]>
Commit | Line | Data |
---|---|---|
1 | /* SPDX-License-Identifier: LGPL-2.1-or-later */ | |
2 | ||
3 | #include <math.h> | |
4 | #include <sys/stat.h> | |
5 | #include <unistd.h> | |
6 | ||
7 | #include "sd-bus.h" | |
8 | #include "sd-messages.h" | |
9 | ||
10 | #include "alloc-util.h" | |
11 | #include "async.h" | |
12 | #include "bus-common-errors.h" | |
13 | #include "bus-error.h" | |
14 | #include "bus-util.h" | |
15 | #include "chase.h" | |
16 | #include "dbus-service.h" | |
17 | #include "dbus-unit.h" | |
18 | #include "devnum-util.h" | |
19 | #include "env-util.h" | |
20 | #include "errno-util.h" | |
21 | #include "escape.h" | |
22 | #include "execute.h" | |
23 | #include "exec-credential.h" | |
24 | #include "exit-status.h" | |
25 | #include "extract-word.h" | |
26 | #include "fd-util.h" | |
27 | #include "fdset.h" | |
28 | #include "fileio.h" | |
29 | #include "format-util.h" | |
30 | #include "glyph-util.h" | |
31 | #include "image-policy.h" | |
32 | #include "log.h" | |
33 | #include "manager.h" | |
34 | #include "missing_audit.h" | |
35 | #include "mount-util.h" | |
36 | #include "namespace.h" | |
37 | #include "open-file.h" | |
38 | #include "parse-util.h" | |
39 | #include "path-util.h" | |
40 | #include "path.h" | |
41 | #include "pidfd-util.h" | |
42 | #include "process-util.h" | |
43 | #include "random-util.h" | |
44 | #include "selinux-util.h" | |
45 | #include "serialize.h" | |
46 | #include "service.h" | |
47 | #include "signal-util.h" | |
48 | #include "socket.h" | |
49 | #include "special.h" | |
50 | #include "stat-util.h" | |
51 | #include "string-table.h" | |
52 | #include "string-util.h" | |
53 | #include "strv.h" | |
54 | #include "transaction.h" | |
55 | #include "unit.h" | |
56 | #include "unit-name.h" | |
57 | #include "utf8.h" | |
58 | ||
59 | #define service_spawn(...) service_spawn_internal(__func__, __VA_ARGS__) | |
60 | ||
61 | static const UnitActiveState state_translation_table[_SERVICE_STATE_MAX] = { | |
62 | [SERVICE_DEAD] = UNIT_INACTIVE, | |
63 | [SERVICE_CONDITION] = UNIT_ACTIVATING, | |
64 | [SERVICE_START_PRE] = UNIT_ACTIVATING, | |
65 | [SERVICE_START] = UNIT_ACTIVATING, | |
66 | [SERVICE_START_POST] = UNIT_ACTIVATING, | |
67 | [SERVICE_RUNNING] = UNIT_ACTIVE, | |
68 | [SERVICE_EXITED] = UNIT_ACTIVE, | |
69 | [SERVICE_RELOAD] = UNIT_RELOADING, | |
70 | [SERVICE_RELOAD_SIGNAL] = UNIT_RELOADING, | |
71 | [SERVICE_RELOAD_NOTIFY] = UNIT_RELOADING, | |
72 | [SERVICE_REFRESH_EXTENSIONS] = UNIT_REFRESHING, | |
73 | [SERVICE_MOUNTING] = UNIT_REFRESHING, | |
74 | [SERVICE_STOP] = UNIT_DEACTIVATING, | |
75 | [SERVICE_STOP_WATCHDOG] = UNIT_DEACTIVATING, | |
76 | [SERVICE_STOP_SIGTERM] = UNIT_DEACTIVATING, | |
77 | [SERVICE_STOP_SIGKILL] = UNIT_DEACTIVATING, | |
78 | [SERVICE_STOP_POST] = UNIT_DEACTIVATING, | |
79 | [SERVICE_FINAL_WATCHDOG] = UNIT_DEACTIVATING, | |
80 | [SERVICE_FINAL_SIGTERM] = UNIT_DEACTIVATING, | |
81 | [SERVICE_FINAL_SIGKILL] = UNIT_DEACTIVATING, | |
82 | [SERVICE_FAILED] = UNIT_FAILED, | |
83 | [SERVICE_DEAD_BEFORE_AUTO_RESTART] = UNIT_INACTIVE, | |
84 | [SERVICE_FAILED_BEFORE_AUTO_RESTART] = UNIT_FAILED, | |
85 | [SERVICE_DEAD_RESOURCES_PINNED] = UNIT_INACTIVE, | |
86 | [SERVICE_AUTO_RESTART] = UNIT_ACTIVATING, | |
87 | [SERVICE_AUTO_RESTART_QUEUED] = UNIT_ACTIVATING, | |
88 | [SERVICE_CLEANING] = UNIT_MAINTENANCE, | |
89 | }; | |
90 | ||
91 | /* For Type=idle we never want to delay any other jobs, hence we | |
92 | * consider idle jobs active as soon as we start working on them */ | |
93 | static const UnitActiveState state_translation_table_idle[_SERVICE_STATE_MAX] = { | |
94 | [SERVICE_DEAD] = UNIT_INACTIVE, | |
95 | [SERVICE_CONDITION] = UNIT_ACTIVE, | |
96 | [SERVICE_START_PRE] = UNIT_ACTIVE, | |
97 | [SERVICE_START] = UNIT_ACTIVE, | |
98 | [SERVICE_START_POST] = UNIT_ACTIVE, | |
99 | [SERVICE_RUNNING] = UNIT_ACTIVE, | |
100 | [SERVICE_EXITED] = UNIT_ACTIVE, | |
101 | [SERVICE_RELOAD] = UNIT_RELOADING, | |
102 | [SERVICE_RELOAD_SIGNAL] = UNIT_RELOADING, | |
103 | [SERVICE_RELOAD_NOTIFY] = UNIT_RELOADING, | |
104 | [SERVICE_REFRESH_EXTENSIONS] = UNIT_REFRESHING, | |
105 | [SERVICE_MOUNTING] = UNIT_REFRESHING, | |
106 | [SERVICE_STOP] = UNIT_DEACTIVATING, | |
107 | [SERVICE_STOP_WATCHDOG] = UNIT_DEACTIVATING, | |
108 | [SERVICE_STOP_SIGTERM] = UNIT_DEACTIVATING, | |
109 | [SERVICE_STOP_SIGKILL] = UNIT_DEACTIVATING, | |
110 | [SERVICE_STOP_POST] = UNIT_DEACTIVATING, | |
111 | [SERVICE_FINAL_WATCHDOG] = UNIT_DEACTIVATING, | |
112 | [SERVICE_FINAL_SIGTERM] = UNIT_DEACTIVATING, | |
113 | [SERVICE_FINAL_SIGKILL] = UNIT_DEACTIVATING, | |
114 | [SERVICE_FAILED] = UNIT_FAILED, | |
115 | [SERVICE_DEAD_BEFORE_AUTO_RESTART] = UNIT_INACTIVE, | |
116 | [SERVICE_FAILED_BEFORE_AUTO_RESTART] = UNIT_FAILED, | |
117 | [SERVICE_DEAD_RESOURCES_PINNED] = UNIT_INACTIVE, | |
118 | [SERVICE_AUTO_RESTART] = UNIT_ACTIVATING, | |
119 | [SERVICE_AUTO_RESTART_QUEUED] = UNIT_ACTIVATING, | |
120 | [SERVICE_CLEANING] = UNIT_MAINTENANCE, | |
121 | }; | |
122 | ||
123 | static int service_dispatch_inotify_io(sd_event_source *source, int fd, uint32_t events, void *userdata); | |
124 | static int service_dispatch_timer(sd_event_source *source, usec_t usec, void *userdata); | |
125 | static int service_dispatch_watchdog(sd_event_source *source, usec_t usec, void *userdata); | |
126 | static int service_dispatch_exec_io(sd_event_source *source, int fd, uint32_t events, void *userdata); | |
127 | ||
128 | static void service_enter_signal(Service *s, ServiceState state, ServiceResult f); | |
129 | static void service_enter_reload_by_notify(Service *s); | |
130 | ||
131 | static bool SERVICE_STATE_WITH_MAIN_PROCESS(ServiceState state) { | |
132 | return IN_SET(state, | |
133 | SERVICE_START, SERVICE_START_POST, | |
134 | SERVICE_RUNNING, | |
135 | SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY, SERVICE_REFRESH_EXTENSIONS, | |
136 | SERVICE_MOUNTING, | |
137 | SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST, | |
138 | SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL); | |
139 | } | |
140 | ||
141 | static bool SERVICE_STATE_WITH_CONTROL_PROCESS(ServiceState state) { | |
142 | return IN_SET(state, | |
143 | SERVICE_CONDITION, | |
144 | SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST, | |
145 | SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY, SERVICE_REFRESH_EXTENSIONS, | |
146 | SERVICE_MOUNTING, | |
147 | SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST, | |
148 | SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL, | |
149 | SERVICE_CLEANING); | |
150 | } | |
151 | ||
152 | static void service_init(Unit *u) { | |
153 | Service *s = SERVICE(u); | |
154 | ||
155 | assert(u); | |
156 | assert(u->load_state == UNIT_STUB); | |
157 | ||
158 | s->timeout_start_usec = u->manager->defaults.timeout_start_usec; | |
159 | s->timeout_stop_usec = u->manager->defaults.timeout_stop_usec; | |
160 | s->timeout_abort_usec = u->manager->defaults.timeout_abort_usec; | |
161 | s->timeout_abort_set = u->manager->defaults.timeout_abort_set; | |
162 | s->restart_usec = u->manager->defaults.restart_usec; | |
163 | s->restart_max_delay_usec = USEC_INFINITY; | |
164 | s->runtime_max_usec = USEC_INFINITY; | |
165 | s->type = _SERVICE_TYPE_INVALID; | |
166 | s->socket_fd = -EBADF; | |
167 | s->stdin_fd = s->stdout_fd = s->stderr_fd = -EBADF; | |
168 | s->guess_main_pid = true; | |
169 | s->main_pid = PIDREF_NULL; | |
170 | s->control_pid = PIDREF_NULL; | |
171 | s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID; | |
172 | ||
173 | s->exec_context.keyring_mode = MANAGER_IS_SYSTEM(u->manager) ? | |
174 | EXEC_KEYRING_PRIVATE : EXEC_KEYRING_INHERIT; | |
175 | ||
176 | s->notify_access_override = _NOTIFY_ACCESS_INVALID; | |
177 | ||
178 | s->watchdog_original_usec = USEC_INFINITY; | |
179 | ||
180 | s->oom_policy = _OOM_POLICY_INVALID; | |
181 | s->reload_begin_usec = USEC_INFINITY; | |
182 | s->reload_signal = SIGHUP; | |
183 | ||
184 | s->fd_store_preserve_mode = EXEC_PRESERVE_RESTART; | |
185 | } | |
186 | ||
187 | static void service_unwatch_control_pid(Service *s) { | |
188 | assert(s); | |
189 | unit_unwatch_pidref_done(UNIT(s), &s->control_pid); | |
190 | } | |
191 | ||
192 | static void service_unwatch_main_pid(Service *s) { | |
193 | assert(s); | |
194 | unit_unwatch_pidref_done(UNIT(s), &s->main_pid); | |
195 | } | |
196 | ||
197 | static void service_unwatch_pid_file(Service *s) { | |
198 | assert(s); | |
199 | ||
200 | if (!s->pid_file_pathspec) | |
201 | return; | |
202 | ||
203 | log_unit_debug(UNIT(s), "Stopping watch for PID file %s", s->pid_file_pathspec->path); | |
204 | path_spec_unwatch(s->pid_file_pathspec); | |
205 | path_spec_done(s->pid_file_pathspec); | |
206 | s->pid_file_pathspec = mfree(s->pid_file_pathspec); | |
207 | } | |
208 | ||
209 | static int service_set_main_pidref(Service *s, PidRef pidref_consume, const dual_timestamp *start_timestamp) { | |
210 | _cleanup_(pidref_done) PidRef pidref = pidref_consume; | |
211 | int r; | |
212 | ||
213 | assert(s); | |
214 | ||
215 | /* Takes ownership of the specified pidref on both success and failure. */ | |
216 | ||
217 | if (!pidref_is_set(&pidref)) | |
218 | return -ESRCH; | |
219 | ||
220 | if (pidref.pid <= 1) | |
221 | return -EINVAL; | |
222 | ||
223 | if (pidref_is_self(&pidref)) | |
224 | return -EINVAL; | |
225 | ||
226 | if (s->main_pid_known && pidref_equal(&s->main_pid, &pidref)) | |
227 | return 0; | |
228 | ||
229 | if (!pidref_equal(&s->main_pid, &pidref)) { | |
230 | service_unwatch_main_pid(s); | |
231 | ||
232 | dual_timestamp pid_start_time; | |
233 | ||
234 | if (!start_timestamp) { | |
235 | usec_t t; | |
236 | ||
237 | if (pidref_get_start_time(&pidref, &t) >= 0) | |
238 | start_timestamp = dual_timestamp_from_boottime(&pid_start_time, t); | |
239 | } | |
240 | ||
241 | exec_status_start(&s->main_exec_status, pidref.pid, start_timestamp); | |
242 | } | |
243 | ||
244 | s->main_pid = TAKE_PIDREF(pidref); | |
245 | s->main_pid_known = true; | |
246 | ||
247 | r = pidref_is_my_child(&s->main_pid); | |
248 | if (r < 0) | |
249 | log_unit_warning_errno(UNIT(s), r, "Can't determine if process "PID_FMT" is our child, assuming it is not: %m", s->main_pid.pid); | |
250 | else if (r == 0) // FIXME: Supervise through pidfd here | |
251 | log_unit_warning(UNIT(s), "Supervising process "PID_FMT" which is not our child. We'll most likely not notice when it exits.", s->main_pid.pid); | |
252 | s->main_pid_alien = r <= 0; | |
253 | ||
254 | return 0; | |
255 | } | |
256 | ||
257 | void service_release_socket_fd(Service *s) { | |
258 | assert(s); | |
259 | ||
260 | if (s->socket_fd < 0 && !UNIT_ISSET(s->accept_socket) && !s->socket_peer) | |
261 | return; | |
262 | ||
263 | log_unit_debug(UNIT(s), "Closing connection socket."); | |
264 | ||
265 | /* Undo the effect of service_set_socket_fd(). */ | |
266 | ||
267 | s->socket_fd = asynchronous_close(s->socket_fd); | |
268 | ||
269 | if (UNIT_ISSET(s->accept_socket)) { | |
270 | socket_connection_unref(SOCKET(UNIT_DEREF(s->accept_socket))); | |
271 | unit_ref_unset(&s->accept_socket); | |
272 | } | |
273 | ||
274 | s->socket_peer = socket_peer_unref(s->socket_peer); | |
275 | } | |
276 | ||
277 | static void service_override_notify_access(Service *s, NotifyAccess notify_access_override) { | |
278 | assert(s); | |
279 | ||
280 | s->notify_access_override = notify_access_override; | |
281 | ||
282 | log_unit_debug(UNIT(s), "notify_access=%s", notify_access_to_string(s->notify_access)); | |
283 | log_unit_debug(UNIT(s), "notify_access_override=%s", notify_access_to_string(s->notify_access_override)); | |
284 | } | |
285 | ||
286 | static void service_stop_watchdog(Service *s) { | |
287 | assert(s); | |
288 | ||
289 | s->watchdog_event_source = sd_event_source_disable_unref(s->watchdog_event_source); | |
290 | s->watchdog_timestamp = DUAL_TIMESTAMP_NULL; | |
291 | } | |
292 | ||
293 | static void service_start_watchdog(Service *s) { | |
294 | usec_t watchdog_usec; | |
295 | int r; | |
296 | ||
297 | assert(s); | |
298 | ||
299 | watchdog_usec = service_get_watchdog_usec(s); | |
300 | if (!timestamp_is_set(watchdog_usec)) { | |
301 | service_stop_watchdog(s); | |
302 | return; | |
303 | } | |
304 | ||
305 | if (s->watchdog_event_source) { | |
306 | r = sd_event_source_set_time(s->watchdog_event_source, usec_add(s->watchdog_timestamp.monotonic, watchdog_usec)); | |
307 | if (r < 0) { | |
308 | log_unit_warning_errno(UNIT(s), r, "Failed to reset watchdog timer: %m"); | |
309 | return; | |
310 | } | |
311 | ||
312 | r = sd_event_source_set_enabled(s->watchdog_event_source, SD_EVENT_ONESHOT); | |
313 | } else { | |
314 | r = sd_event_add_time( | |
315 | UNIT(s)->manager->event, | |
316 | &s->watchdog_event_source, | |
317 | CLOCK_MONOTONIC, | |
318 | usec_add(s->watchdog_timestamp.monotonic, watchdog_usec), 0, | |
319 | service_dispatch_watchdog, s); | |
320 | if (r < 0) { | |
321 | log_unit_warning_errno(UNIT(s), r, "Failed to add watchdog timer: %m"); | |
322 | return; | |
323 | } | |
324 | ||
325 | (void) sd_event_source_set_description(s->watchdog_event_source, "service-watchdog"); | |
326 | ||
327 | /* Let's process everything else which might be a sign | |
328 | * of living before we consider a service died. */ | |
329 | r = sd_event_source_set_priority(s->watchdog_event_source, EVENT_PRIORITY_SERVICE_WATCHDOG); | |
330 | } | |
331 | if (r < 0) | |
332 | log_unit_warning_errno(UNIT(s), r, "Failed to install watchdog timer: %m"); | |
333 | } | |
334 | ||
335 | usec_t service_restart_usec_next(Service *s) { | |
336 | unsigned n_restarts_next; | |
337 | ||
338 | assert(s); | |
339 | ||
340 | /* When the service state is in SERVICE_*_BEFORE_AUTO_RESTART or SERVICE_AUTO_RESTART, we still need | |
341 | * to add 1 to s->n_restarts manually, because s->n_restarts is not updated until a restart job is | |
342 | * enqueued, i.e. state has transitioned to SERVICE_AUTO_RESTART_QUEUED. */ | |
343 | n_restarts_next = s->n_restarts + (s->state == SERVICE_AUTO_RESTART_QUEUED ? 0 : 1); | |
344 | ||
345 | if (n_restarts_next <= 1 || | |
346 | s->restart_steps == 0 || | |
347 | s->restart_usec == 0 || | |
348 | s->restart_max_delay_usec == USEC_INFINITY || | |
349 | s->restart_usec >= s->restart_max_delay_usec) | |
350 | return s->restart_usec; | |
351 | ||
352 | if (n_restarts_next > s->restart_steps) | |
353 | return s->restart_max_delay_usec; | |
354 | ||
355 | /* Enforced in service_verify() and above */ | |
356 | assert(s->restart_max_delay_usec > s->restart_usec); | |
357 | ||
358 | /* r_i / r_0 = (r_n / r_0) ^ (i / n) | |
359 | * where, | |
360 | * r_0 : initial restart usec (s->restart_usec), | |
361 | * r_i : i-th restart usec (value), | |
362 | * r_n : maximum restart usec (s->restart_max_delay_usec), | |
363 | * i : index of the next step (n_restarts_next - 1) | |
364 | * n : num maximum steps (s->restart_steps) */ | |
365 | return (usec_t) (s->restart_usec * powl((long double) s->restart_max_delay_usec / s->restart_usec, | |
366 | (long double) (n_restarts_next - 1) / s->restart_steps)); | |
367 | } | |
368 | ||
369 | static void service_extend_event_source_timeout(Service *s, sd_event_source *source, usec_t extended) { | |
370 | usec_t current; | |
371 | int r; | |
372 | ||
373 | assert(s); | |
374 | ||
375 | /* Extends the specified event source timer to at least the specified time, unless it is already later | |
376 | * anyway. */ | |
377 | ||
378 | if (!source) | |
379 | return; | |
380 | ||
381 | r = sd_event_source_get_time(source, ¤t); | |
382 | if (r < 0) { | |
383 | const char *desc; | |
384 | (void) sd_event_source_get_description(s->timer_event_source, &desc); | |
385 | log_unit_warning_errno(UNIT(s), r, "Failed to retrieve timeout time for event source '%s', ignoring: %m", strna(desc)); | |
386 | return; | |
387 | } | |
388 | ||
389 | if (current >= extended) /* Current timeout is already longer, ignore this. */ | |
390 | return; | |
391 | ||
392 | r = sd_event_source_set_time(source, extended); | |
393 | if (r < 0) { | |
394 | const char *desc; | |
395 | (void) sd_event_source_get_description(s->timer_event_source, &desc); | |
396 | log_unit_warning_errno(UNIT(s), r, "Failed to set timeout time for event source '%s', ignoring %m", strna(desc)); | |
397 | } | |
398 | } | |
399 | ||
400 | static void service_extend_timeout(Service *s, usec_t extend_timeout_usec) { | |
401 | usec_t extended; | |
402 | ||
403 | assert(s); | |
404 | ||
405 | if (!timestamp_is_set(extend_timeout_usec)) | |
406 | return; | |
407 | ||
408 | extended = usec_add(now(CLOCK_MONOTONIC), extend_timeout_usec); | |
409 | ||
410 | service_extend_event_source_timeout(s, s->timer_event_source, extended); | |
411 | service_extend_event_source_timeout(s, s->watchdog_event_source, extended); | |
412 | } | |
413 | ||
414 | static void service_reset_watchdog(Service *s) { | |
415 | assert(s); | |
416 | ||
417 | dual_timestamp_now(&s->watchdog_timestamp); | |
418 | service_start_watchdog(s); | |
419 | } | |
420 | ||
421 | static void service_override_watchdog_timeout(Service *s, usec_t watchdog_override_usec) { | |
422 | assert(s); | |
423 | ||
424 | s->watchdog_override_enable = true; | |
425 | s->watchdog_override_usec = watchdog_override_usec; | |
426 | service_reset_watchdog(s); | |
427 | ||
428 | log_unit_debug(UNIT(s), "watchdog_usec="USEC_FMT, s->watchdog_usec); | |
429 | log_unit_debug(UNIT(s), "watchdog_override_usec="USEC_FMT, s->watchdog_override_usec); | |
430 | } | |
431 | ||
432 | static ServiceFDStore* service_fd_store_unlink(ServiceFDStore *fs) { | |
433 | if (!fs) | |
434 | return NULL; | |
435 | ||
436 | if (fs->service) { | |
437 | assert(fs->service->n_fd_store > 0); | |
438 | LIST_REMOVE(fd_store, fs->service->fd_store, fs); | |
439 | fs->service->n_fd_store--; | |
440 | } | |
441 | ||
442 | sd_event_source_disable_unref(fs->event_source); | |
443 | ||
444 | free(fs->fdname); | |
445 | asynchronous_close(fs->fd); | |
446 | return mfree(fs); | |
447 | } | |
448 | ||
449 | DEFINE_TRIVIAL_CLEANUP_FUNC(ServiceFDStore*, service_fd_store_unlink); | |
450 | ||
451 | static void service_release_fd_store(Service *s) { | |
452 | assert(s); | |
453 | ||
454 | if (!s->fd_store) | |
455 | return; | |
456 | ||
457 | log_unit_debug(UNIT(s), "Releasing all stored fds."); | |
458 | ||
459 | while (s->fd_store) | |
460 | service_fd_store_unlink(s->fd_store); | |
461 | ||
462 | assert(s->n_fd_store == 0); | |
463 | } | |
464 | ||
465 | static void service_release_extra_fds(Service *s) { | |
466 | assert(s); | |
467 | ||
468 | if (!s->extra_fds) | |
469 | return; | |
470 | ||
471 | log_unit_debug(UNIT(s), "Releasing extra file descriptors."); | |
472 | ||
473 | FOREACH_ARRAY(i, s->extra_fds, s->n_extra_fds) { | |
474 | asynchronous_close(i->fd); | |
475 | free(i->fdname); | |
476 | } | |
477 | ||
478 | s->extra_fds = mfree(s->extra_fds); | |
479 | s->n_extra_fds = 0; | |
480 | } | |
481 | ||
482 | static void service_release_stdio_fd(Service *s) { | |
483 | assert(s); | |
484 | ||
485 | if (s->stdin_fd < 0 && s->stdout_fd < 0 && s->stderr_fd < 0) | |
486 | return; | |
487 | ||
488 | log_unit_debug(UNIT(s), "Releasing stdin/stdout/stderr file descriptors."); | |
489 | ||
490 | s->stdin_fd = asynchronous_close(s->stdin_fd); | |
491 | s->stdout_fd = asynchronous_close(s->stdout_fd); | |
492 | s->stderr_fd = asynchronous_close(s->stderr_fd); | |
493 | } | |
494 | ||
495 | static void service_done(Unit *u) { | |
496 | Service *s = ASSERT_PTR(SERVICE(u)); | |
497 | ||
498 | open_file_free_many(&s->open_files); | |
499 | ||
500 | s->pid_file = mfree(s->pid_file); | |
501 | s->status_text = mfree(s->status_text); | |
502 | s->status_bus_error = mfree(s->status_bus_error); | |
503 | s->status_varlink_error = mfree(s->status_varlink_error); | |
504 | ||
505 | s->exec_runtime = exec_runtime_free(s->exec_runtime); | |
506 | ||
507 | exec_command_free_array(s->exec_command, _SERVICE_EXEC_COMMAND_MAX); | |
508 | s->control_command = NULL; | |
509 | s->main_command = NULL; | |
510 | ||
511 | exit_status_set_free(&s->restart_prevent_status); | |
512 | exit_status_set_free(&s->restart_force_status); | |
513 | exit_status_set_free(&s->success_status); | |
514 | ||
515 | /* This will leak a process, but at least no memory or any of our resources */ | |
516 | service_unwatch_main_pid(s); | |
517 | service_unwatch_control_pid(s); | |
518 | service_unwatch_pid_file(s); | |
519 | ||
520 | if (s->bus_name) { | |
521 | unit_unwatch_bus_name(u, s->bus_name); | |
522 | s->bus_name = mfree(s->bus_name); | |
523 | } | |
524 | ||
525 | s->usb_function_descriptors = mfree(s->usb_function_descriptors); | |
526 | s->usb_function_strings = mfree(s->usb_function_strings); | |
527 | ||
528 | service_stop_watchdog(s); | |
529 | ||
530 | s->timer_event_source = sd_event_source_disable_unref(s->timer_event_source); | |
531 | s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source); | |
532 | ||
533 | s->bus_name_pid_lookup_slot = sd_bus_slot_unref(s->bus_name_pid_lookup_slot); | |
534 | ||
535 | service_release_socket_fd(s); | |
536 | service_release_stdio_fd(s); | |
537 | service_release_fd_store(s); | |
538 | service_release_extra_fds(s); | |
539 | ||
540 | s->mount_request = sd_bus_message_unref(s->mount_request); | |
541 | } | |
542 | ||
543 | static int on_fd_store_io(sd_event_source *e, int fd, uint32_t revents, void *userdata) { | |
544 | ServiceFDStore *fs = ASSERT_PTR(userdata); | |
545 | ||
546 | assert(e); | |
547 | ||
548 | /* If we get either EPOLLHUP or EPOLLERR, it's time to remove this entry from the fd store */ | |
549 | log_unit_debug(UNIT(fs->service), | |
550 | "Received %s on stored fd %d (%s), closing.", | |
551 | revents & EPOLLERR ? "EPOLLERR" : "EPOLLHUP", | |
552 | fs->fd, strna(fs->fdname)); | |
553 | service_fd_store_unlink(fs); | |
554 | return 0; | |
555 | } | |
556 | ||
557 | static int service_add_fd_store(Service *s, int fd_in, const char *name, bool do_poll) { | |
558 | _cleanup_(service_fd_store_unlinkp) ServiceFDStore *fs = NULL; | |
559 | _cleanup_(asynchronous_closep) int fd = ASSERT_FD(fd_in); | |
560 | struct stat st; | |
561 | int r; | |
562 | ||
563 | /* fd is always consumed even if the function fails. */ | |
564 | ||
565 | assert(s); | |
566 | ||
567 | if (fstat(fd, &st) < 0) | |
568 | return -errno; | |
569 | ||
570 | log_unit_debug(UNIT(s), "Trying to stash fd for dev=" DEVNUM_FORMAT_STR "/inode=%" PRIu64, | |
571 | DEVNUM_FORMAT_VAL(st.st_dev), (uint64_t) st.st_ino); | |
572 | ||
573 | if (s->n_fd_store >= s->n_fd_store_max) | |
574 | /* Our store is full. Use this errno rather than E[NM]FILE to distinguish from the case | |
575 | * where systemd itself hits the file limit. */ | |
576 | return log_unit_debug_errno(UNIT(s), SYNTHETIC_ERRNO(EXFULL), "Hit fd store limit."); | |
577 | ||
578 | LIST_FOREACH(fd_store, i, s->fd_store) { | |
579 | r = same_fd(i->fd, fd); | |
580 | if (r < 0) | |
581 | return r; | |
582 | if (r > 0) { | |
583 | log_unit_debug(UNIT(s), "Suppressing duplicate fd %i in fd store.", fd); | |
584 | return 0; /* fd already included */ | |
585 | } | |
586 | } | |
587 | ||
588 | fs = new(ServiceFDStore, 1); | |
589 | if (!fs) | |
590 | return -ENOMEM; | |
591 | ||
592 | *fs = (ServiceFDStore) { | |
593 | .fd = TAKE_FD(fd), | |
594 | .do_poll = do_poll, | |
595 | .fdname = strdup(name ?: "stored"), | |
596 | }; | |
597 | ||
598 | if (!fs->fdname) | |
599 | return -ENOMEM; | |
600 | ||
601 | if (do_poll) { | |
602 | r = sd_event_add_io(UNIT(s)->manager->event, &fs->event_source, fs->fd, 0, on_fd_store_io, fs); | |
603 | if (r < 0 && r != -EPERM) /* EPERM indicates fds that aren't pollable, which is OK */ | |
604 | return r; | |
605 | if (r >= 0) | |
606 | (void) sd_event_source_set_description(fs->event_source, "service-fd-store"); | |
607 | } | |
608 | ||
609 | log_unit_debug(UNIT(s), "Added fd %i (%s) to fd store.", fs->fd, fs->fdname); | |
610 | ||
611 | fs->service = s; | |
612 | LIST_PREPEND(fd_store, s->fd_store, TAKE_PTR(fs)); | |
613 | s->n_fd_store++; | |
614 | ||
615 | return 1; /* fd newly stored */ | |
616 | } | |
617 | ||
618 | static int service_add_fd_store_set(Service *s, FDSet *fds, const char *name, bool do_poll) { | |
619 | int r; | |
620 | ||
621 | assert(s); | |
622 | ||
623 | for (;;) { | |
624 | int fd; | |
625 | ||
626 | fd = fdset_steal_first(fds); | |
627 | if (fd < 0) | |
628 | break; | |
629 | ||
630 | r = service_add_fd_store(s, fd, name, do_poll); | |
631 | if (r == -EXFULL) | |
632 | return log_unit_warning_errno(UNIT(s), r, | |
633 | "Cannot store more fds than FileDescriptorStoreMax=%u, closing remaining.", | |
634 | s->n_fd_store_max); | |
635 | if (r < 0) | |
636 | return log_unit_error_errno(UNIT(s), r, "Failed to add fd to store: %m"); | |
637 | } | |
638 | ||
639 | return 0; | |
640 | } | |
641 | ||
642 | static void service_remove_fd_store(Service *s, const char *name) { | |
643 | assert(s); | |
644 | assert(name); | |
645 | ||
646 | LIST_FOREACH(fd_store, fs, s->fd_store) { | |
647 | if (!streq(fs->fdname, name)) | |
648 | continue; | |
649 | ||
650 | log_unit_debug(UNIT(s), "Got explicit request to remove fd %i (%s), closing.", fs->fd, name); | |
651 | service_fd_store_unlink(fs); | |
652 | } | |
653 | } | |
654 | ||
655 | static usec_t service_running_timeout(Service *s) { | |
656 | usec_t delta = 0; | |
657 | ||
658 | assert(s); | |
659 | ||
660 | if (s->runtime_rand_extra_usec != 0) { | |
661 | delta = random_u64_range(s->runtime_rand_extra_usec); | |
662 | log_unit_debug(UNIT(s), "Adding delta of %s sec to timeout", FORMAT_TIMESPAN(delta, USEC_PER_SEC)); | |
663 | } | |
664 | ||
665 | return usec_add(usec_add(UNIT(s)->active_enter_timestamp.monotonic, | |
666 | s->runtime_max_usec), | |
667 | delta); | |
668 | } | |
669 | ||
670 | static int service_arm_timer(Service *s, bool relative, usec_t usec) { | |
671 | assert(s); | |
672 | ||
673 | return unit_arm_timer(UNIT(s), &s->timer_event_source, relative, usec, service_dispatch_timer); | |
674 | } | |
675 | ||
676 | static int service_verify(Service *s) { | |
677 | assert(s); | |
678 | assert(UNIT(s)->load_state == UNIT_LOADED); | |
679 | ||
680 | if (!s->exec_command[SERVICE_EXEC_START] && !s->exec_command[SERVICE_EXEC_STOP] && | |
681 | UNIT(s)->success_action == EMERGENCY_ACTION_NONE) | |
682 | /* FailureAction= only makes sense if one of the start or stop commands is specified. | |
683 | * SuccessAction= will be executed unconditionally if no commands are specified. Hence, | |
684 | * either a command or SuccessAction= are required. */ | |
685 | return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has no ExecStart=, ExecStop=, or SuccessAction=. Refusing."); | |
686 | ||
687 | if (s->type != SERVICE_ONESHOT && !s->exec_command[SERVICE_EXEC_START]) | |
688 | return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has no ExecStart= setting, which is only allowed for Type=oneshot services. Refusing."); | |
689 | ||
690 | if (!s->remain_after_exit && !s->exec_command[SERVICE_EXEC_START] && UNIT(s)->success_action == EMERGENCY_ACTION_NONE) | |
691 | return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has no ExecStart= and no SuccessAction= settings and does not have RemainAfterExit=yes set. Refusing."); | |
692 | ||
693 | if (s->type != SERVICE_ONESHOT && s->exec_command[SERVICE_EXEC_START]->command_next) | |
694 | return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has more than one ExecStart= setting, which is only allowed for Type=oneshot services. Refusing."); | |
695 | ||
696 | if (s->type == SERVICE_ONESHOT && IN_SET(s->restart, SERVICE_RESTART_ALWAYS, SERVICE_RESTART_ON_SUCCESS)) | |
697 | return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has Restart= set to either always or on-success, which isn't allowed for Type=oneshot services. Refusing."); | |
698 | ||
699 | if (s->type == SERVICE_ONESHOT && s->exit_type == SERVICE_EXIT_CGROUP) | |
700 | return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service has ExitType=cgroup set, which isn't allowed for Type=oneshot services. Refusing."); | |
701 | ||
702 | if (s->type == SERVICE_DBUS && !s->bus_name) | |
703 | return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service is of type D-Bus but no D-Bus service name has been specified. Refusing."); | |
704 | ||
705 | if (s->type == SERVICE_FORKING && exec_needs_pid_namespace(&s->exec_context, /* params= */ NULL)) | |
706 | return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENOEXEC), "Service of Type=forking does not support PrivatePIDs=yes. Refusing."); | |
707 | ||
708 | if (s->usb_function_descriptors && !s->usb_function_strings) | |
709 | log_unit_warning(UNIT(s), "Service has USBFunctionDescriptors= setting, but no USBFunctionStrings=. Ignoring."); | |
710 | ||
711 | if (!s->usb_function_descriptors && s->usb_function_strings) | |
