 }
5498 final_argv = replaced_argv;
5499 } else
5500 final_argv = command->argv;
5501
5502 log_command_line(unit, "Executing", executable, final_argv);
5503
5504 if (exec_fd >= 0) {
5505 uint8_t hot = 1;
5506
5507 /* We have finished with all our initializations. Let's now let the manager know that. From this point
5508 * on, if the manager sees POLLHUP on the exec_fd, then execve() was successful. */
5509
5510 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
5511 *exit_status = EXIT_EXEC;
5512 return log_unit_error_errno(unit, errno, "Failed to enable exec_fd: %m");
5513 }
5514 }
5515
5516 r = fexecve_or_execve(executable_fd, executable, final_argv, accum_env);
5517
5518 if (exec_fd >= 0) {
5519 uint8_t hot = 0;
5520
5521 /* The execve() failed. This means the exec_fd is still open. Which means we need to tell the manager
5522 * that POLLHUP on it no longer means execve() succeeded. */
5523
5524 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
5525 *exit_status = EXIT_EXEC;
5526 return log_unit_error_errno(unit, errno, "Failed to disable exec_fd: %m");
5527 }
5528 }
5529
5530 *exit_status = EXIT_EXEC;
5531 return log_unit_error_errno(unit, r, "Failed to execute %s: %m", executable);
5532}
5533
5534static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l);
5535static int exec_context_named_iofds(const ExecContext *c, const ExecParameters *p, int named_iofds[static 3]);
5536
5537int exec_spawn(Unit *unit,
5538 ExecCommand *command,
5539 const ExecContext *context,
5540 const ExecParameters *params,
5541 ExecRuntime *runtime,
5542 const CGroupContext *cgroup_context,
5543 pid_t *ret) {
5544
5545 int socket_fd, r, named_iofds[3] = { -1, -1, -1 }, *fds = NULL;
5546 _cleanup_free_ char *subcgroup_path = NULL;
5547 _cleanup_strv_free_ char **files_env = NULL;
5548 size_t n_storage_fds = 0, n_socket_fds = 0;
5549 pid_t pid;
5550
5551 assert(unit);
5552 assert(command);
5553 assert(context);
5554 assert(ret);
5555 assert(params);
5556 assert(params->fds || (params->n_socket_fds + params->n_storage_fds <= 0));
5557
5558 LOG_CONTEXT_PUSH_UNIT(unit);
5559
5560 if (context->std_input == EXEC_INPUT_SOCKET ||
5561 context->std_output == EXEC_OUTPUT_SOCKET ||
5562 context->std_error == EXEC_OUTPUT_SOCKET) {
5563
5564 if (params->n_socket_fds > 1)
5565 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EINVAL), "Got more than one socket.");
5566
5567 if (params->n_socket_fds == 0)
5568 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EINVAL), "Got no socket.");
5569
5570 socket_fd = params->fds[0];
5571 } else {
5572 socket_fd = -EBADF;
5573 fds = params->fds;
5574 n_socket_fds = params->n_socket_fds;
5575 n_storage_fds = params->n_storage_fds;
5576 }
5577
5578 r = exec_context_named_iofds(context, params, named_iofds);
5579 if (r < 0)
5580 return log_unit_error_errno(unit, r, "Failed to load a named file descriptor: %m");
5581
5582 r = exec_context_load_environment(unit, context, &files_env);
5583 if (r < 0)
5584 return log_unit_error_errno(unit, r, "Failed to load environment files: %m");
5585
5586 /* Fork with up-to-date SELinux label database, so the child inherits the up-to-date db
5587 and, until the next SELinux policy changes, we save further reloads in future children. */
5588 mac_selinux_maybe_reload();
5589
5590 /* We won't know the real executable path until we create the mount namespace in the child, but we
5591 want to log from the parent, so we use the possibly inaccurate path here. */
5592 log_command_line(unit, "About to execute", command->path, command->argv);
5593
5594 if (params->cgroup_path) {
5595 r = exec_parameters_get_cgroup_path(params, &subcgroup_path);
5596 if (r < 0)
5597 return log_unit_error_errno(unit, r, "Failed to acquire subcgroup path: %m");
5598 if (r > 0) { /* We are using a child cgroup */
5599 r = cg_create(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path);
5600 if (r < 0)
5601 return log_unit_error_errno(unit, r, "Failed to create control group '%s': %m", subcgroup_path);
5602
5603 /* Normally we would not propagate the xattrs to children but since we created this
5604 * sub-cgroup internally we should do it. */
5605 cgroup_oomd_xattr_apply(unit, subcgroup_path);
5606 cgroup_log_xattr_apply(unit, subcgroup_path);
5607 }
5608 }
5609
5610 pid = fork();
5611 if (pid < 0)
5612 return log_unit_error_errno(unit, errno, "Failed to fork: %m");
5613
5614 if (pid == 0) {
5615 int exit_status = EXIT_SUCCESS;
5616
5617 r = exec_child(unit,
5618 command,
5619 context,
5620 params,
5621 runtime,
5622 cgroup_context,
5623 socket_fd,
5624 named_iofds,
5625 fds,
5626 n_socket_fds,
5627 n_storage_fds,
5628 files_env,
5629 unit->manager->user_lookup_fds[1],
5630 &exit_status);
5631
5632 if (r < 0) {
5633 const char *status =
5634 exit_status_to_string(exit_status,
5635 EXIT_STATUS_LIBC | EXIT_STATUS_SYSTEMD);
5636
5637 log_unit_struct_errno(unit, LOG_ERR, r,
5638 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
5639 LOG_UNIT_INVOCATION_ID(unit),
5640 LOG_UNIT_MESSAGE(unit, "Failed at step %s spawning %s: %m",
5641 status, command->path),
5642 "EXECUTABLE=%s", command->path);
5643 }
5644
5645 _exit(exit_status);
5646 }
5647
5648 log_unit_debug(unit, "Forked %s as "PID_FMT, command->path, pid);
5649
5650 /* We add the new process to the cgroup both in the child (so that we can be sure that no user code is ever
5651 * executed outside of the cgroup) and in the parent (so that we can be sure that when we kill the cgroup the
5652 * process will be killed too). */
5653 if (subcgroup_path)
5654 (void) cg_attach(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path, pid);
5655
5656 exec_status_start(&command->exec_status, pid);
5657
5658 *ret = pid;
5659 return 0;
5660}
5661
5662void exec_context_init(ExecContext *c) {
5663 assert(c);
5664
5665 c->umask = 0022;
5666 c->ioprio = IOPRIO_DEFAULT_CLASS_AND_PRIO;
5667 c->cpu_sched_policy = SCHED_OTHER;
5668 c->syslog_priority = LOG_DAEMON|LOG_INFO;
5669 c->syslog_level_prefix = true;
5670 c->ignore_sigpipe = true;
5671 c->timer_slack_nsec = NSEC_INFINITY;
5672 c->personality = PERSONALITY_INVALID;
5673 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
5674 c->directories[t].mode = 0755;
5675 c->timeout_clean_usec = USEC_INFINITY;
5676 c->capability_bounding_set = CAP_MASK_UNSET;
5677 assert_cc(NAMESPACE_FLAGS_INITIAL != NAMESPACE_FLAGS_ALL);
5678 c->restrict_namespaces = NAMESPACE_FLAGS_INITIAL;
5679 c->log_level_max = -1;
5680#if HAVE_SECCOMP
5681 c->syscall_errno = SECCOMP_ERROR_NUMBER_KILL;
5682#endif
5683 c->tty_rows = UINT_MAX;
5684 c->tty_cols = UINT_MAX;
5685 numa_policy_reset(&c->numa_policy);
5686 c->private_mounts = -1;
5687}
5688
5689void exec_context_done(ExecContext *c) {
5690 assert(c);
5691
5692 c->environment = strv_free(c->environment);
5693 c->environment_files = strv_free(c->environment_files);
5694 c->pass_environment = strv_free(c->pass_environment);
5695 c->unset_environment = strv_free(c->unset_environment);
5696
5697 rlimit_free_all(c->rlimit);
5698
5699 for (size_t l = 0; l < 3; l++) {
5700 c->stdio_fdname[l] = mfree(c->stdio_fdname[l]);
5701 c->stdio_file[l] = mfree(c->stdio_file[l]);
5702 }
5703
5704 c->working_directory = mfree(c->working_directory);
5705 c->root_directory = mfree(c->root_directory);
5706 c->root_image = mfree(c->root_image);
5707 c->root_image_options = mount_options_free_all(c->root_image_options);
5708 c->root_hash = mfree(c->root_hash);
5709 c->root_hash_size = 0;
5710 c->root_hash_path = mfree(c->root_hash_path);
5711 c->root_hash_sig = mfree(c->root_hash_sig);
5712 c->root_hash_sig_size = 0;
5713 c->root_hash_sig_path = mfree(c->root_hash_sig_path);
5714 c->root_verity = mfree(c->root_verity);
5715 c->extension_images = mount_image_free_many(c->extension_images, &c->n_extension_images);
5716 c->extension_directories = strv_free(c->extension_directories);
5717 c->tty_path = mfree(c->tty_path);
5718 c->syslog_identifier = mfree(c->syslog_identifier);
5719 c->user = mfree(c->user);
5720 c->group = mfree(c->group);
5721
5722 c->supplementary_groups = strv_free(c->supplementary_groups);
5723
5724 c->pam_name = mfree(c->pam_name);
5725
5726 c->read_only_paths = strv_free(c->read_only_paths);
5727 c->read_write_paths = strv_free(c->read_write_paths);
5728 c->inaccessible_paths = strv_free(c->inaccessible_paths);
5729 c->exec_paths = strv_free(c->exec_paths);
5730 c->no_exec_paths = strv_free(c->no_exec_paths);
5731 c->exec_search_path = strv_free(c->exec_search_path);
5732
5733 bind_mount_free_many(c->bind_mounts, c->n_bind_mounts);
5734 c->bind_mounts = NULL;
5735 c->n_bind_mounts = 0;
5736 temporary_filesystem_free_many(c->temporary_filesystems, c->n_temporary_filesystems);
