]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame_incremental - tools/include/uapi/linux/bpf.h
Merge tag 'hid-for-linus-2025070502' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/kernel/stable.git] / tools / include / uapi / linux / bpf.h
... / ...
CommitLineData
1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 */
8#ifndef _UAPI__LINUX_BPF_H__
9#define _UAPI__LINUX_BPF_H__
10
11#include <linux/types.h>
12#include <linux/bpf_common.h>
13
14/* Extended instruction set based on top of classic BPF */
15
16/* instruction classes */
17#define BPF_JMP32 0x06 /* jmp mode in word width */
18#define BPF_ALU64 0x07 /* alu mode in double word width */
19
20/* ld/ldx fields */
21#define BPF_DW 0x18 /* double word (64-bit) */
22#define BPF_MEMSX 0x80 /* load with sign extension */
23#define BPF_ATOMIC 0xc0 /* atomic memory ops - op type in immediate */
24#define BPF_XADD 0xc0 /* exclusive add - legacy name */
25
26/* alu/jmp fields */
27#define BPF_MOV 0xb0 /* mov reg to reg */
28#define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */
29
30/* change endianness of a register */
31#define BPF_END 0xd0 /* flags for endianness conversion: */
32#define BPF_TO_LE 0x00 /* convert to little-endian */
33#define BPF_TO_BE 0x08 /* convert to big-endian */
34#define BPF_FROM_LE BPF_TO_LE
35#define BPF_FROM_BE BPF_TO_BE
36
37/* jmp encodings */
38#define BPF_JNE 0x50 /* jump != */
39#define BPF_JLT 0xa0 /* LT is unsigned, '<' */
40#define BPF_JLE 0xb0 /* LE is unsigned, '<=' */
41#define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */
42#define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */
43#define BPF_JSLT 0xc0 /* SLT is signed, '<' */
44#define BPF_JSLE 0xd0 /* SLE is signed, '<=' */
45#define BPF_JCOND 0xe0 /* conditional pseudo jumps: may_goto, goto_or_nop */
46#define BPF_CALL 0x80 /* function call */
47#define BPF_EXIT 0x90 /* function return */
48
49/* atomic op type fields (stored in immediate) */
50#define BPF_FETCH 0x01 /* not an opcode on its own, used to build others */
51#define BPF_XCHG (0xe0 | BPF_FETCH) /* atomic exchange */
52#define BPF_CMPXCHG (0xf0 | BPF_FETCH) /* atomic compare-and-write */
53
54#define BPF_LOAD_ACQ 0x100 /* load-acquire */
55#define BPF_STORE_REL 0x110 /* store-release */
56
57enum bpf_cond_pseudo_jmp {
58 BPF_MAY_GOTO = 0,
59};
60
61/* Register numbers */
62enum {
63 BPF_REG_0 = 0,
64 BPF_REG_1,
65 BPF_REG_2,
66 BPF_REG_3,
67 BPF_REG_4,
68 BPF_REG_5,
69 BPF_REG_6,
70 BPF_REG_7,
71 BPF_REG_8,
72 BPF_REG_9,
73 BPF_REG_10,
74 __MAX_BPF_REG,
75};
76
77/* BPF has 10 general purpose 64-bit registers and stack frame. */
78#define MAX_BPF_REG __MAX_BPF_REG
79
80struct bpf_insn {
81 __u8 code; /* opcode */
82 __u8 dst_reg:4; /* dest register */
83 __u8 src_reg:4; /* source register */
84 __s16 off; /* signed offset */
85 __s32 imm; /* signed immediate constant */
86};
87
88/* Deprecated: use struct bpf_lpm_trie_key_u8 (when the "data" member is needed for
89 * byte access) or struct bpf_lpm_trie_key_hdr (when using an alternative type for
90 * the trailing flexible array member) instead.
91 */
92struct bpf_lpm_trie_key {
93 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */
94 __u8 data[0]; /* Arbitrary size */
95};
96
97/* Header for bpf_lpm_trie_key structs */
98struct bpf_lpm_trie_key_hdr {
99 __u32 prefixlen;
100};
101
102/* Key of an a BPF_MAP_TYPE_LPM_TRIE entry, with trailing byte array. */
103struct bpf_lpm_trie_key_u8 {
104 union {
105 struct bpf_lpm_trie_key_hdr hdr;
106 __u32 prefixlen;
107 };
108 __u8 data[]; /* Arbitrary size */
109};
110
111struct bpf_cgroup_storage_key {
112 __u64 cgroup_inode_id; /* cgroup inode id */
113 __u32 attach_type; /* program attach type (enum bpf_attach_type) */
114};
115
116enum bpf_cgroup_iter_order {
117 BPF_CGROUP_ITER_ORDER_UNSPEC = 0,
118 BPF_CGROUP_ITER_SELF_ONLY, /* process only a single object. */
119 BPF_CGROUP_ITER_DESCENDANTS_PRE, /* walk descendants in pre-order. */
120 BPF_CGROUP_ITER_DESCENDANTS_POST, /* walk descendants in post-order. */
121 BPF_CGROUP_ITER_ANCESTORS_UP, /* walk ancestors upward. */
122};
123
124union bpf_iter_link_info {
125 struct {
126 __u32 map_fd;
127 } map;
128 struct {
129 enum bpf_cgroup_iter_order order;
130
131 /* At most one of cgroup_fd and cgroup_id can be non-zero. If
132 * both are zero, the walk starts from the default cgroup v2
133 * root. For walking v1 hierarchy, one should always explicitly
134 * specify cgroup_fd.
135 */
136 __u32 cgroup_fd;
137 __u64 cgroup_id;
138 } cgroup;
139 /* Parameters of task iterators. */
140 struct {
141 __u32 tid;
142 __u32 pid;
143 __u32 pid_fd;
144 } task;
145};
146
147/* BPF syscall commands, see bpf(2) man-page for more details. */
148/**
149 * DOC: eBPF Syscall Preamble
150 *
151 * The operation to be performed by the **bpf**\ () system call is determined
152 * by the *cmd* argument. Each operation takes an accompanying argument,
153 * provided via *attr*, which is a pointer to a union of type *bpf_attr* (see
154 * below). The size argument is the size of the union pointed to by *attr*.
155 */
156/**
157 * DOC: eBPF Syscall Commands
158 *
159 * BPF_MAP_CREATE
160 * Description
161 * Create a map and return a file descriptor that refers to the
162 * map. The close-on-exec file descriptor flag (see **fcntl**\ (2))
163 * is automatically enabled for the new file descriptor.
164 *
165 * Applying **close**\ (2) to the file descriptor returned by
166 * **BPF_MAP_CREATE** will delete the map (but see NOTES).
167 *
168 * Return
169 * A new file descriptor (a nonnegative integer), or -1 if an
170 * error occurred (in which case, *errno* is set appropriately).
171 *
172 * BPF_MAP_LOOKUP_ELEM
173 * Description
174 * Look up an element with a given *key* in the map referred to
175 * by the file descriptor *map_fd*.
176 *
177 * The *flags* argument may be specified as one of the
178 * following:
179 *
180 * **BPF_F_LOCK**
181 * Look up the value of a spin-locked map without
182 * returning the lock. This must be specified if the
183 * elements contain a spinlock.
184 *
185 * Return
186 * Returns zero on success. On error, -1 is returned and *errno*
187 * is set appropriately.
188 *
189 * BPF_MAP_UPDATE_ELEM
190 * Description
191 * Create or update an element (key/value pair) in a specified map.
192 *
193 * The *flags* argument should be specified as one of the
194 * following:
195 *
196 * **BPF_ANY**
197 * Create a new element or update an existing element.
198 * **BPF_NOEXIST**
199 * Create a new element only if it did not exist.
200 * **BPF_EXIST**
201 * Update an existing element.
202 * **BPF_F_LOCK**
203 * Update a spin_lock-ed map element.
204 *
205 * Return
206 * Returns zero on success. On error, -1 is returned and *errno*
207 * is set appropriately.
208 *
209 * May set *errno* to **EINVAL**, **EPERM**, **ENOMEM**,
210 * **E2BIG**, **EEXIST**, or **ENOENT**.
211 *
212 * **E2BIG**
213 * The number of elements in the map reached the
214 * *max_entries* limit specified at map creation time.
215 * **EEXIST**
216 * If *flags* specifies **BPF_NOEXIST** and the element
217 * with *key* already exists in the map.
218 * **ENOENT**
219 * If *flags* specifies **BPF_EXIST** and the element with
220 * *key* does not exist in the map.
221 *
222 * BPF_MAP_DELETE_ELEM
223 * Description
224 * Look up and delete an element by key in a specified map.
225 *
226 * Return
227 * Returns zero on success. On error, -1 is returned and *errno*
228 * is set appropriately.
229 *
230 * BPF_MAP_GET_NEXT_KEY
231 * Description
232 * Look up an element by key in a specified map and return the key
233 * of the next element. Can be used to iterate over all elements
234 * in the map.
235 *
236 * Return
237 * Returns zero on success. On error, -1 is returned and *errno*
238 * is set appropriately.
239 *
240 * The following cases can be used to iterate over all elements of
241 * the map:
242 *
243 * * If *key* is not found, the operation returns zero and sets
244 * the *next_key* pointer to the key of the first element.
245 * * If *key* is found, the operation returns zero and sets the
246 * *next_key* pointer to the key of the next element.
247 * * If *key* is the last element, returns -1 and *errno* is set
248 * to **ENOENT**.
249 *
250 * May set *errno* to **ENOMEM**, **EFAULT**, **EPERM**, or
251 * **EINVAL** on error.
252 *
253 * BPF_PROG_LOAD
254 * Description
255 * Verify and load an eBPF program, returning a new file
256 * descriptor associated with the program.
257 *
258 * Applying **close**\ (2) to the file descriptor returned by
259 * **BPF_PROG_LOAD** will unload the eBPF program (but see NOTES).
260 *
261 * The close-on-exec file descriptor flag (see **fcntl**\ (2)) is
262 * automatically enabled for the new file descriptor.
263 *
264 * Return
265 * A new file descriptor (a nonnegative integer), or -1 if an
266 * error occurred (in which case, *errno* is set appropriately).
267 *
268 * BPF_OBJ_PIN
269 * Description
270 * Pin an eBPF program or map referred by the specified *bpf_fd*
271 * to the provided *pathname* on the filesystem.
272 *
273 * The *pathname* argument must not contain a dot (".").
274 *
275 * On success, *pathname* retains a reference to the eBPF object,
276 * preventing deallocation of the object when the original
277 * *bpf_fd* is closed. This allow the eBPF object to live beyond
278 * **close**\ (\ *bpf_fd*\ ), and hence the lifetime of the parent
279 * process.
280 *
281 * Applying **unlink**\ (2) or similar calls to the *pathname*
282 * unpins the object from the filesystem, removing the reference.
283 * If no other file descriptors or filesystem nodes refer to the
284 * same object, it will be deallocated (see NOTES).
285 *
286 * The filesystem type for the parent directory of *pathname* must
287 * be **BPF_FS_MAGIC**.
288 *
289 * Return
290 * Returns zero on success. On error, -1 is returned and *errno*
291 * is set appropriately.
292 *
293 * BPF_OBJ_GET
294 * Description
295 * Open a file descriptor for the eBPF object pinned to the
296 * specified *pathname*.
297 *
298 * Return
299 * A new file descriptor (a nonnegative integer), or -1 if an
300 * error occurred (in which case, *errno* is set appropriately).
301 *
302 * BPF_PROG_ATTACH
303 * Description
304 * Attach an eBPF program to a *target_fd* at the specified
305 * *attach_type* hook.
306 *
307 * The *attach_type* specifies the eBPF attachment point to
308 * attach the program to, and must be one of *bpf_attach_type*
309 * (see below).
310 *
311 * The *attach_bpf_fd* must be a valid file descriptor for a
312 * loaded eBPF program of a cgroup, flow dissector, LIRC, sockmap
313 * or sock_ops type corresponding to the specified *attach_type*.
314 *
315 * The *target_fd* must be a valid file descriptor for a kernel
316 * object which depends on the attach type of *attach_bpf_fd*:
317 *
318 * **BPF_PROG_TYPE_CGROUP_DEVICE**,
319 * **BPF_PROG_TYPE_CGROUP_SKB**,
320 * **BPF_PROG_TYPE_CGROUP_SOCK**,
321 * **BPF_PROG_TYPE_CGROUP_SOCK_ADDR**,
322 * **BPF_PROG_TYPE_CGROUP_SOCKOPT**,
323 * **BPF_PROG_TYPE_CGROUP_SYSCTL**,
324 * **BPF_PROG_TYPE_SOCK_OPS**
325 *
326 * Control Group v2 hierarchy with the eBPF controller
327 * enabled. Requires the kernel to be compiled with
328 * **CONFIG_CGROUP_BPF**.
329 *
330 * **BPF_PROG_TYPE_FLOW_DISSECTOR**
331 *
332 * Network namespace (eg /proc/self/ns/net).
333 *
334 * **BPF_PROG_TYPE_LIRC_MODE2**
335 *
336 * LIRC device path (eg /dev/lircN). Requires the kernel
337 * to be compiled with **CONFIG_BPF_LIRC_MODE2**.
338 *
339 * **BPF_PROG_TYPE_SK_SKB**,
340 * **BPF_PROG_TYPE_SK_MSG**
341 *
342 * eBPF map of socket type (eg **BPF_MAP_TYPE_SOCKHASH**).
343 *
344 * Return
345 * Returns zero on success. On error, -1 is returned and *errno*
346 * is set appropriately.
347 *
348 * BPF_PROG_DETACH
349 * Description
350 * Detach the eBPF program associated with the *target_fd* at the
351 * hook specified by *attach_type*. The program must have been
352 * previously attached using **BPF_PROG_ATTACH**.
353 *
354 * Return
355 * Returns zero on success. On error, -1 is returned and *errno*
356 * is set appropriately.
357 *
358 * BPF_PROG_TEST_RUN
359 * Description
360 * Run the eBPF program associated with the *prog_fd* a *repeat*
361 * number of times against a provided program context *ctx_in* and
362 * data *data_in*, and return the modified program context
363 * *ctx_out*, *data_out* (for example, packet data), result of the
364 * execution *retval*, and *duration* of the test run.
365 *
366 * The sizes of the buffers provided as input and output
367 * parameters *ctx_in*, *ctx_out*, *data_in*, and *data_out* must
368 * be provided in the corresponding variables *ctx_size_in*,
369 * *ctx_size_out*, *data_size_in*, and/or *data_size_out*. If any
370 * of these parameters are not provided (ie set to NULL), the
371 * corresponding size field must be zero.
372 *
373 * Some program types have particular requirements:
374 *
375 * **BPF_PROG_TYPE_SK_LOOKUP**
376 * *data_in* and *data_out* must be NULL.
377 *
378 * **BPF_PROG_TYPE_RAW_TRACEPOINT**,
379 * **BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE**
380 *
381 * *ctx_out*, *data_in* and *data_out* must be NULL.
382 * *repeat* must be zero.
383 *
384 * BPF_PROG_RUN is an alias for BPF_PROG_TEST_RUN.
385 *
386 * Return
387 * Returns zero on success. On error, -1 is returned and *errno*
388 * is set appropriately.
389 *
390 * **ENOSPC**
391 * Either *data_size_out* or *ctx_size_out* is too small.
392 * **ENOTSUPP**
393 * This command is not supported by the program type of
394 * the program referred to by *prog_fd*.
395 *
396 * BPF_PROG_GET_NEXT_ID
397 * Description
398 * Fetch the next eBPF program currently loaded into the kernel.
399 *
400 * Looks for the eBPF program with an id greater than *start_id*
401 * and updates *next_id* on success. If no other eBPF programs
402 * remain with ids higher than *start_id*, returns -1 and sets
403 * *errno* to **ENOENT**.
404 *
405 * Return
406 * Returns zero on success. On error, or when no id remains, -1
407 * is returned and *errno* is set appropriately.
408 *
409 * BPF_MAP_GET_NEXT_ID
410 * Description
411 * Fetch the next eBPF map currently loaded into the kernel.
412 *
413 * Looks for the eBPF map with an id greater than *start_id*
414 * and updates *next_id* on success. If no other eBPF maps
415 * remain with ids higher than *start_id*, returns -1 and sets
416 * *errno* to **ENOENT**.
417 *
418 * Return
419 * Returns zero on success. On error, or when no id remains, -1
420 * is returned and *errno* is set appropriately.
421 *
422 * BPF_PROG_GET_FD_BY_ID
423 * Description
424 * Open a file descriptor for the eBPF program corresponding to
425 * *prog_id*.
426 *
427 * Return
428 * A new file descriptor (a nonnegative integer), or -1 if an
429 * error occurred (in which case, *errno* is set appropriately).
430 *
431 * BPF_MAP_GET_FD_BY_ID
432 * Description
433 * Open a file descriptor for the eBPF map corresponding to
434 * *map_id*.
435 *
436 * Return
437 * A new file descriptor (a nonnegative integer), or -1 if an
438 * error occurred (in which case, *errno* is set appropriately).
439 *
440 * BPF_OBJ_GET_INFO_BY_FD
441 * Description
442 * Obtain information about the eBPF object corresponding to
443 * *bpf_fd*.
444 *
445 * Populates up to *info_len* bytes of *info*, which will be in
446 * one of the following formats depending on the eBPF object type
447 * of *bpf_fd*:
448 *
449 * * **struct bpf_prog_info**
450 * * **struct bpf_map_info**
451 * * **struct bpf_btf_info**
452 * * **struct bpf_link_info**
453 *
454 * Return
455 * Returns zero on success. On error, -1 is returned and *errno*
456 * is set appropriately.
457 *
458 * BPF_PROG_QUERY
459 * Description
460 * Obtain information about eBPF programs associated with the
461 * specified *attach_type* hook.
462 *
463 * The *target_fd* must be a valid file descriptor for a kernel
464 * object which depends on the attach type of *attach_bpf_fd*:
465 *
466 * **BPF_PROG_TYPE_CGROUP_DEVICE**,
467 * **BPF_PROG_TYPE_CGROUP_SKB**,
468 * **BPF_PROG_TYPE_CGROUP_SOCK**,
469 * **BPF_PROG_TYPE_CGROUP_SOCK_ADDR**,
470 * **BPF_PROG_TYPE_CGROUP_SOCKOPT**,
471 * **BPF_PROG_TYPE_CGROUP_SYSCTL**,
472 * **BPF_PROG_TYPE_SOCK_OPS**
473 *
474 * Control Group v2 hierarchy with the eBPF controller
475 * enabled. Requires the kernel to be compiled with
476 * **CONFIG_CGROUP_BPF**.
477 *
478 * **BPF_PROG_TYPE_FLOW_DISSECTOR**
479 *
480 * Network namespace (eg /proc/self/ns/net).
481 *
482 * **BPF_PROG_TYPE_LIRC_MODE2**
483 *
484 * LIRC device path (eg /dev/lircN). Requires the kernel
485 * to be compiled with **CONFIG_BPF_LIRC_MODE2**.
486 *
487 * **BPF_PROG_QUERY** always fetches the number of programs
488 * attached and the *attach_flags* which were used to attach those
489 * programs. Additionally, if *prog_ids* is nonzero and the number
490 * of attached programs is less than *prog_cnt*, populates
491 * *prog_ids* with the eBPF program ids of the programs attached
492 * at *target_fd*.
493 *
494 * The following flags may alter the result:
495 *
496 * **BPF_F_QUERY_EFFECTIVE**
497 * Only return information regarding programs which are
498 * currently effective at the specified *target_fd*.
499 *
500 * Return
501 * Returns zero on success. On error, -1 is returned and *errno*
502 * is set appropriately.
503 *
504 * BPF_RAW_TRACEPOINT_OPEN
505 * Description
506 * Attach an eBPF program to a tracepoint *name* to access kernel
507 * internal arguments of the tracepoint in their raw form.
508 *
509 * The *prog_fd* must be a valid file descriptor associated with
510 * a loaded eBPF program of type **BPF_PROG_TYPE_RAW_TRACEPOINT**.
511 *
512 * No ABI guarantees are made about the content of tracepoint
513 * arguments exposed to the corresponding eBPF program.
514 *
515 * Applying **close**\ (2) to the file descriptor returned by
516 * **BPF_RAW_TRACEPOINT_OPEN** will delete the map (but see NOTES).
517 *
518 * Return
519 * A new file descriptor (a nonnegative integer), or -1 if an
520 * error occurred (in which case, *errno* is set appropriately).
521 *
522 * BPF_BTF_LOAD
523 * Description
524 * Verify and load BPF Type Format (BTF) metadata into the kernel,
525 * returning a new file descriptor associated with the metadata.