712 | log_unit_warning(UNIT(s), "Service has USBFunctionStrings= setting, but no USBFunctionDescriptors=. Ignoring."); | |
713 | ||
714 | if (s->runtime_max_usec != USEC_INFINITY && s->type == SERVICE_ONESHOT) | |
715 | log_unit_warning(UNIT(s), "RuntimeMaxSec= has no effect in combination with Type=oneshot. Ignoring."); | |
716 | ||
717 | if (s->runtime_max_usec == USEC_INFINITY && s->runtime_rand_extra_usec != 0) | |
718 | log_unit_warning(UNIT(s), "Service has RuntimeRandomizedExtraSec= setting, but no RuntimeMaxSec=. Ignoring."); | |
719 | ||
720 | if (s->type == SERVICE_SIMPLE && s->exec_command[SERVICE_EXEC_START_POST] && exec_context_has_credentials(&s->exec_context)) | |
721 | log_unit_warning(UNIT(s), "Service uses a combination of Type=simple, ExecStartPost=, and credentials. This could lead to race conditions. Continuing."); | |
722 | ||
723 | if (s->restart_max_delay_usec == USEC_INFINITY && s->restart_steps > 0) | |
724 | log_unit_warning(UNIT(s), "Service has RestartSteps= but no RestartMaxDelaySec= setting. Ignoring."); | |
725 | ||
726 | if (s->restart_max_delay_usec != USEC_INFINITY && s->restart_steps == 0) | |
727 | log_unit_warning(UNIT(s), "Service has RestartMaxDelaySec= but no RestartSteps= setting. Ignoring."); | |
728 | ||
729 | if (s->restart_max_delay_usec < s->restart_usec) { | |
730 | log_unit_warning(UNIT(s), "RestartMaxDelaySec= has a value smaller than RestartSec=, resetting RestartSec= to RestartMaxDelaySec=."); | |
731 | s->restart_usec = s->restart_max_delay_usec; | |
732 | } | |
733 | ||
734 | return 0; | |
735 | } | |
736 | ||
737 | static int service_add_default_dependencies(Service *s) { | |
738 | int r; | |
739 | ||
740 | assert(s); | |
741 | ||
742 | if (!UNIT(s)->default_dependencies) | |
743 | return 0; | |
744 | ||
745 | /* Add a number of automatic dependencies useful for the | |
746 | * majority of services. */ | |
747 | ||
748 | if (MANAGER_IS_SYSTEM(UNIT(s)->manager)) { | |
749 | /* First, pull in the really early boot stuff, and | |
750 | * require it, so that we fail if we can't acquire | |
751 | * it. */ | |
752 | ||
753 | r = unit_add_two_dependencies_by_name(UNIT(s), UNIT_AFTER, UNIT_REQUIRES, SPECIAL_SYSINIT_TARGET, true, UNIT_DEPENDENCY_DEFAULT); | |
754 | if (r < 0) | |
755 | return r; | |
756 | } else { | |
757 | ||
758 | /* In the --user instance there's no sysinit.target, | |
759 | * in that case require basic.target instead. */ | |
760 | ||
761 | r = unit_add_dependency_by_name(UNIT(s), UNIT_REQUIRES, SPECIAL_BASIC_TARGET, true, UNIT_DEPENDENCY_DEFAULT); | |
762 | if (r < 0) | |
763 | return r; | |
764 | } | |
765 | ||
766 | /* Second, if the rest of the base system is in the same | |
767 | * transaction, order us after it, but do not pull it in or | |
768 | * even require it. */ | |
769 | r = unit_add_dependency_by_name(UNIT(s), UNIT_AFTER, SPECIAL_BASIC_TARGET, true, UNIT_DEPENDENCY_DEFAULT); | |
770 | if (r < 0) | |
771 | return r; | |
772 | ||
773 | /* Third, add us in for normal shutdown. */ | |
774 | return unit_add_two_dependencies_by_name(UNIT(s), UNIT_BEFORE, UNIT_CONFLICTS, SPECIAL_SHUTDOWN_TARGET, true, UNIT_DEPENDENCY_DEFAULT); | |
775 | } | |
776 | ||
777 | static void service_fix_stdio(Service *s) { | |
778 | assert(s); | |
779 | ||
780 | /* Note that EXEC_INPUT_NULL and EXEC_OUTPUT_INHERIT play a special role here: they are both the | |
781 | * default value that is subject to automatic overriding triggered by other settings and an explicit | |
782 | * choice the user can make. We don't distinguish between these cases currently. */ | |
783 | ||
784 | if (s->exec_context.std_input == EXEC_INPUT_NULL && | |
785 | s->exec_context.stdin_data_size > 0) | |
786 | s->exec_context.std_input = EXEC_INPUT_DATA; | |
787 | ||
788 | if (IN_SET(s->exec_context.std_input, | |
789 | EXEC_INPUT_TTY, | |
790 | EXEC_INPUT_TTY_FORCE, | |
791 | EXEC_INPUT_TTY_FAIL, | |
792 | EXEC_INPUT_SOCKET, | |
793 | EXEC_INPUT_NAMED_FD)) | |
794 | return; | |
795 | ||
796 | /* We assume these listed inputs refer to bidirectional streams, and hence duplicating them from | |
797 | * stdin to stdout/stderr makes sense and hence leaving EXEC_OUTPUT_INHERIT in place makes sense, | |
798 | * too. Outputs such as regular files or sealed data memfds otoh don't really make sense to be | |
799 | * duplicated for both input and output at the same time (since they then would cause a feedback | |
800 | * loop), hence override EXEC_OUTPUT_INHERIT with the default stderr/stdout setting. */ | |
801 | ||
802 | if (s->exec_context.std_error == EXEC_OUTPUT_INHERIT && | |
803 | s->exec_context.std_output == EXEC_OUTPUT_INHERIT) | |
804 | s->exec_context.std_error = UNIT(s)->manager->defaults.std_error; | |
805 | ||
806 | if (s->exec_context.std_output == EXEC_OUTPUT_INHERIT) | |
807 | s->exec_context.std_output = UNIT(s)->manager->defaults.std_output; | |
808 | } | |
809 | ||
810 | static int service_setup_bus_name(Service *s) { | |
811 | int r; | |
812 | ||
813 | assert(s); | |
814 | ||
815 | /* If s->bus_name is not set, then the unit will be refused by service_verify() later. */ | |
816 | if (!s->bus_name) | |
817 | return 0; | |
818 | ||
819 | if (s->type == SERVICE_DBUS) { | |
820 | r = unit_add_dependency_by_name(UNIT(s), UNIT_REQUIRES, SPECIAL_DBUS_SOCKET, true, UNIT_DEPENDENCY_FILE); | |
821 | if (r < 0) | |
822 | return log_unit_error_errno(UNIT(s), r, "Failed to add dependency on %s: %m", SPECIAL_DBUS_SOCKET); | |
823 | ||
824 | /* We always want to be ordered against dbus.socket if both are in the transaction. */ | |
825 | r = unit_add_dependency_by_name(UNIT(s), UNIT_AFTER, SPECIAL_DBUS_SOCKET, true, UNIT_DEPENDENCY_FILE); | |
826 | if (r < 0) | |
827 | return log_unit_error_errno(UNIT(s), r, "Failed to add dependency on %s: %m", SPECIAL_DBUS_SOCKET); | |
828 | } | |
829 | ||
830 | r = unit_watch_bus_name(UNIT(s), s->bus_name); | |
831 | if (r == -EEXIST) | |
832 | return log_unit_error_errno(UNIT(s), r, "Two services allocated for the same bus name %s, refusing operation.", s->bus_name); | |
833 | if (r < 0) | |
834 | return log_unit_error_errno(UNIT(s), r, "Cannot watch bus name %s: %m", s->bus_name); | |
835 | ||
836 | return 0; | |
837 | } | |
838 | ||
839 | static int service_add_extras(Service *s) { | |
840 | int r; | |
841 | ||
842 | assert(s); | |
843 | ||
844 | if (s->type == _SERVICE_TYPE_INVALID) { | |
845 | /* Figure out a type automatically */ | |
846 | if (s->bus_name) | |
847 | s->type = SERVICE_DBUS; | |
848 | else if (exec_context_has_credentials(&s->exec_context)) | |
849 | s->type = SERVICE_EXEC; | |
850 | else if (s->exec_command[SERVICE_EXEC_START]) | |
851 | s->type = SERVICE_SIMPLE; | |
852 | else | |
853 | s->type = SERVICE_ONESHOT; | |
854 | } | |
855 | ||
856 | /* Oneshot services have disabled start timeout by default */ | |
857 | if (s->type == SERVICE_ONESHOT && !s->start_timeout_defined) | |
858 | s->timeout_start_usec = USEC_INFINITY; | |
859 | ||
860 | service_fix_stdio(s); | |
861 | ||
862 | r = unit_patch_contexts(UNIT(s)); | |
863 | if (r < 0) | |
864 | return r; | |
865 | ||
866 | r = unit_add_exec_dependencies(UNIT(s), &s->exec_context); | |
867 | if (r < 0) | |
868 | return r; | |
869 | ||
870 | r = unit_set_default_slice(UNIT(s)); | |
871 | if (r < 0) | |
872 | return r; | |
873 | ||
874 | /* If the service needs the notify socket, let's enable it automatically. */ | |
875 | if (s->notify_access == NOTIFY_NONE && | |
876 | (IN_SET(s->type, SERVICE_NOTIFY, SERVICE_NOTIFY_RELOAD) || s->watchdog_usec > 0 || s->n_fd_store_max > 0)) | |
877 | s->notify_access = NOTIFY_MAIN; | |
878 | ||
879 | /* If no OOM policy was explicitly set, then default to the configure default OOM policy. Except when | |
880 | * delegation is on, in that case it we assume the payload knows better what to do and can process | |
881 | * things in a more focused way. */ | |
882 | if (s->oom_policy < 0) | |
883 | s->oom_policy = s->cgroup_context.delegate ? OOM_CONTINUE : UNIT(s)->manager->defaults.oom_policy; | |
884 | ||
885 | /* Let the kernel do the killing if that's requested. */ | |
886 | s->cgroup_context.memory_oom_group = s->oom_policy == OOM_KILL; | |
887 | ||
888 | r = service_add_default_dependencies(s); | |
889 | if (r < 0) | |
890 | return r; | |
891 | ||
892 | r = service_setup_bus_name(s); | |
893 | if (r < 0) | |
894 | return r; | |
895 | ||
896 | return 0; | |
897 | } | |
898 | ||
899 | static int service_load(Unit *u) { | |
900 | Service *s = ASSERT_PTR(SERVICE(u)); | |
901 | int r; | |
902 | ||
903 | r = unit_load_fragment_and_dropin(u, true); | |
904 | if (r < 0) | |
905 | return r; | |
906 | ||
907 | if (u->load_state != UNIT_LOADED) | |
908 | return 0; | |
909 | ||
910 | /* This is a new unit? Then let's add in some extras */ | |
911 | r = service_add_extras(s); | |
912 | if (r < 0) | |
913 | return r; | |
914 | ||
915 | return service_verify(s); | |
916 | } | |
917 | ||
918 | static int service_dump_fd(int fd, const char *fdname, const char *header, FILE *f, const char *prefix) { | |
919 | _cleanup_free_ char *path = NULL; | |
920 | struct stat st; | |
921 | int flags; | |
922 | ||
923 | assert(fd >= 0); | |
924 | assert(fdname); | |
925 | assert(header); | |
926 | assert(f); | |
927 | assert(prefix); | |
928 | ||
929 | if (fstat(fd, &st) < 0) | |
930 | return log_debug_errno(errno, "Failed to stat service fd: %m"); | |
931 | ||
932 | flags = fcntl(fd, F_GETFL); | |
933 | if (flags < 0) | |
934 | return log_debug_errno(errno, "Failed to get service fd flags: %m"); | |
935 | ||
936 | (void) fd_get_path(fd, &path); | |
937 | ||
938 | fprintf(f, | |
939 | "%s%s '%s' (type=%s; dev=" DEVNUM_FORMAT_STR "; inode=%" PRIu64 "; rdev=" DEVNUM_FORMAT_STR "; path=%s; access=%s)\n", | |
940 | prefix, | |
941 | header, | |
942 | fdname, | |
943 | strna(inode_type_to_string(st.st_mode)), | |
944 | DEVNUM_FORMAT_VAL(st.st_dev), | |
945 | (uint64_t) st.st_ino, | |
946 | DEVNUM_FORMAT_VAL(st.st_rdev), | |
947 | strna(path), | |
948 | strna(accmode_to_string(flags))); | |
949 | ||
950 | return 0; | |
951 | } | |
952 | ||
953 | static void service_dump(Unit *u, FILE *f, const char *prefix) { | |
954 | Service *s = ASSERT_PTR(SERVICE(u)); | |
955 | const char *prefix2; | |
956 | ||
957 | prefix = strempty(prefix); | |
958 | prefix2 = strjoina(prefix, "\t"); | |
959 | ||
960 | fprintf(f, | |
961 | "%sService State: %s\n" | |
962 | "%sResult: %s\n" | |
963 | "%sReload Result: %s\n" | |
964 | "%sClean Result: %s\n" | |
965 | "%sLiveMount Result: %s\n" | |
966 | "%sPermissionsStartOnly: %s\n" | |
967 | "%sRootDirectoryStartOnly: %s\n" | |
968 | "%sRemainAfterExit: %s\n" | |
969 | "%sGuessMainPID: %s\n" | |
970 | "%sType: %s\n" | |
971 | "%sRestart: %s\n" | |
972 | "%sNotifyAccess: %s\n" | |
973 | "%sNotifyState: %s\n" | |
974 | "%sOOMPolicy: %s\n" | |
975 | "%sReloadSignal: %s\n", | |
976 | prefix, service_state_to_string(s->state), | |
977 | prefix, service_result_to_string(s->result), | |
978 | prefix, service_result_to_string(s->reload_result), | |
979 | prefix, service_result_to_string(s->live_mount_result), | |
980 | prefix, service_result_to_string(s->clean_result), | |
981 | prefix, yes_no(s->permissions_start_only), | |
982 | prefix, yes_no(s->root_directory_start_only), | |
983 | prefix, yes_no(s->remain_after_exit), | |
984 | prefix, yes_no(s->guess_main_pid), | |
985 | prefix, service_type_to_string(s->type), | |
986 | prefix, service_restart_to_string(s->restart), | |
987 | prefix, notify_access_to_string(service_get_notify_access(s)), | |
988 | prefix, notify_state_to_string(s->notify_state), | |
989 | prefix, oom_policy_to_string(s->oom_policy), | |
990 | prefix, signal_to_string(s->reload_signal)); | |
991 | ||
992 | if (pidref_is_set(&s->control_pid)) | |
993 | fprintf(f, | |
994 | "%sControl PID: "PID_FMT"\n", | |
995 | prefix, s->control_pid.pid); | |
996 | ||
997 | if (pidref_is_set(&s->main_pid)) | |
998 | fprintf(f, | |
999 | "%sMain PID: "PID_FMT"\n" | |
1000 | "%sMain PID Known: %s\n" | |
1001 | "%sMain PID Alien: %s\n", | |
1002 | prefix, s->main_pid.pid, | |
1003 | prefix, yes_no(s->main_pid_known), | |
1004 | prefix, yes_no(s->main_pid_alien)); | |
1005 | ||
1006 | if (s->pid_file) | |
1007 | fprintf(f, | |
1008 | "%sPIDFile: %s\n", | |
1009 | prefix, s->pid_file); | |
1010 | ||
1011 | if (s->bus_name) | |
1012 | fprintf(f, | |
1013 | "%sBusName: %s\n" | |
1014 | "%sBus Name Good: %s\n", | |
1015 | prefix, s->bus_name, | |
1016 | prefix, yes_no(s->bus_name_good)); | |
1017 | ||
1018 | if (UNIT_ISSET(s->accept_socket)) | |
1019 | fprintf(f, | |
1020 | "%sAccept Socket: %s\n", | |
1021 | prefix, UNIT_DEREF(s->accept_socket)->id); | |
1022 | ||
1023 | fprintf(f, | |
1024 | "%sRestartSec: %s\n" | |
1025 | "%sRestartSteps: %u\n" | |
1026 | "%sRestartMaxDelaySec: %s\n" | |
1027 | "%sTimeoutStartSec: %s\n" | |
1028 | "%sTimeoutStopSec: %s\n" | |
1029 | "%sTimeoutStartFailureMode: %s\n" | |
1030 | "%sTimeoutStopFailureMode: %s\n", | |
1031 | prefix, FORMAT_TIMESPAN(s->restart_usec, USEC_PER_SEC), | |
1032 | prefix, s->restart_steps, | |
1033 | prefix, FORMAT_TIMESPAN(s->restart_max_delay_usec, USEC_PER_SEC), | |
1034 | prefix, FORMAT_TIMESPAN(s->timeout_start_usec, USEC_PER_SEC), | |
1035 | prefix, FORMAT_TIMESPAN(s->timeout_stop_usec, USEC_PER_SEC), | |
1036 | prefix, service_timeout_failure_mode_to_string(s->timeout_start_failure_mode), | |
1037 | prefix, service_timeout_failure_mode_to_string(s->timeout_stop_failure_mode)); | |
1038 | ||
1039 | if (s->timeout_abort_set) | |
1040 | fprintf(f, | |
1041 | "%sTimeoutAbortSec: %s\n", | |
1042 | prefix, FORMAT_TIMESPAN(s->timeout_abort_usec, USEC_PER_SEC)); | |
1043 | ||
1044 | fprintf(f, | |
1045 | "%sRuntimeMaxSec: %s\n" | |
1046 | "%sRuntimeRandomizedExtraSec: %s\n" | |
1047 | "%sWatchdogSec: %s\n", | |
1048 | prefix, FORMAT_TIMESPAN(s->runtime_max_usec, USEC_PER_SEC), | |
1049 | prefix, FORMAT_TIMESPAN(s->runtime_rand_extra_usec, USEC_PER_SEC), | |
1050 | prefix, FORMAT_TIMESPAN(s->watchdog_usec, USEC_PER_SEC)); | |
1051 | ||
1052 | kill_context_dump(&s->kill_context, f, prefix); | |
1053 | exec_context_dump(&s->exec_context, f, prefix); | |
1054 | ||
1055 | for (ServiceExecCommand c = 0; c < _SERVICE_EXEC_COMMAND_MAX; c++) { | |
1056 | if (!s->exec_command[c]) | |
1057 | continue; | |
1058 | ||
1059 | fprintf(f, "%s%s %s:\n", | |
1060 | prefix, glyph(GLYPH_ARROW_RIGHT), service_exec_command_to_string(c)); | |
1061 | ||
1062 | exec_command_dump_list(s->exec_command[c], f, prefix2); | |
1063 | } | |
1064 | ||
1065 | if (s->status_text) | |
1066 | fprintf(f, "%sStatus Text: %s\n", | |
1067 | prefix, s->status_text); | |
1068 | ||
1069 | if (s->status_errno > 0) | |
1070 | fprintf(f, "%sStatus Errno: %s\n", | |
1071 | prefix, STRERROR(s->status_errno)); | |
1072 | ||
1073 | if (s->status_bus_error) | |
1074 | fprintf(f, "%sStatus Bus Error: %s\n", | |
1075 | prefix, s->status_bus_error); | |
1076 | ||
1077 | if (s->status_varlink_error) | |
1078 | fprintf(f, "%sStatus Varlink Error: %s\n", | |
1079 | prefix, s->status_varlink_error); | |
1080 | ||
1081 | if (s->n_fd_store_max > 0) { | |
1082 | fprintf(f, | |
1083 | "%sFile Descriptor Store Max: %u\n" | |
1084 | "%sFile Descriptor Store Pin: %s\n" | |
1085 | "%sFile Descriptor Store Current: %zu\n", | |
1086 | prefix, s->n_fd_store_max, | |
1087 | prefix, exec_preserve_mode_to_string(s->fd_store_preserve_mode), | |
1088 | prefix, s->n_fd_store); | |
1089 | ||
1090 | LIST_FOREACH(fd_store, i, s->fd_store) | |
1091 | (void) service_dump_fd(i->fd, | |
1092 | i->fdname, | |
1093 | i == s->fd_store ? "File Descriptor Store Entry:" : " ", | |
1094 | f, | |
1095 | prefix); | |
1096 | } | |
1097 | ||
1098 | FOREACH_ARRAY(i, s->extra_fds, s->n_extra_fds) | |
1099 | (void) service_dump_fd(i->fd, | |
1100 | i->fdname, | |
1101 | i == s->extra_fds ? "Extra File Descriptor Entry:" : " ", | |
1102 | f, | |
1103 | prefix); | |
1104 | ||
1105 | if (s->open_files) | |
1106 | LIST_FOREACH(open_files, of, s->open_files) { | |
1107 | _cleanup_free_ char *ofs = NULL; | |
1108 | int r; | |
1109 | ||
1110 | r = open_file_to_string(of, &ofs); | |
1111 | if (r < 0) { | |
1112 | log_debug_errno(r, | |
1113 | "Failed to convert OpenFile= setting to string, ignoring: %m"); | |
1114 | continue; | |
1115 | } | |
1116 | ||
1117 | fprintf(f, "%sOpen File: %s\n", prefix, ofs); | |
1118 | } | |
1119 | ||
1120 | cgroup_context_dump(UNIT(s), f, prefix); | |
1121 | } | |
1122 | ||
1123 | static int service_is_suitable_main_pid(Service *s, PidRef *pid, int prio) { | |
1124 | Unit *owner; | |
1125 | int r; | |
1126 | ||
1127 | assert(s); | |
1128 | assert(pidref_is_set(pid)); | |
1129 | ||
1130 | /* Checks whether the specified PID is suitable as main PID for this service. returns negative if not, 0 if the | |
1131 | * PID is questionnable but should be accepted if the source of configuration is trusted. > 0 if the PID is | |
1132 | * good */ | |
1133 | ||
1134 | if (pidref_is_self(pid) || pid->pid == 1) | |
1135 | return log_unit_full_errno(UNIT(s), prio, SYNTHETIC_ERRNO(EPERM), "New main PID "PID_FMT" is the manager, refusing.", pid->pid); | |
1136 | ||
1137 | if (pidref_equal(pid, &s->control_pid)) | |
1138 | return log_unit_full_errno(UNIT(s), prio, SYNTHETIC_ERRNO(EPERM), "New main PID "PID_FMT" is the control process, refusing.", pid->pid); | |
1139 | ||
1140 | r = pidref_is_alive(pid); | |
1141 | if (r < 0) | |
1142 | return log_unit_full_errno(UNIT(s), prio, r, "Failed to check if main PID "PID_FMT" exists or is a zombie: %m", pid->pid); | |
1143 | if (r == 0) | |
1144 | return log_unit_full_errno(UNIT(s), prio, SYNTHETIC_ERRNO(ESRCH), "New main PID "PID_FMT" does not exist or is a zombie.", pid->pid); | |
1145 | ||
1146 | owner = manager_get_unit_by_pidref(UNIT(s)->manager, pid); | |
1147 | if (owner == UNIT(s)) { | |
1148 | log_unit_debug(UNIT(s), "New main PID "PID_FMT" belongs to service, we are happy.", pid->pid); | |
1149 | return 1; /* Yay, it's definitely a good PID */ | |
1150 | } | |
1151 | ||
1152 | return 0; /* Hmm it's a suspicious PID, let's accept it if configuration source is trusted */ | |
1153 | } | |
1154 | ||
1155 | static int service_load_pid_file(Service *s, bool may_warn) { | |
1156 | _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL; | |
1157 | _cleanup_fclose_ FILE *f = NULL; | |
1158 | _cleanup_free_ char *k = NULL; | |
1159 | bool questionable_pid_file = false; | |
1160 | int r, prio = may_warn ? LOG_INFO : LOG_DEBUG; | |
1161 | ||
1162 | assert(s); | |
1163 | ||
1164 | if (!s->pid_file) | |
1165 | return -ENOENT; | |
1166 | ||
1167 | r = chase_and_fopen_unlocked(s->pid_file, NULL, CHASE_SAFE, "re", NULL, &f); | |
1168 | if (r == -ENOLINK) { | |
1169 | log_unit_debug_errno(UNIT(s), r, | |
1170 | "Potentially unsafe symlink chain, will now retry with relaxed checks: %s", s->pid_file); | |
1171 | ||
1172 | questionable_pid_file = true; | |
1173 | ||
1174 | r = chase_and_fopen_unlocked(s->pid_file, NULL, 0, "re", NULL, &f); | |
1175 | } | |
1176 | if (r < 0) | |
1177 | return log_unit_full_errno(UNIT(s), prio, r, | |
1178 | "Can't open PID file '%s' (yet?) after %s: %m", s->pid_file, service_state_to_string(s->state)); | |
1179 | ||
1180 | /* Let's read the PID file now that we chased it down. */ | |
1181 | r = read_line(f, LINE_MAX, &k); | |
1182 | if (r < 0) | |
1183 | return log_unit_error_errno(UNIT(s), r, "Failed to read PID file '%s': %m", s->pid_file); | |
1184 | ||
1185 | r = pidref_set_pidstr(&pidref, k); | |
1186 | if (r < 0) | |
1187 | return log_unit_full_errno(UNIT(s), prio, r, "Failed to create reference to PID %s from file '%s': %m", k, s->pid_file); | |
1188 | ||
1189 | if (s->main_pid_known && pidref_equal(&pidref, &s->main_pid)) | |
1190 | return 0; | |
1191 | ||
1192 | r = service_is_suitable_main_pid(s, &pidref, prio); | |
1193 | if (r < 0) | |
1194 | return r; | |
1195 | if (r == 0) { | |
1196 | struct stat st; | |
1197 | ||
1198 | if (questionable_pid_file) | |
1199 | return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(EPERM), | |
1200 | "Refusing to accept PID outside of service control group, acquired through unsafe symlink chain: %s", s->pid_file); | |
1201 | ||
1202 | /* Hmm, it's not clear if the new main PID is safe. Let's allow this if the PID file is owned by root */ | |
1203 | ||
1204 | if (fstat(fileno(f), &st) < 0) | |
1205 | return log_unit_error_errno(UNIT(s), errno, "Failed to fstat() PID file '%s': %m", s->pid_file); | |
1206 | ||
1207 | if (st.st_uid != 0) | |
1208 | return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(EPERM), | |
1209 | "New main PID "PID_FMT" from PID file does not belong to service, and PID file is not owned by root. Refusing.", pidref.pid); | |
1210 | ||
1211 | log_unit_debug(UNIT(s), "New main PID "PID_FMT" does not belong to service, accepting anyway since PID file is owned by root.", pidref.pid); | |
1212 | } | |
1213 | ||
1214 | if (s->main_pid_known) { | |
1215 | log_unit_debug(UNIT(s), "Main PID changing: "PID_FMT" -> "PID_FMT, s->main_pid.pid, pidref.pid); | |
1216 | ||
1217 | service_unwatch_main_pid(s); | |
1218 | s->main_pid_known = false; | |
1219 | } else | |
1220 | log_unit_debug(UNIT(s), "Main PID loaded: "PID_FMT, pidref.pid); | |
1221 | ||
1222 | r = service_set_main_pidref(s, TAKE_PIDREF(pidref), /* start_timestamp = */ NULL); | |
1223 | if (r < 0) | |
1224 | return r; | |
1225 | ||
1226 | r = unit_watch_pidref(UNIT(s), &s->main_pid, /* exclusive= */ false); | |
1227 | if (r < 0) /* FIXME: we need to do something here */ | |
1228 | return log_unit_warning_errno(UNIT(s), r, "Failed to watch PID "PID_FMT" for service: %m", s->main_pid.pid); | |
1229 | ||
1230 | return 1; | |
1231 | } | |
1232 | ||
1233 | static void service_search_main_pid(Service *s) { | |
1234 | _cleanup_(pidref_done) PidRef pid = PIDREF_NULL; | |
1235 | int r; | |
1236 | ||
1237 | assert(s); | |
1238 | ||
1239 | /* If we know it anyway, don't ever fall back to unreliable heuristics */ | |
1240 | if (s->main_pid_known) | |
1241 | return; | |
1242 | ||
1243 | if (!s->guess_main_pid) | |
1244 | return; | |
1245 | ||
1246 | assert(!pidref_is_set(&s->main_pid)); | |
1247 | ||
1248 | if (unit_search_main_pid(UNIT(s), &pid) < 0) | |
1249 | return; | |
1250 | ||
1251 | log_unit_debug(UNIT(s), "Main PID guessed: "PID_FMT, pid.pid); | |
1252 | if (service_set_main_pidref(s, TAKE_PIDREF(pid), /* start_timestamp = */ NULL) < 0) | |
1253 | return; | |
1254 | ||
1255 | r = unit_watch_pidref(UNIT(s), &s->main_pid, /* exclusive= */ false); | |
1256 | if (r < 0) | |
1257 | /* FIXME: we need to do something here */ | |
1258 | log_unit_warning_errno(UNIT(s), r, "Failed to watch main PID "PID_FMT": %m", s->main_pid.pid); | |
1259 | } | |
1260 | ||
1261 | static void service_set_state(Service *s, ServiceState state) { | |
1262 | Unit *u = UNIT(ASSERT_PTR(s)); | |
1263 | ServiceState old_state; | |
1264 | const UnitActiveState *table; | |
1265 | ||
1266 | if (s->state != state) | |
1267 | bus_unit_send_pending_change_signal(u, false); | |
1268 | ||
1269 | table = s->type == SERVICE_IDLE ? state_translation_table_idle : state_translation_table; | |
1270 | ||
1271 | old_state = s->state; | |
1272 | s->state = state; | |
1273 | ||
1274 | service_unwatch_pid_file(s); | |
1275 | ||
1276 | if (!IN_SET(state, | |
1277 | SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST, | |
1278 | SERVICE_RUNNING, | |
1279 | SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY, SERVICE_REFRESH_EXTENSIONS, | |
1280 | SERVICE_MOUNTING, | |
1281 | SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST, | |
1282 | SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL, | |
1283 | SERVICE_AUTO_RESTART, | |
1284 | SERVICE_CLEANING)) | |
1285 | s->timer_event_source = sd_event_source_disable_unref(s->timer_event_source); | |
1286 | ||
1287 | if (!SERVICE_STATE_WITH_MAIN_PROCESS(state)) { | |
1288 | service_unwatch_main_pid(s); | |
1289 | s->main_command = NULL; | |
1290 | } | |
1291 | ||
1292 | if (!SERVICE_STATE_WITH_CONTROL_PROCESS(state)) { | |
1293 | service_unwatch_control_pid(s); | |
1294 | s->control_command = NULL; | |
1295 | s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID; | |
1296 | } | |
1297 | ||
1298 | if (IN_SET(state, | |
1299 | SERVICE_DEAD, SERVICE_FAILED, | |
1300 | SERVICE_DEAD_BEFORE_AUTO_RESTART, SERVICE_FAILED_BEFORE_AUTO_RESTART, SERVICE_AUTO_RESTART, SERVICE_AUTO_RESTART_QUEUED, | |
1301 | SERVICE_DEAD_RESOURCES_PINNED)) | |
1302 | unit_unwatch_all_pids(u); | |
1303 | ||
1304 | if (state != SERVICE_START) | |
1305 | s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source); | |
1306 | ||
1307 | if (!IN_SET(state, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY, SERVICE_REFRESH_EXTENSIONS, SERVICE_MOUNTING)) | |
1308 | service_stop_watchdog(s); | |
1309 | ||
1310 | if (state != SERVICE_MOUNTING) /* Just in case */ | |
1311 | s->mount_request = sd_bus_message_unref(s->mount_request); | |
1312 | ||
1313 | if (state == SERVICE_EXITED && !MANAGER_IS_RELOADING(u->manager)) { | |
1314 | /* For the inactive states unit_notify() will trim the cgroup. But for exit we have to | |
1315 | * do that ourselves... */ | |
1316 | unit_prune_cgroup(u); | |
1317 | ||
1318 | /* If none of ExecReload= and ExecStop*= is used, we can safely destroy runtime data | |
1319 | * as soon as the service enters SERVICE_EXITED. This saves us from keeping the credential mount | |
1320 | * for the whole duration of the oneshot service while no processes are actually running, | |
1321 | * among other things. */ | |
1322 | ||
1323 | bool start_only = true; | |
1324 | for (ServiceExecCommand c = SERVICE_EXEC_RELOAD; c < _SERVICE_EXEC_COMMAND_MAX; c++) | |
1325 | if (s->exec_command[c]) { | |
1326 | start_only = false; | |
1327 | break; | |
1328 | } | |
1329 | ||
1330 | if (start_only) | |
1331 | unit_destroy_runtime_data(u, &s->exec_context, /* destroy_runtime_dir = */ false); | |
1332 | } | |
1333 | ||
1334 | if (old_state != state) | |
1335 | log_unit_debug(u, "Changed %s -> %s", service_state_to_string(old_state), service_state_to_string(state)); | |
1336 | ||
1337 | unit_notify(u, table[old_state], table[state], s->reload_result == SERVICE_SUCCESS); | |
1338 | } | |
1339 | ||
1340 | static usec_t service_coldplug_timeout(Service *s) { | |
1341 | assert(s); | |
1342 | ||
1343 | switch (s->deserialized_state) { | |
1344 | ||
1345 | case SERVICE_CONDITION: | |
1346 | case SERVICE_START_PRE: | |
1347 | case SERVICE_START: | |
1348 | case SERVICE_START_POST: | |
1349 | case SERVICE_RELOAD: | |
1350 | case SERVICE_RELOAD_SIGNAL: | |
1351 | case SERVICE_RELOAD_NOTIFY: | |
1352 | case SERVICE_REFRESH_EXTENSIONS: | |
1353 | case SERVICE_MOUNTING: | |
1354 | return usec_add(UNIT(s)->state_change_timestamp.monotonic, s->timeout_start_usec); | |
1355 | ||
1356 | case SERVICE_RUNNING: | |
1357 | return service_running_timeout(s); | |
1358 | ||
1359 | case SERVICE_STOP: | |
1360 | case SERVICE_STOP_SIGTERM: | |
1361 | case SERVICE_STOP_SIGKILL: | |
1362 | case SERVICE_STOP_POST: | |
1363 | case SERVICE_FINAL_SIGTERM: | |
1364 | case SERVICE_FINAL_SIGKILL: | |
1365 | return usec_add(UNIT(s)->state_change_timestamp.monotonic, s->timeout_stop_usec); | |
1366 | ||
1367 | case SERVICE_STOP_WATCHDOG: | |
1368 | case SERVICE_FINAL_WATCHDOG: | |
1369 | return usec_add(UNIT(s)->state_change_timestamp.monotonic, service_timeout_abort_usec(s)); | |
1370 | ||
1371 | case SERVICE_AUTO_RESTART: | |
1372 | return usec_add(UNIT(s)->inactive_enter_timestamp.monotonic, service_restart_usec_next(s)); | |
1373 | ||
1374 | case SERVICE_CLEANING: | |
1375 | return usec_add(UNIT(s)->state_change_timestamp.monotonic, s->exec_context.timeout_clean_usec); | |
1376 | ||
1377 | default: | |
1378 | return USEC_INFINITY; | |
1379 | } | |
1380 | } | |
1381 | ||
1382 | static int service_coldplug(Unit *u) { | |
1383 | Service *s = SERVICE(u); | |
1384 | int r; | |
1385 | ||
1386 | assert(s); | |
1387 | assert(s->state == SERVICE_DEAD); | |
1388 | ||
1389 | if (s->deserialized_state == s->state) | |
1390 | return 0; | |
1391 | ||
1392 | r = service_arm_timer(s, /* relative= */ false, service_coldplug_timeout(s)); | |
1393 | if (r < 0) | |
1394 | return r; | |
1395 | ||
1396 | if (pidref_is_set(&s->main_pid) && | |
1397 | pidref_is_unwaited(&s->main_pid) > 0 && | |
1398 | SERVICE_STATE_WITH_MAIN_PROCESS(s->deserialized_state)) { | |
1399 | r = unit_watch_pidref(UNIT(s), &s->main_pid, /* exclusive= */ false); | |
1400 | if (r < 0) | |
1401 | return r; | |
1402 | } | |
1403 | ||
1404 | if (pidref_is_set(&s->control_pid) && | |
1405 | pidref_is_unwaited(&s->control_pid) > 0 && | |
1406 | SERVICE_STATE_WITH_CONTROL_PROCESS(s->deserialized_state)) { | |
1407 | r = unit_watch_pidref(UNIT(s), &s->control_pid, /* exclusive= */ false); | |
1408 | if (r < 0) | |
1409 | return r; | |
1410 | } | |
1411 | ||
1412 | if (!IN_SET(s->deserialized_state, | |