5737 c->temporary_filesystems = NULL;
5738 c->n_temporary_filesystems = 0;
5739 c->mount_images = mount_image_free_many(c->mount_images, &c->n_mount_images);
5740
5741 cpu_set_reset(&c->cpu_set);
5742 numa_policy_reset(&c->numa_policy);
5743
5744 c->utmp_id = mfree(c->utmp_id);
5745 c->selinux_context = mfree(c->selinux_context);
5746 c->apparmor_profile = mfree(c->apparmor_profile);
5747 c->smack_process_label = mfree(c->smack_process_label);
5748
5749 c->restrict_filesystems = set_free(c->restrict_filesystems);
5750
5751 c->syscall_filter = hashmap_free(c->syscall_filter);
5752 c->syscall_archs = set_free(c->syscall_archs);
5753 c->address_families = set_free(c->address_families);
5754
5755 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
5756 exec_directory_done(&c->directories[t]);
5757
5758 c->log_level_max = -1;
5759
5760 exec_context_free_log_extra_fields(c);
5761 c->log_filter_allowed_patterns = set_free(c->log_filter_allowed_patterns);
5762 c->log_filter_denied_patterns = set_free(c->log_filter_denied_patterns);
5763
5764 c->log_ratelimit_interval_usec = 0;
5765 c->log_ratelimit_burst = 0;
5766
5767 c->stdin_data = mfree(c->stdin_data);
5768 c->stdin_data_size = 0;
5769
5770 c->network_namespace_path = mfree(c->network_namespace_path);
5771 c->ipc_namespace_path = mfree(c->ipc_namespace_path);
5772
5773 c->log_namespace = mfree(c->log_namespace);
5774
5775 c->load_credentials = hashmap_free(c->load_credentials);
5776 c->set_credentials = hashmap_free(c->set_credentials);
5777
5778 c->root_image_policy = image_policy_free(c->root_image_policy);
5779 c->mount_image_policy = image_policy_free(c->mount_image_policy);
5780 c->extension_image_policy = image_policy_free(c->extension_image_policy);
5781}
5782
5783int exec_context_destroy_runtime_directory(const ExecContext *c, const char *runtime_prefix) {
5784 assert(c);
5785
5786 if (!runtime_prefix)
5787 return 0;
5788
5789 for (size_t i = 0; i < c->directories[EXEC_DIRECTORY_RUNTIME].n_items; i++) {
5790 _cleanup_free_ char *p = NULL;
5791
5792 if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME))
5793 p = path_join(runtime_prefix, "private", c->directories[EXEC_DIRECTORY_RUNTIME].items[i].path);
5794 else
5795 p = path_join(runtime_prefix, c->directories[EXEC_DIRECTORY_RUNTIME].items[i].path);
5796 if (!p)
5797 return -ENOMEM;
5798
5799 /* We execute this synchronously, since we need to be sure this is gone when we start the
5800 * service next. */
5801 (void) rm_rf(p, REMOVE_ROOT);
5802
5803 STRV_FOREACH(symlink, c->directories[EXEC_DIRECTORY_RUNTIME].items[i].symlinks) {
5804 _cleanup_free_ char *symlink_abs = NULL;
5805
5806 if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME))
5807 symlink_abs = path_join(runtime_prefix, "private", *symlink);
5808 else
5809 symlink_abs = path_join(runtime_prefix, *symlink);
5810 if (!symlink_abs)
5811 return -ENOMEM;
5812
5813 (void) unlink(symlink_abs);
5814 }
5815 }
5816
5817 return 0;
5818}
5819
5820int exec_context_destroy_credentials(const ExecContext *c, const char *runtime_prefix, const char *unit) {
5821 _cleanup_free_ char *p = NULL;
5822
5823 assert(c);
5824
5825 if (!runtime_prefix || !unit)
5826 return 0;
5827
5828 p = path_join(runtime_prefix, "credentials", unit);
5829 if (!p)
5830 return -ENOMEM;
5831
5832 /* This is either a tmpfs/ramfs of its own, or a plain directory. Either way, let's first try to
5833 * unmount it, and afterwards remove the mount point */
5834 (void) umount2(p, MNT_DETACH|UMOUNT_NOFOLLOW);
5835 (void) rm_rf(p, REMOVE_ROOT|REMOVE_CHMOD);
5836
5837 return 0;
5838}
5839
5840int exec_context_destroy_mount_ns_dir(Unit *u) {
5841 _cleanup_free_ char *p = NULL;
5842
5843 if (!u || !MANAGER_IS_SYSTEM(u->manager))
5844 return 0;
5845
5846 p = path_join("/run/systemd/propagate/", u->id);
5847 if (!p)
5848 return -ENOMEM;
5849
5850 /* This is only filled transiently (see mount_in_namespace()), should be empty or even non-existent*/
5851 if (rmdir(p) < 0 && errno != ENOENT)
5852 log_unit_debug_errno(u, errno, "Unable to remove propagation dir '%s', ignoring: %m", p);
5853
5854 return 0;
5855}
5856
5857static void exec_command_done(ExecCommand *c) {
5858 assert(c);
5859
5860 c->path = mfree(c->path);
5861 c->argv = strv_free(c->argv);
5862}
5863
5864void exec_command_done_array(ExecCommand *c, size_t n) {
5865 for (size_t i = 0; i < n; i++)
5866 exec_command_done(c+i);
5867}
5868
5869ExecCommand* exec_command_free_list(ExecCommand *c) {
5870 ExecCommand *i;
5871
5872 while ((i = c)) {
5873 LIST_REMOVE(command, c, i);
5874 exec_command_done(i);
5875 free(i);
5876 }
5877
5878 return NULL;
5879}
5880
5881void exec_command_free_array(ExecCommand **c, size_t n) {
5882 for (size_t i = 0; i < n; i++)
5883 c[i] = exec_command_free_list(c[i]);
5884}
5885
5886void exec_command_reset_status_array(ExecCommand *c, size_t n) {
5887 for (size_t i = 0; i < n; i++)
5888 exec_status_reset(&c[i].exec_status);
5889}
5890
5891void exec_command_reset_status_list_array(ExecCommand **c, size_t n) {
5892 for (size_t i = 0; i < n; i++)
5893 LIST_FOREACH(command, z, c[i])
5894 exec_status_reset(&z->exec_status);
5895}
5896
5897typedef struct InvalidEnvInfo {
5898 const Unit *unit;
5899 const char *path;
5900} InvalidEnvInfo;
5901
5902static void invalid_env(const char *p, void *userdata) {
5903 InvalidEnvInfo *info = userdata;
5904
5905 log_unit_error(info->unit, "Ignoring invalid environment assignment '%s': %s", p, info->path);
5906}
5907
5908const char* exec_context_fdname(const ExecContext *c, int fd_index) {
5909 assert(c);
5910
5911 switch (fd_index) {
5912
5913 case STDIN_FILENO:
5914 if (c->std_input != EXEC_INPUT_NAMED_FD)
5915 return NULL;
5916
5917 return c->stdio_fdname[STDIN_FILENO] ?: "stdin";
5918
5919 case STDOUT_FILENO:
5920 if (c->std_output != EXEC_OUTPUT_NAMED_FD)
5921 return NULL;
5922
5923 return c->stdio_fdname[STDOUT_FILENO] ?: "stdout";
5924
5925 case STDERR_FILENO:
5926 if (c->std_error != EXEC_OUTPUT_NAMED_FD)
5927 return NULL;
5928
5929 return c->stdio_fdname[STDERR_FILENO] ?: "stderr";
5930
5931 default:
5932 return NULL;
5933 }
5934}
5935
5936static int exec_context_named_iofds(
5937 const ExecContext *c,
5938 const ExecParameters *p,
5939 int named_iofds[static 3]) {
5940
5941 size_t targets;
5942 const char* stdio_fdname[3];
5943 size_t n_fds;
5944
5945 assert(c);
5946 assert(p);
5947 assert(named_iofds);
5948
5949 targets = (c->std_input == EXEC_INPUT_NAMED_FD) +
5950 (c->std_output == EXEC_OUTPUT_NAMED_FD) +
5951 (c->std_error == EXEC_OUTPUT_NAMED_FD);
5952
5953 for (size_t i = 0; i < 3; i++)
5954 stdio_fdname[i] = exec_context_fdname(c, i);
5955
5956 n_fds = p->n_storage_fds + p->n_socket_fds;
5957
5958 for (size_t i = 0; i < n_fds && targets > 0; i++)
5959 if (named_iofds[STDIN_FILENO] < 0 &&
5960 c->std_input == EXEC_INPUT_NAMED_FD &&
5961 stdio_fdname[STDIN_FILENO] &&
5962 streq(p->fd_names[i], stdio_fdname[STDIN_FILENO])) {
5963
5964 named_iofds[STDIN_FILENO] = p->fds[i];
5965 targets--;
5966
5967 } else if (named_iofds[STDOUT_FILENO] < 0 &&
5968 c->std_output == EXEC_OUTPUT_NAMED_FD &&
5969 stdio_fdname[STDOUT_FILENO] &&
5970 streq(p->fd_names[i], stdio_fdname[STDOUT_FILENO])) {
5971
5972 named_iofds[STDOUT_FILENO] = p->fds[i];
5973 targets--;
5974
5975 } else if (named_iofds[STDERR_FILENO] < 0 &&
5976 c->std_error == EXEC_OUTPUT_NAMED_FD &&
5977 stdio_fdname[STDERR_FILENO] &&
5978 streq(p->fd_names[i], stdio_fdname[STDERR_FILENO])) {
5979
5980 named_iofds[STDERR_FILENO] = p->fds[i];
5981 targets--;
5982 }
5983
5984 return targets == 0 ? 0 : -ENOENT;
5985}
5986
5987static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***ret) {
5988 _cleanup_strv_free_ char **v = NULL;
5989 int r;
5990
5991 assert(c);
5992 assert(ret);
5993
5994 STRV_FOREACH(i, c->environment_files) {
5995 _cleanup_globfree_ glob_t pglob = {};
5996 bool ignore = false;
5997 char *fn = *i;
5998
5999 if (fn[0] == '-') {
6000 ignore = true;
6001 fn++;
6002 }
6003
6004 if (!path_is_absolute(fn)) {
6005 if (ignore)
6006 continue;
6007 return -EINVAL;
6008 }
6009
6010 /* Filename supports globbing, take all matching files */
6011 r = safe_glob(fn, 0, &pglob);
6012 if (r < 0) {
6013 if (ignore)
6014 continue;
6015 return r;
6016 }
6017
6018 /* When we don't match anything, -ENOENT should be returned */
6019 assert(pglob.gl_pathc > 0);
6020
6021 for (unsigned n = 0; n < pglob.gl_pathc; n++) {
6022 _cleanup_strv_free_ char **p = NULL;
6023
6024 r = load_env_file(NULL, pglob.gl_pathv[n], &p);
6025 if (r < 0) {
6026 if (ignore)
6027 continue;
6028 return r;
6029 }
6030
6031 /* Log invalid environment variables with filename */
