]>
Commit | Line | Data |
---|---|---|
1 | /* SPDX-License-Identifier: LGPL-2.1-or-later */ | |
2 | ||
3 | #include <malloc.h> | |
4 | #include <stdlib.h> | |
5 | #include <sys/timerfd.h> | |
6 | #include <sys/wait.h> | |
7 | #include <threads.h> | |
8 | #include <unistd.h> | |
9 | ||
10 | #include "sd-daemon.h" | |
11 | #include "sd-event.h" | |
12 | #include "sd-id128.h" | |
13 | #include "sd-messages.h" | |
14 | ||
15 | #include "alloc-util.h" | |
16 | #include "errno-util.h" | |
17 | #include "event-source.h" | |
18 | #include "fd-util.h" | |
19 | #include "format-util.h" | |
20 | #include "glyph-util.h" | |
21 | #include "hashmap.h" | |
22 | #include "hexdecoct.h" | |
23 | #include "list.h" | |
24 | #include "log.h" | |
25 | #include "logarithm.h" | |
26 | #include "memory-util.h" | |
27 | #include "missing_magic.h" | |
28 | #include "missing_wait.h" | |
29 | #include "origin-id.h" | |
30 | #include "path-util.h" | |
31 | #include "pidfd-util.h" | |
32 | #include "prioq.h" | |
33 | #include "process-util.h" | |
34 | #include "psi-util.h" | |
35 | #include "set.h" | |
36 | #include "signal-util.h" | |
37 | #include "siphash24.h" | |
38 | #include "socket-util.h" | |
39 | #include "stat-util.h" | |
40 | #include "string-table.h" | |
41 | #include "string-util.h" | |
42 | #include "strv.h" | |
43 | #include "strxcpyx.h" | |
44 | #include "time-util.h" | |
45 | ||
46 | #define DEFAULT_ACCURACY_USEC (250 * USEC_PER_MSEC) | |
47 | ||
48 | static bool EVENT_SOURCE_WATCH_PIDFD(const sd_event_source *s) { | |
49 | /* Returns true if this is a PID event source and can be implemented by watching EPOLLIN */ | |
50 | return s && | |
51 | s->type == SOURCE_CHILD && | |
52 | s->child.options == WEXITED; | |
53 | } | |
54 | ||
55 | static bool event_source_is_online(sd_event_source *s) { | |
56 | assert(s); | |
57 | return s->enabled != SD_EVENT_OFF && !s->ratelimited; | |
58 | } | |
59 | ||
60 | static bool event_source_is_offline(sd_event_source *s) { | |
61 | assert(s); | |
62 | return s->enabled == SD_EVENT_OFF || s->ratelimited; | |
63 | } | |
64 | ||
65 | static const char* const event_source_type_table[_SOURCE_EVENT_SOURCE_TYPE_MAX] = { | |
66 | [SOURCE_IO] = "io", | |
67 | [SOURCE_TIME_REALTIME] = "realtime", | |
68 | [SOURCE_TIME_BOOTTIME] = "boottime", | |
69 | [SOURCE_TIME_MONOTONIC] = "monotonic", | |
70 | [SOURCE_TIME_REALTIME_ALARM] = "realtime-alarm", | |
71 | [SOURCE_TIME_BOOTTIME_ALARM] = "boottime-alarm", | |
72 | [SOURCE_SIGNAL] = "signal", | |
73 | [SOURCE_CHILD] = "child", | |
74 | [SOURCE_DEFER] = "defer", | |
75 | [SOURCE_POST] = "post", | |
76 | [SOURCE_EXIT] = "exit", | |
77 | [SOURCE_WATCHDOG] = "watchdog", | |
78 | [SOURCE_INOTIFY] = "inotify", | |
79 | [SOURCE_MEMORY_PRESSURE] = "memory-pressure", | |
80 | }; | |
81 | ||
82 | DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(event_source_type, int); | |
83 | ||
84 | #define EVENT_SOURCE_IS_TIME(t) \ | |
85 | IN_SET((t), \ | |
86 | SOURCE_TIME_REALTIME, \ | |
87 | SOURCE_TIME_BOOTTIME, \ | |
88 | SOURCE_TIME_MONOTONIC, \ | |
89 | SOURCE_TIME_REALTIME_ALARM, \ | |
90 | SOURCE_TIME_BOOTTIME_ALARM) | |
91 | ||
92 | #define EVENT_SOURCE_CAN_RATE_LIMIT(t) \ | |
93 | IN_SET((t), \ | |
94 | SOURCE_IO, \ | |
95 | SOURCE_TIME_REALTIME, \ | |
96 | SOURCE_TIME_BOOTTIME, \ | |
97 | SOURCE_TIME_MONOTONIC, \ | |
98 | SOURCE_TIME_REALTIME_ALARM, \ | |
99 | SOURCE_TIME_BOOTTIME_ALARM, \ | |
100 | SOURCE_SIGNAL, \ | |
101 | SOURCE_DEFER, \ | |
102 | SOURCE_INOTIFY, \ | |
103 | SOURCE_MEMORY_PRESSURE) | |
104 | ||
105 | /* This is used to assert that we didn't pass an unexpected source type to event_source_time_prioq_put(). | |
106 | * Time sources and ratelimited sources can be passed, so effectively this is the same as the | |
107 | * EVENT_SOURCE_CAN_RATE_LIMIT() macro. */ | |
108 | #define EVENT_SOURCE_USES_TIME_PRIOQ(t) EVENT_SOURCE_CAN_RATE_LIMIT(t) | |
109 | ||
110 | struct sd_event { | |
111 | unsigned n_ref; | |
112 | ||
113 | int epoll_fd; | |
114 | int watchdog_fd; | |
115 | ||
116 | Prioq *pending; | |
117 | Prioq *prepare; | |
118 | ||
119 | /* timerfd_create() only supports these five clocks so far. We | |
120 | * can add support for more clocks when the kernel learns to | |
121 | * deal with them, too. */ | |
122 | struct clock_data realtime; | |
123 | struct clock_data boottime; | |
124 | struct clock_data monotonic; | |
125 | struct clock_data realtime_alarm; | |
126 | struct clock_data boottime_alarm; | |
127 | ||
128 | usec_t perturb; | |
129 | ||
130 | sd_event_source **signal_sources; /* indexed by signal number */ | |
131 | Hashmap *signal_data; /* indexed by priority */ | |
132 | ||
133 | Hashmap *child_sources; | |
134 | unsigned n_online_child_sources; | |
135 | ||
136 | Set *post_sources; | |
137 | ||
138 | Prioq *exit; | |
139 | ||
140 | Hashmap *inotify_data; /* indexed by priority */ | |
141 | ||
142 | /* A list of inode structures that still have an fd open, that we need to close before the next loop iteration */ | |
143 | LIST_HEAD(struct inode_data, inode_data_to_close_list); | |
144 | ||
145 | /* A list of inotify objects that already have events buffered which aren't processed yet */ | |
146 | LIST_HEAD(struct inotify_data, buffered_inotify_data_list); | |
147 | ||
148 | /* A list of memory pressure event sources that still need their subscription string written */ | |
149 | LIST_HEAD(sd_event_source, memory_pressure_write_list); | |
150 | ||
151 | uint64_t origin_id; | |
152 | ||
153 | uint64_t iteration; | |
154 | triple_timestamp timestamp; | |
155 | int state; | |
156 | ||
157 | bool exit_requested:1; | |
158 | bool need_process_child:1; | |
159 | bool watchdog:1; | |
160 | bool profile_delays:1; | |
161 | ||
162 | int exit_code; | |
163 | ||
164 | pid_t tid; | |
165 | sd_event **default_event_ptr; | |
166 | ||
167 | usec_t watchdog_last, watchdog_period; | |
168 | ||
169 | unsigned n_sources; | |
170 | ||
171 | struct epoll_event *event_queue; | |
172 | ||
173 | LIST_HEAD(sd_event_source, sources); | |
174 | ||
175 | sd_event_source *sigint_event_source, *sigterm_event_source; | |
176 | ||
177 | usec_t last_run_usec, last_log_usec; | |
178 | unsigned delays[sizeof(usec_t) * 8]; | |
179 | }; | |
180 | ||
181 | DEFINE_PRIVATE_ORIGIN_ID_HELPERS(sd_event, event); | |
182 | ||
183 | static thread_local sd_event *default_event = NULL; | |
184 | ||
185 | static void source_disconnect(sd_event_source *s); | |
186 | static void event_gc_inode_data(sd_event *e, struct inode_data *d); | |
187 | ||
188 | static sd_event* event_resolve(sd_event *e) { | |
189 | return e == SD_EVENT_DEFAULT ? default_event : e; | |
190 | } | |
191 | ||
192 | static int pending_prioq_compare(const void *a, const void *b) { | |
193 | const sd_event_source *x = a, *y = b; | |
194 | int r; | |
195 | ||
196 | assert(x->pending); | |
197 | assert(y->pending); | |
198 | ||
199 | /* Enabled ones first */ | |
200 | r = CMP(x->enabled == SD_EVENT_OFF, y->enabled == SD_EVENT_OFF); | |
201 | if (r != 0) | |
202 | return r; | |
203 | ||
204 | /* Non rate-limited ones first. */ | |
205 | r = CMP(!!x->ratelimited, !!y->ratelimited); | |
206 | if (r != 0) | |
207 | return r; | |
208 | ||
209 | /* Lower priority values first */ | |
210 | r = CMP(x->priority, y->priority); | |
211 | if (r != 0) | |
212 | return r; | |
213 | ||
214 | /* Older entries first */ | |
215 | return CMP(x->pending_iteration, y->pending_iteration); | |
216 | } | |
217 | ||
218 | static int prepare_prioq_compare(const void *a, const void *b) { | |
219 | const sd_event_source *x = a, *y = b; | |
220 | int r; | |
221 | ||
222 | assert(x->prepare); | |
223 | assert(y->prepare); | |
224 | ||
225 | /* Enabled ones first */ | |
226 | r = CMP(x->enabled == SD_EVENT_OFF, y->enabled == SD_EVENT_OFF); | |
227 | if (r != 0) | |
228 | return r; | |
229 | ||
230 | /* Non rate-limited ones first. */ | |
231 | r = CMP(!!x->ratelimited, !!y->ratelimited); | |
232 | if (r != 0) | |
233 | return r; | |
234 | ||
235 | /* Move most recently prepared ones last, so that we can stop | |
236 | * preparing as soon as we hit one that has already been | |
237 | * prepared in the current iteration */ | |
238 | r = CMP(x->prepare_iteration, y->prepare_iteration); | |
239 | if (r != 0) | |
240 | return r; | |
241 | ||
242 | /* Lower priority values first */ | |
243 | return CMP(x->priority, y->priority); | |
244 | } | |
245 | ||
246 | static usec_t time_event_source_next(const sd_event_source *s) { | |
247 | assert(s); | |
248 | ||
249 | /* We have two kinds of event sources that have elapsation times associated with them: the actual | |
250 | * time based ones and the ones for which a ratelimit can be in effect (where we want to be notified | |
251 | * once the ratelimit time window ends). Let's return the next elapsing time depending on what we are | |
252 | * looking at here. */ | |
253 | ||
254 | if (s->ratelimited) { /* If rate-limited the next elapsation is when the ratelimit time window ends */ | |
255 | assert(s->rate_limit.begin != 0); | |
256 | assert(s->rate_limit.interval != 0); | |
257 | return usec_add(s->rate_limit.begin, s->rate_limit.interval); | |
258 | } | |
259 | ||
260 | /* Otherwise this must be a time event source, if not ratelimited */ | |
261 | if (EVENT_SOURCE_IS_TIME(s->type)) | |
262 | return s->time.next; | |
263 | ||
264 | return USEC_INFINITY; | |
265 | } | |
266 | ||
267 | static usec_t time_event_source_latest(const sd_event_source *s) { | |
268 | assert(s); | |
269 | ||
270 | if (s->ratelimited) { /* For ratelimited stuff the earliest and the latest time shall actually be the | |
271 | * same, as we should avoid adding additional inaccuracy on an inaccuracy time | |
272 | * window */ | |
273 | assert(s->rate_limit.begin != 0); | |
274 | assert(s->rate_limit.interval != 0); | |
275 | return usec_add(s->rate_limit.begin, s->rate_limit.interval); | |
276 | } | |
277 | ||
278 | /* Must be a time event source, if not ratelimited */ | |
279 | if (EVENT_SOURCE_IS_TIME(s->type)) | |
280 | return usec_add(s->time.next, s->time.accuracy); | |
281 | ||
282 | return USEC_INFINITY; | |
283 | } | |
284 | ||
285 | static bool event_source_timer_candidate(const sd_event_source *s) { | |
286 | assert(s); | |
287 | ||
288 | /* Returns true for event sources that either are not pending yet (i.e. where it's worth to mark them pending) | |
289 | * or which are currently ratelimited (i.e. where it's worth leaving the ratelimited state) */ | |
290 | return !s->pending || s->ratelimited; | |
291 | } | |
292 | ||
293 | static int time_prioq_compare(const void *a, const void *b, usec_t (*time_func)(const sd_event_source *s)) { | |
294 | const sd_event_source *x = a, *y = b; | |
295 | int r; | |
296 | ||
297 | /* Enabled ones first */ | |
298 | r = CMP(x->enabled == SD_EVENT_OFF, y->enabled == SD_EVENT_OFF); | |
299 | if (r != 0) | |
300 | return r; | |
301 | ||
302 | /* Order "non-pending OR ratelimited" before "pending AND not-ratelimited" */ | |
303 | r = CMP(!event_source_timer_candidate(x), !event_source_timer_candidate(y)); | |
304 | if (r != 0) | |
305 | return r; | |
306 | ||
307 | /* Order by time */ | |
308 | return CMP(time_func(x), time_func(y)); | |
309 | } | |
310 | ||
311 | static int earliest_time_prioq_compare(const void *a, const void *b) { | |
312 | return time_prioq_compare(a, b, time_event_source_next); | |
313 | } | |
314 | ||
315 | static int latest_time_prioq_compare(const void *a, const void *b) { | |
316 | return time_prioq_compare(a, b, time_event_source_latest); | |
317 | } | |
318 | ||
319 | static int exit_prioq_compare(const void *a, const void *b) { | |
320 | const sd_event_source *x = a, *y = b; | |
321 | int r; | |
322 | ||
323 | assert(x->type == SOURCE_EXIT); | |
324 | assert(y->type == SOURCE_EXIT); | |
325 | ||
326 | /* Enabled ones first */ | |
327 | r = CMP(x->enabled == SD_EVENT_OFF, y->enabled == SD_EVENT_OFF); | |
328 | if (r != 0) | |
329 | return r; | |
330 | ||
331 | /* Lower priority values first */ | |
332 | return CMP(x->priority, y->priority); | |
333 | } | |
334 | ||
335 | static void free_clock_data(struct clock_data *d) { | |
336 | assert(d); | |
337 | assert(d->wakeup == WAKEUP_CLOCK_DATA); | |
338 | ||
339 | safe_close(d->fd); | |
340 | prioq_free(d->earliest); | |
341 | prioq_free(d->latest); | |
342 | } | |
343 | ||
344 | static sd_event* event_free(sd_event *e) { | |
345 | sd_event_source *s; | |
346 | ||
347 | assert(e); | |
348 | ||
349 | e->sigterm_event_source = sd_event_source_unref(e->sigterm_event_source); | |
350 | e->sigint_event_source = sd_event_source_unref(e->sigint_event_source); | |
351 | ||
352 | while ((s = e->sources)) { | |
353 | assert(s->floating); | |
354 | source_disconnect(s); | |
355 | sd_event_source_unref(s); | |
356 | } | |
357 | ||
358 | assert(e->n_sources == 0); | |
359 | ||
360 | if (e->default_event_ptr) | |
361 | *(e->default_event_ptr) = NULL; | |
362 | ||
363 | safe_close(e->epoll_fd); | |
364 | safe_close(e->watchdog_fd); | |
365 | ||
366 | free_clock_data(&e->realtime); | |
367 | free_clock_data(&e->boottime); | |
368 | free_clock_data(&e->monotonic); | |
369 | free_clock_data(&e->realtime_alarm); | |
370 | free_clock_data(&e->boottime_alarm); | |
371 | ||
372 | prioq_free(e->pending); | |
373 | prioq_free(e->prepare); | |
374 | prioq_free(e->exit); | |
375 | ||
376 | free(e->signal_sources); | |
377 | hashmap_free(e->signal_data); | |
378 | ||
379 | hashmap_free(e->inotify_data); | |
380 | ||
381 | hashmap_free(e->child_sources); | |
382 | set_free(e->post_sources); | |
383 | ||
384 | free(e->event_queue); | |
385 | ||
386 | return mfree(e); | |
387 | } | |
388 | ||
389 | _public_ int sd_event_new(sd_event** ret) { | |
390 | sd_event *e; | |
391 | int r; | |
392 | ||
393 | assert_return(ret, -EINVAL); | |
394 | ||
395 | e = new(sd_event, 1); | |
396 | if (!e) | |
397 | return -ENOMEM; | |
398 | ||
399 | *e = (sd_event) { | |
400 | .n_ref = 1, | |
401 | .epoll_fd = -EBADF, | |
402 | .watchdog_fd = -EBADF, | |
403 | .realtime.wakeup = WAKEUP_CLOCK_DATA, | |
404 | .realtime.fd = -EBADF, | |
405 | .realtime.next = USEC_INFINITY, | |
406 | .boottime.wakeup = WAKEUP_CLOCK_DATA, | |
407 | .boottime.fd = -EBADF, | |
408 | .boottime.next = USEC_INFINITY, | |
409 | .monotonic.wakeup = WAKEUP_CLOCK_DATA, | |
410 | .monotonic.fd = -EBADF, | |
411 | .monotonic.next = USEC_INFINITY, | |
412 | .realtime_alarm.wakeup = WAKEUP_CLOCK_DATA, | |
413 | .realtime_alarm.fd = -EBADF, | |
414 | .realtime_alarm.next = USEC_INFINITY, | |
415 | .boottime_alarm.wakeup = WAKEUP_CLOCK_DATA, | |
416 | .boottime_alarm.fd = -EBADF, | |
417 | .boottime_alarm.next = USEC_INFINITY, | |
418 | .perturb = USEC_INFINITY, | |
419 | .origin_id = origin_id_query(), | |
420 | }; | |
421 | ||
422 | r = prioq_ensure_allocated(&e->pending, pending_prioq_compare); | |
423 | if (r < 0) | |
424 | goto fail; | |
425 | ||
426 | e->epoll_fd = epoll_create1(EPOLL_CLOEXEC); | |
427 | if (e->epoll_fd < 0) { | |
428 | r = -errno; | |
429 | goto fail; | |
430 | } | |
431 | ||
432 | e->epoll_fd = fd_move_above_stdio(e->epoll_fd); | |
433 | ||
434 | if (secure_getenv("SD_EVENT_PROFILE_DELAYS")) { | |
435 | log_debug("Event loop profiling enabled. Logarithmic histogram of event loop iterations in the range 2^0 %s 2^63 us will be logged every 5s.", | |
436 | glyph(GLYPH_ELLIPSIS)); | |
437 | e->profile_delays = true; | |
438 | } | |
439 | ||
440 | *ret = e; | |
441 | return 0; | |
442 | ||
443 | fail: | |
444 | event_free(e); | |
445 | return r; | |
446 | } | |
447 | ||
448 | /* Define manually so we can add the origin check */ | |
449 | _public_ sd_event* sd_event_ref(sd_event *e) { | |
450 | if (!e) | |
451 | return NULL; | |
452 | if (event_origin_changed(e)) | |
453 | return NULL; | |
454 | ||
455 | e->n_ref++; | |
456 | ||
457 | return e; | |
458 | } | |
459 | ||
460 | _public_ sd_event* sd_event_unref(sd_event *e) { | |
461 | if (!e) | |
462 | return NULL; | |
463 | if (event_origin_changed(e)) | |
464 | return NULL; | |
465 | ||
466 | assert(e->n_ref > 0); | |
467 | if (--e->n_ref > 0) | |
468 | return NULL; | |
469 | ||
470 | return event_free(e); | |
471 | } | |
472 | ||
473 | #define PROTECT_EVENT(e) \ | |
474 | _unused_ _cleanup_(sd_event_unrefp) sd_event *_ref = sd_event_ref(e); | |
475 | ||
476 | _public_ sd_event_source* sd_event_source_disable_unref(sd_event_source *s) { | |
477 | int r; | |
478 | ||
479 | r = sd_event_source_set_enabled(s, SD_EVENT_OFF); | |
480 | if (r < 0) | |
481 | log_debug_errno(r, "Failed to disable event source %p (%s): %m", | |
482 | s, strna(s->description)); | |
483 | ||
484 | return sd_event_source_unref(s); | |
485 | } | |
486 | ||
487 | static void source_io_unregister(sd_event_source *s) { | |
488 | assert(s); | |
489 | assert(s->type == SOURCE_IO); | |
490 | ||
491 | if (event_origin_changed(s->event)) | |
492 | return; | |
493 | ||
494 | if (!s->io.registered) | |
495 | return; | |
496 | ||
497 | if (epoll_ctl(s->event->epoll_fd, EPOLL_CTL_DEL, s->io.fd, NULL) < 0) | |
498 | log_debug_errno(errno, "Failed to remove source %s (type %s) from epoll, ignoring: %m", | |
499 | strna(s->description), event_source_type_to_string(s->type)); | |
500 | ||
501 | s->io.registered = false; | |
502 | } | |
503 | ||
504 | static int source_io_register( | |
505 | sd_event_source *s, | |
506 | int enabled, | |
507 | uint32_t events) { | |
508 | ||
509 | assert(s); | |
510 | assert(s->type == SOURCE_IO); | |
511 | assert(enabled != SD_EVENT_OFF); | |
512 | ||
513 | struct epoll_event ev = { | |
514 | .events = events | (enabled == SD_EVENT_ONESHOT ? EPOLLONESHOT : 0), | |
515 | .data.ptr = s, | |
516 | }; | |
517 | ||
518 | if (epoll_ctl(s->event->epoll_fd, | |
519 | s->io.registered ? EPOLL_CTL_MOD : EPOLL_CTL_ADD, | |
520 | s->io.fd, &ev) < 0) | |
521 | return -errno; | |
522 | ||
523 | s->io.registered = true; | |
524 | ||
525 | return 0; | |
526 | } | |
527 | ||
528 | static void source_child_pidfd_unregister(sd_event_source *s) { | |
529 | assert(s); | |
530 | assert(s->type == SOURCE_CHILD); | |
531 | ||
532 | if (event_origin_changed(s->event)) | |
533 | return; | |
534 | ||
535 | if (!s->child.registered) | |
536 | return; | |
537 | ||
538 | if (EVENT_SOURCE_WATCH_PIDFD(s)) | |
539 | if (epoll_ctl(s->event->epoll_fd, EPOLL_CTL_DEL, s->child.pidfd, NULL) < 0) | |
540 | log_debug_errno(errno, "Failed to remove source %s (type %s) from epoll, ignoring: %m", | |
541 | strna(s->description), event_source_type_to_string(s->type)); | |
542 | ||
543 | s->child.registered = false; | |
544 | } | |
545 | ||
546 | static int source_child_pidfd_register(sd_event_source *s, int enabled) { | |
547 | assert(s); | |
548 | assert(s->type == SOURCE_CHILD); | |
549 | assert(enabled != SD_EVENT_OFF); | |
550 | ||
551 | if (EVENT_SOURCE_WATCH_PIDFD(s)) { | |
552 | struct epoll_event ev = { | |
553 | .events = EPOLLIN | (enabled == SD_EVENT_ONESHOT ? EPOLLONESHOT : 0), | |
554 | .data.ptr = s, | |
555 | }; | |
556 | ||
557 | if (epoll_ctl(s->event->epoll_fd, | |
558 | s->child.registered ? EPOLL_CTL_MOD : EPOLL_CTL_ADD, | |
559 | s->child.pidfd, &ev) < 0) | |
560 | return -errno; | |
561 | } | |
562 | ||
563 | s->child.registered = true; | |
564 | return 0; | |
565 | } | |
566 | ||
567 | static void source_memory_pressure_unregister(sd_event_source *s) { | |
568 | assert(s); | |
569 | assert(s->type == SOURCE_MEMORY_PRESSURE); | |
570 | ||
571 | if (event_origin_changed(s->event)) | |
572 | return; | |
573 | ||
574 | if (!s->memory_pressure.registered) | |
575 | return; | |
576 | ||
577 | if (epoll_ctl(s->event->epoll_fd, EPOLL_CTL_DEL, s->memory_pressure.fd, NULL) < 0) | |
578 | log_debug_errno(errno, "Failed to remove source %s (type %s) from epoll, ignoring: %m", | |
579 | strna(s->description), event_source_type_to_string(s->type)); | |
580 | ||
581 | s->memory_pressure.registered = false; | |
582 | } | |
583 | ||
584 | static int source_memory_pressure_register(sd_event_source *s, int enabled) { | |
585 | assert(s); | |
586 | assert(s->type == SOURCE_MEMORY_PRESSURE); | |
587 | assert(enabled != SD_EVENT_OFF); | |
588 | ||
589 | struct epoll_event ev = { | |
590 | .events = s->memory_pressure.write_buffer_size > 0 ? EPOLLOUT : | |
591 | (s->memory_pressure.events | (enabled == SD_EVENT_ONESHOT ? EPOLLONESHOT : 0)), | |
592 | .data.ptr = s, | |
593 | }; | |
594 | ||
595 | if (epoll_ctl(s->event->epoll_fd, | |
596 | s->memory_pressure.registered ? EPOLL_CTL_MOD : EPOLL_CTL_ADD, | |
597 | s->memory_pressure.fd, &ev) < 0) | |
598 | return -errno; | |
599 | ||
600 | s->memory_pressure.registered = true; | |
601 | return 0; | |
602 | } | |
603 | ||
604 | static void source_memory_pressure_add_to_write_list(sd_event_source *s) { | |
605 | assert(s); | |
606 | assert(s->type == SOURCE_MEMORY_PRESSURE); | |
607 | ||
608 | if (s->memory_pressure.in_write_list) | |
609 | return; | |
610 | ||
611 | LIST_PREPEND(memory_pressure.write_list, s->event->memory_pressure_write_list, s); | |
612 | s->memory_pressure.in_write_list = true; | |
613 | } | |
614 | ||
615 | static void source_memory_pressure_remove_from_write_list(sd_event_source *s) { | |
616 | assert(s); | |
617 | assert(s->type == SOURCE_MEMORY_PRESSURE); | |
618 | ||
619 | if (!s->memory_pressure.in_write_list) | |
620 | return; | |
621 | ||
622 | LIST_REMOVE(memory_pressure.write_list, s->event->memory_pressure_write_list, s); | |
623 | s->memory_pressure.in_write_list = false; | |
624 | } | |
625 | ||
626 | static clockid_t event_source_type_to_clock(EventSourceType t) { | |
627 | ||
628 | switch (t) { | |
629 | ||
630 | case SOURCE_TIME_REALTIME: | |
631 | return CLOCK_REALTIME; | |
632 | ||
633 | case SOURCE_TIME_BOOTTIME: | |
634 | return CLOCK_BOOTTIME; | |
635 | ||
636 | case SOURCE_TIME_MONOTONIC: | |
637 | return CLOCK_MONOTONIC; | |
638 | ||
639 | case SOURCE_TIME_REALTIME_ALARM: | |
640 | return CLOCK_REALTIME_ALARM; | |
641 | ||
642 | case SOURCE_TIME_BOOTTIME_ALARM: | |
643 | return CLOCK_BOOTTIME_ALARM; | |
644 | ||
645 | default: | |
646 | return (clockid_t) -1; | |
647 | } | |
648 | } | |
649 | ||
650 | static EventSourceType clock_to_event_source_type(clockid_t clock) { | |
651 | ||
652 | switch (clock) { | |
653 | ||
654 | case CLOCK_REALTIME: | |
655 | return SOURCE_TIME_REALTIME; | |
656 | ||
657 | case CLOCK_BOOTTIME: | |
658 | return SOURCE_TIME_BOOTTIME; | |
659 | ||
660 | case CLOCK_MONOTONIC: | |
661 | return SOURCE_TIME_MONOTONIC; | |
662 | ||
663 | case CLOCK_REALTIME_ALARM: | |
664 | return SOURCE_TIME_REALTIME_ALARM; | |
665 | ||
666 | case CLOCK_BOOTTIME_ALARM: | |
667 | return SOURCE_TIME_BOOTTIME_ALARM; | |
668 | ||
669 | default: | |
670 | return _SOURCE_EVENT_SOURCE_TYPE_INVALID; | |
671 | } | |
672 | } | |
673 | ||
674 | static struct clock_data* event_get_clock_data(sd_event *e, EventSourceType t) { | |