1413 | SERVICE_DEAD, SERVICE_FAILED, | |
1414 | SERVICE_DEAD_BEFORE_AUTO_RESTART, SERVICE_FAILED_BEFORE_AUTO_RESTART, SERVICE_AUTO_RESTART, SERVICE_AUTO_RESTART_QUEUED, | |
1415 | SERVICE_CLEANING, | |
1416 | SERVICE_DEAD_RESOURCES_PINNED)) | |
1417 | (void) unit_setup_exec_runtime(u); | |
1418 | ||
1419 | if (IN_SET(s->deserialized_state, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY, SERVICE_REFRESH_EXTENSIONS, SERVICE_MOUNTING)) | |
1420 | service_start_watchdog(s); | |
1421 | ||
1422 | if (UNIT_ISSET(s->accept_socket)) { | |
1423 | Socket *socket = SOCKET(UNIT_DEREF(s->accept_socket)); | |
1424 | ||
1425 | if (socket->max_connections_per_source > 0) { | |
1426 | SocketPeer *peer; | |
1427 | ||
1428 | /* Make a best-effort attempt at bumping the connection count */ | |
1429 | if (socket_acquire_peer(socket, s->socket_fd, &peer) > 0) { | |
1430 | socket_peer_unref(s->socket_peer); | |
1431 | s->socket_peer = peer; | |
1432 | } | |
1433 | } | |
1434 | } | |
1435 | ||
1436 | service_set_state(s, s->deserialized_state); | |
1437 | return 0; | |
1438 | } | |
1439 | ||
1440 | static int service_collect_fds( | |
1441 | Service *s, | |
1442 | int **fds, | |
1443 | char ***fd_names, | |
1444 | size_t *n_socket_fds, | |
1445 | size_t *n_storage_fds, | |
1446 | size_t *n_extra_fds) { | |
1447 | ||
1448 | _cleanup_strv_free_ char **rfd_names = NULL; | |
1449 | _cleanup_free_ int *rfds = NULL; | |
1450 | size_t rn_socket_fds = 0; | |
1451 | int r; | |
1452 | ||
1453 | assert(s); | |
1454 | assert(fds); | |
1455 | assert(fd_names); | |
1456 | assert(n_socket_fds); | |
1457 | assert(n_storage_fds); | |
1458 | assert(n_extra_fds); | |
1459 | ||
1460 | if (s->socket_fd >= 0) { | |
1461 | Socket *sock = ASSERT_PTR(SOCKET(UNIT_DEREF(s->accept_socket))); | |
1462 | ||
1463 | /* Pass the per-connection socket */ | |
1464 | ||
1465 | rfds = newdup(int, &s->socket_fd, 1); | |
1466 | if (!rfds) | |
1467 | return -ENOMEM; | |
1468 | ||
1469 | rfd_names = strv_new(socket_fdname(sock)); | |
1470 | if (!rfd_names) | |
1471 | return -ENOMEM; | |
1472 | ||
1473 | rn_socket_fds = 1; | |
1474 | } else { | |
1475 | /* Pass all our configured sockets for singleton services */ | |
1476 | ||
1477 | Unit *u; | |
1478 | UNIT_FOREACH_DEPENDENCY(u, UNIT(s), UNIT_ATOM_TRIGGERED_BY) { | |
1479 | _cleanup_free_ int *cfds = NULL; | |
1480 | int cn_fds; | |
1481 | Socket *sock; | |
1482 | ||
1483 | sock = SOCKET(u); | |
1484 | if (!sock) | |
1485 | continue; | |
1486 | ||
1487 | cn_fds = socket_collect_fds(sock, &cfds); | |
1488 | if (cn_fds < 0) | |
1489 | return cn_fds; | |
1490 | if (cn_fds == 0) | |
1491 | continue; | |
1492 | ||
1493 | if (!rfds) { | |
1494 | rfds = TAKE_PTR(cfds); | |
1495 | rn_socket_fds = cn_fds; | |
1496 | } else if (!GREEDY_REALLOC_APPEND(rfds, rn_socket_fds, cfds, cn_fds)) | |
1497 | return -ENOMEM; | |
1498 | ||
1499 | r = strv_extend_n(&rfd_names, socket_fdname(sock), cn_fds); | |
1500 | if (r < 0) | |
1501 | return r; | |
1502 | } | |
1503 | } | |
1504 | ||
1505 | if (s->n_fd_store + s->n_extra_fds > 0) { | |
1506 | int *t = reallocarray(rfds, rn_socket_fds + s->n_fd_store + s->n_extra_fds, sizeof(int)); | |
1507 | if (!t) | |
1508 | return -ENOMEM; | |
1509 | rfds = t; | |
1510 | ||
1511 | char **nl = reallocarray(rfd_names, rn_socket_fds + s->n_fd_store + s->n_extra_fds + 1, sizeof(char *)); | |
1512 | if (!nl) | |
1513 | return -ENOMEM; | |
1514 | rfd_names = nl; | |
1515 | ||
1516 | size_t n_fds = rn_socket_fds; | |
1517 | ||
1518 | LIST_FOREACH(fd_store, fs, s->fd_store) { | |
1519 | rfds[n_fds] = fs->fd; | |
1520 | rfd_names[n_fds] = strdup(fs->fdname); | |
1521 | if (!rfd_names[n_fds]) | |
1522 | return -ENOMEM; | |
1523 | ||
1524 | n_fds++; | |
1525 | } | |
1526 | ||
1527 | FOREACH_ARRAY(i, s->extra_fds, s->n_extra_fds) { | |
1528 | rfds[n_fds] = i->fd; | |
1529 | rfd_names[n_fds] = strdup(i->fdname); | |
1530 | if (!rfd_names[n_fds]) | |
1531 | return -ENOMEM; | |
1532 | ||
1533 | n_fds++; | |
1534 | } | |
1535 | ||
1536 | rfd_names[n_fds] = NULL; | |
1537 | } | |
1538 | ||
1539 | *fds = TAKE_PTR(rfds); | |
1540 | *fd_names = TAKE_PTR(rfd_names); | |
1541 | *n_socket_fds = rn_socket_fds; | |
1542 | *n_storage_fds = s->n_fd_store; | |
1543 | *n_extra_fds = s->n_extra_fds; | |
1544 | ||
1545 | return 0; | |
1546 | } | |
1547 | ||
1548 | static int service_allocate_exec_fd_event_source( | |
1549 | Service *s, | |
1550 | int fd, | |
1551 | sd_event_source **ret_event_source) { | |
1552 | ||
1553 | _cleanup_(sd_event_source_unrefp) sd_event_source *source = NULL; | |
1554 | int r; | |
1555 | ||
1556 | assert(s); | |
1557 | assert(fd >= 0); | |
1558 | assert(ret_event_source); | |
1559 | ||
1560 | r = sd_event_add_io(UNIT(s)->manager->event, &source, fd, 0, service_dispatch_exec_io, s); | |
1561 | if (r < 0) | |
1562 | return log_unit_error_errno(UNIT(s), r, "Failed to allocate exec_fd event source: %m"); | |
1563 | ||
1564 | /* This is a bit higher priority than SIGCHLD, to make sure we don't confuse the case "failed to | |
1565 | * start" from the case "succeeded to start, but failed immediately after". */ | |
1566 | ||
1567 | r = sd_event_source_set_priority(source, EVENT_PRIORITY_EXEC_FD); | |
1568 | if (r < 0) | |
1569 | return log_unit_error_errno(UNIT(s), r, "Failed to adjust priority of exec_fd event source: %m"); | |
1570 | ||
1571 | (void) sd_event_source_set_description(source, "service exec_fd"); | |
1572 | ||
1573 | r = sd_event_source_set_io_fd_own(source, true); | |
1574 | if (r < 0) | |
1575 | return log_unit_error_errno(UNIT(s), r, "Failed to pass ownership of fd to event source: %m"); | |
1576 | ||
1577 | *ret_event_source = TAKE_PTR(source); | |
1578 | return 0; | |
1579 | } | |
1580 | ||
1581 | static int service_allocate_exec_fd( | |
1582 | Service *s, | |
1583 | sd_event_source **ret_event_source, | |
1584 | int *ret_exec_fd) { | |
1585 | ||
1586 | _cleanup_close_pair_ int p[] = EBADF_PAIR; | |
1587 | int r; | |
1588 | ||
1589 | assert(s); | |
1590 | assert(ret_event_source); | |
1591 | assert(ret_exec_fd); | |
1592 | ||
1593 | if (pipe2(p, O_CLOEXEC|O_NONBLOCK) < 0) | |
1594 | return log_unit_error_errno(UNIT(s), errno, "Failed to allocate exec_fd pipe: %m"); | |
1595 | ||
1596 | r = service_allocate_exec_fd_event_source(s, p[0], ret_event_source); | |
1597 | if (r < 0) | |
1598 | return r; | |
1599 | ||
1600 | TAKE_FD(p[0]); | |
1601 | *ret_exec_fd = TAKE_FD(p[1]); | |
1602 | ||
1603 | return 0; | |
1604 | } | |
1605 | ||
1606 | static bool service_exec_needs_notify_socket(Service *s, ExecFlags flags) { | |
1607 | assert(s); | |
1608 | ||
1609 | /* Notifications are accepted depending on the process and | |
1610 | * the access setting of the service: | |
1611 | * process: \ access: NONE MAIN EXEC ALL | |
1612 | * main no yes yes yes | |
1613 | * control no no yes yes | |
1614 | * other (forked) no no no yes */ | |
1615 | ||
1616 | if (flags & EXEC_IS_CONTROL) | |
1617 | /* A control process */ | |
1618 | return IN_SET(service_get_notify_access(s), NOTIFY_EXEC, NOTIFY_ALL); | |
1619 | ||
1620 | /* We only spawn main processes and control processes, so any | |
1621 | * process that is not a control process is a main process */ | |
1622 | return service_get_notify_access(s) != NOTIFY_NONE; | |
1623 | } | |
1624 | ||
1625 | static Service *service_get_triggering_service(Service *s) { | |
1626 | Unit *candidate = NULL, *other; | |
1627 | ||
1628 | assert(s); | |
1629 | ||
1630 | /* Return the service which triggered service 's', this means dependency | |
1631 | * types which include the UNIT_ATOM_ON_{FAILURE,SUCCESS}_OF atoms. | |
1632 | * | |
1633 | * N.B. if there are multiple services which could trigger 's' via OnFailure= | |
1634 | * or OnSuccess= then we return NULL. This is since we don't know from which | |
1635 | * one to propagate the exit status. */ | |
1636 | ||
1637 | UNIT_FOREACH_DEPENDENCY(other, UNIT(s), UNIT_ATOM_ON_SUCCESS_OF|UNIT_ATOM_ON_FAILURE_OF) { | |
1638 | if (candidate) | |
1639 | goto have_other; | |
1640 | candidate = other; | |
1641 | } | |
1642 | ||
1643 | return SERVICE(candidate); | |
1644 | ||
1645 | have_other: | |
1646 | log_unit_warning(UNIT(s), "multiple trigger source candidates for exit status propagation (%s, %s), skipping.", | |
1647 | candidate->id, other->id); | |
1648 | return NULL; | |
1649 | } | |
1650 | ||
1651 | static ExecFlags service_exec_flags(ServiceExecCommand command_id, ExecFlags cred_flag) { | |
1652 | /* All service main/control processes honor sandboxing and namespacing options (except those | |
1653 | explicitly excluded in service_spawn()) */ | |
1654 | ExecFlags flags = EXEC_APPLY_SANDBOXING|EXEC_APPLY_CHROOT; | |
1655 | ||
1656 | assert(command_id >= 0); | |
1657 | assert(command_id < _SERVICE_EXEC_COMMAND_MAX); | |
1658 | assert((cred_flag & ~(EXEC_SETUP_CREDENTIALS_FRESH|EXEC_SETUP_CREDENTIALS)) == 0); | |
1659 | assert((cred_flag != 0) == (command_id == SERVICE_EXEC_START)); | |
1660 | ||
1661 | /* Control processes spawned before main process also get tty access */ | |
1662 | if (IN_SET(command_id, SERVICE_EXEC_CONDITION, SERVICE_EXEC_START_PRE, SERVICE_EXEC_START)) | |
1663 | flags |= EXEC_APPLY_TTY_STDIN; | |
1664 | ||
1665 | /* All start phases get access to credentials. ExecStartPre= gets a new credential store upon | |
1666 | * every invocation, so that updating credential files through it works. When the first main process | |
1667 | * starts, passed creds become stable. Also see 'cred_flag'. */ | |
1668 | if (command_id == SERVICE_EXEC_START_PRE) | |
1669 | flags |= EXEC_SETUP_CREDENTIALS_FRESH; | |
1670 | if (command_id == SERVICE_EXEC_START_POST) | |
1671 | flags |= EXEC_SETUP_CREDENTIALS; | |
1672 | ||
1673 | if (IN_SET(command_id, SERVICE_EXEC_START_PRE, SERVICE_EXEC_START)) | |
1674 | flags |= EXEC_SETENV_MONITOR_RESULT; | |
1675 | ||
1676 | if (command_id == SERVICE_EXEC_START) | |
1677 | return flags|cred_flag|EXEC_PASS_FDS|EXEC_SET_WATCHDOG; | |
1678 | ||
1679 | flags |= EXEC_IS_CONTROL; | |
1680 | ||
1681 | /* Put control processes spawned later than main process under .control sub-cgroup if appropriate */ | |
1682 | if (!IN_SET(command_id, SERVICE_EXEC_CONDITION, SERVICE_EXEC_START_PRE)) | |
1683 | flags |= EXEC_CONTROL_CGROUP; | |
1684 | ||
1685 | if (IN_SET(command_id, SERVICE_EXEC_STOP, SERVICE_EXEC_STOP_POST)) | |
1686 | flags |= EXEC_SETENV_RESULT; | |
1687 | ||
1688 | return flags; | |
1689 | } | |
1690 | ||
1691 | static int service_spawn_internal( | |
1692 | const char *caller, | |
1693 | Service *s, | |
1694 | ExecCommand *c, | |
1695 | ExecFlags flags, | |
1696 | usec_t timeout, | |
1697 | PidRef *ret_pid) { | |
1698 | ||
1699 | _cleanup_(exec_params_shallow_clear) ExecParameters exec_params = EXEC_PARAMETERS_INIT(flags); | |
1700 | _cleanup_(sd_event_source_unrefp) sd_event_source *exec_fd_source = NULL; | |
1701 | _cleanup_strv_free_ char **final_env = NULL, **our_env = NULL; | |
1702 | _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL; | |
1703 | size_t n_env = 0; | |
1704 | int r; | |
1705 | ||
1706 | assert(caller); | |
1707 | assert(s); | |
1708 | assert(c); | |
1709 | assert(ret_pid); | |
1710 | ||
1711 | log_unit_debug(UNIT(s), "Will spawn child (%s): %s", caller, c->path); | |
1712 | ||
1713 | r = unit_prepare_exec(UNIT(s)); /* This realizes the cgroup, among other things */ | |
1714 | if (r < 0) | |
1715 | return r; | |
1716 | ||
1717 | assert(!s->exec_fd_event_source); | |
1718 | ||
1719 | if (FLAGS_SET(exec_params.flags, EXEC_IS_CONTROL)) { | |
1720 | /* If this is a control process, mask the permissions/chroot application if this is requested. */ | |
1721 | if (s->permissions_start_only) | |
1722 | exec_params.flags &= ~EXEC_APPLY_SANDBOXING; | |
1723 | if (s->root_directory_start_only) | |
1724 | exec_params.flags &= ~EXEC_APPLY_CHROOT; | |
1725 | } | |
1726 | ||
1727 | if (FLAGS_SET(exec_params.flags, EXEC_PASS_FDS) || | |
1728 | s->exec_context.std_input == EXEC_INPUT_SOCKET || | |
1729 | s->exec_context.std_output == EXEC_OUTPUT_SOCKET || | |
1730 | s->exec_context.std_error == EXEC_OUTPUT_SOCKET) { | |
1731 | ||
1732 | r = service_collect_fds(s, | |
1733 | &exec_params.fds, | |
1734 | &exec_params.fd_names, | |
1735 | &exec_params.n_socket_fds, | |
1736 | &exec_params.n_storage_fds, | |
1737 | &exec_params.n_extra_fds); | |
1738 | if (r < 0) | |
1739 | return r; | |
1740 | ||
1741 | exec_params.open_files = s->open_files; | |
1742 | ||
1743 | exec_params.flags |= EXEC_PASS_FDS; | |
1744 | ||
1745 | log_unit_debug(UNIT(s), "Passing %zu fds to service", exec_params.n_socket_fds + exec_params.n_storage_fds + exec_params.n_extra_fds); | |
1746 | } | |
1747 | ||
1748 | if (!FLAGS_SET(exec_params.flags, EXEC_IS_CONTROL) && s->type == SERVICE_EXEC) { | |
1749 | r = service_allocate_exec_fd(s, &exec_fd_source, &exec_params.exec_fd); | |
1750 | if (r < 0) | |
1751 | return r; | |
1752 | } | |
1753 | ||
1754 | r = service_arm_timer(s, /* relative= */ true, timeout); | |
1755 | if (r < 0) | |
1756 | return r; | |
1757 | ||
1758 | our_env = new0(char*, 16); | |
1759 | if (!our_env) | |
1760 | return -ENOMEM; | |
1761 | ||
1762 | if (service_exec_needs_notify_socket(s, exec_params.flags)) { | |
1763 | exec_params.notify_socket = UNIT(s)->manager->notify_socket; | |
1764 | ||
1765 | if (s->n_fd_store_max > 0) | |
1766 | if (asprintf(our_env + n_env++, "FDSTORE=%u", s->n_fd_store_max) < 0) | |
1767 | return -ENOMEM; | |
1768 | } | |
1769 | ||
1770 | if (pidref_is_set(&s->main_pid)) { | |
1771 | if (asprintf(our_env + n_env++, "MAINPID="PID_FMT, s->main_pid.pid) < 0) | |
1772 | return -ENOMEM; | |
1773 | ||
1774 | if (pidref_acquire_pidfd_id(&s->main_pid) >= 0) | |
1775 | if (asprintf(our_env + n_env++, "MAINPIDFDID=%" PRIu64, s->main_pid.fd_id) < 0) | |
1776 | return -ENOMEM; | |
1777 | } | |
1778 | ||
1779 | if (MANAGER_IS_USER(UNIT(s)->manager)) { | |
1780 | if (asprintf(our_env + n_env++, "MANAGERPID="PID_FMT, getpid_cached()) < 0) | |
1781 | return -ENOMEM; | |
1782 | ||
1783 | uint64_t pidfdid; | |
1784 | if (pidfd_get_inode_id_self_cached(&pidfdid) >= 0) | |
1785 | if (asprintf(our_env + n_env++, "MANAGERPIDFDID=%" PRIu64, pidfdid) < 0) | |
1786 | return -ENOMEM; | |
1787 | } | |
1788 | ||
1789 | if (s->pid_file) | |
1790 | if (asprintf(our_env + n_env++, "PIDFILE=%s", s->pid_file) < 0) | |
1791 | return -ENOMEM; | |
1792 | ||
1793 | if (s->socket_fd >= 0) { | |
1794 | union sockaddr_union sa; | |
1795 | socklen_t salen = sizeof(sa); | |
1796 | ||
1797 | /* If this is a per-connection service instance, let's set $REMOTE_ADDR and $REMOTE_PORT to something | |
1798 | * useful. Note that we do this only when we are still connected at this point in time, which we might | |
1799 | * very well not be. Hence we ignore all errors when retrieving peer information (as that might result | |
1800 | * in ENOTCONN), and just use whate we can use. */ | |
1801 | ||
1802 | if (getpeername(s->socket_fd, &sa.sa, &salen) >= 0 && | |
1803 | IN_SET(sa.sa.sa_family, AF_INET, AF_INET6, AF_VSOCK, AF_UNIX)) { | |
1804 | _cleanup_free_ char *addr = NULL; | |
1805 | char *t; | |
1806 | ||
1807 | r = sockaddr_pretty(&sa.sa, salen, /* translate_ipv6= */ true, /* include_port= */ false, &addr); | |
1808 | if (r < 0) | |
1809 | return r; | |
1810 | ||
1811 | if (sa.sa.sa_family != AF_UNIX || IN_SET(addr[0], '/', '@')) { | |
1812 | t = strjoin("REMOTE_ADDR=", addr); | |
1813 | if (!t) | |
1814 | return -ENOMEM; | |
1815 | our_env[n_env++] = t; | |
1816 | } | |
1817 | ||
1818 | if (IN_SET(sa.sa.sa_family, AF_INET, AF_INET6, AF_VSOCK)) { | |
1819 | unsigned port; | |
1820 | ||
1821 | r = sockaddr_port(&sa.sa, &port); | |
1822 | if (r < 0) | |
1823 | return r; | |
1824 | ||
1825 | if (asprintf(&t, "REMOTE_PORT=%u", port) < 0) | |
1826 | return -ENOMEM; | |
1827 | our_env[n_env++] = t; | |
1828 | } | |
1829 | } | |
1830 | ||
1831 | uint64_t cookie; | |
1832 | if (socket_get_cookie(s->socket_fd, &cookie) >= 0) { | |
1833 | char *t; | |
1834 | if (asprintf(&t, "SO_COOKIE=%" PRIu64, cookie) < 0) | |
1835 | return -ENOMEM; | |
1836 | our_env[n_env++] = t; | |
1837 | } | |
1838 | } | |
1839 | ||
1840 | Service *env_source = NULL; | |
1841 | const char *monitor_prefix; | |
1842 | if (FLAGS_SET(exec_params.flags, EXEC_SETENV_RESULT)) { | |
1843 | env_source = s; | |
1844 | monitor_prefix = ""; | |
1845 | } else if (FLAGS_SET(exec_params.flags, EXEC_SETENV_MONITOR_RESULT)) { | |
1846 | env_source = service_get_triggering_service(s); | |
1847 | monitor_prefix = "MONITOR_"; | |
1848 | } | |
1849 | ||
1850 | if (env_source) { | |
1851 | if (asprintf(our_env + n_env++, "%sSERVICE_RESULT=%s", monitor_prefix, service_result_to_string(env_source->result)) < 0) | |
1852 | return -ENOMEM; | |
1853 | ||
1854 | if (env_source->main_exec_status.pid > 0 && | |
1855 | dual_timestamp_is_set(&env_source->main_exec_status.exit_timestamp)) { | |
1856 | if (asprintf(our_env + n_env++, "%sEXIT_CODE=%s", monitor_prefix, sigchld_code_to_string(env_source->main_exec_status.code)) < 0) | |
1857 | return -ENOMEM; | |
1858 | ||
1859 | if (env_source->main_exec_status.code == CLD_EXITED) | |
1860 | r = asprintf(our_env + n_env++, "%sEXIT_STATUS=%i", monitor_prefix, env_source->main_exec_status.status); | |
1861 | else | |
1862 | r = asprintf(our_env + n_env++, "%sEXIT_STATUS=%s", monitor_prefix, signal_to_string(env_source->main_exec_status.status)); | |
1863 | if (r < 0) | |
1864 | return -ENOMEM; | |
1865 | } | |
1866 | ||
1867 | if (env_source != s) { | |
1868 | if (!sd_id128_is_null(UNIT(env_source)->invocation_id)) | |
1869 | if (asprintf(our_env + n_env++, "%sINVOCATION_ID=" SD_ID128_FORMAT_STR, | |
1870 | monitor_prefix, SD_ID128_FORMAT_VAL(UNIT(env_source)->invocation_id)) < 0) | |
1871 | return -ENOMEM; | |
1872 | ||
1873 | if (asprintf(our_env + n_env++, "%sUNIT=%s", monitor_prefix, UNIT(env_source)->id) < 0) | |
1874 | return -ENOMEM; | |
1875 | } | |
1876 | } | |
1877 | ||
1878 | if (UNIT(s)->debug_invocation) { | |
1879 | char *t = strdup("DEBUG_INVOCATION=1"); | |
1880 | if (!t) | |
1881 | return -ENOMEM; | |
1882 | our_env[n_env++] = t; | |
1883 | } | |
1884 | ||
1885 | if (UNIT(s)->activation_details) { | |
1886 | r = activation_details_append_env(UNIT(s)->activation_details, &our_env); | |
1887 | if (r < 0) | |
1888 | return r; | |
1889 | /* The number of env vars added here can vary, rather than keeping the allocation block in | |
1890 | * sync manually, these functions simply use the strv methods to append to it, so we need | |
1891 | * to update n_env when we are done in case of future usage. */ | |
1892 | n_env += r; | |
1893 | } | |
1894 | ||
1895 | r = unit_set_exec_params(UNIT(s), &exec_params); | |
1896 | if (r < 0) | |
1897 | return r; | |
1898 | ||
1899 | final_env = strv_env_merge(exec_params.environment, our_env); | |
1900 | if (!final_env) | |
1901 | return -ENOMEM; | |
1902 | ||
1903 | /* System D-Bus needs nss-systemd disabled, so that we don't deadlock */ | |
1904 | SET_FLAG(exec_params.flags, EXEC_NSS_DYNAMIC_BYPASS, | |
1905 | MANAGER_IS_SYSTEM(UNIT(s)->manager) && unit_has_name(UNIT(s), SPECIAL_DBUS_SERVICE)); | |
1906 | ||
1907 | strv_free_and_replace(exec_params.environment, final_env); | |
1908 | exec_params.watchdog_usec = service_get_watchdog_usec(s); | |
1909 | exec_params.selinux_context_net = s->socket_fd_selinux_context_net; | |
1910 | if (s->type == SERVICE_IDLE) | |
1911 | exec_params.idle_pipe = UNIT(s)->manager->idle_pipe; | |
1912 | exec_params.stdin_fd = s->stdin_fd; | |
1913 | exec_params.stdout_fd = s->stdout_fd; | |
1914 | exec_params.stderr_fd = s->stderr_fd; | |
1915 | ||
1916 | r = exec_spawn(UNIT(s), | |
1917 | c, | |
1918 | &s->exec_context, | |
1919 | &exec_params, | |
1920 | s->exec_runtime, | |
1921 | &s->cgroup_context, | |
1922 | &pidref); | |
1923 | if (r < 0) | |
1924 | return r; | |
1925 | ||
1926 | s->exec_fd_event_source = TAKE_PTR(exec_fd_source); | |
1927 | s->exec_fd_hot = false; | |
1928 | ||
1929 | r = unit_watch_pidref(UNIT(s), &pidref, /* exclusive= */ true); | |
1930 | if (r < 0) | |
1931 | return r; | |
1932 | ||
1933 | *ret_pid = TAKE_PIDREF(pidref); | |
1934 | return 0; | |
1935 | } | |
1936 | ||
1937 | static int main_pid_good(Service *s) { | |
1938 | assert(s); | |
1939 | ||
1940 | /* Returns 0 if the pid is dead, > 0 if it is good, < 0 if we don't know */ | |
1941 | ||
1942 | /* If we know the pid file, then let's just check if it is still valid */ | |
1943 | if (s->main_pid_known) { | |
1944 | ||
1945 | /* If it's an alien child let's check if it is still alive ... */ | |
1946 | if (s->main_pid_alien && pidref_is_set(&s->main_pid)) | |
1947 | return pidref_is_alive(&s->main_pid); | |
1948 | ||
1949 | /* .. otherwise assume we'll get a SIGCHLD for it, which we really should wait for to collect | |
1950 | * exit status and code */ | |
1951 | return pidref_is_set(&s->main_pid); | |
1952 | } | |
1953 | ||
1954 | /* We don't know the pid */ | |
1955 | return -EAGAIN; | |
1956 | } | |
1957 | ||
1958 | static int control_pid_good(Service *s) { | |
1959 | assert(s); | |
1960 | ||
1961 | /* Returns 0 if the control PID is dead, > 0 if it is good. We never actually return < 0 here, but in order to | |
1962 | * make this function as similar as possible to main_pid_good() and cgroup_good(), we pretend that < 0 also | |
1963 | * means: we can't figure it out. */ | |
1964 | ||
1965 | return pidref_is_set(&s->control_pid); | |
1966 | } | |
1967 | ||
1968 | static int cgroup_good(Service *s) { | |
1969 | int r; | |
1970 | ||
1971 | assert(s); | |
1972 | ||
1973 | /* Returns 0 if the cgroup is empty or doesn't exist, > 0 if it is exists and is populated, < 0 if we can't | |
1974 | * figure it out */ | |
1975 | ||
1976 | if (!s->cgroup_runtime || !s->cgroup_runtime->cgroup_path) | |
1977 | return 0; | |
1978 | ||
1979 | r = cg_is_empty(SYSTEMD_CGROUP_CONTROLLER, s->cgroup_runtime->cgroup_path); | |
1980 | if (r < 0) | |
1981 | return r; | |
1982 | ||
1983 | return r == 0; | |
1984 | } | |
1985 | ||
1986 | static bool service_shall_restart(Service *s, const char **reason) { | |
1987 | assert(s); | |
1988 | assert(reason); | |
1989 | ||
1990 | /* Don't restart after manual stops */ | |
1991 | if (s->forbid_restart) { | |
1992 | *reason = "manual stop"; | |
1993 | return false; | |
1994 | } | |
1995 | ||
1996 | /* Never restart if this is configured as special exception */ | |
1997 | if (exit_status_set_test(&s->restart_prevent_status, s->main_exec_status.code, s->main_exec_status.status)) { | |
1998 | *reason = "prevented by exit status"; | |
1999 | return false; | |
2000 | } | |
2001 | ||
2002 | /* Restart if the exit code/status are configured as restart triggers */ | |
2003 | if (exit_status_set_test(&s->restart_force_status, s->main_exec_status.code, s->main_exec_status.status)) { | |
2004 | /* Don't allow Type=oneshot services to restart on success. Note that Restart=always/on-success | |
2005 | * is already rejected in service_verify. */ | |
2006 | if (s->type == SERVICE_ONESHOT && s->result == SERVICE_SUCCESS) { | |
2007 | *reason = "service type and exit status"; | |
2008 | return false; | |
2009 | } | |
2010 | ||
2011 | *reason = "forced by exit status"; | |
2012 | return true; | |
2013 | } | |
2014 | ||
2015 | *reason = "restart setting"; | |
2016 | switch (s->restart) { | |
2017 | ||
2018 | case SERVICE_RESTART_NO: | |
2019 | return false; | |
2020 | ||
2021 | case SERVICE_RESTART_ALWAYS: | |
2022 | return s->result != SERVICE_SKIP_CONDITION; | |
2023 | ||
2024 | case SERVICE_RESTART_ON_SUCCESS: | |
2025 | return s->result == SERVICE_SUCCESS; | |
2026 | ||
2027 | case SERVICE_RESTART_ON_FAILURE: | |
2028 | return !IN_SET(s->result, SERVICE_SUCCESS, SERVICE_SKIP_CONDITION); | |
2029 | ||
2030 | case SERVICE_RESTART_ON_ABNORMAL: | |
2031 | return !IN_SET(s->result, SERVICE_SUCCESS, SERVICE_FAILURE_EXIT_CODE, SERVICE_SKIP_CONDITION); | |
2032 | ||
2033 | case SERVICE_RESTART_ON_WATCHDOG: | |
2034 | return s->result == SERVICE_FAILURE_WATCHDOG; | |
2035 | ||
2036 | case SERVICE_RESTART_ON_ABORT: | |
2037 | return IN_SET(s->result, SERVICE_FAILURE_SIGNAL, SERVICE_FAILURE_CORE_DUMP); | |
2038 | ||
2039 | default: | |
2040 | assert_not_reached(); | |
2041 | } | |
2042 | } | |
2043 | ||
2044 | static bool service_will_restart(Unit *u) { | |
2045 | Service *s = SERVICE(u); | |
2046 | ||
2047 | assert(s); | |
2048 | ||
2049 | if (IN_SET(s->state, SERVICE_DEAD_BEFORE_AUTO_RESTART, SERVICE_FAILED_BEFORE_AUTO_RESTART, SERVICE_AUTO_RESTART, SERVICE_AUTO_RESTART_QUEUED)) | |
2050 | return true; | |
2051 | ||
2052 | return unit_will_restart_default(u); | |
2053 | } | |
2054 | ||
2055 | static ServiceState service_determine_dead_state(Service *s) { | |
2056 | assert(s); | |
2057 | ||
2058 | return s->fd_store && s->fd_store_preserve_mode == EXEC_PRESERVE_YES ? SERVICE_DEAD_RESOURCES_PINNED : SERVICE_DEAD; | |
2059 | } | |
2060 | ||
2061 | static void service_enter_dead(Service *s, ServiceResult f, bool allow_restart) { | |
2062 | ServiceState end_state, restart_state; | |
2063 | int r; | |
2064 | ||
2065 | assert(s); | |
2066 | ||
2067 | /* If there's a stop job queued before we enter the DEAD state, we shouldn't act on Restart=, in order to not | |
2068 | * undo what has already been enqueued. */ | |
2069 | if (unit_stop_pending(UNIT(s))) | |
2070 | allow_restart = false; | |
2071 | ||
2072 | if (s->result == SERVICE_SUCCESS) | |
2073 | s->result = f; | |
2074 | ||
2075 | if (s->result == SERVICE_SUCCESS) { | |
2076 | unit_log_success(UNIT(s)); | |
2077 | end_state = service_determine_dead_state(s); | |
2078 | restart_state = SERVICE_DEAD_BEFORE_AUTO_RESTART; | |
2079 | } else if (s->result == SERVICE_SKIP_CONDITION) { | |
2080 | unit_log_skip(UNIT(s), service_result_to_string(s->result)); | |
2081 | end_state = service_determine_dead_state(s); | |
2082 | restart_state = _SERVICE_STATE_INVALID; /* Never restart if skipped due to condition failure */ | |
2083 | } else { | |
2084 | unit_log_failure(UNIT(s), service_result_to_string(s->result)); | |
2085 | end_state = SERVICE_FAILED; | |
2086 | restart_state = SERVICE_FAILED_BEFORE_AUTO_RESTART; | |
2087 | } | |
2088 | unit_warn_leftover_processes(UNIT(s), /* start = */ false); | |
2089 | ||
2090 | if (!allow_restart) | |
2091 | log_unit_debug(UNIT(s), "Service restart not allowed."); | |
2092 | else { | |
2093 | const char *reason; | |
2094 | ||
2095 | allow_restart = service_shall_restart(s, &reason); | |
2096 | log_unit_debug(UNIT(s), "Service will %srestart (%s)", | |
2097 | allow_restart ? "" : "not ", | |
2098 | reason); | |
2099 | } | |
2100 | ||
2101 | if (allow_restart) { | |
2102 | usec_t restart_usec_next; | |
2103 | ||
2104 | assert(restart_state >= 0 && restart_state < _SERVICE_STATE_MAX); | |
2105 | ||
2106 | /* We make two state changes here: one that maps to the high-level UNIT_INACTIVE/UNIT_FAILED | |
2107 | * state (i.e. a state indicating deactivation), and then one that maps to the | |
2108 | * high-level UNIT_STARTING state (i.e. a state indicating activation). We do this so that | |
2109 | * external software can watch the state changes and see all service failures, even if they | |
2110 | * are only transitionary and followed by an automatic restart. We have fine-grained | |
2111 | * low-level states for this though so that software can distinguish the permanent UNIT_INACTIVE | |
2112 | * state from this transitionary UNIT_INACTIVE state by looking at the low-level states. */ | |
2113 | if (s->restart_mode != SERVICE_RESTART_MODE_DIRECT) | |
2114 | service_set_state(s, restart_state); | |
2115 | ||
2116 | restart_usec_next = service_restart_usec_next(s); | |
2117 | ||
2118 | r = service_arm_timer(s, /* relative= */ true, restart_usec_next); | |
2119 | if (r < 0) { | |
2120 | log_unit_warning_errno(UNIT(s), r, "Failed to install restart timer: %m"); | |
2121 | return service_enter_dead(s, SERVICE_FAILURE_RESOURCES, /* allow_restart= */ false); | |
2122 | } | |
2123 | ||
2124 | /* If the relevant option is set, and the unit doesn't already have logging level set to | |
2125 | * debug, enable it now. Make sure to overwrite the state in /run/systemd/units/ too, to | |
2126 | * ensure journald doesn't prune the messages. The previous state is saved and restored | |
2127 | * once the auto-restart flow ends. */ | |
2128 | if (s->restart_mode == SERVICE_RESTART_MODE_DEBUG) { | |
2129 | r = unit_set_debug_invocation(UNIT(s), true); | |
2130 | if (r < 0) | |
2131 | log_unit_warning_errno(UNIT(s), r, "Failed to enable debug invocation, ignoring: %m"); | |
2132 | if (r > 0) | |
2133 | log_unit_notice(UNIT(s), "Service dead, subsequent restarts will be executed with debug level logging."); | |
2134 | } | |
2135 | ||
2136 | log_unit_debug(UNIT(s), "Next restart interval calculated as: %s", FORMAT_TIMESPAN(restart_usec_next, 0)); | |
2137 | ||
2138 | service_set_state(s, SERVICE_AUTO_RESTART); | |