6032 if (p) {
6033 InvalidEnvInfo info = {
6034 .unit = unit,
6035 .path = pglob.gl_pathv[n]
6036 };
6037
6038 p = strv_env_clean_with_callback(p, invalid_env, &info);
6039 }
6040
6041 if (!v)
6042 v = TAKE_PTR(p);
6043 else {
6044 char **m = strv_env_merge(v, p);
6045 if (!m)
6046 return -ENOMEM;
6047
6048 strv_free_and_replace(v, m);
6049 }
6050 }
6051 }
6052
6053 *ret = TAKE_PTR(v);
6054
6055 return 0;
6056}
6057
6058static bool tty_may_match_dev_console(const char *tty) {
6059 _cleanup_free_ char *resolved = NULL;
6060
6061 if (!tty)
6062 return true;
6063
6064 tty = skip_dev_prefix(tty);
6065
6066 /* trivial identity? */
6067 if (streq(tty, "console"))
6068 return true;
6069
6070 if (resolve_dev_console(&resolved) < 0)
6071 return true; /* if we could not resolve, assume it may */
6072
6073 /* "tty0" means the active VC, so it may be the same sometimes */
6074 return path_equal(resolved, tty) || (streq(resolved, "tty0") && tty_is_vc(tty));
6075}
6076
6077static bool exec_context_may_touch_tty(const ExecContext *ec) {
6078 assert(ec);
6079
6080 return ec->tty_reset ||
6081 ec->tty_vhangup ||
6082 ec->tty_vt_disallocate ||
6083 is_terminal_input(ec->std_input) ||
6084 is_terminal_output(ec->std_output) ||
6085 is_terminal_output(ec->std_error);
6086}
6087
6088bool exec_context_may_touch_console(const ExecContext *ec) {
6089
6090 return exec_context_may_touch_tty(ec) &&
6091 tty_may_match_dev_console(exec_context_tty_path(ec));
6092}
6093
6094static void strv_fprintf(FILE *f, char **l) {
6095 assert(f);
6096
6097 STRV_FOREACH(g, l)
6098 fprintf(f, " %s", *g);
6099}
6100
6101static void strv_dump(FILE* f, const char *prefix, const char *name, char **strv) {
6102 assert(f);
6103 assert(prefix);
6104 assert(name);
6105
6106 if (!strv_isempty(strv)) {
6107 fprintf(f, "%s%s:", prefix, name);
6108 strv_fprintf(f, strv);
6109 fputs("\n", f);
6110 }
6111}
6112
6113void exec_context_dump(const ExecContext *c, FILE* f, const char *prefix) {
6114 int r;
6115
6116 assert(c);
6117 assert(f);
6118
6119 prefix = strempty(prefix);
6120
6121 fprintf(f,
6122 "%sUMask: %04o\n"
6123 "%sWorkingDirectory: %s\n"
6124 "%sRootDirectory: %s\n"
6125 "%sNonBlocking: %s\n"
6126 "%sPrivateTmp: %s\n"
6127 "%sPrivateDevices: %s\n"
6128 "%sProtectKernelTunables: %s\n"
6129 "%sProtectKernelModules: %s\n"
6130 "%sProtectKernelLogs: %s\n"
6131 "%sProtectClock: %s\n"
6132 "%sProtectControlGroups: %s\n"
6133 "%sPrivateNetwork: %s\n"
6134 "%sPrivateUsers: %s\n"
6135 "%sProtectHome: %s\n"
6136 "%sProtectSystem: %s\n"
6137 "%sMountAPIVFS: %s\n"
6138 "%sIgnoreSIGPIPE: %s\n"
6139 "%sMemoryDenyWriteExecute: %s\n"
6140 "%sRestrictRealtime: %s\n"
6141 "%sRestrictSUIDSGID: %s\n"
6142 "%sKeyringMode: %s\n"
6143 "%sProtectHostname: %s\n"
6144 "%sProtectProc: %s\n"
6145 "%sProcSubset: %s\n",
6146 prefix, c->umask,
6147 prefix, empty_to_root(c->working_directory),
6148 prefix, empty_to_root(c->root_directory),
6149 prefix, yes_no(c->non_blocking),
6150 prefix, yes_no(c->private_tmp),
6151 prefix, yes_no(c->private_devices),
6152 prefix, yes_no(c->protect_kernel_tunables),
6153 prefix, yes_no(c->protect_kernel_modules),
6154 prefix, yes_no(c->protect_kernel_logs),
6155 prefix, yes_no(c->protect_clock),
6156 prefix, yes_no(c->protect_control_groups),
6157 prefix, yes_no(c->private_network),
6158 prefix, yes_no(c->private_users),
6159 prefix, protect_home_to_string(c->protect_home),
6160 prefix, protect_system_to_string(c->protect_system),
6161 prefix, yes_no(exec_context_get_effective_mount_apivfs(c)),
6162 prefix, yes_no(c->ignore_sigpipe),
6163 prefix, yes_no(c->memory_deny_write_execute),
6164 prefix, yes_no(c->restrict_realtime),
6165 prefix, yes_no(c->restrict_suid_sgid),
6166 prefix, exec_keyring_mode_to_string(c->keyring_mode),
6167 prefix, yes_no(c->protect_hostname),
6168 prefix, protect_proc_to_string(c->protect_proc),
6169 prefix, proc_subset_to_string(c->proc_subset));
6170
6171 if (c->root_image)
6172 fprintf(f, "%sRootImage: %s\n", prefix, c->root_image);
6173
6174 if (c->root_image_options) {
6175 fprintf(f, "%sRootImageOptions:", prefix);
6176 LIST_FOREACH(mount_options, o, c->root_image_options)
6177 if (!isempty(o->options))
6178 fprintf(f, " %s:%s",
6179 partition_designator_to_string(o->partition_designator),
6180 o->options);
6181 fprintf(f, "\n");
6182 }
6183
6184 if (c->root_hash) {
6185 _cleanup_free_ char *encoded = NULL;
6186 encoded = hexmem(c->root_hash, c->root_hash_size);
6187 if (encoded)
6188 fprintf(f, "%sRootHash: %s\n", prefix, encoded);
6189 }
6190
6191 if (c->root_hash_path)
6192 fprintf(f, "%sRootHash: %s\n", prefix, c->root_hash_path);
6193
6194 if (c->root_hash_sig) {
6195 _cleanup_free_ char *encoded = NULL;
6196 ssize_t len;
6197 len = base64mem(c->root_hash_sig, c->root_hash_sig_size, &encoded);
6198 if (len)
6199 fprintf(f, "%sRootHashSignature: base64:%s\n", prefix, encoded);
6200 }
6201
6202 if (c->root_hash_sig_path)
6203 fprintf(f, "%sRootHashSignature: %s\n", prefix, c->root_hash_sig_path);
6204
6205 if (c->root_verity)
6206 fprintf(f, "%sRootVerity: %s\n", prefix, c->root_verity);
6207
6208 STRV_FOREACH(e, c->environment)
6209 fprintf(f, "%sEnvironment: %s\n", prefix, *e);
6210
6211 STRV_FOREACH(e, c->environment_files)
6212 fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e);
6213
6214 STRV_FOREACH(e, c->pass_environment)
6215 fprintf(f, "%sPassEnvironment: %s\n", prefix, *e);
6216
6217 STRV_FOREACH(e, c->unset_environment)
6218 fprintf(f, "%sUnsetEnvironment: %s\n", prefix, *e);
6219
6220 fprintf(f, "%sRuntimeDirectoryPreserve: %s\n", prefix, exec_preserve_mode_to_string(c->runtime_directory_preserve_mode));
6221
6222 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
6223 fprintf(f, "%s%sMode: %04o\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].mode);
6224
6225 for (size_t i = 0; i < c->directories[dt].n_items; i++) {
6226 fprintf(f, "%s%s: %s\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].items[i].path);
6227
6228 STRV_FOREACH(d, c->directories[dt].items[i].symlinks)
6229 fprintf(f, "%s%s: %s:%s\n", prefix, exec_directory_type_symlink_to_string(dt), c->directories[dt].items[i].path, *d);
6230 }
6231 }
6232
6233 fprintf(f, "%sTimeoutCleanSec: %s\n", prefix, FORMAT_TIMESPAN(c->timeout_clean_usec, USEC_PER_SEC));
6234
6235 if (c->nice_set)
6236 fprintf(f, "%sNice: %i\n", prefix, c->nice);
6237
6238 if (c->oom_score_adjust_set)
6239 fprintf(f, "%sOOMScoreAdjust: %i\n", prefix, c->oom_score_adjust);
6240
6241 if (c->coredump_filter_set)
6242 fprintf(f, "%sCoredumpFilter: 0x%"PRIx64"\n", prefix, c->coredump_filter);
6243
6244 for (unsigned i = 0; i < RLIM_NLIMITS; i++)
6245 if (c->rlimit[i]) {
6246 fprintf(f, "%sLimit%s: " RLIM_FMT "\n",
6247 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_max);
6248 fprintf(f, "%sLimit%sSoft: " RLIM_FMT "\n",
6249 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_cur);
6250 }
6251
6252 if (c->ioprio_set) {
6253 _cleanup_free_ char *class_str = NULL;
6254
6255 r = ioprio_class_to_string_alloc(ioprio_prio_class(c->ioprio), &class_str);
6256 if (r >= 0)
6257 fprintf(f, "%sIOSchedulingClass: %s\n", prefix, class_str);
6258
6259 fprintf(f, "%sIOPriority: %d\n", prefix, ioprio_prio_data(c->ioprio));
6260 }
6261
6262 if (c->cpu_sched_set) {
6263 _cleanup_free_ char *policy_str = NULL;
6264
6265 r = sched_policy_to_string_alloc(c->cpu_sched_policy, &policy_str);
6266 if (r >= 0)
6267 fprintf(f, "%sCPUSchedulingPolicy: %s\n", prefix, policy_str);
6268
6269 fprintf(f,
6270 "%sCPUSchedulingPriority: %i\n"
6271 "%sCPUSchedulingResetOnFork: %s\n",
6272 prefix, c->cpu_sched_priority,
6273 prefix, yes_no(c->cpu_sched_reset_on_fork));
6274 }
6275
6276 if (c->cpu_set.set) {
6277 _cleanup_free_ char *affinity = NULL;
6278
6279 affinity = cpu_set_to_range_string(&c->cpu_set);
6280 fprintf(f, "%sCPUAffinity: %s\n", prefix, affinity);
6281 }
6282
6283 if (mpol_is_valid(numa_policy_get_type(&c->numa_policy))) {
6284 _cleanup_free_ char *nodes = NULL;
6285
6286 nodes = cpu_set_to_range_string(&c->numa_policy.nodes);
6287 fprintf(f, "%sNUMAPolicy: %s\n", prefix, mpol_to_string(numa_policy_get_type(&c->numa_policy)));
6288 fprintf(f, "%sNUMAMask: %s\n", prefix, strnull(nodes));
6289 }
6290
6291 if (c->timer_slack_nsec != NSEC_INFINITY)
6292 fprintf(f, "%sTimerSlackNSec: "NSEC_FMT "\n", prefix, c->timer_slack_nsec);
6293
6294 fprintf(f,
6295 "%sStandardInput: %s\n"
6296 "%sStandardOutput: %s\n"
6297 "%sStandardError: %s\n",
6298 prefix, exec_input_to_string(c->std_input),
6299 prefix, exec_output_to_string(c->std_output),
6300 prefix, exec_output_to_string(c->std_error));
6301
6302 if (c->std_input == EXEC_INPUT_NAMED_FD)