675 | assert(e); | |
676 | ||
677 | switch (t) { | |
678 | ||
679 | case SOURCE_TIME_REALTIME: | |
680 | return &e->realtime; | |
681 | ||
682 | case SOURCE_TIME_BOOTTIME: | |
683 | return &e->boottime; | |
684 | ||
685 | case SOURCE_TIME_MONOTONIC: | |
686 | return &e->monotonic; | |
687 | ||
688 | case SOURCE_TIME_REALTIME_ALARM: | |
689 | return &e->realtime_alarm; | |
690 | ||
691 | case SOURCE_TIME_BOOTTIME_ALARM: | |
692 | return &e->boottime_alarm; | |
693 | ||
694 | default: | |
695 | return NULL; | |
696 | } | |
697 | } | |
698 | ||
699 | static void event_free_signal_data(sd_event *e, struct signal_data *d) { | |
700 | assert(e); | |
701 | ||
702 | if (!d) | |
703 | return; | |
704 | ||
705 | hashmap_remove(e->signal_data, &d->priority); | |
706 | safe_close(d->fd); | |
707 | free(d); | |
708 | } | |
709 | ||
710 | static int event_make_signal_data( | |
711 | sd_event *e, | |
712 | int sig, | |
713 | struct signal_data **ret) { | |
714 | ||
715 | struct signal_data *d; | |
716 | bool added = false; | |
717 | sigset_t ss_copy; | |
718 | int64_t priority; | |
719 | int r; | |
720 | ||
721 | assert(e); | |
722 | ||
723 | if (event_origin_changed(e)) | |
724 | return -ECHILD; | |
725 | ||
726 | if (e->signal_sources && e->signal_sources[sig]) | |
727 | priority = e->signal_sources[sig]->priority; | |
728 | else | |
729 | priority = SD_EVENT_PRIORITY_NORMAL; | |
730 | ||
731 | d = hashmap_get(e->signal_data, &priority); | |
732 | if (d) { | |
733 | if (sigismember(&d->sigset, sig) > 0) { | |
734 | if (ret) | |
735 | *ret = d; | |
736 | return 0; | |
737 | } | |
738 | } else { | |
739 | d = new(struct signal_data, 1); | |
740 | if (!d) | |
741 | return -ENOMEM; | |
742 | ||
743 | *d = (struct signal_data) { | |
744 | .wakeup = WAKEUP_SIGNAL_DATA, | |
745 | .fd = -EBADF, | |
746 | .priority = priority, | |
747 | }; | |
748 | ||
749 | r = hashmap_ensure_put(&e->signal_data, &uint64_hash_ops, &d->priority, d); | |
750 | if (r < 0) { | |
751 | free(d); | |
752 | return r; | |
753 | } | |
754 | ||
755 | added = true; | |
756 | } | |
757 | ||
758 | ss_copy = d->sigset; | |
759 | assert_se(sigaddset(&ss_copy, sig) >= 0); | |
760 | ||
761 | r = signalfd(d->fd >= 0 ? d->fd : -1, /* the first arg must be -1 or a valid signalfd */ | |
762 | &ss_copy, | |
763 | SFD_NONBLOCK|SFD_CLOEXEC); | |
764 | if (r < 0) { | |
765 | r = -errno; | |
766 | goto fail; | |
767 | } | |
768 | ||
769 | d->sigset = ss_copy; | |
770 | ||
771 | if (d->fd >= 0) { | |
772 | if (ret) | |
773 | *ret = d; | |
774 | return 0; | |
775 | } | |
776 | ||
777 | d->fd = fd_move_above_stdio(r); | |
778 | ||
779 | struct epoll_event ev = { | |
780 | .events = EPOLLIN, | |
781 | .data.ptr = d, | |
782 | }; | |
783 | ||
784 | if (epoll_ctl(e->epoll_fd, EPOLL_CTL_ADD, d->fd, &ev) < 0) { | |
785 | r = -errno; | |
786 | goto fail; | |
787 | } | |
788 | ||
789 | if (ret) | |
790 | *ret = d; | |
791 | ||
792 | return 0; | |
793 | ||
794 | fail: | |
795 | if (added) | |
796 | event_free_signal_data(e, d); | |
797 | ||
798 | return r; | |
799 | } | |
800 | ||
801 | static void event_unmask_signal_data(sd_event *e, struct signal_data *d, int sig) { | |
802 | assert(e); | |
803 | assert(d); | |
804 | ||
805 | /* Turns off the specified signal in the signal data | |
806 | * object. If the signal mask of the object becomes empty that | |
807 | * way removes it. */ | |
808 | ||
809 | if (sigismember(&d->sigset, sig) == 0) | |
810 | return; | |
811 | ||
812 | assert_se(sigdelset(&d->sigset, sig) >= 0); | |
813 | ||
814 | if (sigisemptyset(&d->sigset)) { | |
815 | /* If all the mask is all-zero we can get rid of the structure */ | |
816 | event_free_signal_data(e, d); | |
817 | return; | |
818 | } | |
819 | ||
820 | if (event_origin_changed(e)) | |
821 | return; | |
822 | ||
823 | assert(d->fd >= 0); | |
824 | ||
825 | if (signalfd(d->fd, &d->sigset, SFD_NONBLOCK|SFD_CLOEXEC) < 0) | |
826 | log_debug_errno(errno, "Failed to unset signal bit, ignoring: %m"); | |
827 | } | |
828 | ||
829 | static void event_gc_signal_data(sd_event *e, const int64_t *priority, int sig) { | |
830 | struct signal_data *d; | |
831 | static const int64_t zero_priority = 0; | |
832 | ||
833 | assert(e); | |
834 | ||
835 | /* Rechecks if the specified signal is still something we are interested in. If not, we'll unmask it, | |
836 | * and possibly drop the signalfd for it. */ | |
837 | ||
838 | if (sig == SIGCHLD && | |
839 | e->n_online_child_sources > 0) | |
840 | return; | |
841 | ||
842 | if (e->signal_sources && | |
843 | e->signal_sources[sig] && | |
844 | event_source_is_online(e->signal_sources[sig])) | |
845 | return; | |
846 | ||
847 | /* | |
848 | * The specified signal might be enabled in three different queues: | |
849 | * | |
850 | * 1) the one that belongs to the priority passed (if it is non-NULL) | |
851 | * 2) the one that belongs to the priority of the event source of the signal (if there is one) | |
852 | * 3) the 0 priority (to cover the SIGCHLD case) | |
853 | * | |
854 | * Hence, let's remove it from all three here. | |
855 | */ | |
856 | ||
857 | if (priority) { | |
858 | d = hashmap_get(e->signal_data, priority); | |
859 | if (d) | |
860 | event_unmask_signal_data(e, d, sig); | |
861 | } | |
862 | ||
863 | if (e->signal_sources && e->signal_sources[sig]) { | |
864 | d = hashmap_get(e->signal_data, &e->signal_sources[sig]->priority); | |
865 | if (d) | |
866 | event_unmask_signal_data(e, d, sig); | |
867 | } | |
868 | ||
869 | d = hashmap_get(e->signal_data, &zero_priority); | |
870 | if (d) | |
871 | event_unmask_signal_data(e, d, sig); | |
872 | } | |
873 | ||
874 | static void event_source_pp_prioq_reshuffle(sd_event_source *s) { | |
875 | assert(s); | |
876 | ||
877 | /* Reshuffles the pending + prepare prioqs. Called whenever the dispatch order changes, i.e. when | |
878 | * they are enabled/disabled or marked pending and such. */ | |
879 | ||
880 | if (s->pending) | |
881 | prioq_reshuffle(s->event->pending, s, &s->pending_index); | |
882 | ||
883 | if (s->prepare) | |
884 | prioq_reshuffle(s->event->prepare, s, &s->prepare_index); | |
885 | } | |
886 | ||
887 | static void event_source_time_prioq_reshuffle(sd_event_source *s) { | |
888 | struct clock_data *d; | |
889 | ||
890 | assert(s); | |
891 | ||
892 | /* Called whenever the event source's timer ordering properties changed, i.e. time, accuracy, | |
893 | * pending, enable state, and ratelimiting state. Makes sure the two prioq's are ordered | |
894 | * properly again. */ | |
895 | ||
896 | if (s->ratelimited) | |
897 | d = &s->event->monotonic; | |
898 | else if (EVENT_SOURCE_IS_TIME(s->type)) | |
899 | assert_se(d = event_get_clock_data(s->event, s->type)); | |
900 | else | |
901 | return; /* no-op for an event source which is neither a timer nor ratelimited. */ | |
902 | ||
903 | prioq_reshuffle(d->earliest, s, &s->earliest_index); | |
904 | prioq_reshuffle(d->latest, s, &s->latest_index); | |
905 | d->needs_rearm = true; | |
906 | } | |
907 | ||
908 | static void event_source_time_prioq_remove( | |
909 | sd_event_source *s, | |
910 | struct clock_data *d) { | |
911 | ||
912 | assert(s); | |
913 | assert(d); | |
914 | ||
915 | prioq_remove(d->earliest, s, &s->earliest_index); | |
916 | prioq_remove(d->latest, s, &s->latest_index); | |
917 | s->earliest_index = s->latest_index = PRIOQ_IDX_NULL; | |
918 | d->needs_rearm = true; | |
919 | } | |
920 | ||
921 | static void source_disconnect(sd_event_source *s) { | |
922 | sd_event *event; | |
923 | int r; | |
924 | ||
925 | assert(s); | |
926 | ||
927 | if (!s->event) | |
928 | return; | |
929 | ||
930 | assert(s->event->n_sources > 0); | |
931 | ||
932 | switch (s->type) { | |
933 | ||
934 | case SOURCE_IO: | |
935 | if (s->io.fd >= 0) | |
936 | source_io_unregister(s); | |
937 | ||
938 | break; | |
939 | ||
940 | case SOURCE_TIME_REALTIME: | |
941 | case SOURCE_TIME_BOOTTIME: | |
942 | case SOURCE_TIME_MONOTONIC: | |
943 | case SOURCE_TIME_REALTIME_ALARM: | |
944 | case SOURCE_TIME_BOOTTIME_ALARM: | |
945 | /* Only remove this event source from the time event source here if it is not ratelimited. If | |
946 | * it is ratelimited, we'll remove it below, separately. Why? Because the clock used might | |
947 | * differ: ratelimiting always uses CLOCK_MONOTONIC, but timer events might use any clock */ | |
948 | ||
949 | if (!s->ratelimited) { | |
950 | struct clock_data *d; | |
951 | assert_se(d = event_get_clock_data(s->event, s->type)); | |
952 | event_source_time_prioq_remove(s, d); | |
953 | } | |
954 | ||
955 | break; | |
956 | ||
957 | case SOURCE_SIGNAL: | |
958 | if (s->signal.sig > 0) { | |
959 | ||
960 | if (s->event->signal_sources) | |
961 | s->event->signal_sources[s->signal.sig] = NULL; | |
962 | ||
963 | event_gc_signal_data(s->event, &s->priority, s->signal.sig); | |
964 | ||
965 | if (s->signal.unblock) { | |
966 | sigset_t new_ss; | |
967 | ||
968 | if (sigemptyset(&new_ss) < 0) | |
969 | log_debug_errno(errno, "Failed to reset signal set, ignoring: %m"); | |
970 | else if (sigaddset(&new_ss, s->signal.sig) < 0) | |
971 | log_debug_errno(errno, "Failed to add signal %i to signal mask, ignoring: %m", s->signal.sig); | |
972 | else { | |
973 | r = pthread_sigmask(SIG_UNBLOCK, &new_ss, NULL); | |
974 | if (r != 0) | |
975 | log_debug_errno(r, "Failed to unblock signal %i, ignoring: %m", s->signal.sig); | |
976 | } | |
977 | } | |
978 | } | |
979 | ||
980 | break; | |
981 | ||
982 | case SOURCE_CHILD: | |
983 | if (event_origin_changed(s->event)) | |
984 | s->child.process_owned = false; | |
985 | ||
986 | if (s->child.pid > 0) { | |
987 | if (event_source_is_online(s)) { | |
988 | assert(s->event->n_online_child_sources > 0); | |
989 | s->event->n_online_child_sources--; | |
990 | } | |
991 | ||
992 | assert_se(hashmap_remove(s->event->child_sources, PID_TO_PTR(s->child.pid))); | |
993 | } | |
994 | ||
995 | if (EVENT_SOURCE_WATCH_PIDFD(s)) | |
996 | source_child_pidfd_unregister(s); | |
997 | else | |
998 | event_gc_signal_data(s->event, &s->priority, SIGCHLD); | |
999 | ||
1000 | break; | |
1001 | ||
1002 | case SOURCE_DEFER: | |
1003 | /* nothing */ | |
1004 | break; | |
1005 | ||
1006 | case SOURCE_POST: | |
1007 | set_remove(s->event->post_sources, s); | |
1008 | break; | |
1009 | ||
1010 | case SOURCE_EXIT: | |
1011 | prioq_remove(s->event->exit, s, &s->exit.prioq_index); | |
1012 | break; | |
1013 | ||
1014 | case SOURCE_INOTIFY: { | |
1015 | struct inode_data *inode_data; | |
1016 | ||
1017 | inode_data = s->inotify.inode_data; | |
1018 | if (inode_data) { | |
1019 | struct inotify_data *inotify_data; | |
1020 | assert_se(inotify_data = inode_data->inotify_data); | |
1021 | ||
1022 | /* Detach this event source from the inode object */ | |
1023 | LIST_REMOVE(inotify.by_inode_data, inode_data->event_sources, s); | |
1024 | s->inotify.inode_data = NULL; | |
1025 | ||
1026 | if (s->pending) { | |
1027 | assert(inotify_data->n_pending > 0); | |
1028 | inotify_data->n_pending--; | |
1029 | } | |
1030 | ||
1031 | /* Note that we don't reduce the inotify mask for the watch descriptor here if the inode is | |
1032 | * continued to being watched. That's because inotify doesn't really have an API for that: we | |
1033 | * can only change watch masks with access to the original inode either by fd or by path. But | |
1034 | * paths aren't stable, and keeping an O_PATH fd open all the time would mean wasting an fd | |
1035 | * continuously and keeping the mount busy which we can't really do. We could reconstruct the | |
1036 | * original inode from /proc/self/fdinfo/$INOTIFY_FD (as all watch descriptors are listed | |
1037 | * there), but given the need for open_by_handle_at() which is privileged and not universally | |
1038 | * available this would be quite an incomplete solution. Hence we go the other way, leave the | |
1039 | * mask set, even if it is not minimized now, and ignore all events we aren't interested in | |
1040 | * anymore after reception. Yes, this sucks, but … Linux … */ | |
1041 | ||
1042 | /* Maybe release the inode data (and its inotify) */ | |
1043 | event_gc_inode_data(s->event, inode_data); | |
1044 | } | |
1045 | ||
1046 | break; | |
1047 | } | |
1048 | ||
1049 | case SOURCE_MEMORY_PRESSURE: | |
1050 | source_memory_pressure_remove_from_write_list(s); | |
1051 | source_memory_pressure_unregister(s); | |
1052 | break; | |
1053 | ||
1054 | default: | |
1055 | assert_not_reached(); | |
1056 | } | |
1057 | ||
1058 | if (s->pending) | |
1059 | prioq_remove(s->event->pending, s, &s->pending_index); | |
1060 | ||
1061 | if (s->prepare) | |
1062 | prioq_remove(s->event->prepare, s, &s->prepare_index); | |
1063 | ||
1064 | if (s->ratelimited) | |
1065 | event_source_time_prioq_remove(s, &s->event->monotonic); | |
1066 | ||
1067 | event = TAKE_PTR(s->event); | |
1068 | LIST_REMOVE(sources, event->sources, s); | |
1069 | event->n_sources--; | |
1070 | ||
1071 | /* Note that we don't invalidate the type here, since we still need it in order to close the fd or | |
1072 | * pidfd associated with this event source, which we'll do only on source_free(). */ | |
1073 | ||
1074 | if (!s->floating) | |
1075 | sd_event_unref(event); | |
1076 | } | |
1077 | ||
1078 | static sd_event_source* source_free(sd_event_source *s) { | |
1079 | int r; | |
1080 | ||
1081 | assert(s); | |
1082 | ||
1083 | source_disconnect(s); | |
1084 | ||
1085 | if (s->type == SOURCE_IO && s->io.owned) | |
1086 | s->io.fd = safe_close(s->io.fd); | |
1087 | ||
1088 | if (s->type == SOURCE_CHILD) { | |
1089 | /* Eventually the kernel will do this automatically for us, but for now let's emulate this (unreliably) in userspace. */ | |
1090 | ||
1091 | if (s->child.process_owned) { | |
1092 | assert(s->child.pid > 0); | |
1093 | assert(s->child.pidfd >= 0); | |
1094 | ||
1095 | if (!s->child.exited) { | |
1096 | r = RET_NERRNO(pidfd_send_signal(s->child.pidfd, SIGKILL, NULL, 0)); | |
1097 | if (r < 0 && r != -ESRCH) | |
1098 | log_debug_errno(r, "Failed to kill process " PID_FMT ", ignoring: %m", | |
1099 | s->child.pid); | |
1100 | } | |
1101 | ||
1102 | if (!s->child.waited) { | |
1103 | siginfo_t si = {}; | |
1104 | ||
1105 | /* Reap the child if we can */ | |
1106 | (void) waitid(P_PIDFD, s->child.pidfd, &si, WEXITED); | |
1107 | } | |
1108 | } | |
1109 | ||
1110 | if (s->child.pidfd_owned) | |
1111 | s->child.pidfd = safe_close(s->child.pidfd); | |
1112 | } | |
1113 | ||
1114 | if (s->type == SOURCE_MEMORY_PRESSURE) { | |
1115 | s->memory_pressure.fd = safe_close(s->memory_pressure.fd); | |
1116 | s->memory_pressure.write_buffer = mfree(s->memory_pressure.write_buffer); | |
1117 | } | |
1118 | ||
1119 | if (s->destroy_callback) | |
1120 | s->destroy_callback(s->userdata); | |
1121 | ||
1122 | free(s->description); | |
1123 | return mfree(s); | |
1124 | } | |
1125 | DEFINE_TRIVIAL_CLEANUP_FUNC(sd_event_source*, source_free); | |
1126 | ||
1127 | static int source_set_pending(sd_event_source *s, bool b) { | |
1128 | int r; | |
1129 | ||
1130 | assert(s); | |
1131 | assert(s->type != SOURCE_EXIT); | |
1132 | ||
1133 | if (s->pending == b) | |
1134 | return 0; | |
1135 | ||
1136 | s->pending = b; | |
1137 | ||
1138 | if (b) { | |
1139 | s->pending_iteration = s->event->iteration; | |
1140 | ||
1141 | r = prioq_put(s->event->pending, s, &s->pending_index); | |
1142 | if (r < 0) { | |
1143 | s->pending = false; | |
1144 | return r; | |
1145 | } | |
1146 | } else | |
1147 | assert_se(prioq_remove(s->event->pending, s, &s->pending_index)); | |
1148 | ||
1149 | if (EVENT_SOURCE_IS_TIME(s->type)) | |
1150 | event_source_time_prioq_reshuffle(s); | |
1151 | ||
1152 | if (s->type == SOURCE_SIGNAL && !b) { | |
1153 | struct signal_data *d; | |
1154 | ||
1155 | d = hashmap_get(s->event->signal_data, &s->priority); | |
1156 | if (d && d->current == s) | |
1157 | d->current = NULL; | |
1158 | } | |
1159 | ||
1160 | if (s->type == SOURCE_INOTIFY) { | |
1161 | ||
1162 | assert(s->inotify.inode_data); | |
1163 | assert(s->inotify.inode_data->inotify_data); | |
1164 | ||
1165 | if (b) | |
1166 | s->inotify.inode_data->inotify_data->n_pending++; | |
1167 | else { | |
1168 | assert(s->inotify.inode_data->inotify_data->n_pending > 0); | |
1169 | s->inotify.inode_data->inotify_data->n_pending--; | |
1170 | } | |
1171 | } | |
1172 | ||
1173 | return 1; | |
1174 | } | |
1175 | ||
1176 | static sd_event_source* source_new(sd_event *e, bool floating, EventSourceType type) { | |
1177 | ||
1178 | /* Let's allocate exactly what we need. Note that the difference of the smallest event source | |
1179 | * structure to the largest is 144 bytes on x86-64 at the time of writing, i.e. more than two cache | |
1180 | * lines. */ | |
1181 | static const size_t size_table[_SOURCE_EVENT_SOURCE_TYPE_MAX] = { | |
1182 | [SOURCE_IO] = endoffsetof_field(sd_event_source, io), | |
1183 | [SOURCE_TIME_REALTIME] = endoffsetof_field(sd_event_source, time), | |
1184 | [SOURCE_TIME_BOOTTIME] = endoffsetof_field(sd_event_source, time), | |
1185 | [SOURCE_TIME_MONOTONIC] = endoffsetof_field(sd_event_source, time), | |
1186 | [SOURCE_TIME_REALTIME_ALARM] = endoffsetof_field(sd_event_source, time), | |
1187 | [SOURCE_TIME_BOOTTIME_ALARM] = endoffsetof_field(sd_event_source, time), | |
1188 | [SOURCE_SIGNAL] = endoffsetof_field(sd_event_source, signal), | |
1189 | [SOURCE_CHILD] = endoffsetof_field(sd_event_source, child), | |
1190 | [SOURCE_DEFER] = endoffsetof_field(sd_event_source, defer), | |
1191 | [SOURCE_POST] = endoffsetof_field(sd_event_source, post), | |
1192 | [SOURCE_EXIT] = endoffsetof_field(sd_event_source, exit), | |
1193 | [SOURCE_INOTIFY] = endoffsetof_field(sd_event_source, inotify), | |
1194 | [SOURCE_MEMORY_PRESSURE] = endoffsetof_field(sd_event_source, memory_pressure), | |
1195 | }; | |
1196 | ||
1197 | sd_event_source *s; | |
1198 | ||
1199 | assert(e); | |
1200 | assert(type >= 0); | |
1201 | assert(type < _SOURCE_EVENT_SOURCE_TYPE_MAX); | |
1202 | assert(size_table[type] > 0); | |
1203 | ||
1204 | s = malloc0(size_table[type]); | |
1205 | if (!s) | |
1206 | return NULL; | |
1207 | /* We use expand_to_usable() here to tell gcc that it should consider this an object of the full | |
1208 | * size, even if we only allocate the initial part we need. */ | |
1209 | s = expand_to_usable(s, sizeof(sd_event_source)); | |
1210 | ||
1211 | /* Note: we cannot use compound initialization here, because sizeof(sd_event_source) is likely larger | |
1212 | * than what we allocated here. */ | |
1213 | s->n_ref = 1; | |
1214 | s->event = e; | |
1215 | s->floating = floating; | |
1216 | s->type = type; | |
1217 | s->pending_index = PRIOQ_IDX_NULL; | |
1218 | s->prepare_index = PRIOQ_IDX_NULL; | |
1219 | ||
1220 | if (!floating) | |
1221 | sd_event_ref(e); | |
1222 | ||
1223 | LIST_PREPEND(sources, e->sources, s); | |
1224 | e->n_sources++; | |
1225 | ||
1226 | return s; | |
1227 | } | |
1228 | ||
1229 | static int io_exit_callback(sd_event_source *s, int fd, uint32_t revents, void *userdata) { | |
1230 | assert(s); | |
1231 | ||
1232 | return sd_event_exit(sd_event_source_get_event(s), PTR_TO_INT(userdata)); | |
1233 | } | |
1234 | ||
1235 | _public_ int sd_event_add_io( | |
1236 | sd_event *e, | |
1237 | sd_event_source **ret, | |
1238 | int fd, | |
1239 | uint32_t events, | |
1240 | sd_event_io_handler_t callback, | |
1241 | void *userdata) { | |
1242 | ||
1243 | _cleanup_(source_freep) sd_event_source *s = NULL; | |
1244 | int r; | |
1245 | ||
1246 | assert_return(e, -EINVAL); | |
1247 | assert_return(e = event_resolve(e), -ENOPKG); | |
1248 | assert_return(fd >= 0, -EBADF); | |
1249 | assert_return(!(events & ~(EPOLLIN|EPOLLOUT|EPOLLRDHUP|EPOLLPRI|EPOLLERR|EPOLLHUP|EPOLLET)), -EINVAL); | |
1250 | assert_return(e->state != SD_EVENT_FINISHED, -ESTALE); | |
1251 | assert_return(!event_origin_changed(e), -ECHILD); | |
1252 | ||
1253 | if (!callback) | |
1254 | callback = io_exit_callback; | |
1255 | ||
1256 | s = source_new(e, !ret, SOURCE_IO); | |
1257 | if (!s) | |
1258 | return -ENOMEM; | |
1259 | ||
1260 | s->wakeup = WAKEUP_EVENT_SOURCE; | |
1261 | s->io.fd = fd; | |
1262 | s->io.events = events; | |
1263 | s->io.callback = callback; | |
1264 | s->userdata = userdata; | |
1265 | s->enabled = SD_EVENT_ON; | |
1266 | ||
1267 | r = source_io_register(s, s->enabled, events); | |
1268 | if (r < 0) | |
1269 | return r; | |
1270 | ||
1271 | if (ret) | |
1272 | *ret = s; | |
1273 | TAKE_PTR(s); | |
1274 | ||
1275 | return 0; | |
1276 | } | |
1277 | ||
1278 | static void initialize_perturb(sd_event *e) { | |
1279 | sd_id128_t id = {}; | |
1280 | ||
1281 | /* When we sleep for longer, we try to realign the wakeup to the same time within each | |
1282 | * minute/second/250ms, so that events all across the system can be coalesced into a single CPU | |
1283 | * wakeup. However, let's take some system-specific randomness for this value, so that in a network | |
1284 | * of systems with synced clocks timer events are distributed a bit. Here, we calculate a | |
1285 | * perturbation usec offset from the boot ID (or machine ID if failed, e.g. /proc is not mounted). */ | |
1286 | ||
1287 | if (_likely_(e->perturb != USEC_INFINITY)) | |
1288 | return; | |
1289 | ||
1290 | if (sd_id128_get_boot(&id) >= 0 || sd_id128_get_machine(&id) >= 0) | |
1291 | e->perturb = (id.qwords[0] ^ id.qwords[1]) % USEC_PER_MINUTE; | |
1292 | else | |
1293 | e->perturb = 0; /* This is a super early process without /proc and /etc ?? */ | |
1294 | } | |
1295 | ||
1296 | static int event_setup_timer_fd( | |
1297 | sd_event *e, | |
1298 | struct clock_data *d, | |
1299 | clockid_t clock) { | |
1300 | ||
1301 | assert(e); | |
1302 | assert(d); | |
1303 | ||
1304 | if (_likely_(d->fd >= 0)) | |
1305 | return 0; | |
1306 | ||
1307 | _cleanup_close_ int fd = -EBADF; | |
1308 | ||
1309 | fd = timerfd_create(clock, TFD_NONBLOCK|TFD_CLOEXEC); | |
1310 | if (fd < 0) | |
1311 | return -errno; | |
1312 | ||
1313 | fd = fd_move_above_stdio(fd); | |
1314 | ||
1315 | struct epoll_event ev = { | |
1316 | .events = EPOLLIN, | |
1317 | .data.ptr = d, | |
1318 | }; | |
1319 | ||
1320 | if (epoll_ctl(e->epoll_fd, EPOLL_CTL_ADD, fd, &ev) < 0) | |
1321 | return -errno; | |
1322 | ||
1323 | d->fd = TAKE_FD(fd); | |
1324 | return 0; | |
1325 | } | |
1326 | ||
1327 | static int time_exit_callback(sd_event_source *s, uint64_t usec, void *userdata) { | |
1328 | assert(s); | |
1329 | ||
1330 | return sd_event_exit(sd_event_source_get_event(s), PTR_TO_INT(userdata)); | |
1331 | } | |
1332 | ||
1333 | static int setup_clock_data(sd_event *e, struct clock_data *d, clockid_t clock) { | |
1334 | int r; | |
1335 | ||
1336 | assert(d); | |
1337 | ||
1338 | if (d->fd < 0) { | |
1339 | r = event_setup_timer_fd(e, d, clock); | |
1340 | if (r < 0) | |
1341 | return r; | |
1342 | } | |
1343 | ||