2139 | } else { | |
2140 | /* If we shan't restart, the restart counter would be flushed out. But rather than doing that | |
2141 | * immediately here, this is delegated to service_start(), i.e. next start, so that the user | |
2142 | * can still introspect the counter. */ | |
2143 | service_set_state(s, end_state); | |
2144 | ||
2145 | (void) unit_set_debug_invocation(UNIT(s), false); | |
2146 | } | |
2147 | ||
2148 | /* The next restart might not be a manual stop, hence reset the flag indicating manual stops */ | |
2149 | s->forbid_restart = false; | |
2150 | ||
2151 | /* Reset NotifyAccess override */ | |
2152 | s->notify_access_override = _NOTIFY_ACCESS_INVALID; | |
2153 | ||
2154 | /* We want fresh tmpdirs and ephemeral snapshots in case the service is started again immediately. */ | |
2155 | s->exec_runtime = exec_runtime_destroy(s->exec_runtime); | |
2156 | ||
2157 | /* Also, remove the runtime directory */ | |
2158 | unit_destroy_runtime_data(UNIT(s), &s->exec_context, /* destroy_runtime_dir = */ true); | |
2159 | ||
2160 | /* Also get rid of the fd store, if that's configured. */ | |
2161 | if (s->fd_store_preserve_mode == EXEC_PRESERVE_NO) | |
2162 | service_release_fd_store(s); | |
2163 | ||
2164 | /* Get rid of the IPC bits of the user */ | |
2165 | unit_unref_uid_gid(UNIT(s), true); | |
2166 | ||
2167 | /* Try to delete the pid file. At this point it will be | |
2168 | * out-of-date, and some software might be confused by it, so | |
2169 | * let's remove it. */ | |
2170 | if (s->pid_file) | |
2171 | (void) unlink(s->pid_file); | |
2172 | ||
2173 | /* Reset TTY ownership if necessary */ | |
2174 | exec_context_revert_tty(&s->exec_context, UNIT(s)->invocation_id); | |
2175 | } | |
2176 | ||
2177 | static void service_enter_stop_post(Service *s, ServiceResult f) { | |
2178 | int r; | |
2179 | assert(s); | |
2180 | ||
2181 | if (s->result == SERVICE_SUCCESS) | |
2182 | s->result = f; | |
2183 | ||
2184 | service_unwatch_control_pid(s); | |
2185 | ||
2186 | s->control_command = s->exec_command[SERVICE_EXEC_STOP_POST]; | |
2187 | if (s->control_command) { | |
2188 | s->control_command_id = SERVICE_EXEC_STOP_POST; | |
2189 | pidref_done(&s->control_pid); | |
2190 | ||
2191 | r = service_spawn(s, | |
2192 | s->control_command, | |
2193 | service_exec_flags(s->control_command_id, /* cred_flag = */ 0), | |
2194 | s->timeout_stop_usec, | |
2195 | &s->control_pid); | |
2196 | if (r < 0) { | |
2197 | log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'stop-post' task: %m"); | |
2198 | service_enter_signal(s, SERVICE_FINAL_SIGTERM, SERVICE_FAILURE_RESOURCES); | |
2199 | return; | |
2200 | } | |
2201 | ||
2202 | service_set_state(s, SERVICE_STOP_POST); | |
2203 | } else | |
2204 | service_enter_signal(s, SERVICE_FINAL_SIGTERM, SERVICE_SUCCESS); | |
2205 | } | |
2206 | ||
2207 | static int state_to_kill_operation(Service *s, ServiceState state) { | |
2208 | switch (state) { | |
2209 | ||
2210 | case SERVICE_STOP_WATCHDOG: | |
2211 | case SERVICE_FINAL_WATCHDOG: | |
2212 | return KILL_WATCHDOG; | |
2213 | ||
2214 | case SERVICE_STOP_SIGTERM: | |
2215 | if (unit_has_job_type(UNIT(s), JOB_RESTART)) | |
2216 | return KILL_RESTART; | |
2217 | _fallthrough_; | |
2218 | ||
2219 | case SERVICE_FINAL_SIGTERM: | |
2220 | return KILL_TERMINATE; | |
2221 | ||
2222 | case SERVICE_STOP_SIGKILL: | |
2223 | case SERVICE_FINAL_SIGKILL: | |
2224 | return KILL_KILL; | |
2225 | ||
2226 | default: | |
2227 | return _KILL_OPERATION_INVALID; | |
2228 | } | |
2229 | } | |
2230 | ||
2231 | static void service_enter_signal(Service *s, ServiceState state, ServiceResult f) { | |
2232 | int kill_operation, r; | |
2233 | ||
2234 | assert(s); | |
2235 | ||
2236 | if (s->result == SERVICE_SUCCESS) | |
2237 | s->result = f; | |
2238 | ||
2239 | kill_operation = state_to_kill_operation(s, state); | |
2240 | r = unit_kill_context(UNIT(s), kill_operation); | |
2241 | if (r < 0) { | |
2242 | log_unit_warning_errno(UNIT(s), r, "Failed to kill processes: %m"); | |
2243 | goto fail; | |
2244 | } | |
2245 | ||
2246 | if (r > 0) { | |
2247 | r = service_arm_timer(s, /* relative= */ true, | |
2248 | kill_operation == KILL_WATCHDOG ? service_timeout_abort_usec(s) : s->timeout_stop_usec); | |
2249 | if (r < 0) { | |
2250 | log_unit_warning_errno(UNIT(s), r, "Failed to install timer: %m"); | |
2251 | goto fail; | |
2252 | } | |
2253 | ||
2254 | service_set_state(s, state); | |
2255 | } else if (IN_SET(state, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM) && s->kill_context.send_sigkill) | |
2256 | service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_SUCCESS); | |
2257 | else if (IN_SET(state, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL)) | |
2258 | service_enter_stop_post(s, SERVICE_SUCCESS); | |
2259 | else if (IN_SET(state, SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM) && s->kill_context.send_sigkill) | |
2260 | service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_SUCCESS); | |
2261 | else | |
2262 | service_enter_dead(s, SERVICE_SUCCESS, /* allow_restart= */ true); | |
2263 | ||
2264 | return; | |
2265 | ||
2266 | fail: | |
2267 | if (IN_SET(state, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL)) | |
2268 | service_enter_stop_post(s, SERVICE_FAILURE_RESOURCES); | |
2269 | else | |
2270 | service_enter_dead(s, SERVICE_FAILURE_RESOURCES, /* allow_restart= */ true); | |
2271 | } | |
2272 | ||
2273 | static void service_enter_stop_by_notify(Service *s) { | |
2274 | int r; | |
2275 | ||
2276 | assert(s); | |
2277 | ||
2278 | r = service_arm_timer(s, /* relative= */ true, s->timeout_stop_usec); | |
2279 | if (r < 0) { | |
2280 | log_unit_warning_errno(UNIT(s), r, "Failed to install timer: %m"); | |
2281 | service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES); | |
2282 | return; | |
2283 | } | |
2284 | ||
2285 | /* The service told us it's stopping, so it's as if we SIGTERM'd it. */ | |
2286 | service_set_state(s, SERVICE_STOP_SIGTERM); | |
2287 | } | |
2288 | ||
2289 | static void service_enter_stop(Service *s, ServiceResult f) { | |
2290 | int r; | |
2291 | ||
2292 | assert(s); | |
2293 | ||
2294 | if (s->result == SERVICE_SUCCESS) | |
2295 | s->result = f; | |
2296 | ||
2297 | service_unwatch_control_pid(s); | |
2298 | ||
2299 | s->control_command = s->exec_command[SERVICE_EXEC_STOP]; | |
2300 | if (s->control_command) { | |
2301 | s->control_command_id = SERVICE_EXEC_STOP; | |
2302 | pidref_done(&s->control_pid); | |
2303 | ||
2304 | r = service_spawn(s, | |
2305 | s->control_command, | |
2306 | service_exec_flags(s->control_command_id, /* cred_flag = */ 0), | |
2307 | s->timeout_stop_usec, | |
2308 | &s->control_pid); | |
2309 | if (r < 0) { | |
2310 | log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'stop' task: %m"); | |
2311 | service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES); | |
2312 | return; | |
2313 | } | |
2314 | ||
2315 | service_set_state(s, SERVICE_STOP); | |
2316 | } else | |
2317 | service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_SUCCESS); | |
2318 | } | |
2319 | ||
2320 | static bool service_good(Service *s) { | |
2321 | int main_pid_ok; | |
2322 | ||
2323 | assert(s); | |
2324 | ||
2325 | if (s->type == SERVICE_DBUS && !s->bus_name_good) | |
2326 | return false; | |
2327 | ||
2328 | main_pid_ok = main_pid_good(s); | |
2329 | if (main_pid_ok > 0) /* It's alive */ | |
2330 | return true; | |
2331 | if (main_pid_ok == 0 && s->exit_type == SERVICE_EXIT_MAIN) /* It's dead */ | |
2332 | return false; | |
2333 | ||
2334 | /* OK, we don't know anything about the main PID, maybe | |
2335 | * because there is none. Let's check the control group | |
2336 | * instead. */ | |
2337 | ||
2338 | return cgroup_good(s) != 0; | |
2339 | } | |
2340 | ||
2341 | static void service_enter_running(Service *s, ServiceResult f) { | |
2342 | int r; | |
2343 | ||
2344 | assert(s); | |
2345 | ||
2346 | if (s->result == SERVICE_SUCCESS) | |
2347 | s->result = f; | |
2348 | ||
2349 | service_unwatch_control_pid(s); | |
2350 | ||
2351 | if (s->result != SERVICE_SUCCESS) | |
2352 | service_enter_signal(s, SERVICE_STOP_SIGTERM, f); | |
2353 | else if (service_good(s)) { | |
2354 | ||
2355 | /* If there are any queued up sd_notify() notifications, process them now */ | |
2356 | if (s->notify_state == NOTIFY_RELOADING) | |
2357 | service_enter_reload_by_notify(s); | |
2358 | else if (s->notify_state == NOTIFY_STOPPING) | |
2359 | service_enter_stop_by_notify(s); | |
2360 | else { | |
2361 | service_set_state(s, SERVICE_RUNNING); | |
2362 | ||
2363 | r = service_arm_timer(s, /* relative= */ false, service_running_timeout(s)); | |
2364 | if (r < 0) { | |
2365 | log_unit_warning_errno(UNIT(s), r, "Failed to install timer: %m"); | |
2366 | service_enter_running(s, SERVICE_FAILURE_RESOURCES); | |
2367 | return; | |
2368 | } | |
2369 | } | |
2370 | ||
2371 | } else if (s->remain_after_exit) | |
2372 | service_set_state(s, SERVICE_EXITED); | |
2373 | else | |
2374 | service_enter_stop(s, SERVICE_SUCCESS); | |
2375 | } | |
2376 | ||
2377 | static void service_enter_start_post(Service *s) { | |
2378 | int r; | |
2379 | ||
2380 | assert(s); | |
2381 | ||
2382 | service_unwatch_control_pid(s); | |
2383 | service_reset_watchdog(s); | |
2384 | ||
2385 | s->control_command = s->exec_command[SERVICE_EXEC_START_POST]; | |
2386 | if (s->control_command) { | |
2387 | s->control_command_id = SERVICE_EXEC_START_POST; | |
2388 | pidref_done(&s->control_pid); | |
2389 | ||
2390 | r = service_spawn(s, | |
2391 | s->control_command, | |
2392 | service_exec_flags(s->control_command_id, /* cred_flag = */ 0), | |
2393 | s->timeout_start_usec, | |
2394 | &s->control_pid); | |
2395 | if (r < 0) { | |
2396 | log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'start-post' task: %m"); | |
2397 | service_enter_stop(s, SERVICE_FAILURE_RESOURCES); | |
2398 | return; | |
2399 | } | |
2400 | ||
2401 | service_set_state(s, SERVICE_START_POST); | |
2402 | } else | |
2403 | service_enter_running(s, SERVICE_SUCCESS); | |
2404 | } | |
2405 | ||
2406 | static void service_kill_control_process(Service *s) { | |
2407 | int r; | |
2408 | ||
2409 | assert(s); | |
2410 | ||
2411 | if (!pidref_is_set(&s->control_pid)) | |
2412 | return; | |
2413 | ||
2414 | r = pidref_kill_and_sigcont(&s->control_pid, SIGKILL); | |
2415 | if (r < 0) { | |
2416 | _cleanup_free_ char *comm = NULL; | |
2417 | ||
2418 | (void) pidref_get_comm(&s->control_pid, &comm); | |
2419 | ||
2420 | log_unit_debug_errno(UNIT(s), r, "Failed to kill control process " PID_FMT " (%s), ignoring: %m", | |
2421 | s->control_pid.pid, strna(comm)); | |
2422 | } | |
2423 | } | |
2424 | ||
2425 | static int service_adverse_to_leftover_processes(Service *s) { | |
2426 | assert(s); | |
2427 | ||
2428 | /* KillMode=mixed and control group are used to indicate that all process should be killed off. | |
2429 | * SendSIGKILL= is used for services that require a clean shutdown. These are typically database | |
2430 | * service where a SigKilled process would result in a lengthy recovery and who's shutdown or startup | |
2431 | * time is quite variable (so Timeout settings aren't of use). | |
2432 | * | |
2433 | * Here we take these two factors and refuse to start a service if there are existing processes | |
2434 | * within a control group. Databases, while generally having some protection against multiple | |
2435 | * instances running, lets not stress the rigor of these. Also ExecStartPre= parts of the service | |
2436 | * aren't as rigoriously written to protect against multiple use. */ | |
2437 | ||
2438 | if (unit_warn_leftover_processes(UNIT(s), /* start = */ true) > 0 && | |
2439 | IN_SET(s->kill_context.kill_mode, KILL_MIXED, KILL_CONTROL_GROUP) && | |
2440 | !s->kill_context.send_sigkill) | |
2441 | return log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(EBUSY), | |
2442 | "Will not start SendSIGKILL=no service of type KillMode=control-group or mixed while processes exist"); | |
2443 | ||
2444 | return 0; | |
2445 | } | |
2446 | ||
2447 | static void service_enter_start(Service *s) { | |
2448 | _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL; | |
2449 | ExecCommand *c; | |
2450 | usec_t timeout; | |
2451 | int r; | |
2452 | ||
2453 | assert(s); | |
2454 | ||
2455 | service_unwatch_control_pid(s); | |
2456 | service_unwatch_main_pid(s); | |
2457 | ||
2458 | r = service_adverse_to_leftover_processes(s); | |
2459 | if (r < 0) | |
2460 | goto fail; | |
2461 | ||
2462 | if (s->type == SERVICE_FORKING) { | |
2463 | s->control_command_id = SERVICE_EXEC_START; | |
2464 | c = s->control_command = s->exec_command[SERVICE_EXEC_START]; | |
2465 | ||
2466 | s->main_command = NULL; | |
2467 | } else { | |
2468 | s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID; | |
2469 | s->control_command = NULL; | |
2470 | ||
2471 | c = s->main_command = s->exec_command[SERVICE_EXEC_START]; | |
2472 | } | |
2473 | ||
2474 | if (!c) { | |
2475 | if (s->type != SERVICE_ONESHOT) { | |
2476 | /* There's no command line configured for the main command? Hmm, that is strange. | |
2477 | * This can only happen if the configuration changes at runtime. In this case, | |
2478 | * let's enter a failure state. */ | |
2479 | r = log_unit_error_errno(UNIT(s), SYNTHETIC_ERRNO(ENXIO), "There's no 'start' task anymore we could start."); | |
2480 | goto fail; | |
2481 | } | |
2482 | ||
2483 | /* We force a fake state transition here. Otherwise, the unit would go directly from | |
2484 | * SERVICE_DEAD to SERVICE_DEAD without SERVICE_ACTIVATING or SERVICE_ACTIVE | |
2485 | * in between. This way we can later trigger actions that depend on the state | |
2486 | * transition, including SuccessAction=. */ | |
2487 | service_set_state(s, SERVICE_START); | |
2488 | ||
2489 | service_enter_start_post(s); | |
2490 | return; | |
2491 | } | |
2492 | ||
2493 | if (IN_SET(s->type, SERVICE_SIMPLE, SERVICE_IDLE)) | |
2494 | /* For simple + idle this is the main process. We don't apply any timeout here, but | |
2495 | * service_enter_running() will later apply the .runtime_max_usec timeout. */ | |
2496 | timeout = USEC_INFINITY; | |
2497 | else | |
2498 | timeout = s->timeout_start_usec; | |
2499 | ||
2500 | r = service_spawn(s, | |
2501 | c, | |
2502 | service_exec_flags(SERVICE_EXEC_START, EXEC_SETUP_CREDENTIALS_FRESH), | |
2503 | timeout, | |
2504 | &pidref); | |
2505 | if (r < 0) { | |
2506 | log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'start' task: %m"); | |
2507 | goto fail; | |
2508 | } | |
2509 | ||
2510 | assert(pidref.pid == c->exec_status.pid); | |
2511 | ||
2512 | switch (s->type) { | |
2513 | ||
2514 | case SERVICE_SIMPLE: | |
2515 | case SERVICE_IDLE: | |
2516 | /* For simple services we immediately start the START_POST binaries. */ | |
2517 | (void) service_set_main_pidref(s, TAKE_PIDREF(pidref), &c->exec_status.start_timestamp); | |
2518 | return service_enter_start_post(s); | |
2519 | ||
2520 | case SERVICE_FORKING: | |
2521 | /* For forking services we wait until the start process exited. */ | |
2522 | pidref_done(&s->control_pid); | |
2523 | s->control_pid = TAKE_PIDREF(pidref); | |
2524 | return service_set_state(s, SERVICE_START); | |
2525 | ||
2526 | case SERVICE_ONESHOT: /* For oneshot services we wait until the start process exited, too, but it is our main process. */ | |
2527 | case SERVICE_EXEC: | |
2528 | case SERVICE_DBUS: | |
2529 | case SERVICE_NOTIFY: | |
2530 | case SERVICE_NOTIFY_RELOAD: | |
2531 | /* For D-Bus services we know the main pid right away, but wait for the bus name to appear | |
2532 | * on the bus. 'notify' and 'exec' services wait for readiness notification and EOF | |
2533 | * on exec_fd, respectively. */ | |
2534 | (void) service_set_main_pidref(s, TAKE_PIDREF(pidref), &c->exec_status.start_timestamp); | |
2535 | return service_set_state(s, SERVICE_START); | |
2536 | ||
2537 | default: | |
2538 | assert_not_reached(); | |
2539 | } | |
2540 | ||
2541 | fail: | |
2542 | service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES); | |
2543 | } | |
2544 | ||
2545 | static void service_enter_start_pre(Service *s) { | |
2546 | int r; | |
2547 | ||
2548 | assert(s); | |
2549 | ||
2550 | service_unwatch_control_pid(s); | |
2551 | ||
2552 | s->control_command = s->exec_command[SERVICE_EXEC_START_PRE]; | |
2553 | if (s->control_command) { | |
2554 | ||
2555 | r = service_adverse_to_leftover_processes(s); | |
2556 | if (r < 0) | |
2557 | goto fail; | |
2558 | ||
2559 | s->control_command_id = SERVICE_EXEC_START_PRE; | |
2560 | ||
2561 | r = service_spawn(s, | |
2562 | s->control_command, | |
2563 | service_exec_flags(s->control_command_id, /* cred_flag = */ 0), | |
2564 | s->timeout_start_usec, | |
2565 | &s->control_pid); | |
2566 | if (r < 0) { | |
2567 | log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'start-pre' task: %m"); | |
2568 | goto fail; | |
2569 | } | |
2570 | ||
2571 | service_set_state(s, SERVICE_START_PRE); | |
2572 | } else | |
2573 | service_enter_start(s); | |
2574 | ||
2575 | return; | |
2576 | ||
2577 | fail: | |
2578 | service_enter_dead(s, SERVICE_FAILURE_RESOURCES, /* allow_restart= */ true); | |
2579 | } | |
2580 | ||
2581 | static void service_enter_condition(Service *s) { | |
2582 | int r; | |
2583 | ||
2584 | assert(s); | |
2585 | ||
2586 | service_unwatch_control_pid(s); | |
2587 | ||
2588 | s->control_command = s->exec_command[SERVICE_EXEC_CONDITION]; | |
2589 | if (s->control_command) { | |
2590 | ||
2591 | r = service_adverse_to_leftover_processes(s); | |
2592 | if (r < 0) | |
2593 | goto fail; | |
2594 | ||
2595 | s->control_command_id = SERVICE_EXEC_CONDITION; | |
2596 | pidref_done(&s->control_pid); | |
2597 | ||
2598 | r = service_spawn(s, | |
2599 | s->control_command, | |
2600 | service_exec_flags(s->control_command_id, /* cred_flag = */ 0), | |
2601 | s->timeout_start_usec, | |
2602 | &s->control_pid); | |
2603 | if (r < 0) { | |
2604 | log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'exec-condition' task: %m"); | |
2605 | goto fail; | |
2606 | } | |
2607 | ||
2608 | service_set_state(s, SERVICE_CONDITION); | |
2609 | } else | |
2610 | service_enter_start_pre(s); | |
2611 | ||
2612 | return; | |
2613 | ||
2614 | fail: | |
2615 | service_enter_dead(s, SERVICE_FAILURE_RESOURCES, /* allow_restart= */ true); | |
2616 | } | |
2617 | ||
2618 | static void service_enter_restart(Service *s, bool shortcut) { | |
2619 | _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL; | |
2620 | int r; | |
2621 | ||
2622 | /* shortcut: a manual start request is received, restart immediately */ | |
2623 | ||
2624 | assert(s); | |
2625 | assert(s->state == SERVICE_AUTO_RESTART); | |
2626 | ||
2627 | if (!shortcut && unit_has_job_type(UNIT(s), JOB_STOP)) { | |
2628 | /* Don't restart things if we are going down anyway */ | |
2629 | log_unit_info(UNIT(s), "Stop job pending for unit, skipping automatic restart."); | |
2630 | return; | |
2631 | } | |
2632 | ||
2633 | /* Any units that are bound to this service must also be restarted, unless RestartMode=direct. | |
2634 | * We use JOB_START for ourselves but then set JOB_RESTART_DEPENDENCIES which will enqueue JOB_RESTART | |
2635 | * for those dependency jobs in the former case, plain JOB_REPLACE when RestartMode=direct. | |
2636 | * | |
2637 | * Also, when RestartMode=direct is used, the service being restarted don't enter the inactive/failed state, | |
2638 | * i.e. unit_process_job -> job_finish_and_invalidate is never called, and the previous job might still | |
2639 | * be running (especially for Type=oneshot services). | |
2640 | * We need to refuse late merge and re-enqueue the anchor job. */ | |
2641 | r = manager_add_job_full(UNIT(s)->manager, | |
2642 | JOB_START, UNIT(s), | |
2643 | s->restart_mode == SERVICE_RESTART_MODE_DIRECT ? JOB_REPLACE : JOB_RESTART_DEPENDENCIES, | |
2644 | TRANSACTION_REENQUEUE_ANCHOR, | |
2645 | /* affected_jobs = */ NULL, | |
2646 | &error, /* ret = */ NULL); | |
2647 | if (r < 0) { | |
2648 | log_unit_warning(UNIT(s), "Failed to schedule restart job: %s", bus_error_message(&error, r)); | |
2649 | return service_enter_dead(s, SERVICE_FAILURE_RESOURCES, /* allow_restart= */ false); | |
2650 | } | |
2651 | ||
2652 | /* Count the jobs we enqueue for restarting. This counter is maintained as long as the unit isn't | |
2653 | * fully stopped, i.e. as long as it remains up or remains in auto-start states. The user can reset | |
2654 | * the counter explicitly however via the usual "systemctl reset-failure" logic. */ | |
2655 | s->n_restarts++; | |
2656 | ||
2657 | log_unit_struct(UNIT(s), LOG_INFO, | |
2658 | LOG_MESSAGE_ID(SD_MESSAGE_UNIT_RESTART_SCHEDULED_STR), | |
2659 | LOG_UNIT_INVOCATION_ID(UNIT(s)), | |
2660 | LOG_UNIT_MESSAGE(UNIT(s), | |
2661 | "Scheduled restart job%s, restart counter is at %u.", | |
2662 | shortcut ? " immediately on client request" : "", s->n_restarts), | |
2663 | LOG_ITEM("N_RESTARTS=%u", s->n_restarts)); | |
2664 | ||
2665 | service_set_state(s, SERVICE_AUTO_RESTART_QUEUED); | |
2666 | ||
2667 | /* Notify clients about changed restart counter */ | |
2668 | unit_add_to_dbus_queue(UNIT(s)); | |
2669 | } | |
2670 | ||
2671 | static void service_enter_reload_by_notify(Service *s) { | |
2672 | _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL; | |
2673 | int r; | |
2674 | ||
2675 | assert(s); | |
2676 | ||
2677 | r = service_arm_timer(s, /* relative= */ true, s->timeout_start_usec); | |
2678 | if (r < 0) { | |
2679 | log_unit_warning_errno(UNIT(s), r, "Failed to install timer: %m"); | |
2680 | s->reload_result = SERVICE_FAILURE_RESOURCES; | |
2681 | service_enter_running(s, SERVICE_SUCCESS); | |
2682 | return; | |
2683 | } | |
2684 | ||
2685 | service_set_state(s, SERVICE_RELOAD_NOTIFY); | |
2686 | ||
2687 | /* service_enter_reload_by_notify is never called during a reload, thus no loops are possible. */ | |
2688 | r = manager_propagate_reload(UNIT(s)->manager, UNIT(s), JOB_FAIL, &error); | |
2689 | if (r < 0) | |
2690 | log_unit_warning(UNIT(s), "Failed to schedule propagation of reload, ignoring: %s", bus_error_message(&error, r)); | |
2691 | } | |
2692 | ||
2693 | static void service_enter_reload_signal_exec(Service *s) { | |
2694 | bool killed = false; | |
2695 | int r; | |
2696 | ||
2697 | assert(s); | |
2698 | ||
2699 | service_unwatch_control_pid(s); | |
2700 | s->reload_result = SERVICE_SUCCESS; | |
2701 | ||
2702 | usec_t ts = now(CLOCK_MONOTONIC); | |
2703 | ||
2704 | if (s->type == SERVICE_NOTIFY_RELOAD && pidref_is_set(&s->main_pid)) { | |
2705 | r = pidref_kill_and_sigcont(&s->main_pid, s->reload_signal); | |
2706 | if (r < 0) { | |
2707 | log_unit_warning_errno(UNIT(s), r, "Failed to send reload signal: %m"); | |
2708 | goto fail; | |
2709 | } | |
2710 | ||
2711 | killed = true; | |
2712 | } | |
2713 | ||
2714 | s->control_command = s->exec_command[SERVICE_EXEC_RELOAD]; | |
2715 | if (s->control_command) { | |
2716 | s->control_command_id = SERVICE_EXEC_RELOAD; | |
2717 | pidref_done(&s->control_pid); | |
2718 | ||
2719 | r = service_spawn(s, | |
2720 | s->control_command, | |
2721 | service_exec_flags(s->control_command_id, /* cred_flag = */ 0), | |
2722 | s->timeout_start_usec, | |
2723 | &s->control_pid); | |
2724 | if (r < 0) { | |
2725 | log_unit_warning_errno(UNIT(s), r, "Failed to spawn 'reload' task: %m"); | |
2726 | goto fail; | |
2727 | } | |
2728 | ||
2729 | service_set_state(s, SERVICE_RELOAD); | |
2730 | } else if (killed) { | |
2731 | r = service_arm_timer(s, /* relative= */ true, s->timeout_start_usec); | |
2732 | if (r < 0) { | |
2733 | log_unit_warning_errno(UNIT(s), r, "Failed to install timer: %m"); | |
2734 | goto fail; | |
2735 | } | |
2736 | ||
2737 | service_set_state(s, SERVICE_RELOAD_SIGNAL); | |
2738 | } else { | |
2739 | service_enter_running(s, SERVICE_SUCCESS); | |
2740 | return; | |
2741 | } | |
2742 | ||
2743 | /* Store the timestamp when we started reloading: when reloading via SIGHUP we won't leave the reload | |
2744 | * state until we received both RELOADING=1 and READY=1 with MONOTONIC_USEC= set to a value above | |
2745 | * this. Thus we know for sure the reload cycle was executed *after* we requested it, and is not one | |
2746 | * that was already in progress before. */ | |
2747 | s->reload_begin_usec = ts; | |
2748 | return; | |
2749 | ||
2750 | fail: | |
2751 | s->reload_result = SERVICE_FAILURE_RESOURCES; | |
2752 | service_enter_running(s, SERVICE_SUCCESS); | |
2753 | } | |
2754 | ||
2755 | static bool service_should_reload_extensions(Service *s) { | |
2756 | int r; | |
2757 | ||
2758 | assert(s); | |
2759 | ||
2760 | if (!pidref_is_set(&s->main_pid)) { | |
2761 | log_unit_debug(UNIT(s), "Not reloading extensions for service without main PID."); | |
2762 | return false; | |
2763 | } | |
2764 | ||
2765 | r = exec_context_has_vpicked_extensions(&s->exec_context); | |
2766 | if (r < 0) | |
2767 | log_unit_warning_errno(UNIT(s), r, "Failed to determine if service should reload extensions, assuming false: %m"); | |
2768 | if (r == 0) | |
2769 | log_unit_debug(UNIT(s), "Service has no extensions to reload."); | |
2770 | if (r <= 0) | |
2771 | return false; | |
2772 | ||
2773 | // TODO: Add support for user services, which can use ExtensionDirectories= + notify-reload. | |
2774 | // For now, skip for user services. | |
2775 | if (!MANAGER_IS_SYSTEM(UNIT(s)->manager)) { | |
2776 | log_once(LOG_WARNING, "Not reloading extensions for user services."); | |
2777 | return false; | |
2778 | } | |
2779 | ||
2780 | return true; | |
2781 | } | |
2782 | ||
2783 | static void service_enter_refresh_extensions(Service *s) { | |
2784 | _cleanup_(pidref_done) PidRef worker = PIDREF_NULL; | |
2785 | int r; | |
2786 | ||
2787 | assert(s); | |
2788 | ||
2789 | /* If we don't have extensions to reload, immediately go to the signal step */ | |
2790 | if (!service_should_reload_extensions(s)) | |
2791 | return (void) service_enter_reload_signal_exec(s); | |
2792 | ||
2793 | service_unwatch_control_pid(s); | |
2794 | s->reload_result = SERVICE_SUCCESS; | |
2795 | s->control_command = NULL; | |
2796 | s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID; | |
2797 | ||
2798 | /* Given we are running from PID1, avoid doing potentially heavy I/O operations like opening images | |
2799 | * directly, and instead fork a worker process. */ | |
2800 | r = unit_fork_helper_process(UNIT(s), "(sd-refresh-extensions)", /* into_cgroup= */ false, &worker); | |
2801 | if (r < 0) { | |
2802 | log_unit_error_errno(UNIT(s), r, "Failed to fork process to refresh extensions in unit's namespace: %m"); | |
2803 | goto fail; | |
2804 | } | |
2805 | if (r == 0) { | |
2806 | PidRef *unit_pid = &s->main_pid; | |
2807 | assert(pidref_is_set(unit_pid)); | |
2808 | ||
2809 | _cleanup_free_ char *propagate_dir = path_join("/run/systemd/propagate/", UNIT(s)->id); | |
2810 | if (!propagate_dir) { | |
2811 | log_unit_error_errno(UNIT(s), -ENOMEM, "Failed to allocate memory for propagate directory: %m"); | |
2812 | _exit(EXIT_FAILURE); | |
2813 | } | |
2814 | ||
2815 | NamespaceParameters p = { | |
2816 | .private_namespace_dir = "/run/systemd", | |
2817 | .incoming_dir = "/run/systemd/incoming", | |
2818 | .propagate_dir = propagate_dir, | |
2819 | .runtime_scope = UNIT(s)->manager->runtime_scope, | |
2820 | .extension_images = s->exec_context.extension_images, | |
2821 | .n_extension_images = s->exec_context.n_extension_images, | |
2822 | .extension_directories = s->exec_context.extension_directories, | |
2823 | .extension_image_policy = s->exec_context.extension_image_policy, | |
2824 | }; | |
2825 | ||
2826 | /* Only reload confext, and not sysext as they also typically contain the executable(s) used | |
2827 | * by the service and a simply reload cannot meaningfully handle that. */ | |
2828 | r = refresh_extensions_in_namespace( | |
2829 | unit_pid, | |
2830 | "SYSTEMD_CONFEXT_HIERARCHIES", | |
2831 | &p); | |
2832 | if (r < 0) | |
2833 | log_unit_error_errno(UNIT(s), r, "Failed to refresh extensions in unit's namespace: %m"); | |
2834 | else | |
2835 | log_unit_debug(UNIT(s), "Refreshed extensions in unit's namespace"); | |
2836 | ||
2837 | _exit(r < 0 ? EXIT_FAILURE : EXIT_SUCCESS); | |
2838 | } | |
2839 | ||
2840 | r = unit_watch_pidref(UNIT(s), &worker, /* exclusive= */ true); | |
2841 | if (r < 0) { | |
2842 | log_unit_warning_errno(UNIT(s), r, "Failed to watch extensions refresh helper process: %m"); | |
2843 | goto fail; | |
2844 | } | |
2845 | ||
2846 | s->control_pid = TAKE_PIDREF(worker); | |
2847 | service_set_state(s, SERVICE_REFRESH_EXTENSIONS); | |
2848 | return; | |
2849 | ||
2850 | fail: | |
2851 | s->reload_result = SERVICE_FAILURE_RESOURCES; | |
2852 | service_enter_running(s, SERVICE_SUCCESS); | |
2853 | } | |
2854 | ||
2855 | static void service_enter_reload_mounting(Service *s) { | |
2856 | int r; | |
2857 | ||
2858 | assert(s); | |