526 * BTF is described in more detail at
527 * https://www.kernel.org/doc/html/latest/bpf/btf.html.
528 *
529 * The *btf* parameter must point to valid memory providing
530 * *btf_size* bytes of BTF binary metadata.
531 *
532 * The returned file descriptor can be passed to other **bpf**\ ()
533 * subcommands such as **BPF_PROG_LOAD** or **BPF_MAP_CREATE** to
534 * associate the BTF with those objects.
535 *
536 * Similar to **BPF_PROG_LOAD**, **BPF_BTF_LOAD** has optional
537 * parameters to specify a *btf_log_buf*, *btf_log_size* and
538 * *btf_log_level* which allow the kernel to return freeform log
539 * output regarding the BTF verification process.
540 *
541 * Return
542 * A new file descriptor (a nonnegative integer), or -1 if an
543 * error occurred (in which case, *errno* is set appropriately).
544 *
545 * BPF_BTF_GET_FD_BY_ID
546 * Description
547 * Open a file descriptor for the BPF Type Format (BTF)
548 * corresponding to *btf_id*.
549 *
550 * Return
551 * A new file descriptor (a nonnegative integer), or -1 if an
552 * error occurred (in which case, *errno* is set appropriately).
553 *
554 * BPF_TASK_FD_QUERY
555 * Description
556 * Obtain information about eBPF programs associated with the
557 * target process identified by *pid* and *fd*.
558 *
559 * If the *pid* and *fd* are associated with a tracepoint, kprobe
560 * or uprobe perf event, then the *prog_id* and *fd_type* will
561 * be populated with the eBPF program id and file descriptor type
562 * of type **bpf_task_fd_type**. If associated with a kprobe or
563 * uprobe, the *probe_offset* and *probe_addr* will also be
564 * populated. Optionally, if *buf* is provided, then up to
565 * *buf_len* bytes of *buf* will be populated with the name of
566 * the tracepoint, kprobe or uprobe.
567 *
568 * The resulting *prog_id* may be introspected in deeper detail
569 * using **BPF_PROG_GET_FD_BY_ID** and **BPF_OBJ_GET_INFO_BY_FD**.
570 *
571 * Return
572 * Returns zero on success. On error, -1 is returned and *errno*
573 * is set appropriately.
574 *
575 * BPF_MAP_LOOKUP_AND_DELETE_ELEM
576 * Description
577 * Look up an element with the given *key* in the map referred to
578 * by the file descriptor *fd*, and if found, delete the element.
579 *
580 * For **BPF_MAP_TYPE_QUEUE** and **BPF_MAP_TYPE_STACK** map
581 * types, the *flags* argument needs to be set to 0, but for other
582 * map types, it may be specified as:
583 *
584 * **BPF_F_LOCK**
585 * Look up and delete the value of a spin-locked map
586 * without returning the lock. This must be specified if
587 * the elements contain a spinlock.
588 *
589 * The **BPF_MAP_TYPE_QUEUE** and **BPF_MAP_TYPE_STACK** map types
590 * implement this command as a "pop" operation, deleting the top
591 * element rather than one corresponding to *key*.
592 * The *key* and *key_len* parameters should be zeroed when
593 * issuing this operation for these map types.
594 *
595 * This command is only valid for the following map types:
596 * * **BPF_MAP_TYPE_QUEUE**
597 * * **BPF_MAP_TYPE_STACK**
598 * * **BPF_MAP_TYPE_HASH**
599 * * **BPF_MAP_TYPE_PERCPU_HASH**
600 * * **BPF_MAP_TYPE_LRU_HASH**
601 * * **BPF_MAP_TYPE_LRU_PERCPU_HASH**
602 *
603 * Return
604 * Returns zero on success. On error, -1 is returned and *errno*
605 * is set appropriately.
606 *
607 * BPF_MAP_FREEZE
608 * Description
609 * Freeze the permissions of the specified map.
610 *
611 * Write permissions may be frozen by passing zero *flags*.
612 * Upon success, no future syscall invocations may alter the
613 * map state of *map_fd*. Write operations from eBPF programs
614 * are still possible for a frozen map.
615 *
616 * Not supported for maps of type **BPF_MAP_TYPE_STRUCT_OPS**.
617 *
618 * Return
619 * Returns zero on success. On error, -1 is returned and *errno*
620 * is set appropriately.
621 *
622 * BPF_BTF_GET_NEXT_ID
623 * Description
624 * Fetch the next BPF Type Format (BTF) object currently loaded
625 * into the kernel.
626 *
627 * Looks for the BTF object with an id greater than *start_id*
628 * and updates *next_id* on success. If no other BTF objects
629 * remain with ids higher than *start_id*, returns -1 and sets
630 * *errno* to **ENOENT**.
631 *
632 * Return
633 * Returns zero on success. On error, or when no id remains, -1
634 * is returned and *errno* is set appropriately.
635 *
636 * BPF_MAP_LOOKUP_BATCH
637 * Description
638 * Iterate and fetch multiple elements in a map.
639 *
640 * Two opaque values are used to manage batch operations,
641 * *in_batch* and *out_batch*. Initially, *in_batch* must be set
642 * to NULL to begin the batched operation. After each subsequent
643 * **BPF_MAP_LOOKUP_BATCH**, the caller should pass the resultant
644 * *out_batch* as the *in_batch* for the next operation to
645 * continue iteration from the current point. Both *in_batch* and
646 * *out_batch* must point to memory large enough to hold a key,
647 * except for maps of type **BPF_MAP_TYPE_{HASH, PERCPU_HASH,
648 * LRU_HASH, LRU_PERCPU_HASH}**, for which batch parameters
649 * must be at least 4 bytes wide regardless of key size.
650 *
651 * The *keys* and *values* are output parameters which must point
652 * to memory large enough to hold *count* items based on the key
653 * and value size of the map *map_fd*. The *keys* buffer must be
654 * of *key_size* * *count*. The *values* buffer must be of
655 * *value_size* * *count*.
656 *
657 * The *elem_flags* argument may be specified as one of the
658 * following:
659 *
660 * **BPF_F_LOCK**
661 * Look up the value of a spin-locked map without
662 * returning the lock. This must be specified if the
663 * elements contain a spinlock.
664 *
665 * On success, *count* elements from the map are copied into the
666 * user buffer, with the keys copied into *keys* and the values
667 * copied into the corresponding indices in *values*.
668 *
669 * If an error is returned and *errno* is not **EFAULT**, *count*
670 * is set to the number of successfully processed elements.
671 *
672 * Return
673 * Returns zero on success. On error, -1 is returned and *errno*
674 * is set appropriately.
675 *
676 * May set *errno* to **ENOSPC** to indicate that *keys* or
677 * *values* is too small to dump an entire bucket during
678 * iteration of a hash-based map type.
679 *
680 * BPF_MAP_LOOKUP_AND_DELETE_BATCH
681 * Description
682 * Iterate and delete all elements in a map.
683 *
684 * This operation has the same behavior as
685 * **BPF_MAP_LOOKUP_BATCH** with two exceptions:
686 *
687 * * Every element that is successfully returned is also deleted
688 * from the map. This is at least *count* elements. Note that
689 * *count* is both an input and an output parameter.
690 * * Upon returning with *errno* set to **EFAULT**, up to
691 * *count* elements may be deleted without returning the keys
692 * and values of the deleted elements.
693 *
694 * Return
695 * Returns zero on success. On error, -1 is returned and *errno*
696 * is set appropriately.
697 *
698 * BPF_MAP_UPDATE_BATCH
699 * Description
700 * Update multiple elements in a map by *key*.
701 *
702 * The *keys* and *values* are input parameters which must point
703 * to memory large enough to hold *count* items based on the key
704 * and value size of the map *map_fd*. The *keys* buffer must be
705 * of *key_size* * *count*. The *values* buffer must be of
706 * *value_size* * *count*.
707 *
708 * Each element specified in *keys* is sequentially updated to the
709 * value in the corresponding index in *values*. The *in_batch*
710 * and *out_batch* parameters are ignored and should be zeroed.
711 *
712 * The *elem_flags* argument should be specified as one of the
713 * following:
714 *
715 * **BPF_ANY**
716 * Create new elements or update a existing elements.
717 * **BPF_NOEXIST**
718 * Create new elements only if they do not exist.
719 * **BPF_EXIST**
720 * Update existing elements.
721 * **BPF_F_LOCK**
722 * Update spin_lock-ed map elements. This must be
723 * specified if the map value contains a spinlock.
724 *
725 * On success, *count* elements from the map are updated.
726 *
727 * If an error is returned and *errno* is not **EFAULT**, *count*
728 * is set to the number of successfully processed elements.
729 *
730 * Return
731 * Returns zero on success. On error, -1 is returned and *errno*
732 * is set appropriately.
733 *
734 * May set *errno* to **EINVAL**, **EPERM**, **ENOMEM**, or
735 * **E2BIG**. **E2BIG** indicates that the number of elements in
736 * the map reached the *max_entries* limit specified at map
737 * creation time.
738 *
739 * May set *errno* to one of the following error codes under
740 * specific circumstances:
741 *
742 * **EEXIST**
743 * If *flags* specifies **BPF_NOEXIST** and the element
744 * with *key* already exists in the map.
745 * **ENOENT**
746 * If *flags* specifies **BPF_EXIST** and the element with
747 * *key* does not exist in the map.
748 *
749 * BPF_MAP_DELETE_BATCH
750 * Description
751 * Delete multiple elements in a map by *key*.
752 *
753 * The *keys* parameter is an input parameter which must point
754 * to memory large enough to hold *count* items based on the key
755 * size of the map *map_fd*, that is, *key_size* * *count*.
756 *
757 * Each element specified in *keys* is sequentially deleted. The
758 * *in_batch*, *out_batch*, and *values* parameters are ignored
759 * and should be zeroed.
760 *
761 * The *elem_flags* argument may be specified as one of the
762 * following:
763 *
764 * **BPF_F_LOCK**
765 * Look up the value of a spin-locked map without
766 * returning the lock. This must be specified if the
767 * elements contain a spinlock.
768 *
769 * On success, *count* elements from the map are updated.
770 *
771 * If an error is returned and *errno* is not **EFAULT**, *count*
772 * is set to the number of successfully processed elements. If
773 * *errno* is **EFAULT**, up to *count* elements may be been
774 * deleted.
775 *
776 * Return
777 * Returns zero on success. On error, -1 is returned and *errno*
778 * is set appropriately.
779 *
780 * BPF_LINK_CREATE
781 * Description
782 * Attach an eBPF program to a *target_fd* at the specified
783 * *attach_type* hook and return a file descriptor handle for
784 * managing the link.
785 *
786 * Return
787 * A new file descriptor (a nonnegative integer), or -1 if an
788 * error occurred (in which case, *errno* is set appropriately).
789 *
790 * BPF_LINK_UPDATE
791 * Description
792 * Update the eBPF program in the specified *link_fd* to
793 * *new_prog_fd*.
794 *
795 * Return
796 * Returns zero on success. On error, -1 is returned and *errno*
797 * is set appropriately.
798 *
799 * BPF_LINK_GET_FD_BY_ID
800 * Description
801 * Open a file descriptor for the eBPF Link corresponding to
802 * *link_id*.
803 *
804 * Return
805 * A new file descriptor (a nonnegative integer), or -1 if an
806 * error occurred (in which case, *errno* is set appropriately).
807 *
808 * BPF_LINK_GET_NEXT_ID
809 * Description
810 * Fetch the next eBPF link currently loaded into the kernel.
811 *
812 * Looks for the eBPF link with an id greater than *start_id*
813 * and updates *next_id* on success. If no other eBPF links
814 * remain with ids higher than *start_id*, returns -1 and sets
815 * *errno* to **ENOENT**.
816 *
817 * Return
818 * Returns zero on success. On error, or when no id remains, -1
819 * is returned and *errno* is set appropriately.
820 *
821 * BPF_ENABLE_STATS
822 * Description
823 * Enable eBPF runtime statistics gathering.
824 *
825 * Runtime statistics gathering for the eBPF runtime is disabled
826 * by default to minimize the corresponding performance overhead.
827 * This command enables statistics globally.
828 *
829 * Multiple programs may independently enable statistics.
830 * After gathering the desired statistics, eBPF runtime statistics
831 * may be disabled again by calling **close**\ (2) for the file
832 * descriptor returned by this function. Statistics will only be
833 * disabled system-wide when all outstanding file descriptors
834 * returned by prior calls for this subcommand are closed.
835 *
836 * Return
837 * A new file descriptor (a nonnegative integer), or -1 if an
838 * error occurred (in which case, *errno* is set appropriately).
839 *
840 * BPF_ITER_CREATE
841 * Description
842 * Create an iterator on top of the specified *link_fd* (as
843 * previously created using **BPF_LINK_CREATE**) and return a
844 * file descriptor that can be used to trigger the iteration.
845 *
846 * If the resulting file descriptor is pinned to the filesystem
847 * using **BPF_OBJ_PIN**, then subsequent **read**\ (2) syscalls
848 * for that path will trigger the iterator to read kernel state
849 * using the eBPF program attached to *link_fd*.
850 *
851 * Return
852 * A new file descriptor (a nonnegative integer), or -1 if an
853 * error occurred (in which case, *errno* is set appropriately).
854 *
855 * BPF_LINK_DETACH
856 * Description
857 * Forcefully detach the specified *link_fd* from its
858 * corresponding attachment point.
859 *
860 * Return
861 * Returns zero on success. On error, -1 is returned and *errno*
862 * is set appropriately.
863 *
864 * BPF_PROG_BIND_MAP
865 * Description
866 * Bind a map to the lifetime of an eBPF program.
867 *
868 * The map identified by *map_fd* is bound to the program
869 * identified by *prog_fd* and only released when *prog_fd* is
870 * released. This may be used in cases where metadata should be
871 * associated with a program which otherwise does not contain any
872 * references to the map (for example, embedded in the eBPF
873 * program instructions).
874 *
875 * Return
876 * Returns zero on success. On error, -1 is returned and *errno*
877 * is set appropriately.
878 *
879 * BPF_TOKEN_CREATE
880 * Description
881 * Create BPF token with embedded information about what
882 * BPF-related functionality it allows:
883 * - a set of allowed bpf() syscall commands;
884 * - a set of allowed BPF map types to be created with
885 * BPF_MAP_CREATE command, if BPF_MAP_CREATE itself is allowed;
886 * - a set of allowed BPF program types and BPF program attach
887 * types to be loaded with BPF_PROG_LOAD command, if
888 * BPF_PROG_LOAD itself is allowed.
889 *
890 * BPF token is created (derived) from an instance of BPF FS,
891 * assuming it has necessary delegation mount options specified.
892 * This BPF token can be passed as an extra parameter to various
893 * bpf() syscall commands to grant BPF subsystem functionality to
894 * unprivileged processes.
895 *
896 * When created, BPF token is "associated" with the owning
897 * user namespace of BPF FS instance (super block) that it was
898 * derived from, and subsequent BPF operations performed with
899 * BPF token would be performing capabilities checks (i.e.,
900 * CAP_BPF, CAP_PERFMON, CAP_NET_ADMIN, CAP_SYS_ADMIN) within
901 * that user namespace. Without BPF token, such capabilities
902 * have to be granted in init user namespace, making bpf()
903 * syscall incompatible with user namespace, for the most part.
904 *
905 * Return
906 * A new file descriptor (a nonnegative integer), or -1 if an
907 * error occurred (in which case, *errno* is set appropriately).
908 *
909 * NOTES
910 * eBPF objects (maps and programs) can be shared between processes.
911 *
912 * * After **fork**\ (2), the child inherits file descriptors
913 * referring to the same eBPF objects.
914 * * File descriptors referring to eBPF objects can be transferred over
915 * **unix**\ (7) domain sockets.
916 * * File descriptors referring to eBPF objects can be duplicated in the
917 * usual way, using **dup**\ (2) and similar calls.
918 * * File descriptors referring to eBPF objects can be pinned to the
919 * filesystem using the **BPF_OBJ_PIN** command of **bpf**\ (2).
920 *
921 * An eBPF object is deallocated only after all file descriptors referring
922 * to the object have been closed and no references remain pinned to the
923 * filesystem or attached (for example, bound to a program or device).
924 */
925enum bpf_cmd {
926 BPF_MAP_CREATE,
927 BPF_MAP_LOOKUP_ELEM,
928 BPF_MAP_UPDATE_ELEM,
929 BPF_MAP_DELETE_ELEM,
930 BPF_MAP_GET_NEXT_KEY,
931 BPF_PROG_LOAD,
932 BPF_OBJ_PIN,
933 BPF_OBJ_GET,
934 BPF_PROG_ATTACH,
935 BPF_PROG_DETACH,
936 BPF_PROG_TEST_RUN,
937 BPF_PROG_RUN = BPF_PROG_TEST_RUN,
938 BPF_PROG_GET_NEXT_ID,
939 BPF_MAP_GET_NEXT_ID,
940 BPF_PROG_GET_FD_BY_ID,
941 BPF_MAP_GET_FD_BY_ID,
942 BPF_OBJ_GET_INFO_BY_FD,
943 BPF_PROG_QUERY,
944 BPF_RAW_TRACEPOINT_OPEN,
945 BPF_BTF_LOAD,
946 BPF_BTF_GET_FD_BY_ID,
947 BPF_TASK_FD_QUERY,
948 BPF_MAP_LOOKUP_AND_DELETE_ELEM,
949 BPF_MAP_FREEZE,
950 BPF_BTF_GET_NEXT_ID,
951 BPF_MAP_LOOKUP_BATCH,
952 BPF_MAP_LOOKUP_AND_DELETE_BATCH,
953 BPF_MAP_UPDATE_BATCH,
954 BPF_MAP_DELETE_BATCH,
955 BPF_LINK_CREATE,
956 BPF_LINK_UPDATE,
957 BPF_LINK_GET_FD_BY_ID,
958 BPF_LINK_GET_NEXT_ID,
959 BPF_ENABLE_STATS,
960 BPF_ITER_CREATE,
961 BPF_LINK_DETACH,
962 BPF_PROG_BIND_MAP,
963 BPF_TOKEN_CREATE,
964 __MAX_BPF_CMD,
965};
966
967enum bpf_map_type {
968 BPF_MAP_TYPE_UNSPEC,
969 BPF_MAP_TYPE_HASH,
970 BPF_MAP_TYPE_ARRAY,
971 BPF_MAP_TYPE_PROG_ARRAY,
972 BPF_MAP_TYPE_PERF_EVENT_ARRAY,
973 BPF_MAP_TYPE_PERCPU_HASH,
974 BPF_MAP_TYPE_PERCPU_ARRAY,
975 BPF_MAP_TYPE_STACK_TRACE,
976 BPF_MAP_TYPE_CGROUP_ARRAY,
977 BPF_MAP_TYPE_LRU_HASH,
978 BPF_MAP_TYPE_LRU_PERCPU_HASH,
979 BPF_MAP_TYPE_LPM_TRIE,
980 BPF_MAP_TYPE_ARRAY_OF_MAPS,
981 BPF_MAP_TYPE_HASH_OF_MAPS,
982 BPF_MAP_TYPE_DEVMAP,
983 BPF_MAP_TYPE_SOCKMAP,
984 BPF_MAP_TYPE_CPUMAP,
985 BPF_MAP_TYPE_XSKMAP,
986 BPF_MAP_TYPE_SOCKHASH,
987 BPF_MAP_TYPE_CGROUP_STORAGE_DEPRECATED,
988 /* BPF_MAP_TYPE_CGROUP_STORAGE is available to bpf programs attaching
989 * to a cgroup. The newer BPF_MAP_TYPE_CGRP_STORAGE is available to
990 * both cgroup-attached and other progs and supports all functionality
991 * provided by BPF_MAP_TYPE_CGROUP_STORAGE. So mark
992 * BPF_MAP_TYPE_CGROUP_STORAGE deprecated.
993 */
994 BPF_MAP_TYPE_CGROUP_STORAGE = BPF_MAP_TYPE_CGROUP_STORAGE_DEPRECATED,
995 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
996 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE_DEPRECATED,
997 /* BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE is available to bpf programs
998 * attaching to a cgroup. The new mechanism (BPF_MAP_TYPE_CGRP_STORAGE +
999 * local percpu kptr) supports all BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE
1000 * functionality and more. So mark * BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE
1001 * deprecated.