1344 | r = prioq_ensure_allocated(&d->earliest, earliest_time_prioq_compare); | |
1345 | if (r < 0) | |
1346 | return r; | |
1347 | ||
1348 | r = prioq_ensure_allocated(&d->latest, latest_time_prioq_compare); | |
1349 | if (r < 0) | |
1350 | return r; | |
1351 | ||
1352 | return 0; | |
1353 | } | |
1354 | ||
1355 | static int event_source_time_prioq_put( | |
1356 | sd_event_source *s, | |
1357 | struct clock_data *d) { | |
1358 | ||
1359 | int r; | |
1360 | ||
1361 | assert(s); | |
1362 | assert(d); | |
1363 | assert(EVENT_SOURCE_USES_TIME_PRIOQ(s->type)); | |
1364 | ||
1365 | r = prioq_put(d->earliest, s, &s->earliest_index); | |
1366 | if (r < 0) | |
1367 | return r; | |
1368 | ||
1369 | r = prioq_put(d->latest, s, &s->latest_index); | |
1370 | if (r < 0) { | |
1371 | assert_se(prioq_remove(d->earliest, s, &s->earliest_index) > 0); | |
1372 | s->earliest_index = PRIOQ_IDX_NULL; | |
1373 | return r; | |
1374 | } | |
1375 | ||
1376 | d->needs_rearm = true; | |
1377 | return 0; | |
1378 | } | |
1379 | ||
1380 | _public_ int sd_event_add_time( | |
1381 | sd_event *e, | |
1382 | sd_event_source **ret, | |
1383 | clockid_t clock, | |
1384 | uint64_t usec, | |
1385 | uint64_t accuracy, | |
1386 | sd_event_time_handler_t callback, | |
1387 | void *userdata) { | |
1388 | ||
1389 | EventSourceType type; | |
1390 | _cleanup_(source_freep) sd_event_source *s = NULL; | |
1391 | struct clock_data *d; | |
1392 | int r; | |
1393 | ||
1394 | assert_return(e, -EINVAL); | |
1395 | assert_return(e = event_resolve(e), -ENOPKG); | |
1396 | assert_return(accuracy != UINT64_MAX, -EINVAL); | |
1397 | assert_return(e->state != SD_EVENT_FINISHED, -ESTALE); | |
1398 | assert_return(!event_origin_changed(e), -ECHILD); | |
1399 | ||
1400 | if (!clock_supported(clock)) /* Checks whether the kernel supports the clock */ | |
1401 | return -EOPNOTSUPP; | |
1402 | ||
1403 | type = clock_to_event_source_type(clock); /* checks whether sd-event supports this clock */ | |
1404 | if (type < 0) | |
1405 | return -EOPNOTSUPP; | |
1406 | ||
1407 | if (!callback) | |
1408 | callback = time_exit_callback; | |
1409 | ||
1410 | assert_se(d = event_get_clock_data(e, type)); | |
1411 | ||
1412 | r = setup_clock_data(e, d, clock); | |
1413 | if (r < 0) | |
1414 | return r; | |
1415 | ||
1416 | s = source_new(e, !ret, type); | |
1417 | if (!s) | |
1418 | return -ENOMEM; | |
1419 | ||
1420 | s->time.next = usec; | |
1421 | s->time.accuracy = accuracy == 0 ? DEFAULT_ACCURACY_USEC : accuracy; | |
1422 | s->time.callback = callback; | |
1423 | s->earliest_index = s->latest_index = PRIOQ_IDX_NULL; | |
1424 | s->userdata = userdata; | |
1425 | s->enabled = SD_EVENT_ONESHOT; | |
1426 | ||
1427 | r = event_source_time_prioq_put(s, d); | |
1428 | if (r < 0) | |
1429 | return r; | |
1430 | ||
1431 | if (ret) | |
1432 | *ret = s; | |
1433 | TAKE_PTR(s); | |
1434 | ||
1435 | return 0; | |
1436 | } | |
1437 | ||
1438 | _public_ int sd_event_add_time_relative( | |
1439 | sd_event *e, | |
1440 | sd_event_source **ret, | |
1441 | clockid_t clock, | |
1442 | uint64_t usec, | |
1443 | uint64_t accuracy, | |
1444 | sd_event_time_handler_t callback, | |
1445 | void *userdata) { | |
1446 | ||
1447 | usec_t t; | |
1448 | int r; | |
1449 | ||
1450 | /* Same as sd_event_add_time() but operates relative to the event loop's current point in time, and | |
1451 | * checks for overflow. */ | |
1452 | ||
1453 | r = sd_event_now(e, clock, &t); | |
1454 | if (r < 0) | |
1455 | return r; | |
1456 | ||
1457 | if (usec >= USEC_INFINITY - t) | |
1458 | return -EOVERFLOW; | |
1459 | ||
1460 | return sd_event_add_time(e, ret, clock, t + usec, accuracy, callback, userdata); | |
1461 | } | |
1462 | ||
1463 | static int signal_exit_callback(sd_event_source *s, const struct signalfd_siginfo *si, void *userdata) { | |
1464 | assert(s); | |
1465 | ||
1466 | return sd_event_exit(sd_event_source_get_event(s), PTR_TO_INT(userdata)); | |
1467 | } | |
1468 | ||
1469 | _public_ int sd_event_add_signal( | |
1470 | sd_event *e, | |
1471 | sd_event_source **ret, | |
1472 | int sig, | |
1473 | sd_event_signal_handler_t callback, | |
1474 | void *userdata) { | |
1475 | ||
1476 | _cleanup_(source_freep) sd_event_source *s = NULL; | |
1477 | struct signal_data *d; | |
1478 | sigset_t new_ss; | |
1479 | bool block_it; | |
1480 | int r; | |
1481 | ||
1482 | assert_return(e, -EINVAL); | |
1483 | assert_return(e = event_resolve(e), -ENOPKG); | |
1484 | assert_return(e->state != SD_EVENT_FINISHED, -ESTALE); | |
1485 | assert_return(!event_origin_changed(e), -ECHILD); | |
1486 | ||
1487 | /* Let's make sure our special flag stays outside of the valid signal range */ | |
1488 | assert_cc(_NSIG < SD_EVENT_SIGNAL_PROCMASK); | |
1489 | ||
1490 | if (sig & SD_EVENT_SIGNAL_PROCMASK) { | |
1491 | sig &= ~SD_EVENT_SIGNAL_PROCMASK; | |
1492 | assert_return(SIGNAL_VALID(sig), -EINVAL); | |
1493 | ||
1494 | block_it = true; | |
1495 | } else { | |
1496 | assert_return(SIGNAL_VALID(sig), -EINVAL); | |
1497 | ||
1498 | r = signal_is_blocked(sig); | |
1499 | if (r < 0) | |
1500 | return r; | |
1501 | if (r == 0) | |
1502 | return -EBUSY; | |
1503 | ||
1504 | block_it = false; | |
1505 | } | |
1506 | ||
1507 | if (!callback) | |
1508 | callback = signal_exit_callback; | |
1509 | ||
1510 | if (!e->signal_sources) { | |
1511 | e->signal_sources = new0(sd_event_source*, _NSIG); | |
1512 | if (!e->signal_sources) | |
1513 | return -ENOMEM; | |
1514 | } else if (e->signal_sources[sig]) | |
1515 | return -EBUSY; | |
1516 | ||
1517 | s = source_new(e, !ret, SOURCE_SIGNAL); | |
1518 | if (!s) | |
1519 | return -ENOMEM; | |
1520 | ||
1521 | s->signal.sig = sig; | |
1522 | s->signal.callback = callback; | |
1523 | s->userdata = userdata; | |
1524 | s->enabled = SD_EVENT_ON; | |
1525 | ||
1526 | e->signal_sources[sig] = s; | |
1527 | ||
1528 | if (block_it) { | |
1529 | sigset_t old_ss; | |
1530 | ||
1531 | if (sigemptyset(&new_ss) < 0) | |
1532 | return -errno; | |
1533 | ||
1534 | if (sigaddset(&new_ss, sig) < 0) | |
1535 | return -errno; | |
1536 | ||
1537 | r = pthread_sigmask(SIG_BLOCK, &new_ss, &old_ss); | |
1538 | if (r != 0) | |
1539 | return -r; | |
1540 | ||
1541 | r = sigismember(&old_ss, sig); | |
1542 | if (r < 0) | |
1543 | return -errno; | |
1544 | ||
1545 | s->signal.unblock = !r; | |
1546 | } else | |
1547 | s->signal.unblock = false; | |
1548 | ||
1549 | r = event_make_signal_data(e, sig, &d); | |
1550 | if (r < 0) { | |
1551 | if (s->signal.unblock) | |
1552 | (void) pthread_sigmask(SIG_UNBLOCK, &new_ss, NULL); | |
1553 | ||
1554 | return r; | |
1555 | } | |
1556 | ||
1557 | /* Use the signal name as description for the event source by default */ | |
1558 | (void) sd_event_source_set_description(s, signal_to_string(sig)); | |
1559 | ||
1560 | if (ret) | |
1561 | *ret = s; | |
1562 | TAKE_PTR(s); | |
1563 | ||
1564 | return 0; | |
1565 | } | |
1566 | ||
1567 | static int child_exit_callback(sd_event_source *s, const siginfo_t *si, void *userdata) { | |
1568 | assert(s); | |
1569 | ||
1570 | return sd_event_exit(sd_event_source_get_event(s), PTR_TO_INT(userdata)); | |
1571 | } | |
1572 | ||
1573 | _public_ int sd_event_add_child( | |
1574 | sd_event *e, | |
1575 | sd_event_source **ret, | |
1576 | pid_t pid, | |
1577 | int options, | |
1578 | sd_event_child_handler_t callback, | |
1579 | void *userdata) { | |
1580 | ||
1581 | _cleanup_(source_freep) sd_event_source *s = NULL; | |
1582 | int r; | |
1583 | ||
1584 | assert_return(e, -EINVAL); | |
1585 | assert_return(e = event_resolve(e), -ENOPKG); | |
1586 | assert_return(pid > 1, -EINVAL); | |
1587 | assert_return(!(options & ~(WEXITED|WSTOPPED|WCONTINUED)), -EINVAL); | |
1588 | assert_return(options != 0, -EINVAL); | |
1589 | assert_return(e->state != SD_EVENT_FINISHED, -ESTALE); | |
1590 | assert_return(!event_origin_changed(e), -ECHILD); | |
1591 | ||
1592 | if (!callback) | |
1593 | callback = child_exit_callback; | |
1594 | ||
1595 | if (e->n_online_child_sources == 0) { | |
1596 | /* Caller must block SIGCHLD before using us to watch children, even if pidfd is available, | |
1597 | * for compatibility with pre-pidfd and because we don't want the reap the child processes | |
1598 | * ourselves, i.e. call waitid(), and don't want Linux' default internal logic for that to | |
1599 | * take effect. | |
1600 | * | |
1601 | * (As an optimization we only do this check on the first child event source created.) */ | |
1602 | r = signal_is_blocked(SIGCHLD); | |
1603 | if (r < 0) | |
1604 | return r; | |
1605 | if (r == 0) | |
1606 | return -EBUSY; | |
1607 | } | |
1608 | ||
1609 | r = hashmap_ensure_allocated(&e->child_sources, NULL); | |
1610 | if (r < 0) | |
1611 | return r; | |
1612 | ||
1613 | if (hashmap_contains(e->child_sources, PID_TO_PTR(pid))) | |
1614 | return -EBUSY; | |
1615 | ||
1616 | s = source_new(e, !ret, SOURCE_CHILD); | |
1617 | if (!s) | |
1618 | return -ENOMEM; | |
1619 | ||
1620 | /* We always take a pidfd here if we can, even if we wait for anything else than WEXITED, so that we | |
1621 | * pin the PID, and make regular waitid() handling race-free. */ | |
1622 | ||
1623 | s->child.pidfd = pidfd_open(pid, 0); | |
1624 | if (s->child.pidfd < 0) | |
1625 | return -errno; | |
1626 | ||
1627 | s->child.pidfd_owned = true; /* If we allocate the pidfd we own it by default */ | |
1628 | ||
1629 | s->wakeup = WAKEUP_EVENT_SOURCE; | |
1630 | s->child.options = options; | |
1631 | s->child.callback = callback; | |
1632 | s->userdata = userdata; | |
1633 | s->enabled = SD_EVENT_ONESHOT; | |
1634 | ||
1635 | if (EVENT_SOURCE_WATCH_PIDFD(s)) { | |
1636 | /* We only want to watch for exit */ | |
1637 | r = source_child_pidfd_register(s, s->enabled); | |
1638 | if (r < 0) | |
1639 | return r; | |
1640 | ||
1641 | } else { | |
1642 | /* We shall wait for some other event than WEXITED */ | |
1643 | r = event_make_signal_data(e, SIGCHLD, NULL); | |
1644 | if (r < 0) | |
1645 | return r; | |
1646 | ||
1647 | e->need_process_child = true; | |
1648 | } | |
1649 | ||
1650 | r = hashmap_put(e->child_sources, PID_TO_PTR(pid), s); | |
1651 | if (r < 0) | |
1652 | return r; | |
1653 | ||
1654 | /* These must be done after everything succeeds. */ | |
1655 | s->child.pid = pid; | |
1656 | e->n_online_child_sources++; | |
1657 | ||
1658 | if (ret) | |
1659 | *ret = s; | |
1660 | TAKE_PTR(s); | |
1661 | return 0; | |
1662 | } | |
1663 | ||
1664 | _public_ int sd_event_add_child_pidfd( | |
1665 | sd_event *e, | |
1666 | sd_event_source **ret, | |
1667 | int pidfd, | |
1668 | int options, | |
1669 | sd_event_child_handler_t callback, | |
1670 | void *userdata) { | |
1671 | ||
1672 | _cleanup_(source_freep) sd_event_source *s = NULL; | |
1673 | pid_t pid; | |
1674 | int r; | |
1675 | ||
1676 | assert_return(e, -EINVAL); | |
1677 | assert_return(e = event_resolve(e), -ENOPKG); | |
1678 | assert_return(pidfd >= 0, -EBADF); | |
1679 | assert_return(!(options & ~(WEXITED|WSTOPPED|WCONTINUED)), -EINVAL); | |
1680 | assert_return(options != 0, -EINVAL); | |
1681 | assert_return(e->state != SD_EVENT_FINISHED, -ESTALE); | |
1682 | assert_return(!event_origin_changed(e), -ECHILD); | |
1683 | ||
1684 | if (!callback) | |
1685 | callback = child_exit_callback; | |
1686 | ||
1687 | if (e->n_online_child_sources == 0) { | |
1688 | r = signal_is_blocked(SIGCHLD); | |
1689 | if (r < 0) | |
1690 | return r; | |
1691 | if (r == 0) | |
1692 | return -EBUSY; | |
1693 | } | |
1694 | ||
1695 | r = hashmap_ensure_allocated(&e->child_sources, NULL); | |
1696 | if (r < 0) | |
1697 | return r; | |
1698 | ||
1699 | r = pidfd_get_pid(pidfd, &pid); | |
1700 | if (r < 0) | |
1701 | return r; | |
1702 | ||
1703 | if (hashmap_contains(e->child_sources, PID_TO_PTR(pid))) | |
1704 | return -EBUSY; | |
1705 | ||
1706 | s = source_new(e, !ret, SOURCE_CHILD); | |
1707 | if (!s) | |
1708 | return -ENOMEM; | |
1709 | ||
1710 | s->wakeup = WAKEUP_EVENT_SOURCE; | |
1711 | s->child.pidfd = pidfd; | |
1712 | s->child.options = options; | |
1713 | s->child.callback = callback; | |
1714 | s->child.pidfd_owned = false; /* If we got the pidfd passed in we don't own it by default (similar to the IO fd case) */ | |
1715 | s->userdata = userdata; | |
1716 | s->enabled = SD_EVENT_ONESHOT; | |
1717 | ||
1718 | if (EVENT_SOURCE_WATCH_PIDFD(s)) { | |
1719 | /* We only want to watch for WEXITED */ | |
1720 | r = source_child_pidfd_register(s, s->enabled); | |
1721 | if (r < 0) | |
1722 | return r; | |
1723 | } else { | |
1724 | /* We shall wait for some other event than WEXITED */ | |
1725 | r = event_make_signal_data(e, SIGCHLD, NULL); | |
1726 | if (r < 0) | |
1727 | return r; | |
1728 | ||
1729 | e->need_process_child = true; | |
1730 | } | |
1731 | ||
1732 | r = hashmap_put(e->child_sources, PID_TO_PTR(pid), s); | |
1733 | if (r < 0) | |
1734 | return r; | |
1735 | ||
1736 | s->child.pid = pid; | |
1737 | e->n_online_child_sources++; | |
1738 | ||
1739 | if (ret) | |
1740 | *ret = s; | |
1741 | TAKE_PTR(s); | |
1742 | return 0; | |
1743 | } | |
1744 | ||
1745 | static int generic_exit_callback(sd_event_source *s, void *userdata) { | |
1746 | assert(s); | |
1747 | ||
1748 | return sd_event_exit(sd_event_source_get_event(s), PTR_TO_INT(userdata)); | |
1749 | } | |
1750 | ||
1751 | _public_ int sd_event_add_defer( | |
1752 | sd_event *e, | |
1753 | sd_event_source **ret, | |
1754 | sd_event_handler_t callback, | |
1755 | void *userdata) { | |
1756 | ||
1757 | _cleanup_(source_freep) sd_event_source *s = NULL; | |
1758 | int r; | |
1759 | ||
1760 | assert_return(e, -EINVAL); | |
1761 | assert_return(e = event_resolve(e), -ENOPKG); | |
1762 | assert_return(e->state != SD_EVENT_FINISHED, -ESTALE); | |
1763 | assert_return(!event_origin_changed(e), -ECHILD); | |
1764 | ||
1765 | if (!callback) | |
1766 | callback = generic_exit_callback; | |
1767 | ||
1768 | s = source_new(e, !ret, SOURCE_DEFER); | |
1769 | if (!s) | |
1770 | return -ENOMEM; | |
1771 | ||
1772 | s->defer.callback = callback; | |
1773 | s->userdata = userdata; | |
1774 | s->enabled = SD_EVENT_ONESHOT; | |
1775 | ||
1776 | r = source_set_pending(s, true); | |
1777 | if (r < 0) | |
1778 | return r; | |
1779 | ||
1780 | if (ret) | |
1781 | *ret = s; | |
1782 | TAKE_PTR(s); | |
1783 | ||
1784 | return 0; | |
1785 | } | |
1786 | ||
1787 | _public_ int sd_event_add_post( | |
1788 | sd_event *e, | |
1789 | sd_event_source **ret, | |
1790 | sd_event_handler_t callback, | |
1791 | void *userdata) { | |
1792 | ||
1793 | _cleanup_(source_freep) sd_event_source *s = NULL; | |
1794 | int r; | |
1795 | ||
1796 | assert_return(e, -EINVAL); | |
1797 | assert_return(e = event_resolve(e), -ENOPKG); | |
1798 | assert_return(e->state != SD_EVENT_FINISHED, -ESTALE); | |
1799 | assert_return(!event_origin_changed(e), -ECHILD); | |
1800 | ||
1801 | if (!callback) | |
1802 | callback = generic_exit_callback; | |
1803 | ||
1804 | s = source_new(e, !ret, SOURCE_POST); | |
1805 | if (!s) | |
1806 | return -ENOMEM; | |
1807 | ||
1808 | s->post.callback = callback; | |
1809 | s->userdata = userdata; | |
1810 | s->enabled = SD_EVENT_ON; | |
1811 | ||
1812 | r = set_ensure_put(&e->post_sources, NULL, s); | |
1813 | if (r < 0) | |
1814 | return r; | |
1815 | assert(r > 0); | |
1816 | ||
1817 | if (ret) | |
1818 | *ret = s; | |
1819 | TAKE_PTR(s); | |
1820 | ||
1821 | return 0; | |
1822 | } | |
1823 | ||
1824 | _public_ int sd_event_add_exit( | |
1825 | sd_event *e, | |
1826 | sd_event_source **ret, | |
1827 | sd_event_handler_t callback, | |
1828 | void *userdata) { | |
1829 | ||
1830 | _cleanup_(source_freep) sd_event_source *s = NULL; | |
1831 | int r; | |
1832 | ||
1833 | assert_return(e, -EINVAL); | |
1834 | assert_return(e = event_resolve(e), -ENOPKG); | |
1835 | assert_return(callback, -EINVAL); | |
1836 | assert_return(e->state != SD_EVENT_FINISHED, -ESTALE); | |
1837 | assert_return(!event_origin_changed(e), -ECHILD); | |
1838 | ||
1839 | r = prioq_ensure_allocated(&e->exit, exit_prioq_compare); | |
1840 | if (r < 0) | |
1841 | return r; | |
1842 | ||
1843 | s = source_new(e, !ret, SOURCE_EXIT); | |
1844 | if (!s) | |
1845 | return -ENOMEM; | |
1846 | ||
1847 | s->exit.callback = callback; | |
1848 | s->userdata = userdata; | |
1849 | s->exit.prioq_index = PRIOQ_IDX_NULL; | |
1850 | s->enabled = SD_EVENT_ONESHOT; | |
1851 | ||
1852 | r = prioq_put(s->event->exit, s, &s->exit.prioq_index); | |
1853 | if (r < 0) | |
1854 | return r; | |
1855 | ||
1856 | if (ret) | |
1857 | *ret = s; | |
1858 | TAKE_PTR(s); | |
1859 | ||
1860 | return 0; | |
1861 | } | |
1862 | ||
1863 | _public_ int sd_event_trim_memory(void) { | |
1864 | int r; | |
1865 | ||
1866 | /* A default implementation of a memory pressure callback. Simply releases our own allocation caches | |
1867 | * and glibc's. This is automatically used when people call sd_event_add_memory_pressure() with a | |
1868 | * NULL callback parameter. */ | |
1869 | ||
1870 | log_debug("Memory pressure event, trimming malloc() memory."); | |
1871 | ||
1872 | struct mallinfo2 before_mallinfo = mallinfo2(); | |
1873 | ||
1874 | usec_t before_timestamp = now(CLOCK_MONOTONIC); | |
1875 | hashmap_trim_pools(); | |
1876 | r = malloc_trim(0); | |
1877 | usec_t after_timestamp = now(CLOCK_MONOTONIC); | |
1878 | ||
1879 | if (r > 0) | |
1880 | log_debug("Successfully trimmed some memory."); | |
1881 | else | |
1882 | log_debug("Couldn't trim any memory."); | |
1883 | ||
1884 | usec_t period = after_timestamp - before_timestamp; | |
1885 | ||
1886 | struct mallinfo2 after_mallinfo = mallinfo2(); | |
1887 | size_t l = LESS_BY(before_mallinfo.hblkhd, after_mallinfo.hblkhd) + | |
1888 | LESS_BY(before_mallinfo.arena, after_mallinfo.arena); | |
1889 | log_struct(LOG_DEBUG, | |
1890 | LOG_MESSAGE("Memory trimming took %s, returned %s to OS.", | |
1891 | FORMAT_TIMESPAN(period, 0), | |
1892 | FORMAT_BYTES(l)), | |
1893 | LOG_MESSAGE_ID(SD_MESSAGE_MEMORY_TRIM_STR), | |
1894 | LOG_ITEM("TRIMMED_BYTES=%zu", l), | |
1895 | LOG_ITEM("TRIMMED_USEC=" USEC_FMT, period)); | |
1896 | ||
1897 | return 0; | |
1898 | } | |
1899 | ||
1900 | static int memory_pressure_callback(sd_event_source *s, void *userdata) { | |
1901 | assert(s); | |
1902 | ||
1903 | sd_event_trim_memory(); | |
1904 | return 0; | |
1905 | } | |
1906 | ||
1907 | _public_ int sd_event_add_memory_pressure( | |
1908 | sd_event *e, | |
1909 | sd_event_source **ret, | |
1910 | sd_event_handler_t callback, | |
1911 | void *userdata) { | |
1912 | ||
1913 | _cleanup_free_ char *w = NULL; | |
1914 | _cleanup_(source_freep) sd_event_source *s = NULL; | |
1915 | _cleanup_close_ int path_fd = -EBADF, fd = -EBADF; | |
1916 | _cleanup_free_ void *write_buffer = NULL; | |
1917 | const char *watch, *watch_fallback = NULL, *env; | |
1918 | size_t write_buffer_size = 0; | |
1919 | struct stat st; | |
1920 | uint32_t events; | |
1921 | bool locked; | |
1922 | int r; | |
1923 | ||
1924 | assert_return(e, -EINVAL); | |
1925 | assert_return(e = event_resolve(e), -ENOPKG); | |
1926 | assert_return(e->state != SD_EVENT_FINISHED, -ESTALE); | |
1927 | assert_return(!event_origin_changed(e), -ECHILD); | |
1928 | ||
1929 | if (!callback) | |
1930 | callback = memory_pressure_callback; | |
1931 | ||
1932 | s = source_new(e, !ret, SOURCE_MEMORY_PRESSURE); | |
1933 | if (!s) | |
1934 | return -ENOMEM; | |
1935 | ||
1936 | s->wakeup = WAKEUP_EVENT_SOURCE; | |
1937 | s->memory_pressure.callback = callback; | |
1938 | s->userdata = userdata; | |
1939 | s->enabled = SD_EVENT_ON; | |
1940 | s->memory_pressure.fd = -EBADF; | |
1941 | ||
1942 | env = secure_getenv("MEMORY_PRESSURE_WATCH"); | |
1943 | if (env) { | |
1944 | if (isempty(env) || path_equal(env, "/dev/null")) | |
1945 | return log_debug_errno(SYNTHETIC_ERRNO(EHOSTDOWN), | |
1946 | "Memory pressure logic is explicitly disabled via $MEMORY_PRESSURE_WATCH."); | |
1947 | ||
1948 | if (!path_is_absolute(env) || !path_is_normalized(env)) | |
1949 | return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG), | |
1950 | "$MEMORY_PRESSURE_WATCH set to invalid path: %s", env); | |
1951 | ||
1952 | watch = env; | |
1953 | ||
1954 | env = secure_getenv("MEMORY_PRESSURE_WRITE"); | |
1955 | if (env) { | |
1956 | r = unbase64mem(env, &write_buffer, &write_buffer_size); | |
1957 | if (r < 0) | |
1958 | return r; | |
1959 | } | |
1960 | ||
1961 | locked = true; | |
1962 | } else { | |
1963 | ||
1964 | r = is_pressure_supported(); | |
1965 | if (r < 0) | |
1966 | return r; | |
1967 | if (r == 0) | |
1968 | return -EOPNOTSUPP; | |
1969 | ||
1970 | /* By default we want to watch memory pressure on the local cgroup, but we'll fall back on | |
1971 | * the system wide pressure if for some reason we cannot (which could be: memory controller | |
1972 | * not delegated to us, or PSI simply not available in the kernel). On legacy cgroupv1 we'll | |
1973 | * only use the system-wide logic. */ | |
1974 | r = cg_all_unified(); | |
1975 | if (r < 0) | |
1976 | return r; | |
1977 | if (r == 0) | |
1978 | watch = "/proc/pressure/memory"; | |
1979 | else { | |
1980 | _cleanup_free_ char *cg = NULL; | |
1981 | ||
1982 | r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &cg); | |
1983 | if (r < 0) | |
1984 | return r; | |
1985 | ||
1986 | w = path_join("/sys/fs/cgroup", cg, "memory.pressure"); | |
1987 | if (!w) | |
1988 | return -ENOMEM; | |
1989 | ||
1990 | watch = w; | |
1991 | watch_fallback = "/proc/pressure/memory"; | |
1992 | } | |
1993 | ||
1994 | /* Android uses three levels in its userspace low memory killer logic: | |
1995 | * some 70000 1000000 | |
1996 | * some 100000 1000000 | |
1997 | * full 70000 1000000 | |
1998 | * | |
1999 | * GNOME's low memory monitor uses: | |
2000 | * some 70000 1000000 | |
2001 | * some 100000 1000000 | |
2002 | * full 100000 1000000 | |
2003 | * | |
2004 | * We'll default to the middle level that both agree on. Except we do it on a 2s window | |
2005 | * (i.e. 200ms per 2s, rather than 100ms per 1s), because that's the window duration the | |
2006 | * kernel will allow us to do unprivileged, also in the future. */ | |
2007 | if (asprintf((char**) &write_buffer, | |
2008 | "%s " USEC_FMT " " USEC_FMT, | |
2009 | MEMORY_PRESSURE_DEFAULT_TYPE, | |
2010 | MEMORY_PRESSURE_DEFAULT_THRESHOLD_USEC, | |
2011 | MEMORY_PRESSURE_DEFAULT_WINDOW_USEC) < 0) | |
2012 | return -ENOMEM; | |
2013 | ||
2014 | write_buffer_size = strlen(write_buffer) + 1; | |
2015 | locked = false; | |
2016 | } | |
2017 | ||
2018 | path_fd = open(watch, O_PATH|O_CLOEXEC); | |
2019 | if (path_fd < 0) { | |
2020 | if (errno != ENOENT) | |
2021 | return -errno; | |
2022 | ||
2023 | /* We got ENOENT. Three options now: try the fallback if we have one, or return the error as | |
2024 | * is (if based on user/env config), or return -EOPNOTSUPP (because we picked the path, and | |
2025 | * the PSI service apparently is not supported) */ | |