2859 | ||
2860 | usec_t ts = now(CLOCK_MONOTONIC); | |
2861 | ||
2862 | r = service_arm_timer(s, /* relative= */ true, s->timeout_start_usec); | |
2863 | if (r < 0) { | |
2864 | log_unit_warning_errno(UNIT(s), r, "Failed to install timer: %m"); | |
2865 | s->reload_result = SERVICE_FAILURE_RESOURCES; | |
2866 | service_enter_running(s, SERVICE_SUCCESS); | |
2867 | return; | |
2868 | } | |
2869 | ||
2870 | s->reload_begin_usec = ts; | |
2871 | ||
2872 | service_enter_refresh_extensions(s); | |
2873 | } | |
2874 | ||
2875 | static void service_run_next_control(Service *s) { | |
2876 | usec_t timeout; | |
2877 | int r; | |
2878 | ||
2879 | assert(s); | |
2880 | assert(s->control_command); | |
2881 | assert(s->control_command->command_next); | |
2882 | ||
2883 | assert(s->control_command_id != SERVICE_EXEC_START); | |
2884 | ||
2885 | s->control_command = s->control_command->command_next; | |
2886 | service_unwatch_control_pid(s); | |
2887 | ||
2888 | if (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD)) | |
2889 | timeout = s->timeout_start_usec; | |
2890 | else | |
2891 | timeout = s->timeout_stop_usec; | |
2892 | ||
2893 | pidref_done(&s->control_pid); | |
2894 | ||
2895 | r = service_spawn(s, | |
2896 | s->control_command, | |
2897 | service_exec_flags(s->control_command_id, /* cred_flag = */ 0), | |
2898 | timeout, | |
2899 | &s->control_pid); | |
2900 | if (r < 0) { | |
2901 | log_unit_warning_errno(UNIT(s), r, "Failed to spawn next control task: %m"); | |
2902 | ||
2903 | if (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START_POST, SERVICE_STOP)) | |
2904 | service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES); | |
2905 | else if (s->state == SERVICE_STOP_POST) | |
2906 | service_enter_dead(s, SERVICE_FAILURE_RESOURCES, /* allow_restart= */ true); | |
2907 | else if (s->state == SERVICE_RELOAD) { | |
2908 | s->reload_result = SERVICE_FAILURE_RESOURCES; | |
2909 | service_enter_running(s, SERVICE_SUCCESS); | |
2910 | } else | |
2911 | service_enter_stop(s, SERVICE_FAILURE_RESOURCES); | |
2912 | } | |
2913 | } | |
2914 | ||
2915 | static void service_run_next_main(Service *s) { | |
2916 | _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL; | |
2917 | int r; | |
2918 | ||
2919 | assert(s); | |
2920 | assert(s->main_command); | |
2921 | assert(s->main_command->command_next); | |
2922 | assert(s->type == SERVICE_ONESHOT); | |
2923 | ||
2924 | s->main_command = s->main_command->command_next; | |
2925 | service_unwatch_main_pid(s); | |
2926 | ||
2927 | r = service_spawn(s, | |
2928 | s->main_command, | |
2929 | service_exec_flags(SERVICE_EXEC_START, EXEC_SETUP_CREDENTIALS), | |
2930 | s->timeout_start_usec, | |
2931 | &pidref); | |
2932 | if (r < 0) { | |
2933 | log_unit_warning_errno(UNIT(s), r, "Failed to spawn next main task: %m"); | |
2934 | service_enter_stop(s, SERVICE_FAILURE_RESOURCES); | |
2935 | return; | |
2936 | } | |
2937 | ||
2938 | (void) service_set_main_pidref(s, TAKE_PIDREF(pidref), &s->main_command->exec_status.start_timestamp); | |
2939 | } | |
2940 | ||
2941 | static int service_start(Unit *u) { | |
2942 | Service *s = ASSERT_PTR(SERVICE(u)); | |
2943 | int r; | |
2944 | ||
2945 | /* We cannot fulfill this request right now, try again later | |
2946 | * please! */ | |
2947 | if (IN_SET(s->state, | |
2948 | SERVICE_STOP, SERVICE_STOP_WATCHDOG, SERVICE_STOP_SIGTERM, SERVICE_STOP_SIGKILL, SERVICE_STOP_POST, | |
2949 | SERVICE_FINAL_WATCHDOG, SERVICE_FINAL_SIGTERM, SERVICE_FINAL_SIGKILL, SERVICE_CLEANING)) | |
2950 | return -EAGAIN; | |
2951 | ||
2952 | /* Already on it! */ | |
2953 | if (IN_SET(s->state, SERVICE_CONDITION, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST)) | |
2954 | return 0; | |
2955 | ||
2956 | if (s->state == SERVICE_AUTO_RESTART) { | |
2957 | /* As mentioned in unit_start(), we allow manual starts to act as "hurry up" signals | |
2958 | * for auto restart. We need to re-enqueue the job though, as the job type has changed | |
2959 | * (JOB_RESTART_DEPENDENCIES). */ | |
2960 | ||
2961 | service_enter_restart(s, /* shortcut = */ true); | |
2962 | return -EAGAIN; | |
2963 | } | |
2964 | ||
2965 | /* SERVICE_*_BEFORE_AUTO_RESTART are not to be expected here, as those are intermediate states | |
2966 | * that should never be seen outside of service_enter_dead(). */ | |
2967 | assert(IN_SET(s->state, SERVICE_DEAD, SERVICE_FAILED, SERVICE_DEAD_RESOURCES_PINNED, SERVICE_AUTO_RESTART_QUEUED)); | |
2968 | ||
2969 | r = unit_acquire_invocation_id(u); | |
2970 | if (r < 0) | |
2971 | return r; | |
2972 | ||
2973 | s->result = SERVICE_SUCCESS; | |
2974 | s->reload_result = SERVICE_SUCCESS; | |
2975 | s->main_pid_known = false; | |
2976 | s->main_pid_alien = false; | |
2977 | s->forbid_restart = false; | |
2978 | ||
2979 | /* This is not an automatic restart? Flush the restart counter then. */ | |
2980 | if (s->state != SERVICE_AUTO_RESTART_QUEUED) | |
2981 | s->n_restarts = 0; | |
2982 | ||
2983 | s->status_text = mfree(s->status_text); | |
2984 | s->status_errno = 0; | |
2985 | s->status_bus_error = mfree(s->status_bus_error); | |
2986 | s->status_varlink_error = mfree(s->status_varlink_error); | |
2987 | ||
2988 | s->notify_access_override = _NOTIFY_ACCESS_INVALID; | |
2989 | s->notify_state = NOTIFY_UNKNOWN; | |
2990 | ||
2991 | s->watchdog_original_usec = s->watchdog_usec; | |
2992 | s->watchdog_override_enable = false; | |
2993 | s->watchdog_override_usec = USEC_INFINITY; | |
2994 | ||
2995 | exec_command_reset_status_list_array(s->exec_command, _SERVICE_EXEC_COMMAND_MAX); | |
2996 | exec_status_reset(&s->main_exec_status); | |
2997 | ||
2998 | CGroupRuntime *crt = unit_get_cgroup_runtime(u); | |
2999 | if (crt) | |
3000 | crt->reset_accounting = true; | |
3001 | ||
3002 | service_enter_condition(s); | |
3003 | return 1; | |
3004 | } | |
3005 | ||
3006 | static void service_live_mount_finish(Service *s, ServiceResult f, const char *error) { | |
3007 | assert(s); | |
3008 | assert(error); | |
3009 | ||
3010 | s->live_mount_result = f; | |
3011 | ||
3012 | if (!s->mount_request) | |
3013 | return; | |
3014 | ||
3015 | if (f == SERVICE_SUCCESS) { | |
3016 | (void) sd_bus_reply_method_return(s->mount_request, NULL); | |
3017 | log_unit_debug(UNIT(s), | |
3018 | "'%s' method succeeded", | |
3019 | strna(sd_bus_message_get_member(s->mount_request))); | |
3020 | } else { | |
3021 | (void) sd_bus_reply_method_errorf(s->mount_request, error, | |
3022 | "method '%s' for unit '%s' failed", | |
3023 | strna(sd_bus_message_get_member(s->mount_request)), | |
3024 | UNIT(s)->id); | |
3025 | log_unit_debug(UNIT(s), | |
3026 | "'%s' method failed: %s", | |
3027 | strna(sd_bus_message_get_member(s->mount_request)), | |
3028 | error); | |
3029 | } | |
3030 | ||
3031 | s->mount_request = sd_bus_message_unref(s->mount_request); | |
3032 | } | |
3033 | ||
3034 | static int service_stop(Unit *u) { | |
3035 | Service *s = ASSERT_PTR(SERVICE(u)); | |
3036 | ||
3037 | /* Don't create restart jobs from manual stops. */ | |
3038 | s->forbid_restart = true; | |
3039 | ||
3040 | switch (s->state) { | |
3041 | ||
3042 | case SERVICE_STOP: | |
3043 | case SERVICE_STOP_SIGTERM: | |
3044 | case SERVICE_STOP_SIGKILL: | |
3045 | case SERVICE_STOP_POST: | |
3046 | case SERVICE_FINAL_WATCHDOG: | |
3047 | case SERVICE_FINAL_SIGTERM: | |
3048 | case SERVICE_FINAL_SIGKILL: | |
3049 | /* Already on it */ | |
3050 | return 0; | |
3051 | ||
3052 | case SERVICE_AUTO_RESTART: | |
3053 | case SERVICE_AUTO_RESTART_QUEUED: | |
3054 | /* Give up on the auto restart */ | |
3055 | service_set_state(s, service_determine_dead_state(s)); | |
3056 | return 0; | |
3057 | ||
3058 | case SERVICE_MOUNTING: | |
3059 | service_live_mount_finish(s, SERVICE_FAILURE_PROTOCOL, BUS_ERROR_UNIT_INACTIVE); | |
3060 | _fallthrough_; | |
3061 | case SERVICE_REFRESH_EXTENSIONS: | |
3062 | service_kill_control_process(s); | |
3063 | _fallthrough_; | |
3064 | case SERVICE_CONDITION: | |
3065 | case SERVICE_START_PRE: | |
3066 | case SERVICE_START: | |
3067 | case SERVICE_START_POST: | |
3068 | case SERVICE_RELOAD: | |
3069 | case SERVICE_RELOAD_SIGNAL: | |
3070 | case SERVICE_RELOAD_NOTIFY: | |
3071 | case SERVICE_STOP_WATCHDOG: | |
3072 | /* If there's already something running we go directly into kill mode. */ | |
3073 | service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_SUCCESS); | |
3074 | return 0; | |
3075 | ||
3076 | case SERVICE_CLEANING: | |
3077 | /* If we are currently cleaning, then abort it, brutally. */ | |
3078 | service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_SUCCESS); | |
3079 | return 0; | |
3080 | ||
3081 | case SERVICE_RUNNING: | |
3082 | case SERVICE_EXITED: | |
3083 | service_enter_stop(s, SERVICE_SUCCESS); | |
3084 | return 1; | |
3085 | ||
3086 | case SERVICE_DEAD_BEFORE_AUTO_RESTART: | |
3087 | case SERVICE_FAILED_BEFORE_AUTO_RESTART: | |
3088 | case SERVICE_DEAD: | |
3089 | case SERVICE_FAILED: | |
3090 | case SERVICE_DEAD_RESOURCES_PINNED: | |
3091 | default: | |
3092 | /* Unknown state, or unit_stop() should already have handled these */ | |
3093 | assert_not_reached(); | |
3094 | } | |
3095 | } | |
3096 | ||
3097 | static int service_reload(Unit *u) { | |
3098 | Service *s = ASSERT_PTR(SERVICE(u)); | |
3099 | ||
3100 | assert(IN_SET(s->state, SERVICE_RUNNING, SERVICE_EXITED)); | |
3101 | ||
3102 | service_enter_reload_mounting(s); | |
3103 | ||
3104 | return 1; | |
3105 | } | |
3106 | ||
3107 | static bool service_can_reload(Unit *u) { | |
3108 | Service *s = ASSERT_PTR(SERVICE(u)); | |
3109 | ||
3110 | return s->exec_command[SERVICE_EXEC_RELOAD] || | |
3111 | s->type == SERVICE_NOTIFY_RELOAD; | |
3112 | } | |
3113 | ||
3114 | static unsigned service_exec_command_index(Unit *u, ServiceExecCommand id, const ExecCommand *current) { | |
3115 | Service *s = SERVICE(u); | |
3116 | unsigned idx = 0; | |
3117 | ||
3118 | assert(s); | |
3119 | assert(id >= 0); | |
3120 | assert(id < _SERVICE_EXEC_COMMAND_MAX); | |
3121 | ||
3122 | const ExecCommand *first = s->exec_command[id]; | |
3123 | ||
3124 | /* Figure out where we are in the list by walking back to the beginning */ | |
3125 | for (const ExecCommand *c = current; c != first; c = c->command_prev) | |
3126 | idx++; | |
3127 | ||
3128 | return idx; | |
3129 | } | |
3130 | ||
3131 | static int service_serialize_exec_command(Unit *u, FILE *f, const ExecCommand *command) { | |
3132 | Service *s = ASSERT_PTR(SERVICE(u)); | |
3133 | _cleanup_free_ char *args = NULL, *p = NULL; | |
3134 | const char *type, *key; | |
3135 | ServiceExecCommand id; | |
3136 | size_t length = 0; | |
3137 | unsigned idx; | |
3138 | ||
3139 | assert(f); | |
3140 | ||
3141 | if (!command) | |
3142 | return 0; | |
3143 | ||
3144 | if (command == s->control_command) { | |
3145 | type = "control"; | |
3146 | id = s->control_command_id; | |
3147 | } else { | |
3148 | type = "main"; | |
3149 | id = SERVICE_EXEC_START; | |
3150 | } | |
3151 | ||
3152 | idx = service_exec_command_index(u, id, command); | |
3153 | ||
3154 | STRV_FOREACH(arg, command->argv) { | |
3155 | _cleanup_free_ char *e = NULL; | |
3156 | size_t n; | |
3157 | ||
3158 | e = cescape(*arg); | |
3159 | if (!e) | |
3160 | return log_oom(); | |
3161 | ||
3162 | n = strlen(e); | |
3163 | if (!GREEDY_REALLOC(args, length + 2 + n + 2)) | |
3164 | return log_oom(); | |
3165 | ||
3166 | if (length > 0) | |
3167 | args[length++] = ' '; | |
3168 | ||
3169 | args[length++] = '"'; | |
3170 | memcpy(args + length, e, n); | |
3171 | length += n; | |
3172 | args[length++] = '"'; | |
3173 | } | |
3174 | ||
3175 | if (!GREEDY_REALLOC(args, length + 1)) | |
3176 | return log_oom(); | |
3177 | ||
3178 | args[length++] = 0; | |
3179 | ||
3180 | p = cescape(command->path); | |
3181 | if (!p) | |
3182 | return log_oom(); | |
3183 | ||
3184 | key = strjoina(type, "-command"); | |
3185 | ||
3186 | /* We use '+1234' instead of '1234' to mark the last command in a sequence. | |
3187 | * This is used in service_deserialize_exec_command(). */ | |
3188 | (void) serialize_item_format( | |
3189 | f, key, | |
3190 | "%s %s%u %s %s", | |
3191 | service_exec_command_to_string(id), | |
3192 | command->command_next ? "" : "+", | |
3193 | idx, | |
3194 | p, args); | |
3195 | ||
3196 | return 0; | |
3197 | } | |
3198 | ||
3199 | static int service_serialize(Unit *u, FILE *f, FDSet *fds) { | |
3200 | Service *s = ASSERT_PTR(SERVICE(u)); | |
3201 | int r; | |
3202 | ||
3203 | assert(f); | |
3204 | assert(fds); | |
3205 | ||
3206 | (void) serialize_item(f, "state", service_state_to_string(s->state)); | |
3207 | (void) serialize_item(f, "result", service_result_to_string(s->result)); | |
3208 | (void) serialize_item(f, "reload-result", service_result_to_string(s->reload_result)); | |
3209 | (void) serialize_item(f, "live-mount-result", service_result_to_string(s->live_mount_result)); | |
3210 | ||
3211 | (void) serialize_pidref(f, fds, "control-pid", &s->control_pid); | |
3212 | if (s->main_pid_known) | |
3213 | (void) serialize_pidref(f, fds, "main-pid", &s->main_pid); | |
3214 | ||
3215 | (void) serialize_bool(f, "main-pid-known", s->main_pid_known); | |
3216 | (void) serialize_bool(f, "bus-name-good", s->bus_name_good); | |
3217 | ||
3218 | (void) serialize_item_format(f, "n-restarts", "%u", s->n_restarts); | |
3219 | (void) serialize_bool(f, "forbid-restart", s->forbid_restart); | |
3220 | ||
3221 | service_serialize_exec_command(u, f, s->control_command); | |
3222 | service_serialize_exec_command(u, f, s->main_command); | |
3223 | ||
3224 | r = serialize_fd(f, fds, "stdin-fd", s->stdin_fd); | |
3225 | if (r < 0) | |
3226 | return r; | |
3227 | r = serialize_fd(f, fds, "stdout-fd", s->stdout_fd); | |
3228 | if (r < 0) | |
3229 | return r; | |
3230 | r = serialize_fd(f, fds, "stderr-fd", s->stderr_fd); | |
3231 | if (r < 0) | |
3232 | return r; | |
3233 | ||
3234 | if (s->exec_fd_event_source) { | |
3235 | r = serialize_fd(f, fds, "exec-fd", sd_event_source_get_io_fd(s->exec_fd_event_source)); | |
3236 | if (r < 0) | |
3237 | return r; | |
3238 | ||
3239 | (void) serialize_bool(f, "exec-fd-hot", s->exec_fd_hot); | |
3240 | } | |
3241 | ||
3242 | if (UNIT_ISSET(s->accept_socket)) { | |
3243 | r = serialize_item(f, "accept-socket", UNIT_DEREF(s->accept_socket)->id); | |
3244 | if (r < 0) | |
3245 | return r; | |
3246 | } | |
3247 | ||
3248 | r = serialize_fd(f, fds, "socket-fd", s->socket_fd); | |
3249 | if (r < 0) | |
3250 | return r; | |
3251 | ||
3252 | LIST_FOREACH(fd_store, fs, s->fd_store) { | |
3253 | _cleanup_free_ char *c = NULL; | |
3254 | int copy; | |
3255 | ||
3256 | copy = fdset_put_dup(fds, fs->fd); | |
3257 | if (copy < 0) | |
3258 | return log_error_errno(copy, "Failed to copy file descriptor for serialization: %m"); | |
3259 | ||
3260 | c = cescape(fs->fdname); | |
3261 | if (!c) | |
3262 | return log_oom(); | |
3263 | ||
3264 | (void) serialize_item_format(f, "fd-store-fd", "%i \"%s\" %s", copy, c, one_zero(fs->do_poll)); | |
3265 | } | |
3266 | ||
3267 | FOREACH_ARRAY(i, s->extra_fds, s->n_extra_fds) { | |
3268 | _cleanup_free_ char *c = NULL; | |
3269 | int copy; | |
3270 | ||
3271 | copy = fdset_put_dup(fds, i->fd); | |
3272 | if (copy < 0) | |
3273 | return log_error_errno(copy, "Failed to copy file descriptor for serialization: %m"); | |
3274 | ||
3275 | c = cescape(i->fdname); | |
3276 | if (!c) | |
3277 | return log_oom(); | |
3278 | ||
3279 | (void) serialize_item_format(f, "extra-fd", "%i \"%s\"", copy, c); | |
3280 | } | |
3281 | ||
3282 | if (s->main_exec_status.pid > 0) { | |
3283 | (void) serialize_item_format(f, "main-exec-status-pid", PID_FMT, s->main_exec_status.pid); | |
3284 | (void) serialize_dual_timestamp(f, "main-exec-status-start", &s->main_exec_status.start_timestamp); | |
3285 | (void) serialize_dual_timestamp(f, "main-exec-status-exit", &s->main_exec_status.exit_timestamp); | |
3286 | (void) serialize_dual_timestamp(f, "main-exec-status-handoff", &s->main_exec_status.handoff_timestamp); | |
3287 | ||
3288 | if (dual_timestamp_is_set(&s->main_exec_status.exit_timestamp)) { | |
3289 | (void) serialize_item_format(f, "main-exec-status-code", "%i", s->main_exec_status.code); | |
3290 | (void) serialize_item_format(f, "main-exec-status-status", "%i", s->main_exec_status.status); | |
3291 | } | |
3292 | } | |
3293 | ||
3294 | if (s->notify_access_override >= 0) | |
3295 | (void) serialize_item(f, "notify-access-override", notify_access_to_string(s->notify_access_override)); | |
3296 | ||
3297 | r = serialize_item_escaped(f, "status-text", s->status_text); | |
3298 | if (r < 0) | |
3299 | return r; | |
3300 | ||
3301 | (void) serialize_item_format(f, "status-errno", "%d", s->status_errno); | |
3302 | (void) serialize_item(f, "status-bus-error", s->status_bus_error); | |
3303 | (void) serialize_item(f, "status-varlink-error", s->status_varlink_error); | |
3304 | ||
3305 | (void) serialize_dual_timestamp(f, "watchdog-timestamp", &s->watchdog_timestamp); | |
3306 | ||
3307 | (void) serialize_usec(f, "watchdog-original-usec", s->watchdog_original_usec); | |
3308 | if (s->watchdog_override_enable) | |
3309 | (void) serialize_usec(f, "watchdog-override-usec", s->watchdog_override_usec); | |
3310 | ||
3311 | (void) serialize_usec(f, "reload-begin-usec", s->reload_begin_usec); | |
3312 | ||
3313 | return 0; | |
3314 | } | |
3315 | ||
3316 | int service_deserialize_exec_command( | |
3317 | Unit *u, | |
3318 | const char *key, | |
3319 | const char *value) { | |
3320 | ||
3321 | Service *s = ASSERT_PTR(SERVICE(u)); | |
3322 | ExecCommand *command = NULL; | |
3323 | ServiceExecCommand id = _SERVICE_EXEC_COMMAND_INVALID; | |
3324 | _cleanup_free_ char *path = NULL; | |
3325 | _cleanup_strv_free_ char **argv = NULL; | |
3326 | unsigned idx = 0, i; | |
3327 | bool control, found = false, last = false; | |
3328 | int r; | |
3329 | ||
3330 | enum { | |
3331 | STATE_EXEC_COMMAND_TYPE, | |
3332 | STATE_EXEC_COMMAND_INDEX, | |
3333 | STATE_EXEC_COMMAND_PATH, | |
3334 | STATE_EXEC_COMMAND_ARGS, | |
3335 | _STATE_EXEC_COMMAND_MAX, | |
3336 | _STATE_EXEC_COMMAND_INVALID = -EINVAL, | |
3337 | } state; | |
3338 | ||
3339 | assert(key); | |
3340 | assert(value); | |
3341 | ||
3342 | control = streq(key, "control-command"); | |
3343 | ||
3344 | state = STATE_EXEC_COMMAND_TYPE; | |
3345 | ||
3346 | for (;;) { | |
3347 | _cleanup_free_ char *arg = NULL; | |
3348 | ||
3349 | r = extract_first_word(&value, &arg, NULL, EXTRACT_CUNESCAPE | EXTRACT_UNQUOTE); | |
3350 | if (r < 0) | |
3351 | return r; | |
3352 | if (r == 0) | |
3353 | break; | |
3354 | ||
3355 | switch (state) { | |
3356 | ||
3357 | case STATE_EXEC_COMMAND_TYPE: | |
3358 | id = service_exec_command_from_string(arg); | |
3359 | if (id < 0) | |
3360 | return id; | |
3361 | ||
3362 | state = STATE_EXEC_COMMAND_INDEX; | |
3363 | break; | |
3364 | ||
3365 | case STATE_EXEC_COMMAND_INDEX: | |
3366 | /* ExecCommand index 1234 is serialized as either '1234' or '+1234'. The second form | |
3367 | * is used to mark the last command in a sequence. We warn if the deserialized command | |
3368 | * doesn't match what we have loaded from the unit, but we don't need to warn if | |
3369 | * that is the last command. */ | |
3370 | ||
3371 | r = safe_atou(arg, &idx); | |
3372 | if (r < 0) | |
3373 | return r; | |
3374 | last = arg[0] == '+'; | |
3375 | ||
3376 | state = STATE_EXEC_COMMAND_PATH; | |
3377 | break; | |
3378 | ||
3379 | case STATE_EXEC_COMMAND_PATH: | |
3380 | path = TAKE_PTR(arg); | |
3381 | state = STATE_EXEC_COMMAND_ARGS; | |
3382 | break; | |
3383 | ||
3384 | case STATE_EXEC_COMMAND_ARGS: | |
3385 | r = strv_extend(&argv, arg); | |
3386 | if (r < 0) | |
3387 | return r; | |
3388 | break; | |
3389 | ||
3390 | default: | |
3391 | assert_not_reached(); | |
3392 | } | |
3393 | } | |
3394 | ||
3395 | if (state != STATE_EXEC_COMMAND_ARGS) | |
3396 | return -EINVAL; | |
3397 | if (strv_isempty(argv)) | |
3398 | return -EINVAL; /* At least argv[0] must be always present. */ | |
3399 | ||
3400 | /* Let's check whether exec command on given offset matches data that we just deserialized */ | |
3401 | for (command = s->exec_command[id], i = 0; command; command = command->command_next, i++) { | |
3402 | if (i != idx) | |
3403 | continue; | |
3404 | ||
3405 | found = strv_equal(argv, command->argv) && streq(command->path, path); | |
3406 | break; | |
3407 | } | |
3408 | ||
3409 | if (!found) { | |
3410 | /* Command at the index we serialized is different, let's look for command that exactly | |
3411 | * matches but is on different index. If there is no such command we will not resume execution. */ | |
3412 | for (command = s->exec_command[id]; command; command = command->command_next) | |
3413 | if (strv_equal(command->argv, argv) && streq(command->path, path)) | |
3414 | break; | |
3415 | } | |
3416 | ||
3417 | if (command && control) { | |
3418 | s->control_command = command; | |
3419 | s->control_command_id = id; | |
3420 | } else if (command) | |
3421 | s->main_command = command; | |
3422 | else if (last) | |
3423 | log_unit_debug(u, "Current command vanished from the unit file."); | |
3424 | else | |
3425 | log_unit_warning(u, "Current command vanished from the unit file, execution of the command list won't be resumed."); | |
3426 | ||
3427 | return 0; | |
3428 | } | |
3429 | ||
3430 | static int service_deserialize_item(Unit *u, const char *key, const char *value, FDSet *fds) { | |
3431 | Service *s = ASSERT_PTR(SERVICE(u)); | |
3432 | int r; | |
3433 | ||
3434 | assert(key); | |
3435 | assert(value); | |
3436 | assert(fds); | |
3437 | ||
3438 | if (streq(key, "state")) { | |
3439 | ServiceState state; | |
3440 | ||
3441 | state = service_state_from_string(value); | |
3442 | if (state < 0) | |
3443 | log_unit_debug_errno(u, state, "Failed to parse state value: %s", value); | |
3444 | else | |
3445 | s->deserialized_state = state; | |
3446 | } else if (streq(key, "result")) { | |
3447 | ServiceResult f; | |
3448 | ||
3449 | f = service_result_from_string(value); | |
3450 | if (f < 0) | |
3451 | log_unit_debug_errno(u, f, "Failed to parse result value: %s", value); | |
3452 | else if (f != SERVICE_SUCCESS) | |
3453 | s->result = f; | |
3454 | ||
3455 | } else if (streq(key, "reload-result")) { | |
3456 | ServiceResult f; | |
3457 | ||
3458 | f = service_result_from_string(value); | |
3459 | if (f < 0) | |
3460 | log_unit_debug_errno(u, f, "Failed to parse reload result value: %s", value); | |
3461 | else if (f != SERVICE_SUCCESS) | |
3462 | s->reload_result = f; | |
3463 | ||
3464 | } else if (streq(key, "live-mount-result")) { | |
3465 | ServiceResult f; | |
3466 | ||
3467 | f = service_result_from_string(value); | |
3468 | if (f < 0) | |
3469 | log_unit_debug_errno(u, f, "Failed to parse live mount result value: %s", value); | |
3470 | else if (f != SERVICE_SUCCESS) | |
3471 | s->live_mount_result = f; | |
3472 | ||
3473 | } else if (streq(key, "control-pid")) { | |
3474 | ||
3475 | if (!pidref_is_set(&s->control_pid)) | |
3476 | (void) deserialize_pidref(fds, value, &s->control_pid); | |
3477 | ||
3478 | } else if (streq(key, "main-pid")) { | |
3479 | PidRef pidref; | |
3480 | ||
3481 | if (!pidref_is_set(&s->main_pid) && deserialize_pidref(fds, value, &pidref) >= 0) | |
3482 | (void) service_set_main_pidref(s, pidref, /* start_timestamp = */ NULL); | |
3483 | ||
3484 | } else if (streq(key, "main-pid-known")) { | |
3485 | r = parse_boolean(value); | |
3486 | if (r < 0) | |
3487 | log_unit_debug_errno(u, r, "Failed to parse main-pid-known value: %s", value); | |
3488 | else | |
3489 | s->main_pid_known = r; | |
3490 | } else if (streq(key, "bus-name-good")) { | |
3491 | r = parse_boolean(value); | |
3492 | if (r < 0) | |
3493 | log_unit_debug_errno(u, r, "Failed to parse bus-name-good value: %s", value); | |
3494 | else | |
3495 | s->bus_name_good = r; | |
3496 | } else if (streq(key, "accept-socket")) { | |
3497 | Unit *socket; | |
3498 | ||
3499 | if (unit_name_to_type(value) != UNIT_SOCKET) { | |
3500 | log_unit_debug(u, "Deserialized accept-socket is not a socket unit, ignoring: %s", value); | |
3501 | return 0; | |
3502 | } | |
3503 | ||
3504 | r = manager_load_unit(u->manager, value, NULL, NULL, &socket); | |
3505 | if (r < 0) | |
3506 | log_unit_debug_errno(u, r, "Failed to load accept-socket unit '%s': %m", value); | |
3507 | else { | |
3508 | unit_ref_set(&s->accept_socket, u, socket); | |
3509 | ASSERT_PTR(SOCKET(socket))->n_connections++; | |
3510 | } | |
3511 | ||
3512 | } else if (streq(key, "socket-fd")) { | |
3513 | asynchronous_close(s->socket_fd); | |
3514 | s->socket_fd = deserialize_fd(fds, value); | |
3515 | ||
3516 | } else if (streq(key, "fd-store-fd")) { | |
3517 | _cleanup_free_ char *fdv = NULL, *fdn = NULL, *fdp = NULL; | |
3518 | _cleanup_close_ int fd = -EBADF; | |
3519 | int do_poll; | |
3520 | ||
3521 | r = extract_many_words(&value, " ", EXTRACT_CUNESCAPE|EXTRACT_UNQUOTE, &fdv, &fdn, &fdp); | |
3522 | if (r < 2 || r > 3) { | |
3523 | log_unit_debug(u, "Failed to deserialize fd-store-fd, ignoring: %s", value); | |
3524 | return 0; | |
3525 | } | |
3526 | ||
3527 | fd = deserialize_fd(fds, fdv); | |
3528 | if (fd < 0) | |
3529 | return 0; | |
3530 | ||
3531 | do_poll = r == 3 ? parse_boolean(fdp) : true; | |
3532 | if (do_poll < 0) { | |
3533 | log_unit_debug_errno(u, do_poll, | |
3534 | "Failed to deserialize fd-store-fd do_poll, ignoring: %s", fdp); | |
3535 | return 0; | |
3536 | } | |
3537 | ||
3538 | r = service_add_fd_store(s, TAKE_FD(fd), fdn, do_poll); | |
3539 | if (r < 0) { | |
3540 | log_unit_debug_errno(u, r, | |
3541 | "Failed to store deserialized fd '%s', ignoring: %m", fdn); | |
3542 | return 0; | |
3543 | } | |
3544 | } else if (streq(key, "extra-fd")) { | |
3545 | _cleanup_free_ char *fdv = NULL, *fdn = NULL; | |
3546 | _cleanup_close_ int fd = -EBADF; | |
3547 | ||
3548 | r = extract_many_words(&value, " ", EXTRACT_CUNESCAPE|EXTRACT_UNQUOTE, &fdv, &fdn); | |
3549 | if (r != 2) { | |
3550 | log_unit_debug(u, "Failed to deserialize extra-fd, ignoring: %s", value); | |
3551 | return 0; | |
3552 | } | |
3553 | ||
3554 | fd = deserialize_fd(fds, fdv); | |
3555 | if (fd < 0) | |
3556 | return 0; | |
3557 | ||
3558 | if (!GREEDY_REALLOC(s->extra_fds, s->n_extra_fds + 1)) { | |
3559 | log_oom_debug(); | |
3560 | return 0; | |
3561 | } | |
3562 | ||
3563 | s->extra_fds[s->n_extra_fds++] = (ServiceExtraFD) { | |
3564 | .fd = TAKE_FD(fd), | |
3565 | .fdname = TAKE_PTR(fdn), | |
3566 | }; | |
3567 | } else if (streq(key, "main-exec-status-pid")) { | |
3568 | pid_t pid; | |
3569 | ||
3570 | if (parse_pid(value, &pid) < 0) | |
3571 | log_unit_debug(u, "Failed to parse main-exec-status-pid value: %s", value); | |
3572 | else | |
3573 | s->main_exec_status.pid = pid; | |
3574 | } else if (streq(key, "main-exec-status-code")) { | |
3575 | int i; | |
3576 | ||
3577 | if (safe_atoi(value, &i) < 0) | |
3578 | log_unit_debug(u, "Failed to parse main-exec-status-code value: %s", value); | |
3579 | else | |
3580 | s->main_exec_status.code = i; | |
3581 | } else if (streq(key, "main-exec-status-status")) { | |
3582 | int i; | |
3583 | ||
3584 | if (safe_atoi(value, &i) < 0) | |
3585 | log_unit_debug(u, "Failed to parse main-exec-status-status value: %s", value); | |
3586 | else | |
3587 | s->main_exec_status.status = i; | |
3588 | } else if (streq(key, "main-exec-status-start")) | |
3589 | (void) deserialize_dual_timestamp(value, &s->main_exec_status.start_timestamp); | |
3590 | else if (streq(key, "main-exec-status-exit")) | |
3591 | (void) deserialize_dual_timestamp(value, &s->main_exec_status.exit_timestamp); | |
3592 | else if (streq(key, "main-exec-status-handoff")) | |
3593 | (void) deserialize_dual_timestamp(value, &s->main_exec_status.handoff_timestamp); | |
3594 | else if (STR_IN_SET(key, "main-command", "control-command")) { | |
3595 | r = service_deserialize_exec_command(u, key, value); | |
3596 | if (r < 0) | |
3597 | log_unit_debug_errno(u, r, "Failed to parse serialized command \"%s\": %m", value); | |
3598 | } else if (streq(key, "notify-access-override")) { | |
3599 | NotifyAccess notify_access; | |
3600 | ||
3601 | notify_access = notify_access_from_string(value); | |
3602 | if (notify_access < 0) | |
3603 | log_unit_debug(u, "Failed to parse notify-access-override value: %s", value); | |
3604 | else | |
3605 | s->notify_access_override = notify_access; | |
3606 | } else if (streq(key, "n-restarts")) { | |
3607 | r = safe_atou(value, &s->n_restarts); | |
3608 | if (r < 0) | |
3609 | log_unit_debug_errno(u, r, "Failed to parse serialized restart counter '%s': %m", value); | |
3610 | ||
3611 | } else if (streq(key, "forbid-restart")) { | |
3612 | r = parse_boolean(value); | |
3613 | if (r < 0) | |
3614 | log_unit_debug_errno(u, r, "Failed to parse forbid-restart value: %s", value); | |
3615 | else | |
3616 | s->forbid_restart = r; | |
3617 | } else if (streq(key, "stdin-fd")) { | |