1002 */
1003 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE = BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE_DEPRECATED,
1004 BPF_MAP_TYPE_QUEUE,
1005 BPF_MAP_TYPE_STACK,
1006 BPF_MAP_TYPE_SK_STORAGE,
1007 BPF_MAP_TYPE_DEVMAP_HASH,
1008 BPF_MAP_TYPE_STRUCT_OPS,
1009 BPF_MAP_TYPE_RINGBUF,
1010 BPF_MAP_TYPE_INODE_STORAGE,
1011 BPF_MAP_TYPE_TASK_STORAGE,
1012 BPF_MAP_TYPE_BLOOM_FILTER,
1013 BPF_MAP_TYPE_USER_RINGBUF,
1014 BPF_MAP_TYPE_CGRP_STORAGE,
1015 BPF_MAP_TYPE_ARENA,
1016 __MAX_BPF_MAP_TYPE
1017};
1018
1019/* Note that tracing related programs such as
1020 * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT}
1021 * are not subject to a stable API since kernel internal data
1022 * structures can change from release to release and may
1023 * therefore break existing tracing BPF programs. Tracing BPF
1024 * programs correspond to /a/ specific kernel which is to be
1025 * analyzed, and not /a/ specific kernel /and/ all future ones.
1026 */
1027enum bpf_prog_type {
1028 BPF_PROG_TYPE_UNSPEC,
1029 BPF_PROG_TYPE_SOCKET_FILTER,
1030 BPF_PROG_TYPE_KPROBE,
1031 BPF_PROG_TYPE_SCHED_CLS,
1032 BPF_PROG_TYPE_SCHED_ACT,
1033 BPF_PROG_TYPE_TRACEPOINT,
1034 BPF_PROG_TYPE_XDP,
1035 BPF_PROG_TYPE_PERF_EVENT,
1036 BPF_PROG_TYPE_CGROUP_SKB,
1037 BPF_PROG_TYPE_CGROUP_SOCK,
1038 BPF_PROG_TYPE_LWT_IN,
1039 BPF_PROG_TYPE_LWT_OUT,
1040 BPF_PROG_TYPE_LWT_XMIT,
1041 BPF_PROG_TYPE_SOCK_OPS,
1042 BPF_PROG_TYPE_SK_SKB,
1043 BPF_PROG_TYPE_CGROUP_DEVICE,
1044 BPF_PROG_TYPE_SK_MSG,
1045 BPF_PROG_TYPE_RAW_TRACEPOINT,
1046 BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
1047 BPF_PROG_TYPE_LWT_SEG6LOCAL,
1048 BPF_PROG_TYPE_LIRC_MODE2,
1049 BPF_PROG_TYPE_SK_REUSEPORT,
1050 BPF_PROG_TYPE_FLOW_DISSECTOR,
1051 BPF_PROG_TYPE_CGROUP_SYSCTL,
1052 BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE,
1053 BPF_PROG_TYPE_CGROUP_SOCKOPT,
1054 BPF_PROG_TYPE_TRACING,
1055 BPF_PROG_TYPE_STRUCT_OPS,
1056 BPF_PROG_TYPE_EXT,
1057 BPF_PROG_TYPE_LSM,
1058 BPF_PROG_TYPE_SK_LOOKUP,
1059 BPF_PROG_TYPE_SYSCALL, /* a program that can execute syscalls */
1060 BPF_PROG_TYPE_NETFILTER,
1061 __MAX_BPF_PROG_TYPE
1062};
1063
1064enum bpf_attach_type {
1065 BPF_CGROUP_INET_INGRESS,
1066 BPF_CGROUP_INET_EGRESS,
1067 BPF_CGROUP_INET_SOCK_CREATE,
1068 BPF_CGROUP_SOCK_OPS,
1069 BPF_SK_SKB_STREAM_PARSER,
1070 BPF_SK_SKB_STREAM_VERDICT,
1071 BPF_CGROUP_DEVICE,
1072 BPF_SK_MSG_VERDICT,
1073 BPF_CGROUP_INET4_BIND,
1074 BPF_CGROUP_INET6_BIND,
1075 BPF_CGROUP_INET4_CONNECT,
1076 BPF_CGROUP_INET6_CONNECT,
1077 BPF_CGROUP_INET4_POST_BIND,
1078 BPF_CGROUP_INET6_POST_BIND,
1079 BPF_CGROUP_UDP4_SENDMSG,
1080 BPF_CGROUP_UDP6_SENDMSG,
1081 BPF_LIRC_MODE2,
1082 BPF_FLOW_DISSECTOR,
1083 BPF_CGROUP_SYSCTL,
1084 BPF_CGROUP_UDP4_RECVMSG,
1085 BPF_CGROUP_UDP6_RECVMSG,
1086 BPF_CGROUP_GETSOCKOPT,
1087 BPF_CGROUP_SETSOCKOPT,
1088 BPF_TRACE_RAW_TP,
1089 BPF_TRACE_FENTRY,
1090 BPF_TRACE_FEXIT,
1091 BPF_MODIFY_RETURN,
1092 BPF_LSM_MAC,
1093 BPF_TRACE_ITER,
1094 BPF_CGROUP_INET4_GETPEERNAME,
1095 BPF_CGROUP_INET6_GETPEERNAME,
1096 BPF_CGROUP_INET4_GETSOCKNAME,
1097 BPF_CGROUP_INET6_GETSOCKNAME,
1098 BPF_XDP_DEVMAP,
1099 BPF_CGROUP_INET_SOCK_RELEASE,
1100 BPF_XDP_CPUMAP,
1101 BPF_SK_LOOKUP,
1102 BPF_XDP,
1103 BPF_SK_SKB_VERDICT,
1104 BPF_SK_REUSEPORT_SELECT,
1105 BPF_SK_REUSEPORT_SELECT_OR_MIGRATE,
1106 BPF_PERF_EVENT,
1107 BPF_TRACE_KPROBE_MULTI,
1108 BPF_LSM_CGROUP,
1109 BPF_STRUCT_OPS,
1110 BPF_NETFILTER,
1111 BPF_TCX_INGRESS,
1112 BPF_TCX_EGRESS,
1113 BPF_TRACE_UPROBE_MULTI,
1114 BPF_CGROUP_UNIX_CONNECT,
1115 BPF_CGROUP_UNIX_SENDMSG,
1116 BPF_CGROUP_UNIX_RECVMSG,
1117 BPF_CGROUP_UNIX_GETPEERNAME,
1118 BPF_CGROUP_UNIX_GETSOCKNAME,
1119 BPF_NETKIT_PRIMARY,
1120 BPF_NETKIT_PEER,
1121 BPF_TRACE_KPROBE_SESSION,
1122 BPF_TRACE_UPROBE_SESSION,
1123 __MAX_BPF_ATTACH_TYPE
1124};
1125
1126#define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
1127
1128/* Add BPF_LINK_TYPE(type, name) in bpf_types.h to keep bpf_link_type_strs[]
1129 * in sync with the definitions below.
1130 */
1131enum bpf_link_type {
1132 BPF_LINK_TYPE_UNSPEC = 0,
1133 BPF_LINK_TYPE_RAW_TRACEPOINT = 1,
1134 BPF_LINK_TYPE_TRACING = 2,
1135 BPF_LINK_TYPE_CGROUP = 3,
1136 BPF_LINK_TYPE_ITER = 4,
1137 BPF_LINK_TYPE_NETNS = 5,
1138 BPF_LINK_TYPE_XDP = 6,
1139 BPF_LINK_TYPE_PERF_EVENT = 7,
1140 BPF_LINK_TYPE_KPROBE_MULTI = 8,
1141 BPF_LINK_TYPE_STRUCT_OPS = 9,
1142 BPF_LINK_TYPE_NETFILTER = 10,
1143 BPF_LINK_TYPE_TCX = 11,
1144 BPF_LINK_TYPE_UPROBE_MULTI = 12,
1145 BPF_LINK_TYPE_NETKIT = 13,
1146 BPF_LINK_TYPE_SOCKMAP = 14,
1147 __MAX_BPF_LINK_TYPE,
1148};
1149
1150#define MAX_BPF_LINK_TYPE __MAX_BPF_LINK_TYPE
1151
1152enum bpf_perf_event_type {
1153 BPF_PERF_EVENT_UNSPEC = 0,
1154 BPF_PERF_EVENT_UPROBE = 1,
1155 BPF_PERF_EVENT_URETPROBE = 2,
1156 BPF_PERF_EVENT_KPROBE = 3,
1157 BPF_PERF_EVENT_KRETPROBE = 4,
1158 BPF_PERF_EVENT_TRACEPOINT = 5,
1159 BPF_PERF_EVENT_EVENT = 6,
1160};
1161
1162/* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
1163 *
1164 * NONE(default): No further bpf programs allowed in the subtree.
1165 *
1166 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
1167 * the program in this cgroup yields to sub-cgroup program.
1168 *
1169 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
1170 * that cgroup program gets run in addition to the program in this cgroup.
1171 *
1172 * Only one program is allowed to be attached to a cgroup with
1173 * NONE or BPF_F_ALLOW_OVERRIDE flag.
1174 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
1175 * release old program and attach the new one. Attach flags has to match.
1176 *
1177 * Multiple programs are allowed to be attached to a cgroup with
1178 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
1179 * (those that were attached first, run first)
1180 * The programs of sub-cgroup are executed first, then programs of
1181 * this cgroup and then programs of parent cgroup.
1182 * When children program makes decision (like picking TCP CA or sock bind)
1183 * parent program has a chance to override it.
1184 *
1185 * With BPF_F_ALLOW_MULTI a new program is added to the end of the list of
1186 * programs for a cgroup. Though it's possible to replace an old program at
1187 * any position by also specifying BPF_F_REPLACE flag and position itself in
1188 * replace_bpf_fd attribute. Old program at this position will be released.
1189 *
1190 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
1191 * A cgroup with NONE doesn't allow any programs in sub-cgroups.
1192 * Ex1:
1193 * cgrp1 (MULTI progs A, B) ->
1194 * cgrp2 (OVERRIDE prog C) ->
1195 * cgrp3 (MULTI prog D) ->
1196 * cgrp4 (OVERRIDE prog E) ->
1197 * cgrp5 (NONE prog F)
1198 * the event in cgrp5 triggers execution of F,D,A,B in that order.
1199 * if prog F is detached, the execution is E,D,A,B
1200 * if prog F and D are detached, the execution is E,A,B
1201 * if prog F, E and D are detached, the execution is C,A,B
1202 *
1203 * All eligible programs are executed regardless of return code from
1204 * earlier programs.
1205 */
1206#define BPF_F_ALLOW_OVERRIDE (1U << 0)
1207#define BPF_F_ALLOW_MULTI (1U << 1)
1208/* Generic attachment flags. */
1209#define BPF_F_REPLACE (1U << 2)
1210#define BPF_F_BEFORE (1U << 3)
1211#define BPF_F_AFTER (1U << 4)
1212#define BPF_F_ID (1U << 5)
1213#define BPF_F_PREORDER (1U << 6)
1214#define BPF_F_LINK BPF_F_LINK /* 1 << 13 */
1215
1216/* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
1217 * verifier will perform strict alignment checking as if the kernel
1218 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
1219 * and NET_IP_ALIGN defined to 2.
1220 */
1221#define BPF_F_STRICT_ALIGNMENT (1U << 0)
1222
1223/* If BPF_F_ANY_ALIGNMENT is used in BPF_PROG_LOAD command, the
1224 * verifier will allow any alignment whatsoever. On platforms
1225 * with strict alignment requirements for loads ands stores (such
1226 * as sparc and mips) the verifier validates that all loads and
1227 * stores provably follow this requirement. This flag turns that
1228 * checking and enforcement off.
1229 *
1230 * It is mostly used for testing when we want to validate the
1231 * context and memory access aspects of the verifier, but because
1232 * of an unaligned access the alignment check would trigger before
1233 * the one we are interested in.
1234 */
1235#define BPF_F_ANY_ALIGNMENT (1U << 1)
1236
1237/* BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose.
1238 * Verifier does sub-register def/use analysis and identifies instructions whose
1239 * def only matters for low 32-bit, high 32-bit is never referenced later
1240 * through implicit zero extension. Therefore verifier notifies JIT back-ends
1241 * that it is safe to ignore clearing high 32-bit for these instructions. This
1242 * saves some back-ends a lot of code-gen. However such optimization is not
1243 * necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends
1244 * hence hasn't used verifier's analysis result. But, we really want to have a
1245 * way to be able to verify the correctness of the described optimization on
1246 * x86_64 on which testsuites are frequently exercised.
1247 *
1248 * So, this flag is introduced. Once it is set, verifier will randomize high
1249 * 32-bit for those instructions who has been identified as safe to ignore them.
1250 * Then, if verifier is not doing correct analysis, such randomization will
1251 * regress tests to expose bugs.
1252 */
1253#define BPF_F_TEST_RND_HI32 (1U << 2)
1254
1255/* The verifier internal test flag. Behavior is undefined */
1256#define BPF_F_TEST_STATE_FREQ (1U << 3)
1257
1258/* If BPF_F_SLEEPABLE is used in BPF_PROG_LOAD command, the verifier will
1259 * restrict map and helper usage for such programs. Sleepable BPF programs can
1260 * only be attached to hooks where kernel execution context allows sleeping.
1261 * Such programs are allowed to use helpers that may sleep like
1262 * bpf_copy_from_user().
1263 */
1264#define BPF_F_SLEEPABLE (1U << 4)
1265
1266/* If BPF_F_XDP_HAS_FRAGS is used in BPF_PROG_LOAD command, the loaded program
1267 * fully support xdp frags.
1268 */
1269#define BPF_F_XDP_HAS_FRAGS (1U << 5)
1270
1271/* If BPF_F_XDP_DEV_BOUND_ONLY is used in BPF_PROG_LOAD command, the loaded
1272 * program becomes device-bound but can access XDP metadata.
1273 */
1274#define BPF_F_XDP_DEV_BOUND_ONLY (1U << 6)
1275
1276/* The verifier internal test flag. Behavior is undefined */
1277#define BPF_F_TEST_REG_INVARIANTS (1U << 7)
1278
1279/* link_create.kprobe_multi.flags used in LINK_CREATE command for
1280 * BPF_TRACE_KPROBE_MULTI attach type to create return probe.
1281 */
1282enum {
1283 BPF_F_KPROBE_MULTI_RETURN = (1U << 0)
1284};
1285
1286/* link_create.uprobe_multi.flags used in LINK_CREATE command for
1287 * BPF_TRACE_UPROBE_MULTI attach type to create return probe.
1288 */
1289enum {
1290 BPF_F_UPROBE_MULTI_RETURN = (1U << 0)
1291};
1292
1293/* link_create.netfilter.flags used in LINK_CREATE command for
1294 * BPF_PROG_TYPE_NETFILTER to enable IP packet defragmentation.
1295 */
1296#define BPF_F_NETFILTER_IP_DEFRAG (1U << 0)
1297
1298/* When BPF ldimm64's insn[0].src_reg != 0 then this can have
1299 * the following extensions:
1300 *
1301 * insn[0].src_reg: BPF_PSEUDO_MAP_[FD|IDX]
1302 * insn[0].imm: map fd or fd_idx
1303 * insn[1].imm: 0
1304 * insn[0].off: 0
1305 * insn[1].off: 0
1306 * ldimm64 rewrite: address of map
1307 * verifier type: CONST_PTR_TO_MAP
1308 */
1309#define BPF_PSEUDO_MAP_FD 1
1310#define BPF_PSEUDO_MAP_IDX 5
1311
1312/* insn[0].src_reg: BPF_PSEUDO_MAP_[IDX_]VALUE
1313 * insn[0].imm: map fd or fd_idx
1314 * insn[1].imm: offset into value
1315 * insn[0].off: 0
1316 * insn[1].off: 0
1317 * ldimm64 rewrite: address of map[0]+offset
1318 * verifier type: PTR_TO_MAP_VALUE
1319 */
1320#define BPF_PSEUDO_MAP_VALUE 2
1321#define BPF_PSEUDO_MAP_IDX_VALUE 6
1322
1323/* insn[0].src_reg: BPF_PSEUDO_BTF_ID
1324 * insn[0].imm: kernel btd id of VAR
1325 * insn[1].imm: 0
1326 * insn[0].off: 0
1327 * insn[1].off: 0
1328 * ldimm64 rewrite: address of the kernel variable
1329 * verifier type: PTR_TO_BTF_ID or PTR_TO_MEM, depending on whether the var
1330 * is struct/union.
1331 */
1332#define BPF_PSEUDO_BTF_ID 3
1333/* insn[0].src_reg: BPF_PSEUDO_FUNC
1334 * insn[0].imm: insn offset to the func
1335 * insn[1].imm: 0
1336 * insn[0].off: 0
1337 * insn[1].off: 0
1338 * ldimm64 rewrite: address of the function
1339 * verifier type: PTR_TO_FUNC.
1340 */
1341#define BPF_PSEUDO_FUNC 4
1342
1343/* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
1344 * offset to another bpf function
1345 */
1346#define BPF_PSEUDO_CALL 1
1347/* when bpf_call->src_reg == BPF_PSEUDO_KFUNC_CALL,
1348 * bpf_call->imm == btf_id of a BTF_KIND_FUNC in the running kernel
1349 */
1350#define BPF_PSEUDO_KFUNC_CALL 2
1351
1352enum bpf_addr_space_cast {
1353 BPF_ADDR_SPACE_CAST = 1,
1354};
1355
1356/* flags for BPF_MAP_UPDATE_ELEM command */
1357enum {
1358 BPF_ANY = 0, /* create new element or update existing */
1359 BPF_NOEXIST = 1, /* create new element if it didn't exist */
1360 BPF_EXIST = 2, /* update existing element */
1361 BPF_F_LOCK = 4, /* spin_lock-ed map_lookup/map_update */
1362};
1363
1364/* flags for BPF_MAP_CREATE command */
1365enum {
1366 BPF_F_NO_PREALLOC = (1U << 0),
1367/* Instead of having one common LRU list in the
1368 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
1369 * which can scale and perform better.
1370 * Note, the LRU nodes (including free nodes) cannot be moved
1371 * across different LRU lists.
1372 */
1373 BPF_F_NO_COMMON_LRU = (1U << 1),
1374/* Specify numa node during map creation */
1375 BPF_F_NUMA_NODE = (1U << 2),
1376
1377/* Flags for accessing BPF object from syscall side. */
1378 BPF_F_RDONLY = (1U << 3),
1379 BPF_F_WRONLY = (1U << 4),
1380
1381/* Flag for stack_map, store build_id+offset instead of pointer */
1382 BPF_F_STACK_BUILD_ID = (1U << 5),
1383
1384/* Zero-initialize hash function seed. This should only be used for testing. */
1385 BPF_F_ZERO_SEED = (1U << 6),
1386
1387/* Flags for accessing BPF object from program side. */
1388 BPF_F_RDONLY_PROG = (1U << 7),
1389 BPF_F_WRONLY_PROG = (1U << 8),
1390
1391/* Clone map from listener for newly accepted socket */
1392 BPF_F_CLONE = (1U << 9),
1393
1394/* Enable memory-mapping BPF map */
1395 BPF_F_MMAPABLE = (1U << 10),
1396
1397/* Share perf_event among processes */
1398 BPF_F_PRESERVE_ELEMS = (1U << 11),
1399
1400/* Create a map that is suitable to be an inner map with dynamic max entries */
1401 BPF_F_INNER_MAP = (1U << 12),
1402
1403/* Create a map that will be registered/unregesitered by the backed bpf_link */
1404 BPF_F_LINK = (1U << 13),
1405
1406/* Get path from provided FD in BPF_OBJ_PIN/BPF_OBJ_GET commands */
1407 BPF_F_PATH_FD = (1U << 14),
1408
1409/* Flag for value_type_btf_obj_fd, the fd is available */
1410 BPF_F_VTYPE_BTF_OBJ_FD = (1U << 15),
1411
1412/* BPF token FD is passed in a corresponding command's token_fd field */
1413 BPF_F_TOKEN_FD = (1U << 16),
1414
1415/* When user space page faults in bpf_arena send SIGSEGV instead of inserting new page */
1416 BPF_F_SEGV_ON_FAULT = (1U << 17),
1417
1418/* Do not translate kernel bpf_arena pointers to user pointers */
1419 BPF_F_NO_USER_CONV = (1U << 18),
1420};
1421
1422/* Flags for BPF_PROG_QUERY. */
1423
1424/* Query effective (directly attached + inherited from ancestor cgroups)
1425 * programs that will be executed for events within a cgroup.
1426 * attach_flags with this flag are always returned 0.