2026 | if (!watch_fallback) | |
2027 | return locked ? -ENOENT : -EOPNOTSUPP; | |
2028 | ||
2029 | path_fd = open(watch_fallback, O_PATH|O_CLOEXEC); | |
2030 | if (path_fd < 0) { | |
2031 | if (errno == ENOENT) /* PSI is not available in the kernel even under the fallback path? */ | |
2032 | return -EOPNOTSUPP; | |
2033 | return -errno; | |
2034 | } | |
2035 | } | |
2036 | ||
2037 | if (fstat(path_fd, &st) < 0) | |
2038 | return -errno; | |
2039 | ||
2040 | if (S_ISSOCK(st.st_mode)) { | |
2041 | fd = socket(AF_UNIX, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0); | |
2042 | if (fd < 0) | |
2043 | return -errno; | |
2044 | ||
2045 | r = connect_unix_path(fd, path_fd, NULL); | |
2046 | if (r < 0) | |
2047 | return r; | |
2048 | ||
2049 | events = EPOLLIN; | |
2050 | ||
2051 | } else if (S_ISREG(st.st_mode) || S_ISFIFO(st.st_mode) || S_ISCHR(st.st_mode)) { | |
2052 | fd = fd_reopen(path_fd, (write_buffer_size > 0 ? O_RDWR : O_RDONLY) |O_CLOEXEC|O_NONBLOCK|O_NOCTTY); | |
2053 | if (fd < 0) | |
2054 | return fd; | |
2055 | ||
2056 | if (S_ISREG(st.st_mode)) { | |
2057 | struct statfs sfs; | |
2058 | ||
2059 | /* If this is a regular file validate this is a procfs or cgroupfs file, where we look for EPOLLPRI */ | |
2060 | ||
2061 | if (fstatfs(fd, &sfs) < 0) | |
2062 | return -errno; | |
2063 | ||
2064 | if (!is_fs_type(&sfs, PROC_SUPER_MAGIC) && | |
2065 | !is_fs_type(&sfs, CGROUP2_SUPER_MAGIC)) | |
2066 | return -ENOTTY; | |
2067 | ||
2068 | events = EPOLLPRI; | |
2069 | } else | |
2070 | /* For fifos and char devices just watch for EPOLLIN */ | |
2071 | events = EPOLLIN; | |
2072 | ||
2073 | } else if (S_ISDIR(st.st_mode)) | |
2074 | return -EISDIR; | |
2075 | else | |
2076 | return -EBADF; | |
2077 | ||
2078 | s->memory_pressure.fd = TAKE_FD(fd); | |
2079 | s->memory_pressure.write_buffer = TAKE_PTR(write_buffer); | |
2080 | s->memory_pressure.write_buffer_size = write_buffer_size; | |
2081 | s->memory_pressure.events = events; | |
2082 | s->memory_pressure.locked = locked; | |
2083 | ||
2084 | /* So here's the thing: if we are talking to PSI we need to write the watch string before adding the | |
2085 | * fd to epoll (if we ignore this, then the watch won't work). Hence we'll not actually register the | |
2086 | * fd with the epoll right-away. Instead, we just add the event source to a list of memory pressure | |
2087 | * event sources on which writes must be executed before the first event loop iteration is | |
2088 | * executed. (We could also write the data here, right away, but we want to give the caller the | |
2089 | * freedom to call sd_event_source_set_memory_pressure_type() and | |
2090 | * sd_event_source_set_memory_pressure_rate() before we write it. */ | |
2091 | ||
2092 | if (s->memory_pressure.write_buffer_size > 0) | |
2093 | source_memory_pressure_add_to_write_list(s); | |
2094 | else { | |
2095 | r = source_memory_pressure_register(s, s->enabled); | |
2096 | if (r < 0) | |
2097 | return r; | |
2098 | } | |
2099 | ||
2100 | if (ret) | |
2101 | *ret = s; | |
2102 | TAKE_PTR(s); | |
2103 | ||
2104 | return 0; | |
2105 | } | |
2106 | ||
2107 | static void event_free_inotify_data(sd_event *e, struct inotify_data *d) { | |
2108 | assert(e); | |
2109 | ||
2110 | if (!d) | |
2111 | return; | |
2112 | ||
2113 | assert(hashmap_isempty(d->inodes)); | |
2114 | assert(hashmap_isempty(d->wd)); | |
2115 | ||
2116 | if (d->buffer_filled > 0) | |
2117 | LIST_REMOVE(buffered, e->buffered_inotify_data_list, d); | |
2118 | ||
2119 | hashmap_free(d->inodes); | |
2120 | hashmap_free(d->wd); | |
2121 | ||
2122 | assert_se(hashmap_remove(e->inotify_data, &d->priority) == d); | |
2123 | ||
2124 | if (d->fd >= 0) { | |
2125 | if (!event_origin_changed(e) && | |
2126 | epoll_ctl(e->epoll_fd, EPOLL_CTL_DEL, d->fd, NULL) < 0) | |
2127 | log_debug_errno(errno, "Failed to remove inotify fd from epoll, ignoring: %m"); | |
2128 | ||
2129 | safe_close(d->fd); | |
2130 | } | |
2131 | free(d); | |
2132 | } | |
2133 | ||
2134 | static int event_make_inotify_data( | |
2135 | sd_event *e, | |
2136 | int64_t priority, | |
2137 | struct inotify_data **ret) { | |
2138 | ||
2139 | _cleanup_close_ int fd = -EBADF; | |
2140 | struct inotify_data *d; | |
2141 | int r; | |
2142 | ||
2143 | assert(e); | |
2144 | ||
2145 | d = hashmap_get(e->inotify_data, &priority); | |
2146 | if (d) { | |
2147 | if (ret) | |
2148 | *ret = d; | |
2149 | return 0; | |
2150 | } | |
2151 | ||
2152 | fd = inotify_init1(IN_NONBLOCK|O_CLOEXEC); | |
2153 | if (fd < 0) | |
2154 | return -errno; | |
2155 | ||
2156 | fd = fd_move_above_stdio(fd); | |
2157 | ||
2158 | d = new(struct inotify_data, 1); | |
2159 | if (!d) | |
2160 | return -ENOMEM; | |
2161 | ||
2162 | *d = (struct inotify_data) { | |
2163 | .wakeup = WAKEUP_INOTIFY_DATA, | |
2164 | .fd = TAKE_FD(fd), | |
2165 | .priority = priority, | |
2166 | }; | |
2167 | ||
2168 | r = hashmap_ensure_put(&e->inotify_data, &uint64_hash_ops, &d->priority, d); | |
2169 | if (r < 0) { | |
2170 | d->fd = safe_close(d->fd); | |
2171 | free(d); | |
2172 | return r; | |
2173 | } | |
2174 | ||
2175 | struct epoll_event ev = { | |
2176 | .events = EPOLLIN, | |
2177 | .data.ptr = d, | |
2178 | }; | |
2179 | ||
2180 | if (epoll_ctl(e->epoll_fd, EPOLL_CTL_ADD, d->fd, &ev) < 0) { | |
2181 | r = -errno; | |
2182 | d->fd = safe_close(d->fd); /* let's close this ourselves, as event_free_inotify_data() would otherwise | |
2183 | * remove the fd from the epoll first, which we don't want as we couldn't | |
2184 | * add it in the first place. */ | |
2185 | event_free_inotify_data(e, d); | |
2186 | return r; | |
2187 | } | |
2188 | ||
2189 | if (ret) | |
2190 | *ret = d; | |
2191 | ||
2192 | return 1; | |
2193 | } | |
2194 | ||
2195 | static int inode_data_compare(const struct inode_data *x, const struct inode_data *y) { | |
2196 | int r; | |
2197 | ||
2198 | assert(x); | |
2199 | assert(y); | |
2200 | ||
2201 | r = CMP(x->dev, y->dev); | |
2202 | if (r != 0) | |
2203 | return r; | |
2204 | ||
2205 | return CMP(x->ino, y->ino); | |
2206 | } | |
2207 | ||
2208 | static void inode_data_hash_func(const struct inode_data *d, struct siphash *state) { | |
2209 | assert(d); | |
2210 | ||
2211 | siphash24_compress_typesafe(d->dev, state); | |
2212 | siphash24_compress_typesafe(d->ino, state); | |
2213 | } | |
2214 | ||
2215 | DEFINE_PRIVATE_HASH_OPS(inode_data_hash_ops, struct inode_data, inode_data_hash_func, inode_data_compare); | |
2216 | ||
2217 | static void event_free_inode_data( | |
2218 | sd_event *e, | |
2219 | struct inode_data *d) { | |
2220 | ||
2221 | assert(e); | |
2222 | ||
2223 | if (!d) | |
2224 | return; | |
2225 | ||
2226 | assert(!d->event_sources); | |
2227 | ||
2228 | if (d->fd >= 0) { | |
2229 | LIST_REMOVE(to_close, e->inode_data_to_close_list, d); | |
2230 | safe_close(d->fd); | |
2231 | } | |
2232 | ||
2233 | if (d->inotify_data) { | |
2234 | ||
2235 | if (d->wd >= 0) { | |
2236 | if (d->inotify_data->fd >= 0 && !event_origin_changed(e)) { | |
2237 | /* So here's a problem. At the time this runs the watch descriptor might already be | |
2238 | * invalidated, because an IN_IGNORED event might be queued right the moment we enter | |
2239 | * the syscall. Hence, whenever we get EINVAL, ignore it entirely, since it's a very | |
2240 | * likely case to happen. */ | |
2241 | ||
2242 | if (inotify_rm_watch(d->inotify_data->fd, d->wd) < 0 && errno != EINVAL) | |
2243 | log_debug_errno(errno, "Failed to remove watch descriptor %i from inotify, ignoring: %m", d->wd); | |
2244 | } | |
2245 | ||
2246 | assert_se(hashmap_remove(d->inotify_data->wd, INT_TO_PTR(d->wd)) == d); | |
2247 | } | |
2248 | ||
2249 | assert_se(hashmap_remove(d->inotify_data->inodes, d) == d); | |
2250 | } | |
2251 | ||
2252 | free(d->path); | |
2253 | free(d); | |
2254 | } | |
2255 | ||
2256 | static void event_gc_inotify_data( | |
2257 | sd_event *e, | |
2258 | struct inotify_data *d) { | |
2259 | ||
2260 | assert(e); | |
2261 | ||
2262 | /* GCs the inotify data object if we don't need it anymore. That's the case if we don't want to watch | |
2263 | * any inode with it anymore, which in turn happens if no event source of this priority is interested | |
2264 | * in any inode any longer. That said, we maintain an extra busy counter: if non-zero we'll delay GC | |
2265 | * (under the expectation that the GC is called again once the counter is decremented). */ | |
2266 | ||
2267 | if (!d) | |
2268 | return; | |
2269 | ||
2270 | if (!hashmap_isempty(d->inodes)) | |
2271 | return; | |
2272 | ||
2273 | if (d->n_busy > 0) | |
2274 | return; | |
2275 | ||
2276 | event_free_inotify_data(e, d); | |
2277 | } | |
2278 | ||
2279 | static void event_gc_inode_data( | |
2280 | sd_event *e, | |
2281 | struct inode_data *d) { | |
2282 | ||
2283 | struct inotify_data *inotify_data; | |
2284 | ||
2285 | assert(e); | |
2286 | ||
2287 | if (!d) | |
2288 | return; | |
2289 | ||
2290 | if (d->event_sources) | |
2291 | return; | |
2292 | ||
2293 | inotify_data = d->inotify_data; | |
2294 | event_free_inode_data(e, d); | |
2295 | ||
2296 | event_gc_inotify_data(e, inotify_data); | |
2297 | } | |
2298 | ||
2299 | static int event_make_inode_data( | |
2300 | sd_event *e, | |
2301 | struct inotify_data *inotify_data, | |
2302 | dev_t dev, | |
2303 | ino_t ino, | |
2304 | struct inode_data **ret) { | |
2305 | ||
2306 | struct inode_data *d, key; | |
2307 | int r; | |
2308 | ||
2309 | assert(e); | |
2310 | assert(inotify_data); | |
2311 | ||
2312 | key = (struct inode_data) { | |
2313 | .ino = ino, | |
2314 | .dev = dev, | |
2315 | }; | |
2316 | ||
2317 | d = hashmap_get(inotify_data->inodes, &key); | |
2318 | if (d) { | |
2319 | if (ret) | |
2320 | *ret = d; | |
2321 | ||
2322 | return 0; | |
2323 | } | |
2324 | ||
2325 | r = hashmap_ensure_allocated(&inotify_data->inodes, &inode_data_hash_ops); | |
2326 | if (r < 0) | |
2327 | return r; | |
2328 | ||
2329 | d = new(struct inode_data, 1); | |
2330 | if (!d) | |
2331 | return -ENOMEM; | |
2332 | ||
2333 | *d = (struct inode_data) { | |
2334 | .dev = dev, | |
2335 | .ino = ino, | |
2336 | .wd = -1, | |
2337 | .fd = -EBADF, | |
2338 | .inotify_data = inotify_data, | |
2339 | }; | |
2340 | ||
2341 | r = hashmap_put(inotify_data->inodes, d, d); | |
2342 | if (r < 0) { | |
2343 | free(d); | |
2344 | return r; | |
2345 | } | |
2346 | ||
2347 | if (ret) | |
2348 | *ret = d; | |
2349 | ||
2350 | return 1; | |
2351 | } | |
2352 | ||
2353 | static uint32_t inode_data_determine_mask(struct inode_data *d) { | |
2354 | bool excl_unlink = true; | |
2355 | uint32_t combined = 0; | |
2356 | ||
2357 | assert(d); | |
2358 | ||
2359 | /* Combines the watch masks of all event sources watching this inode. We generally just OR them together, but | |
2360 | * the IN_EXCL_UNLINK flag is ANDed instead. | |
2361 | * | |
2362 | * Note that we add all sources to the mask here, regardless whether enabled, disabled or oneshot. That's | |
2363 | * because we cannot change the mask anymore after the event source was created once, since the kernel has no | |
2364 | * API for that. Hence we need to subscribe to the maximum mask we ever might be interested in, and suppress | |
2365 | * events we don't care for client-side. */ | |
2366 | ||
2367 | LIST_FOREACH(inotify.by_inode_data, s, d->event_sources) { | |
2368 | ||
2369 | if ((s->inotify.mask & IN_EXCL_UNLINK) == 0) | |
2370 | excl_unlink = false; | |
2371 | ||
2372 | combined |= s->inotify.mask; | |
2373 | } | |
2374 | ||
2375 | return (combined & ~(IN_ONESHOT|IN_DONT_FOLLOW|IN_ONLYDIR|IN_EXCL_UNLINK)) | (excl_unlink ? IN_EXCL_UNLINK : 0); | |
2376 | } | |
2377 | ||
2378 | static int inode_data_realize_watch(sd_event *e, struct inode_data *d) { | |
2379 | uint32_t combined_mask; | |
2380 | int wd, r; | |
2381 | ||
2382 | assert(d); | |
2383 | assert(d->fd >= 0); | |
2384 | ||
2385 | combined_mask = inode_data_determine_mask(d); | |
2386 | ||
2387 | if (d->wd >= 0 && combined_mask == d->combined_mask) | |
2388 | return 0; | |
2389 | ||
2390 | r = hashmap_ensure_allocated(&d->inotify_data->wd, NULL); | |
2391 | if (r < 0) | |
2392 | return r; | |
2393 | ||
2394 | wd = inotify_add_watch_fd(d->inotify_data->fd, d->fd, combined_mask); | |
2395 | if (wd < 0) | |
2396 | return wd; | |
2397 | ||
2398 | if (d->wd < 0) { | |
2399 | r = hashmap_put(d->inotify_data->wd, INT_TO_PTR(wd), d); | |
2400 | if (r < 0) { | |
2401 | (void) inotify_rm_watch(d->inotify_data->fd, wd); | |
2402 | return r; | |
2403 | } | |
2404 | ||
2405 | d->wd = wd; | |
2406 | ||
2407 | } else if (d->wd != wd) { | |
2408 | ||
2409 | log_debug("Weird, the watch descriptor we already knew for this inode changed?"); | |
2410 | (void) inotify_rm_watch(d->fd, wd); | |
2411 | return -EINVAL; | |
2412 | } | |
2413 | ||
2414 | d->combined_mask = combined_mask; | |
2415 | return 1; | |
2416 | } | |
2417 | ||
2418 | static int inotify_exit_callback(sd_event_source *s, const struct inotify_event *event, void *userdata) { | |
2419 | assert(s); | |
2420 | ||
2421 | return sd_event_exit(sd_event_source_get_event(s), PTR_TO_INT(userdata)); | |
2422 | } | |
2423 | ||
2424 | static int event_add_inotify_fd_internal( | |
2425 | sd_event *e, | |
2426 | sd_event_source **ret, | |
2427 | int fd, | |
2428 | bool donate, | |
2429 | uint32_t mask, | |
2430 | sd_event_inotify_handler_t callback, | |
2431 | void *userdata) { | |
2432 | ||
2433 | _cleanup_close_ int donated_fd = donate ? fd : -EBADF; | |
2434 | _cleanup_(source_freep) sd_event_source *s = NULL; | |
2435 | struct inotify_data *inotify_data = NULL; | |
2436 | struct inode_data *inode_data = NULL; | |
2437 | struct stat st; | |
2438 | int r; | |
2439 | ||
2440 | assert_return(e, -EINVAL); | |
2441 | assert_return(e = event_resolve(e), -ENOPKG); | |
2442 | assert_return(fd >= 0, -EBADF); | |
2443 | assert_return(e->state != SD_EVENT_FINISHED, -ESTALE); | |
2444 | assert_return(!event_origin_changed(e), -ECHILD); | |
2445 | ||
2446 | if (!callback) | |
2447 | callback = inotify_exit_callback; | |
2448 | ||
2449 | /* Refuse IN_MASK_ADD since we coalesce watches on the same inode, and hence really don't want to merge | |
2450 | * masks. Or in other words, this whole code exists only to manage IN_MASK_ADD type operations for you, hence | |
2451 | * the user can't use them for us. */ | |
2452 | if (mask & IN_MASK_ADD) | |
2453 | return -EINVAL; | |
2454 | ||
2455 | if (fstat(fd, &st) < 0) | |
2456 | return -errno; | |
2457 | ||
2458 | s = source_new(e, !ret, SOURCE_INOTIFY); | |
2459 | if (!s) | |
2460 | return -ENOMEM; | |
2461 | ||
2462 | s->enabled = mask & IN_ONESHOT ? SD_EVENT_ONESHOT : SD_EVENT_ON; | |
2463 | s->inotify.mask = mask; | |
2464 | s->inotify.callback = callback; | |
2465 | s->userdata = userdata; | |
2466 | ||
2467 | /* Allocate an inotify object for this priority, and an inode object within it */ | |
2468 | r = event_make_inotify_data(e, SD_EVENT_PRIORITY_NORMAL, &inotify_data); | |
2469 | if (r < 0) | |
2470 | return r; | |
2471 | ||
2472 | r = event_make_inode_data(e, inotify_data, st.st_dev, st.st_ino, &inode_data); | |
2473 | if (r < 0) { | |
2474 | event_gc_inotify_data(e, inotify_data); | |
2475 | return r; | |
2476 | } | |
2477 | ||
2478 | /* Keep the O_PATH fd around until the first iteration of the loop, so that we can still change the priority of | |
2479 | * the event source, until then, for which we need the original inode. */ | |
2480 | if (inode_data->fd < 0) { | |
2481 | if (donated_fd >= 0) | |
2482 | inode_data->fd = TAKE_FD(donated_fd); | |
2483 | else { | |
2484 | inode_data->fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); | |
2485 | if (inode_data->fd < 0) { | |
2486 | r = -errno; | |
2487 | event_gc_inode_data(e, inode_data); | |
2488 | return r; | |
2489 | } | |
2490 | } | |
2491 | ||
2492 | LIST_PREPEND(to_close, e->inode_data_to_close_list, inode_data); | |
2493 | ||
2494 | _cleanup_free_ char *path = NULL; | |
2495 | r = fd_get_path(inode_data->fd, &path); | |
2496 | if (r < 0 && r != -ENOSYS) { /* The path is optional, hence ignore -ENOSYS. */ | |
2497 | event_gc_inode_data(e, inode_data); | |
2498 | return r; | |
2499 | } | |
2500 | ||
2501 | free_and_replace(inode_data->path, path); | |
2502 | } | |
2503 | ||
2504 | /* Link our event source to the inode data object */ | |
2505 | LIST_PREPEND(inotify.by_inode_data, inode_data->event_sources, s); | |
2506 | s->inotify.inode_data = inode_data; | |
2507 | ||
2508 | /* Actually realize the watch now */ | |
2509 | r = inode_data_realize_watch(e, inode_data); | |
2510 | if (r < 0) | |
2511 | return r; | |
2512 | ||
2513 | if (ret) | |
2514 | *ret = s; | |
2515 | TAKE_PTR(s); | |
2516 | ||
2517 | return 0; | |
2518 | } | |
2519 | ||
2520 | _public_ int sd_event_add_inotify_fd( | |
2521 | sd_event *e, | |
2522 | sd_event_source **ret, | |
2523 | int fd, | |
2524 | uint32_t mask, | |
2525 | sd_event_inotify_handler_t callback, | |
2526 | void *userdata) { | |
2527 | ||
2528 | return event_add_inotify_fd_internal(e, ret, fd, /* donate= */ false, mask, callback, userdata); | |
2529 | } | |
2530 | ||
2531 | _public_ int sd_event_add_inotify( | |
2532 | sd_event *e, | |
2533 | sd_event_source **ret, | |
2534 | const char *path, | |
2535 | uint32_t mask, | |
2536 | sd_event_inotify_handler_t callback, | |
2537 | void *userdata) { | |
2538 | ||
2539 | sd_event_source *s = NULL; /* avoid false maybe-uninitialized warning */ | |
2540 | int fd, r; | |
2541 | ||
2542 | assert_return(path, -EINVAL); | |
2543 | ||
2544 | fd = open(path, O_PATH | O_CLOEXEC | | |
2545 | (mask & IN_ONLYDIR ? O_DIRECTORY : 0) | | |
2546 | (mask & IN_DONT_FOLLOW ? O_NOFOLLOW : 0)); | |
2547 | if (fd < 0) | |
2548 | return -errno; | |
2549 | ||
2550 | r = event_add_inotify_fd_internal(e, &s, fd, /* donate= */ true, mask, callback, userdata); | |
2551 | if (r < 0) | |
2552 | return r; | |
2553 | ||
2554 | (void) sd_event_source_set_description(s, path); | |
2555 | ||
2556 | if (ret) | |
2557 | *ret = s; | |
2558 | ||
2559 | return r; | |
2560 | } | |
2561 | ||
2562 | static sd_event_source* event_source_free(sd_event_source *s) { | |
2563 | if (!s) | |
2564 | return NULL; | |
2565 | ||
2566 | /* Here's a special hack: when we are called from a | |
2567 | * dispatch handler we won't free the event source | |
2568 | * immediately, but we will detach the fd from the | |
2569 | * epoll. This way it is safe for the caller to unref | |
2570 | * the event source and immediately close the fd, but | |
2571 | * we still retain a valid event source object after | |
2572 | * the callback. */ | |
2573 | ||
2574 | if (s->dispatching) | |
2575 | source_disconnect(s); | |
2576 | else | |
2577 | source_free(s); | |
2578 | ||
2579 | return NULL; | |
2580 | } | |
2581 | ||
2582 | DEFINE_PUBLIC_TRIVIAL_REF_UNREF_FUNC(sd_event_source, sd_event_source, event_source_free); | |
2583 | ||
2584 | _public_ int sd_event_source_set_description(sd_event_source *s, const char *description) { | |
2585 | assert_return(s, -EINVAL); | |
2586 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
2587 | ||
2588 | return free_and_strdup(&s->description, description); | |
2589 | } | |
2590 | ||
2591 | _public_ int sd_event_source_get_description(sd_event_source *s, const char **ret) { | |
2592 | assert_return(s, -EINVAL); | |
2593 | assert_return(ret, -EINVAL); | |
2594 | ||
2595 | if (!s->description) | |
2596 | return -ENXIO; | |
2597 | ||
2598 | *ret = s->description; | |
2599 | return 0; | |
2600 | } | |
2601 | ||
2602 | _public_ sd_event* sd_event_source_get_event(sd_event_source *s) { | |
2603 | assert_return(s, NULL); | |
2604 | assert_return(!event_origin_changed(s->event), NULL); | |
2605 | ||
2606 | return s->event; | |
2607 | } | |
2608 | ||
2609 | _public_ int sd_event_source_get_pending(sd_event_source *s) { | |
2610 | assert_return(s, -EINVAL); | |
2611 | assert_return(s->type != SOURCE_EXIT, -EDOM); | |
2612 | assert_return(s->event->state != SD_EVENT_FINISHED, -ESTALE); | |
2613 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
2614 | ||
2615 | return s->pending; | |
2616 | } | |
2617 | ||
2618 | _public_ int sd_event_source_get_io_fd(sd_event_source *s) { | |
2619 | assert_return(s, -EINVAL); | |
2620 | assert_return(s->type == SOURCE_IO, -EDOM); | |
2621 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
2622 | ||
2623 | return s->io.fd; | |
2624 | } | |
2625 | ||
2626 | _public_ int sd_event_source_set_io_fd(sd_event_source *s, int fd) { | |
2627 | int saved_fd, r; | |
2628 | ||
2629 | assert_return(s, -EINVAL); | |
2630 | assert_return(fd >= 0, -EBADF); | |
2631 | assert_return(s->type == SOURCE_IO, -EDOM); | |
2632 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
2633 | ||
2634 | if (s->io.fd == fd) | |
2635 | return 0; | |
2636 | ||
2637 | saved_fd = s->io.fd; | |
2638 | s->io.fd = fd; | |
2639 | ||
2640 | assert(event_source_is_offline(s) == !s->io.registered); | |
2641 | ||
2642 | if (s->io.registered) { | |
2643 | s->io.registered = false; | |
2644 | ||
2645 | r = source_io_register(s, s->enabled, s->io.events); | |
2646 | if (r < 0) { | |
2647 | s->io.fd = saved_fd; | |
2648 | s->io.registered = true; | |
2649 | return r; | |
2650 | } | |
2651 | ||
2652 | (void) epoll_ctl(s->event->epoll_fd, EPOLL_CTL_DEL, saved_fd, NULL); | |
2653 | } | |
2654 | ||
2655 | if (s->io.owned) | |
2656 | safe_close(saved_fd); | |
2657 | ||
2658 | return 0; | |
2659 | } | |
2660 | ||
2661 | _public_ int sd_event_source_get_io_fd_own(sd_event_source *s) { | |
2662 | assert_return(s, -EINVAL); | |
2663 | assert_return(s->type == SOURCE_IO, -EDOM); | |
2664 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
2665 | ||
2666 | return s->io.owned; | |
2667 | } | |
2668 | ||
2669 | _public_ int sd_event_source_set_io_fd_own(sd_event_source *s, int own) { | |
2670 | assert_return(s, -EINVAL); | |
2671 | assert_return(s->type == SOURCE_IO, -EDOM); | |
2672 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
2673 | ||
2674 | s->io.owned = own; | |
2675 | return 0; | |
2676 | } | |
2677 | ||
2678 | _public_ int sd_event_source_get_io_events(sd_event_source *s, uint32_t *ret) { | |
2679 | assert_return(s, -EINVAL); | |
2680 | assert_return(ret, -EINVAL); | |
2681 | assert_return(s->type == SOURCE_IO, -EDOM); | |
2682 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
2683 | ||
2684 | *ret = s->io.events; | |
2685 | return 0; | |
2686 | } | |
2687 | ||
2688 | _public_ int sd_event_source_set_io_events(sd_event_source *s, uint32_t events) { | |
2689 | int r; | |
2690 | ||
2691 | assert_return(s, -EINVAL); | |
2692 | assert_return(s->type == SOURCE_IO, -EDOM); | |
2693 | assert_return(!(events & ~(EPOLLIN|EPOLLOUT|EPOLLRDHUP|EPOLLPRI|EPOLLERR|EPOLLHUP|EPOLLET)), -EINVAL); | |
2694 | assert_return(s->event->state != SD_EVENT_FINISHED, -ESTALE); | |
2695 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
2696 | ||