6303 fprintf(f, "%sStandardInputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDIN_FILENO]);
6304 if (c->std_output == EXEC_OUTPUT_NAMED_FD)
6305 fprintf(f, "%sStandardOutputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDOUT_FILENO]);
6306 if (c->std_error == EXEC_OUTPUT_NAMED_FD)
6307 fprintf(f, "%sStandardErrorFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDERR_FILENO]);
6308
6309 if (c->std_input == EXEC_INPUT_FILE)
6310 fprintf(f, "%sStandardInputFile: %s\n", prefix, c->stdio_file[STDIN_FILENO]);
6311 if (c->std_output == EXEC_OUTPUT_FILE)
6312 fprintf(f, "%sStandardOutputFile: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
6313 if (c->std_output == EXEC_OUTPUT_FILE_APPEND)
6314 fprintf(f, "%sStandardOutputFileToAppend: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
6315 if (c->std_output == EXEC_OUTPUT_FILE_TRUNCATE)
6316 fprintf(f, "%sStandardOutputFileToTruncate: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
6317 if (c->std_error == EXEC_OUTPUT_FILE)
6318 fprintf(f, "%sStandardErrorFile: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
6319 if (c->std_error == EXEC_OUTPUT_FILE_APPEND)
6320 fprintf(f, "%sStandardErrorFileToAppend: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
6321 if (c->std_error == EXEC_OUTPUT_FILE_TRUNCATE)
6322 fprintf(f, "%sStandardErrorFileToTruncate: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
6323
6324 if (c->tty_path)
6325 fprintf(f,
6326 "%sTTYPath: %s\n"
6327 "%sTTYReset: %s\n"
6328 "%sTTYVHangup: %s\n"
6329 "%sTTYVTDisallocate: %s\n"
6330 "%sTTYRows: %u\n"
6331 "%sTTYColumns: %u\n",
6332 prefix, c->tty_path,
6333 prefix, yes_no(c->tty_reset),
6334 prefix, yes_no(c->tty_vhangup),
6335 prefix, yes_no(c->tty_vt_disallocate),
6336 prefix, c->tty_rows,
6337 prefix, c->tty_cols);
6338
6339 if (IN_SET(c->std_output,
6340 EXEC_OUTPUT_KMSG,
6341 EXEC_OUTPUT_JOURNAL,
6342 EXEC_OUTPUT_KMSG_AND_CONSOLE,
6343 EXEC_OUTPUT_JOURNAL_AND_CONSOLE) ||
6344 IN_SET(c->std_error,
6345 EXEC_OUTPUT_KMSG,
6346 EXEC_OUTPUT_JOURNAL,
6347 EXEC_OUTPUT_KMSG_AND_CONSOLE,
6348 EXEC_OUTPUT_JOURNAL_AND_CONSOLE)) {
6349
6350 _cleanup_free_ char *fac_str = NULL, *lvl_str = NULL;
6351
6352 r = log_facility_unshifted_to_string_alloc(c->syslog_priority >> 3, &fac_str);
6353 if (r >= 0)
6354 fprintf(f, "%sSyslogFacility: %s\n", prefix, fac_str);
6355
6356 r = log_level_to_string_alloc(LOG_PRI(c->syslog_priority), &lvl_str);
6357 if (r >= 0)
6358 fprintf(f, "%sSyslogLevel: %s\n", prefix, lvl_str);
6359 }
6360
6361 if (c->log_level_max >= 0) {
6362 _cleanup_free_ char *t = NULL;
6363
6364 (void) log_level_to_string_alloc(c->log_level_max, &t);
6365
6366 fprintf(f, "%sLogLevelMax: %s\n", prefix, strna(t));
6367 }
6368
6369 if (c->log_ratelimit_interval_usec > 0)
6370 fprintf(f,
6371 "%sLogRateLimitIntervalSec: %s\n",
6372 prefix, FORMAT_TIMESPAN(c->log_ratelimit_interval_usec, USEC_PER_SEC));
6373
6374 if (c->log_ratelimit_burst > 0)
6375 fprintf(f, "%sLogRateLimitBurst: %u\n", prefix, c->log_ratelimit_burst);
6376
6377 if (!set_isempty(c->log_filter_allowed_patterns) || !set_isempty(c->log_filter_denied_patterns)) {
6378 fprintf(f, "%sLogFilterPatterns:", prefix);
6379
6380 char *pattern;
6381 SET_FOREACH(pattern, c->log_filter_allowed_patterns)
6382 fprintf(f, " %s", pattern);
6383 SET_FOREACH(pattern, c->log_filter_denied_patterns)
6384 fprintf(f, " ~%s", pattern);
6385 fputc('\n', f);
6386 }
6387
6388 for (size_t j = 0; j < c->n_log_extra_fields; j++) {
6389 fprintf(f, "%sLogExtraFields: ", prefix);
6390 fwrite(c->log_extra_fields[j].iov_base,
6391 1, c->log_extra_fields[j].iov_len,
6392 f);
6393 fputc('\n', f);
6394 }
6395
6396 if (c->log_namespace)
6397 fprintf(f, "%sLogNamespace: %s\n", prefix, c->log_namespace);
6398
6399 if (c->secure_bits) {
6400 _cleanup_free_ char *str = NULL;
6401
6402 r = secure_bits_to_string_alloc(c->secure_bits, &str);
6403 if (r >= 0)
6404 fprintf(f, "%sSecure Bits: %s\n", prefix, str);
6405 }
6406
6407 if (c->capability_bounding_set != CAP_MASK_UNSET) {
6408 _cleanup_free_ char *str = NULL;
6409
6410 r = capability_set_to_string(c->capability_bounding_set, &str);
6411 if (r >= 0)
6412 fprintf(f, "%sCapabilityBoundingSet: %s\n", prefix, str);
6413 }
6414
6415 if (c->capability_ambient_set != 0) {
6416 _cleanup_free_ char *str = NULL;
6417
6418 r = capability_set_to_string(c->capability_ambient_set, &str);
6419 if (r >= 0)
6420 fprintf(f, "%sAmbientCapabilities: %s\n", prefix, str);
6421 }
6422
6423 if (c->user)
6424 fprintf(f, "%sUser: %s\n", prefix, c->user);
6425 if (c->group)
6426 fprintf(f, "%sGroup: %s\n", prefix, c->group);
6427
6428 fprintf(f, "%sDynamicUser: %s\n", prefix, yes_no(c->dynamic_user));
6429
6430 strv_dump(f, prefix, "SupplementaryGroups", c->supplementary_groups);
6431
6432 if (c->pam_name)
6433 fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name);
6434
6435 strv_dump(f, prefix, "ReadWritePaths", c->read_write_paths);
6436 strv_dump(f, prefix, "ReadOnlyPaths", c->read_only_paths);
6437 strv_dump(f, prefix, "InaccessiblePaths", c->inaccessible_paths);
6438 strv_dump(f, prefix, "ExecPaths", c->exec_paths);
6439 strv_dump(f, prefix, "NoExecPaths", c->no_exec_paths);
6440 strv_dump(f, prefix, "ExecSearchPath", c->exec_search_path);
6441
6442 for (size_t i = 0; i < c->n_bind_mounts; i++)
6443 fprintf(f, "%s%s: %s%s:%s:%s\n", prefix,
6444 c->bind_mounts[i].read_only ? "BindReadOnlyPaths" : "BindPaths",
6445 c->bind_mounts[i].ignore_enoent ? "-": "",
6446 c->bind_mounts[i].source,
6447 c->bind_mounts[i].destination,
6448 c->bind_mounts[i].recursive ? "rbind" : "norbind");
6449
6450 for (size_t i = 0; i < c->n_temporary_filesystems; i++) {
6451 const TemporaryFileSystem *t = c->temporary_filesystems + i;
6452
6453 fprintf(f, "%sTemporaryFileSystem: %s%s%s\n", prefix,
6454 t->path,
6455 isempty(t->options) ? "" : ":",
6456 strempty(t->options));
6457 }
6458
6459 if (c->utmp_id)
6460 fprintf(f,
6461 "%sUtmpIdentifier: %s\n",
6462 prefix, c->utmp_id);
6463
6464 if (c->selinux_context)
6465 fprintf(f,
6466 "%sSELinuxContext: %s%s\n",
6467 prefix, c->selinux_context_ignore ? "-" : "", c->selinux_context);
6468
6469 if (c->apparmor_profile)
6470 fprintf(f,
6471 "%sAppArmorProfile: %s%s\n",
6472 prefix, c->apparmor_profile_ignore ? "-" : "", c->apparmor_profile);
6473
6474 if (c->smack_process_label)
6475 fprintf(f,
6476 "%sSmackProcessLabel: %s%s\n",
6477 prefix, c->smack_process_label_ignore ? "-" : "", c->smack_process_label);
6478
6479 if (c->personality != PERSONALITY_INVALID)
6480 fprintf(f,
6481 "%sPersonality: %s\n",
6482 prefix, strna(personality_to_string(c->personality)));
6483
6484 fprintf(f,
6485 "%sLockPersonality: %s\n",
6486 prefix, yes_no(c->lock_personality));
6487
6488 if (c->syscall_filter) {
6489 fprintf(f,
6490 "%sSystemCallFilter: ",
6491 prefix);
6492
6493 if (!c->syscall_allow_list)
6494 fputc('~', f);
6495
6496#if HAVE_SECCOMP
6497 void *id, *val;
6498 bool first = true;
6499 HASHMAP_FOREACH_KEY(val, id, c->syscall_filter) {
6500 _cleanup_free_ char *name = NULL;
6501 const char *errno_name = NULL;
6502 int num = PTR_TO_INT(val);
6503
6504 if (first)
6505 first = false;
6506 else
6507 fputc(' ', f);
6508
6509 name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1);
6510 fputs(strna(name), f);
6511
6512 if (num >= 0) {
6513 errno_name = seccomp_errno_or_action_to_string(num);
6514 if (errno_name)
6515 fprintf(f, ":%s", errno_name);
6516 else
6517 fprintf(f, ":%d", num);
6518 }
6519 }
6520#endif
6521
6522 fputc('\n', f);
6523 }
6524
6525 if (c->syscall_archs) {
6526 fprintf(f,
6527 "%sSystemCallArchitectures:",
6528 prefix);
6529
6530#if HAVE_SECCOMP
6531 void *id;
6532 SET_FOREACH(id, c->syscall_archs)
6533 fprintf(f, " %s", strna(seccomp_arch_to_string(PTR_TO_UINT32(id) - 1)));
6534#endif
6535 fputc('\n', f);
6536 }
6537
6538 if (exec_context_restrict_namespaces_set(c)) {
6539 _cleanup_free_ char *s = NULL;
6540
6541 r = namespace_flags_to_string(c->restrict_namespaces, &s);
6542 if (r >= 0)
6543 fprintf(f, "%sRestrictNamespaces: %s\n",
6544 prefix, strna(s));
6545 }
6546
6547#if HAVE_LIBBPF
6548 if (exec_context_restrict_filesystems_set(c)) {
6549 char *fs;
6550 SET_FOREACH(fs, c->restrict_filesystems)
6551 fprintf(f, "%sRestrictFileSystems: %s\n", prefix, fs);
6552 }
6553#endif
6554
6555 if (c->network_namespace_path)
6556 fprintf(f,
6557 "%sNetworkNamespacePath: %s\n",
6558 prefix, c->network_namespace_path);
6559
6560 if (c->syscall_errno > 0) {
6561 fprintf(f, "%sSystemCallErrorNumber: ", prefix);
6562
6563#if HAVE_SECCOMP
6564 const char *errno_name = seccomp_errno_or_action_to_string(c->syscall_errno);