1427 */
1428#define BPF_F_QUERY_EFFECTIVE (1U << 0)
1429
1430/* Flags for BPF_PROG_TEST_RUN */
1431
1432/* If set, run the test on the cpu specified by bpf_attr.test.cpu */
1433#define BPF_F_TEST_RUN_ON_CPU (1U << 0)
1434/* If set, XDP frames will be transmitted after processing */
1435#define BPF_F_TEST_XDP_LIVE_FRAMES (1U << 1)
1436/* If set, apply CHECKSUM_COMPLETE to skb and validate the checksum */
1437#define BPF_F_TEST_SKB_CHECKSUM_COMPLETE (1U << 2)
1438
1439/* type for BPF_ENABLE_STATS */
1440enum bpf_stats_type {
1441 /* enabled run_time_ns and run_cnt */
1442 BPF_STATS_RUN_TIME = 0,
1443};
1444
1445enum bpf_stack_build_id_status {
1446 /* user space need an empty entry to identify end of a trace */
1447 BPF_STACK_BUILD_ID_EMPTY = 0,
1448 /* with valid build_id and offset */
1449 BPF_STACK_BUILD_ID_VALID = 1,
1450 /* couldn't get build_id, fallback to ip */
1451 BPF_STACK_BUILD_ID_IP = 2,
1452};
1453
1454#define BPF_BUILD_ID_SIZE 20
1455struct bpf_stack_build_id {
1456 __s32 status;
1457 unsigned char build_id[BPF_BUILD_ID_SIZE];
1458 union {
1459 __u64 offset;
1460 __u64 ip;
1461 };
1462};
1463
1464#define BPF_OBJ_NAME_LEN 16U
1465
1466union bpf_attr {
1467 struct { /* anonymous struct used by BPF_MAP_CREATE command */
1468 __u32 map_type; /* one of enum bpf_map_type */
1469 __u32 key_size; /* size of key in bytes */
1470 __u32 value_size; /* size of value in bytes */
1471 __u32 max_entries; /* max number of entries in a map */
1472 __u32 map_flags; /* BPF_MAP_CREATE related
1473 * flags defined above.
1474 */
1475 __u32 inner_map_fd; /* fd pointing to the inner map */
1476 __u32 numa_node; /* numa node (effective only if
1477 * BPF_F_NUMA_NODE is set).
1478 */
1479 char map_name[BPF_OBJ_NAME_LEN];
1480 __u32 map_ifindex; /* ifindex of netdev to create on */
1481 __u32 btf_fd; /* fd pointing to a BTF type data */
1482 __u32 btf_key_type_id; /* BTF type_id of the key */
1483 __u32 btf_value_type_id; /* BTF type_id of the value */
1484 __u32 btf_vmlinux_value_type_id;/* BTF type_id of a kernel-
1485 * struct stored as the
1486 * map value
1487 */
1488 /* Any per-map-type extra fields
1489 *
1490 * BPF_MAP_TYPE_BLOOM_FILTER - the lowest 4 bits indicate the
1491 * number of hash functions (if 0, the bloom filter will default
1492 * to using 5 hash functions).
1493 *
1494 * BPF_MAP_TYPE_ARENA - contains the address where user space
1495 * is going to mmap() the arena. It has to be page aligned.
1496 */
1497 __u64 map_extra;
1498
1499 __s32 value_type_btf_obj_fd; /* fd pointing to a BTF
1500 * type data for
1501 * btf_vmlinux_value_type_id.
1502 */
1503 /* BPF token FD to use with BPF_MAP_CREATE operation.
1504 * If provided, map_flags should have BPF_F_TOKEN_FD flag set.
1505 */
1506 __s32 map_token_fd;
1507 };
1508
1509 struct { /* anonymous struct used by BPF_MAP_*_ELEM and BPF_MAP_FREEZE commands */
1510 __u32 map_fd;
1511 __aligned_u64 key;
1512 union {
1513 __aligned_u64 value;
1514 __aligned_u64 next_key;
1515 };
1516 __u64 flags;
1517 };
1518
1519 struct { /* struct used by BPF_MAP_*_BATCH commands */
1520 __aligned_u64 in_batch; /* start batch,
1521 * NULL to start from beginning
1522 */
1523 __aligned_u64 out_batch; /* output: next start batch */
1524 __aligned_u64 keys;
1525 __aligned_u64 values;
1526 __u32 count; /* input/output:
1527 * input: # of key/value
1528 * elements
1529 * output: # of filled elements
1530 */
1531 __u32 map_fd;
1532 __u64 elem_flags;
1533 __u64 flags;
1534 } batch;
1535
1536 struct { /* anonymous struct used by BPF_PROG_LOAD command */
1537 __u32 prog_type; /* one of enum bpf_prog_type */
1538 __u32 insn_cnt;
1539 __aligned_u64 insns;
1540 __aligned_u64 license;
1541 __u32 log_level; /* verbosity level of verifier */
1542 __u32 log_size; /* size of user buffer */
1543 __aligned_u64 log_buf; /* user supplied buffer */
1544 __u32 kern_version; /* not used */
1545 __u32 prog_flags;
1546 char prog_name[BPF_OBJ_NAME_LEN];
1547 __u32 prog_ifindex; /* ifindex of netdev to prep for */
1548 /* For some prog types expected attach type must be known at
1549 * load time to verify attach type specific parts of prog
1550 * (context accesses, allowed helpers, etc).
1551 */
1552 __u32 expected_attach_type;
1553 __u32 prog_btf_fd; /* fd pointing to BTF type data */
1554 __u32 func_info_rec_size; /* userspace bpf_func_info size */
1555 __aligned_u64 func_info; /* func info */
1556 __u32 func_info_cnt; /* number of bpf_func_info records */
1557 __u32 line_info_rec_size; /* userspace bpf_line_info size */
1558 __aligned_u64 line_info; /* line info */
1559 __u32 line_info_cnt; /* number of bpf_line_info records */
1560 __u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1561 union {
1562 /* valid prog_fd to attach to bpf prog */
1563 __u32 attach_prog_fd;
1564 /* or valid module BTF object fd or 0 to attach to vmlinux */
1565 __u32 attach_btf_obj_fd;
1566 };
1567 __u32 core_relo_cnt; /* number of bpf_core_relo */
1568 __aligned_u64 fd_array; /* array of FDs */
1569 __aligned_u64 core_relos;
1570 __u32 core_relo_rec_size; /* sizeof(struct bpf_core_relo) */
1571 /* output: actual total log contents size (including termintaing zero).
1572 * It could be both larger than original log_size (if log was
1573 * truncated), or smaller (if log buffer wasn't filled completely).
1574 */
1575 __u32 log_true_size;
1576 /* BPF token FD to use with BPF_PROG_LOAD operation.
1577 * If provided, prog_flags should have BPF_F_TOKEN_FD flag set.
1578 */
1579 __s32 prog_token_fd;
1580 /* The fd_array_cnt can be used to pass the length of the
1581 * fd_array array. In this case all the [map] file descriptors
1582 * passed in this array will be bound to the program, even if
1583 * the maps are not referenced directly. The functionality is
1584 * similar to the BPF_PROG_BIND_MAP syscall, but maps can be
1585 * used by the verifier during the program load. If provided,
1586 * then the fd_array[0,...,fd_array_cnt-1] is expected to be
1587 * continuous.
1588 */
1589 __u32 fd_array_cnt;
1590 };
1591
1592 struct { /* anonymous struct used by BPF_OBJ_* commands */
1593 __aligned_u64 pathname;
1594 __u32 bpf_fd;
1595 __u32 file_flags;
1596 /* Same as dirfd in openat() syscall; see openat(2)
1597 * manpage for details of path FD and pathname semantics;
1598 * path_fd should accompanied by BPF_F_PATH_FD flag set in
1599 * file_flags field, otherwise it should be set to zero;
1600 * if BPF_F_PATH_FD flag is not set, AT_FDCWD is assumed.
1601 */
1602 __s32 path_fd;
1603 };
1604
1605 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
1606 union {
1607 __u32 target_fd; /* target object to attach to or ... */
1608 __u32 target_ifindex; /* target ifindex */
1609 };
1610 __u32 attach_bpf_fd;
1611 __u32 attach_type;
1612 __u32 attach_flags;
1613 __u32 replace_bpf_fd;
1614 union {
1615 __u32 relative_fd;
1616 __u32 relative_id;
1617 };
1618 __u64 expected_revision;
1619 };
1620
1621 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
1622 __u32 prog_fd;
1623 __u32 retval;
1624 __u32 data_size_in; /* input: len of data_in */
1625 __u32 data_size_out; /* input/output: len of data_out
1626 * returns ENOSPC if data_out
1627 * is too small.
1628 */
1629 __aligned_u64 data_in;
1630 __aligned_u64 data_out;
1631 __u32 repeat;
1632 __u32 duration;
1633 __u32 ctx_size_in; /* input: len of ctx_in */
1634 __u32 ctx_size_out; /* input/output: len of ctx_out
1635 * returns ENOSPC if ctx_out
1636 * is too small.
1637 */
1638 __aligned_u64 ctx_in;
1639 __aligned_u64 ctx_out;
1640 __u32 flags;
1641 __u32 cpu;
1642 __u32 batch_size;
1643 } test;
1644
1645 struct { /* anonymous struct used by BPF_*_GET_*_ID */
1646 union {
1647 __u32 start_id;
1648 __u32 prog_id;
1649 __u32 map_id;
1650 __u32 btf_id;
1651 __u32 link_id;
1652 };
1653 __u32 next_id;
1654 __u32 open_flags;
1655 __s32 fd_by_id_token_fd;
1656 };
1657
1658 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
1659 __u32 bpf_fd;
1660 __u32 info_len;
1661 __aligned_u64 info;
1662 } info;
1663
1664 struct { /* anonymous struct used by BPF_PROG_QUERY command */
1665 union {
1666 __u32 target_fd; /* target object to query or ... */
1667 __u32 target_ifindex; /* target ifindex */
1668 };
1669 __u32 attach_type;
1670 __u32 query_flags;
1671 __u32 attach_flags;
1672 __aligned_u64 prog_ids;
1673 union {
1674 __u32 prog_cnt;
1675 __u32 count;
1676 };
1677 __u32 :32;
1678 /* output: per-program attach_flags.
1679 * not allowed to be set during effective query.
1680 */
1681 __aligned_u64 prog_attach_flags;
1682 __aligned_u64 link_ids;
1683 __aligned_u64 link_attach_flags;
1684 __u64 revision;
1685 } query;
1686
1687 struct { /* anonymous struct used by BPF_RAW_TRACEPOINT_OPEN command */
1688 __u64 name;
1689 __u32 prog_fd;
1690 __u32 :32;
1691 __aligned_u64 cookie;
1692 } raw_tracepoint;
1693
1694 struct { /* anonymous struct for BPF_BTF_LOAD */
1695 __aligned_u64 btf;
1696 __aligned_u64 btf_log_buf;
1697 __u32 btf_size;
1698 __u32 btf_log_size;
1699 __u32 btf_log_level;
1700 /* output: actual total log contents size (including termintaing zero).
1701 * It could be both larger than original log_size (if log was
1702 * truncated), or smaller (if log buffer wasn't filled completely).
1703 */
1704 __u32 btf_log_true_size;
1705 __u32 btf_flags;
1706 /* BPF token FD to use with BPF_BTF_LOAD operation.
1707 * If provided, btf_flags should have BPF_F_TOKEN_FD flag set.
1708 */
1709 __s32 btf_token_fd;
1710 };
1711
1712 struct {
1713 __u32 pid; /* input: pid */
1714 __u32 fd; /* input: fd */
1715 __u32 flags; /* input: flags */
1716 __u32 buf_len; /* input/output: buf len */
1717 __aligned_u64 buf; /* input/output:
1718 * tp_name for tracepoint
1719 * symbol for kprobe
1720 * filename for uprobe
1721 */
1722 __u32 prog_id; /* output: prod_id */
1723 __u32 fd_type; /* output: BPF_FD_TYPE_* */
1724 __u64 probe_offset; /* output: probe_offset */
1725 __u64 probe_addr; /* output: probe_addr */
1726 } task_fd_query;
1727
1728 struct { /* struct used by BPF_LINK_CREATE command */
1729 union {
1730 __u32 prog_fd; /* eBPF program to attach */
1731 __u32 map_fd; /* struct_ops to attach */
1732 };
1733 union {
1734 __u32 target_fd; /* target object to attach to or ... */
1735 __u32 target_ifindex; /* target ifindex */
1736 };
1737 __u32 attach_type; /* attach type */
1738 __u32 flags; /* extra flags */
1739 union {
1740 __u32 target_btf_id; /* btf_id of target to attach to */
1741 struct {
1742 __aligned_u64 iter_info; /* extra bpf_iter_link_info */
1743 __u32 iter_info_len; /* iter_info length */
1744 };
1745 struct {
1746 /* black box user-provided value passed through
1747 * to BPF program at the execution time and
1748 * accessible through bpf_get_attach_cookie() BPF helper
1749 */
1750 __u64 bpf_cookie;
1751 } perf_event;
1752 struct {
1753 __u32 flags;
1754 __u32 cnt;
1755 __aligned_u64 syms;
1756 __aligned_u64 addrs;
1757 __aligned_u64 cookies;
1758 } kprobe_multi;
1759 struct {
1760 /* this is overlaid with the target_btf_id above. */
1761 __u32 target_btf_id;
1762 /* black box user-provided value passed through
1763 * to BPF program at the execution time and
1764 * accessible through bpf_get_attach_cookie() BPF helper
1765 */
1766 __u64 cookie;
1767 } tracing;
1768 struct {
1769 __u32 pf;
1770 __u32 hooknum;
1771 __s32 priority;
1772 __u32 flags;
1773 } netfilter;
1774 struct {
1775 union {
1776 __u32 relative_fd;
1777 __u32 relative_id;
1778 };
1779 __u64 expected_revision;
1780 } tcx;
1781 struct {
1782 __aligned_u64 path;
1783 __aligned_u64 offsets;
1784 __aligned_u64 ref_ctr_offsets;
1785 __aligned_u64 cookies;
1786 __u32 cnt;
1787 __u32 flags;
1788 __u32 pid;
1789 } uprobe_multi;
1790 struct {
1791 union {
1792 __u32 relative_fd;
1793 __u32 relative_id;
1794 };
1795 __u64 expected_revision;
1796 } netkit;
1797 };
1798 } link_create;
1799
1800 struct { /* struct used by BPF_LINK_UPDATE command */
1801 __u32 link_fd; /* link fd */
1802 union {
1803 /* new program fd to update link with */
1804 __u32 new_prog_fd;
1805 /* new struct_ops map fd to update link with */
1806 __u32 new_map_fd;
1807 };
1808 __u32 flags; /* extra flags */
1809 union {
1810 /* expected link's program fd; is specified only if
1811 * BPF_F_REPLACE flag is set in flags.
1812 */
1813 __u32 old_prog_fd;
1814 /* expected link's map fd; is specified only
1815 * if BPF_F_REPLACE flag is set.
1816 */
1817 __u32 old_map_fd;
1818 };
1819 } link_update;
1820
1821 struct {
1822 __u32 link_fd;
1823 } link_detach;
1824
1825 struct { /* struct used by BPF_ENABLE_STATS command */
1826 __u32 type;
1827 } enable_stats;
1828
1829 struct { /* struct used by BPF_ITER_CREATE command */
1830 __u32 link_fd;
1831 __u32 flags;
1832 } iter_create;
1833
1834 struct { /* struct used by BPF_PROG_BIND_MAP command */
1835 __u32 prog_fd;
1836 __u32 map_fd;
1837 __u32 flags; /* extra flags */
1838 } prog_bind_map;
1839
1840 struct { /* struct used by BPF_TOKEN_CREATE command */
1841 __u32 flags;
1842 __u32 bpffs_fd;
1843 } token_create;
1844
1845} __attribute__((aligned(8)));
1846
1847/* The description below is an attempt at providing documentation to eBPF
1848 * developers about the multiple available eBPF helper functions. It can be
1849 * parsed and used to produce a manual page. The workflow is the following,
1850 * and requires the rst2man utility:
1851 *
1852 * $ ./scripts/bpf_doc.py \
1853 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
1854 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
1855 * $ man /tmp/bpf-helpers.7
1856 *
1857 * Note that in order to produce this external documentation, some RST
1858 * formatting is used in the descriptions to get "bold" and "italics" in
1859 * manual pages. Also note that the few trailing white spaces are
1860 * intentional, removing them would break paragraphs for rst2man.
1861 *
1862 * Start of BPF helper function descriptions:
1863 *
1864 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
1865 * Description
1866 * Perform a lookup in *map* for an entry associated to *key*.
1867 * Return
1868 * Map value associated to *key*, or **NULL** if no entry was
1869 * found.
1870 *
1871 * long bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
1872 * Description
1873 * Add or update the value of the entry associated to *key* in
1874 * *map* with *value*. *flags* is one of:
1875 *
1876 * **BPF_NOEXIST**
1877 * The entry for *key* must not exist in the map.
1878 * **BPF_EXIST**
1879 * The entry for *key* must already exist in the map.
1880 * **BPF_ANY**
1881 * No condition on the existence of the entry for *key*.
1882 *
1883 * Flag value **BPF_NOEXIST** cannot be used for maps of types
1884 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all
1885 * elements always exist), the helper would return an error.
1886 * Return
1887 * 0 on success, or a negative error in case of failure.
1888 *
1889 * long bpf_map_delete_elem(struct bpf_map *map, const void *key)
1890 * Description
1891 * Delete entry with *key* from *map*.
1892 * Return
1893 * 0 on success, or a negative error in case of failure.
1894 *
1895 * long bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr)
1896 * Description
1897 * For tracing programs, safely attempt to read *size* bytes from
1898 * kernel space address *unsafe_ptr* and store the data in *dst*.
1899 *
1900 * Generally, use **bpf_probe_read_user**\ () or
1901 * **bpf_probe_read_kernel**\ () instead.
1902 * Return
1903 * 0 on success, or a negative error in case of failure.
1904 *
1905 * u64 bpf_ktime_get_ns(void)
1906 * Description
1907 * Return the time elapsed since system boot, in nanoseconds.
1908 * Does not include time the system was suspended.
1909 * See: **clock_gettime**\ (**CLOCK_MONOTONIC**)
1910 * Return
1911 * Current *ktime*.
1912 *
1913 * long bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
1914 * Description
1915 * This helper is a "printk()-like" facility for debugging. It
1916 * prints a message defined by format *fmt* (of size *fmt_size*)
1917 * to file *\/sys/kernel/tracing/trace* from TraceFS, if
1918 * available. It can take up to three additional **u64**
1919 * arguments (as an eBPF helpers, the total number of arguments is
1920 * limited to five).
1921 *
1922 * Each time the helper is called, it appends a line to the trace.
1923 * Lines are discarded while *\/sys/kernel/tracing/trace* is
1924 * open, use *\/sys/kernel/tracing/trace_pipe* to avoid this.
1925 * The format of the trace is customizable, and the exact output
1926 * one will get depends on the options set in
1927 * *\/sys/kernel/tracing/trace_options* (see also the
1928 * *README* file under the same directory). However, it usually
1929 * defaults to something like:
1930 *
1931 * ::
1932 *
1933 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg>
1934 *
1935 * In the above:
1936 *
1937 * * ``telnet`` is the name of the current task.
1938 * * ``470`` is the PID of the current task.
1939 * * ``001`` is the CPU number on which the task is
1940 * running.
1941 * * In ``.N..``, each character refers to a set of
1942 * options (whether irqs are enabled, scheduling
1943 * options, whether hard/softirqs are running, level of
1944 * preempt_disabled respectively). **N** means that
1945 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
1946 * are set.
1947 * * ``419421.045894`` is a timestamp.
1948 * * ``0x00000001`` is a fake value used by BPF for the
1949 * instruction pointer register.
1950 * * ``<formatted msg>`` is the message formatted with
1951 * *fmt*.
1952 *
1953 * The conversion specifiers supported by *fmt* are similar, but
1954 * more limited than for printk(). They are **%d**, **%i**,
1955 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
1956 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
1957 * of field, padding with zeroes, etc.) is available, and the
1958 * helper will return **-EINVAL** (but print nothing) if it
1959 * encounters an unknown specifier.
1960 *
1961 * Also, note that **bpf_trace_printk**\ () is slow, and should
1962 * only be used for debugging purposes. For this reason, a notice
1963 * block (spanning several lines) is printed to kernel logs and
1964 * states that the helper should not be used "for production use"
1965 * the first time this helper is used (or more precisely, when
1966 * **trace_printk**\ () buffers are allocated). For passing values
1967 * to user space, perf events should be preferred.
1968 * Return
1969 * The number of bytes written to the buffer, or a negative error
1970 * in case of failure.
1971 *
1972 * u32 bpf_get_prandom_u32(void)
1973 * Description
1974 * Get a pseudo-random number.
1975 *
1976 * From a security point of view, this helper uses its own
1977 * pseudo-random internal state, and cannot be used to infer the
1978 * seed of other random functions in the kernel. However, it is
1979 * essential to note that the generator used by the helper is not
1980 * cryptographically secure.