3618 | ||
3619 | asynchronous_close(s->stdin_fd); | |
3620 | s->stdin_fd = deserialize_fd(fds, value); | |
3621 | if (s->stdin_fd >= 0) | |
3622 | s->exec_context.stdio_as_fds = true; | |
3623 | ||
3624 | } else if (streq(key, "stdout-fd")) { | |
3625 | ||
3626 | asynchronous_close(s->stdout_fd); | |
3627 | s->stdout_fd = deserialize_fd(fds, value); | |
3628 | if (s->stdout_fd >= 0) | |
3629 | s->exec_context.stdio_as_fds = true; | |
3630 | ||
3631 | } else if (streq(key, "stderr-fd")) { | |
3632 | ||
3633 | asynchronous_close(s->stderr_fd); | |
3634 | s->stderr_fd = deserialize_fd(fds, value); | |
3635 | if (s->stderr_fd >= 0) | |
3636 | s->exec_context.stdio_as_fds = true; | |
3637 | ||
3638 | } else if (streq(key, "exec-fd")) { | |
3639 | _cleanup_close_ int fd = -EBADF; | |
3640 | ||
3641 | fd = deserialize_fd(fds, value); | |
3642 | if (fd >= 0) { | |
3643 | s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source); | |
3644 | ||
3645 | if (service_allocate_exec_fd_event_source(s, fd, &s->exec_fd_event_source) >= 0) | |
3646 | TAKE_FD(fd); | |
3647 | } | |
3648 | ||
3649 | } else if (streq(key, "status-text")) { | |
3650 | char *t; | |
3651 | ssize_t l; | |
3652 | ||
3653 | l = cunescape(value, 0, &t); | |
3654 | if (l < 0) | |
3655 | log_unit_debug_errno(u, l, "Failed to unescape status text '%s': %m", value); | |
3656 | else | |
3657 | free_and_replace(s->status_text, t); | |
3658 | ||
3659 | } else if (streq(key, "status-errno")) { | |
3660 | int i; | |
3661 | ||
3662 | if (safe_atoi(value, &i) < 0) | |
3663 | log_unit_debug(u, "Failed to parse status-errno value: %s", value); | |
3664 | else | |
3665 | s->status_errno = i; | |
3666 | ||
3667 | } else if (streq(key, "status-bus-error")) { | |
3668 | if (free_and_strdup(&s->status_bus_error, value) < 0) | |
3669 | log_oom_debug(); | |
3670 | ||
3671 | } else if (streq(key, "status-varlink-error")) { | |
3672 | if (free_and_strdup(&s->status_varlink_error, value) < 0) | |
3673 | log_oom_debug(); | |
3674 | ||
3675 | } else if (streq(key, "watchdog-timestamp")) | |
3676 | (void) deserialize_dual_timestamp(value, &s->watchdog_timestamp); | |
3677 | else if (streq(key, "watchdog-original-usec")) | |
3678 | (void) deserialize_usec(value, &s->watchdog_original_usec); | |
3679 | else if (streq(key, "watchdog-override-usec")) { | |
3680 | if (deserialize_usec(value, &s->watchdog_override_usec) >= 0) | |
3681 | s->watchdog_override_enable = true; | |
3682 | ||
3683 | } else if (streq(key, "reload-begin-usec")) | |
3684 | (void) deserialize_usec(value, &s->reload_begin_usec); | |
3685 | else | |
3686 | log_unit_debug(u, "Unknown serialization key: %s", key); | |
3687 | ||
3688 | return 0; | |
3689 | } | |
3690 | ||
3691 | static UnitActiveState service_active_state(Unit *u) { | |
3692 | Service *s = ASSERT_PTR(SERVICE(u)); | |
3693 | const UnitActiveState *table; | |
3694 | ||
3695 | table = s->type == SERVICE_IDLE ? state_translation_table_idle : state_translation_table; | |
3696 | ||
3697 | return table[s->state]; | |
3698 | } | |
3699 | ||
3700 | static const char *service_sub_state_to_string(Unit *u) { | |
3701 | assert(u); | |
3702 | ||
3703 | return service_state_to_string(SERVICE(u)->state); | |
3704 | } | |
3705 | ||
3706 | static bool service_may_gc(Unit *u) { | |
3707 | Service *s = ASSERT_PTR(SERVICE(u)); | |
3708 | ||
3709 | /* Never clean up services that still have a process around, even if the service is formally dead. Note that | |
3710 | * unit_may_gc() already checked our cgroup for us, we just check our two additional PIDs, too, in case they | |
3711 | * have moved outside of the cgroup. */ | |
3712 | ||
3713 | if (main_pid_good(s) > 0 || | |
3714 | control_pid_good(s) > 0) | |
3715 | return false; | |
3716 | ||
3717 | /* Only allow collection of actually dead services, i.e. not those that are in the transitionary | |
3718 | * SERVICE_DEAD_BEFORE_AUTO_RESTART/SERVICE_FAILED_BEFORE_AUTO_RESTART states. */ | |
3719 | if (!IN_SET(s->state, SERVICE_DEAD, SERVICE_FAILED, SERVICE_DEAD_RESOURCES_PINNED)) | |
3720 | return false; | |
3721 | ||
3722 | return true; | |
3723 | } | |
3724 | ||
3725 | static int service_retry_pid_file(Service *s) { | |
3726 | int r; | |
3727 | ||
3728 | assert(s); | |
3729 | assert(s->pid_file); | |
3730 | assert(IN_SET(s->state, SERVICE_START, SERVICE_START_POST)); | |
3731 | ||
3732 | r = service_load_pid_file(s, false); | |
3733 | if (r < 0) | |
3734 | return r; | |
3735 | ||
3736 | service_unwatch_pid_file(s); | |
3737 | ||
3738 | service_enter_running(s, SERVICE_SUCCESS); | |
3739 | return 0; | |
3740 | } | |
3741 | ||
3742 | static int service_watch_pid_file(Service *s) { | |
3743 | int r; | |
3744 | ||
3745 | assert(s); | |
3746 | ||
3747 | log_unit_debug(UNIT(s), "Setting watch for PID file %s", s->pid_file_pathspec->path); | |
3748 | ||
3749 | r = path_spec_watch(s->pid_file_pathspec, service_dispatch_inotify_io); | |
3750 | if (r < 0) { | |
3751 | log_unit_error_errno(UNIT(s), r, "Failed to set a watch for PID file %s: %m", s->pid_file_pathspec->path); | |
3752 | service_unwatch_pid_file(s); | |
3753 | return r; | |
3754 | } | |
3755 | ||
3756 | /* the pidfile might have appeared just before we set the watch */ | |
3757 | log_unit_debug(UNIT(s), "Trying to read PID file %s in case it changed", s->pid_file_pathspec->path); | |
3758 | service_retry_pid_file(s); | |
3759 | ||
3760 | return 0; | |
3761 | } | |
3762 | ||
3763 | static int service_demand_pid_file(Service *s) { | |
3764 | _cleanup_free_ PathSpec *ps = NULL; | |
3765 | ||
3766 | assert(s); | |
3767 | assert(s->pid_file); | |
3768 | assert(!s->pid_file_pathspec); | |
3769 | ||
3770 | ps = new(PathSpec, 1); | |
3771 | if (!ps) | |
3772 | return -ENOMEM; | |
3773 | ||
3774 | *ps = (PathSpec) { | |
3775 | .unit = UNIT(s), | |
3776 | .path = strdup(s->pid_file), | |
3777 | /* PATH_CHANGED would not be enough. There are daemons (sendmail) that keep their PID file | |
3778 | * open all the time. */ | |
3779 | .type = PATH_MODIFIED, | |
3780 | .inotify_fd = -EBADF, | |
3781 | }; | |
3782 | ||
3783 | if (!ps->path) | |
3784 | return -ENOMEM; | |
3785 | ||
3786 | path_simplify(ps->path); | |
3787 | ||
3788 | s->pid_file_pathspec = TAKE_PTR(ps); | |
3789 | ||
3790 | return service_watch_pid_file(s); | |
3791 | } | |
3792 | ||
3793 | static int service_dispatch_inotify_io(sd_event_source *source, int fd, uint32_t events, void *userdata) { | |
3794 | PathSpec *p = ASSERT_PTR(userdata); | |
3795 | Service *s = ASSERT_PTR(SERVICE(p->unit)); | |
3796 | ||
3797 | assert(fd >= 0); | |
3798 | assert(IN_SET(s->state, SERVICE_START, SERVICE_START_POST)); | |
3799 | assert(s->pid_file_pathspec); | |
3800 | assert(path_spec_owns_inotify_fd(s->pid_file_pathspec, fd)); | |
3801 | ||
3802 | log_unit_debug(UNIT(s), "inotify event"); | |
3803 | ||
3804 | if (path_spec_fd_event(p, events) < 0) | |
3805 | goto fail; | |
3806 | ||
3807 | if (service_retry_pid_file(s) == 0) | |
3808 | return 0; | |
3809 | ||
3810 | if (service_watch_pid_file(s) < 0) | |
3811 | goto fail; | |
3812 | ||
3813 | return 0; | |
3814 | ||
3815 | fail: | |
3816 | service_unwatch_pid_file(s); | |
3817 | service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_RESOURCES); | |
3818 | return 0; | |
3819 | } | |
3820 | ||
3821 | static int service_dispatch_exec_io(sd_event_source *source, int fd, uint32_t events, void *userdata) { | |
3822 | Service *s = ASSERT_PTR(SERVICE(userdata)); | |
3823 | ||
3824 | log_unit_debug(UNIT(s), "got exec-fd event"); | |
3825 | ||
3826 | /* If Type=exec is set, we'll consider a service started successfully the instant we invoked execve() | |
3827 | * successfully for it. We implement this through a pipe() towards the child, which the kernel | |
3828 | * automatically closes for us due to O_CLOEXEC on execve() in the child, which then triggers EOF on | |
3829 | * the pipe in the parent. We need to be careful however, as there are other reasons that we might | |
3830 | * cause the child's side of the pipe to be closed (for example, a simple exit()). To deal with that | |
3831 | * we'll ignore EOFs on the pipe unless the child signalled us first that it is about to call the | |
3832 | * execve(). It does so by sending us a simple non-zero byte via the pipe. We also provide the child | |
3833 | * with a way to inform us in case execve() failed: if it sends a zero byte we'll ignore POLLHUP on | |
3834 | * the fd again. */ | |
3835 | ||
3836 | for (;;) { | |
3837 | uint8_t x; | |
3838 | ssize_t n; | |
3839 | ||
3840 | n = read(fd, &x, sizeof(x)); | |
3841 | if (n < 0) { | |
3842 | if (errno == EAGAIN) /* O_NONBLOCK in effect → everything queued has now been processed. */ | |
3843 | return 0; | |
3844 | ||
3845 | return log_unit_error_errno(UNIT(s), errno, "Failed to read from exec_fd: %m"); | |
3846 | } | |
3847 | if (n == 0) { /* EOF → the event we are waiting for in case of Type=exec */ | |
3848 | s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source); | |
3849 | ||
3850 | if (s->exec_fd_hot) { /* Did the child tell us to expect EOF now? */ | |
3851 | log_unit_debug(UNIT(s), "Got EOF on exec-fd"); | |
3852 | ||
3853 | s->exec_fd_hot = false; | |
3854 | ||
3855 | /* Nice! This is what we have been waiting for. Transition to next state. */ | |
3856 | if (s->type == SERVICE_EXEC && s->state == SERVICE_START) | |
3857 | service_enter_start_post(s); | |
3858 | } else | |
3859 | log_unit_debug(UNIT(s), "Got EOF on exec-fd while it was disabled, ignoring."); | |
3860 | ||
3861 | return 0; | |
3862 | } | |
3863 | ||
3864 | /* A byte was read → this turns on/off the exec fd logic */ | |
3865 | assert(n == sizeof(x)); | |
3866 | ||
3867 | s->exec_fd_hot = x; | |
3868 | } | |
3869 | } | |
3870 | ||
3871 | static void service_notify_cgroup_empty_event(Unit *u) { | |
3872 | Service *s = ASSERT_PTR(SERVICE(u)); | |
3873 | ||
3874 | log_unit_debug(u, "Control group is empty."); | |
3875 | ||
3876 | switch (s->state) { | |
3877 | ||
3878 | /* Waiting for SIGCHLD is usually more interesting, because it includes return | |
3879 | * codes/signals. Which is why we ignore the cgroup events for most cases, except when we | |
3880 | * don't know pid which to expect the SIGCHLD for. */ | |
3881 | ||
3882 | case SERVICE_START: | |
3883 | if (IN_SET(s->type, SERVICE_NOTIFY, SERVICE_NOTIFY_RELOAD) && | |
3884 | main_pid_good(s) == 0 && | |
3885 | control_pid_good(s) == 0) { | |
3886 | /* No chance of getting a ready notification anymore */ | |
3887 | service_enter_stop_post(s, SERVICE_FAILURE_PROTOCOL); | |
3888 | break; | |
3889 | } | |
3890 | ||
3891 | if (s->exit_type == SERVICE_EXIT_CGROUP && main_pid_good(s) <= 0) { | |
3892 | service_enter_stop_post(s, SERVICE_SUCCESS); | |
3893 | break; | |
3894 | } | |
3895 | ||
3896 | _fallthrough_; | |
3897 | case SERVICE_START_POST: | |
3898 | if (s->pid_file_pathspec && | |
3899 | main_pid_good(s) == 0 && | |
3900 | control_pid_good(s) == 0) { | |
3901 | ||
3902 | /* Give up hoping for the daemon to write its PID file */ | |
3903 | log_unit_warning(u, "Daemon never wrote its PID file. Failing."); | |
3904 | ||
3905 | service_unwatch_pid_file(s); | |
3906 | if (s->state == SERVICE_START) | |
3907 | service_enter_stop_post(s, SERVICE_FAILURE_PROTOCOL); | |
3908 | else | |
3909 | service_enter_stop(s, SERVICE_FAILURE_PROTOCOL); | |
3910 | } | |
3911 | break; | |
3912 | ||
3913 | case SERVICE_RUNNING: | |
3914 | /* service_enter_running() will figure out what to do */ | |
3915 | service_enter_running(s, SERVICE_SUCCESS); | |
3916 | break; | |
3917 | ||
3918 | case SERVICE_STOP_WATCHDOG: | |
3919 | case SERVICE_STOP_SIGTERM: | |
3920 | case SERVICE_STOP_SIGKILL: | |
3921 | ||
3922 | if (main_pid_good(s) <= 0 && control_pid_good(s) <= 0) | |
3923 | service_enter_stop_post(s, SERVICE_SUCCESS); | |
3924 | ||
3925 | break; | |
3926 | ||
3927 | case SERVICE_STOP_POST: | |
3928 | case SERVICE_FINAL_WATCHDOG: | |
3929 | case SERVICE_FINAL_SIGTERM: | |
3930 | case SERVICE_FINAL_SIGKILL: | |
3931 | if (main_pid_good(s) <= 0 && control_pid_good(s) <= 0) | |
3932 | service_enter_dead(s, SERVICE_SUCCESS, true); | |
3933 | ||
3934 | break; | |
3935 | ||
3936 | /* If the cgroup empty notification comes when the unit is not active, we must have failed to clean | |
3937 | * up the cgroup earlier and should do it now. */ | |
3938 | case SERVICE_AUTO_RESTART: | |
3939 | case SERVICE_AUTO_RESTART_QUEUED: | |
3940 | unit_prune_cgroup(u); | |
3941 | break; | |
3942 | ||
3943 | default: | |
3944 | ; | |
3945 | } | |
3946 | } | |
3947 | ||
3948 | static void service_notify_cgroup_oom_event(Unit *u, bool managed_oom) { | |
3949 | Service *s = ASSERT_PTR(SERVICE(u)); | |
3950 | ||
3951 | if (managed_oom) | |
3952 | log_unit_debug(u, "Process(es) of control group were killed by systemd-oomd."); | |
3953 | else | |
3954 | log_unit_debug(u, "Process of control group was killed by the OOM killer."); | |
3955 | ||
3956 | if (s->oom_policy == OOM_CONTINUE) | |
3957 | return; | |
3958 | ||
3959 | switch (s->state) { | |
3960 | ||
3961 | case SERVICE_CONDITION: | |
3962 | case SERVICE_START_PRE: | |
3963 | case SERVICE_START: | |
3964 | case SERVICE_START_POST: | |
3965 | case SERVICE_STOP: | |
3966 | if (s->oom_policy == OOM_STOP) | |
3967 | service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_OOM_KILL); | |
3968 | else if (s->oom_policy == OOM_KILL) | |
3969 | service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_OOM_KILL); | |
3970 | ||
3971 | break; | |
3972 | ||
3973 | case SERVICE_EXITED: | |
3974 | case SERVICE_RUNNING: | |
3975 | if (s->oom_policy == OOM_STOP) | |
3976 | service_enter_stop(s, SERVICE_FAILURE_OOM_KILL); | |
3977 | else if (s->oom_policy == OOM_KILL) | |
3978 | service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_OOM_KILL); | |
3979 | ||
3980 | break; | |
3981 | ||
3982 | case SERVICE_STOP_WATCHDOG: | |
3983 | case SERVICE_STOP_SIGTERM: | |
3984 | service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_OOM_KILL); | |
3985 | break; | |
3986 | ||
3987 | case SERVICE_STOP_SIGKILL: | |
3988 | case SERVICE_FINAL_SIGKILL: | |
3989 | if (s->result == SERVICE_SUCCESS) | |
3990 | s->result = SERVICE_FAILURE_OOM_KILL; | |
3991 | break; | |
3992 | ||
3993 | case SERVICE_STOP_POST: | |
3994 | case SERVICE_FINAL_SIGTERM: | |
3995 | service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_FAILURE_OOM_KILL); | |
3996 | break; | |
3997 | ||
3998 | default: | |
3999 | ; | |
4000 | } | |
4001 | } | |
4002 | ||
4003 | static void service_sigchld_event(Unit *u, pid_t pid, int code, int status) { | |
4004 | Service *s = ASSERT_PTR(SERVICE(u)); | |
4005 | bool notify_dbus = true; | |
4006 | ServiceResult f; | |
4007 | ExitClean clean_mode; | |
4008 | int r; | |
4009 | ||
4010 | assert(pid >= 0); | |
4011 | ||
4012 | /* Oneshot services and non-SERVICE_EXEC_START commands should not be | |
4013 | * considered daemons as they are typically not long running. */ | |
4014 | if (s->type == SERVICE_ONESHOT || (s->control_pid.pid == pid && s->control_command_id != SERVICE_EXEC_START)) | |
4015 | clean_mode = EXIT_CLEAN_COMMAND; | |
4016 | else | |
4017 | clean_mode = EXIT_CLEAN_DAEMON; | |
4018 | ||
4019 | if (is_clean_exit(code, status, clean_mode, &s->success_status)) | |
4020 | f = SERVICE_SUCCESS; | |
4021 | else if (code == CLD_EXITED) | |
4022 | f = SERVICE_FAILURE_EXIT_CODE; | |
4023 | else if (code == CLD_KILLED) | |
4024 | f = SERVICE_FAILURE_SIGNAL; | |
4025 | else if (code == CLD_DUMPED) | |
4026 | f = SERVICE_FAILURE_CORE_DUMP; | |
4027 | else | |
4028 | assert_not_reached(); | |
4029 | ||
4030 | if (s->main_pid.pid == pid) { | |
4031 | /* Clean up the exec_fd event source. We want to do this here, not later in | |
4032 | * service_set_state(), because service_enter_stop_post() calls service_spawn(). | |
4033 | * The source owns its end of the pipe, so this will close that too. */ | |
4034 | s->exec_fd_event_source = sd_event_source_disable_unref(s->exec_fd_event_source); | |
4035 | ||
4036 | /* Forking services may occasionally move to a new PID. | |
4037 | * As long as they update the PID file before exiting the old | |
4038 | * PID, they're fine. */ | |
4039 | if (service_load_pid_file(s, false) > 0) | |
4040 | return; | |
4041 | ||
4042 | pidref_done(&s->main_pid); | |
4043 | exec_status_exit(&s->main_exec_status, &s->exec_context, pid, code, status); | |
4044 | ||
4045 | if (s->main_command) { | |
4046 | /* If this is not a forking service than the | |
4047 | * main process got started and hence we copy | |
4048 | * the exit status so that it is recorded both | |
4049 | * as main and as control process exit | |
4050 | * status */ | |
4051 | ||
4052 | s->main_command->exec_status = s->main_exec_status; | |
4053 | ||
4054 | if (s->main_command->flags & EXEC_COMMAND_IGNORE_FAILURE) | |
4055 | f = SERVICE_SUCCESS; | |
4056 | } else if (s->exec_command[SERVICE_EXEC_START]) { | |
4057 | ||
4058 | /* If this is a forked process, then we should | |
4059 | * ignore the return value if this was | |
4060 | * configured for the starter process */ | |
4061 | ||
4062 | if (s->exec_command[SERVICE_EXEC_START]->flags & EXEC_COMMAND_IGNORE_FAILURE) | |
4063 | f = SERVICE_SUCCESS; | |
4064 | } | |
4065 | ||
4066 | unit_log_process_exit( | |
4067 | u, | |
4068 | "Main process", | |
4069 | service_exec_command_to_string(SERVICE_EXEC_START), | |
4070 | f == SERVICE_SUCCESS, | |
4071 | code, status); | |
4072 | ||
4073 | if (s->result == SERVICE_SUCCESS) | |
4074 | s->result = f; | |
4075 | ||
4076 | if (s->main_command && | |
4077 | s->main_command->command_next && | |
4078 | s->type == SERVICE_ONESHOT && | |
4079 | f == SERVICE_SUCCESS) { | |
4080 | ||
4081 | /* There is another command to execute, so let's do that. */ | |
4082 | ||
4083 | log_unit_debug(u, "Running next main command for state %s.", service_state_to_string(s->state)); | |
4084 | service_run_next_main(s); | |
4085 | ||
4086 | } else { | |
4087 | s->main_command = NULL; | |
4088 | ||
4089 | /* Services with ExitType=cgroup do not act on main PID exiting, unless the cgroup is | |
4090 | * already empty */ | |
4091 | if (s->exit_type == SERVICE_EXIT_MAIN || cgroup_good(s) <= 0) { | |
4092 | /* The service exited, so the service is officially gone. */ | |
4093 | switch (s->state) { | |
4094 | ||
4095 | case SERVICE_START_POST: | |
4096 | case SERVICE_RELOAD: | |
4097 | case SERVICE_RELOAD_SIGNAL: | |
4098 | case SERVICE_RELOAD_NOTIFY: | |
4099 | case SERVICE_REFRESH_EXTENSIONS: | |
4100 | case SERVICE_MOUNTING: | |
4101 | /* If neither main nor control processes are running then the current | |
4102 | * state can never exit cleanly, hence immediately terminate the | |
4103 | * service. */ | |
4104 | if (control_pid_good(s) <= 0) | |
4105 | service_enter_stop(s, f); | |
4106 | ||
4107 | /* Otherwise need to wait until the operation is done. */ | |
4108 | break; | |
4109 | ||
4110 | case SERVICE_STOP: | |
4111 | /* Need to wait until the operation is done. */ | |
4112 | break; | |
4113 | ||
4114 | case SERVICE_START: | |
4115 | if (s->type == SERVICE_ONESHOT) { | |
4116 | /* This was our main goal, so let's go on */ | |
4117 | if (f == SERVICE_SUCCESS) | |
4118 | service_enter_start_post(s); | |
4119 | else | |
4120 | service_enter_signal(s, SERVICE_STOP_SIGTERM, f); | |
4121 | break; | |
4122 | } else if (IN_SET(s->type, SERVICE_NOTIFY, SERVICE_NOTIFY_RELOAD)) { | |
4123 | /* Only enter running through a notification, so that the | |
4124 | * SERVICE_START state signifies that no ready notification | |
4125 | * has been received */ | |
4126 | if (f != SERVICE_SUCCESS) | |
4127 | service_enter_signal(s, SERVICE_STOP_SIGTERM, f); | |
4128 | else if (!s->remain_after_exit || service_get_notify_access(s) == NOTIFY_MAIN) | |
4129 | /* The service has never been and will never be active */ | |
4130 | service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_PROTOCOL); | |
4131 | break; | |
4132 | } | |
4133 | ||
4134 | _fallthrough_; | |
4135 | case SERVICE_RUNNING: | |
4136 | service_enter_running(s, f); | |
4137 | break; | |
4138 | ||
4139 | case SERVICE_STOP_WATCHDOG: | |
4140 | case SERVICE_STOP_SIGTERM: | |
4141 | case SERVICE_STOP_SIGKILL: | |
4142 | ||
4143 | if (control_pid_good(s) <= 0) | |
4144 | service_enter_stop_post(s, f); | |
4145 | ||
4146 | /* If there is still a control process, wait for that first */ | |
4147 | break; | |
4148 | ||
4149 | case SERVICE_STOP_POST: | |
4150 | ||
4151 | if (control_pid_good(s) <= 0) | |
4152 | service_enter_signal(s, SERVICE_FINAL_SIGTERM, f); | |
4153 | ||
4154 | break; | |
4155 | ||
4156 | case SERVICE_FINAL_WATCHDOG: | |
4157 | case SERVICE_FINAL_SIGTERM: | |
4158 | case SERVICE_FINAL_SIGKILL: | |
4159 | ||
4160 | if (control_pid_good(s) <= 0) | |
4161 | service_enter_dead(s, f, true); | |
4162 | break; | |
4163 | ||
4164 | default: | |
4165 | assert_not_reached(); | |
4166 | } | |
4167 | } else if (s->exit_type == SERVICE_EXIT_CGROUP && s->state == SERVICE_START && | |
4168 | !IN_SET(s->type, SERVICE_NOTIFY, SERVICE_NOTIFY_RELOAD, SERVICE_DBUS)) | |
4169 | /* If a main process exits very quickly, this function might be executed | |
4170 | * before service_dispatch_exec_io(). Since this function disabled IO events | |
4171 | * to monitor the main process above, we need to update the state here too. | |
4172 | * Let's consider the process is successfully launched and exited, but | |
4173 | * only when we're not expecting a readiness notification or dbus name. */ | |
4174 | service_enter_start_post(s); | |
4175 | } | |
4176 | ||
4177 | } else if (s->control_pid.pid == pid) { | |
4178 | const char *kind; | |
4179 | bool success; | |
4180 | ||
4181 | pidref_done(&s->control_pid); | |
4182 | ||
4183 | if (s->control_command) { | |
4184 | exec_status_exit(&s->control_command->exec_status, &s->exec_context, pid, code, status); | |
4185 | ||
4186 | if (s->control_command->flags & EXEC_COMMAND_IGNORE_FAILURE) | |
4187 | f = SERVICE_SUCCESS; | |
4188 | } | |
4189 | ||
4190 | /* ExecCondition= calls that exit with (0, 254] should invoke skip-like behavior instead of failing */ | |
4191 | if (s->state == SERVICE_CONDITION) { | |
4192 | if (f == SERVICE_FAILURE_EXIT_CODE && status < 255) { | |
4193 | UNIT(s)->condition_result = false; | |
4194 | f = SERVICE_SKIP_CONDITION; | |
4195 | success = true; | |
4196 | } else if (f == SERVICE_SUCCESS) { | |
4197 | UNIT(s)->condition_result = true; | |
4198 | success = true; | |
4199 | } else | |
4200 | success = false; | |
4201 | ||
4202 | kind = "Condition check process"; | |
4203 | } else { | |
4204 | kind = "Control process"; | |
4205 | success = f == SERVICE_SUCCESS; | |
4206 | } | |
4207 | ||
4208 | unit_log_process_exit( | |
4209 | u, | |
4210 | kind, | |
4211 | service_exec_command_to_string(s->control_command_id), | |
4212 | success, | |
4213 | code, status); | |
4214 | ||
4215 | if (!IN_SET(s->state, SERVICE_RELOAD, SERVICE_MOUNTING) && s->result == SERVICE_SUCCESS) | |
4216 | s->result = f; | |
4217 | ||
4218 | if (s->control_command && | |
4219 | s->control_command->command_next && | |
4220 | f == SERVICE_SUCCESS) { | |
4221 | ||
4222 | /* There is another command to execute, so let's do that. */ | |
4223 | ||
4224 | log_unit_debug(u, "Running next control command for state %s.", service_state_to_string(s->state)); | |
4225 | service_run_next_control(s); | |
4226 | ||
4227 | } else { | |
4228 | /* No further commands for this step, so let's figure out what to do next */ | |
4229 | ||
4230 | s->control_command = NULL; | |
4231 | s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID; | |
4232 | ||
4233 | log_unit_debug(u, "Got final SIGCHLD for state %s.", service_state_to_string(s->state)); | |
4234 | ||
4235 | switch (s->state) { | |
4236 | ||
4237 | case SERVICE_CONDITION: | |
4238 | if (f == SERVICE_SUCCESS) | |
4239 | service_enter_start_pre(s); | |
4240 | else | |
4241 | service_enter_signal(s, SERVICE_STOP_SIGTERM, f); | |
4242 | break; | |
4243 | ||
4244 | case SERVICE_START_PRE: | |
4245 | if (f == SERVICE_SUCCESS) | |
4246 | service_enter_start(s); | |
4247 | else | |
4248 | service_enter_signal(s, SERVICE_STOP_SIGTERM, f); | |
4249 | break; | |
4250 | ||
4251 | case SERVICE_START: | |
4252 | if (s->type != SERVICE_FORKING) | |
4253 | /* Maybe spurious event due to a reload that changed the type? */ | |
4254 | break; | |
4255 | ||
4256 | if (f != SERVICE_SUCCESS) { | |
4257 | service_enter_signal(s, SERVICE_STOP_SIGTERM, f); | |
4258 | break; | |
4259 | } | |
4260 | ||
4261 | if (s->pid_file) { | |
4262 | bool has_start_post; | |
4263 | ||
4264 | /* Let's try to load the pid file here if we can. | |
4265 | * The PID file might actually be created by a START_POST | |
4266 | * script. In that case don't worry if the loading fails. */ | |
4267 | ||
4268 | has_start_post = s->exec_command[SERVICE_EXEC_START_POST]; | |
4269 | r = service_load_pid_file(s, !has_start_post); | |
4270 | if (!has_start_post && r < 0) { | |
4271 | r = service_demand_pid_file(s); | |
4272 | if (r < 0 || cgroup_good(s) == 0) | |
4273 | service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_PROTOCOL); | |
4274 | break; | |
4275 | } | |
4276 | } else | |
4277 | service_search_main_pid(s); | |
4278 | ||
4279 | service_enter_start_post(s); | |
4280 | break; | |
4281 | ||
4282 | case SERVICE_START_POST: | |
4283 | if (f != SERVICE_SUCCESS) { | |
4284 | service_enter_signal(s, SERVICE_STOP_SIGTERM, f); | |
4285 | break; | |
4286 | } | |
4287 | ||
4288 | if (s->pid_file) { | |
4289 | r = service_load_pid_file(s, true); | |
4290 | if (r < 0) { | |
4291 | r = service_demand_pid_file(s); | |
4292 | if (r < 0 || cgroup_good(s) == 0) | |
4293 | service_enter_stop(s, SERVICE_FAILURE_PROTOCOL); | |
4294 | break; | |
4295 | } | |
4296 | } else | |
4297 | service_search_main_pid(s); | |
4298 | ||
4299 | service_enter_running(s, SERVICE_SUCCESS); | |
4300 | break; | |
4301 | ||
4302 | case SERVICE_RELOAD: | |
4303 | case SERVICE_RELOAD_SIGNAL: | |
4304 | case SERVICE_RELOAD_NOTIFY: | |
4305 | if (f == SERVICE_SUCCESS) | |
4306 | if (service_load_pid_file(s, true) < 0) | |
4307 | service_search_main_pid(s); | |
4308 | ||
4309 | s->reload_result = f; | |
4310 | ||
4311 | /* If the last notification we received from the service process indicates | |
4312 | * we are still reloading, then don't leave reloading state just yet, just | |
4313 | * transition into SERVICE_RELOAD_NOTIFY, to wait for the READY=1 coming, | |
4314 | * too. */ | |
4315 | if (s->notify_state == NOTIFY_RELOADING) | |
4316 | service_set_state(s, SERVICE_RELOAD_NOTIFY); | |
4317 | else | |
4318 | service_enter_running(s, SERVICE_SUCCESS); | |
4319 | break; | |
4320 | ||
4321 | case SERVICE_REFRESH_EXTENSIONS: | |
4322 | /* Remounting extensions asynchronously done, proceed to signal */ | |
4323 | service_enter_reload_signal_exec(s); | |
4324 | break; | |
4325 | ||
4326 | case SERVICE_MOUNTING: | |
4327 | service_live_mount_finish(s, f, SD_BUS_ERROR_FAILED); | |
4328 | ||
4329 | service_enter_running(s, SERVICE_SUCCESS); | |
4330 | break; | |
4331 | ||
4332 | case SERVICE_STOP: | |
4333 | service_enter_signal(s, SERVICE_STOP_SIGTERM, f); | |
4334 | break; | |
4335 | ||
4336 | case SERVICE_STOP_WATCHDOG: | |
4337 | case SERVICE_STOP_SIGTERM: | |
4338 | case SERVICE_STOP_SIGKILL: | |
4339 | if (main_pid_good(s) <= 0) | |
4340 | service_enter_stop_post(s, f); | |
4341 | ||
4342 | /* If there is still a service process around, wait until | |
4343 | * that one quit, too */ | |
4344 | break; | |
4345 | ||
4346 | case SERVICE_STOP_POST: | |
4347 | if (main_pid_good(s) <= 0) | |
4348 | service_enter_signal(s, SERVICE_FINAL_SIGTERM, f); | |
4349 | break; | |
4350 | ||
4351 | case SERVICE_FINAL_WATCHDOG: | |
4352 | case SERVICE_FINAL_SIGTERM: | |
4353 | case SERVICE_FINAL_SIGKILL: | |
4354 | if (main_pid_good(s) <= 0) | |
4355 | service_enter_dead(s, f, true); | |
4356 | break; | |
4357 | ||
4358 | case SERVICE_CLEANING: | |
4359 | ||
4360 | if (s->clean_result == SERVICE_SUCCESS) | |
4361 | s->clean_result = f; | |
4362 | ||
4363 | service_enter_dead(s, SERVICE_SUCCESS, false); | |
4364 | break; | |
4365 | ||
4366 | default: | |
4367 | assert_not_reached(); | |
4368 | } | |
4369 | } | |
4370 | } else /* Neither control nor main PID? If so, don't notify about anything */ | |
4371 | notify_dbus = false; | |
4372 | ||
4373 | /* Notify clients about changed exit status */ | |
4374 | if (notify_dbus) | |
4375 | unit_add_to_dbus_queue(u); | |
4376 | } | |
4377 | ||
4378 | static int service_dispatch_timer(sd_event_source *source, usec_t usec, void *userdata) { | |
4379 | Service *s = ASSERT_PTR(SERVICE(userdata)); | |
4380 | ||
4381 | assert(source == s->timer_event_source); | |
4382 | ||
4383 | switch (s->state) { | |
4384 | ||
4385 | case SERVICE_CONDITION: | |
4386 | case SERVICE_START_PRE: | |
4387 | case SERVICE_START: | |
4388 | case SERVICE_START_POST: | |