6565 if (errno_name)
6566 fputs(errno_name, f);
6567 else
6568 fprintf(f, "%d", c->syscall_errno);
6569#endif
6570 fputc('\n', f);
6571 }
6572
6573 for (size_t i = 0; i < c->n_mount_images; i++) {
6574 fprintf(f, "%sMountImages: %s%s:%s", prefix,
6575 c->mount_images[i].ignore_enoent ? "-": "",
6576 c->mount_images[i].source,
6577 c->mount_images[i].destination);
6578 LIST_FOREACH(mount_options, o, c->mount_images[i].mount_options)
6579 fprintf(f, ":%s:%s",
6580 partition_designator_to_string(o->partition_designator),
6581 strempty(o->options));
6582 fprintf(f, "\n");
6583 }
6584
6585 for (size_t i = 0; i < c->n_extension_images; i++) {
6586 fprintf(f, "%sExtensionImages: %s%s", prefix,
6587 c->extension_images[i].ignore_enoent ? "-": "",
6588 c->extension_images[i].source);
6589 LIST_FOREACH(mount_options, o, c->extension_images[i].mount_options)
6590 fprintf(f, ":%s:%s",
6591 partition_designator_to_string(o->partition_designator),
6592 strempty(o->options));
6593 fprintf(f, "\n");
6594 }
6595
6596 strv_dump(f, prefix, "ExtensionDirectories", c->extension_directories);
6597}
6598
6599bool exec_context_maintains_privileges(const ExecContext *c) {
6600 assert(c);
6601
6602 /* Returns true if the process forked off would run under
6603 * an unchanged UID or as root. */
6604
6605 if (!c->user)
6606 return true;
6607
6608 if (streq(c->user, "root") || streq(c->user, "0"))
6609 return true;
6610
6611 return false;
6612}
6613
6614int exec_context_get_effective_ioprio(const ExecContext *c) {
6615 int p;
6616
6617 assert(c);
6618
6619 if (c->ioprio_set)
6620 return c->ioprio;
6621
6622 p = ioprio_get(IOPRIO_WHO_PROCESS, 0);
6623 if (p < 0)
6624 return IOPRIO_DEFAULT_CLASS_AND_PRIO;
6625
6626 return ioprio_normalize(p);
6627}
6628
6629bool exec_context_get_effective_mount_apivfs(const ExecContext *c) {
6630 assert(c);
6631
6632 /* Explicit setting wins */
6633 if (c->mount_apivfs_set)
6634 return c->mount_apivfs;
6635
6636 /* Default to "yes" if root directory or image are specified */
6637 if (exec_context_with_rootfs(c))
6638 return true;
6639
6640 return false;
6641}
6642
6643void exec_context_free_log_extra_fields(ExecContext *c) {
6644 assert(c);
6645
6646 for (size_t l = 0; l < c->n_log_extra_fields; l++)
6647 free(c->log_extra_fields[l].iov_base);
6648 c->log_extra_fields = mfree(c->log_extra_fields);
6649 c->n_log_extra_fields = 0;
6650}
6651
6652void exec_context_revert_tty(ExecContext *c) {
6653 _cleanup_close_ int fd = -EBADF;
6654 const char *path;
6655 struct stat st;
6656 int r;
6657
6658 assert(c);
6659
6660 /* First, reset the TTY (possibly kicking everybody else from the TTY) */
6661 exec_context_tty_reset(c, NULL);
6662
6663 /* And then undo what chown_terminal() did earlier. Note that we only do this if we have a path
6664 * configured. If the TTY was passed to us as file descriptor we assume the TTY is opened and managed
6665 * by whoever passed it to us and thus knows better when and how to chmod()/chown() it back. */
6666 if (!exec_context_may_touch_tty(c))
6667 return;
6668
6669 path = exec_context_tty_path(c);
6670 if (!path)
6671 return;
6672
6673 fd = open(path, O_PATH|O_CLOEXEC);
6674 if (fd < 0)
6675 return (void) log_full_errno(errno == ENOENT ? LOG_DEBUG : LOG_WARNING, errno,
6676 "Failed to open TTY inode of '%s' to adjust ownership/access mode, ignoring: %m",
6677 path);
6678
6679 if (fstat(fd, &st) < 0)
6680 return (void) log_warning_errno(errno, "Failed to stat TTY '%s', ignoring: %m", path);
6681
6682 /* Let's add a superficial check that we only do this for stuff that looks like a TTY. We only check
6683 * if things are a character device, since a proper check either means we'd have to open the TTY and
6684 * use isatty(), but we'd rather not do that since opening TTYs comes with all kinds of side-effects
6685 * and is slow. Or we'd have to hardcode dev_t major information, which we'd rather avoid. Why bother
6686 * with this at all? → https://github.com/systemd/systemd/issues/19213 */
6687 if (!S_ISCHR(st.st_mode))
6688 return log_warning("Configured TTY '%s' is not actually a character device, ignoring.", path);
6689
6690 r = fchmod_and_chown(fd, TTY_MODE, 0, TTY_GID);
6691 if (r < 0)
6692 log_warning_errno(r, "Failed to reset TTY ownership/access mode of %s, ignoring: %m", path);
6693}
6694
6695int exec_context_get_clean_directories(
6696 ExecContext *c,
6697 char **prefix,
6698 ExecCleanMask mask,
6699 char ***ret) {
6700
6701 _cleanup_strv_free_ char **l = NULL;
6702 int r;
6703
6704 assert(c);
6705 assert(prefix);
6706 assert(ret);
6707
6708 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
6709 if (!FLAGS_SET(mask, 1U << t))
6710 continue;
6711
6712 if (!prefix[t])
6713 continue;
6714
6715 for (size_t i = 0; i < c->directories[t].n_items; i++) {
6716 char *j;
6717
6718 j = path_join(prefix[t], c->directories[t].items[i].path);
6719 if (!j)
6720 return -ENOMEM;
6721
6722 r = strv_consume(&l, j);
6723 if (r < 0)
6724 return r;
6725
6726 /* Also remove private directories unconditionally. */
6727 if (t != EXEC_DIRECTORY_CONFIGURATION) {
6728 j = path_join(prefix[t], "private", c->directories[t].items[i].path);
6729 if (!j)
6730 return -ENOMEM;
6731
6732 r = strv_consume(&l, j);
6733 if (r < 0)
6734 return r;
6735 }
6736
6737 STRV_FOREACH(symlink, c->directories[t].items[i].symlinks) {
6738 j = path_join(prefix[t], *symlink);
6739 if (!j)
6740 return -ENOMEM;
6741
6742 r = strv_consume(&l, j);
6743 if (r < 0)
6744 return r;
6745 }
6746 }
6747 }
6748
6749 *ret = TAKE_PTR(l);
6750 return 0;
6751}
6752
6753int exec_context_get_clean_mask(ExecContext *c, ExecCleanMask *ret) {
6754 ExecCleanMask mask = 0;
6755
6756 assert(c);
6757 assert(ret);
6758
6759 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
6760 if (c->directories[t].n_items > 0)
6761 mask |= 1U << t;
6762
6763 *ret = mask;
6764 return 0;
6765}
6766
6767bool exec_context_has_encrypted_credentials(ExecContext *c) {
6768 ExecLoadCredential *load_cred;
6769 ExecSetCredential *set_cred;
6770
6771 assert(c);
6772
6773 HASHMAP_FOREACH(load_cred, c->load_credentials)
6774 if (load_cred->encrypted)
6775 return true;
6776
6777 HASHMAP_FOREACH(set_cred, c->set_credentials)
6778 if (set_cred->encrypted)
6779 return true;
6780
6781 return false;
6782}
6783
6784void exec_status_start(ExecStatus *s, pid_t pid) {
6785 assert(s);
6786
6787 *s = (ExecStatus) {
6788 .pid = pid,
6789 };
6790
6791 dual_timestamp_get(&s->start_timestamp);
6792}
6793
6794void exec_status_exit(ExecStatus *s, const ExecContext *context, pid_t pid, int code, int status) {
6795 assert(s);
6796
6797 if (s->pid != pid)
6798 *s = (ExecStatus) {
6799 .pid = pid,
6800 };
6801
6802 dual_timestamp_get(&s->exit_timestamp);
6803
6804 s->code = code;
6805 s->status = status;
6806
6807 if (context && context->utmp_id)
6808 (void) utmp_put_dead_process(context->utmp_id, pid, code, status);
6809}
6810
6811void exec_status_reset(ExecStatus *s) {
6812 assert(s);
6813
6814 *s = (ExecStatus) {};
6815}
6816
6817void exec_status_dump(const ExecStatus *s, FILE *f, const char *prefix) {
6818 assert(s);
6819 assert(f);
6820
6821 if (s->pid <= 0)
6822 return;
6823
6824 prefix = strempty(prefix);
6825
6826 fprintf(f,
6827 "%sPID: "PID_FMT"\n",
6828 prefix, s->pid);
6829
6830 if (dual_timestamp_is_set(&s->start_timestamp))
6831 fprintf(f,
6832 "%sStart Timestamp: %s\n",
6833 prefix, FORMAT_TIMESTAMP(s->start_timestamp.realtime));
6834
6835 if (dual_timestamp_is_set(&s->exit_timestamp))
6836 fprintf(f,
6837 "%sExit Timestamp: %s\n"
6838 "%sExit Code: %s\n"
6839 "%sExit Status: %i\n",
6840 prefix, FORMAT_TIMESTAMP(s->exit_timestamp.realtime),
6841 prefix, sigchld_code_to_string(s->code),
6842 prefix, s->status);
6843}
6844
6845static void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) {
6846 _cleanup_free_ char *cmd = NULL;
6847 const char *prefix2;
6848
6849 assert(c);
6850 assert(f);
6851
6852 prefix = strempty(prefix);
6853 prefix2 = strjoina(prefix, "\t");
6854
6855 cmd = quote_command_line(c->argv, SHELL_ESCAPE_EMPTY);
6856
6857 fprintf(f,
6858 "%sCommand Line: %s\n",
6859 prefix, strnull(cmd));
6860
6861 exec_status_dump(&c->exec_status, f, prefix2);
6862}
6863
6864void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) {
6865 assert(f);
6866
6867 prefix = strempty(prefix);
6868
6869 LIST_FOREACH(command, i, c)
6870 exec_command_dump(i, f, prefix);
6871}
6872
6873void exec_command_append_list(ExecCommand **l, ExecCommand *e) {
6874 ExecCommand *end;
6875
6876 assert(l);
6877 assert(e);
6878
6879 if (*l) {
6880 /* It's kind of important, that we keep the order here */
6881 end = LIST_FIND_TAIL(command, *l);