1981 * Return
1982 * A random 32-bit unsigned value.
1983 *
1984 * u32 bpf_get_smp_processor_id(void)
1985 * Description
1986 * Get the SMP (symmetric multiprocessing) processor id. Note that
1987 * all programs run with migration disabled, which means that the
1988 * SMP processor id is stable during all the execution of the
1989 * program.
1990 * Return
1991 * The SMP id of the processor running the program.
1992 * Attributes
1993 * __bpf_fastcall
1994 *
1995 * long bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
1996 * Description
1997 * Store *len* bytes from address *from* into the packet
1998 * associated to *skb*, at *offset*. The *flags* are a combination
1999 * of the following values:
2000 *
2001 * **BPF_F_RECOMPUTE_CSUM**
2002 * Automatically update *skb*\ **->csum** after storing the
2003 * bytes.
2004 * **BPF_F_INVALIDATE_HASH**
2005 * Set *skb*\ **->hash**, *skb*\ **->swhash** and *skb*\
2006 * **->l4hash** to 0.
2007 *
2008 * A call to this helper is susceptible to change the underlying
2009 * packet buffer. Therefore, at load time, all checks on pointers
2010 * previously done by the verifier are invalidated and must be
2011 * performed again, if the helper is used in combination with
2012 * direct packet access.
2013 * Return
2014 * 0 on success, or a negative error in case of failure.
2015 *
2016 * long bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
2017 * Description
2018 * Recompute the layer 3 (e.g. IP) checksum for the packet
2019 * associated to *skb*. Computation is incremental, so the helper
2020 * must know the former value of the header field that was
2021 * modified (*from*), the new value of this field (*to*), and the
2022 * number of bytes (2 or 4) for this field, stored in *size*.
2023 * Alternatively, it is possible to store the difference between
2024 * the previous and the new values of the header field in *to*, by
2025 * setting *from* and *size* to 0. For both methods, *offset*
2026 * indicates the location of the IP checksum within the packet.
2027 *
2028 * This helper works in combination with **bpf_csum_diff**\ (),
2029 * which does not update the checksum in-place, but offers more
2030 * flexibility and can handle sizes larger than 2 or 4 for the
2031 * checksum to update.
2032 *
2033 * A call to this helper is susceptible to change the underlying
2034 * packet buffer. Therefore, at load time, all checks on pointers
2035 * previously done by the verifier are invalidated and must be
2036 * performed again, if the helper is used in combination with
2037 * direct packet access.
2038 * Return
2039 * 0 on success, or a negative error in case of failure.
2040 *
2041 * long bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
2042 * Description
2043 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
2044 * packet associated to *skb*. Computation is incremental, so the
2045 * helper must know the former value of the header field that was
2046 * modified (*from*), the new value of this field (*to*), and the
2047 * number of bytes (2 or 4) for this field, stored on the lowest
2048 * four bits of *flags*. Alternatively, it is possible to store
2049 * the difference between the previous and the new values of the
2050 * header field in *to*, by setting *from* and the four lowest
2051 * bits of *flags* to 0. For both methods, *offset* indicates the
2052 * location of the IP checksum within the packet. In addition to
2053 * the size of the field, *flags* can be added (bitwise OR) actual
2054 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
2055 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
2056 * for updates resulting in a null checksum the value is set to
2057 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
2058 * that the modified header field is part of the pseudo-header.
2059 * Flag **BPF_F_IPV6** should be set for IPv6 packets.
2060 *
2061 * This helper works in combination with **bpf_csum_diff**\ (),
2062 * which does not update the checksum in-place, but offers more
2063 * flexibility and can handle sizes larger than 2 or 4 for the
2064 * checksum to update.
2065 *
2066 * A call to this helper is susceptible to change the underlying
2067 * packet buffer. Therefore, at load time, all checks on pointers
2068 * previously done by the verifier are invalidated and must be
2069 * performed again, if the helper is used in combination with
2070 * direct packet access.
2071 * Return
2072 * 0 on success, or a negative error in case of failure.
2073 *
2074 * long bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
2075 * Description
2076 * This special helper is used to trigger a "tail call", or in
2077 * other words, to jump into another eBPF program. The same stack
2078 * frame is used (but values on stack and in registers for the
2079 * caller are not accessible to the callee). This mechanism allows
2080 * for program chaining, either for raising the maximum number of
2081 * available eBPF instructions, or to execute given programs in
2082 * conditional blocks. For security reasons, there is an upper
2083 * limit to the number of successive tail calls that can be
2084 * performed.
2085 *
2086 * Upon call of this helper, the program attempts to jump into a
2087 * program referenced at index *index* in *prog_array_map*, a
2088 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
2089 * *ctx*, a pointer to the context.
2090 *
2091 * If the call succeeds, the kernel immediately runs the first
2092 * instruction of the new program. This is not a function call,
2093 * and it never returns to the previous program. If the call
2094 * fails, then the helper has no effect, and the caller continues
2095 * to run its subsequent instructions. A call can fail if the
2096 * destination program for the jump does not exist (i.e. *index*
2097 * is superior to the number of entries in *prog_array_map*), or
2098 * if the maximum number of tail calls has been reached for this
2099 * chain of programs. This limit is defined in the kernel by the
2100 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
2101 * which is currently set to 33.
2102 * Return
2103 * 0 on success, or a negative error in case of failure.
2104 *
2105 * long bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
2106 * Description
2107 * Clone and redirect the packet associated to *skb* to another
2108 * net device of index *ifindex*. Both ingress and egress
2109 * interfaces can be used for redirection. The **BPF_F_INGRESS**
2110 * value in *flags* is used to make the distinction (ingress path
2111 * is selected if the flag is present, egress path otherwise).
2112 * This is the only flag supported for now.
2113 *
2114 * In comparison with **bpf_redirect**\ () helper,
2115 * **bpf_clone_redirect**\ () has the associated cost of
2116 * duplicating the packet buffer, but this can be executed out of
2117 * the eBPF program. Conversely, **bpf_redirect**\ () is more
2118 * efficient, but it is handled through an action code where the
2119 * redirection happens only after the eBPF program has returned.
2120 *
2121 * A call to this helper is susceptible to change the underlying
2122 * packet buffer. Therefore, at load time, all checks on pointers
2123 * previously done by the verifier are invalidated and must be
2124 * performed again, if the helper is used in combination with
2125 * direct packet access.
2126 * Return
2127 * 0 on success, or a negative error in case of failure. Positive
2128 * error indicates a potential drop or congestion in the target
2129 * device. The particular positive error codes are not defined.
2130 *
2131 * u64 bpf_get_current_pid_tgid(void)
2132 * Description
2133 * Get the current pid and tgid.
2134 * Return
2135 * A 64-bit integer containing the current tgid and pid, and
2136 * created as such:
2137 * *current_task*\ **->tgid << 32 \|**
2138 * *current_task*\ **->pid**.
2139 *
2140 * u64 bpf_get_current_uid_gid(void)
2141 * Description
2142 * Get the current uid and gid.
2143 * Return
2144 * A 64-bit integer containing the current GID and UID, and
2145 * created as such: *current_gid* **<< 32 \|** *current_uid*.
2146 *
2147 * long bpf_get_current_comm(void *buf, u32 size_of_buf)
2148 * Description
2149 * Copy the **comm** attribute of the current task into *buf* of
2150 * *size_of_buf*. The **comm** attribute contains the name of
2151 * the executable (excluding the path) for the current task. The
2152 * *size_of_buf* must be strictly positive. On success, the
2153 * helper makes sure that the *buf* is NUL-terminated. On failure,
2154 * it is filled with zeroes.
2155 * Return
2156 * 0 on success, or a negative error in case of failure.
2157 *
2158 * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
2159 * Description
2160 * Retrieve the classid for the current task, i.e. for the net_cls
2161 * cgroup to which *skb* belongs.
2162 *
2163 * This helper can be used on TC egress path, but not on ingress.
2164 *
2165 * The net_cls cgroup provides an interface to tag network packets
2166 * based on a user-provided identifier for all traffic coming from
2167 * the tasks belonging to the related cgroup. See also the related
2168 * kernel documentation, available from the Linux sources in file
2169 * *Documentation/admin-guide/cgroup-v1/net_cls.rst*.
2170 *
2171 * The Linux kernel has two versions for cgroups: there are
2172 * cgroups v1 and cgroups v2. Both are available to users, who can
2173 * use a mixture of them, but note that the net_cls cgroup is for
2174 * cgroup v1 only. This makes it incompatible with BPF programs
2175 * run on cgroups, which is a cgroup-v2-only feature (a socket can
2176 * only hold data for one version of cgroups at a time).
2177 *
2178 * This helper is only available is the kernel was compiled with
2179 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
2180 * "**y**" or to "**m**".
2181 * Return
2182 * The classid, or 0 for the default unconfigured classid.
2183 *
2184 * long bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
2185 * Description
2186 * Push a *vlan_tci* (VLAN tag control information) of protocol
2187 * *vlan_proto* to the packet associated to *skb*, then update
2188 * the checksum. Note that if *vlan_proto* is different from
2189 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
2190 * be **ETH_P_8021Q**.
2191 *
2192 * A call to this helper is susceptible to change the underlying
2193 * packet buffer. Therefore, at load time, all checks on pointers
2194 * previously done by the verifier are invalidated and must be
2195 * performed again, if the helper is used in combination with
2196 * direct packet access.
2197 * Return
2198 * 0 on success, or a negative error in case of failure.
2199 *
2200 * long bpf_skb_vlan_pop(struct sk_buff *skb)
2201 * Description
2202 * Pop a VLAN header from the packet associated to *skb*.
2203 *
2204 * A call to this helper is susceptible to change the underlying
2205 * packet buffer. Therefore, at load time, all checks on pointers
2206 * previously done by the verifier are invalidated and must be
2207 * performed again, if the helper is used in combination with
2208 * direct packet access.
2209 * Return
2210 * 0 on success, or a negative error in case of failure.
2211 *
2212 * long bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
2213 * Description
2214 * Get tunnel metadata. This helper takes a pointer *key* to an
2215 * empty **struct bpf_tunnel_key** of **size**, that will be
2216 * filled with tunnel metadata for the packet associated to *skb*.
2217 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
2218 * indicates that the tunnel is based on IPv6 protocol instead of
2219 * IPv4.
2220 *
2221 * The **struct bpf_tunnel_key** is an object that generalizes the
2222 * principal parameters used by various tunneling protocols into a
2223 * single struct. This way, it can be used to easily make a
2224 * decision based on the contents of the encapsulation header,
2225 * "summarized" in this struct. In particular, it holds the IP
2226 * address of the remote end (IPv4 or IPv6, depending on the case)
2227 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
2228 * this struct exposes the *key*\ **->tunnel_id**, which is
2229 * generally mapped to a VNI (Virtual Network Identifier), making
2230 * it programmable together with the **bpf_skb_set_tunnel_key**\
2231 * () helper.
2232 *
2233 * Let's imagine that the following code is part of a program
2234 * attached to the TC ingress interface, on one end of a GRE
2235 * tunnel, and is supposed to filter out all messages coming from
2236 * remote ends with IPv4 address other than 10.0.0.1:
2237 *
2238 * ::
2239 *
2240 * int ret;
2241 * struct bpf_tunnel_key key = {};
2242 *
2243 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
2244 * if (ret < 0)
2245 * return TC_ACT_SHOT; // drop packet
2246 *
2247 * if (key.remote_ipv4 != 0x0a000001)
2248 * return TC_ACT_SHOT; // drop packet
2249 *
2250 * return TC_ACT_OK; // accept packet
2251 *
2252 * This interface can also be used with all encapsulation devices
2253 * that can operate in "collect metadata" mode: instead of having
2254 * one network device per specific configuration, the "collect
2255 * metadata" mode only requires a single device where the
2256 * configuration can be extracted from this helper.
2257 *
2258 * This can be used together with various tunnels such as VXLan,
2259 * Geneve, GRE or IP in IP (IPIP).
2260 * Return
2261 * 0 on success, or a negative error in case of failure.
2262 *
2263 * long bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
2264 * Description
2265 * Populate tunnel metadata for packet associated to *skb.* The
2266 * tunnel metadata is set to the contents of *key*, of *size*. The
2267 * *flags* can be set to a combination of the following values:
2268 *
2269 * **BPF_F_TUNINFO_IPV6**
2270 * Indicate that the tunnel is based on IPv6 protocol
2271 * instead of IPv4.
2272 * **BPF_F_ZERO_CSUM_TX**
2273 * For IPv4 packets, add a flag to tunnel metadata
2274 * indicating that checksum computation should be skipped
2275 * and checksum set to zeroes.
2276 * **BPF_F_DONT_FRAGMENT**
2277 * Add a flag to tunnel metadata indicating that the
2278 * packet should not be fragmented.
2279 * **BPF_F_SEQ_NUMBER**
2280 * Add a flag to tunnel metadata indicating that a
2281 * sequence number should be added to tunnel header before
2282 * sending the packet. This flag was added for GRE
2283 * encapsulation, but might be used with other protocols
2284 * as well in the future.
2285 * **BPF_F_NO_TUNNEL_KEY**
2286 * Add a flag to tunnel metadata indicating that no tunnel
2287 * key should be set in the resulting tunnel header.
2288 *
2289 * Here is a typical usage on the transmit path:
2290 *
2291 * ::
2292 *
2293 * struct bpf_tunnel_key key;
2294 * populate key ...
2295 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
2296 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
2297 *
2298 * See also the description of the **bpf_skb_get_tunnel_key**\ ()
2299 * helper for additional information.
2300 * Return
2301 * 0 on success, or a negative error in case of failure.
2302 *
2303 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
2304 * Description
2305 * Read the value of a perf event counter. This helper relies on a
2306 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
2307 * the perf event counter is selected when *map* is updated with
2308 * perf event file descriptors. The *map* is an array whose size
2309 * is the number of available CPUs, and each cell contains a value
2310 * relative to one CPU. The value to retrieve is indicated by
2311 * *flags*, that contains the index of the CPU to look up, masked
2312 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
2313 * **BPF_F_CURRENT_CPU** to indicate that the value for the
2314 * current CPU should be retrieved.
2315 *
2316 * Note that before Linux 4.13, only hardware perf event can be
2317 * retrieved.
2318 *
2319 * Also, be aware that the newer helper
2320 * **bpf_perf_event_read_value**\ () is recommended over
2321 * **bpf_perf_event_read**\ () in general. The latter has some ABI
2322 * quirks where error and counter value are used as a return code
2323 * (which is wrong to do since ranges may overlap). This issue is
2324 * fixed with **bpf_perf_event_read_value**\ (), which at the same
2325 * time provides more features over the **bpf_perf_event_read**\
2326 * () interface. Please refer to the description of
2327 * **bpf_perf_event_read_value**\ () for details.
2328 * Return
2329 * The value of the perf event counter read from the map, or a
2330 * negative error code in case of failure.
2331 *
2332 * long bpf_redirect(u32 ifindex, u64 flags)
2333 * Description
2334 * Redirect the packet to another net device of index *ifindex*.
2335 * This helper is somewhat similar to **bpf_clone_redirect**\
2336 * (), except that the packet is not cloned, which provides
2337 * increased performance.
2338 *
2339 * Except for XDP, both ingress and egress interfaces can be used
2340 * for redirection. The **BPF_F_INGRESS** value in *flags* is used
2341 * to make the distinction (ingress path is selected if the flag
2342 * is present, egress path otherwise). Currently, XDP only
2343 * supports redirection to the egress interface, and accepts no
2344 * flag at all.
2345 *
2346 * The same effect can also be attained with the more generic
2347 * **bpf_redirect_map**\ (), which uses a BPF map to store the
2348 * redirect target instead of providing it directly to the helper.
2349 * Return
2350 * For XDP, the helper returns **XDP_REDIRECT** on success or
2351 * **XDP_ABORTED** on error. For other program types, the values
2352 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
2353 * error.
2354 *
2355 * u32 bpf_get_route_realm(struct sk_buff *skb)
2356 * Description
2357 * Retrieve the realm or the route, that is to say the
2358 * **tclassid** field of the destination for the *skb*. The
2359 * identifier retrieved is a user-provided tag, similar to the
2360 * one used with the net_cls cgroup (see description for
2361 * **bpf_get_cgroup_classid**\ () helper), but here this tag is
2362 * held by a route (a destination entry), not by a task.
2363 *
2364 * Retrieving this identifier works with the clsact TC egress hook
2365 * (see also **tc-bpf(8)**), or alternatively on conventional
2366 * classful egress qdiscs, but not on TC ingress path. In case of
2367 * clsact TC egress hook, this has the advantage that, internally,
2368 * the destination entry has not been dropped yet in the transmit
2369 * path. Therefore, the destination entry does not need to be
2370 * artificially held via **netif_keep_dst**\ () for a classful
2371 * qdisc until the *skb* is freed.
2372 *
2373 * This helper is available only if the kernel was compiled with
2374 * **CONFIG_IP_ROUTE_CLASSID** configuration option.
2375 * Return
2376 * The realm of the route for the packet associated to *skb*, or 0
2377 * if none was found.
2378 *
2379 * long bpf_perf_event_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
2380 * Description
2381 * Write raw *data* blob into a special BPF perf event held by
2382 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
2383 * event must have the following attributes: **PERF_SAMPLE_RAW**
2384 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
2385 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
2386 *
2387 * The *flags* are used to indicate the index in *map* for which
2388 * the value must be put, masked with **BPF_F_INDEX_MASK**.
2389 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
2390 * to indicate that the index of the current CPU core should be
2391 * used.
2392 *
2393 * The value to write, of *size*, is passed through eBPF stack and
2394 * pointed by *data*.
2395 *
2396 * The context of the program *ctx* needs also be passed to the
2397 * helper.
2398 *
2399 * On user space, a program willing to read the values needs to
2400 * call **perf_event_open**\ () on the perf event (either for
2401 * one or for all CPUs) and to store the file descriptor into the
2402 * *map*. This must be done before the eBPF program can send data
2403 * into it. An example is available in file
2404 * *samples/bpf/trace_output_user.c* in the Linux kernel source
2405 * tree (the eBPF program counterpart is in
2406 * *samples/bpf/trace_output_kern.c*).
2407 *
2408 * **bpf_perf_event_output**\ () achieves better performance
2409 * than **bpf_trace_printk**\ () for sharing data with user
2410 * space, and is much better suitable for streaming data from eBPF
2411 * programs.
2412 *
2413 * Note that this helper is not restricted to tracing use cases
2414 * and can be used with programs attached to TC or XDP as well,
2415 * where it allows for passing data to user space listeners. Data
2416 * can be:
2417 *
2418 * * Only custom structs,
2419 * * Only the packet payload, or
2420 * * A combination of both.
2421 * Return
2422 * 0 on success, or a negative error in case of failure.
2423 *
2424 * long bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len)
2425 * Description
2426 * This helper was provided as an easy way to load data from a
2427 * packet. It can be used to load *len* bytes from *offset* from
2428 * the packet associated to *skb*, into the buffer pointed by
2429 * *to*.
2430 *
2431 * Since Linux 4.7, usage of this helper has mostly been replaced
2432 * by "direct packet access", enabling packet data to be
2433 * manipulated with *skb*\ **->data** and *skb*\ **->data_end**
2434 * pointing respectively to the first byte of packet data and to
2435 * the byte after the last byte of packet data. However, it
2436 * remains useful if one wishes to read large quantities of data
2437 * at once from a packet into the eBPF stack.
2438 * Return
2439 * 0 on success, or a negative error in case of failure.
2440 *
2441 * long bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags)
2442 * Description
2443 * Walk a user or a kernel stack and return its id. To achieve
2444 * this, the helper needs *ctx*, which is a pointer to the context
2445 * on which the tracing program is executed, and a pointer to a
2446 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**.
2447 *
2448 * The last argument, *flags*, holds the number of stack frames to
2449 * skip (from 0 to 255), masked with
2450 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
2451 * a combination of the following flags:
2452 *
2453 * **BPF_F_USER_STACK**
2454 * Collect a user space stack instead of a kernel stack.
2455 * **BPF_F_FAST_STACK_CMP**
2456 * Compare stacks by hash only.
2457 * **BPF_F_REUSE_STACKID**
2458 * If two different stacks hash into the same *stackid*,
2459 * discard the old one.
2460 *
2461 * The stack id retrieved is a 32 bit long integer handle which
2462 * can be further combined with other data (including other stack
2463 * ids) and used as a key into maps. This can be useful for
2464 * generating a variety of graphs (such as flame graphs or off-cpu
2465 * graphs).
2466 *
2467 * For walking a stack, this helper is an improvement over
2468 * **bpf_probe_read**\ (), which can be used with unrolled loops
2469 * but is not efficient and consumes a lot of eBPF instructions.