4389 | switch (s->timeout_start_failure_mode) { | |
4390 | ||
4391 | case SERVICE_TIMEOUT_TERMINATE: | |
4392 | log_unit_warning(UNIT(s), "%s operation timed out. Terminating.", service_state_to_string(s->state)); | |
4393 | service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_TIMEOUT); | |
4394 | break; | |
4395 | ||
4396 | case SERVICE_TIMEOUT_ABORT: | |
4397 | log_unit_warning(UNIT(s), "%s operation timed out. Aborting.", service_state_to_string(s->state)); | |
4398 | service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_TIMEOUT); | |
4399 | break; | |
4400 | ||
4401 | case SERVICE_TIMEOUT_KILL: | |
4402 | if (s->kill_context.send_sigkill) { | |
4403 | log_unit_warning(UNIT(s), "%s operation timed out. Killing.", service_state_to_string(s->state)); | |
4404 | service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_TIMEOUT); | |
4405 | } else { | |
4406 | log_unit_warning(UNIT(s), "%s operation timed out. Skipping SIGKILL.", service_state_to_string(s->state)); | |
4407 | service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT); | |
4408 | } | |
4409 | break; | |
4410 | ||
4411 | default: | |
4412 | assert_not_reached(); | |
4413 | } | |
4414 | break; | |
4415 | ||
4416 | case SERVICE_RUNNING: | |
4417 | log_unit_warning(UNIT(s), "Service reached runtime time limit. Stopping."); | |
4418 | service_enter_stop(s, SERVICE_FAILURE_TIMEOUT); | |
4419 | break; | |
4420 | ||
4421 | case SERVICE_RELOAD: | |
4422 | case SERVICE_RELOAD_SIGNAL: | |
4423 | case SERVICE_RELOAD_NOTIFY: | |
4424 | case SERVICE_REFRESH_EXTENSIONS: | |
4425 | log_unit_warning(UNIT(s), "Reload operation timed out. Killing reload process."); | |
4426 | service_kill_control_process(s); | |
4427 | s->reload_result = SERVICE_FAILURE_TIMEOUT; | |
4428 | service_enter_running(s, SERVICE_SUCCESS); | |
4429 | break; | |
4430 | ||
4431 | case SERVICE_MOUNTING: | |
4432 | log_unit_warning(UNIT(s), "Mount operation timed out. Killing mount process."); | |
4433 | service_kill_control_process(s); | |
4434 | service_live_mount_finish(s, SERVICE_FAILURE_TIMEOUT, SD_BUS_ERROR_TIMEOUT); | |
4435 | service_enter_running(s, SERVICE_SUCCESS); | |
4436 | break; | |
4437 | ||
4438 | case SERVICE_STOP: | |
4439 | switch (s->timeout_stop_failure_mode) { | |
4440 | ||
4441 | case SERVICE_TIMEOUT_TERMINATE: | |
4442 | log_unit_warning(UNIT(s), "Stopping timed out. Terminating."); | |
4443 | service_enter_signal(s, SERVICE_STOP_SIGTERM, SERVICE_FAILURE_TIMEOUT); | |
4444 | break; | |
4445 | ||
4446 | case SERVICE_TIMEOUT_ABORT: | |
4447 | log_unit_warning(UNIT(s), "Stopping timed out. Aborting."); | |
4448 | service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_TIMEOUT); | |
4449 | break; | |
4450 | ||
4451 | case SERVICE_TIMEOUT_KILL: | |
4452 | if (s->kill_context.send_sigkill) { | |
4453 | log_unit_warning(UNIT(s), "Stopping timed out. Killing."); | |
4454 | service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_TIMEOUT); | |
4455 | } else { | |
4456 | log_unit_warning(UNIT(s), "Stopping timed out. Skipping SIGKILL."); | |
4457 | service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT); | |
4458 | } | |
4459 | break; | |
4460 | ||
4461 | default: | |
4462 | assert_not_reached(); | |
4463 | } | |
4464 | break; | |
4465 | ||
4466 | case SERVICE_STOP_WATCHDOG: | |
4467 | if (s->kill_context.send_sigkill) { | |
4468 | log_unit_warning(UNIT(s), "State 'stop-watchdog' timed out. Killing."); | |
4469 | service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_TIMEOUT); | |
4470 | } else { | |
4471 | log_unit_warning(UNIT(s), "State 'stop-watchdog' timed out. Skipping SIGKILL."); | |
4472 | service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT); | |
4473 | } | |
4474 | break; | |
4475 | ||
4476 | case SERVICE_STOP_SIGTERM: | |
4477 | if (s->timeout_stop_failure_mode == SERVICE_TIMEOUT_ABORT) { | |
4478 | log_unit_warning(UNIT(s), "State 'stop-sigterm' timed out. Aborting."); | |
4479 | service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_TIMEOUT); | |
4480 | } else if (s->kill_context.send_sigkill) { | |
4481 | log_unit_warning(UNIT(s), "State 'stop-sigterm' timed out. Killing."); | |
4482 | service_enter_signal(s, SERVICE_STOP_SIGKILL, SERVICE_FAILURE_TIMEOUT); | |
4483 | } else { | |
4484 | log_unit_warning(UNIT(s), "State 'stop-sigterm' timed out. Skipping SIGKILL."); | |
4485 | service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT); | |
4486 | } | |
4487 | ||
4488 | break; | |
4489 | ||
4490 | case SERVICE_STOP_SIGKILL: | |
4491 | /* Uh, we sent a SIGKILL and it is still not gone? | |
4492 | * Must be something we cannot kill, so let's just be | |
4493 | * weirded out and continue */ | |
4494 | ||
4495 | log_unit_warning(UNIT(s), "Processes still around after SIGKILL. Ignoring."); | |
4496 | service_enter_stop_post(s, SERVICE_FAILURE_TIMEOUT); | |
4497 | break; | |
4498 | ||
4499 | case SERVICE_STOP_POST: | |
4500 | switch (s->timeout_stop_failure_mode) { | |
4501 | ||
4502 | case SERVICE_TIMEOUT_TERMINATE: | |
4503 | log_unit_warning(UNIT(s), "State 'stop-post' timed out. Terminating."); | |
4504 | service_enter_signal(s, SERVICE_FINAL_SIGTERM, SERVICE_FAILURE_TIMEOUT); | |
4505 | break; | |
4506 | ||
4507 | case SERVICE_TIMEOUT_ABORT: | |
4508 | log_unit_warning(UNIT(s), "State 'stop-post' timed out. Aborting."); | |
4509 | service_enter_signal(s, SERVICE_FINAL_WATCHDOG, SERVICE_FAILURE_TIMEOUT); | |
4510 | break; | |
4511 | ||
4512 | case SERVICE_TIMEOUT_KILL: | |
4513 | if (s->kill_context.send_sigkill) { | |
4514 | log_unit_warning(UNIT(s), "State 'stop-post' timed out. Killing."); | |
4515 | service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_FAILURE_TIMEOUT); | |
4516 | } else { | |
4517 | log_unit_warning(UNIT(s), "State 'stop-post' timed out. Skipping SIGKILL. Entering failed mode."); | |
4518 | service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, false); | |
4519 | } | |
4520 | break; | |
4521 | ||
4522 | default: | |
4523 | assert_not_reached(); | |
4524 | } | |
4525 | break; | |
4526 | ||
4527 | case SERVICE_FINAL_WATCHDOG: | |
4528 | if (s->kill_context.send_sigkill) { | |
4529 | log_unit_warning(UNIT(s), "State 'final-watchdog' timed out. Killing."); | |
4530 | service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_FAILURE_TIMEOUT); | |
4531 | } else { | |
4532 | log_unit_warning(UNIT(s), "State 'final-watchdog' timed out. Skipping SIGKILL. Entering failed mode."); | |
4533 | service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, false); | |
4534 | } | |
4535 | break; | |
4536 | ||
4537 | case SERVICE_FINAL_SIGTERM: | |
4538 | if (s->timeout_stop_failure_mode == SERVICE_TIMEOUT_ABORT) { | |
4539 | log_unit_warning(UNIT(s), "State 'final-sigterm' timed out. Aborting."); | |
4540 | service_enter_signal(s, SERVICE_FINAL_WATCHDOG, SERVICE_FAILURE_TIMEOUT); | |
4541 | } else if (s->kill_context.send_sigkill) { | |
4542 | log_unit_warning(UNIT(s), "State 'final-sigterm' timed out. Killing."); | |
4543 | service_enter_signal(s, SERVICE_FINAL_SIGKILL, SERVICE_FAILURE_TIMEOUT); | |
4544 | } else { | |
4545 | log_unit_warning(UNIT(s), "State 'final-sigterm' timed out. Skipping SIGKILL. Entering failed mode."); | |
4546 | service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, false); | |
4547 | } | |
4548 | ||
4549 | break; | |
4550 | ||
4551 | case SERVICE_FINAL_SIGKILL: | |
4552 | log_unit_warning(UNIT(s), "Processes still around after final SIGKILL. Entering failed mode."); | |
4553 | service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, true); | |
4554 | break; | |
4555 | ||
4556 | case SERVICE_AUTO_RESTART: | |
4557 | if (s->restart_usec > 0) | |
4558 | log_unit_debug(UNIT(s), | |
4559 | "Service restart interval %s expired, scheduling restart.", | |
4560 | FORMAT_TIMESPAN(service_restart_usec_next(s), USEC_PER_SEC)); | |
4561 | else | |
4562 | log_unit_debug(UNIT(s), | |
4563 | "Service has no hold-off time (RestartSec=0), scheduling restart."); | |
4564 | ||
4565 | service_enter_restart(s, /* shortcut = */ false); | |
4566 | break; | |
4567 | ||
4568 | case SERVICE_CLEANING: | |
4569 | log_unit_warning(UNIT(s), "Cleaning timed out. killing."); | |
4570 | ||
4571 | if (s->clean_result == SERVICE_SUCCESS) | |
4572 | s->clean_result = SERVICE_FAILURE_TIMEOUT; | |
4573 | ||
4574 | service_enter_signal(s, SERVICE_FINAL_SIGKILL, 0); | |
4575 | break; | |
4576 | ||
4577 | default: | |
4578 | assert_not_reached(); | |
4579 | } | |
4580 | ||
4581 | return 0; | |
4582 | } | |
4583 | ||
4584 | static int service_dispatch_watchdog(sd_event_source *source, usec_t usec, void *userdata) { | |
4585 | Service *s = ASSERT_PTR(SERVICE(userdata)); | |
4586 | usec_t watchdog_usec; | |
4587 | ||
4588 | assert(source == s->watchdog_event_source); | |
4589 | ||
4590 | watchdog_usec = service_get_watchdog_usec(s); | |
4591 | ||
4592 | if (UNIT(s)->manager->service_watchdogs) { | |
4593 | log_unit_error(UNIT(s), "Watchdog timeout (limit %s)!", | |
4594 | FORMAT_TIMESPAN(watchdog_usec, 1)); | |
4595 | ||
4596 | service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_WATCHDOG); | |
4597 | } else | |
4598 | log_unit_warning(UNIT(s), "Watchdog disabled! Ignoring watchdog timeout (limit %s)!", | |
4599 | FORMAT_TIMESPAN(watchdog_usec, 1)); | |
4600 | ||
4601 | return 0; | |
4602 | } | |
4603 | ||
4604 | static void service_force_watchdog(Service *s) { | |
4605 | assert(s); | |
4606 | ||
4607 | if (!UNIT(s)->manager->service_watchdogs) | |
4608 | return; | |
4609 | ||
4610 | log_unit_error(UNIT(s), "Watchdog request (last status: %s)!", | |
4611 | s->status_text ?: "<unset>"); | |
4612 | ||
4613 | service_enter_signal(s, SERVICE_STOP_WATCHDOG, SERVICE_FAILURE_WATCHDOG); | |
4614 | } | |
4615 | ||
4616 | static bool service_notify_message_authorized(Service *s, PidRef *pid) { | |
4617 | assert(s); | |
4618 | assert(pidref_is_set(pid)); | |
4619 | ||
4620 | switch (service_get_notify_access(s)) { | |
4621 | ||
4622 | case NOTIFY_NONE: | |
4623 | /* Warn level only if no notifications are expected */ | |
4624 | log_unit_warning(UNIT(s), "Got notification message from PID "PID_FMT", but reception is disabled", pid->pid); | |
4625 | return false; | |
4626 | ||
4627 | case NOTIFY_ALL: | |
4628 | return true; | |
4629 | ||
4630 | case NOTIFY_MAIN: | |
4631 | if (pidref_equal(pid, &s->main_pid)) | |
4632 | return true; | |
4633 | ||
4634 | if (pidref_is_set(&s->main_pid)) | |
4635 | log_unit_debug(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID "PID_FMT, pid->pid, s->main_pid.pid); | |
4636 | else | |
4637 | log_unit_debug(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID which is currently not known", pid->pid); | |
4638 | ||
4639 | return false; | |
4640 | ||
4641 | case NOTIFY_EXEC: | |
4642 | if (pidref_equal(pid, &s->main_pid) || pidref_equal(pid, &s->control_pid)) | |
4643 | return true; | |
4644 | ||
4645 | if (pidref_is_set(&s->main_pid) && pidref_is_set(&s->control_pid)) | |
4646 | log_unit_debug(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID "PID_FMT" and control PID "PID_FMT, | |
4647 | pid->pid, s->main_pid.pid, s->control_pid.pid); | |
4648 | else if (pidref_is_set(&s->main_pid)) | |
4649 | log_unit_debug(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID "PID_FMT, pid->pid, s->main_pid.pid); | |
4650 | else if (pidref_is_set(&s->control_pid)) | |
4651 | log_unit_debug(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for control PID "PID_FMT, pid->pid, s->control_pid.pid); | |
4652 | else | |
4653 | log_unit_debug(UNIT(s), "Got notification message from PID "PID_FMT", but reception only permitted for main PID and control PID which are currently not known", pid->pid); | |
4654 | ||
4655 | return false; | |
4656 | ||
4657 | default: | |
4658 | assert_not_reached(); | |
4659 | } | |
4660 | } | |
4661 | ||
4662 | static int service_notify_message_parse_new_pid( | |
4663 | Unit *u, | |
4664 | char * const *tags, | |
4665 | FDSet *fds, | |
4666 | PidRef *ret) { | |
4667 | ||
4668 | _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL; | |
4669 | const char *e; | |
4670 | int r; | |
4671 | ||
4672 | assert(u); | |
4673 | assert(ret); | |
4674 | ||
4675 | /* MAINPIDFD=1 always takes precedence */ | |
4676 | if (strv_contains(tags, "MAINPIDFD=1")) { | |
4677 | unsigned n_fds = fdset_size(fds); | |
4678 | if (n_fds != 1) | |
4679 | return log_unit_warning_errno(u, SYNTHETIC_ERRNO(EINVAL), | |
4680 | "Got MAINPIDFD=1 with %s fd, ignoring.", n_fds == 0 ? "no" : "more than one"); | |
4681 | ||
4682 | r = pidref_set_pidfd_consume(&pidref, ASSERT_FD(fdset_steal_first(fds))); | |
4683 | if (r < 0) | |
4684 | return log_unit_warning_errno(u, r, "Failed to create reference to received new main pidfd: %m"); | |
4685 | ||
4686 | goto finish; | |
4687 | } | |
4688 | ||
4689 | e = strv_find_startswith(tags, "MAINPID="); | |
4690 | if (!e) { | |
4691 | *ret = PIDREF_NULL; | |
4692 | return 0; | |
4693 | } | |
4694 | ||
4695 | r = pidref_set_pidstr(&pidref, e); | |
4696 | if (r < 0) | |
4697 | return log_unit_warning_errno(u, r, "Failed to parse MAINPID=%s field in notification message, ignoring: %m", e); | |
4698 | ||
4699 | e = strv_find_startswith(tags, "MAINPIDFDID="); | |
4700 | if (!e) | |
4701 | goto finish; | |
4702 | ||
4703 | uint64_t pidfd_id; | |
4704 | ||
4705 | r = safe_atou64(e, &pidfd_id); | |
4706 | if (r < 0) | |
4707 | return log_unit_warning_errno(u, r, "Failed to parse MAINPIDFDID= in notification message, refusing: %s", e); | |
4708 | ||
4709 | r = pidref_acquire_pidfd_id(&pidref); | |
4710 | if (r < 0) { | |
4711 | if (!ERRNO_IS_NEG_NOT_SUPPORTED(r)) | |
4712 | log_unit_warning_errno(u, r, | |
4713 | "Failed to acquire pidfd id of process " PID_FMT ", not validating MAINPIDFDID=%" PRIu64 ": %m", | |
4714 | pidref.pid, pidfd_id); | |
4715 | goto finish; | |
4716 | } | |
4717 | ||
4718 | if (pidref.fd_id != pidfd_id) | |
4719 | return log_unit_warning_errno(u, SYNTHETIC_ERRNO(ESRCH), | |
4720 | "PIDFD ID of process " PID_FMT " (%" PRIu64 ") mismatches with received MAINPIDFDID=%" PRIu64 ", not changing main PID.", | |
4721 | pidref.pid, pidref.fd_id, pidfd_id); | |
4722 | ||
4723 | finish: | |
4724 | *ret = TAKE_PIDREF(pidref); | |
4725 | return 1; | |
4726 | } | |
4727 | ||
4728 | static void service_notify_message( | |
4729 | Unit *u, | |
4730 | PidRef *pidref, | |
4731 | const struct ucred *ucred, | |
4732 | char * const *tags, | |
4733 | FDSet *fds) { | |
4734 | ||
4735 | Service *s = ASSERT_PTR(SERVICE(u)); | |
4736 | int r; | |
4737 | ||
4738 | assert(pidref_is_set(pidref)); | |
4739 | assert(ucred); | |
4740 | ||
4741 | if (!service_notify_message_authorized(s, pidref)) | |
4742 | return; | |
4743 | ||
4744 | if (DEBUG_LOGGING) { | |
4745 | _cleanup_free_ char *cc = strv_join(tags, ", "); | |
4746 | log_unit_debug(u, "Got notification message from PID "PID_FMT": %s", pidref->pid, empty_to_na(cc)); | |
4747 | } | |
4748 | ||
4749 | usec_t monotonic_usec = USEC_INFINITY; | |
4750 | bool notify_dbus = false; | |
4751 | const char *e; | |
4752 | ||
4753 | /* Interpret MAINPID= (+ MAINPIDFDID=) / MAINPIDFD=1 */ | |
4754 | _cleanup_(pidref_done) PidRef new_main_pid = PIDREF_NULL; | |
4755 | ||
4756 | r = service_notify_message_parse_new_pid(u, tags, fds, &new_main_pid); | |
4757 | if (r > 0 && | |
4758 | IN_SET(s->state, SERVICE_START, SERVICE_START_POST, SERVICE_RUNNING, | |
4759 | SERVICE_RELOAD, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY, SERVICE_REFRESH_EXTENSIONS, | |
4760 | SERVICE_STOP, SERVICE_STOP_SIGTERM) && | |
4761 | (!s->main_pid_known || !pidref_equal(&new_main_pid, &s->main_pid))) { | |
4762 | ||
4763 | r = service_is_suitable_main_pid(s, &new_main_pid, LOG_WARNING); | |
4764 | if (r == 0) { | |
4765 | /* The new main PID is a bit suspicious, which is OK if the sender is privileged. */ | |
4766 | ||
4767 | if (ucred->uid == 0) { | |
4768 | log_unit_debug(u, "New main PID "PID_FMT" does not belong to service, but we'll accept it as the request to change it came from a privileged process.", new_main_pid.pid); | |
4769 | r = 1; | |
4770 | } else | |
4771 | log_unit_warning(u, "New main PID "PID_FMT" does not belong to service, refusing.", new_main_pid.pid); | |
4772 | } | |
4773 | if (r > 0) { | |
4774 | (void) service_set_main_pidref(s, TAKE_PIDREF(new_main_pid), /* start_timestamp = */ NULL); | |
4775 | ||
4776 | r = unit_watch_pidref(UNIT(s), &s->main_pid, /* exclusive= */ false); | |
4777 | if (r < 0) | |
4778 | log_unit_warning_errno(UNIT(s), r, "Failed to watch new main PID "PID_FMT" for service: %m", s->main_pid.pid); | |
4779 | ||
4780 | notify_dbus = true; | |
4781 | } | |
4782 | } | |
4783 | ||
4784 | /* Parse MONOTONIC_USEC= */ | |
4785 | e = strv_find_startswith(tags, "MONOTONIC_USEC="); | |
4786 | if (e) { | |
4787 | r = safe_atou64(e, &monotonic_usec); | |
4788 | if (r < 0) | |
4789 | log_unit_warning_errno(u, r, "Failed to parse MONOTONIC_USEC= field in notification message, ignoring: %s", e); | |
4790 | } | |
4791 | ||
4792 | /* Interpret READY=/STOPPING=/RELOADING=. STOPPING= wins over the others, and READY= over RELOADING= */ | |
4793 | if (strv_contains(tags, "STOPPING=1")) { | |
4794 | s->notify_state = NOTIFY_STOPPING; | |
4795 | ||
4796 | if (IN_SET(s->state, SERVICE_RUNNING, SERVICE_RELOAD_SIGNAL, SERVICE_RELOAD_NOTIFY, SERVICE_REFRESH_EXTENSIONS)) | |
4797 | service_enter_stop_by_notify(s); | |
4798 | ||
4799 | notify_dbus = true; | |
4800 | ||
4801 | } else if (strv_contains(tags, "READY=1")) { | |
4802 | ||
4803 | s->notify_state = NOTIFY_READY; | |
4804 | ||
4805 | /* Combined RELOADING=1 and READY=1? Then this is indication that the service started and | |
4806 | * immediately finished reloading. */ | |
4807 | if (strv_contains(tags, "RELOADING=1")) { | |
4808 | if (s->state == SERVICE_RELOAD_SIGNAL && | |
4809 | monotonic_usec != USEC_INFINITY && | |
4810 | monotonic_usec >= s->reload_begin_usec) | |
4811 | /* Valid Type=notify-reload protocol? Then we're all good. */ | |
4812 | service_enter_running(s, SERVICE_SUCCESS); | |
4813 | ||
4814 | else if (s->state == SERVICE_RUNNING) { | |
4815 | _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL; | |
4816 | ||
4817 | /* Propagate a reload explicitly for plain RELOADING=1 (semantically equivalent to | |
4818 | * service_enter_reload_mounting() call in below) */ | |
4819 | r = manager_propagate_reload(UNIT(s)->manager, UNIT(s), JOB_FAIL, &error); | |
4820 | if (r < 0) | |
4821 | log_unit_warning(UNIT(s), "Failed to schedule propagation of reload, ignoring: %s", | |
4822 | bus_error_message(&error, r)); | |
4823 | } | |
4824 | } | |
4825 | ||
4826 | /* Type=notify(-reload) services inform us about completed initialization with READY=1 */ | |
4827 | if (IN_SET(s->type, SERVICE_NOTIFY, SERVICE_NOTIFY_RELOAD) && | |
4828 | s->state == SERVICE_START) | |
4829 | service_enter_start_post(s); | |
4830 | ||
4831 | /* Sending READY=1 while we are reloading informs us that the reloading is complete. */ | |
4832 | if (s->state == SERVICE_RELOAD_NOTIFY) | |
4833 | service_enter_running(s, SERVICE_SUCCESS); | |
4834 | ||
4835 | notify_dbus = true; | |
4836 | ||
4837 | } else if (strv_contains(tags, "RELOADING=1")) { | |
4838 | ||
4839 | s->notify_state = NOTIFY_RELOADING; | |
4840 | ||
4841 | /* Sending RELOADING=1 after we send SIGHUP to request a reload will transition | |
4842 | * things to "reload-notify" state, where we'll wait for READY=1 to let us know the | |
4843 | * reload is done. Note that we insist on a timestamp being sent along here, so that | |
4844 | * we know for sure this is a reload cycle initiated *after* we sent the signal */ | |
4845 | if (s->state == SERVICE_RELOAD_SIGNAL && | |
4846 | monotonic_usec != USEC_INFINITY && | |
4847 | monotonic_usec >= s->reload_begin_usec) | |
4848 | /* Note, we don't call service_enter_reload_by_notify() here, because we | |
4849 | * don't need reload propagation nor do we want to restart the timeout. */ | |
4850 | service_set_state(s, SERVICE_RELOAD_NOTIFY); | |
4851 | ||
4852 | if (s->state == SERVICE_RUNNING) | |
4853 | service_enter_reload_by_notify(s); | |
4854 | ||
4855 | notify_dbus = true; | |
4856 | } | |
4857 | ||
4858 | /* Interpret STATUS= */ | |
4859 | e = strv_find_startswith(tags, "STATUS="); | |
4860 | if (e) { | |
4861 | _cleanup_free_ char *t = NULL; | |
4862 | ||
4863 | if (!isempty(e)) { | |
4864 | /* Note that this size limit check is mostly paranoia: since the datagram size we are willing | |
4865 | * to process is already limited to NOTIFY_BUFFER_MAX, this limit here should never be hit. */ | |
4866 | if (strlen(e) > STATUS_TEXT_MAX) | |
4867 | log_unit_warning(u, "Status message overly long (%zu > %u), ignoring.", strlen(e), STATUS_TEXT_MAX); | |
4868 | else if (!utf8_is_valid(e)) | |
4869 | log_unit_warning(u, "Status message in notification message is not UTF-8 clean, ignoring."); | |
4870 | else { | |
4871 | t = strdup(e); | |
4872 | if (!t) | |
4873 | log_oom_warning(); | |
4874 | } | |
4875 | } | |
4876 | ||
4877 | if (!streq_ptr(s->status_text, t)) { | |
4878 | free_and_replace(s->status_text, t); | |
4879 | notify_dbus = true; | |
4880 | } | |
4881 | } | |
4882 | ||
4883 | /* Interpret NOTIFYACCESS= */ | |
4884 | e = strv_find_startswith(tags, "NOTIFYACCESS="); | |
4885 | if (e) { | |
4886 | NotifyAccess notify_access; | |
4887 | ||
4888 | notify_access = notify_access_from_string(e); | |
4889 | if (notify_access < 0) | |
4890 | log_unit_warning_errno(u, notify_access, | |
4891 | "Failed to parse NOTIFYACCESS= field value '%s' in notification message, ignoring: %m", e); | |
4892 | ||
4893 | /* We don't need to check whether the new access mode is more strict than what is | |
4894 | * already in use, since only the privileged process is allowed to change it | |
4895 | * in the first place. */ | |
4896 | if (service_get_notify_access(s) != notify_access) { | |
4897 | service_override_notify_access(s, notify_access); | |
4898 | notify_dbus = true; | |
4899 | } | |
4900 | } | |
4901 | ||
4902 | /* Interpret ERRNO= */ | |
4903 | e = strv_find_startswith(tags, "ERRNO="); | |
4904 | if (e) { | |
4905 | int status_errno; | |
4906 | ||
4907 | status_errno = parse_errno(e); | |
4908 | if (status_errno < 0) | |
4909 | log_unit_warning_errno(u, status_errno, | |
4910 | "Failed to parse ERRNO= field value '%s' in notification message: %m", e); | |
4911 | else if (s->status_errno != status_errno) { | |
4912 | s->status_errno = status_errno; | |
4913 | notify_dbus = true; | |
4914 | } | |
4915 | } | |
4916 | ||
4917 | static const struct { | |
4918 | const char *tag; | |
4919 | size_t status_offset; | |
4920 | } status_errors[] = { | |
4921 | { "BUSERROR=", offsetof(Service, status_bus_error) }, | |
4922 | { "VARLINKERROR=", offsetof(Service, status_varlink_error) }, | |
4923 | }; | |
4924 | ||
4925 | FOREACH_ELEMENT(i, status_errors) { | |
4926 | e = strv_find_startswith(tags, i->tag); | |
4927 | if (!e) | |
4928 | continue; | |
4929 | ||
4930 | char **status_error = (char**) ((uint8_t*) s + i->status_offset); | |
4931 | ||
4932 | e = empty_to_null(e); | |
4933 | ||
4934 | if (e && !string_is_safe_ascii(e)) { | |
4935 | _cleanup_free_ char *escaped = cescape(e); | |
4936 | log_unit_warning(u, "Got invalid %s string, ignoring: %s", i->tag, strna(escaped)); | |
4937 | } else if (free_and_strdup_warn(status_error, e) > 0) | |
4938 | notify_dbus = true; | |
4939 | } | |
4940 | ||
4941 | /* Interpret EXTEND_TIMEOUT= */ | |
4942 | e = strv_find_startswith(tags, "EXTEND_TIMEOUT_USEC="); | |
4943 | if (e) { | |
4944 | usec_t extend_timeout_usec; | |
4945 | ||
4946 | if (safe_atou64(e, &extend_timeout_usec) < 0) | |
4947 | log_unit_warning(u, "Failed to parse EXTEND_TIMEOUT_USEC=%s", e); | |
4948 | else | |
4949 | service_extend_timeout(s, extend_timeout_usec); | |
4950 | } | |
4951 | ||
4952 | /* Interpret WATCHDOG= */ | |
4953 | e = strv_find_startswith(tags, "WATCHDOG="); | |
4954 | if (e) { | |
4955 | if (streq(e, "1")) | |
4956 | service_reset_watchdog(s); | |
4957 | else if (streq(e, "trigger")) | |
4958 | service_force_watchdog(s); | |
4959 | else | |
4960 | log_unit_warning(u, "Passed WATCHDOG= field is invalid, ignoring."); | |
4961 | } | |
4962 | ||
4963 | e = strv_find_startswith(tags, "WATCHDOG_USEC="); | |
4964 | if (e) { | |
4965 | usec_t watchdog_override_usec; | |
4966 | if (safe_atou64(e, &watchdog_override_usec) < 0) | |
4967 | log_unit_warning(u, "Failed to parse WATCHDOG_USEC=%s", e); | |
4968 | else | |
4969 | service_override_watchdog_timeout(s, watchdog_override_usec); | |
4970 | } | |
4971 | ||
4972 | /* Interpret RESTART_RESET=1 */ | |
4973 | if (strv_contains(tags, "RESTART_RESET=1") && IN_SET(s->state, SERVICE_RUNNING, SERVICE_STOP)) { | |
4974 | log_unit_struct(u, LOG_NOTICE, | |
4975 | LOG_UNIT_MESSAGE(u, "Got RESTART_RESET=1, resetting restart counter from %u.", s->n_restarts), | |
4976 | LOG_ITEM("N_RESTARTS=0"), | |
4977 | LOG_UNIT_INVOCATION_ID(u)); | |
4978 | ||
4979 | s->n_restarts = 0; | |
4980 | notify_dbus = true; | |
4981 | } | |
4982 | ||
4983 | /* Process FD store messages. Either FDSTOREREMOVE=1 for removal, or FDSTORE=1 for addition. In both cases, | |
4984 | * process FDNAME= for picking the file descriptor name to use. Note that FDNAME= is required when removing | |
4985 | * fds, but optional when pushing in new fds, for compatibility reasons. */ | |
4986 | if (strv_contains(tags, "FDSTOREREMOVE=1")) { | |
4987 | const char *name; | |
4988 | ||
4989 | name = strv_find_startswith(tags, "FDNAME="); | |
4990 | if (!name || !fdname_is_valid(name)) | |
4991 | log_unit_warning(u, "FDSTOREREMOVE=1 requested, but no valid file descriptor name passed, ignoring."); | |
4992 | else | |
4993 | service_remove_fd_store(s, name); | |
4994 | ||
4995 | } else if (strv_contains(tags, "FDSTORE=1")) { | |
4996 | const char *name; | |
4997 | ||
4998 | name = strv_find_startswith(tags, "FDNAME="); | |
4999 | if (name && !fdname_is_valid(name)) { | |
5000 | log_unit_warning(u, "Passed FDNAME= name is invalid, ignoring."); | |
5001 | name = NULL; | |
5002 | } | |
5003 | ||
5004 | (void) service_add_fd_store_set(s, fds, name, !strv_contains(tags, "FDPOLL=0")); | |
5005 | } | |
5006 | ||
5007 | /* Notify clients about changed status or main pid */ | |
5008 | if (notify_dbus) | |
5009 | unit_add_to_dbus_queue(u); | |
5010 | } | |
5011 | ||
5012 | static void service_handoff_timestamp( | |
5013 | Unit *u, | |
5014 | const struct ucred *ucred, | |
5015 | const dual_timestamp *ts) { | |
5016 | ||
5017 | Service *s = ASSERT_PTR(SERVICE(u)); | |
5018 | ||
5019 | assert(ucred); | |
5020 | assert(ts); | |
5021 | ||
5022 | if (s->main_pid.pid == ucred->pid) { | |
5023 | if (s->main_command) | |
5024 | exec_status_handoff(&s->main_command->exec_status, ucred, ts); | |
5025 | ||
5026 | exec_status_handoff(&s->main_exec_status, ucred, ts); | |
5027 | } else if (s->control_pid.pid == ucred->pid && s->control_command) | |
5028 | exec_status_handoff(&s->control_command->exec_status, ucred, ts); | |
5029 | else | |
5030 | return; | |
5031 | ||
5032 | unit_add_to_dbus_queue(u); | |
5033 | } | |
5034 | ||
5035 | static void service_notify_pidref(Unit *u, PidRef *parent_pidref, PidRef *child_pidref) { | |
5036 | Service *s = ASSERT_PTR(SERVICE(u)); | |
5037 | int r; | |
5038 | ||
5039 | assert(pidref_is_set(parent_pidref)); | |
5040 | assert(pidref_is_set(child_pidref)); | |
5041 | ||
5042 | if (pidref_equal(&s->main_pid, parent_pidref)) { | |
5043 | r = service_set_main_pidref(s, TAKE_PIDREF(*child_pidref), /* start_timestamp = */ NULL); | |
5044 | if (r < 0) | |
5045 | return (void) log_unit_warning_errno(u, r, "Failed to set new main pid: %m"); | |
5046 | ||
5047 | /* Since the child process is PID 1 in a new PID namespace, it must be exclusive to this unit. */ | |
5048 | r = unit_watch_pidref(u, &s->main_pid, /* exclusive= */ true); | |
5049 | if (r < 0) | |
5050 | log_unit_warning_errno(u, r, "Failed to watch new main PID " PID_FMT ": %m", s->main_pid.pid); | |
5051 | } else if (pidref_equal(&s->control_pid, parent_pidref)) { | |
5052 | service_unwatch_control_pid(s); | |
5053 | s->control_pid = TAKE_PIDREF(*child_pidref); | |
5054 | ||
5055 | r = unit_watch_pidref(u, &s->control_pid, /* exclusive= */ true); | |
5056 | if (r < 0) | |
5057 | log_unit_warning_errno(u, r, "Failed to watch new control PID " PID_FMT ": %m", s->control_pid.pid); | |
5058 | } else | |
5059 | return (void) log_unit_debug(u, "Parent process " PID_FMT " does not match main or control processes, ignoring.", parent_pidref->pid); | |
5060 | ||
5061 | unit_add_to_dbus_queue(u); | |
5062 | } | |
5063 | ||
5064 | static int service_get_timeout(Unit *u, usec_t *timeout) { | |
5065 | Service *s = ASSERT_PTR(SERVICE(u)); | |
5066 | uint64_t t; | |
5067 | int r; | |
5068 | ||
5069 | assert(timeout); | |
5070 | ||
5071 | if (!s->timer_event_source) | |