2697 | /* edge-triggered updates are never skipped, so we can reset edges */ | |
2698 | if (s->io.events == events && !(events & EPOLLET)) | |
2699 | return 0; | |
2700 | ||
2701 | r = source_set_pending(s, false); | |
2702 | if (r < 0) | |
2703 | return r; | |
2704 | ||
2705 | if (event_source_is_online(s)) { | |
2706 | r = source_io_register(s, s->enabled, events); | |
2707 | if (r < 0) | |
2708 | return r; | |
2709 | } | |
2710 | ||
2711 | s->io.events = events; | |
2712 | ||
2713 | return 0; | |
2714 | } | |
2715 | ||
2716 | _public_ int sd_event_source_get_io_revents(sd_event_source *s, uint32_t *ret) { | |
2717 | assert_return(s, -EINVAL); | |
2718 | assert_return(ret, -EINVAL); | |
2719 | assert_return(s->type == SOURCE_IO, -EDOM); | |
2720 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
2721 | ||
2722 | if (!s->pending) | |
2723 | return -ENODATA; | |
2724 | ||
2725 | *ret = s->io.revents; | |
2726 | return 0; | |
2727 | } | |
2728 | ||
2729 | _public_ int sd_event_source_get_signal(sd_event_source *s) { | |
2730 | assert_return(s, -EINVAL); | |
2731 | assert_return(s->type == SOURCE_SIGNAL, -EDOM); | |
2732 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
2733 | ||
2734 | return s->signal.sig; | |
2735 | } | |
2736 | ||
2737 | _public_ int sd_event_source_get_priority(sd_event_source *s, int64_t *ret) { | |
2738 | assert_return(s, -EINVAL); | |
2739 | assert_return(ret, -EINVAL); | |
2740 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
2741 | ||
2742 | *ret = s->priority; | |
2743 | return 0; | |
2744 | } | |
2745 | ||
2746 | _public_ int sd_event_source_set_priority(sd_event_source *s, int64_t priority) { | |
2747 | bool rm_inotify = false, rm_inode = false; | |
2748 | struct inotify_data *new_inotify_data = NULL; | |
2749 | struct inode_data *new_inode_data = NULL; | |
2750 | int r; | |
2751 | ||
2752 | assert_return(s, -EINVAL); | |
2753 | assert_return(s->event->state != SD_EVENT_FINISHED, -ESTALE); | |
2754 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
2755 | ||
2756 | if (s->priority == priority) | |
2757 | return 0; | |
2758 | ||
2759 | if (s->type == SOURCE_INOTIFY) { | |
2760 | struct inode_data *old_inode_data; | |
2761 | ||
2762 | assert(s->inotify.inode_data); | |
2763 | old_inode_data = s->inotify.inode_data; | |
2764 | ||
2765 | /* We need the original fd to change the priority. If we don't have it we can't change the priority, | |
2766 | * anymore. Note that we close any fds when entering the next event loop iteration, i.e. for inotify | |
2767 | * events we allow priority changes only until the first following iteration. */ | |
2768 | if (old_inode_data->fd < 0) | |
2769 | return -EOPNOTSUPP; | |
2770 | ||
2771 | r = event_make_inotify_data(s->event, priority, &new_inotify_data); | |
2772 | if (r < 0) | |
2773 | return r; | |
2774 | rm_inotify = r > 0; | |
2775 | ||
2776 | r = event_make_inode_data(s->event, new_inotify_data, old_inode_data->dev, old_inode_data->ino, &new_inode_data); | |
2777 | if (r < 0) | |
2778 | goto fail; | |
2779 | rm_inode = r > 0; | |
2780 | ||
2781 | if (new_inode_data->fd < 0) { | |
2782 | /* Duplicate the fd for the new inode object if we don't have any yet */ | |
2783 | new_inode_data->fd = fcntl(old_inode_data->fd, F_DUPFD_CLOEXEC, 3); | |
2784 | if (new_inode_data->fd < 0) { | |
2785 | r = -errno; | |
2786 | goto fail; | |
2787 | } | |
2788 | ||
2789 | LIST_PREPEND(to_close, s->event->inode_data_to_close_list, new_inode_data); | |
2790 | ||
2791 | _cleanup_free_ char *path = NULL; | |
2792 | r = fd_get_path(new_inode_data->fd, &path); | |
2793 | if (r < 0 && r != -ENOSYS) | |
2794 | goto fail; | |
2795 | ||
2796 | free_and_replace(new_inode_data->path, path); | |
2797 | } | |
2798 | ||
2799 | /* Move the event source to the new inode data structure */ | |
2800 | LIST_REMOVE(inotify.by_inode_data, old_inode_data->event_sources, s); | |
2801 | LIST_PREPEND(inotify.by_inode_data, new_inode_data->event_sources, s); | |
2802 | s->inotify.inode_data = new_inode_data; | |
2803 | ||
2804 | /* Now create the new watch */ | |
2805 | r = inode_data_realize_watch(s->event, new_inode_data); | |
2806 | if (r < 0) { | |
2807 | /* Move it back */ | |
2808 | LIST_REMOVE(inotify.by_inode_data, new_inode_data->event_sources, s); | |
2809 | LIST_PREPEND(inotify.by_inode_data, old_inode_data->event_sources, s); | |
2810 | s->inotify.inode_data = old_inode_data; | |
2811 | goto fail; | |
2812 | } | |
2813 | ||
2814 | s->priority = priority; | |
2815 | ||
2816 | event_gc_inode_data(s->event, old_inode_data); | |
2817 | ||
2818 | } else if (s->type == SOURCE_SIGNAL && event_source_is_online(s)) { | |
2819 | struct signal_data *old, *d; | |
2820 | ||
2821 | /* Move us from the signalfd belonging to the old | |
2822 | * priority to the signalfd of the new priority */ | |
2823 | ||
2824 | assert_se(old = hashmap_get(s->event->signal_data, &s->priority)); | |
2825 | ||
2826 | s->priority = priority; | |
2827 | ||
2828 | r = event_make_signal_data(s->event, s->signal.sig, &d); | |
2829 | if (r < 0) { | |
2830 | s->priority = old->priority; | |
2831 | return r; | |
2832 | } | |
2833 | ||
2834 | event_unmask_signal_data(s->event, old, s->signal.sig); | |
2835 | } else | |
2836 | s->priority = priority; | |
2837 | ||
2838 | event_source_pp_prioq_reshuffle(s); | |
2839 | ||
2840 | if (s->type == SOURCE_EXIT) | |
2841 | prioq_reshuffle(s->event->exit, s, &s->exit.prioq_index); | |
2842 | ||
2843 | return 0; | |
2844 | ||
2845 | fail: | |
2846 | if (rm_inode) | |
2847 | event_free_inode_data(s->event, new_inode_data); | |
2848 | ||
2849 | if (rm_inotify) | |
2850 | event_free_inotify_data(s->event, new_inotify_data); | |
2851 | ||
2852 | return r; | |
2853 | } | |
2854 | ||
2855 | _public_ int sd_event_source_get_enabled(sd_event_source *s, int *ret) { | |
2856 | /* Quick mode: the event source doesn't exist and we only want to query boolean enablement state. */ | |
2857 | if (!s && !ret) | |
2858 | return false; | |
2859 | ||
2860 | assert_return(s, -EINVAL); | |
2861 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
2862 | ||
2863 | if (ret) | |
2864 | *ret = s->enabled; | |
2865 | ||
2866 | return s->enabled != SD_EVENT_OFF; | |
2867 | } | |
2868 | ||
2869 | static int event_source_offline( | |
2870 | sd_event_source *s, | |
2871 | int enabled, | |
2872 | bool ratelimited) { | |
2873 | ||
2874 | bool was_offline; | |
2875 | int r; | |
2876 | ||
2877 | assert(s); | |
2878 | assert(enabled == SD_EVENT_OFF || ratelimited); | |
2879 | ||
2880 | /* Unset the pending flag when this event source is disabled */ | |
2881 | if (s->enabled != SD_EVENT_OFF && | |
2882 | enabled == SD_EVENT_OFF && | |
2883 | !IN_SET(s->type, SOURCE_DEFER, SOURCE_EXIT)) { | |
2884 | r = source_set_pending(s, false); | |
2885 | if (r < 0) | |
2886 | return r; | |
2887 | } | |
2888 | ||
2889 | was_offline = event_source_is_offline(s); | |
2890 | s->enabled = enabled; | |
2891 | s->ratelimited = ratelimited; | |
2892 | ||
2893 | switch (s->type) { | |
2894 | ||
2895 | case SOURCE_IO: | |
2896 | source_io_unregister(s); | |
2897 | break; | |
2898 | ||
2899 | case SOURCE_SIGNAL: | |
2900 | event_gc_signal_data(s->event, &s->priority, s->signal.sig); | |
2901 | break; | |
2902 | ||
2903 | case SOURCE_CHILD: | |
2904 | if (!was_offline) { | |
2905 | assert(s->event->n_online_child_sources > 0); | |
2906 | s->event->n_online_child_sources--; | |
2907 | } | |
2908 | ||
2909 | if (EVENT_SOURCE_WATCH_PIDFD(s)) | |
2910 | source_child_pidfd_unregister(s); | |
2911 | else | |
2912 | event_gc_signal_data(s->event, &s->priority, SIGCHLD); | |
2913 | break; | |
2914 | ||
2915 | case SOURCE_EXIT: | |
2916 | prioq_reshuffle(s->event->exit, s, &s->exit.prioq_index); | |
2917 | break; | |
2918 | ||
2919 | case SOURCE_MEMORY_PRESSURE: | |
2920 | source_memory_pressure_unregister(s); | |
2921 | break; | |
2922 | ||
2923 | case SOURCE_TIME_REALTIME: | |
2924 | case SOURCE_TIME_BOOTTIME: | |
2925 | case SOURCE_TIME_MONOTONIC: | |
2926 | case SOURCE_TIME_REALTIME_ALARM: | |
2927 | case SOURCE_TIME_BOOTTIME_ALARM: | |
2928 | case SOURCE_DEFER: | |
2929 | case SOURCE_POST: | |
2930 | case SOURCE_INOTIFY: | |
2931 | break; | |
2932 | ||
2933 | default: | |
2934 | assert_not_reached(); | |
2935 | } | |
2936 | ||
2937 | /* Always reshuffle time prioq, as the ratelimited flag may be changed. */ | |
2938 | event_source_time_prioq_reshuffle(s); | |
2939 | ||
2940 | return 1; | |
2941 | } | |
2942 | ||
2943 | static int event_source_online( | |
2944 | sd_event_source *s, | |
2945 | int enabled, | |
2946 | bool ratelimited) { | |
2947 | ||
2948 | bool was_online; | |
2949 | int r; | |
2950 | ||
2951 | assert(s); | |
2952 | assert(enabled != SD_EVENT_OFF || !ratelimited); | |
2953 | ||
2954 | /* Unset the pending flag when this event source is enabled */ | |
2955 | if (s->enabled == SD_EVENT_OFF && | |
2956 | enabled != SD_EVENT_OFF && | |
2957 | !IN_SET(s->type, SOURCE_DEFER, SOURCE_EXIT)) { | |
2958 | r = source_set_pending(s, false); | |
2959 | if (r < 0) | |
2960 | return r; | |
2961 | } | |
2962 | ||
2963 | /* Are we really ready for onlining? */ | |
2964 | if (enabled == SD_EVENT_OFF || ratelimited) { | |
2965 | /* Nope, we are not ready for onlining, then just update the precise state and exit */ | |
2966 | s->enabled = enabled; | |
2967 | s->ratelimited = ratelimited; | |
2968 | return 0; | |
2969 | } | |
2970 | ||
2971 | was_online = event_source_is_online(s); | |
2972 | ||
2973 | switch (s->type) { | |
2974 | case SOURCE_IO: | |
2975 | r = source_io_register(s, enabled, s->io.events); | |
2976 | if (r < 0) | |
2977 | return r; | |
2978 | break; | |
2979 | ||
2980 | case SOURCE_SIGNAL: | |
2981 | r = event_make_signal_data(s->event, s->signal.sig, NULL); | |
2982 | if (r < 0) { | |
2983 | event_gc_signal_data(s->event, &s->priority, s->signal.sig); | |
2984 | return r; | |
2985 | } | |
2986 | ||
2987 | break; | |
2988 | ||
2989 | case SOURCE_CHILD: | |
2990 | if (EVENT_SOURCE_WATCH_PIDFD(s)) { | |
2991 | /* yes, we can rely on pidfd */ | |
2992 | ||
2993 | r = source_child_pidfd_register(s, enabled); | |
2994 | if (r < 0) | |
2995 | return r; | |
2996 | } else { | |
2997 | /* something other to watch for than WEXITED */ | |
2998 | ||
2999 | r = event_make_signal_data(s->event, SIGCHLD, NULL); | |
3000 | if (r < 0) { | |
3001 | event_gc_signal_data(s->event, &s->priority, SIGCHLD); | |
3002 | return r; | |
3003 | } | |
3004 | } | |
3005 | ||
3006 | if (!was_online) | |
3007 | s->event->n_online_child_sources++; | |
3008 | break; | |
3009 | ||
3010 | case SOURCE_MEMORY_PRESSURE: | |
3011 | r = source_memory_pressure_register(s, enabled); | |
3012 | if (r < 0) | |
3013 | return r; | |
3014 | ||
3015 | break; | |
3016 | ||
3017 | case SOURCE_TIME_REALTIME: | |
3018 | case SOURCE_TIME_BOOTTIME: | |
3019 | case SOURCE_TIME_MONOTONIC: | |
3020 | case SOURCE_TIME_REALTIME_ALARM: | |
3021 | case SOURCE_TIME_BOOTTIME_ALARM: | |
3022 | case SOURCE_EXIT: | |
3023 | case SOURCE_DEFER: | |
3024 | case SOURCE_POST: | |
3025 | case SOURCE_INOTIFY: | |
3026 | break; | |
3027 | ||
3028 | default: | |
3029 | assert_not_reached(); | |
3030 | } | |
3031 | ||
3032 | s->enabled = enabled; | |
3033 | s->ratelimited = ratelimited; | |
3034 | ||
3035 | /* Non-failing operations below */ | |
3036 | if (s->type == SOURCE_EXIT) | |
3037 | prioq_reshuffle(s->event->exit, s, &s->exit.prioq_index); | |
3038 | ||
3039 | /* Always reshuffle time prioq, as the ratelimited flag may be changed. */ | |
3040 | event_source_time_prioq_reshuffle(s); | |
3041 | ||
3042 | return 1; | |
3043 | } | |
3044 | ||
3045 | _public_ int sd_event_source_set_enabled(sd_event_source *s, int m) { | |
3046 | int r; | |
3047 | ||
3048 | assert_return(IN_SET(m, SD_EVENT_OFF, SD_EVENT_ON, SD_EVENT_ONESHOT), -EINVAL); | |
3049 | ||
3050 | /* Quick mode: if the source doesn't exist, SD_EVENT_OFF is a noop. */ | |
3051 | if (m == SD_EVENT_OFF && !s) | |
3052 | return 0; | |
3053 | ||
3054 | assert_return(s, -EINVAL); | |
3055 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
3056 | ||
3057 | /* If we are dead anyway, we are fine with turning off sources, but everything else needs to fail. */ | |
3058 | if (s->event->state == SD_EVENT_FINISHED) | |
3059 | return m == SD_EVENT_OFF ? 0 : -ESTALE; | |
3060 | ||
3061 | if (s->enabled == m) /* No change? */ | |
3062 | return 0; | |
3063 | ||
3064 | if (m == SD_EVENT_OFF) | |
3065 | r = event_source_offline(s, m, s->ratelimited); | |
3066 | else { | |
3067 | if (s->enabled != SD_EVENT_OFF) { | |
3068 | /* Switching from "on" to "oneshot" or back? If that's the case, we can take a shortcut, the | |
3069 | * event source is already enabled after all. */ | |
3070 | s->enabled = m; | |
3071 | return 0; | |
3072 | } | |
3073 | ||
3074 | r = event_source_online(s, m, s->ratelimited); | |
3075 | } | |
3076 | if (r < 0) | |
3077 | return r; | |
3078 | ||
3079 | event_source_pp_prioq_reshuffle(s); | |
3080 | return 0; | |
3081 | } | |
3082 | ||
3083 | _public_ int sd_event_source_get_time(sd_event_source *s, uint64_t *ret) { | |
3084 | assert_return(s, -EINVAL); | |
3085 | assert_return(ret, -EINVAL); | |
3086 | assert_return(EVENT_SOURCE_IS_TIME(s->type), -EDOM); | |
3087 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
3088 | ||
3089 | *ret = s->time.next; | |
3090 | return 0; | |
3091 | } | |
3092 | ||
3093 | _public_ int sd_event_source_set_time(sd_event_source *s, uint64_t usec) { | |
3094 | int r; | |
3095 | ||
3096 | assert_return(s, -EINVAL); | |
3097 | assert_return(EVENT_SOURCE_IS_TIME(s->type), -EDOM); | |
3098 | assert_return(s->event->state != SD_EVENT_FINISHED, -ESTALE); | |
3099 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
3100 | ||
3101 | r = source_set_pending(s, false); | |
3102 | if (r < 0) | |
3103 | return r; | |
3104 | ||
3105 | s->time.next = usec; | |
3106 | ||
3107 | event_source_time_prioq_reshuffle(s); | |
3108 | return 0; | |
3109 | } | |
3110 | ||
3111 | _public_ int sd_event_source_set_time_relative(sd_event_source *s, uint64_t usec) { | |
3112 | usec_t t; | |
3113 | int r; | |
3114 | ||
3115 | assert_return(s, -EINVAL); | |
3116 | assert_return(EVENT_SOURCE_IS_TIME(s->type), -EDOM); | |
3117 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
3118 | ||
3119 | if (usec == USEC_INFINITY) | |
3120 | return sd_event_source_set_time(s, USEC_INFINITY); | |
3121 | ||
3122 | r = sd_event_now(s->event, event_source_type_to_clock(s->type), &t); | |
3123 | if (r < 0) | |
3124 | return r; | |
3125 | ||
3126 | usec = usec_add(t, usec); | |
3127 | if (usec == USEC_INFINITY) | |
3128 | return -EOVERFLOW; | |
3129 | ||
3130 | return sd_event_source_set_time(s, usec); | |
3131 | } | |
3132 | ||
3133 | _public_ int sd_event_source_get_time_accuracy(sd_event_source *s, uint64_t *ret) { | |
3134 | assert_return(s, -EINVAL); | |
3135 | assert_return(ret, -EINVAL); | |
3136 | assert_return(EVENT_SOURCE_IS_TIME(s->type), -EDOM); | |
3137 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
3138 | ||
3139 | *ret = s->time.accuracy; | |
3140 | return 0; | |
3141 | } | |
3142 | ||
3143 | _public_ int sd_event_source_set_time_accuracy(sd_event_source *s, uint64_t usec) { | |
3144 | int r; | |
3145 | ||
3146 | assert_return(s, -EINVAL); | |
3147 | assert_return(usec != UINT64_MAX, -EINVAL); | |
3148 | assert_return(EVENT_SOURCE_IS_TIME(s->type), -EDOM); | |
3149 | assert_return(s->event->state != SD_EVENT_FINISHED, -ESTALE); | |
3150 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
3151 | ||
3152 | r = source_set_pending(s, false); | |
3153 | if (r < 0) | |
3154 | return r; | |
3155 | ||
3156 | if (usec == 0) | |
3157 | usec = DEFAULT_ACCURACY_USEC; | |
3158 | ||
3159 | s->time.accuracy = usec; | |
3160 | ||
3161 | event_source_time_prioq_reshuffle(s); | |
3162 | return 0; | |
3163 | } | |
3164 | ||
3165 | _public_ int sd_event_source_get_time_clock(sd_event_source *s, clockid_t *ret) { | |
3166 | assert_return(s, -EINVAL); | |
3167 | assert_return(ret, -EINVAL); | |
3168 | assert_return(EVENT_SOURCE_IS_TIME(s->type), -EDOM); | |
3169 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
3170 | ||
3171 | *ret = event_source_type_to_clock(s->type); | |
3172 | return 0; | |
3173 | } | |
3174 | ||
3175 | _public_ int sd_event_source_get_child_pid(sd_event_source *s, pid_t *ret) { | |
3176 | assert_return(s, -EINVAL); | |
3177 | assert_return(ret, -EINVAL); | |
3178 | assert_return(s->type == SOURCE_CHILD, -EDOM); | |
3179 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
3180 | ||
3181 | *ret = s->child.pid; | |
3182 | return 0; | |
3183 | } | |
3184 | ||
3185 | _public_ int sd_event_source_get_child_pidfd(sd_event_source *s) { | |
3186 | assert_return(s, -EINVAL); | |
3187 | assert_return(s->type == SOURCE_CHILD, -EDOM); | |
3188 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
3189 | ||
3190 | return s->child.pidfd; | |
3191 | } | |
3192 | ||
3193 | _public_ int sd_event_source_send_child_signal(sd_event_source *s, int sig, const siginfo_t *si, unsigned flags) { | |
3194 | assert_return(s, -EINVAL); | |
3195 | assert_return(s->type == SOURCE_CHILD, -EDOM); | |
3196 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
3197 | assert_return(SIGNAL_VALID(sig), -EINVAL); | |
3198 | assert(s->child.pidfd >= 0); | |
3199 | ||
3200 | /* If we already have seen indication the process exited refuse sending a signal early. */ | |
3201 | if (s->child.exited) | |
3202 | return -ESRCH; | |
3203 | assert(!s->child.waited); | |
3204 | ||
3205 | /* pidfd_send_signal() changes the siginfo_t argument. This is weird, let's hence copy the structure here. */ | |
3206 | siginfo_t copy; | |
3207 | if (si) | |
3208 | copy = *si; | |
3209 | ||
3210 | return RET_NERRNO(pidfd_send_signal(s->child.pidfd, sig, si ? © : NULL, flags)); | |
3211 | } | |
3212 | ||
3213 | _public_ int sd_event_source_get_child_pidfd_own(sd_event_source *s) { | |
3214 | assert_return(s, -EINVAL); | |
3215 | assert_return(s->type == SOURCE_CHILD, -EDOM); | |
3216 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
3217 | assert(s->child.pidfd >= 0); | |
3218 | ||
3219 | return s->child.pidfd_owned; | |
3220 | } | |
3221 | ||
3222 | _public_ int sd_event_source_set_child_pidfd_own(sd_event_source *s, int own) { | |
3223 | assert_return(s, -EINVAL); | |
3224 | assert_return(s->type == SOURCE_CHILD, -EDOM); | |
3225 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
3226 | assert(s->child.pidfd >= 0); | |
3227 | ||
3228 | s->child.pidfd_owned = own; | |
3229 | return 0; | |
3230 | } | |
3231 | ||
3232 | _public_ int sd_event_source_get_child_process_own(sd_event_source *s) { | |
3233 | assert_return(s, -EINVAL); | |
3234 | assert_return(s->type == SOURCE_CHILD, -EDOM); | |
3235 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
3236 | ||
3237 | return s->child.process_owned; | |
3238 | } | |
3239 | ||
3240 | _public_ int sd_event_source_set_child_process_own(sd_event_source *s, int own) { | |
3241 | assert_return(s, -EINVAL); | |
3242 | assert_return(s->type == SOURCE_CHILD, -EDOM); | |
3243 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
3244 | ||
3245 | s->child.process_owned = own; | |
3246 | return 0; | |
3247 | } | |
3248 | ||
3249 | _public_ int sd_event_source_get_inotify_mask(sd_event_source *s, uint32_t *ret) { | |
3250 | assert_return(s, -EINVAL); | |
3251 | assert_return(ret, -EINVAL); | |
3252 | assert_return(s->type == SOURCE_INOTIFY, -EDOM); | |
3253 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
3254 | ||
3255 | *ret = s->inotify.mask; | |
3256 | return 0; | |
3257 | } | |
3258 | ||
3259 | _public_ int sd_event_source_get_inotify_path(sd_event_source *s, const char **ret) { | |
3260 | assert_return(s, -EINVAL); | |
3261 | assert_return(ret, -EINVAL); | |
3262 | assert_return(s->type == SOURCE_INOTIFY, -EDOM); | |
3263 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
3264 | ||
3265 | if (!s->inotify.inode_data) | |
3266 | return -ESTALE; /* already disconnected. */ | |
3267 | ||
3268 | if (!s->inotify.inode_data->path) | |
3269 | return -ENOSYS; /* /proc was not mounted? */ | |
3270 | ||
3271 | *ret = s->inotify.inode_data->path; | |
3272 | return 0; | |
3273 | } | |
3274 | ||
3275 | _public_ int sd_event_source_set_prepare(sd_event_source *s, sd_event_handler_t callback) { | |
3276 | int r; | |
3277 | ||
3278 | assert_return(s, -EINVAL); | |
3279 | assert_return(s->type != SOURCE_EXIT, -EDOM); | |
3280 | assert_return(s->event->state != SD_EVENT_FINISHED, -ESTALE); | |
3281 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
3282 | ||
3283 | if (s->prepare == callback) | |
3284 | return 0; | |
3285 | ||
3286 | if (callback && s->prepare) { | |
3287 | s->prepare = callback; | |
3288 | return 0; | |
3289 | } | |
3290 | ||
3291 | r = prioq_ensure_allocated(&s->event->prepare, prepare_prioq_compare); | |
3292 | if (r < 0) | |
3293 | return r; | |
3294 | ||
3295 | s->prepare = callback; | |
3296 | ||
3297 | if (callback) { | |
3298 | r = prioq_put(s->event->prepare, s, &s->prepare_index); | |
3299 | if (r < 0) | |
3300 | return r; | |
3301 | } else | |
3302 | prioq_remove(s->event->prepare, s, &s->prepare_index); | |
3303 | ||
3304 | return 0; | |
3305 | } | |
3306 | ||
3307 | _public_ void* sd_event_source_get_userdata(sd_event_source *s) { | |
3308 | assert_return(s, NULL); | |
3309 | assert_return(!event_origin_changed(s->event), NULL); | |
3310 | ||
3311 | return s->userdata; | |
3312 | } | |
3313 | ||
3314 | _public_ void *sd_event_source_set_userdata(sd_event_source *s, void *userdata) { | |
3315 | void *ret; | |
3316 | ||
3317 | assert_return(s, NULL); | |
3318 | assert_return(!event_origin_changed(s->event), NULL); | |
3319 | ||
3320 | ret = s->userdata; | |
3321 | s->userdata = userdata; | |
3322 | ||
3323 | return ret; | |
3324 | } | |
3325 | ||
3326 | static int event_source_enter_ratelimited(sd_event_source *s) { | |
3327 | int r; | |
3328 | ||
3329 | assert(s); | |
3330 | ||
3331 | /* When an event source becomes ratelimited, we place it in the CLOCK_MONOTONIC priority queue, with | |
3332 | * the end of the rate limit time window, much as if it was a timer event source. */ | |
3333 | ||
3334 | if (s->ratelimited) | |
3335 | return 0; /* Already ratelimited, this is a NOP hence */ | |
3336 | ||
3337 | /* Make sure we can install a CLOCK_MONOTONIC event further down. */ | |
3338 | r = setup_clock_data(s->event, &s->event->monotonic, CLOCK_MONOTONIC); | |
3339 | if (r < 0) | |
3340 | return r; | |
3341 | ||
3342 | /* Timer event sources are already using the earliest/latest queues for the timer scheduling. Let's | |
3343 | * first remove them from the prioq appropriate for their own clock, so that we can use the prioq | |
3344 | * fields of the event source then for adding it to the CLOCK_MONOTONIC prioq instead. */ | |