6882 LIST_INSERT_AFTER(command, *l, end, e);
6883 } else
6884 *l = e;
6885}
6886
6887int exec_command_set(ExecCommand *c, const char *path, ...) {
6888 va_list ap;
6889 char **l, *p;
6890
6891 assert(c);
6892 assert(path);
6893
6894 va_start(ap, path);
6895 l = strv_new_ap(path, ap);
6896 va_end(ap);
6897
6898 if (!l)
6899 return -ENOMEM;
6900
6901 p = strdup(path);
6902 if (!p) {
6903 strv_free(l);
6904 return -ENOMEM;
6905 }
6906
6907 free_and_replace(c->path, p);
6908
6909 return strv_free_and_replace(c->argv, l);
6910}
6911
6912int exec_command_append(ExecCommand *c, const char *path, ...) {
6913 _cleanup_strv_free_ char **l = NULL;
6914 va_list ap;
6915 int r;
6916
6917 assert(c);
6918 assert(path);
6919
6920 va_start(ap, path);
6921 l = strv_new_ap(path, ap);
6922 va_end(ap);
6923
6924 if (!l)
6925 return -ENOMEM;
6926
6927 r = strv_extend_strv(&c->argv, l, false);
6928 if (r < 0)
6929 return r;
6930
6931 return 0;
6932}
6933
6934static void *remove_tmpdir_thread(void *p) {
6935 _cleanup_free_ char *path = p;
6936
6937 (void) rm_rf(path, REMOVE_ROOT|REMOVE_PHYSICAL);
6938 return NULL;
6939}
6940
6941static ExecSharedRuntime* exec_shared_runtime_free(ExecSharedRuntime *rt) {
6942 if (!rt)
6943 return NULL;
6944
6945 if (rt->manager)
6946 (void) hashmap_remove(rt->manager->exec_shared_runtime_by_id, rt->id);
6947
6948 rt->id = mfree(rt->id);
6949 rt->tmp_dir = mfree(rt->tmp_dir);
6950 rt->var_tmp_dir = mfree(rt->var_tmp_dir);
6951 safe_close_pair(rt->netns_storage_socket);
6952 safe_close_pair(rt->ipcns_storage_socket);
6953 return mfree(rt);
6954}
6955
6956DEFINE_TRIVIAL_UNREF_FUNC(ExecSharedRuntime, exec_shared_runtime, exec_shared_runtime_free);
6957DEFINE_TRIVIAL_CLEANUP_FUNC(ExecSharedRuntime*, exec_shared_runtime_free);
6958
6959ExecSharedRuntime* exec_shared_runtime_destroy(ExecSharedRuntime *rt) {
6960 int r;
6961
6962 if (!rt)
6963 return NULL;
6964
6965 assert(rt->n_ref > 0);
6966 rt->n_ref--;
6967
6968 if (rt->n_ref > 0)
6969 return NULL;
6970
6971 if (rt->tmp_dir && !streq(rt->tmp_dir, RUN_SYSTEMD_EMPTY)) {
6972 log_debug("Spawning thread to nuke %s", rt->tmp_dir);
6973
6974 r = asynchronous_job(remove_tmpdir_thread, rt->tmp_dir);
6975 if (r < 0)
6976 log_warning_errno(r, "Failed to nuke %s: %m", rt->tmp_dir);
6977 else
6978 rt->tmp_dir = NULL;
6979 }
6980
6981 if (rt->var_tmp_dir && !streq(rt->var_tmp_dir, RUN_SYSTEMD_EMPTY)) {
6982 log_debug("Spawning thread to nuke %s", rt->var_tmp_dir);
6983
6984 r = asynchronous_job(remove_tmpdir_thread, rt->var_tmp_dir);
6985 if (r < 0)
6986 log_warning_errno(r, "Failed to nuke %s: %m", rt->var_tmp_dir);
6987 else
6988 rt->var_tmp_dir = NULL;
6989 }
6990
6991 return exec_shared_runtime_free(rt);
6992}
6993
6994static int exec_shared_runtime_allocate(ExecSharedRuntime **ret, const char *id) {
6995 _cleanup_free_ char *id_copy = NULL;
6996 ExecSharedRuntime *n;
6997
6998 assert(ret);
6999
7000 id_copy = strdup(id);
7001 if (!id_copy)
7002 return -ENOMEM;
7003
7004 n = new(ExecSharedRuntime, 1);
7005 if (!n)
7006 return -ENOMEM;
7007
7008 *n = (ExecSharedRuntime) {
7009 .id = TAKE_PTR(id_copy),
7010 .netns_storage_socket = PIPE_EBADF,
7011 .ipcns_storage_socket = PIPE_EBADF,
7012 };
7013
7014 *ret = n;
7015 return 0;
7016}
7017
7018static int exec_shared_runtime_add(
7019 Manager *m,
7020 const char *id,
7021 char **tmp_dir,
7022 char **var_tmp_dir,
7023 int netns_storage_socket[2],
7024 int ipcns_storage_socket[2],
7025 ExecSharedRuntime **ret) {
7026
7027 _cleanup_(exec_shared_runtime_freep) ExecSharedRuntime *rt = NULL;
7028 int r;
7029
7030 assert(m);
7031 assert(id);
7032
7033 /* tmp_dir, var_tmp_dir, {net,ipc}ns_storage_socket fds are donated on success */
7034
7035 r = exec_shared_runtime_allocate(&rt, id);
7036 if (r < 0)
7037 return r;
7038
7039 r = hashmap_ensure_put(&m->exec_shared_runtime_by_id, &string_hash_ops, rt->id, rt);
7040 if (r < 0)
7041 return r;
7042
7043 assert(!!rt->tmp_dir == !!rt->var_tmp_dir); /* We require both to be set together */
7044 rt->tmp_dir = TAKE_PTR(*tmp_dir);
7045 rt->var_tmp_dir = TAKE_PTR(*var_tmp_dir);
7046
7047 if (netns_storage_socket) {
7048 rt->netns_storage_socket[0] = TAKE_FD(netns_storage_socket[0]);
7049 rt->netns_storage_socket[1] = TAKE_FD(netns_storage_socket[1]);
7050 }
7051
7052 if (ipcns_storage_socket) {
7053 rt->ipcns_storage_socket[0] = TAKE_FD(ipcns_storage_socket[0]);
7054 rt->ipcns_storage_socket[1] = TAKE_FD(ipcns_storage_socket[1]);
7055 }
7056
7057 rt->manager = m;
7058
7059 if (ret)
7060 *ret = rt;
7061 /* do not remove created ExecSharedRuntime object when the operation succeeds. */
7062 TAKE_PTR(rt);
7063 return 0;
7064}
7065
7066static int exec_shared_runtime_make(
7067 Manager *m,
7068 const ExecContext *c,
7069 const char *id,
7070 ExecSharedRuntime **ret) {
7071
7072 _cleanup_(namespace_cleanup_tmpdirp) char *tmp_dir = NULL, *var_tmp_dir = NULL;
7073 _cleanup_close_pair_ int netns_storage_socket[2] = PIPE_EBADF, ipcns_storage_socket[2] = PIPE_EBADF;
7074 int r;
7075
7076 assert(m);
7077 assert(c);
7078 assert(id);
7079
7080 /* It is not necessary to create ExecSharedRuntime object. */
7081 if (!exec_needs_network_namespace(c) && !exec_needs_ipc_namespace(c) && !c->private_tmp) {
7082 *ret = NULL;
7083 return 0;
7084 }
7085
7086 if (c->private_tmp &&
7087 !(prefixed_path_strv_contains(c->inaccessible_paths, "/tmp") &&
7088 (prefixed_path_strv_contains(c->inaccessible_paths, "/var/tmp") ||
7089 prefixed_path_strv_contains(c->inaccessible_paths, "/var")))) {
7090 r = setup_tmp_dirs(id, &tmp_dir, &var_tmp_dir);
7091 if (r < 0)
7092 return r;
7093 }
7094
7095 if (exec_needs_network_namespace(c)) {
7096 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, netns_storage_socket) < 0)
7097 return -errno;
7098 }
7099
7100 if (exec_needs_ipc_namespace(c)) {
7101 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, ipcns_storage_socket) < 0)
7102 return -errno;
7103 }
7104
7105 r = exec_shared_runtime_add(m, id, &tmp_dir, &var_tmp_dir, netns_storage_socket, ipcns_storage_socket, ret);
7106 if (r < 0)
7107 return r;
7108
7109 return 1;
7110}
7111
7112int exec_shared_runtime_acquire(Manager *m, const ExecContext *c, const char *id, bool create, ExecSharedRuntime **ret) {
7113 ExecSharedRuntime *rt;
7114 int r;
7115
7116 assert(m);
7117 assert(id);
7118 assert(ret);
7119
7120 rt = hashmap_get(m->exec_shared_runtime_by_id, id);
7121 if (rt)
7122 /* We already have an ExecSharedRuntime object, let's increase the ref count and reuse it */
7123 goto ref;
7124
7125 if (!create) {
7126 *ret = NULL;
7127 return 0;
7128 }
7129
7130 /* If not found, then create a new object. */
7131 r = exec_shared_runtime_make(m, c, id, &rt);
7132 if (r < 0)
7133 return r;
7134 if (r == 0) {
7135 /* When r == 0, it is not necessary to create ExecSharedRuntime object. */
7136 *ret = NULL;
7137 return 0;
7138 }
7139
7140ref:
7141 /* increment reference counter. */
7142 rt->n_ref++;
7143 *ret = rt;
7144 return 1;
7145}
7146
7147int exec_shared_runtime_serialize(const Manager *m, FILE *f, FDSet *fds) {
7148 ExecSharedRuntime *rt;
7149
7150 assert(m);
7151 assert(f);
7152 assert(fds);
7153
7154 HASHMAP_FOREACH(rt, m->exec_shared_runtime_by_id) {
7155 fprintf(f, "exec-runtime=%s", rt->id);
7156
7157 if (rt->tmp_dir)
7158 fprintf(f, " tmp-dir=%s", rt->tmp_dir);
7159
7160 if (rt->var_tmp_dir)
7161 fprintf(f, " var-tmp-dir=%s", rt->var_tmp_dir);
7162
7163 if (rt->netns_storage_socket[0] >= 0) {
7164 int copy;
7165
7166 copy = fdset_put_dup(fds, rt->netns_storage_socket[0]);
7167 if (copy < 0)
7168 return copy;
7169
7170 fprintf(f, " netns-socket-0=%i", copy);
7171 }
7172
7173 if (rt->netns_storage_socket[1] >= 0) {
7174 int copy;
7175
7176 copy = fdset_put_dup(fds, rt->netns_storage_socket[1]);
7177 if (copy < 0)
7178 return copy;
7179
7180 fprintf(f, " netns-socket-1=%i", copy);
7181 }
7182
7183 if (rt->ipcns_storage_socket[0] >= 0) {
7184 int copy;
7185
7186 copy = fdset_put_dup(fds, rt->ipcns_storage_socket[0]);
7187 if (copy < 0)
7188 return copy;
7189
7190 fprintf(f, " ipcns-socket-0=%i", copy);
7191 }
7192
7193 if (rt->ipcns_storage_socket[1] >= 0) {
7194 int copy;
7195
7196 copy = fdset_put_dup(fds, rt->ipcns_storage_socket[1]);
7197 if (copy < 0)
7198 return copy;
7199
7200 fprintf(f, " ipcns-socket-1=%i", copy);
7201 }
7202
7203 fputc('\n', f);
7204 }
7205
7206 return 0;
7207}
7208
7209int exec_shared_runtime_deserialize_compat(Unit *u, const char *key, const char *value, FDSet *fds) {
7210 _cleanup_(exec_shared_runtime_freep) ExecSharedRuntime *rt_create = NULL;
7211 ExecSharedRuntime *rt;
7212 int r;
7213
7214 /* This is for the migration from old (v237 or earlier) deserialization text.