2470 * Instead, **bpf_get_stackid**\ () can collect up to
2471 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
2472 * this limit can be controlled with the **sysctl** program, and
2473 * that it should be manually increased in order to profile long
2474 * user stacks (such as stacks for Java programs). To do so, use:
2475 *
2476 * ::
2477 *
2478 * # sysctl kernel.perf_event_max_stack=<new value>
2479 * Return
2480 * The positive or null stack id on success, or a negative error
2481 * in case of failure.
2482 *
2483 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
2484 * Description
2485 * Compute a checksum difference, from the raw buffer pointed by
2486 * *from*, of length *from_size* (that must be a multiple of 4),
2487 * towards the raw buffer pointed by *to*, of size *to_size*
2488 * (same remark). An optional *seed* can be added to the value
2489 * (this can be cascaded, the seed may come from a previous call
2490 * to the helper).
2491 *
2492 * This is flexible enough to be used in several ways:
2493 *
2494 * * With *from_size* == 0, *to_size* > 0 and *seed* set to
2495 * checksum, it can be used when pushing new data.
2496 * * With *from_size* > 0, *to_size* == 0 and *seed* set to
2497 * checksum, it can be used when removing data from a packet.
2498 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
2499 * can be used to compute a diff. Note that *from_size* and
2500 * *to_size* do not need to be equal.
2501 *
2502 * This helper can be used in combination with
2503 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
2504 * which one can feed in the difference computed with
2505 * **bpf_csum_diff**\ ().
2506 * Return
2507 * The checksum result, or a negative error code in case of
2508 * failure.
2509 *
2510 * long bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
2511 * Description
2512 * Retrieve tunnel options metadata for the packet associated to
2513 * *skb*, and store the raw tunnel option data to the buffer *opt*
2514 * of *size*.
2515 *
2516 * This helper can be used with encapsulation devices that can
2517 * operate in "collect metadata" mode (please refer to the related
2518 * note in the description of **bpf_skb_get_tunnel_key**\ () for
2519 * more details). A particular example where this can be used is
2520 * in combination with the Geneve encapsulation protocol, where it
2521 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
2522 * and retrieving arbitrary TLVs (Type-Length-Value headers) from
2523 * the eBPF program. This allows for full customization of these
2524 * headers.
2525 * Return
2526 * The size of the option data retrieved.
2527 *
2528 * long bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
2529 * Description
2530 * Set tunnel options metadata for the packet associated to *skb*
2531 * to the option data contained in the raw buffer *opt* of *size*.
2532 *
2533 * See also the description of the **bpf_skb_get_tunnel_opt**\ ()
2534 * helper for additional information.
2535 * Return
2536 * 0 on success, or a negative error in case of failure.
2537 *
2538 * long bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
2539 * Description
2540 * Change the protocol of the *skb* to *proto*. Currently
2541 * supported are transition from IPv4 to IPv6, and from IPv6 to
2542 * IPv4. The helper takes care of the groundwork for the
2543 * transition, including resizing the socket buffer. The eBPF
2544 * program is expected to fill the new headers, if any, via
2545 * **skb_store_bytes**\ () and to recompute the checksums with
2546 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
2547 * (). The main case for this helper is to perform NAT64
2548 * operations out of an eBPF program.
2549 *
2550 * Internally, the GSO type is marked as dodgy so that headers are
2551 * checked and segments are recalculated by the GSO/GRO engine.
2552 * The size for GSO target is adapted as well.
2553 *
2554 * All values for *flags* are reserved for future usage, and must
2555 * be left at zero.
2556 *
2557 * A call to this helper is susceptible to change the underlying
2558 * packet buffer. Therefore, at load time, all checks on pointers
2559 * previously done by the verifier are invalidated and must be
2560 * performed again, if the helper is used in combination with
2561 * direct packet access.
2562 * Return
2563 * 0 on success, or a negative error in case of failure.
2564 *
2565 * long bpf_skb_change_type(struct sk_buff *skb, u32 type)
2566 * Description
2567 * Change the packet type for the packet associated to *skb*. This
2568 * comes down to setting *skb*\ **->pkt_type** to *type*, except
2569 * the eBPF program does not have a write access to *skb*\
2570 * **->pkt_type** beside this helper. Using a helper here allows
2571 * for graceful handling of errors.
2572 *
2573 * The major use case is to change incoming *skb*s to
2574 * **PACKET_HOST** in a programmatic way instead of having to
2575 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
2576 * example.
2577 *
2578 * Note that *type* only allows certain values. At this time, they
2579 * are:
2580 *
2581 * **PACKET_HOST**
2582 * Packet is for us.
2583 * **PACKET_BROADCAST**
2584 * Send packet to all.
2585 * **PACKET_MULTICAST**
2586 * Send packet to group.
2587 * **PACKET_OTHERHOST**
2588 * Send packet to someone else.
2589 * Return
2590 * 0 on success, or a negative error in case of failure.
2591 *
2592 * long bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
2593 * Description
2594 * Check whether *skb* is a descendant of the cgroup2 held by
2595 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
2596 * Return
2597 * The return value depends on the result of the test, and can be:
2598 *
2599 * * 0, if the *skb* failed the cgroup2 descendant test.
2600 * * 1, if the *skb* succeeded the cgroup2 descendant test.
2601 * * A negative error code, if an error occurred.
2602 *
2603 * u32 bpf_get_hash_recalc(struct sk_buff *skb)
2604 * Description
2605 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is
2606 * not set, in particular if the hash was cleared due to mangling,
2607 * recompute this hash. Later accesses to the hash can be done
2608 * directly with *skb*\ **->hash**.
2609 *
2610 * Calling **bpf_set_hash_invalid**\ (), changing a packet
2611 * prototype with **bpf_skb_change_proto**\ (), or calling
2612 * **bpf_skb_store_bytes**\ () with the
2613 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear
2614 * the hash and to trigger a new computation for the next call to
2615 * **bpf_get_hash_recalc**\ ().
2616 * Return
2617 * The 32-bit hash.
2618 *
2619 * u64 bpf_get_current_task(void)
2620 * Description
2621 * Get the current task.
2622 * Return
2623 * A pointer to the current task struct.
2624 *
2625 * long bpf_probe_write_user(void *dst, const void *src, u32 len)
2626 * Description
2627 * Attempt in a safe way to write *len* bytes from the buffer
2628 * *src* to *dst* in memory. It only works for threads that are in
2629 * user context, and *dst* must be a valid user space address.
2630 *
2631 * This helper should not be used to implement any kind of
2632 * security mechanism because of TOC-TOU attacks, but rather to
2633 * debug, divert, and manipulate execution of semi-cooperative
2634 * processes.
2635 *
2636 * Keep in mind that this feature is meant for experiments, and it
2637 * has a risk of crashing the system and running programs.
2638 * Therefore, when an eBPF program using this helper is attached,
2639 * a warning including PID and process name is printed to kernel
2640 * logs.
2641 * Return
2642 * 0 on success, or a negative error in case of failure.
2643 *
2644 * long bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
2645 * Description
2646 * Check whether the probe is being run is the context of a given
2647 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by
2648 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
2649 * Return
2650 * The return value depends on the result of the test, and can be:
2651 *
2652 * * 1, if current task belongs to the cgroup2.
2653 * * 0, if current task does not belong to the cgroup2.
2654 * * A negative error code, if an error occurred.
2655 *
2656 * long bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
2657 * Description
2658 * Resize (trim or grow) the packet associated to *skb* to the
2659 * new *len*. The *flags* are reserved for future usage, and must
2660 * be left at zero.
2661 *
2662 * The basic idea is that the helper performs the needed work to
2663 * change the size of the packet, then the eBPF program rewrites
2664 * the rest via helpers like **bpf_skb_store_bytes**\ (),
2665 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
2666 * and others. This helper is a slow path utility intended for
2667 * replies with control messages. And because it is targeted for
2668 * slow path, the helper itself can afford to be slow: it
2669 * implicitly linearizes, unclones and drops offloads from the
2670 * *skb*.
2671 *
2672 * A call to this helper is susceptible to change the underlying
2673 * packet buffer. Therefore, at load time, all checks on pointers
2674 * previously done by the verifier are invalidated and must be
2675 * performed again, if the helper is used in combination with
2676 * direct packet access.
2677 * Return
2678 * 0 on success, or a negative error in case of failure.
2679 *
2680 * long bpf_skb_pull_data(struct sk_buff *skb, u32 len)
2681 * Description
2682 * Pull in non-linear data in case the *skb* is non-linear and not
2683 * all of *len* are part of the linear section. Make *len* bytes
2684 * from *skb* readable and writable. If a zero value is passed for
2685 * *len*, then all bytes in the linear part of *skb* will be made
2686 * readable and writable.
2687 *
2688 * This helper is only needed for reading and writing with direct
2689 * packet access.
2690 *
2691 * For direct packet access, testing that offsets to access
2692 * are within packet boundaries (test on *skb*\ **->data_end**) is
2693 * susceptible to fail if offsets are invalid, or if the requested
2694 * data is in non-linear parts of the *skb*. On failure the
2695 * program can just bail out, or in the case of a non-linear
2696 * buffer, use a helper to make the data available. The
2697 * **bpf_skb_load_bytes**\ () helper is a first solution to access
2698 * the data. Another one consists in using **bpf_skb_pull_data**
2699 * to pull in once the non-linear parts, then retesting and
2700 * eventually access the data.
2701 *
2702 * At the same time, this also makes sure the *skb* is uncloned,
2703 * which is a necessary condition for direct write. As this needs
2704 * to be an invariant for the write part only, the verifier
2705 * detects writes and adds a prologue that is calling
2706 * **bpf_skb_pull_data()** to effectively unclone the *skb* from
2707 * the very beginning in case it is indeed cloned.
2708 *
2709 * A call to this helper is susceptible to change the underlying
2710 * packet buffer. Therefore, at load time, all checks on pointers
2711 * previously done by the verifier are invalidated and must be
2712 * performed again, if the helper is used in combination with
2713 * direct packet access.
2714 * Return
2715 * 0 on success, or a negative error in case of failure.
2716 *
2717 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
2718 * Description
2719 * Add the checksum *csum* into *skb*\ **->csum** in case the
2720 * driver has supplied a checksum for the entire packet into that
2721 * field. Return an error otherwise. This helper is intended to be
2722 * used in combination with **bpf_csum_diff**\ (), in particular
2723 * when the checksum needs to be updated after data has been
2724 * written into the packet through direct packet access.
2725 * Return
2726 * The checksum on success, or a negative error code in case of
2727 * failure.
2728 *
2729 * void bpf_set_hash_invalid(struct sk_buff *skb)
2730 * Description
2731 * Invalidate the current *skb*\ **->hash**. It can be used after
2732 * mangling on headers through direct packet access, in order to
2733 * indicate that the hash is outdated and to trigger a
2734 * recalculation the next time the kernel tries to access this
2735 * hash or when the **bpf_get_hash_recalc**\ () helper is called.
2736 * Return
2737 * void.
2738 *
2739 * long bpf_get_numa_node_id(void)
2740 * Description
2741 * Return the id of the current NUMA node. The primary use case
2742 * for this helper is the selection of sockets for the local NUMA
2743 * node, when the program is attached to sockets using the
2744 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
2745 * but the helper is also available to other eBPF program types,
2746 * similarly to **bpf_get_smp_processor_id**\ ().
2747 * Return
2748 * The id of current NUMA node.
2749 *
2750 * long bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
2751 * Description
2752 * Grows headroom of packet associated to *skb* and adjusts the
2753 * offset of the MAC header accordingly, adding *len* bytes of
2754 * space. It automatically extends and reallocates memory as
2755 * required.
2756 *
2757 * This helper can be used on a layer 3 *skb* to push a MAC header
2758 * for redirection into a layer 2 device.
2759 *
2760 * All values for *flags* are reserved for future usage, and must
2761 * be left at zero.
2762 *
2763 * A call to this helper is susceptible to change the underlying
2764 * packet buffer. Therefore, at load time, all checks on pointers
2765 * previously done by the verifier are invalidated and must be
2766 * performed again, if the helper is used in combination with
2767 * direct packet access.
2768 * Return
2769 * 0 on success, or a negative error in case of failure.
2770 *
2771 * long bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
2772 * Description
2773 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
2774 * it is possible to use a negative value for *delta*. This helper
2775 * can be used to prepare the packet for pushing or popping
2776 * headers.
2777 *
2778 * A call to this helper is susceptible to change the underlying
2779 * packet buffer. Therefore, at load time, all checks on pointers
2780 * previously done by the verifier are invalidated and must be
2781 * performed again, if the helper is used in combination with
2782 * direct packet access.
2783 * Return
2784 * 0 on success, or a negative error in case of failure.
2785 *
2786 * long bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr)
2787 * Description
2788 * Copy a NUL terminated string from an unsafe kernel address
2789 * *unsafe_ptr* to *dst*. See **bpf_probe_read_kernel_str**\ () for
2790 * more details.
2791 *
2792 * Generally, use **bpf_probe_read_user_str**\ () or
2793 * **bpf_probe_read_kernel_str**\ () instead.
2794 * Return
2795 * On success, the strictly positive length of the string,
2796 * including the trailing NUL character. On error, a negative
2797 * value.
2798 *
2799 * u64 bpf_get_socket_cookie(struct sk_buff *skb)
2800 * Description
2801 * If the **struct sk_buff** pointed by *skb* has a known socket,
2802 * retrieve the cookie (generated by the kernel) of this socket.
2803 * If no cookie has been set yet, generate a new cookie. Once
2804 * generated, the socket cookie remains stable for the life of the
2805 * socket. This helper can be useful for monitoring per socket
2806 * networking traffic statistics as it provides a global socket
2807 * identifier that can be assumed unique.
2808 * Return
2809 * A 8-byte long unique number on success, or 0 if the socket
2810 * field is missing inside *skb*.
2811 *
2812 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
2813 * Description
2814 * Equivalent to bpf_get_socket_cookie() helper that accepts
2815 * *skb*, but gets socket from **struct bpf_sock_addr** context.
2816 * Return
2817 * A 8-byte long unique number.
2818 *
2819 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
2820 * Description
2821 * Equivalent to **bpf_get_socket_cookie**\ () helper that accepts
2822 * *skb*, but gets socket from **struct bpf_sock_ops** context.
2823 * Return
2824 * A 8-byte long unique number.
2825 *
2826 * u64 bpf_get_socket_cookie(struct sock *sk)
2827 * Description
2828 * Equivalent to **bpf_get_socket_cookie**\ () helper that accepts
2829 * *sk*, but gets socket from a BTF **struct sock**. This helper
2830 * also works for sleepable programs.
2831 * Return
2832 * A 8-byte long unique number or 0 if *sk* is NULL.
2833 *
2834 * u32 bpf_get_socket_uid(struct sk_buff *skb)
2835 * Description
2836 * Get the owner UID of the socked associated to *skb*.
2837 * Return
2838 * The owner UID of the socket associated to *skb*. If the socket
2839 * is **NULL**, or if it is not a full socket (i.e. if it is a
2840 * time-wait or a request socket instead), **overflowuid** value
2841 * is returned (note that **overflowuid** might also be the actual
2842 * UID value for the socket).
2843 *
2844 * long bpf_set_hash(struct sk_buff *skb, u32 hash)
2845 * Description
2846 * Set the full hash for *skb* (set the field *skb*\ **->hash**)
2847 * to value *hash*.
2848 * Return
2849 * 0
2850 *
2851 * long bpf_setsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)
2852 * Description
2853 * Emulate a call to **setsockopt()** on the socket associated to
2854 * *bpf_socket*, which must be a full socket. The *level* at
2855 * which the option resides and the name *optname* of the option
2856 * must be specified, see **setsockopt(2)** for more information.
2857 * The option value of length *optlen* is pointed by *optval*.
2858 *
2859 * *bpf_socket* should be one of the following:
2860 *
2861 * * **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**.
2862 * * **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT**,
2863 * **BPF_CGROUP_INET6_CONNECT** and **BPF_CGROUP_UNIX_CONNECT**.
2864 *
2865 * This helper actually implements a subset of **setsockopt()**.
2866 * It supports the following *level*\ s:
2867 *
2868 * * **SOL_SOCKET**, which supports the following *optname*\ s:
2869 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
2870 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**,
2871 * **SO_BINDTODEVICE**, **SO_KEEPALIVE**, **SO_REUSEADDR**,
2872 * **SO_REUSEPORT**, **SO_BINDTOIFINDEX**, **SO_TXREHASH**.
2873 * * **IPPROTO_TCP**, which supports the following *optname*\ s:
2874 * **TCP_CONGESTION**, **TCP_BPF_IW**,
2875 * **TCP_BPF_SNDCWND_CLAMP**, **TCP_SAVE_SYN**,
2876 * **TCP_KEEPIDLE**, **TCP_KEEPINTVL**, **TCP_KEEPCNT**,
2877 * **TCP_SYNCNT**, **TCP_USER_TIMEOUT**, **TCP_NOTSENT_LOWAT**,
2878 * **TCP_NODELAY**, **TCP_MAXSEG**, **TCP_WINDOW_CLAMP**,
2879 * **TCP_THIN_LINEAR_TIMEOUTS**, **TCP_BPF_DELACK_MAX**,
2880 * **TCP_BPF_RTO_MIN**, **TCP_BPF_SOCK_OPS_CB_FLAGS**.
2881 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**.
2882 * * **IPPROTO_IPV6**, which supports the following *optname*\ s:
2883 * **IPV6_TCLASS**, **IPV6_AUTOFLOWLABEL**.
2884 * Return
2885 * 0 on success, or a negative error in case of failure.
2886 *
2887 * long bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)
2888 * Description
2889 * Grow or shrink the room for data in the packet associated to
2890 * *skb* by *len_diff*, and according to the selected *mode*.
2891 *
2892 * By default, the helper will reset any offloaded checksum
2893 * indicator of the skb to CHECKSUM_NONE. This can be avoided
2894 * by the following flag:
2895 *
2896 * * **BPF_F_ADJ_ROOM_NO_CSUM_RESET**: Do not reset offloaded
2897 * checksum data of the skb to CHECKSUM_NONE.
2898 *
2899 * There are two supported modes at this time:
2900 *
2901 * * **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer
2902 * (room space is added or removed between the layer 2 and
2903 * layer 3 headers).
2904 *
2905 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
2906 * (room space is added or removed between the layer 3 and
2907 * layer 4 headers).
2908 *
2909 * The following flags are supported at this time:
2910 *
2911 * * **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size.
2912 * Adjusting mss in this way is not allowed for datagrams.
2913 *
2914 * * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**,
2915 * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**:
2916 * Any new space is reserved to hold a tunnel header.
2917 * Configure skb offsets and other fields accordingly.
2918 *
2919 * * **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**,
2920 * **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**:
2921 * Use with ENCAP_L3 flags to further specify the tunnel type.
2922 *
2923 * * **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*):
2924 * Use with ENCAP_L3/L4 flags to further specify the tunnel
2925 * type; *len* is the length of the inner MAC header.
2926 *
2927 * * **BPF_F_ADJ_ROOM_ENCAP_L2_ETH**:
2928 * Use with BPF_F_ADJ_ROOM_ENCAP_L2 flag to further specify the
2929 * L2 type as Ethernet.
2930 *
2931 * * **BPF_F_ADJ_ROOM_DECAP_L3_IPV4**,
2932 * **BPF_F_ADJ_ROOM_DECAP_L3_IPV6**:
2933 * Indicate the new IP header version after decapsulating the outer
2934 * IP header. Used when the inner and outer IP versions are different.
2935 *
2936 * A call to this helper is susceptible to change the underlying
2937 * packet buffer. Therefore, at load time, all checks on pointers
2938 * previously done by the verifier are invalidated and must be
2939 * performed again, if the helper is used in combination with
2940 * direct packet access.
2941 * Return
2942 * 0 on success, or a negative error in case of failure.
2943 *
2944 * long bpf_redirect_map(struct bpf_map *map, u64 key, u64 flags)
2945 * Description
2946 * Redirect the packet to the endpoint referenced by *map* at
2947 * index *key*. Depending on its type, this *map* can contain
2948 * references to net devices (for forwarding packets through other
2949 * ports), or to CPUs (for redirecting XDP frames to another CPU;
2950 * but this is only implemented for native XDP (with driver
2951 * support) as of this writing).
2952 *
2953 * The lower two bits of *flags* are used as the return code if
2954 * the map lookup fails. This is so that the return value can be
2955 * one of the XDP program return codes up to **XDP_TX**, as chosen
2956 * by the caller. The higher bits of *flags* can be set to
2957 * BPF_F_BROADCAST or BPF_F_EXCLUDE_INGRESS as defined below.