3345 | if (EVENT_SOURCE_IS_TIME(s->type)) | |
3346 | event_source_time_prioq_remove(s, event_get_clock_data(s->event, s->type)); | |
3347 | ||
3348 | /* Now, let's add the event source to the monotonic clock instead */ | |
3349 | r = event_source_time_prioq_put(s, &s->event->monotonic); | |
3350 | if (r < 0) | |
3351 | goto fail; | |
3352 | ||
3353 | /* And let's take the event source officially offline */ | |
3354 | r = event_source_offline(s, s->enabled, /* ratelimited= */ true); | |
3355 | if (r < 0) { | |
3356 | event_source_time_prioq_remove(s, &s->event->monotonic); | |
3357 | goto fail; | |
3358 | } | |
3359 | ||
3360 | event_source_pp_prioq_reshuffle(s); | |
3361 | ||
3362 | log_debug("Event source %p (%s) entered rate limit state.", s, strna(s->description)); | |
3363 | return 0; | |
3364 | ||
3365 | fail: | |
3366 | /* Reinstall time event sources in the priority queue as before. This shouldn't fail, since the queue | |
3367 | * space for it should already be allocated. */ | |
3368 | if (EVENT_SOURCE_IS_TIME(s->type)) | |
3369 | assert_se(event_source_time_prioq_put(s, event_get_clock_data(s->event, s->type)) >= 0); | |
3370 | ||
3371 | return r; | |
3372 | } | |
3373 | ||
3374 | static int event_source_leave_ratelimit(sd_event_source *s, bool run_callback) { | |
3375 | int r; | |
3376 | ||
3377 | assert(s); | |
3378 | ||
3379 | if (!s->ratelimited) | |
3380 | return 0; | |
3381 | ||
3382 | /* Let's take the event source out of the monotonic prioq first. */ | |
3383 | event_source_time_prioq_remove(s, &s->event->monotonic); | |
3384 | ||
3385 | /* Let's then add the event source to its native clock prioq again — if this is a timer event source */ | |
3386 | if (EVENT_SOURCE_IS_TIME(s->type)) { | |
3387 | r = event_source_time_prioq_put(s, event_get_clock_data(s->event, s->type)); | |
3388 | if (r < 0) | |
3389 | goto fail; | |
3390 | } | |
3391 | ||
3392 | /* Let's try to take it online again. */ | |
3393 | r = event_source_online(s, s->enabled, /* ratelimited= */ false); | |
3394 | if (r < 0) { | |
3395 | /* Do something roughly sensible when this failed: undo the two prioq ops above */ | |
3396 | if (EVENT_SOURCE_IS_TIME(s->type)) | |
3397 | event_source_time_prioq_remove(s, event_get_clock_data(s->event, s->type)); | |
3398 | ||
3399 | goto fail; | |
3400 | } | |
3401 | ||
3402 | event_source_pp_prioq_reshuffle(s); | |
3403 | ratelimit_reset(&s->rate_limit); | |
3404 | ||
3405 | log_debug("Event source %p (%s) left rate limit state.", s, strna(s->description)); | |
3406 | ||
3407 | if (run_callback && s->ratelimit_expire_callback) { | |
3408 | s->dispatching = true; | |
3409 | r = s->ratelimit_expire_callback(s, s->userdata); | |
3410 | s->dispatching = false; | |
3411 | ||
3412 | if (r < 0) { | |
3413 | log_debug_errno(r, "Ratelimit expiry callback of event source %s (type %s) returned error, %s: %m", | |
3414 | strna(s->description), | |
3415 | event_source_type_to_string(s->type), | |
3416 | s->exit_on_failure ? "exiting" : "disabling"); | |
3417 | ||
3418 | if (s->exit_on_failure) | |
3419 | (void) sd_event_exit(s->event, r); | |
3420 | } | |
3421 | ||
3422 | if (s->n_ref == 0) | |
3423 | source_free(s); | |
3424 | else if (r < 0) | |
3425 | assert_se(sd_event_source_set_enabled(s, SD_EVENT_OFF) >= 0); | |
3426 | ||
3427 | return 1; | |
3428 | } | |
3429 | ||
3430 | return 0; | |
3431 | ||
3432 | fail: | |
3433 | /* Do something somewhat reasonable when we cannot move an event sources out of ratelimited mode: | |
3434 | * simply put it back in it, maybe we can then process it more successfully next iteration. */ | |
3435 | assert_se(event_source_time_prioq_put(s, &s->event->monotonic) >= 0); | |
3436 | ||
3437 | return r; | |
3438 | } | |
3439 | ||
3440 | static usec_t sleep_between(sd_event *e, usec_t a, usec_t b) { | |
3441 | usec_t c; | |
3442 | assert(e); | |
3443 | assert(a <= b); | |
3444 | ||
3445 | if (a <= 0) | |
3446 | return 0; | |
3447 | if (a >= USEC_INFINITY) | |
3448 | return USEC_INFINITY; | |
3449 | ||
3450 | if (b <= a + 1) | |
3451 | return a; | |
3452 | ||
3453 | initialize_perturb(e); | |
3454 | ||
3455 | /* | |
3456 | Find a good time to wake up again between times a and b. We | |
3457 | have two goals here: | |
3458 | ||
3459 | a) We want to wake up as seldom as possible, hence prefer | |
3460 | later times over earlier times. | |
3461 | ||
3462 | b) But if we have to wake up, then let's make sure to | |
3463 | dispatch as much as possible on the entire system. | |
3464 | ||
3465 | We implement this by waking up everywhere at the same time | |
3466 | within any given minute if we can, synchronised via the | |
3467 | perturbation value determined from the boot ID. If we can't, | |
3468 | then we try to find the same spot in every 10s, then 1s and | |
3469 | then 250ms step. Otherwise, we pick the last possible time | |
3470 | to wake up. | |
3471 | */ | |
3472 | ||
3473 | c = (b / USEC_PER_MINUTE) * USEC_PER_MINUTE + e->perturb; | |
3474 | if (c >= b) { | |
3475 | if (_unlikely_(c < USEC_PER_MINUTE)) | |
3476 | return b; | |
3477 | ||
3478 | c -= USEC_PER_MINUTE; | |
3479 | } | |
3480 | ||
3481 | if (c >= a) | |
3482 | return c; | |
3483 | ||
3484 | c = (b / (USEC_PER_SEC*10)) * (USEC_PER_SEC*10) + (e->perturb % (USEC_PER_SEC*10)); | |
3485 | if (c >= b) { | |
3486 | if (_unlikely_(c < USEC_PER_SEC*10)) | |
3487 | return b; | |
3488 | ||
3489 | c -= USEC_PER_SEC*10; | |
3490 | } | |
3491 | ||
3492 | if (c >= a) | |
3493 | return c; | |
3494 | ||
3495 | c = (b / USEC_PER_SEC) * USEC_PER_SEC + (e->perturb % USEC_PER_SEC); | |
3496 | if (c >= b) { | |
3497 | if (_unlikely_(c < USEC_PER_SEC)) | |
3498 | return b; | |
3499 | ||
3500 | c -= USEC_PER_SEC; | |
3501 | } | |
3502 | ||
3503 | if (c >= a) | |
3504 | return c; | |
3505 | ||
3506 | c = (b / (USEC_PER_MSEC*250)) * (USEC_PER_MSEC*250) + (e->perturb % (USEC_PER_MSEC*250)); | |
3507 | if (c >= b) { | |
3508 | if (_unlikely_(c < USEC_PER_MSEC*250)) | |
3509 | return b; | |
3510 | ||
3511 | c -= USEC_PER_MSEC*250; | |
3512 | } | |
3513 | ||
3514 | if (c >= a) | |
3515 | return c; | |
3516 | ||
3517 | return b; | |
3518 | } | |
3519 | ||
3520 | static int event_arm_timer( | |
3521 | sd_event *e, | |
3522 | struct clock_data *d) { | |
3523 | ||
3524 | struct itimerspec its = {}; | |
3525 | sd_event_source *a, *b; | |
3526 | usec_t t; | |
3527 | ||
3528 | assert(e); | |
3529 | assert(d); | |
3530 | ||
3531 | if (!d->needs_rearm) | |
3532 | return 0; | |
3533 | ||
3534 | d->needs_rearm = false; | |
3535 | ||
3536 | a = prioq_peek(d->earliest); | |
3537 | assert(!a || EVENT_SOURCE_USES_TIME_PRIOQ(a->type)); | |
3538 | if (!a || a->enabled == SD_EVENT_OFF || time_event_source_next(a) == USEC_INFINITY) { | |
3539 | ||
3540 | if (d->fd < 0) | |
3541 | return 0; | |
3542 | ||
3543 | if (d->next == USEC_INFINITY) | |
3544 | return 0; | |
3545 | ||
3546 | /* disarm */ | |
3547 | if (timerfd_settime(d->fd, TFD_TIMER_ABSTIME, &its, NULL) < 0) | |
3548 | return -errno; | |
3549 | ||
3550 | d->next = USEC_INFINITY; | |
3551 | return 0; | |
3552 | } | |
3553 | ||
3554 | b = prioq_peek(d->latest); | |
3555 | assert(!b || EVENT_SOURCE_USES_TIME_PRIOQ(b->type)); | |
3556 | assert(b && b->enabled != SD_EVENT_OFF); | |
3557 | ||
3558 | t = sleep_between(e, time_event_source_next(a), time_event_source_latest(b)); | |
3559 | if (d->next == t) | |
3560 | return 0; | |
3561 | ||
3562 | assert_se(d->fd >= 0); | |
3563 | ||
3564 | if (t == 0) { | |
3565 | /* We don't want to disarm here, just mean some time looooong ago. */ | |
3566 | its.it_value.tv_sec = 0; | |
3567 | its.it_value.tv_nsec = 1; | |
3568 | } else | |
3569 | timespec_store(&its.it_value, t); | |
3570 | ||
3571 | if (timerfd_settime(d->fd, TFD_TIMER_ABSTIME, &its, NULL) < 0) | |
3572 | return -errno; | |
3573 | ||
3574 | d->next = t; | |
3575 | return 0; | |
3576 | } | |
3577 | ||
3578 | static int process_io(sd_event *e, sd_event_source *s, uint32_t revents) { | |
3579 | assert(e); | |
3580 | assert(s); | |
3581 | assert(s->type == SOURCE_IO); | |
3582 | ||
3583 | /* If the event source was already pending, we just OR in the | |
3584 | * new revents, otherwise we reset the value. The ORing is | |
3585 | * necessary to handle EPOLLONESHOT events properly where | |
3586 | * readability might happen independently of writability, and | |
3587 | * we need to keep track of both */ | |
3588 | ||
3589 | if (s->pending) | |
3590 | s->io.revents |= revents; | |
3591 | else | |
3592 | s->io.revents = revents; | |
3593 | ||
3594 | return source_set_pending(s, true); | |
3595 | } | |
3596 | ||
3597 | static int flush_timer(sd_event *e, int fd, uint32_t events, usec_t *next) { | |
3598 | uint64_t x; | |
3599 | ssize_t ss; | |
3600 | ||
3601 | assert(e); | |
3602 | assert(fd >= 0); | |
3603 | ||
3604 | assert_return(events == EPOLLIN, -EIO); | |
3605 | ||
3606 | ss = read(fd, &x, sizeof(x)); | |
3607 | if (ss < 0) { | |
3608 | if (ERRNO_IS_TRANSIENT(errno)) | |
3609 | return 0; | |
3610 | ||
3611 | return -errno; | |
3612 | } | |
3613 | ||
3614 | if (_unlikely_(ss != sizeof(x))) | |
3615 | return -EIO; | |
3616 | ||
3617 | if (next) | |
3618 | *next = USEC_INFINITY; | |
3619 | ||
3620 | return 0; | |
3621 | } | |
3622 | ||
3623 | static int process_timer( | |
3624 | sd_event *e, | |
3625 | usec_t n, | |
3626 | struct clock_data *d) { | |
3627 | ||
3628 | sd_event_source *s; | |
3629 | bool callback_invoked = false; | |
3630 | int r; | |
3631 | ||
3632 | assert(e); | |
3633 | assert(d); | |
3634 | ||
3635 | for (;;) { | |
3636 | s = prioq_peek(d->earliest); | |
3637 | assert(!s || EVENT_SOURCE_USES_TIME_PRIOQ(s->type)); | |
3638 | ||
3639 | if (!s || time_event_source_next(s) > n) | |
3640 | break; | |
3641 | ||
3642 | if (s->ratelimited) { | |
3643 | /* This is an event sources whose ratelimit window has ended. Let's turn it on | |
3644 | * again. */ | |
3645 | assert(s->ratelimited); | |
3646 | ||
3647 | r = event_source_leave_ratelimit(s, /* run_callback */ true); | |
3648 | if (r < 0) | |
3649 | return r; | |
3650 | else if (r == 1) | |
3651 | callback_invoked = true; | |
3652 | ||
3653 | continue; | |
3654 | } | |
3655 | ||
3656 | if (s->enabled == SD_EVENT_OFF || s->pending) | |
3657 | break; | |
3658 | ||
3659 | r = source_set_pending(s, true); | |
3660 | if (r < 0) | |
3661 | return r; | |
3662 | ||
3663 | event_source_time_prioq_reshuffle(s); | |
3664 | } | |
3665 | ||
3666 | return callback_invoked; | |
3667 | } | |
3668 | ||
3669 | static int process_child(sd_event *e, int64_t threshold, int64_t *ret_min_priority) { | |
3670 | int64_t min_priority = threshold; | |
3671 | bool something_new = false; | |
3672 | sd_event_source *s; | |
3673 | int r; | |
3674 | ||
3675 | assert(e); | |
3676 | assert(ret_min_priority); | |
3677 | ||
3678 | if (!e->need_process_child) { | |
3679 | *ret_min_priority = min_priority; | |
3680 | return 0; | |
3681 | } | |
3682 | ||
3683 | e->need_process_child = false; | |
3684 | ||
3685 | /* So, this is ugly. We iteratively invoke waitid() + WNOHANG with each child process we shall wait for, | |
3686 | * instead of using P_ALL. This is because we only want to get child information of very specific | |
3687 | * child processes, and not all of them. We might not have processed the SIGCHLD event | |
3688 | * of a previous invocation and we don't want to maintain a unbounded *per-child* event queue, | |
3689 | * hence we really don't want anything flushed out of the kernel's queue that we don't care | |
3690 | * about. Since this is O(n) this means that if you have a lot of processes you probably want | |
3691 | * to handle SIGCHLD yourself. | |
3692 | * | |
3693 | * We do not reap the children here (by using WNOWAIT), this is only done after the event | |
3694 | * source is dispatched so that the callback still sees the process as a zombie. */ | |
3695 | ||
3696 | HASHMAP_FOREACH(s, e->child_sources) { | |
3697 | assert(s->type == SOURCE_CHILD); | |
3698 | assert(s->child.pidfd >= 0); | |
3699 | ||
3700 | if (s->priority > threshold) | |
3701 | continue; | |
3702 | ||
3703 | if (s->pending) | |
3704 | continue; | |
3705 | ||
3706 | if (event_source_is_offline(s)) | |
3707 | continue; | |
3708 | ||
3709 | if (s->child.exited) | |
3710 | continue; | |
3711 | ||
3712 | if (EVENT_SOURCE_WATCH_PIDFD(s)) | |
3713 | /* There's a usable pidfd known for this event source? Then don't waitid() for | |
3714 | * it here */ | |
3715 | continue; | |
3716 | ||
3717 | zero(s->child.siginfo); | |
3718 | if (waitid(P_PIDFD, s->child.pidfd, &s->child.siginfo, | |
3719 | WNOHANG | (s->child.options & WEXITED ? WNOWAIT : 0) | s->child.options) < 0) | |
3720 | return negative_errno(); | |
3721 | ||
3722 | if (s->child.siginfo.si_pid != 0) { | |
3723 | bool zombie = SIGINFO_CODE_IS_DEAD(s->child.siginfo.si_code); | |
3724 | ||
3725 | if (zombie) | |
3726 | s->child.exited = true; | |
3727 | else if (s->child.options & WEXITED) { | |
3728 | /* If the child isn't dead then let's immediately remove the state change | |
3729 | * from the queue, since there's no benefit in leaving it queued. */ | |
3730 | ||
3731 | assert(s->child.options & (WSTOPPED|WCONTINUED)); | |
3732 | (void) waitid(P_PIDFD, s->child.pidfd, &s->child.siginfo, WNOHANG|(s->child.options & (WSTOPPED|WCONTINUED))); | |
3733 | } | |
3734 | ||
3735 | r = source_set_pending(s, true); | |
3736 | if (r < 0) | |
3737 | return r; | |
3738 | if (r > 0) { | |
3739 | something_new = true; | |
3740 | min_priority = MIN(min_priority, s->priority); | |
3741 | } | |
3742 | } | |
3743 | } | |
3744 | ||
3745 | *ret_min_priority = min_priority; | |
3746 | return something_new; | |
3747 | } | |
3748 | ||
3749 | static int process_pidfd(sd_event *e, sd_event_source *s, uint32_t revents) { | |
3750 | assert(e); | |
3751 | assert(s); | |
3752 | assert(s->type == SOURCE_CHILD); | |
3753 | assert(s->child.pidfd >= 0); | |
3754 | ||
3755 | if (s->pending) | |
3756 | return 0; | |
3757 | ||
3758 | if (event_source_is_offline(s)) | |
3759 | return 0; | |
3760 | ||
3761 | if (!EVENT_SOURCE_WATCH_PIDFD(s)) | |
3762 | return 0; | |
3763 | ||
3764 | /* Note that pidfd would also generate EPOLLHUP when the process gets reaped. But at this point we | |
3765 | * only permit EPOLLIN, under the assumption that upon EPOLLHUP the child source should already | |
3766 | * be set to pending, and we would have returned early above. */ | |
3767 | assert(!s->child.exited); | |
3768 | ||
3769 | zero(s->child.siginfo); | |
3770 | if (waitid(P_PIDFD, s->child.pidfd, &s->child.siginfo, WNOHANG | WNOWAIT | s->child.options) < 0) | |
3771 | return -errno; | |
3772 | ||
3773 | if (s->child.siginfo.si_pid == 0) | |
3774 | return 0; | |
3775 | ||
3776 | if (SIGINFO_CODE_IS_DEAD(s->child.siginfo.si_code)) | |
3777 | s->child.exited = true; | |
3778 | ||
3779 | return source_set_pending(s, true); | |
3780 | } | |
3781 | ||
3782 | static int process_signal(sd_event *e, struct signal_data *d, uint32_t events, int64_t *min_priority) { | |
3783 | int r; | |
3784 | ||
3785 | assert(e); | |
3786 | assert(d); | |
3787 | assert_return(events == EPOLLIN, -EIO); | |
3788 | assert(min_priority); | |
3789 | ||
3790 | /* If there's a signal queued on this priority and SIGCHLD is on this priority too, then make | |
3791 | * sure to recheck the children we watch. This is because we only ever dequeue the first signal | |
3792 | * per priority, and if we dequeue one, and SIGCHLD might be enqueued later we wouldn't know, | |
3793 | * but we might have higher priority children we care about hence we need to check that | |
3794 | * explicitly. */ | |
3795 | ||
3796 | if (sigismember(&d->sigset, SIGCHLD)) | |
3797 | e->need_process_child = true; | |
3798 | ||
3799 | /* If there's already an event source pending for this priority we don't read another */ | |
3800 | if (d->current) | |
3801 | return 0; | |
3802 | ||
3803 | for (;;) { | |
3804 | struct signalfd_siginfo si; | |
3805 | ssize_t n; | |
3806 | sd_event_source *s = NULL; | |
3807 | ||
3808 | n = read(d->fd, &si, sizeof(si)); | |
3809 | if (n < 0) { | |
3810 | if (ERRNO_IS_TRANSIENT(errno)) | |
3811 | return 0; | |
3812 | ||
3813 | return -errno; | |
3814 | } | |
3815 | ||
3816 | if (_unlikely_(n != sizeof(si))) | |
3817 | return -EIO; | |
3818 | ||
3819 | if (_unlikely_(!SIGNAL_VALID(si.ssi_signo))) | |
3820 | return -EIO; | |
3821 | ||
3822 | if (e->signal_sources) | |
3823 | s = e->signal_sources[si.ssi_signo]; | |
3824 | if (!s) | |
3825 | continue; | |
3826 | if (s->pending) | |
3827 | continue; | |
3828 | ||
3829 | s->signal.siginfo = si; | |
3830 | d->current = s; | |
3831 | ||
3832 | r = source_set_pending(s, true); | |
3833 | if (r < 0) | |
3834 | return r; | |
3835 | if (r > 0 && *min_priority >= s->priority) { | |
3836 | *min_priority = s->priority; | |
3837 | return 1; /* an event source with smaller priority is queued. */ | |
3838 | } | |
3839 | ||
3840 | return 0; | |
3841 | } | |
3842 | } | |
3843 | ||
3844 | static int event_inotify_data_read(sd_event *e, struct inotify_data *d, uint32_t revents, int64_t threshold) { | |
3845 | ssize_t n; | |
3846 | ||
3847 | assert(e); | |
3848 | assert(d); | |
3849 | ||
3850 | assert_return(revents == EPOLLIN, -EIO); | |
3851 | ||
3852 | /* If there's already an event source pending for this priority, don't read another */ | |
3853 | if (d->n_pending > 0) | |
3854 | return 0; | |
3855 | ||
3856 | /* Is the read buffer non-empty? If so, let's not read more */ | |
3857 | if (d->buffer_filled > 0) | |
3858 | return 0; | |
3859 | ||
3860 | if (d->priority > threshold) | |
3861 | return 0; | |
3862 | ||
3863 | n = read(d->fd, &d->buffer, sizeof(d->buffer)); | |
3864 | if (n < 0) { | |
3865 | if (ERRNO_IS_TRANSIENT(errno)) | |
3866 | return 0; | |
3867 | ||
3868 | return -errno; | |
3869 | } | |
3870 | ||
3871 | assert(n > 0); | |
3872 | d->buffer_filled = (size_t) n; | |
3873 | LIST_PREPEND(buffered, e->buffered_inotify_data_list, d); | |
3874 | ||
3875 | return 1; | |
3876 | } | |
3877 | ||
3878 | static void event_inotify_data_drop(sd_event *e, struct inotify_data *d, size_t sz) { | |
3879 | assert(e); | |
3880 | assert(d); | |
3881 | assert(sz <= d->buffer_filled); | |
3882 | ||
3883 | if (sz == 0) | |
3884 | return; | |
3885 | ||
3886 | /* Move the rest to the buffer to the front, in order to get things properly aligned again */ | |
3887 | memmove(d->buffer.raw, d->buffer.raw + sz, d->buffer_filled - sz); | |
3888 | d->buffer_filled -= sz; | |
3889 | ||
3890 | if (d->buffer_filled == 0) | |
3891 | LIST_REMOVE(buffered, e->buffered_inotify_data_list, d); | |
3892 | } | |
3893 | ||
3894 | static int event_inotify_data_process(sd_event *e, struct inotify_data *d) { | |
3895 | int r; | |
3896 | ||
3897 | assert(e); | |
3898 | assert(d); | |
3899 | ||
3900 | /* If there's already an event source pending for this priority, don't read another */ | |
3901 | if (d->n_pending > 0) | |
3902 | return 0; | |
3903 | ||
3904 | while (d->buffer_filled > 0) { | |
3905 | size_t sz; | |
3906 | ||
3907 | /* Let's validate that the event structures are complete */ | |
3908 | if (d->buffer_filled < offsetof(struct inotify_event, name)) | |
3909 | return -EIO; | |
3910 | ||
3911 | sz = offsetof(struct inotify_event, name) + d->buffer.ev.len; | |
3912 | if (d->buffer_filled < sz) | |
3913 | return -EIO; | |
3914 | ||
3915 | if (d->buffer.ev.mask & IN_Q_OVERFLOW) { | |
3916 | struct inode_data *inode_data; | |
3917 | ||
3918 | /* The queue overran, let's pass this event to all event sources connected to this inotify | |
3919 | * object */ | |
3920 | ||
3921 | HASHMAP_FOREACH(inode_data, d->inodes) | |
3922 | LIST_FOREACH(inotify.by_inode_data, s, inode_data->event_sources) { | |
3923 | ||
3924 | if (event_source_is_offline(s)) | |
3925 | continue; | |
3926 | ||
3927 | r = source_set_pending(s, true); | |
3928 | if (r < 0) | |
3929 | return r; | |
3930 | } | |
3931 | } else { | |
3932 | struct inode_data *inode_data; | |
3933 | ||
3934 | /* Find the inode object for this watch descriptor. If IN_IGNORED is set we also remove it from | |
3935 | * our watch descriptor table. */ | |
3936 | if (d->buffer.ev.mask & IN_IGNORED) { | |
3937 | ||
3938 | inode_data = hashmap_remove(d->wd, INT_TO_PTR(d->buffer.ev.wd)); | |
3939 | if (!inode_data) { | |
3940 | event_inotify_data_drop(e, d, sz); | |
3941 | continue; | |
3942 | } | |
3943 | ||
3944 | /* The watch descriptor was removed by the kernel, let's drop it here too */ | |
3945 | inode_data->wd = -1; | |
3946 | } else { | |
3947 | inode_data = hashmap_get(d->wd, INT_TO_PTR(d->buffer.ev.wd)); | |
3948 | if (!inode_data) { | |
3949 | event_inotify_data_drop(e, d, sz); | |
3950 | continue; | |
3951 | } | |
3952 | } | |
3953 | ||
3954 | /* Trigger all event sources that are interested in these events. Also trigger all event | |
3955 | * sources if IN_IGNORED or IN_UNMOUNT is set. */ | |
3956 | LIST_FOREACH(inotify.by_inode_data, s, inode_data->event_sources) { | |
3957 | ||
3958 | if (event_source_is_offline(s)) | |
3959 | continue; | |
3960 | ||
3961 | if ((d->buffer.ev.mask & (IN_IGNORED|IN_UNMOUNT)) == 0 && | |
3962 | (s->inotify.mask & d->buffer.ev.mask & IN_ALL_EVENTS) == 0) | |
3963 | continue; | |
3964 | ||
3965 | r = source_set_pending(s, true); | |
3966 | if (r < 0) | |
3967 | return r; | |
3968 | } | |
3969 | } | |
3970 | ||
3971 | /* Something pending now? If so, let's finish, otherwise let's read more. */ | |
3972 | if (d->n_pending > 0) | |
3973 | return 1; | |
3974 | } | |
3975 | ||
3976 | return 0; | |
3977 | } | |
3978 | ||
3979 | static int process_inotify(sd_event *e) { | |
3980 | int r, done = 0; | |
3981 | ||
3982 | assert(e); | |
3983 | ||
3984 | LIST_FOREACH(buffered, d, e->buffered_inotify_data_list) { | |
3985 | r = event_inotify_data_process(e, d); | |
3986 | if (r < 0) | |
3987 | return r; | |
3988 | if (r > 0) | |
3989 | done++; | |
3990 | } | |
3991 | ||
3992 | return done; | |
3993 | } | |
3994 | ||
3995 | static int process_memory_pressure(sd_event_source *s, uint32_t revents) { | |
3996 | assert(s); | |
3997 | assert(s->type == SOURCE_MEMORY_PRESSURE); | |
3998 | ||
3999 | if (s->pending) | |
4000 | s->memory_pressure.revents |= revents; | |
4001 | else | |
4002 | s->memory_pressure.revents = revents; | |
4003 | ||
4004 | return source_set_pending(s, true); | |
4005 | } | |
4006 | ||
4007 | static int source_memory_pressure_write(sd_event_source *s) { | |
4008 | ssize_t n; | |
4009 | int r; | |
4010 | ||
4011 | assert(s); | |
4012 | assert(s->type == SOURCE_MEMORY_PRESSURE); | |
4013 | ||
4014 | /* once we start writing, the buffer is locked, we allow no further changes. */ | |
4015 | s->memory_pressure.locked = true; | |
4016 | ||
4017 | if (s->memory_pressure.write_buffer_size > 0) { | |
4018 | n = write(s->memory_pressure.fd, s->memory_pressure.write_buffer, s->memory_pressure.write_buffer_size); | |