7215 * Due to the bug #7790, this may not work with the units that use JoinsNamespaceOf=.
7216 * Even if the ExecSharedRuntime object originally created by the other unit, we cannot judge
7217 * so or not from the serialized text, then we always creates a new object owned by this. */
7218
7219 assert(u);
7220 assert(key);
7221 assert(value);
7222
7223 /* Manager manages ExecSharedRuntime objects by the unit id.
7224 * So, we omit the serialized text when the unit does not have id (yet?)... */
7225 if (isempty(u->id)) {
7226 log_unit_debug(u, "Invocation ID not found. Dropping runtime parameter.");
7227 return 0;
7228 }
7229
7230 if (hashmap_ensure_allocated(&u->manager->exec_shared_runtime_by_id, &string_hash_ops) < 0)
7231 return log_oom();
7232
7233 rt = hashmap_get(u->manager->exec_shared_runtime_by_id, u->id);
7234 if (!rt) {
7235 if (exec_shared_runtime_allocate(&rt_create, u->id) < 0)
7236 return log_oom();
7237
7238 rt = rt_create;
7239 }
7240
7241 if (streq(key, "tmp-dir")) {
7242 if (free_and_strdup_warn(&rt->tmp_dir, value) < 0)
7243 return -ENOMEM;
7244
7245 } else if (streq(key, "var-tmp-dir")) {
7246 if (free_and_strdup_warn(&rt->var_tmp_dir, value) < 0)
7247 return -ENOMEM;
7248
7249 } else if (streq(key, "netns-socket-0")) {
7250 int fd;
7251
7252 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
7253 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
7254 return 0;
7255 }
7256
7257 safe_close(rt->netns_storage_socket[0]);
7258 rt->netns_storage_socket[0] = fdset_remove(fds, fd);
7259
7260 } else if (streq(key, "netns-socket-1")) {
7261 int fd;
7262
7263 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
7264 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
7265 return 0;
7266 }
7267
7268 safe_close(rt->netns_storage_socket[1]);
7269 rt->netns_storage_socket[1] = fdset_remove(fds, fd);
7270
7271 } else
7272 return 0;
7273
7274 /* If the object is newly created, then put it to the hashmap which manages ExecSharedRuntime objects. */
7275 if (rt_create) {
7276 r = hashmap_put(u->manager->exec_shared_runtime_by_id, rt_create->id, rt_create);
7277 if (r < 0) {
7278 log_unit_debug_errno(u, r, "Failed to put runtime parameter to manager's storage: %m");
7279 return 0;
7280 }
7281
7282 rt_create->manager = u->manager;
7283
7284 /* Avoid cleanup */
7285 TAKE_PTR(rt_create);
7286 }
7287
7288 return 1;
7289}
7290
7291int exec_shared_runtime_deserialize_one(Manager *m, const char *value, FDSet *fds) {
7292 _cleanup_free_ char *tmp_dir = NULL, *var_tmp_dir = NULL;
7293 char *id = NULL;
7294 int r, netns_fdpair[] = {-1, -1}, ipcns_fdpair[] = {-1, -1};
7295 const char *p, *v = ASSERT_PTR(value);
7296 size_t n;
7297
7298 assert(m);
7299 assert(fds);
7300
7301 n = strcspn(v, " ");
7302 id = strndupa_safe(v, n);
7303 if (v[n] != ' ')
7304 goto finalize;
7305 p = v + n + 1;
7306
7307 v = startswith(p, "tmp-dir=");
7308 if (v) {
7309 n = strcspn(v, " ");
7310 tmp_dir = strndup(v, n);
7311 if (!tmp_dir)
7312 return log_oom();
7313 if (v[n] != ' ')
7314 goto finalize;
7315 p = v + n + 1;
7316 }
7317
7318 v = startswith(p, "var-tmp-dir=");
7319 if (v) {
7320 n = strcspn(v, " ");
7321 var_tmp_dir = strndup(v, n);
7322 if (!var_tmp_dir)
7323 return log_oom();
7324 if (v[n] != ' ')
7325 goto finalize;
7326 p = v + n + 1;
7327 }
7328
7329 v = startswith(p, "netns-socket-0=");
7330 if (v) {
7331 char *buf;
7332
7333 n = strcspn(v, " ");
7334 buf = strndupa_safe(v, n);
7335
7336 r = safe_atoi(buf, &netns_fdpair[0]);
7337 if (r < 0)
7338 return log_debug_errno(r, "Unable to parse exec-runtime specification netns-socket-0=%s: %m", buf);
7339 if (!fdset_contains(fds, netns_fdpair[0]))
7340 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
7341 "exec-runtime specification netns-socket-0= refers to unknown fd %d: %m", netns_fdpair[0]);
7342 netns_fdpair[0] = fdset_remove(fds, netns_fdpair[0]);
7343 if (v[n] != ' ')
7344 goto finalize;
7345 p = v + n + 1;
7346 }
7347
7348 v = startswith(p, "netns-socket-1=");
7349 if (v) {
7350 char *buf;
7351
7352 n = strcspn(v, " ");
7353 buf = strndupa_safe(v, n);
7354
7355 r = safe_atoi(buf, &netns_fdpair[1]);
7356 if (r < 0)
7357 return log_debug_errno(r, "Unable to parse exec-runtime specification netns-socket-1=%s: %m", buf);
7358 if (!fdset_contains(fds, netns_fdpair[1]))
7359 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
7360 "exec-runtime specification netns-socket-1= refers to unknown fd %d: %m", netns_fdpair[1]);
7361 netns_fdpair[1] = fdset_remove(fds, netns_fdpair[1]);
7362 if (v[n] != ' ')
7363 goto finalize;
7364 p = v + n + 1;
7365 }
7366
7367 v = startswith(p, "ipcns-socket-0=");
7368 if (v) {
7369 char *buf;
7370
7371 n = strcspn(v, " ");
7372 buf = strndupa_safe(v, n);
7373
7374 r = safe_atoi(buf, &ipcns_fdpair[0]);
7375 if (r < 0)
7376 return log_debug_errno(r, "Unable to parse exec-runtime specification ipcns-socket-0=%s: %m", buf);
7377 if (!fdset_contains(fds, ipcns_fdpair[0]))
7378 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
7379 "exec-runtime specification ipcns-socket-0= refers to unknown fd %d: %m", ipcns_fdpair[0]);
7380 ipcns_fdpair[0] = fdset_remove(fds, ipcns_fdpair[0]);
7381 if (v[n] != ' ')
7382 goto finalize;
7383 p = v + n + 1;
7384 }
7385
7386 v = startswith(p, "ipcns-socket-1=");
7387 if (v) {
7388 char *buf;
7389
7390 n = strcspn(v, " ");
7391 buf = strndupa_safe(v, n);
7392
7393 r = safe_atoi(buf, &ipcns_fdpair[1]);
7394 if (r < 0)
7395 return log_debug_errno(r, "Unable to parse exec-runtime specification ipcns-socket-1=%s: %m", buf);
7396 if (!fdset_contains(fds, ipcns_fdpair[1]))
7397 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
7398 "exec-runtime specification ipcns-socket-1= refers to unknown fd %d: %m", ipcns_fdpair[1]);
7399 ipcns_fdpair[1] = fdset_remove(fds, ipcns_fdpair[1]);
7400 }
7401
7402finalize:
7403 r = exec_shared_runtime_add(m, id, &tmp_dir, &var_tmp_dir, netns_fdpair, ipcns_fdpair, NULL);
7404 if (r < 0)
7405 return log_debug_errno(r, "Failed to add exec-runtime: %m");
7406 return 0;
7407}
7408
7409void exec_shared_runtime_vacuum(Manager *m) {
7410 ExecSharedRuntime *rt;
7411
7412 assert(m);
7413
7414 /* Free unreferenced ExecSharedRuntime objects. This is used after manager deserialization process. */
7415
7416 HASHMAP_FOREACH(rt, m->exec_shared_runtime_by_id) {
7417 if (rt->n_ref > 0)
7418 continue;
7419
7420 (void) exec_shared_runtime_free(rt);
7421 }
7422}
7423
7424int exec_runtime_make(ExecSharedRuntime *shared, DynamicCreds *creds, ExecRuntime **ret) {
7425 _cleanup_(exec_runtime_freep) ExecRuntime *rt = NULL;
7426
7427 assert(ret);
7428
7429 if (!shared && !creds) {
7430 *ret = NULL;
7431 return 0;
7432 }
7433
7434 rt = new(ExecRuntime, 1);
7435 if (!rt)
7436 return -ENOMEM;
7437
7438 *rt = (ExecRuntime) {
7439 .shared = shared,
7440 .dynamic_creds = creds,
7441 };
7442
7443 *ret = TAKE_PTR(rt);
7444 return 1;
7445}
7446
7447ExecRuntime* exec_runtime_free(ExecRuntime *rt) {
7448 if (!rt)
7449 return NULL;
7450
7451 exec_shared_runtime_unref(rt->shared);
7452 dynamic_creds_unref(rt->dynamic_creds);
7453 return mfree(rt);
7454}
7455
7456ExecRuntime* exec_runtime_destroy(ExecRuntime *rt) {
7457 if (!rt)
7458 return NULL;
7459
7460 rt->shared = exec_shared_runtime_destroy(rt->shared);
7461 rt->dynamic_creds = dynamic_creds_destroy(rt->dynamic_creds);
7462 return exec_runtime_free(rt);
7463}
7464
7465void exec_params_clear(ExecParameters *p) {
7466 if (!p)
7467 return;
7468
7469 p->environment = strv_free(p->environment);
7470 p->fd_names = strv_free(p->fd_names);
7471 p->fds = mfree(p->fds);
7472 p->exec_fd = safe_close(p->exec_fd);
7473}
7474
7475ExecSetCredential *exec_set_credential_free(ExecSetCredential *sc) {
7476 if (!sc)
7477 return NULL;
7478
7479 free(sc->id);
7480 free(sc->data);
7481 return mfree(sc);