2958 *
2959 * With BPF_F_BROADCAST the packet will be broadcasted to all the
2960 * interfaces in the map, with BPF_F_EXCLUDE_INGRESS the ingress
2961 * interface will be excluded when do broadcasting.
2962 *
2963 * See also **bpf_redirect**\ (), which only supports redirecting
2964 * to an ifindex, but doesn't require a map to do so.
2965 * Return
2966 * **XDP_REDIRECT** on success, or the value of the two lower bits
2967 * of the *flags* argument on error.
2968 *
2969 * long bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map, u32 key, u64 flags)
2970 * Description
2971 * Redirect the packet to the socket referenced by *map* (of type
2972 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
2973 * egress interfaces can be used for redirection. The
2974 * **BPF_F_INGRESS** value in *flags* is used to make the
2975 * distinction (ingress path is selected if the flag is present,
2976 * egress path otherwise). This is the only flag supported for now.
2977 * Return
2978 * **SK_PASS** on success, or **SK_DROP** on error.
2979 *
2980 * long bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
2981 * Description
2982 * Add an entry to, or update a *map* referencing sockets. The
2983 * *skops* is used as a new value for the entry associated to
2984 * *key*. *flags* is one of:
2985 *
2986 * **BPF_NOEXIST**
2987 * The entry for *key* must not exist in the map.
2988 * **BPF_EXIST**
2989 * The entry for *key* must already exist in the map.
2990 * **BPF_ANY**
2991 * No condition on the existence of the entry for *key*.
2992 *
2993 * If the *map* has eBPF programs (parser and verdict), those will
2994 * be inherited by the socket being added. If the socket is
2995 * already attached to eBPF programs, this results in an error.
2996 * Return
2997 * 0 on success, or a negative error in case of failure.
2998 *
2999 * long bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
3000 * Description
3001 * Adjust the address pointed by *xdp_md*\ **->data_meta** by
3002 * *delta* (which can be positive or negative). Note that this
3003 * operation modifies the address stored in *xdp_md*\ **->data**,
3004 * so the latter must be loaded only after the helper has been
3005 * called.
3006 *
3007 * The use of *xdp_md*\ **->data_meta** is optional and programs
3008 * are not required to use it. The rationale is that when the
3009 * packet is processed with XDP (e.g. as DoS filter), it is
3010 * possible to push further meta data along with it before passing
3011 * to the stack, and to give the guarantee that an ingress eBPF
3012 * program attached as a TC classifier on the same device can pick
3013 * this up for further post-processing. Since TC works with socket
3014 * buffers, it remains possible to set from XDP the **mark** or
3015 * **priority** pointers, or other pointers for the socket buffer.
3016 * Having this scratch space generic and programmable allows for
3017 * more flexibility as the user is free to store whatever meta
3018 * data they need.
3019 *
3020 * A call to this helper is susceptible to change the underlying
3021 * packet buffer. Therefore, at load time, all checks on pointers
3022 * previously done by the verifier are invalidated and must be
3023 * performed again, if the helper is used in combination with
3024 * direct packet access.
3025 * Return
3026 * 0 on success, or a negative error in case of failure.
3027 *
3028 * long bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
3029 * Description
3030 * Read the value of a perf event counter, and store it into *buf*
3031 * of size *buf_size*. This helper relies on a *map* of type
3032 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
3033 * counter is selected when *map* is updated with perf event file
3034 * descriptors. The *map* is an array whose size is the number of
3035 * available CPUs, and each cell contains a value relative to one
3036 * CPU. The value to retrieve is indicated by *flags*, that
3037 * contains the index of the CPU to look up, masked with
3038 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
3039 * **BPF_F_CURRENT_CPU** to indicate that the value for the
3040 * current CPU should be retrieved.
3041 *
3042 * This helper behaves in a way close to
3043 * **bpf_perf_event_read**\ () helper, save that instead of
3044 * just returning the value observed, it fills the *buf*
3045 * structure. This allows for additional data to be retrieved: in
3046 * particular, the enabled and running times (in *buf*\
3047 * **->enabled** and *buf*\ **->running**, respectively) are
3048 * copied. In general, **bpf_perf_event_read_value**\ () is
3049 * recommended over **bpf_perf_event_read**\ (), which has some
3050 * ABI issues and provides fewer functionalities.
3051 *
3052 * These values are interesting, because hardware PMU (Performance
3053 * Monitoring Unit) counters are limited resources. When there are
3054 * more PMU based perf events opened than available counters,
3055 * kernel will multiplex these events so each event gets certain
3056 * percentage (but not all) of the PMU time. In case that
3057 * multiplexing happens, the number of samples or counter value
3058 * will not reflect the case compared to when no multiplexing
3059 * occurs. This makes comparison between different runs difficult.
3060 * Typically, the counter value should be normalized before
3061 * comparing to other experiments. The usual normalization is done
3062 * as follows.
3063 *
3064 * ::
3065 *
3066 * normalized_counter = counter * t_enabled / t_running
3067 *
3068 * Where t_enabled is the time enabled for event and t_running is
3069 * the time running for event since last normalization. The
3070 * enabled and running times are accumulated since the perf event
3071 * open. To achieve scaling factor between two invocations of an
3072 * eBPF program, users can use CPU id as the key (which is
3073 * typical for perf array usage model) to remember the previous
3074 * value and do the calculation inside the eBPF program.
3075 * Return
3076 * 0 on success, or a negative error in case of failure.
3077 *
3078 * long bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
3079 * Description
3080 * For an eBPF program attached to a perf event, retrieve the
3081 * value of the event counter associated to *ctx* and store it in
3082 * the structure pointed by *buf* and of size *buf_size*. Enabled
3083 * and running times are also stored in the structure (see
3084 * description of helper **bpf_perf_event_read_value**\ () for
3085 * more details).
3086 * Return
3087 * 0 on success, or a negative error in case of failure.
3088 *
3089 * long bpf_getsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)
3090 * Description
3091 * Emulate a call to **getsockopt()** on the socket associated to
3092 * *bpf_socket*, which must be a full socket. The *level* at
3093 * which the option resides and the name *optname* of the option
3094 * must be specified, see **getsockopt(2)** for more information.
3095 * The retrieved value is stored in the structure pointed by
3096 * *opval* and of length *optlen*.
3097 *
3098 * *bpf_socket* should be one of the following:
3099 *
3100 * * **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**.
3101 * * **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT**,
3102 * **BPF_CGROUP_INET6_CONNECT** and **BPF_CGROUP_UNIX_CONNECT**.
3103 *
3104 * This helper actually implements a subset of **getsockopt()**.
3105 * It supports the same set of *optname*\ s that is supported by
3106 * the **bpf_setsockopt**\ () helper. The exceptions are
3107 * **TCP_BPF_*** is **bpf_setsockopt**\ () only and
3108 * **TCP_SAVED_SYN** is **bpf_getsockopt**\ () only.
3109 * Return
3110 * 0 on success, or a negative error in case of failure.
3111 *
3112 * long bpf_override_return(struct pt_regs *regs, u64 rc)
3113 * Description
3114 * Used for error injection, this helper uses kprobes to override
3115 * the return value of the probed function, and to set it to *rc*.
3116 * The first argument is the context *regs* on which the kprobe
3117 * works.
3118 *
3119 * This helper works by setting the PC (program counter)
3120 * to an override function which is run in place of the original
3121 * probed function. This means the probed function is not run at
3122 * all. The replacement function just returns with the required
3123 * value.
3124 *
3125 * This helper has security implications, and thus is subject to
3126 * restrictions. It is only available if the kernel was compiled
3127 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
3128 * option, and in this case it only works on functions tagged with
3129 * **ALLOW_ERROR_INJECTION** in the kernel code.
3130 * Return
3131 * 0
3132 *
3133 * long bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
3134 * Description
3135 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field
3136 * for the full TCP socket associated to *bpf_sock_ops* to
3137 * *argval*.
3138 *
3139 * The primary use of this field is to determine if there should
3140 * be calls to eBPF programs of type
3141 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
3142 * code. A program of the same type can change its value, per
3143 * connection and as necessary, when the connection is
3144 * established. This field is directly accessible for reading, but
3145 * this helper must be used for updates in order to return an
3146 * error if an eBPF program tries to set a callback that is not
3147 * supported in the current kernel.
3148 *
3149 * *argval* is a flag array which can combine these flags:
3150 *
3151 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
3152 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
3153 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
3154 * * **BPF_SOCK_OPS_RTT_CB_FLAG** (every RTT)
3155 *
3156 * Therefore, this function can be used to clear a callback flag by
3157 * setting the appropriate bit to zero. e.g. to disable the RTO
3158 * callback:
3159 *
3160 * **bpf_sock_ops_cb_flags_set(bpf_sock,**
3161 * **bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)**
3162 *
3163 * Here are some examples of where one could call such eBPF
3164 * program:
3165 *
3166 * * When RTO fires.
3167 * * When a packet is retransmitted.
3168 * * When the connection terminates.
3169 * * When a packet is sent.
3170 * * When a packet is received.
3171 * Return
3172 * Code **-EINVAL** if the socket is not a full TCP socket;
3173 * otherwise, a positive number containing the bits that could not
3174 * be set is returned (which comes down to 0 if all bits were set
3175 * as required).
3176 *
3177 * long bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
3178 * Description
3179 * This helper is used in programs implementing policies at the
3180 * socket level. If the message *msg* is allowed to pass (i.e. if
3181 * the verdict eBPF program returns **SK_PASS**), redirect it to
3182 * the socket referenced by *map* (of type
3183 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
3184 * egress interfaces can be used for redirection. The
3185 * **BPF_F_INGRESS** value in *flags* is used to make the
3186 * distinction (ingress path is selected if the flag is present,
3187 * egress path otherwise). This is the only flag supported for now.
3188 * Return
3189 * **SK_PASS** on success, or **SK_DROP** on error.
3190 *
3191 * long bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
3192 * Description
3193 * For socket policies, apply the verdict of the eBPF program to
3194 * the next *bytes* (number of bytes) of message *msg*.
3195 *
3196 * For example, this helper can be used in the following cases:
3197 *
3198 * * A single **sendmsg**\ () or **sendfile**\ () system call
3199 * contains multiple logical messages that the eBPF program is
3200 * supposed to read and for which it should apply a verdict.
3201 * * An eBPF program only cares to read the first *bytes* of a
3202 * *msg*. If the message has a large payload, then setting up
3203 * and calling the eBPF program repeatedly for all bytes, even
3204 * though the verdict is already known, would create unnecessary
3205 * overhead.
3206 *
3207 * When called from within an eBPF program, the helper sets a
3208 * counter internal to the BPF infrastructure, that is used to
3209 * apply the last verdict to the next *bytes*. If *bytes* is
3210 * smaller than the current data being processed from a
3211 * **sendmsg**\ () or **sendfile**\ () system call, the first
3212 * *bytes* will be sent and the eBPF program will be re-run with
3213 * the pointer for start of data pointing to byte number *bytes*
3214 * **+ 1**. If *bytes* is larger than the current data being
3215 * processed, then the eBPF verdict will be applied to multiple
3216 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are
3217 * consumed.
3218 *
3219 * Note that if a socket closes with the internal counter holding
3220 * a non-zero value, this is not a problem because data is not
3221 * being buffered for *bytes* and is sent as it is received.
3222 * Return
3223 * 0
3224 *
3225 * long bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
3226 * Description
3227 * For socket policies, prevent the execution of the verdict eBPF
3228 * program for message *msg* until *bytes* (byte number) have been
3229 * accumulated.
3230 *
3231 * This can be used when one needs a specific number of bytes
3232 * before a verdict can be assigned, even if the data spans
3233 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
3234 * case would be a user calling **sendmsg**\ () repeatedly with
3235 * 1-byte long message segments. Obviously, this is bad for
3236 * performance, but it is still valid. If the eBPF program needs
3237 * *bytes* bytes to validate a header, this helper can be used to
3238 * prevent the eBPF program to be called again until *bytes* have
3239 * been accumulated.
3240 * Return
3241 * 0
3242 *
3243 * long bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
3244 * Description
3245 * For socket policies, pull in non-linear data from user space
3246 * for *msg* and set pointers *msg*\ **->data** and *msg*\
3247 * **->data_end** to *start* and *end* bytes offsets into *msg*,
3248 * respectively.
3249 *
3250 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
3251 * *msg* it can only parse data that the (**data**, **data_end**)
3252 * pointers have already consumed. For **sendmsg**\ () hooks this
3253 * is likely the first scatterlist element. But for calls relying
3254 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will
3255 * be the range (**0**, **0**) because the data is shared with
3256 * user space and by default the objective is to avoid allowing
3257 * user space to modify data while (or after) eBPF verdict is
3258 * being decided. This helper can be used to pull in data and to
3259 * set the start and end pointer to given values. Data will be
3260 * copied if necessary (i.e. if data was not linear and if start
3261 * and end pointers do not point to the same chunk).
3262 *
3263 * A call to this helper is susceptible to change the underlying
3264 * packet buffer. Therefore, at load time, all checks on pointers
3265 * previously done by the verifier are invalidated and must be
3266 * performed again, if the helper is used in combination with
3267 * direct packet access.
3268 *
3269 * All values for *flags* are reserved for future usage, and must
3270 * be left at zero.
3271 * Return
3272 * 0 on success, or a negative error in case of failure.
3273 *
3274 * long bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
3275 * Description
3276 * Bind the socket associated to *ctx* to the address pointed by
3277 * *addr*, of length *addr_len*. This allows for making outgoing
3278 * connection from the desired IP address, which can be useful for
3279 * example when all processes inside a cgroup should use one
3280 * single IP address on a host that has multiple IP configured.
3281 *
3282 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The
3283 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or
3284 * **AF_INET6**). It's advised to pass zero port (**sin_port**
3285 * or **sin6_port**) which triggers IP_BIND_ADDRESS_NO_PORT-like
3286 * behavior and lets the kernel efficiently pick up an unused
3287 * port as long as 4-tuple is unique. Passing non-zero port might
3288 * lead to degraded performance.
3289 * Return
3290 * 0 on success, or a negative error in case of failure.
3291 *
3292 * long bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
3293 * Description
3294 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
3295 * possible to both shrink and grow the packet tail.
3296 * Shrink done via *delta* being a negative integer.
3297 *
3298 * A call to this helper is susceptible to change the underlying
3299 * packet buffer. Therefore, at load time, all checks on pointers
3300 * previously done by the verifier are invalidated and must be
3301 * performed again, if the helper is used in combination with
3302 * direct packet access.
3303 * Return
3304 * 0 on success, or a negative error in case of failure.
3305 *
3306 * long bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
3307 * Description
3308 * Retrieve the XFRM state (IP transform framework, see also
3309 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
3310 *
3311 * The retrieved value is stored in the **struct bpf_xfrm_state**
3312 * pointed by *xfrm_state* and of length *size*.
3313 *
3314 * All values for *flags* are reserved for future usage, and must
3315 * be left at zero.
3316 *
3317 * This helper is available only if the kernel was compiled with
3318 * **CONFIG_XFRM** configuration option.
3319 * Return
3320 * 0 on success, or a negative error in case of failure.
3321 *
3322 * long bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags)
3323 * Description
3324 * Return a user or a kernel stack in bpf program provided buffer.
3325 * To achieve this, the helper needs *ctx*, which is a pointer
3326 * to the context on which the tracing program is executed.
3327 * To store the stacktrace, the bpf program provides *buf* with
3328 * a nonnegative *size*.
3329 *
3330 * The last argument, *flags*, holds the number of stack frames to
3331 * skip (from 0 to 255), masked with
3332 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
3333 * the following flags:
3334 *
3335 * **BPF_F_USER_STACK**
3336 * Collect a user space stack instead of a kernel stack.
3337 * **BPF_F_USER_BUILD_ID**
3338 * Collect (build_id, file_offset) instead of ips for user
3339 * stack, only valid if **BPF_F_USER_STACK** is also
3340 * specified.
3341 *
3342 * *file_offset* is an offset relative to the beginning
3343 * of the executable or shared object file backing the vma
3344 * which the *ip* falls in. It is *not* an offset relative
3345 * to that object's base address. Accordingly, it must be
3346 * adjusted by adding (sh_addr - sh_offset), where
3347 * sh_{addr,offset} correspond to the executable section
3348 * containing *file_offset* in the object, for comparisons
3349 * to symbols' st_value to be valid.
3350 *
3351 * **bpf_get_stack**\ () can collect up to
3352 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
3353 * to sufficient large buffer size. Note that
3354 * this limit can be controlled with the **sysctl** program, and
3355 * that it should be manually increased in order to profile long
3356 * user stacks (such as stacks for Java programs). To do so, use:
3357 *
3358 * ::
3359 *
3360 * # sysctl kernel.perf_event_max_stack=<new value>
3361 * Return
3362 * The non-negative copied *buf* length equal to or less than
3363 * *size* on success, or a negative error in case of failure.
3364 *
3365 * long bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to, u32 len, u32 start_header)
3366 * Description
3367 * This helper is similar to **bpf_skb_load_bytes**\ () in that
3368 * it provides an easy way to load *len* bytes from *offset*
3369 * from the packet associated to *skb*, into the buffer pointed
3370 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that
3371 * a fifth argument *start_header* exists in order to select a
3372 * base offset to start from. *start_header* can be one of:
3373 *
3374 * **BPF_HDR_START_MAC**
3375 * Base offset to load data from is *skb*'s mac header.
3376 * **BPF_HDR_START_NET**
3377 * Base offset to load data from is *skb*'s network header.
3378 *
3379 * In general, "direct packet access" is the preferred method to
3380 * access packet data, however, this helper is in particular useful
3381 * in socket filters where *skb*\ **->data** does not always point
3382 * to the start of the mac header and where "direct packet access"
3383 * is not available.
3384 * Return
3385 * 0 on success, or a negative error in case of failure.
3386 *
3387 * long bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
3388 * Description
3389 * Do FIB lookup in kernel tables using parameters in *params*.
3390 * If lookup is successful and result shows packet is to be
3391 * forwarded, the neighbor tables are searched for the nexthop.
3392 * If successful (ie., FIB lookup shows forwarding and nexthop
3393 * is resolved), the nexthop address is returned in ipv4_dst
3394 * or ipv6_dst based on family, smac is set to mac address of
3395 * egress device, dmac is set to nexthop mac address, rt_metric
3396 * is set to metric from route (IPv4/IPv6 only), and ifindex
3397 * is set to the device index of the nexthop from the FIB lookup.
3398 *
3399 * *plen* argument is the size of the passed in struct.
3400 * *flags* argument can be a combination of one or more of the
3401 * following values:
3402 *
3403 * **BPF_FIB_LOOKUP_DIRECT**
3404 * Do a direct table lookup vs full lookup using FIB
3405 * rules.
3406 * **BPF_FIB_LOOKUP_TBID**
3407 * Used with BPF_FIB_LOOKUP_DIRECT.
3408 * Use the routing table ID present in *params*->tbid
3409 * for the fib lookup.
3410 * **BPF_FIB_LOOKUP_OUTPUT**
3411 * Perform lookup from an egress perspective (default is
3412 * ingress).
3413 * **BPF_FIB_LOOKUP_SKIP_NEIGH**
3414 * Skip the neighbour table lookup. *params*->dmac
3415 * and *params*->smac will not be set as output. A common
3416 * use case is to call **bpf_redirect_neigh**\ () after
3417 * doing **bpf_fib_lookup**\ ().
3418 * **BPF_FIB_LOOKUP_SRC**
3419 * Derive and set source IP addr in *params*->ipv{4,6}_src
3420 * for the nexthop. If the src addr cannot be derived,
3421 * **BPF_FIB_LKUP_RET_NO_SRC_ADDR** is returned. In this
3422 * case, *params*->dmac and *params*->smac are not set either.
3423 * **BPF_FIB_LOOKUP_MARK**
3424 * Use the mark present in *params*->mark for the fib lookup.
3425 * This option should not be used with BPF_FIB_LOOKUP_DIRECT,
3426 * as it only has meaning for full lookups.
3427 *
3428 * *ctx* is either **struct xdp_md** for XDP programs or
3429 * **struct sk_buff** tc cls_act programs.
3430 * Return
3431 * * < 0 if any input argument is invalid
3432 * * 0 on success (packet is forwarded, nexthop neighbor exists)
3433 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
3434 * packet is not forwarded or needs assist from full stack
3435 *
3436 * If lookup fails with BPF_FIB_LKUP_RET_FRAG_NEEDED, then the MTU
3437 * was exceeded and output params->mtu_result contains the MTU.
3438 *
3439 * long bpf_sock_hash_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
3440 * Description
3441 * Add an entry to, or update a sockhash *map* referencing sockets.