4019 | if (n < 0) { | |
4020 | if (!ERRNO_IS_TRANSIENT(errno)) { | |
4021 | /* If kernel is built with CONFIG_PSI_DEFAULT_DISABLED it will expose PSI | |
4022 | * files, but then generates EOPNOSUPP on read() and write() (instead of on | |
4023 | * open()!). This sucks hard, since we can only detect this kind of failure | |
4024 | * so late. Let's make the best of it, and turn off the event source like we | |
4025 | * do for failed event source handlers. */ | |
4026 | ||
4027 | log_debug_errno(errno, "Writing memory pressure settings to kernel failed, disabling memory pressure event source: %m"); | |
4028 | assert_se(sd_event_source_set_enabled(s, SD_EVENT_OFF) >= 0); | |
4029 | return 0; | |
4030 | } | |
4031 | ||
4032 | n = 0; | |
4033 | } | |
4034 | } else | |
4035 | n = 0; | |
4036 | ||
4037 | assert(n >= 0); | |
4038 | ||
4039 | if ((size_t) n == s->memory_pressure.write_buffer_size) { | |
4040 | s->memory_pressure.write_buffer = mfree(s->memory_pressure.write_buffer); | |
4041 | ||
4042 | if (n > 0) { | |
4043 | s->memory_pressure.write_buffer_size = 0; | |
4044 | ||
4045 | /* Update epoll events mask, since we have now written everything and don't care for EPOLLOUT anymore */ | |
4046 | r = source_memory_pressure_register(s, s->enabled); | |
4047 | if (r < 0) | |
4048 | return r; | |
4049 | } | |
4050 | } else if (n > 0) { | |
4051 | _cleanup_free_ void *c = NULL; | |
4052 | ||
4053 | assert((size_t) n < s->memory_pressure.write_buffer_size); | |
4054 | ||
4055 | c = memdup((uint8_t*) s->memory_pressure.write_buffer + n, s->memory_pressure.write_buffer_size - n); | |
4056 | if (!c) | |
4057 | return -ENOMEM; | |
4058 | ||
4059 | free_and_replace(s->memory_pressure.write_buffer, c); | |
4060 | s->memory_pressure.write_buffer_size -= n; | |
4061 | return 1; | |
4062 | } | |
4063 | ||
4064 | return 0; | |
4065 | } | |
4066 | ||
4067 | static int source_memory_pressure_initiate_dispatch(sd_event_source *s) { | |
4068 | int r; | |
4069 | ||
4070 | assert(s); | |
4071 | assert(s->type == SOURCE_MEMORY_PRESSURE); | |
4072 | ||
4073 | r = source_memory_pressure_write(s); | |
4074 | if (r < 0) | |
4075 | return r; | |
4076 | if (r > 0) | |
4077 | return 1; /* if we wrote something, then don't continue with dispatching user dispatch | |
4078 | * function. Instead, shortcut it so that we wait for next EPOLLOUT immediately. */ | |
4079 | ||
4080 | /* No pending incoming IO? Then let's not continue further */ | |
4081 | if ((s->memory_pressure.revents & (EPOLLIN|EPOLLPRI)) == 0) { | |
4082 | ||
4083 | /* Treat IO errors on the notifier the same ways errors returned from a callback */ | |
4084 | if ((s->memory_pressure.revents & (EPOLLHUP|EPOLLERR|EPOLLRDHUP)) != 0) | |
4085 | return -EIO; | |
4086 | ||
4087 | return 1; /* leave dispatch, we already processed everything */ | |
4088 | } | |
4089 | ||
4090 | if (s->memory_pressure.revents & EPOLLIN) { | |
4091 | uint8_t pipe_buf[PIPE_BUF]; | |
4092 | ssize_t n; | |
4093 | ||
4094 | /* If the fd is readable, then flush out anything that might be queued */ | |
4095 | ||
4096 | n = read(s->memory_pressure.fd, pipe_buf, sizeof(pipe_buf)); | |
4097 | if (n < 0 && !ERRNO_IS_TRANSIENT(errno)) | |
4098 | return -errno; | |
4099 | } | |
4100 | ||
4101 | return 0; /* go on, dispatch to user callback */ | |
4102 | } | |
4103 | ||
4104 | static int source_dispatch(sd_event_source *s) { | |
4105 | EventSourceType saved_type; | |
4106 | sd_event *saved_event; | |
4107 | int r = 0; | |
4108 | ||
4109 | assert(s); | |
4110 | assert(s->pending || s->type == SOURCE_EXIT); | |
4111 | ||
4112 | /* Save the event source type, here, so that we still know it after the event callback which might | |
4113 | * invalidate the event. */ | |
4114 | saved_type = s->type; | |
4115 | ||
4116 | /* Similarly, store a reference to the event loop object, so that we can still access it after the | |
4117 | * callback might have invalidated/disconnected the event source. */ | |
4118 | saved_event = s->event; | |
4119 | PROTECT_EVENT(saved_event); | |
4120 | ||
4121 | /* Check if we hit the ratelimit for this event source, and if so, let's disable it. */ | |
4122 | assert(!s->ratelimited); | |
4123 | if (!ratelimit_below(&s->rate_limit)) { | |
4124 | r = event_source_enter_ratelimited(s); | |
4125 | if (r < 0) | |
4126 | return r; | |
4127 | ||
4128 | return 1; | |
4129 | } | |
4130 | ||
4131 | if (!IN_SET(s->type, SOURCE_DEFER, SOURCE_EXIT)) { | |
4132 | r = source_set_pending(s, false); | |
4133 | if (r < 0) | |
4134 | return r; | |
4135 | } | |
4136 | ||
4137 | if (s->type != SOURCE_POST) { | |
4138 | sd_event_source *z; | |
4139 | ||
4140 | /* If we execute a non-post source, let's mark all post sources as pending. */ | |
4141 | ||
4142 | SET_FOREACH(z, s->event->post_sources) { | |
4143 | if (event_source_is_offline(z)) | |
4144 | continue; | |
4145 | ||
4146 | r = source_set_pending(z, true); | |
4147 | if (r < 0) | |
4148 | return r; | |
4149 | } | |
4150 | } | |
4151 | ||
4152 | if (s->type == SOURCE_MEMORY_PRESSURE) { | |
4153 | r = source_memory_pressure_initiate_dispatch(s); | |
4154 | if (r == -EIO) /* handle EIO errors similar to callback errors */ | |
4155 | goto finish; | |
4156 | if (r < 0) | |
4157 | return r; | |
4158 | if (r > 0) /* already handled */ | |
4159 | return 1; | |
4160 | } | |
4161 | ||
4162 | if (s->enabled == SD_EVENT_ONESHOT) { | |
4163 | r = sd_event_source_set_enabled(s, SD_EVENT_OFF); | |
4164 | if (r < 0) | |
4165 | return r; | |
4166 | } | |
4167 | ||
4168 | s->dispatching = true; | |
4169 | ||
4170 | switch (s->type) { | |
4171 | ||
4172 | case SOURCE_IO: | |
4173 | r = s->io.callback(s, s->io.fd, s->io.revents, s->userdata); | |
4174 | break; | |
4175 | ||
4176 | case SOURCE_TIME_REALTIME: | |
4177 | case SOURCE_TIME_BOOTTIME: | |
4178 | case SOURCE_TIME_MONOTONIC: | |
4179 | case SOURCE_TIME_REALTIME_ALARM: | |
4180 | case SOURCE_TIME_BOOTTIME_ALARM: | |
4181 | r = s->time.callback(s, s->time.next, s->userdata); | |
4182 | break; | |
4183 | ||
4184 | case SOURCE_SIGNAL: | |
4185 | r = s->signal.callback(s, &s->signal.siginfo, s->userdata); | |
4186 | break; | |
4187 | ||
4188 | case SOURCE_CHILD: { | |
4189 | bool zombie = SIGINFO_CODE_IS_DEAD(s->child.siginfo.si_code); | |
4190 | ||
4191 | r = s->child.callback(s, &s->child.siginfo, s->userdata); | |
4192 | ||
4193 | /* Now, reap the PID for good. */ | |
4194 | if (zombie) { | |
4195 | (void) waitid(P_PIDFD, s->child.pidfd, &s->child.siginfo, WNOHANG|WEXITED); | |
4196 | s->child.waited = true; | |
4197 | } | |
4198 | ||
4199 | break; | |
4200 | } | |
4201 | ||
4202 | case SOURCE_DEFER: | |
4203 | r = s->defer.callback(s, s->userdata); | |
4204 | break; | |
4205 | ||
4206 | case SOURCE_POST: | |
4207 | r = s->post.callback(s, s->userdata); | |
4208 | break; | |
4209 | ||
4210 | case SOURCE_EXIT: | |
4211 | r = s->exit.callback(s, s->userdata); | |
4212 | break; | |
4213 | ||
4214 | case SOURCE_INOTIFY: { | |
4215 | struct sd_event *e = s->event; | |
4216 | struct inotify_data *d; | |
4217 | size_t sz; | |
4218 | ||
4219 | assert(s->inotify.inode_data); | |
4220 | assert_se(d = s->inotify.inode_data->inotify_data); | |
4221 | ||
4222 | assert(d->buffer_filled >= offsetof(struct inotify_event, name)); | |
4223 | sz = offsetof(struct inotify_event, name) + d->buffer.ev.len; | |
4224 | assert(d->buffer_filled >= sz); | |
4225 | ||
4226 | /* If the inotify callback destroys the event source then this likely means we don't need to | |
4227 | * watch the inode anymore, and thus also won't need the inotify object anymore. But if we'd | |
4228 | * free it immediately, then we couldn't drop the event from the inotify event queue without | |
4229 | * memory corruption anymore, as below. Hence, let's not free it immediately, but mark it | |
4230 | * "busy" with a counter (which will ensure it's not GC'ed away prematurely). Let's then | |
4231 | * explicitly GC it after we are done dropping the inotify event from the buffer. */ | |
4232 | d->n_busy++; | |
4233 | r = s->inotify.callback(s, &d->buffer.ev, s->userdata); | |
4234 | d->n_busy--; | |
4235 | ||
4236 | /* When no event is pending anymore on this inotify object, then let's drop the event from | |
4237 | * the inotify event queue buffer. */ | |
4238 | if (d->n_pending == 0) | |
4239 | event_inotify_data_drop(e, d, sz); | |
4240 | ||
4241 | /* Now we don't want to access 'd' anymore, it's OK to GC now. */ | |
4242 | event_gc_inotify_data(e, d); | |
4243 | break; | |
4244 | } | |
4245 | ||
4246 | case SOURCE_MEMORY_PRESSURE: | |
4247 | r = s->memory_pressure.callback(s, s->userdata); | |
4248 | break; | |
4249 | ||
4250 | case SOURCE_WATCHDOG: | |
4251 | case _SOURCE_EVENT_SOURCE_TYPE_MAX: | |
4252 | case _SOURCE_EVENT_SOURCE_TYPE_INVALID: | |
4253 | assert_not_reached(); | |
4254 | } | |
4255 | ||
4256 | s->dispatching = false; | |
4257 | ||
4258 | finish: | |
4259 | if (r < 0) { | |
4260 | log_debug_errno(r, "Event source %s (type %s) returned error, %s: %m", | |
4261 | strna(s->description), | |
4262 | event_source_type_to_string(saved_type), | |
4263 | s->exit_on_failure ? "exiting" : "disabling"); | |
4264 | ||
4265 | if (s->exit_on_failure) | |
4266 | (void) sd_event_exit(saved_event, r); | |
4267 | } | |
4268 | ||
4269 | if (s->n_ref == 0) | |
4270 | source_free(s); | |
4271 | else if (r < 0) | |
4272 | assert_se(sd_event_source_set_enabled(s, SD_EVENT_OFF) >= 0); | |
4273 | ||
4274 | return 1; | |
4275 | } | |
4276 | ||
4277 | static int event_prepare(sd_event *e) { | |
4278 | int r; | |
4279 | ||
4280 | assert(e); | |
4281 | ||
4282 | for (;;) { | |
4283 | sd_event_source *s; | |
4284 | ||
4285 | s = prioq_peek(e->prepare); | |
4286 | if (!s || s->prepare_iteration == e->iteration || event_source_is_offline(s)) | |
4287 | break; | |
4288 | ||
4289 | s->prepare_iteration = e->iteration; | |
4290 | prioq_reshuffle(e->prepare, s, &s->prepare_index); | |
4291 | ||
4292 | assert(s->prepare); | |
4293 | s->dispatching = true; | |
4294 | r = s->prepare(s, s->userdata); | |
4295 | s->dispatching = false; | |
4296 | ||
4297 | if (r < 0) { | |
4298 | log_debug_errno(r, "Prepare callback of event source %s (type %s) returned error, %s: %m", | |
4299 | strna(s->description), | |
4300 | event_source_type_to_string(s->type), | |
4301 | s->exit_on_failure ? "exiting" : "disabling"); | |
4302 | ||
4303 | if (s->exit_on_failure) | |
4304 | (void) sd_event_exit(e, r); | |
4305 | } | |
4306 | ||
4307 | if (s->n_ref == 0) | |
4308 | source_free(s); | |
4309 | else if (r < 0) | |
4310 | assert_se(sd_event_source_set_enabled(s, SD_EVENT_OFF) >= 0); | |
4311 | } | |
4312 | ||
4313 | return 0; | |
4314 | } | |
4315 | ||
4316 | static int dispatch_exit(sd_event *e) { | |
4317 | sd_event_source *p; | |
4318 | int r; | |
4319 | ||
4320 | assert(e); | |
4321 | ||
4322 | p = prioq_peek(e->exit); | |
4323 | assert(!p || p->type == SOURCE_EXIT); | |
4324 | ||
4325 | if (!p || event_source_is_offline(p)) { | |
4326 | e->state = SD_EVENT_FINISHED; | |
4327 | return 0; | |
4328 | } | |
4329 | ||
4330 | PROTECT_EVENT(e); | |
4331 | e->iteration++; | |
4332 | e->state = SD_EVENT_EXITING; | |
4333 | r = source_dispatch(p); | |
4334 | e->state = SD_EVENT_INITIAL; | |
4335 | return r; | |
4336 | } | |
4337 | ||
4338 | static sd_event_source* event_next_pending(sd_event *e) { | |
4339 | sd_event_source *p; | |
4340 | ||
4341 | assert(e); | |
4342 | ||
4343 | p = prioq_peek(e->pending); | |
4344 | if (!p) | |
4345 | return NULL; | |
4346 | ||
4347 | if (event_source_is_offline(p)) | |
4348 | return NULL; | |
4349 | ||
4350 | return p; | |
4351 | } | |
4352 | ||
4353 | static int arm_watchdog(sd_event *e) { | |
4354 | struct itimerspec its = {}; | |
4355 | usec_t t; | |
4356 | ||
4357 | assert(e); | |
4358 | assert(e->watchdog_fd >= 0); | |
4359 | ||
4360 | t = sleep_between(e, | |
4361 | usec_add(e->watchdog_last, (e->watchdog_period / 2)), | |
4362 | usec_add(e->watchdog_last, (e->watchdog_period * 3 / 4))); | |
4363 | ||
4364 | timespec_store(&its.it_value, t); | |
4365 | ||
4366 | /* Make sure we never set the watchdog to 0, which tells the | |
4367 | * kernel to disable it. */ | |
4368 | if (its.it_value.tv_sec == 0 && its.it_value.tv_nsec == 0) | |
4369 | its.it_value.tv_nsec = 1; | |
4370 | ||
4371 | return RET_NERRNO(timerfd_settime(e->watchdog_fd, TFD_TIMER_ABSTIME, &its, NULL)); | |
4372 | } | |
4373 | ||
4374 | static int process_watchdog(sd_event *e) { | |
4375 | assert(e); | |
4376 | ||
4377 | if (!e->watchdog) | |
4378 | return 0; | |
4379 | ||
4380 | /* Don't notify watchdog too often */ | |
4381 | if (e->watchdog_last + e->watchdog_period / 4 > e->timestamp.monotonic) | |
4382 | return 0; | |
4383 | ||
4384 | sd_notify(false, "WATCHDOG=1"); | |
4385 | e->watchdog_last = e->timestamp.monotonic; | |
4386 | ||
4387 | return arm_watchdog(e); | |
4388 | } | |
4389 | ||
4390 | static void event_close_inode_data_fds(sd_event *e) { | |
4391 | struct inode_data *d; | |
4392 | ||
4393 | assert(e); | |
4394 | ||
4395 | /* Close the fds pointing to the inodes to watch now. We need to close them as they might otherwise pin | |
4396 | * filesystems. But we can't close them right-away as we need them as long as the user still wants to make | |
4397 | * adjustments to the event source, such as changing the priority (which requires us to remove and re-add a watch | |
4398 | * for the inode). Hence, let's close them when entering the first iteration after they were added, as a | |
4399 | * compromise. */ | |
4400 | ||
4401 | while ((d = e->inode_data_to_close_list)) { | |
4402 | assert(d->fd >= 0); | |
4403 | d->fd = safe_close(d->fd); | |
4404 | ||
4405 | LIST_REMOVE(to_close, e->inode_data_to_close_list, d); | |
4406 | } | |
4407 | } | |
4408 | ||
4409 | static int event_memory_pressure_write_list(sd_event *e) { | |
4410 | int r; | |
4411 | ||
4412 | assert(e); | |
4413 | ||
4414 | for (;;) { | |
4415 | sd_event_source *s; | |
4416 | ||
4417 | s = LIST_POP(memory_pressure.write_list, e->memory_pressure_write_list); | |
4418 | if (!s) | |
4419 | break; | |
4420 | ||
4421 | assert(s->type == SOURCE_MEMORY_PRESSURE); | |
4422 | assert(s->memory_pressure.write_buffer_size > 0); | |
4423 | s->memory_pressure.in_write_list = false; | |
4424 | ||
4425 | r = source_memory_pressure_write(s); | |
4426 | if (r < 0) | |
4427 | return r; | |
4428 | } | |
4429 | ||
4430 | return 0; | |
4431 | } | |
4432 | ||
4433 | _public_ int sd_event_prepare(sd_event *e) { | |
4434 | int r; | |
4435 | ||
4436 | assert_return(e, -EINVAL); | |
4437 | assert_return(e = event_resolve(e), -ENOPKG); | |
4438 | assert_return(!event_origin_changed(e), -ECHILD); | |
4439 | assert_return(e->state != SD_EVENT_FINISHED, -ESTALE); | |
4440 | assert_return(e->state == SD_EVENT_INITIAL, -EBUSY); | |
4441 | ||
4442 | /* Let's check that if we are a default event loop we are executed in the correct thread. We only do | |
4443 | * this check here once, since gettid() is typically not cached, and thus want to minimize | |
4444 | * syscalls */ | |
4445 | assert_return(!e->default_event_ptr || e->tid == gettid(), -EREMOTEIO); | |
4446 | ||
4447 | /* Make sure that none of the preparation callbacks ends up freeing the event source under our feet */ | |
4448 | PROTECT_EVENT(e); | |
4449 | ||
4450 | if (e->exit_requested) | |
4451 | goto pending; | |
4452 | ||
4453 | e->iteration++; | |
4454 | ||
4455 | e->state = SD_EVENT_PREPARING; | |
4456 | r = event_prepare(e); | |
4457 | e->state = SD_EVENT_INITIAL; | |
4458 | if (r < 0) | |
4459 | return r; | |
4460 | ||
4461 | r = event_memory_pressure_write_list(e); | |
4462 | if (r < 0) | |
4463 | return r; | |
4464 | ||
4465 | r = event_arm_timer(e, &e->realtime); | |
4466 | if (r < 0) | |
4467 | return r; | |
4468 | ||
4469 | r = event_arm_timer(e, &e->boottime); | |
4470 | if (r < 0) | |
4471 | return r; | |
4472 | ||
4473 | r = event_arm_timer(e, &e->monotonic); | |
4474 | if (r < 0) | |
4475 | return r; | |
4476 | ||
4477 | r = event_arm_timer(e, &e->realtime_alarm); | |
4478 | if (r < 0) | |
4479 | return r; | |
4480 | ||
4481 | r = event_arm_timer(e, &e->boottime_alarm); | |
4482 | if (r < 0) | |
4483 | return r; | |
4484 | ||
4485 | event_close_inode_data_fds(e); | |
4486 | ||
4487 | if (event_next_pending(e) || e->need_process_child || e->buffered_inotify_data_list) | |
4488 | goto pending; | |
4489 | ||
4490 | e->state = SD_EVENT_ARMED; | |
4491 | ||
4492 | return 0; | |
4493 | ||
4494 | pending: | |
4495 | e->state = SD_EVENT_ARMED; | |
4496 | r = sd_event_wait(e, 0); | |
4497 | if (r == 0) | |
4498 | e->state = SD_EVENT_ARMED; | |
4499 | ||
4500 | return r; | |
4501 | } | |
4502 | ||
4503 | static int epoll_wait_usec( | |
4504 | int fd, | |
4505 | struct epoll_event *events, | |
4506 | int maxevents, | |
4507 | usec_t timeout) { | |
4508 | ||
4509 | int msec; | |
4510 | /* A wrapper that uses epoll_pwait2() if available, and falls back to epoll_wait() if not. */ | |
4511 | ||
4512 | #if HAVE_EPOLL_PWAIT2 | |
4513 | static bool epoll_pwait2_absent = false; | |
4514 | int r; | |
4515 | ||
4516 | /* epoll_pwait2() was added to Linux 5.11 (2021-02-14) and to glibc in 2.35 (2022-02-03). In contrast | |
4517 | * to other syscalls we don't bother with our own fallback syscall wrappers on old libcs, since this | |
4518 | * is not that obvious to implement given the libc and kernel definitions differ in the last | |
4519 | * argument. Moreover, the only reason to use it is the more accurate timeouts (which is not a | |
4520 | * biggie), let's hence rely on glibc's definitions, and fallback to epoll_pwait() when that's | |
4521 | * missing. */ | |
4522 | ||
4523 | if (!epoll_pwait2_absent && timeout != USEC_INFINITY) { | |
4524 | r = epoll_pwait2(fd, | |
4525 | events, | |
4526 | maxevents, | |
4527 | TIMESPEC_STORE(timeout), | |
4528 | NULL); | |
4529 | if (r >= 0) | |
4530 | return r; | |
4531 | if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno)) | |
4532 | return -errno; /* Only fallback to old epoll_wait() if the syscall is masked or not | |
4533 | * supported. */ | |
4534 | ||
4535 | epoll_pwait2_absent = true; | |
4536 | } | |
4537 | #endif | |
4538 | ||
4539 | if (timeout == USEC_INFINITY) | |
4540 | msec = -1; | |
4541 | else { | |
4542 | usec_t k; | |
4543 | ||
4544 | k = DIV_ROUND_UP(timeout, USEC_PER_MSEC); | |
4545 | if (k >= INT_MAX) | |
4546 | msec = INT_MAX; /* Saturate */ | |
4547 | else | |
4548 | msec = (int) k; | |
4549 | } | |
4550 | ||
4551 | return RET_NERRNO(epoll_wait(fd, events, maxevents, msec)); | |
4552 | } | |
4553 | ||
4554 | static int process_epoll(sd_event *e, usec_t timeout, int64_t threshold, int64_t *ret_min_priority) { | |
4555 | size_t n_event_queue, m, n_event_max; | |
4556 | int64_t min_priority = threshold; | |
4557 | bool something_new = false; | |
4558 | int r; | |
4559 | ||
4560 | assert(e); | |
4561 | assert(ret_min_priority); | |
4562 | ||
4563 | n_event_queue = MAX(e->n_sources, 1u); | |
4564 | if (!GREEDY_REALLOC(e->event_queue, n_event_queue)) | |
4565 | return -ENOMEM; | |
4566 | ||
4567 | n_event_max = MALLOC_ELEMENTSOF(e->event_queue); | |
4568 | ||
4569 | /* If we still have inotify data buffered, then query the other fds, but don't wait on it */ | |
4570 | if (e->buffered_inotify_data_list) | |
4571 | timeout = 0; | |
4572 | ||
4573 | for (;;) { | |
4574 | r = epoll_wait_usec( | |
4575 | e->epoll_fd, | |
4576 | e->event_queue, | |
4577 | n_event_max, | |
4578 | timeout); | |
4579 | if (r < 0) | |
4580 | return r; | |
4581 | ||
4582 | m = (size_t) r; | |
4583 | ||
4584 | if (m < n_event_max) | |
4585 | break; | |
4586 | ||
4587 | if (n_event_max >= n_event_queue * 10) | |
4588 | break; | |
4589 | ||
4590 | if (!GREEDY_REALLOC(e->event_queue, n_event_max + n_event_queue)) | |
4591 | return -ENOMEM; | |
4592 | ||
4593 | n_event_max = MALLOC_ELEMENTSOF(e->event_queue); | |
4594 | timeout = 0; | |
4595 | } | |
4596 | ||
4597 | /* Set timestamp only when this is called first time. */ | |
4598 | if (threshold == INT64_MAX) | |
4599 | triple_timestamp_now(&e->timestamp); | |
4600 | ||
4601 | for (size_t i = 0; i < m; i++) { | |
4602 | ||
4603 | if (e->event_queue[i].data.ptr == INT_TO_PTR(SOURCE_WATCHDOG)) | |
4604 | r = flush_timer(e, e->watchdog_fd, e->event_queue[i].events, NULL); | |
4605 | else { | |
4606 | WakeupType *t = e->event_queue[i].data.ptr; | |
4607 | ||
4608 | switch (*t) { | |
4609 | ||
4610 | case WAKEUP_EVENT_SOURCE: { | |
4611 | sd_event_source *s = e->event_queue[i].data.ptr; | |
4612 | ||
4613 | assert(s); | |
4614 | ||
4615 | if (s->priority > threshold) | |
4616 | continue; | |
4617 | ||
4618 | min_priority = MIN(min_priority, s->priority); | |
4619 | ||
4620 | switch (s->type) { | |
4621 | ||
4622 | case SOURCE_IO: | |
4623 | r = process_io(e, s, e->event_queue[i].events); | |
4624 | break; | |
4625 | ||
4626 | case SOURCE_CHILD: | |
4627 | r = process_pidfd(e, s, e->event_queue[i].events); | |
4628 | break; | |
4629 | ||
4630 | case SOURCE_MEMORY_PRESSURE: | |
4631 | r = process_memory_pressure(s, e->event_queue[i].events); | |
4632 | break; | |
4633 | ||
4634 | default: | |
4635 | assert_not_reached(); | |
4636 | } | |
4637 | ||
4638 | break; | |
4639 | } | |
4640 | ||
4641 | case WAKEUP_CLOCK_DATA: { | |
4642 | struct clock_data *d = e->event_queue[i].data.ptr; | |
4643 | ||
4644 | assert(d); | |
4645 | ||
4646 | r = flush_timer(e, d->fd, e->event_queue[i].events, &d->next); | |
4647 | break; | |
4648 | } | |
4649 | ||
4650 | case WAKEUP_SIGNAL_DATA: | |
4651 | r = process_signal(e, e->event_queue[i].data.ptr, e->event_queue[i].events, &min_priority); | |
4652 | break; | |
4653 | ||
4654 | case WAKEUP_INOTIFY_DATA: | |
4655 | r = event_inotify_data_read(e, e->event_queue[i].data.ptr, e->event_queue[i].events, threshold); | |
4656 | break; | |
4657 | ||
4658 | default: | |
4659 | assert_not_reached(); | |
4660 | } | |
4661 | } | |
4662 | if (r < 0) | |
4663 | return r; | |
4664 | if (r > 0) | |
4665 | something_new = true; | |
4666 | } | |
4667 | ||
4668 | *ret_min_priority = min_priority; | |
4669 | return something_new; | |
4670 | } | |
4671 | ||
4672 | _public_ int sd_event_wait(sd_event *e, uint64_t timeout) { | |
4673 | int r; | |
4674 | ||
4675 | assert_return(e, -EINVAL); | |
4676 | assert_return(e = event_resolve(e), -ENOPKG); | |
4677 | assert_return(!event_origin_changed(e), -ECHILD); | |
4678 | assert_return(e->state != SD_EVENT_FINISHED, -ESTALE); | |
4679 | assert_return(e->state == SD_EVENT_ARMED, -EBUSY); | |
4680 | ||
4681 | if (e->exit_requested) { | |
4682 | e->state = SD_EVENT_PENDING; | |
4683 | return 1; | |
4684 | } | |
4685 | ||
4686 | for (int64_t threshold = INT64_MAX; ; threshold--) { | |
4687 | int64_t epoll_min_priority, child_min_priority; | |
4688 | ||