5072 | return 0; | |
5073 | ||
5074 | r = sd_event_source_get_time(s->timer_event_source, &t); | |
5075 | if (r < 0) | |
5076 | return r; | |
5077 | if (t == USEC_INFINITY) | |
5078 | return 0; | |
5079 | ||
5080 | *timeout = t; | |
5081 | return 1; | |
5082 | } | |
5083 | ||
5084 | static usec_t service_get_timeout_start_usec(Unit *u) { | |
5085 | Service *s = ASSERT_PTR(SERVICE(u)); | |
5086 | return s->timeout_start_usec; | |
5087 | } | |
5088 | ||
5089 | static bool pick_up_pid_from_bus_name(Service *s) { | |
5090 | assert(s); | |
5091 | ||
5092 | /* If the service is running but we have no main PID yet, get it from the owner of the D-Bus name */ | |
5093 | ||
5094 | return !pidref_is_set(&s->main_pid) && | |
5095 | IN_SET(s->state, | |
5096 | SERVICE_START, | |
5097 | SERVICE_START_POST, | |
5098 | SERVICE_RUNNING, | |
5099 | SERVICE_RELOAD, | |
5100 | SERVICE_RELOAD_SIGNAL, | |
5101 | SERVICE_RELOAD_NOTIFY, | |
5102 | SERVICE_REFRESH_EXTENSIONS, | |
5103 | SERVICE_MOUNTING); | |
5104 | } | |
5105 | ||
5106 | static int bus_name_pid_lookup_callback(sd_bus_message *reply, void *userdata, sd_bus_error *ret_error) { | |
5107 | Service *s = ASSERT_PTR(SERVICE(userdata)); | |
5108 | _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL; | |
5109 | const sd_bus_error *e; | |
5110 | uint32_t pid; | |
5111 | int r; | |
5112 | ||
5113 | assert(reply); | |
5114 | ||
5115 | s->bus_name_pid_lookup_slot = sd_bus_slot_unref(s->bus_name_pid_lookup_slot); | |
5116 | ||
5117 | if (!s->bus_name || !pick_up_pid_from_bus_name(s)) | |
5118 | return 1; | |
5119 | ||
5120 | e = sd_bus_message_get_error(reply); | |
5121 | if (e) { | |
5122 | r = sd_bus_error_get_errno(e); | |
5123 | log_unit_warning_errno(UNIT(s), r, "GetConnectionUnixProcessID() failed: %s", bus_error_message(e, r)); | |
5124 | return 1; | |
5125 | } | |
5126 | ||
5127 | r = sd_bus_message_read(reply, "u", &pid); | |
5128 | if (r < 0) { | |
5129 | bus_log_parse_error(r); | |
5130 | return 1; | |
5131 | } | |
5132 | ||
5133 | r = pidref_set_pid(&pidref, pid); | |
5134 | if (r < 0) { | |
5135 | log_unit_debug_errno(UNIT(s), r, "GetConnectionUnixProcessID() returned invalid PID: %m"); | |
5136 | return 1; | |
5137 | } | |
5138 | ||
5139 | log_unit_debug(UNIT(s), "D-Bus name %s is now owned by process " PID_FMT, s->bus_name, pidref.pid); | |
5140 | ||
5141 | (void) service_set_main_pidref(s, TAKE_PIDREF(pidref), /* start_timestamp = */ NULL); | |
5142 | (void) unit_watch_pidref(UNIT(s), &s->main_pid, /* exclusive= */ false); | |
5143 | return 1; | |
5144 | } | |
5145 | ||
5146 | static void service_bus_name_owner_change(Unit *u, const char *new_owner) { | |
5147 | Service *s = ASSERT_PTR(SERVICE(u)); | |
5148 | int r; | |
5149 | ||
5150 | if (new_owner) | |
5151 | log_unit_debug(u, "D-Bus name %s now owned by %s", s->bus_name, new_owner); | |
5152 | else | |
5153 | log_unit_debug(u, "D-Bus name %s now not owned by anyone.", s->bus_name); | |
5154 | ||
5155 | s->bus_name_good = new_owner; | |
5156 | ||
5157 | if (s->type == SERVICE_DBUS) { | |
5158 | /* service_enter_running() will figure out what to do */ | |
5159 | if (s->state == SERVICE_RUNNING) | |
5160 | service_enter_running(s, SERVICE_SUCCESS); | |
5161 | else if (s->state == SERVICE_START && new_owner) | |
5162 | service_enter_start_post(s); | |
5163 | ||
5164 | } else if (new_owner && pick_up_pid_from_bus_name(s)) { | |
5165 | ||
5166 | /* Try to acquire PID from bus service */ | |
5167 | ||
5168 | s->bus_name_pid_lookup_slot = sd_bus_slot_unref(s->bus_name_pid_lookup_slot); | |
5169 | ||
5170 | r = sd_bus_call_method_async( | |
5171 | u->manager->api_bus, | |
5172 | &s->bus_name_pid_lookup_slot, | |
5173 | "org.freedesktop.DBus", | |
5174 | "/org/freedesktop/DBus", | |
5175 | "org.freedesktop.DBus", | |
5176 | "GetConnectionUnixProcessID", | |
5177 | bus_name_pid_lookup_callback, | |
5178 | s, | |
5179 | "s", | |
5180 | s->bus_name); | |
5181 | if (r < 0) | |
5182 | log_unit_debug_errno(u, r, "Failed to request owner PID of service name, ignoring: %m"); | |
5183 | } | |
5184 | } | |
5185 | ||
5186 | int service_set_socket_fd( | |
5187 | Service *s, | |
5188 | int fd, | |
5189 | Socket *sock, | |
5190 | SocketPeer *peer, /* reference to object is donated to us on success */ | |
5191 | bool selinux_context_net) { | |
5192 | ||
5193 | _cleanup_free_ char *peer_text = NULL; | |
5194 | int r; | |
5195 | ||
5196 | assert(s); | |
5197 | assert(fd >= 0); | |
5198 | assert(sock); | |
5199 | ||
5200 | /* This is called by the socket code when instantiating a new service for a stream socket and the socket needs | |
5201 | * to be configured. We take ownership of the passed fd on success. */ | |
5202 | ||
5203 | if (UNIT(s)->load_state != UNIT_LOADED) | |
5204 | return -EINVAL; | |
5205 | ||
5206 | if (s->socket_fd >= 0) | |
5207 | return -EBUSY; | |
5208 | ||
5209 | assert(!s->socket_peer); | |
5210 | ||
5211 | if (!IN_SET(s->state, SERVICE_DEAD, SERVICE_DEAD_RESOURCES_PINNED)) | |
5212 | return -EAGAIN; | |
5213 | ||
5214 | if (getpeername_pretty(fd, true, &peer_text) >= 0) { | |
5215 | ||
5216 | if (UNIT(s)->description) { | |
5217 | _cleanup_free_ char *a = NULL; | |
5218 | ||
5219 | a = strjoin(UNIT(s)->description, " (", peer_text, ")"); | |
5220 | if (!a) | |
5221 | return -ENOMEM; | |
5222 | ||
5223 | r = unit_set_description(UNIT(s), a); | |
5224 | } else | |
5225 | r = unit_set_description(UNIT(s), peer_text); | |
5226 | if (r < 0) | |
5227 | return r; | |
5228 | } | |
5229 | ||
5230 | r = unit_add_two_dependencies(UNIT(s), UNIT_AFTER, UNIT_TRIGGERED_BY, UNIT(sock), false, UNIT_DEPENDENCY_IMPLICIT); | |
5231 | if (r < 0) | |
5232 | return log_unit_debug_errno(UNIT(s), r, | |
5233 | "Failed to add After=/TriggeredBy= dependencies on socket unit: %m"); | |
5234 | ||
5235 | s->socket_fd = fd; | |
5236 | s->socket_peer = peer; | |
5237 | s->socket_fd_selinux_context_net = selinux_context_net; | |
5238 | ||
5239 | unit_ref_set(&s->accept_socket, UNIT(s), UNIT(sock)); | |
5240 | return 0; | |
5241 | } | |
5242 | ||
5243 | static void service_reset_failed(Unit *u) { | |
5244 | Service *s = ASSERT_PTR(SERVICE(u)); | |
5245 | ||
5246 | if (s->state == SERVICE_FAILED) | |
5247 | service_set_state(s, service_determine_dead_state(s)); | |
5248 | ||
5249 | s->result = SERVICE_SUCCESS; | |
5250 | s->reload_result = SERVICE_SUCCESS; | |
5251 | s->live_mount_result = SERVICE_SUCCESS; | |
5252 | s->clean_result = SERVICE_SUCCESS; | |
5253 | s->n_restarts = 0; | |
5254 | } | |
5255 | ||
5256 | static PidRef* service_main_pid(Unit *u, bool *ret_is_alien) { | |
5257 | Service *s = ASSERT_PTR(SERVICE(u)); | |
5258 | ||
5259 | if (ret_is_alien) | |
5260 | *ret_is_alien = s->main_pid_alien; | |
5261 | ||
5262 | return &s->main_pid; | |
5263 | } | |
5264 | ||
5265 | static PidRef* service_control_pid(Unit *u) { | |
5266 | return &ASSERT_PTR(SERVICE(u))->control_pid; | |
5267 | } | |
5268 | ||
5269 | static bool service_needs_console(Unit *u) { | |
5270 | Service *s = ASSERT_PTR(SERVICE(u)); | |
5271 | ||
5272 | /* We provide our own implementation of this here, instead of relying of the generic implementation | |
5273 | * unit_needs_console() provides, since we want to return false if we are in SERVICE_EXITED state. */ | |
5274 | ||
5275 | if (!exec_context_may_touch_console(&s->exec_context)) | |
5276 | return false; | |
5277 | ||
5278 | return IN_SET(s->state, | |
5279 | SERVICE_CONDITION, | |
5280 | SERVICE_START_PRE, | |
5281 | SERVICE_START, | |
5282 | SERVICE_START_POST, | |
5283 | SERVICE_RUNNING, | |
5284 | SERVICE_RELOAD, | |
5285 | SERVICE_RELOAD_SIGNAL, | |
5286 | SERVICE_RELOAD_NOTIFY, | |
5287 | SERVICE_REFRESH_EXTENSIONS, | |
5288 | SERVICE_MOUNTING, | |
5289 | SERVICE_STOP, | |
5290 | SERVICE_STOP_WATCHDOG, | |
5291 | SERVICE_STOP_SIGTERM, | |
5292 | SERVICE_STOP_SIGKILL, | |
5293 | SERVICE_STOP_POST, | |
5294 | SERVICE_FINAL_WATCHDOG, | |
5295 | SERVICE_FINAL_SIGTERM, | |
5296 | SERVICE_FINAL_SIGKILL); | |
5297 | } | |
5298 | ||
5299 | static int service_exit_status(Unit *u) { | |
5300 | Service *s = ASSERT_PTR(SERVICE(u)); | |
5301 | ||
5302 | if (s->main_exec_status.pid <= 0 || | |
5303 | !dual_timestamp_is_set(&s->main_exec_status.exit_timestamp)) | |
5304 | return -ENODATA; | |
5305 | ||
5306 | if (s->main_exec_status.code != CLD_EXITED) | |
5307 | return -EBADE; | |
5308 | ||
5309 | return s->main_exec_status.status; | |
5310 | } | |
5311 | ||
5312 | static const char* service_status_text(Unit *u) { | |
5313 | Service *s = ASSERT_PTR(SERVICE(u)); | |
5314 | ||
5315 | return s->status_text; | |
5316 | } | |
5317 | ||
5318 | static int service_clean(Unit *u, ExecCleanMask mask) { | |
5319 | Service *s = ASSERT_PTR(SERVICE(u)); | |
5320 | _cleanup_strv_free_ char **l = NULL; | |
5321 | bool may_clean_fdstore = false; | |
5322 | int r; | |
5323 | ||
5324 | assert(mask != 0); | |
5325 | ||
5326 | if (!IN_SET(s->state, SERVICE_DEAD, SERVICE_DEAD_RESOURCES_PINNED)) | |
5327 | return -EBUSY; | |
5328 | ||
5329 | /* Determine if there's anything we could potentially clean */ | |
5330 | r = exec_context_get_clean_directories(&s->exec_context, u->manager->prefix, mask, &l); | |
5331 | if (r < 0) | |
5332 | return r; | |
5333 | ||
5334 | if (mask & EXEC_CLEAN_FDSTORE) | |
5335 | may_clean_fdstore = s->n_fd_store > 0 || s->n_fd_store_max > 0; | |
5336 | ||
5337 | if (strv_isempty(l) && !may_clean_fdstore) | |
5338 | return -EUNATCH; /* Nothing to potentially clean */ | |
5339 | ||
5340 | /* Let's clean the stuff we can clean quickly */ | |
5341 | if (may_clean_fdstore) | |
5342 | service_release_fd_store(s); | |
5343 | ||
5344 | /* If we are done, leave quickly */ | |
5345 | if (strv_isempty(l)) { | |
5346 | if (s->state == SERVICE_DEAD_RESOURCES_PINNED && !s->fd_store) | |
5347 | service_set_state(s, SERVICE_DEAD); | |
5348 | return 0; | |
5349 | } | |
5350 | ||
5351 | /* We need to clean disk stuff. This is slow, hence do it out of process, and change state */ | |
5352 | service_unwatch_control_pid(s); | |
5353 | s->clean_result = SERVICE_SUCCESS; | |
5354 | s->control_command = NULL; | |
5355 | s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID; | |
5356 | ||
5357 | r = service_arm_timer(s, /* relative= */ true, s->exec_context.timeout_clean_usec); | |
5358 | if (r < 0) { | |
5359 | log_unit_warning_errno(u, r, "Failed to install timer: %m"); | |
5360 | goto fail; | |
5361 | } | |
5362 | ||
5363 | r = unit_fork_and_watch_rm_rf(u, l, &s->control_pid); | |
5364 | if (r < 0) { | |
5365 | log_unit_warning_errno(u, r, "Failed to spawn cleaning task: %m"); | |
5366 | goto fail; | |
5367 | } | |
5368 | ||
5369 | service_set_state(s, SERVICE_CLEANING); | |
5370 | return 0; | |
5371 | ||
5372 | fail: | |
5373 | s->clean_result = SERVICE_FAILURE_RESOURCES; | |
5374 | s->timer_event_source = sd_event_source_disable_unref(s->timer_event_source); | |
5375 | return r; | |
5376 | } | |
5377 | ||
5378 | static int service_can_clean(Unit *u, ExecCleanMask *ret) { | |
5379 | Service *s = ASSERT_PTR(SERVICE(u)); | |
5380 | ExecCleanMask mask = 0; | |
5381 | int r; | |
5382 | ||
5383 | assert(ret); | |
5384 | ||
5385 | r = exec_context_get_clean_mask(&s->exec_context, &mask); | |
5386 | if (r < 0) | |
5387 | return r; | |
5388 | ||
5389 | if (s->n_fd_store_max > 0) | |
5390 | mask |= EXEC_CLEAN_FDSTORE; | |
5391 | ||
5392 | *ret = mask; | |
5393 | return 0; | |
5394 | } | |
5395 | ||
5396 | static int service_live_mount( | |
5397 | Unit *u, | |
5398 | const char *src, | |
5399 | const char *dst, | |
5400 | sd_bus_message *message, | |
5401 | MountInNamespaceFlags flags, | |
5402 | const MountOptions *options, | |
5403 | sd_bus_error *error) { | |
5404 | ||
5405 | Service *s = ASSERT_PTR(SERVICE(u)); | |
5406 | _cleanup_(pidref_done) PidRef worker = PIDREF_NULL; | |
5407 | int r; | |
5408 | ||
5409 | assert(u); | |
5410 | assert(u->manager); | |
5411 | assert(src); | |
5412 | assert(dst); | |
5413 | assert(message); | |
5414 | assert(!s->mount_request); | |
5415 | ||
5416 | if (s->state != SERVICE_RUNNING || !pidref_is_set(&s->main_pid)) { | |
5417 | log_unit_warning(u, "Service is not running, cannot live mount."); | |
5418 | return sd_bus_error_setf( | |
5419 | error, | |
5420 | BUS_ERROR_UNIT_INACTIVE, | |
5421 | "Live mounting '%s' on '%s' for unit '%s' cannot be scheduled: service not running", | |
5422 | src, | |
5423 | dst, | |
5424 | u->id); | |
5425 | } | |
5426 | ||
5427 | if (mount_point_is_credentials(u->manager->prefix[EXEC_DIRECTORY_RUNTIME], dst)) { | |
5428 | log_unit_warning(u, "Refusing to live mount over credential mount '%s'.", dst); | |
5429 | return sd_bus_error_setf( | |
5430 | error, | |
5431 | SD_BUS_ERROR_INVALID_ARGS, | |
5432 | "Live mounting '%s' on '%s' for unit '%s' cannot be scheduled: cannot mount over credential mount", | |
5433 | src, | |
5434 | dst, | |
5435 | u->id); | |
5436 | } | |
5437 | ||
5438 | if (path_startswith_strv(dst, s->exec_context.inaccessible_paths)) { | |
5439 | log_unit_warning(u, "%s is not accessible to this unit, cannot live mount.", dst); | |
5440 | return sd_bus_error_setf( | |
5441 | error, | |
5442 | SD_BUS_ERROR_INVALID_ARGS, | |
5443 | "Live mounting '%s' on '%s' for unit '%s' cannot be scheduled: destination is not accessible to this unit", | |
5444 | src, | |
5445 | dst, | |
5446 | u->id); | |
5447 | } | |
5448 | ||
5449 | service_unwatch_control_pid(s); | |
5450 | s->live_mount_result = SERVICE_SUCCESS; | |
5451 | s->control_command = NULL; | |
5452 | s->control_command_id = _SERVICE_EXEC_COMMAND_INVALID; | |
5453 | ||
5454 | r = service_arm_timer(s, /* relative= */ true, s->timeout_start_usec); | |
5455 | if (r < 0) { | |
5456 | log_unit_error_errno(u, r, "Failed to install timer: %m"); | |
5457 | sd_bus_error_set_errnof(error, r, | |
5458 | "Live mounting '%s' on '%s' for unit '%s': failed to install timer: %m", | |
5459 | src, dst, u->id); | |
5460 | goto fail; | |
5461 | } | |
5462 | ||
5463 | const char *propagate_directory = strjoina("/run/systemd/propagate/", u->id); | |
5464 | ||
5465 | /* Given we are running from PID1, avoid doing potentially heavy I/O operations like opening images | |
5466 | * directly, and instead fork a worker process. We record the D-Bus message, so that we can reply | |
5467 | * after the operation has finished. This way callers can wait on the message and know that the new | |
5468 | * resource is available (or the operation failed) once they receive the response. */ | |
5469 | r = unit_fork_helper_process(u, "(sd-mount-in-ns)", /* into_cgroup= */ false, &worker); | |
5470 | if (r < 0) { | |
5471 | log_unit_error_errno(u, r, | |
5472 | "Failed to fork process to mount '%s' on '%s' in unit's namespace: %m", | |
5473 | src, dst); | |
5474 | sd_bus_error_set_errnof(error, r, | |
5475 | "Live mounting '%s' on '%s' for unit '%s': failed to fork off helper process into namespace: %m", | |
5476 | src, dst, u->id); | |
5477 | goto fail; | |
5478 | } | |
5479 | if (r == 0) { | |
5480 | if (flags & MOUNT_IN_NAMESPACE_IS_IMAGE) | |
5481 | r = mount_image_in_namespace( | |
5482 | &s->main_pid, | |
5483 | propagate_directory, | |
5484 | "/run/systemd/incoming/", | |
5485 | src, dst, | |
5486 | flags, | |
5487 | options, | |
5488 | s->exec_context.mount_image_policy ?: &image_policy_service); | |
5489 | else | |
5490 | r = bind_mount_in_namespace( | |
5491 | &s->main_pid, | |
5492 | propagate_directory, | |
5493 | "/run/systemd/incoming/", | |
5494 | src, dst, | |
5495 | flags); | |
5496 | if (r < 0) | |
5497 | log_unit_error_errno(u, r, | |
5498 | "Failed to mount '%s' on '%s' in unit's namespace: %m", | |
5499 | src, dst); | |
5500 | else | |
5501 | log_unit_debug(u, "Mounted '%s' on '%s' in unit's namespace", src, dst); | |
5502 | ||
5503 | _exit(r < 0 ? EXIT_FAILURE : EXIT_SUCCESS); | |
5504 | } | |
5505 | ||
5506 | r = unit_watch_pidref(u, &worker, /* exclusive= */ true); | |
5507 | if (r < 0) { | |
5508 | log_unit_warning_errno(u, r, "Failed to watch live mount helper process: %m"); | |
5509 | sd_bus_error_set_errnof(error, r, | |
5510 | "Live mounting '%s' on '%s' for unit '%s': failed to watch live mount helper process: %m", | |
5511 | src, dst, u->id); | |
5512 | goto fail; | |
5513 | } | |
5514 | ||
5515 | s->mount_request = sd_bus_message_ref(message); | |
5516 | s->control_pid = TAKE_PIDREF(worker); | |
5517 | service_set_state(s, SERVICE_MOUNTING); | |
5518 | return 0; | |
5519 | ||
5520 | fail: | |
5521 | s->live_mount_result = SERVICE_FAILURE_RESOURCES; | |
5522 | service_enter_running(s, SERVICE_SUCCESS); | |
5523 | return r; | |
5524 | } | |
5525 | ||
5526 | static int service_can_live_mount(Unit *u, sd_bus_error *error) { | |
5527 | Service *s = ASSERT_PTR(SERVICE(u)); | |
5528 | ||
5529 | /* Ensure that the unit runs in a private mount namespace */ | |
5530 | if (!exec_needs_mount_namespace(&s->exec_context, /* params= */ NULL, s->exec_runtime)) | |
5531 | return sd_bus_error_setf( | |
5532 | error, | |
5533 | SD_BUS_ERROR_INVALID_ARGS, | |
5534 | "Unit '%s' not running in private mount namespace, cannot live mount.", | |
5535 | u->id); | |
5536 | ||
5537 | return 0; | |
5538 | } | |
5539 | ||
5540 | static const char* service_finished_job(Unit *u, JobType t, JobResult result) { | |
5541 | Service *s = ASSERT_PTR(SERVICE(u)); | |
5542 | ||
5543 | if (t == JOB_START && | |
5544 | result == JOB_DONE && | |
5545 | s->type == SERVICE_ONESHOT) | |
5546 | return "Finished %s."; | |
5547 | ||
5548 | /* Fall back to generic */ | |
5549 | return NULL; | |
5550 | } | |
5551 | ||
5552 | static int service_can_start(Unit *u) { | |
5553 | Service *s = ASSERT_PTR(SERVICE(u)); | |
5554 | int r; | |
5555 | ||
5556 | /* Make sure we don't enter a busy loop of some kind. */ | |
5557 | r = unit_test_start_limit(u); | |
5558 | if (r < 0) { | |
5559 | service_enter_dead(s, SERVICE_FAILURE_START_LIMIT_HIT, false); | |
5560 | return r; | |
5561 | } | |
5562 | ||
5563 | return 1; | |
5564 | } | |
5565 | ||
5566 | static void service_release_resources(Unit *u) { | |
5567 | Service *s = ASSERT_PTR(SERVICE(u)); | |
5568 | ||
5569 | /* Invoked by the unit state engine, whenever it realizes that unit is dead and there's no job | |
5570 | * anymore for it, and it hence is a good idea to release resources */ | |
5571 | ||
5572 | /* Don't release resources if this is a transitionary failed/dead state | |
5573 | * (i.e. SERVICE_DEAD_BEFORE_AUTO_RESTART/SERVICE_FAILED_BEFORE_AUTO_RESTART), insist on a permanent | |
5574 | * failure state. */ | |
5575 | if (!IN_SET(s->state, SERVICE_DEAD, SERVICE_FAILED, SERVICE_DEAD_RESOURCES_PINNED)) | |
5576 | return; | |
5577 | ||
5578 | log_unit_debug(u, "Releasing resources..."); | |
5579 | ||
5580 | service_release_socket_fd(s); | |
5581 | service_release_stdio_fd(s); | |
5582 | service_release_extra_fds(s); | |
5583 | ||
5584 | if (s->fd_store_preserve_mode != EXEC_PRESERVE_YES) | |
5585 | service_release_fd_store(s); | |
5586 | ||
5587 | if (s->state == SERVICE_DEAD_RESOURCES_PINNED && !s->fd_store) | |
5588 | service_set_state(s, SERVICE_DEAD); | |
5589 | } | |
5590 | ||
5591 | int service_determine_exec_selinux_label(Service *s, char **ret) { | |
5592 | int r; | |
5593 | ||
5594 | assert(s); | |
5595 | assert(ret); | |
5596 | ||
5597 | if (!mac_selinux_use()) | |
5598 | return -ENODATA; | |
5599 | ||
5600 | /* Returns the SELinux label used for execution of the main service binary */ | |
5601 | ||
5602 | if (s->exec_context.selinux_context) | |
5603 | /* Prefer the explicitly configured label if there is one */ | |
5604 | return strdup_to(ret, s->exec_context.selinux_context); | |
5605 | ||
5606 | if (s->exec_context.root_image || | |
5607 | s->exec_context.n_extension_images > 0 || | |
5608 | !strv_isempty(s->exec_context.extension_directories)) /* We cannot chase paths through images */ | |
5609 | return log_unit_debug_errno(UNIT(s), SYNTHETIC_ERRNO(ENODATA), "Service with RootImage=, ExtensionImages= or ExtensionDirectories= set, cannot determine socket SELinux label before activation, ignoring."); | |
5610 | ||
5611 | ExecCommand *c = s->exec_command[SERVICE_EXEC_START]; | |
5612 | if (!c) | |
5613 | return -ENODATA; | |
5614 | ||
5615 | _cleanup_free_ char *path = NULL; | |
5616 | r = chase(c->path, s->exec_context.root_directory, CHASE_PREFIX_ROOT, &path, NULL); | |
5617 | if (r < 0) { | |
5618 | log_unit_debug_errno(UNIT(s), r, "Failed to resolve service binary '%s', ignoring.", c->path); | |
5619 | return -ENODATA; | |
5620 | } | |
5621 | ||
5622 | r = mac_selinux_get_create_label_from_exe(path, ret); | |
5623 | if (ERRNO_IS_NEG_NOT_SUPPORTED(r)) { | |
5624 | log_unit_debug_errno(UNIT(s), r, "Reading SELinux label off binary '%s' is not supported, ignoring.", path); | |
5625 | return -ENODATA; | |
5626 | } | |
5627 | if (ERRNO_IS_NEG_PRIVILEGE(r)) { | |
5628 | log_unit_debug_errno(UNIT(s), r, "Can't read SELinux label off binary '%s', due to privileges, ignoring.", path); | |
5629 | return -ENODATA; | |
5630 | } | |
5631 | if (r < 0) | |
5632 | return log_unit_debug_errno(UNIT(s), r, "Failed to read SELinux label off binary '%s': %m", path); | |
5633 | ||
5634 | return 0; | |
5635 | } | |
5636 | ||
5637 | static const char* const service_restart_table[_SERVICE_RESTART_MAX] = { | |
5638 | [SERVICE_RESTART_NO] = "no", | |
5639 | [SERVICE_RESTART_ON_SUCCESS] = "on-success", | |
5640 | [SERVICE_RESTART_ON_FAILURE] = "on-failure", | |
5641 | [SERVICE_RESTART_ON_ABNORMAL] = "on-abnormal", | |
5642 | [SERVICE_RESTART_ON_WATCHDOG] = "on-watchdog", | |
5643 | [SERVICE_RESTART_ON_ABORT] = "on-abort", | |
5644 | [SERVICE_RESTART_ALWAYS] = "always", | |
5645 | }; | |
5646 | ||
5647 | DEFINE_STRING_TABLE_LOOKUP(service_restart, ServiceRestart); | |
5648 | ||
5649 | static const char* const service_restart_mode_table[_SERVICE_RESTART_MODE_MAX] = { | |
5650 | [SERVICE_RESTART_MODE_NORMAL] = "normal", | |
5651 | [SERVICE_RESTART_MODE_DIRECT] = "direct", | |
5652 | [SERVICE_RESTART_MODE_DEBUG] = "debug", | |
5653 | }; | |
5654 | ||
5655 | DEFINE_STRING_TABLE_LOOKUP(service_restart_mode, ServiceRestartMode); | |
5656 | ||
5657 | static const char* const service_type_table[_SERVICE_TYPE_MAX] = { | |
5658 | [SERVICE_SIMPLE] = "simple", | |
5659 | [SERVICE_FORKING] = "forking", | |
5660 | [SERVICE_ONESHOT] = "oneshot", | |
5661 | [SERVICE_DBUS] = "dbus", | |
5662 | [SERVICE_NOTIFY] = "notify", | |
5663 | [SERVICE_NOTIFY_RELOAD] = "notify-reload", | |
5664 | [SERVICE_IDLE] = "idle", | |
5665 | [SERVICE_EXEC] = "exec", | |
5666 | }; | |
5667 | ||
5668 | DEFINE_STRING_TABLE_LOOKUP(service_type, ServiceType); | |
5669 | ||
5670 | static const char* const service_exit_type_table[_SERVICE_EXIT_TYPE_MAX] = { | |
5671 | [SERVICE_EXIT_MAIN] = "main", | |
5672 | [SERVICE_EXIT_CGROUP] = "cgroup", | |
5673 | }; | |
5674 | ||
5675 | DEFINE_STRING_TABLE_LOOKUP(service_exit_type, ServiceExitType); | |
5676 | ||
5677 | static const char* const service_exec_command_table[_SERVICE_EXEC_COMMAND_MAX] = { | |
5678 | [SERVICE_EXEC_CONDITION] = "ExecCondition", | |
5679 | [SERVICE_EXEC_START_PRE] = "ExecStartPre", | |
5680 | [SERVICE_EXEC_START] = "ExecStart", | |
5681 | [SERVICE_EXEC_START_POST] = "ExecStartPost", | |
5682 | [SERVICE_EXEC_RELOAD] = "ExecReload", | |
5683 | [SERVICE_EXEC_STOP] = "ExecStop", | |
5684 | [SERVICE_EXEC_STOP_POST] = "ExecStopPost", | |
5685 | }; | |
5686 | ||
5687 | DEFINE_STRING_TABLE_LOOKUP(service_exec_command, ServiceExecCommand); | |
5688 | ||
5689 | static const char* const service_exec_ex_command_table[_SERVICE_EXEC_COMMAND_MAX] = { | |
5690 | [SERVICE_EXEC_CONDITION] = "ExecConditionEx", | |
5691 | [SERVICE_EXEC_START_PRE] = "ExecStartPreEx", | |
5692 | [SERVICE_EXEC_START] = "ExecStartEx", | |
5693 | [SERVICE_EXEC_START_POST] = "ExecStartPostEx", | |
5694 | [SERVICE_EXEC_RELOAD] = "ExecReloadEx", | |
5695 | [SERVICE_EXEC_STOP] = "ExecStopEx", | |
5696 | [SERVICE_EXEC_STOP_POST] = "ExecStopPostEx", | |
5697 | }; | |
5698 | ||
5699 | DEFINE_STRING_TABLE_LOOKUP(service_exec_ex_command, ServiceExecCommand); | |
5700 | ||
5701 | static const char* const notify_state_table[_NOTIFY_STATE_MAX] = { | |
5702 | [NOTIFY_UNKNOWN] = "unknown", | |
5703 | [NOTIFY_READY] = "ready", | |
5704 | [NOTIFY_RELOADING] = "reloading", | |
5705 | [NOTIFY_STOPPING] = "stopping", | |
5706 | }; | |
5707 | ||
5708 | DEFINE_STRING_TABLE_LOOKUP(notify_state, NotifyState); | |
5709 | ||
5710 | static const char* const service_result_table[_SERVICE_RESULT_MAX] = { | |
5711 | [SERVICE_SUCCESS] = "success", | |
5712 | [SERVICE_FAILURE_RESOURCES] = "resources", | |
5713 | [SERVICE_FAILURE_PROTOCOL] = "protocol", | |
5714 | [SERVICE_FAILURE_TIMEOUT] = "timeout", | |
5715 | [SERVICE_FAILURE_EXIT_CODE] = "exit-code", | |
5716 | [SERVICE_FAILURE_SIGNAL] = "signal", | |
5717 | [SERVICE_FAILURE_CORE_DUMP] = "core-dump", | |
5718 | [SERVICE_FAILURE_WATCHDOG] = "watchdog", | |
5719 | [SERVICE_FAILURE_START_LIMIT_HIT] = "start-limit-hit", | |
5720 | [SERVICE_FAILURE_OOM_KILL] = "oom-kill", | |
5721 | [SERVICE_SKIP_CONDITION] = "exec-condition", | |
5722 | }; | |
5723 | ||
5724 | DEFINE_STRING_TABLE_LOOKUP(service_result, ServiceResult); | |
5725 | ||
5726 | static const char* const service_timeout_failure_mode_table[_SERVICE_TIMEOUT_FAILURE_MODE_MAX] = { | |
5727 | [SERVICE_TIMEOUT_TERMINATE] = "terminate", | |
5728 | [SERVICE_TIMEOUT_ABORT] = "abort", | |
5729 | [SERVICE_TIMEOUT_KILL] = "kill", | |
5730 | }; | |
5731 | ||
5732 | DEFINE_STRING_TABLE_LOOKUP(service_timeout_failure_mode, ServiceTimeoutFailureMode); | |
5733 | ||
5734 | const UnitVTable service_vtable = { | |
5735 | .object_size = sizeof(Service), | |
5736 | .exec_context_offset = offsetof(Service, exec_context), | |
5737 | .cgroup_context_offset = offsetof(Service, cgroup_context), | |
5738 | .kill_context_offset = offsetof(Service, kill_context), | |
5739 | .exec_runtime_offset = offsetof(Service, exec_runtime), | |
5740 | .cgroup_runtime_offset = offsetof(Service, cgroup_runtime), | |
5741 | ||
5742 | .sections = | |
5743 | "Unit\0" | |
5744 | "Service\0" | |
5745 | "Install\0", | |
5746 | .private_section = "Service", | |
5747 | ||
5748 | .can_transient = true, | |
5749 | .can_delegate = true, | |
5750 | .can_fail = true, | |
5751 | .can_set_managed_oom = true, | |
5752 | ||
5753 | .init = service_init, | |
5754 | .done = service_done, | |
5755 | .load = service_load, | |
5756 | .release_resources = service_release_resources, | |
5757 | ||
5758 | .coldplug = service_coldplug, | |
5759 | ||
5760 | .dump = service_dump, | |
5761 | ||
5762 | .start = service_start, | |
5763 | .stop = service_stop, | |
5764 | .reload = service_reload, | |
5765 | ||
5766 | .can_reload = service_can_reload, | |
5767 | ||
5768 | .clean = service_clean, | |
5769 | .can_clean = service_can_clean, | |
5770 | ||
5771 | .live_mount = service_live_mount, | |
5772 | .can_live_mount = service_can_live_mount, | |
5773 | ||
5774 | .freezer_action = unit_cgroup_freezer_action, | |
5775 | ||
5776 | .serialize = service_serialize, | |
5777 | .deserialize_item = service_deserialize_item, | |
5778 | ||
5779 | .active_state = service_active_state, | |
5780 | .sub_state_to_string = service_sub_state_to_string, | |
5781 | ||
5782 | .will_restart = service_will_restart, | |
5783 | ||
5784 | .may_gc = service_may_gc, | |
5785 | ||
5786 | .sigchld_event = service_sigchld_event, | |
5787 | ||
5788 | .reset_failed = service_reset_failed, | |
5789 | ||
5790 | .notify_cgroup_empty = service_notify_cgroup_empty_event, | |
5791 | .notify_cgroup_oom = service_notify_cgroup_oom_event, | |
5792 | .notify_message = service_notify_message, | |
5793 | .notify_handoff_timestamp = service_handoff_timestamp, | |
5794 | .notify_pidref = service_notify_pidref, | |
5795 | ||
5796 | .main_pid = service_main_pid, | |
5797 | .control_pid = service_control_pid, | |
5798 | ||
5799 | .bus_name_owner_change = service_bus_name_owner_change, | |
5800 | ||
5801 | .bus_set_property = bus_service_set_property, | |
5802 | .bus_commit_properties = bus_service_commit_properties, | |
5803 | ||
5804 | .get_timeout = service_get_timeout, | |
5805 | .get_timeout_start_usec = service_get_timeout_start_usec, | |
5806 | .needs_console = service_needs_console, | |
5807 | .exit_status = service_exit_status, | |
5808 | .status_text = service_status_text, | |
5809 | ||
5810 | .status_message_formats = { | |
5811 | .finished_start_job = { | |
5812 | [JOB_FAILED] = "Failed to start %s.", | |
5813 | }, | |
5814 | .finished_stop_job = { | |
5815 | [JOB_DONE] = "Stopped %s.", | |
5816 | [JOB_FAILED] = "Stopped (with error) %s.", | |
5817 | }, | |
5818 | .finished_job = service_finished_job, | |
5819 | }, | |
5820 | ||
5821 | .can_start = service_can_start, | |
5822 | ||
5823 | .notify_plymouth = true, | |
5824 | ||
5825 | .audit_start_message_type = AUDIT_SERVICE_START, | |
5826 | .audit_stop_message_type = AUDIT_SERVICE_STOP, | |
5827 | }; |