7482}
7483
7484ExecLoadCredential *exec_load_credential_free(ExecLoadCredential *lc) {
7485 if (!lc)
7486 return NULL;
7487
7488 free(lc->id);
7489 free(lc->path);
7490 return mfree(lc);
7491}
7492
7493void exec_directory_done(ExecDirectory *d) {
7494 if (!d)
7495 return;
7496
7497 for (size_t i = 0; i < d->n_items; i++) {
7498 free(d->items[i].path);
7499 strv_free(d->items[i].symlinks);
7500 }
7501
7502 d->items = mfree(d->items);
7503 d->n_items = 0;
7504 d->mode = 0755;
7505}
7506
7507static ExecDirectoryItem *exec_directory_find(ExecDirectory *d, const char *path) {
7508 assert(d);
7509 assert(path);
7510
7511 for (size_t i = 0; i < d->n_items; i++)
7512 if (path_equal(d->items[i].path, path))
7513 return &d->items[i];
7514
7515 return NULL;
7516}
7517
7518int exec_directory_add(ExecDirectory *d, const char *path, const char *symlink) {
7519 _cleanup_strv_free_ char **s = NULL;
7520 _cleanup_free_ char *p = NULL;
7521 ExecDirectoryItem *existing;
7522 int r;
7523
7524 assert(d);
7525 assert(path);
7526
7527 existing = exec_directory_find(d, path);
7528 if (existing) {
7529 r = strv_extend(&existing->symlinks, symlink);
7530 if (r < 0)
7531 return r;
7532
7533 return 0; /* existing item is updated */
7534 }
7535
7536 p = strdup(path);
7537 if (!p)
7538 return -ENOMEM;
7539
7540 if (symlink) {
7541 s = strv_new(symlink);
7542 if (!s)
7543 return -ENOMEM;
7544 }
7545
7546 if (!GREEDY_REALLOC(d->items, d->n_items + 1))
7547 return -ENOMEM;
7548
7549 d->items[d->n_items++] = (ExecDirectoryItem) {
7550 .path = TAKE_PTR(p),
7551 .symlinks = TAKE_PTR(s),
7552 };
7553
7554 return 1; /* new item is added */
7555}
7556
7557static int exec_directory_item_compare_func(const ExecDirectoryItem *a, const ExecDirectoryItem *b) {
7558 assert(a);
7559 assert(b);
7560
7561 return path_compare(a->path, b->path);
7562}
7563
7564void exec_directory_sort(ExecDirectory *d) {
7565 assert(d);
7566
7567 /* Sort the exec directories to make always parent directories processed at first in
7568 * setup_exec_directory(), e.g., even if StateDirectory=foo/bar foo, we need to create foo at first,
7569 * then foo/bar. Also, set .only_create flag if one of the parent directories is contained in the
7570 * list. See also comments in setup_exec_directory() and issue #24783. */
7571
7572 if (d->n_items <= 1)
7573 return;
7574
7575 typesafe_qsort(d->items, d->n_items, exec_directory_item_compare_func);
7576
7577 for (size_t i = 1; i < d->n_items; i++)
7578 for (size_t j = 0; j < i; j++)
7579 if (path_startswith(d->items[i].path, d->items[j].path)) {
7580 d->items[i].only_create = true;
7581 break;
7582 }
7583}
7584
7585ExecCleanMask exec_clean_mask_from_string(const char *s) {
7586 ExecDirectoryType t;
7587
7588 assert(s);
7589
7590 if (streq(s, "all"))
7591 return EXEC_CLEAN_ALL;
7592 if (streq(s, "fdstore"))
7593 return EXEC_CLEAN_FDSTORE;
7594
7595 t = exec_resource_type_from_string(s);
7596 if (t < 0)
7597 return (ExecCleanMask) t;
7598
7599 return 1U << t;
7600}
7601
7602DEFINE_HASH_OPS_WITH_VALUE_DESTRUCTOR(exec_set_credential_hash_ops, char, string_hash_func, string_compare_func, ExecSetCredential, exec_set_credential_free);
7603DEFINE_HASH_OPS_WITH_VALUE_DESTRUCTOR(exec_load_credential_hash_ops, char, string_hash_func, string_compare_func, ExecLoadCredential, exec_load_credential_free);
7604
7605static const char* const exec_input_table[_EXEC_INPUT_MAX] = {
7606 [EXEC_INPUT_NULL] = "null",
7607 [EXEC_INPUT_TTY] = "tty",
7608 [EXEC_INPUT_TTY_FORCE] = "tty-force",
7609 [EXEC_INPUT_TTY_FAIL] = "tty-fail",
7610 [EXEC_INPUT_SOCKET] = "socket",
7611 [EXEC_INPUT_NAMED_FD] = "fd",
7612 [EXEC_INPUT_DATA] = "data",
7613 [EXEC_INPUT_FILE] = "file",
7614};
7615
7616DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput);
7617
7618static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = {
7619 [EXEC_OUTPUT_INHERIT] = "inherit",
7620 [EXEC_OUTPUT_NULL] = "null",
7621 [EXEC_OUTPUT_TTY] = "tty",
7622 [EXEC_OUTPUT_KMSG] = "kmsg",
7623 [EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console",
7624 [EXEC_OUTPUT_JOURNAL] = "journal",
7625 [EXEC_OUTPUT_JOURNAL_AND_CONSOLE] = "journal+console",
7626 [EXEC_OUTPUT_SOCKET] = "socket",
7627 [EXEC_OUTPUT_NAMED_FD] = "fd",
7628 [EXEC_OUTPUT_FILE] = "file",
7629 [EXEC_OUTPUT_FILE_APPEND] = "append",
7630 [EXEC_OUTPUT_FILE_TRUNCATE] = "truncate",
7631};
7632
7633DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput);
7634
7635static const char* const exec_utmp_mode_table[_EXEC_UTMP_MODE_MAX] = {
7636 [EXEC_UTMP_INIT] = "init",
7637 [EXEC_UTMP_LOGIN] = "login",
7638 [EXEC_UTMP_USER] = "user",
7639};
7640
7641DEFINE_STRING_TABLE_LOOKUP(exec_utmp_mode, ExecUtmpMode);
7642
7643static const char* const exec_preserve_mode_table[_EXEC_PRESERVE_MODE_MAX] = {
7644 [EXEC_PRESERVE_NO] = "no",
7645 [EXEC_PRESERVE_YES] = "yes",
7646 [EXEC_PRESERVE_RESTART] = "restart",
7647};
7648
7649DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(exec_preserve_mode, ExecPreserveMode, EXEC_PRESERVE_YES);
7650
7651/* This table maps ExecDirectoryType to the setting it is configured with in the unit */
7652static const char* const exec_directory_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7653 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectory",
7654 [EXEC_DIRECTORY_STATE] = "StateDirectory",
7655 [EXEC_DIRECTORY_CACHE] = "CacheDirectory",
7656 [EXEC_DIRECTORY_LOGS] = "LogsDirectory",
7657 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectory",
7658};
7659
7660DEFINE_STRING_TABLE_LOOKUP(exec_directory_type, ExecDirectoryType);
7661
7662/* This table maps ExecDirectoryType to the symlink setting it is configured with in the unit */
7663static const char* const exec_directory_type_symlink_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7664 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectorySymlink",
7665 [EXEC_DIRECTORY_STATE] = "StateDirectorySymlink",
7666 [EXEC_DIRECTORY_CACHE] = "CacheDirectorySymlink",
7667 [EXEC_DIRECTORY_LOGS] = "LogsDirectorySymlink",
7668 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectorySymlink",
7669};
7670
7671DEFINE_STRING_TABLE_LOOKUP(exec_directory_type_symlink, ExecDirectoryType);
7672
7673/* And this table maps ExecDirectoryType too, but to a generic term identifying the type of resource. This
7674 * one is supposed to be generic enough to be used for unit types that don't use ExecContext and per-unit
7675 * directories, specifically .timer units with their timestamp touch file. */
7676static const char* const exec_resource_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7677 [EXEC_DIRECTORY_RUNTIME] = "runtime",
7678 [EXEC_DIRECTORY_STATE] = "state",
7679 [EXEC_DIRECTORY_CACHE] = "cache",
7680 [EXEC_DIRECTORY_LOGS] = "logs",
7681 [EXEC_DIRECTORY_CONFIGURATION] = "configuration",
7682};
7683
7684DEFINE_STRING_TABLE_LOOKUP(exec_resource_type, ExecDirectoryType);
7685
7686/* And this table also maps ExecDirectoryType, to the environment variable we pass the selected directory to
7687 * the service payload in. */
7688static const char* const exec_directory_env_name_table[_EXEC_DIRECTORY_TYPE_MAX] = {
7689 [EXEC_DIRECTORY_RUNTIME] = "RUNTIME_DIRECTORY",
7690 [EXEC_DIRECTORY_STATE] = "STATE_DIRECTORY",
7691 [EXEC_DIRECTORY_CACHE] = "CACHE_DIRECTORY",
7692 [EXEC_DIRECTORY_LOGS] = "LOGS_DIRECTORY",
7693 [EXEC_DIRECTORY_CONFIGURATION] = "CONFIGURATION_DIRECTORY",
7694};
7695
7696DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(exec_directory_env_name, ExecDirectoryType);
7697
7698static const char* const exec_keyring_mode_table[_EXEC_KEYRING_MODE_MAX] = {
7699 [EXEC_KEYRING_INHERIT] = "inherit",
7700 [EXEC_KEYRING_PRIVATE] = "private",
7701 [EXEC_KEYRING_SHARED] = "shared",
7702};
7703
7704DEFINE_STRING_TABLE_LOOKUP(exec_keyring_mode, ExecKeyringMode);