4689 | /* There may be a possibility that new epoll (especially IO) and child events are | |
4690 | * triggered just after process_epoll() call but before process_child(), and the new IO | |
4691 | * events may have higher priority than the child events. To salvage these events, | |
4692 | * let's call epoll_wait() again, but accepts only events with higher priority than the | |
4693 | * previous. See issue https://github.com/systemd/systemd/issues/18190 and comments | |
4694 | * https://github.com/systemd/systemd/pull/18750#issuecomment-785801085 | |
4695 | * https://github.com/systemd/systemd/pull/18922#issuecomment-792825226 */ | |
4696 | ||
4697 | r = process_epoll(e, timeout, threshold, &epoll_min_priority); | |
4698 | if (r == -EINTR) { | |
4699 | e->state = SD_EVENT_PENDING; | |
4700 | return 1; | |
4701 | } | |
4702 | if (r < 0) | |
4703 | goto finish; | |
4704 | if (r == 0 && threshold < INT64_MAX) | |
4705 | /* No new epoll event. */ | |
4706 | break; | |
4707 | ||
4708 | r = process_child(e, threshold, &child_min_priority); | |
4709 | if (r < 0) | |
4710 | goto finish; | |
4711 | if (r == 0) | |
4712 | /* No new child event. */ | |
4713 | break; | |
4714 | ||
4715 | threshold = MIN(epoll_min_priority, child_min_priority); | |
4716 | if (threshold == INT64_MIN) | |
4717 | break; | |
4718 | ||
4719 | timeout = 0; | |
4720 | } | |
4721 | ||
4722 | r = process_watchdog(e); | |
4723 | if (r < 0) | |
4724 | goto finish; | |
4725 | ||
4726 | r = process_inotify(e); | |
4727 | if (r < 0) | |
4728 | goto finish; | |
4729 | ||
4730 | r = process_timer(e, e->timestamp.realtime, &e->realtime); | |
4731 | if (r < 0) | |
4732 | goto finish; | |
4733 | ||
4734 | r = process_timer(e, e->timestamp.boottime, &e->boottime); | |
4735 | if (r < 0) | |
4736 | goto finish; | |
4737 | ||
4738 | r = process_timer(e, e->timestamp.realtime, &e->realtime_alarm); | |
4739 | if (r < 0) | |
4740 | goto finish; | |
4741 | ||
4742 | r = process_timer(e, e->timestamp.boottime, &e->boottime_alarm); | |
4743 | if (r < 0) | |
4744 | goto finish; | |
4745 | ||
4746 | r = process_timer(e, e->timestamp.monotonic, &e->monotonic); | |
4747 | if (r < 0) | |
4748 | goto finish; | |
4749 | else if (r == 1) { | |
4750 | /* Ratelimit expiry callback was called. Let's postpone processing pending sources and | |
4751 | * put loop in the initial state in order to evaluate (in the next iteration) also sources | |
4752 | * there were potentially re-enabled by the callback. | |
4753 | * | |
4754 | * Wondering why we treat only this invocation of process_timer() differently? Once event | |
4755 | * source is ratelimited we essentially transform it into CLOCK_MONOTONIC timer hence | |
4756 | * ratelimit expiry callback is never called for any other timer type. */ | |
4757 | r = 0; | |
4758 | goto finish; | |
4759 | } | |
4760 | ||
4761 | if (event_next_pending(e)) { | |
4762 | e->state = SD_EVENT_PENDING; | |
4763 | return 1; | |
4764 | } | |
4765 | ||
4766 | r = 0; | |
4767 | ||
4768 | finish: | |
4769 | e->state = SD_EVENT_INITIAL; | |
4770 | ||
4771 | return r; | |
4772 | } | |
4773 | ||
4774 | _public_ int sd_event_dispatch(sd_event *e) { | |
4775 | sd_event_source *p; | |
4776 | int r; | |
4777 | ||
4778 | assert_return(e, -EINVAL); | |
4779 | assert_return(e = event_resolve(e), -ENOPKG); | |
4780 | assert_return(!event_origin_changed(e), -ECHILD); | |
4781 | assert_return(e->state != SD_EVENT_FINISHED, -ESTALE); | |
4782 | assert_return(e->state == SD_EVENT_PENDING, -EBUSY); | |
4783 | ||
4784 | if (e->exit_requested) | |
4785 | return dispatch_exit(e); | |
4786 | ||
4787 | p = event_next_pending(e); | |
4788 | if (p) { | |
4789 | PROTECT_EVENT(e); | |
4790 | ||
4791 | e->state = SD_EVENT_RUNNING; | |
4792 | r = source_dispatch(p); | |
4793 | e->state = SD_EVENT_INITIAL; | |
4794 | return r; | |
4795 | } | |
4796 | ||
4797 | e->state = SD_EVENT_INITIAL; | |
4798 | ||
4799 | return 1; | |
4800 | } | |
4801 | ||
4802 | static void event_log_delays(sd_event *e) { | |
4803 | char b[ELEMENTSOF(e->delays) * DECIMAL_STR_MAX(unsigned) + 1], *p; | |
4804 | size_t l; | |
4805 | ||
4806 | p = b; | |
4807 | l = sizeof(b); | |
4808 | FOREACH_ELEMENT(delay, e->delays) { | |
4809 | l = strpcpyf(&p, l, "%u ", *delay); | |
4810 | *delay = 0; | |
4811 | } | |
4812 | log_debug("Event loop iterations: %s", b); | |
4813 | } | |
4814 | ||
4815 | _public_ int sd_event_run(sd_event *e, uint64_t timeout) { | |
4816 | int r; | |
4817 | ||
4818 | assert_return(e, -EINVAL); | |
4819 | assert_return(e = event_resolve(e), -ENOPKG); | |
4820 | assert_return(!event_origin_changed(e), -ECHILD); | |
4821 | assert_return(e->state != SD_EVENT_FINISHED, -ESTALE); | |
4822 | assert_return(e->state == SD_EVENT_INITIAL, -EBUSY); | |
4823 | ||
4824 | if (e->profile_delays && e->last_run_usec != 0) { | |
4825 | usec_t this_run; | |
4826 | unsigned l; | |
4827 | ||
4828 | this_run = now(CLOCK_MONOTONIC); | |
4829 | ||
4830 | l = log2u64(this_run - e->last_run_usec); | |
4831 | assert(l < ELEMENTSOF(e->delays)); | |
4832 | e->delays[l]++; | |
4833 | ||
4834 | if (this_run - e->last_log_usec >= 5*USEC_PER_SEC) { | |
4835 | event_log_delays(e); | |
4836 | e->last_log_usec = this_run; | |
4837 | } | |
4838 | } | |
4839 | ||
4840 | /* Make sure that none of the preparation callbacks ends up freeing the event source under our feet */ | |
4841 | PROTECT_EVENT(e); | |
4842 | ||
4843 | r = sd_event_prepare(e); | |
4844 | if (r == 0) | |
4845 | /* There was nothing? Then wait... */ | |
4846 | r = sd_event_wait(e, timeout); | |
4847 | ||
4848 | if (e->profile_delays) | |
4849 | e->last_run_usec = now(CLOCK_MONOTONIC); | |
4850 | ||
4851 | if (r > 0) { | |
4852 | /* There's something now, then let's dispatch it */ | |
4853 | r = sd_event_dispatch(e); | |
4854 | if (r < 0) | |
4855 | return r; | |
4856 | ||
4857 | return 1; | |
4858 | } | |
4859 | ||
4860 | return r; | |
4861 | } | |
4862 | ||
4863 | _public_ int sd_event_loop(sd_event *e) { | |
4864 | int r; | |
4865 | ||
4866 | assert_return(e, -EINVAL); | |
4867 | assert_return(e = event_resolve(e), -ENOPKG); | |
4868 | assert_return(!event_origin_changed(e), -ECHILD); | |
4869 | assert_return(e->state == SD_EVENT_INITIAL, -EBUSY); | |
4870 | ||
4871 | PROTECT_EVENT(e); | |
4872 | ||
4873 | while (e->state != SD_EVENT_FINISHED) { | |
4874 | r = sd_event_run(e, UINT64_MAX); | |
4875 | if (r < 0) | |
4876 | return r; | |
4877 | } | |
4878 | ||
4879 | return e->exit_code; | |
4880 | } | |
4881 | ||
4882 | _public_ int sd_event_get_fd(sd_event *e) { | |
4883 | assert_return(e, -EINVAL); | |
4884 | assert_return(e = event_resolve(e), -ENOPKG); | |
4885 | assert_return(!event_origin_changed(e), -ECHILD); | |
4886 | ||
4887 | return e->epoll_fd; | |
4888 | } | |
4889 | ||
4890 | _public_ int sd_event_get_state(sd_event *e) { | |
4891 | assert_return(e, -EINVAL); | |
4892 | assert_return(e = event_resolve(e), -ENOPKG); | |
4893 | assert_return(!event_origin_changed(e), -ECHILD); | |
4894 | ||
4895 | return e->state; | |
4896 | } | |
4897 | ||
4898 | _public_ int sd_event_get_exit_code(sd_event *e, int *ret) { | |
4899 | assert_return(e, -EINVAL); | |
4900 | assert_return(e = event_resolve(e), -ENOPKG); | |
4901 | assert_return(!event_origin_changed(e), -ECHILD); | |
4902 | ||
4903 | if (!e->exit_requested) | |
4904 | return -ENODATA; | |
4905 | ||
4906 | if (ret) | |
4907 | *ret = e->exit_code; | |
4908 | return 0; | |
4909 | } | |
4910 | ||
4911 | _public_ int sd_event_exit(sd_event *e, int code) { | |
4912 | assert_return(e, -EINVAL); | |
4913 | assert_return(e = event_resolve(e), -ENOPKG); | |
4914 | assert_return(e->state != SD_EVENT_FINISHED, -ESTALE); | |
4915 | assert_return(!event_origin_changed(e), -ECHILD); | |
4916 | ||
4917 | e->exit_requested = true; | |
4918 | e->exit_code = code; | |
4919 | ||
4920 | return 0; | |
4921 | } | |
4922 | ||
4923 | _public_ int sd_event_now(sd_event *e, clockid_t clock, uint64_t *ret) { | |
4924 | assert_return(e, -EINVAL); | |
4925 | assert_return(e = event_resolve(e), -ENOPKG); | |
4926 | assert_return(ret, -EINVAL); | |
4927 | assert_return(!event_origin_changed(e), -ECHILD); | |
4928 | ||
4929 | if (!TRIPLE_TIMESTAMP_HAS_CLOCK(clock)) | |
4930 | return -EOPNOTSUPP; | |
4931 | ||
4932 | if (!triple_timestamp_is_set(&e->timestamp)) { | |
4933 | /* Implicitly fall back to now() if we never ran before and thus have no cached time. */ | |
4934 | *ret = now(clock); | |
4935 | return 1; | |
4936 | } | |
4937 | ||
4938 | *ret = triple_timestamp_by_clock(&e->timestamp, clock); | |
4939 | return 0; | |
4940 | } | |
4941 | ||
4942 | _public_ int sd_event_default(sd_event **ret) { | |
4943 | sd_event *e = NULL; | |
4944 | int r; | |
4945 | ||
4946 | if (!ret) | |
4947 | return !!default_event; | |
4948 | ||
4949 | if (default_event) { | |
4950 | *ret = sd_event_ref(default_event); | |
4951 | return 0; | |
4952 | } | |
4953 | ||
4954 | r = sd_event_new(&e); | |
4955 | if (r < 0) | |
4956 | return r; | |
4957 | ||
4958 | e->default_event_ptr = &default_event; | |
4959 | e->tid = gettid(); | |
4960 | default_event = e; | |
4961 | ||
4962 | *ret = e; | |
4963 | return 1; | |
4964 | } | |
4965 | ||
4966 | _public_ int sd_event_get_tid(sd_event *e, pid_t *ret) { | |
4967 | assert_return(e, -EINVAL); | |
4968 | assert_return(e = event_resolve(e), -ENOPKG); | |
4969 | assert_return(ret, -EINVAL); | |
4970 | assert_return(!event_origin_changed(e), -ECHILD); | |
4971 | ||
4972 | if (e->tid == 0) | |
4973 | return -ENXIO; | |
4974 | ||
4975 | *ret = e->tid; | |
4976 | return 0; | |
4977 | } | |
4978 | ||
4979 | _public_ int sd_event_set_watchdog(sd_event *e, int b) { | |
4980 | int r; | |
4981 | ||
4982 | assert_return(e, -EINVAL); | |
4983 | assert_return(e = event_resolve(e), -ENOPKG); | |
4984 | assert_return(!event_origin_changed(e), -ECHILD); | |
4985 | ||
4986 | if (e->watchdog == !!b) | |
4987 | return e->watchdog; | |
4988 | ||
4989 | if (b) { | |
4990 | r = sd_watchdog_enabled(false, &e->watchdog_period); | |
4991 | if (r <= 0) | |
4992 | return r; | |
4993 | ||
4994 | /* Issue first ping immediately */ | |
4995 | sd_notify(false, "WATCHDOG=1"); | |
4996 | e->watchdog_last = now(CLOCK_MONOTONIC); | |
4997 | ||
4998 | e->watchdog_fd = timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK|TFD_CLOEXEC); | |
4999 | if (e->watchdog_fd < 0) | |
5000 | return -errno; | |
5001 | ||
5002 | r = arm_watchdog(e); | |
5003 | if (r < 0) | |
5004 | goto fail; | |
5005 | ||
5006 | struct epoll_event ev = { | |
5007 | .events = EPOLLIN, | |
5008 | .data.ptr = INT_TO_PTR(SOURCE_WATCHDOG), | |
5009 | }; | |
5010 | ||
5011 | if (epoll_ctl(e->epoll_fd, EPOLL_CTL_ADD, e->watchdog_fd, &ev) < 0) { | |
5012 | r = -errno; | |
5013 | goto fail; | |
5014 | } | |
5015 | ||
5016 | } else { | |
5017 | if (e->watchdog_fd >= 0) { | |
5018 | (void) epoll_ctl(e->epoll_fd, EPOLL_CTL_DEL, e->watchdog_fd, NULL); | |
5019 | e->watchdog_fd = safe_close(e->watchdog_fd); | |
5020 | } | |
5021 | } | |
5022 | ||
5023 | e->watchdog = b; | |
5024 | return e->watchdog; | |
5025 | ||
5026 | fail: | |
5027 | e->watchdog_fd = safe_close(e->watchdog_fd); | |
5028 | return r; | |
5029 | } | |
5030 | ||
5031 | _public_ int sd_event_get_watchdog(sd_event *e) { | |
5032 | assert_return(e, -EINVAL); | |
5033 | assert_return(e = event_resolve(e), -ENOPKG); | |
5034 | assert_return(!event_origin_changed(e), -ECHILD); | |
5035 | ||
5036 | return e->watchdog; | |
5037 | } | |
5038 | ||
5039 | _public_ int sd_event_get_iteration(sd_event *e, uint64_t *ret) { | |
5040 | assert_return(e, -EINVAL); | |
5041 | assert_return(e = event_resolve(e), -ENOPKG); | |
5042 | assert_return(!event_origin_changed(e), -ECHILD); | |
5043 | ||
5044 | *ret = e->iteration; | |
5045 | return 0; | |
5046 | } | |
5047 | ||
5048 | _public_ int sd_event_source_set_destroy_callback(sd_event_source *s, sd_event_destroy_t callback) { | |
5049 | assert_return(s, -EINVAL); | |
5050 | assert_return(s->event, -EINVAL); | |
5051 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
5052 | ||
5053 | s->destroy_callback = callback; | |
5054 | return 0; | |
5055 | } | |
5056 | ||
5057 | _public_ int sd_event_source_get_destroy_callback(sd_event_source *s, sd_event_destroy_t *ret) { | |
5058 | assert_return(s, -EINVAL); | |
5059 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
5060 | ||
5061 | if (ret) | |
5062 | *ret = s->destroy_callback; | |
5063 | ||
5064 | return !!s->destroy_callback; | |
5065 | } | |
5066 | ||
5067 | _public_ int sd_event_source_get_floating(sd_event_source *s) { | |
5068 | assert_return(s, -EINVAL); | |
5069 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
5070 | ||
5071 | return s->floating; | |
5072 | } | |
5073 | ||
5074 | _public_ int sd_event_source_set_floating(sd_event_source *s, int b) { | |
5075 | assert_return(s, -EINVAL); | |
5076 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
5077 | ||
5078 | if (s->floating == !!b) | |
5079 | return 0; | |
5080 | ||
5081 | if (!s->event) /* Already disconnected */ | |
5082 | return -ESTALE; | |
5083 | ||
5084 | s->floating = b; | |
5085 | ||
5086 | if (b) { | |
5087 | sd_event_source_ref(s); | |
5088 | sd_event_unref(s->event); | |
5089 | } else { | |
5090 | sd_event_ref(s->event); | |
5091 | sd_event_source_unref(s); | |
5092 | } | |
5093 | ||
5094 | return 1; | |
5095 | } | |
5096 | ||
5097 | _public_ int sd_event_source_get_exit_on_failure(sd_event_source *s) { | |
5098 | assert_return(s, -EINVAL); | |
5099 | assert_return(s->type != SOURCE_EXIT, -EDOM); | |
5100 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
5101 | ||
5102 | return s->exit_on_failure; | |
5103 | } | |
5104 | ||
5105 | _public_ int sd_event_source_set_exit_on_failure(sd_event_source *s, int b) { | |
5106 | assert_return(s, -EINVAL); | |
5107 | assert_return(s->type != SOURCE_EXIT, -EDOM); | |
5108 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
5109 | ||
5110 | if (s->exit_on_failure == !!b) | |
5111 | return 0; | |
5112 | ||
5113 | s->exit_on_failure = b; | |
5114 | return 1; | |
5115 | } | |
5116 | ||
5117 | _public_ int sd_event_source_set_ratelimit(sd_event_source *s, uint64_t interval, unsigned burst) { | |
5118 | int r; | |
5119 | ||
5120 | assert_return(s, -EINVAL); | |
5121 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
5122 | ||
5123 | /* Turning on ratelimiting on event source types that don't support it, is a loggable offense. Doing | |
5124 | * so is a programming error. */ | |
5125 | assert_return(EVENT_SOURCE_CAN_RATE_LIMIT(s->type), -EDOM); | |
5126 | ||
5127 | /* When ratelimiting is configured we'll always reset the rate limit state first and start fresh, | |
5128 | * non-ratelimited. */ | |
5129 | r = event_source_leave_ratelimit(s, /* run_callback */ false); | |
5130 | if (r < 0) | |
5131 | return r; | |
5132 | ||
5133 | s->rate_limit = (RateLimit) { interval, burst }; | |
5134 | return 0; | |
5135 | } | |
5136 | ||
5137 | _public_ int sd_event_source_set_ratelimit_expire_callback(sd_event_source *s, sd_event_handler_t callback) { | |
5138 | assert_return(s, -EINVAL); | |
5139 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
5140 | ||
5141 | s->ratelimit_expire_callback = callback; | |
5142 | return 0; | |
5143 | } | |
5144 | ||
5145 | _public_ int sd_event_source_get_ratelimit(sd_event_source *s, uint64_t *ret_interval, unsigned *ret_burst) { | |
5146 | assert_return(s, -EINVAL); | |
5147 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
5148 | ||
5149 | /* Querying whether an event source has ratelimiting configured is not a loggable offense, hence | |
5150 | * don't use assert_return(). Unlike turning on ratelimiting it's not really a programming error. */ | |
5151 | if (!EVENT_SOURCE_CAN_RATE_LIMIT(s->type)) | |
5152 | return -EDOM; | |
5153 | ||
5154 | if (!ratelimit_configured(&s->rate_limit)) | |
5155 | return -ENOEXEC; | |
5156 | ||
5157 | if (ret_interval) | |
5158 | *ret_interval = s->rate_limit.interval; | |
5159 | if (ret_burst) | |
5160 | *ret_burst = s->rate_limit.burst; | |
5161 | ||
5162 | return 0; | |
5163 | } | |
5164 | ||
5165 | _public_ int sd_event_source_is_ratelimited(sd_event_source *s) { | |
5166 | assert_return(s, -EINVAL); | |
5167 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
5168 | ||
5169 | if (!EVENT_SOURCE_CAN_RATE_LIMIT(s->type)) | |
5170 | return false; | |
5171 | ||
5172 | if (!ratelimit_configured(&s->rate_limit)) | |
5173 | return false; | |
5174 | ||
5175 | return s->ratelimited; | |
5176 | } | |
5177 | ||
5178 | _public_ int sd_event_source_leave_ratelimit(sd_event_source *s) { | |
5179 | int r; | |
5180 | ||
5181 | assert_return(s, -EINVAL); | |
5182 | ||
5183 | if (!EVENT_SOURCE_CAN_RATE_LIMIT(s->type)) | |
5184 | return 0; | |
5185 | ||
5186 | if (!ratelimit_configured(&s->rate_limit)) | |
5187 | return 0; | |
5188 | ||
5189 | if (!s->ratelimited) | |
5190 | return 0; | |
5191 | ||
5192 | r = event_source_leave_ratelimit(s, /* run_callback */ false); | |
5193 | if (r < 0) | |
5194 | return r; | |
5195 | ||
5196 | return 1; /* tell caller that we indeed just left the ratelimit state */ | |
5197 | } | |
5198 | ||
5199 | _public_ int sd_event_set_signal_exit(sd_event *e, int b) { | |
5200 | bool change = false; | |
5201 | int r; | |
5202 | ||
5203 | assert_return(e, -EINVAL); | |
5204 | assert_return(e = event_resolve(e), -ENOPKG); | |
5205 | assert_return(e->state != SD_EVENT_FINISHED, -ESTALE); | |
5206 | assert_return(!event_origin_changed(e), -ECHILD); | |
5207 | ||
5208 | if (b) { | |
5209 | /* We want to maintain pointers to these event sources, so that we can destroy them when told | |
5210 | * so. But we also don't want them to pin the event loop itself. Hence we mark them as | |
5211 | * floating after creation (and undo this before deleting them again). */ | |
5212 | ||
5213 | if (!e->sigint_event_source) { | |
5214 | r = sd_event_add_signal(e, &e->sigint_event_source, SIGINT | SD_EVENT_SIGNAL_PROCMASK, NULL, NULL); | |
5215 | if (r < 0) | |
5216 | return r; | |
5217 | ||
5218 | assert_se(sd_event_source_set_floating(e->sigint_event_source, true) >= 0); | |
5219 | change = true; | |
5220 | } | |
5221 | ||
5222 | if (!e->sigterm_event_source) { | |
5223 | r = sd_event_add_signal(e, &e->sigterm_event_source, SIGTERM | SD_EVENT_SIGNAL_PROCMASK, NULL, NULL); | |
5224 | if (r < 0) { | |
5225 | if (change) { | |
5226 | assert_se(sd_event_source_set_floating(e->sigint_event_source, false) >= 0); | |
5227 | e->sigint_event_source = sd_event_source_unref(e->sigint_event_source); | |
5228 | } | |
5229 | ||
5230 | return r; | |
5231 | } | |
5232 | ||
5233 | assert_se(sd_event_source_set_floating(e->sigterm_event_source, true) >= 0); | |
5234 | change = true; | |
5235 | } | |
5236 | ||
5237 | } else { | |
5238 | if (e->sigint_event_source) { | |
5239 | assert_se(sd_event_source_set_floating(e->sigint_event_source, false) >= 0); | |
5240 | e->sigint_event_source = sd_event_source_unref(e->sigint_event_source); | |
5241 | change = true; | |
5242 | } | |
5243 | ||
5244 | if (e->sigterm_event_source) { | |
5245 | assert_se(sd_event_source_set_floating(e->sigterm_event_source, false) >= 0); | |
5246 | e->sigterm_event_source = sd_event_source_unref(e->sigterm_event_source); | |
5247 | change = true; | |
5248 | } | |
5249 | } | |
5250 | ||
5251 | return change; | |
5252 | } | |
5253 | ||
5254 | _public_ int sd_event_source_set_memory_pressure_type(sd_event_source *s, const char *ty) { | |
5255 | _cleanup_free_ char *b = NULL; | |
5256 | _cleanup_free_ void *w = NULL; | |
5257 | ||
5258 | assert_return(s, -EINVAL); | |
5259 | assert_return(s->type == SOURCE_MEMORY_PRESSURE, -EDOM); | |
5260 | assert_return(ty, -EINVAL); | |
5261 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
5262 | ||
5263 | if (!STR_IN_SET(ty, "some", "full")) | |
5264 | return -EINVAL; | |
5265 | ||
5266 | if (s->memory_pressure.locked) /* Refuse adjusting parameters, if caller told us how to watch for events */ | |
5267 | return -EBUSY; | |
5268 | ||
5269 | char* space = memchr(s->memory_pressure.write_buffer, ' ', s->memory_pressure.write_buffer_size); | |
5270 | if (!space) | |
5271 | return -EINVAL; | |
5272 | ||
5273 | size_t l = (char*) space - (char*) s->memory_pressure.write_buffer; | |
5274 | b = memdup_suffix0(s->memory_pressure.write_buffer, l); | |
5275 | if (!b) | |
5276 | return -ENOMEM; | |
5277 | if (!STR_IN_SET(b, "some", "full")) | |
5278 | return -EINVAL; | |
5279 | ||
5280 | if (streq(b, ty)) | |
5281 | return 0; | |
5282 | ||
5283 | size_t nl = strlen(ty) + (s->memory_pressure.write_buffer_size - l); | |
5284 | w = new(char, nl); | |
5285 | if (!w) | |
5286 | return -ENOMEM; | |
5287 | ||
5288 | memcpy(stpcpy(w, ty), space, (s->memory_pressure.write_buffer_size - l)); | |
5289 | ||
5290 | free_and_replace(s->memory_pressure.write_buffer, w); | |
5291 | s->memory_pressure.write_buffer_size = nl; | |
5292 | s->memory_pressure.locked = false; | |
5293 | ||
5294 | return 1; | |
5295 | } | |
5296 | ||
5297 | _public_ int sd_event_source_set_memory_pressure_period(sd_event_source *s, uint64_t threshold_usec, uint64_t window_usec) { | |
5298 | _cleanup_free_ char *b = NULL; | |
5299 | _cleanup_free_ void *w = NULL; | |
5300 | ||
5301 | assert_return(s, -EINVAL); | |
5302 | assert_return(s->type == SOURCE_MEMORY_PRESSURE, -EDOM); | |
5303 | assert_return(!event_origin_changed(s->event), -ECHILD); | |
5304 | ||
5305 | if (threshold_usec <= 0 || threshold_usec >= UINT64_MAX) | |
5306 | return -ERANGE; | |
5307 | if (window_usec <= 0 || window_usec >= UINT64_MAX) | |
5308 | return -ERANGE; | |
5309 | if (threshold_usec > window_usec) | |
5310 | return -EINVAL; | |
5311 | ||
5312 | if (s->memory_pressure.locked) /* Refuse adjusting parameters, if caller told us how to watch for events */ | |
5313 | return -EBUSY; | |
5314 | ||
5315 | char* space = memchr(s->memory_pressure.write_buffer, ' ', s->memory_pressure.write_buffer_size); | |
5316 | if (!space) | |
5317 | return -EINVAL; | |
5318 | ||
5319 | size_t l = (char*) space - (char*) s->memory_pressure.write_buffer; | |
5320 | b = memdup_suffix0(s->memory_pressure.write_buffer, l); | |
5321 | if (!b) | |
5322 | return -ENOMEM; | |
5323 | if (!STR_IN_SET(b, "some", "full")) | |
5324 | return -EINVAL; | |
5325 | ||
5326 | if (asprintf((char**) &w, | |
5327 | "%s " USEC_FMT " " USEC_FMT "", | |
5328 | b, | |
5329 | threshold_usec, | |
5330 | window_usec) < 0) | |
5331 | return -EINVAL; | |
5332 | ||
5333 | l = strlen(w) + 1; | |
5334 | if (memcmp_nn(s->memory_pressure.write_buffer, s->memory_pressure.write_buffer_size, w, l) == 0) | |
5335 | return 0; | |
5336 | ||
5337 | free_and_replace(s->memory_pressure.write_buffer, w); | |
5338 | s->memory_pressure.write_buffer_size = l; | |
5339 | s->memory_pressure.locked = false; | |
5340 | ||
5341 | return 1; | |
5342 | } |