3442 * The *skops* is used as a new value for the entry associated to
3443 * *key*. *flags* is one of:
3444 *
3445 * **BPF_NOEXIST**
3446 * The entry for *key* must not exist in the map.
3447 * **BPF_EXIST**
3448 * The entry for *key* must already exist in the map.
3449 * **BPF_ANY**
3450 * No condition on the existence of the entry for *key*.
3451 *
3452 * If the *map* has eBPF programs (parser and verdict), those will
3453 * be inherited by the socket being added. If the socket is
3454 * already attached to eBPF programs, this results in an error.
3455 * Return
3456 * 0 on success, or a negative error in case of failure.
3457 *
3458 * long bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
3459 * Description
3460 * This helper is used in programs implementing policies at the
3461 * socket level. If the message *msg* is allowed to pass (i.e. if
3462 * the verdict eBPF program returns **SK_PASS**), redirect it to
3463 * the socket referenced by *map* (of type
3464 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
3465 * egress interfaces can be used for redirection. The
3466 * **BPF_F_INGRESS** value in *flags* is used to make the
3467 * distinction (ingress path is selected if the flag is present,
3468 * egress path otherwise). This is the only flag supported for now.
3469 * Return
3470 * **SK_PASS** on success, or **SK_DROP** on error.
3471 *
3472 * long bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
3473 * Description
3474 * This helper is used in programs implementing policies at the
3475 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
3476 * if the verdict eBPF program returns **SK_PASS**), redirect it
3477 * to the socket referenced by *map* (of type
3478 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
3479 * egress interfaces can be used for redirection. The
3480 * **BPF_F_INGRESS** value in *flags* is used to make the
3481 * distinction (ingress path is selected if the flag is present,
3482 * egress otherwise). This is the only flag supported for now.
3483 * Return
3484 * **SK_PASS** on success, or **SK_DROP** on error.
3485 *
3486 * long bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
3487 * Description
3488 * Encapsulate the packet associated to *skb* within a Layer 3
3489 * protocol header. This header is provided in the buffer at
3490 * address *hdr*, with *len* its size in bytes. *type* indicates
3491 * the protocol of the header and can be one of:
3492 *
3493 * **BPF_LWT_ENCAP_SEG6**
3494 * IPv6 encapsulation with Segment Routing Header
3495 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
3496 * the IPv6 header is computed by the kernel.
3497 * **BPF_LWT_ENCAP_SEG6_INLINE**
3498 * Only works if *skb* contains an IPv6 packet. Insert a
3499 * Segment Routing Header (**struct ipv6_sr_hdr**) inside
3500 * the IPv6 header.
3501 * **BPF_LWT_ENCAP_IP**
3502 * IP encapsulation (GRE/GUE/IPIP/etc). The outer header
3503 * must be IPv4 or IPv6, followed by zero or more
3504 * additional headers, up to **LWT_BPF_MAX_HEADROOM**
3505 * total bytes in all prepended headers. Please note that
3506 * if **skb_is_gso**\ (*skb*) is true, no more than two
3507 * headers can be prepended, and the inner header, if
3508 * present, should be either GRE or UDP/GUE.
3509 *
3510 * **BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs
3511 * of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can
3512 * be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and
3513 * **BPF_PROG_TYPE_LWT_XMIT**.
3514 *
3515 * A call to this helper is susceptible to change the underlying
3516 * packet buffer. Therefore, at load time, all checks on pointers
3517 * previously done by the verifier are invalidated and must be
3518 * performed again, if the helper is used in combination with
3519 * direct packet access.
3520 * Return
3521 * 0 on success, or a negative error in case of failure.
3522 *
3523 * long bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
3524 * Description
3525 * Store *len* bytes from address *from* into the packet
3526 * associated to *skb*, at *offset*. Only the flags, tag and TLVs
3527 * inside the outermost IPv6 Segment Routing Header can be
3528 * modified through this helper.
3529 *
3530 * A call to this helper is susceptible to change the underlying
3531 * packet buffer. Therefore, at load time, all checks on pointers
3532 * previously done by the verifier are invalidated and must be
3533 * performed again, if the helper is used in combination with
3534 * direct packet access.
3535 * Return
3536 * 0 on success, or a negative error in case of failure.
3537 *
3538 * long bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
3539 * Description
3540 * Adjust the size allocated to TLVs in the outermost IPv6
3541 * Segment Routing Header contained in the packet associated to
3542 * *skb*, at position *offset* by *delta* bytes. Only offsets
3543 * after the segments are accepted. *delta* can be as well
3544 * positive (growing) as negative (shrinking).
3545 *
3546 * A call to this helper is susceptible to change the underlying
3547 * packet buffer. Therefore, at load time, all checks on pointers
3548 * previously done by the verifier are invalidated and must be
3549 * performed again, if the helper is used in combination with
3550 * direct packet access.
3551 * Return
3552 * 0 on success, or a negative error in case of failure.
3553 *
3554 * long bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
3555 * Description
3556 * Apply an IPv6 Segment Routing action of type *action* to the
3557 * packet associated to *skb*. Each action takes a parameter
3558 * contained at address *param*, and of length *param_len* bytes.
3559 * *action* can be one of:
3560 *
3561 * **SEG6_LOCAL_ACTION_END_X**
3562 * End.X action: Endpoint with Layer-3 cross-connect.
3563 * Type of *param*: **struct in6_addr**.
3564 * **SEG6_LOCAL_ACTION_END_T**
3565 * End.T action: Endpoint with specific IPv6 table lookup.
3566 * Type of *param*: **int**.
3567 * **SEG6_LOCAL_ACTION_END_B6**
3568 * End.B6 action: Endpoint bound to an SRv6 policy.
3569 * Type of *param*: **struct ipv6_sr_hdr**.
3570 * **SEG6_LOCAL_ACTION_END_B6_ENCAP**
3571 * End.B6.Encap action: Endpoint bound to an SRv6
3572 * encapsulation policy.
3573 * Type of *param*: **struct ipv6_sr_hdr**.
3574 *
3575 * A call to this helper is susceptible to change the underlying
3576 * packet buffer. Therefore, at load time, all checks on pointers
3577 * previously done by the verifier are invalidated and must be
3578 * performed again, if the helper is used in combination with
3579 * direct packet access.
3580 * Return
3581 * 0 on success, or a negative error in case of failure.
3582 *
3583 * long bpf_rc_repeat(void *ctx)
3584 * Description
3585 * This helper is used in programs implementing IR decoding, to
3586 * report a successfully decoded repeat key message. This delays
3587 * the generation of a key up event for previously generated
3588 * key down event.
3589 *
3590 * Some IR protocols like NEC have a special IR message for
3591 * repeating last button, for when a button is held down.
3592 *
3593 * The *ctx* should point to the lirc sample as passed into
3594 * the program.
3595 *
3596 * This helper is only available is the kernel was compiled with
3597 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
3598 * "**y**".
3599 * Return
3600 * 0
3601 *
3602 * long bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
3603 * Description
3604 * This helper is used in programs implementing IR decoding, to
3605 * report a successfully decoded key press with *scancode*,
3606 * *toggle* value in the given *protocol*. The scancode will be
3607 * translated to a keycode using the rc keymap, and reported as
3608 * an input key down event. After a period a key up event is
3609 * generated. This period can be extended by calling either
3610 * **bpf_rc_keydown**\ () again with the same values, or calling
3611 * **bpf_rc_repeat**\ ().
3612 *
3613 * Some protocols include a toggle bit, in case the button was
3614 * released and pressed again between consecutive scancodes.
3615 *
3616 * The *ctx* should point to the lirc sample as passed into
3617 * the program.
3618 *
3619 * The *protocol* is the decoded protocol number (see
3620 * **enum rc_proto** for some predefined values).
3621 *
3622 * This helper is only available is the kernel was compiled with
3623 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
3624 * "**y**".
3625 * Return
3626 * 0
3627 *
3628 * u64 bpf_skb_cgroup_id(struct sk_buff *skb)
3629 * Description
3630 * Return the cgroup v2 id of the socket associated with the *skb*.
3631 * This is roughly similar to the **bpf_get_cgroup_classid**\ ()
3632 * helper for cgroup v1 by providing a tag resp. identifier that
3633 * can be matched on or used for map lookups e.g. to implement
3634 * policy. The cgroup v2 id of a given path in the hierarchy is
3635 * exposed in user space through the f_handle API in order to get
3636 * to the same 64-bit id.
3637 *
3638 * This helper can be used on TC egress path, but not on ingress,
3639 * and is available only if the kernel was compiled with the
3640 * **CONFIG_SOCK_CGROUP_DATA** configuration option.
3641 * Return
3642 * The id is returned or 0 in case the id could not be retrieved.
3643 *
3644 * u64 bpf_get_current_cgroup_id(void)
3645 * Description
3646 * Get the current cgroup id based on the cgroup within which
3647 * the current task is running.
3648 * Return
3649 * A 64-bit integer containing the current cgroup id based
3650 * on the cgroup within which the current task is running.
3651 *
3652 * void *bpf_get_local_storage(void *map, u64 flags)
3653 * Description
3654 * Get the pointer to the local storage area.
3655 * The type and the size of the local storage is defined
3656 * by the *map* argument.
3657 * The *flags* meaning is specific for each map type,
3658 * and has to be 0 for cgroup local storage.
3659 *
3660 * Depending on the BPF program type, a local storage area
3661 * can be shared between multiple instances of the BPF program,
3662 * running simultaneously.
3663 *
3664 * A user should care about the synchronization by himself.
3665 * For example, by using the **BPF_ATOMIC** instructions to alter
3666 * the shared data.
3667 * Return
3668 * A pointer to the local storage area.
3669 *
3670 * long bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
3671 * Description
3672 * Select a **SO_REUSEPORT** socket from a
3673 * **BPF_MAP_TYPE_REUSEPORT_SOCKARRAY** *map*.
3674 * It checks the selected socket is matching the incoming
3675 * request in the socket buffer.
3676 * Return
3677 * 0 on success, or a negative error in case of failure.
3678 *
3679 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
3680 * Description
3681 * Return id of cgroup v2 that is ancestor of cgroup associated
3682 * with the *skb* at the *ancestor_level*. The root cgroup is at
3683 * *ancestor_level* zero and each step down the hierarchy
3684 * increments the level. If *ancestor_level* == level of cgroup
3685 * associated with *skb*, then return value will be same as that
3686 * of **bpf_skb_cgroup_id**\ ().
3687 *
3688 * The helper is useful to implement policies based on cgroups
3689 * that are upper in hierarchy than immediate cgroup associated
3690 * with *skb*.
3691 *
3692 * The format of returned id and helper limitations are same as in
3693 * **bpf_skb_cgroup_id**\ ().
3694 * Return
3695 * The id is returned or 0 in case the id could not be retrieved.
3696 *
3697 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
3698 * Description
3699 * Look for TCP socket matching *tuple*, optionally in a child
3700 * network namespace *netns*. The return value must be checked,
3701 * and if non-**NULL**, released via **bpf_sk_release**\ ().
3702 *
3703 * The *ctx* should point to the context of the program, such as
3704 * the skb or socket (depending on the hook in use). This is used
3705 * to determine the base network namespace for the lookup.
3706 *
3707 * *tuple_size* must be one of:
3708 *
3709 * **sizeof**\ (*tuple*\ **->ipv4**)
3710 * Look for an IPv4 socket.
3711 * **sizeof**\ (*tuple*\ **->ipv6**)
3712 * Look for an IPv6 socket.
3713 *
3714 * If the *netns* is a negative signed 32-bit integer, then the
3715 * socket lookup table in the netns associated with the *ctx*
3716 * will be used. For the TC hooks, this is the netns of the device
3717 * in the skb. For socket hooks, this is the netns of the socket.
3718 * If *netns* is any other signed 32-bit value greater than or
3719 * equal to zero then it specifies the ID of the netns relative to
3720 * the netns associated with the *ctx*. *netns* values beyond the
3721 * range of 32-bit integers are reserved for future use.
3722 *
3723 * All values for *flags* are reserved for future usage, and must
3724 * be left at zero.
3725 *
3726 * This helper is available only if the kernel was compiled with
3727 * **CONFIG_NET** configuration option.
3728 * Return
3729 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
3730 * For sockets with reuseport option, the **struct bpf_sock**
3731 * result is from *reuse*\ **->socks**\ [] using the hash of the
3732 * tuple.
3733 *
3734 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
3735 * Description
3736 * Look for UDP socket matching *tuple*, optionally in a child
3737 * network namespace *netns*. The return value must be checked,
3738 * and if non-**NULL**, released via **bpf_sk_release**\ ().
3739 *
3740 * The *ctx* should point to the context of the program, such as
3741 * the skb or socket (depending on the hook in use). This is used
3742 * to determine the base network namespace for the lookup.
3743 *
3744 * *tuple_size* must be one of:
3745 *
3746 * **sizeof**\ (*tuple*\ **->ipv4**)
3747 * Look for an IPv4 socket.
3748 * **sizeof**\ (*tuple*\ **->ipv6**)
3749 * Look for an IPv6 socket.
3750 *
3751 * If the *netns* is a negative signed 32-bit integer, then the
3752 * socket lookup table in the netns associated with the *ctx*
3753 * will be used. For the TC hooks, this is the netns of the device
3754 * in the skb. For socket hooks, this is the netns of the socket.
3755 * If *netns* is any other signed 32-bit value greater than or
3756 * equal to zero then it specifies the ID of the netns relative to
3757 * the netns associated with the *ctx*. *netns* values beyond the
3758 * range of 32-bit integers are reserved for future use.
3759 *
3760 * All values for *flags* are reserved for future usage, and must
3761 * be left at zero.
3762 *
3763 * This helper is available only if the kernel was compiled with
3764 * **CONFIG_NET** configuration option.
3765 * Return
3766 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
3767 * For sockets with reuseport option, the **struct bpf_sock**
3768 * result is from *reuse*\ **->socks**\ [] using the hash of the
3769 * tuple.
3770 *
3771 * long bpf_sk_release(void *sock)
3772 * Description
3773 * Release the reference held by *sock*. *sock* must be a
3774 * non-**NULL** pointer that was returned from
3775 * **bpf_sk_lookup_xxx**\ ().
3776 * Return
3777 * 0 on success, or a negative error in case of failure.
3778 *
3779 * long bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)
3780 * Description
3781 * Push an element *value* in *map*. *flags* is one of:
3782 *
3783 * **BPF_EXIST**
3784 * If the queue/stack is full, the oldest element is
3785 * removed to make room for this.
3786 * Return
3787 * 0 on success, or a negative error in case of failure.
3788 *
3789 * long bpf_map_pop_elem(struct bpf_map *map, void *value)
3790 * Description
3791 * Pop an element from *map*.
3792 * Return
3793 * 0 on success, or a negative error in case of failure.
3794 *
3795 * long bpf_map_peek_elem(struct bpf_map *map, void *value)
3796 * Description
3797 * Get an element from *map* without removing it.
3798 * Return
3799 * 0 on success, or a negative error in case of failure.
3800 *
3801 * long bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
3802 * Description
3803 * For socket policies, insert *len* bytes into *msg* at offset
3804 * *start*.
3805 *
3806 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
3807 * *msg* it may want to insert metadata or options into the *msg*.
3808 * This can later be read and used by any of the lower layer BPF
3809 * hooks.
3810 *
3811 * This helper may fail if under memory pressure (a malloc
3812 * fails) in these cases BPF programs will get an appropriate
3813 * error and BPF programs will need to handle them.
3814 * Return
3815 * 0 on success, or a negative error in case of failure.
3816 *
3817 * long bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
3818 * Description
3819 * Will remove *len* bytes from a *msg* starting at byte *start*.
3820 * This may result in **ENOMEM** errors under certain situations if
3821 * an allocation and copy are required due to a full ring buffer.
3822 * However, the helper will try to avoid doing the allocation
3823 * if possible. Other errors can occur if input parameters are
3824 * invalid either due to *start* byte not being valid part of *msg*
3825 * payload and/or *pop* value being to large.
3826 * Return
3827 * 0 on success, or a negative error in case of failure.
3828 *
3829 * long bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)
3830 * Description
3831 * This helper is used in programs implementing IR decoding, to
3832 * report a successfully decoded pointer movement.
3833 *
3834 * The *ctx* should point to the lirc sample as passed into
3835 * the program.
3836 *
3837 * This helper is only available is the kernel was compiled with
3838 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
3839 * "**y**".
3840 * Return
3841 * 0
3842 *
3843 * long bpf_spin_lock(struct bpf_spin_lock *lock)
3844 * Description
3845 * Acquire a spinlock represented by the pointer *lock*, which is
3846 * stored as part of a value of a map. Taking the lock allows to
3847 * safely update the rest of the fields in that value. The
3848 * spinlock can (and must) later be released with a call to
3849 * **bpf_spin_unlock**\ (\ *lock*\ ).
3850 *
3851 * Spinlocks in BPF programs come with a number of restrictions
3852 * and constraints:
3853 *
3854 * * **bpf_spin_lock** objects are only allowed inside maps of
3855 * types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this
3856 * list could be extended in the future).
3857 * * BTF description of the map is mandatory.
3858 * * The BPF program can take ONE lock at a time, since taking two
3859 * or more could cause dead locks.
3860 * * Only one **struct bpf_spin_lock** is allowed per map element.
3861 * * When the lock is taken, calls (either BPF to BPF or helpers)
3862 * are not allowed.
3863 * * The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not
3864 * allowed inside a spinlock-ed region.
3865 * * The BPF program MUST call **bpf_spin_unlock**\ () to release
3866 * the lock, on all execution paths, before it returns.
3867 * * The BPF program can access **struct bpf_spin_lock** only via
3868 * the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ ()
3869 * helpers. Loading or storing data into the **struct
3870 * bpf_spin_lock** *lock*\ **;** field of a map is not allowed.
3871 * * To use the **bpf_spin_lock**\ () helper, the BTF description
3872 * of the map value must be a struct and have **struct
3873 * bpf_spin_lock** *anyname*\ **;** field at the top level.
3874 * Nested lock inside another struct is not allowed.
3875 * * The **struct bpf_spin_lock** *lock* field in a map value must
3876 * be aligned on a multiple of 4 bytes in that value.
3877 * * Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy
3878 * the **bpf_spin_lock** field to user space.
3879 * * Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from
3880 * a BPF program, do not update the **bpf_spin_lock** field.
3881 * * **bpf_spin_lock** cannot be on the stack or inside a
3882 * networking packet (it can only be inside of a map values).
3883 * * **bpf_spin_lock** is available to root only.
3884 * * Tracing programs and socket filter programs cannot use
3885 * **bpf_spin_lock**\ () due to insufficient preemption checks
3886 * (but this may change in the future).
3887 * * **bpf_spin_lock** is not allowed in inner maps of map-in-map.
3888 * Return
3889 * 0
3890 *
3891 * long bpf_spin_unlock(struct bpf_spin_lock *lock)
3892 * Description
3893 * Release the *lock* previously locked by a call to
3894 * **bpf_spin_lock**\ (\ *lock*\ ).
3895 * Return
3896 * 0
3897 *
3898 * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)
3899 * Description
3900 * This helper gets a **struct bpf_sock** pointer such
3901 * that all the fields in this **bpf_sock** can be accessed.
3902 * Return
3903 * A **struct bpf_sock** pointer on success, or **NULL** in
3904 * case of failure.
3905 *
3906 * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)
3907 * Description
3908 * This helper gets a **struct bpf_tcp_sock** pointer from a
3909 * **struct bpf_sock** pointer.
3910 * Return
3911 * A **struct bpf_tcp_sock** pointer on success, or **NULL** in
3912 * case of failure.
3913 *
3914 * long bpf_skb_ecn_set_ce(struct sk_buff *skb)
3915 * Description
3916 * Set ECN (Explicit Congestion Notification) field of IP header
3917 * to **CE** (Congestion Encountered) if current value is **ECT**
3918 * (ECN Capable Transport). Otherwise, do nothing. Works with IPv6
3919 * and IPv4.
3920 * Return
3921 * 1 if the **CE** flag is set (either by the current helper call
3922 * or because it was already present), 0 if it is not set.
3923 *
3924 * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)
3925 * Description
3926 * Return a **struct bpf_sock** pointer in **TCP_LISTEN** state.
3927 * **bpf_sk_release**\ () is unnecessary and not allowed.
3928 * Return
3929 * A **struct bpf_sock** pointer on success, or **NULL** in
3930 * case of failure.
3931 *
3932 * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
3933 * Description
3934 * Look for TCP socket matching *tuple*, optionally in a child
3935 * network namespace *netns*. The return value must be checked,
3936 * and if non-**NULL**, released via **bpf_sk_release**\ ().
3937 *
3938 * This function is identical to **bpf_sk_lookup_tcp**\ (), except
3939 * that it also returns timewait or request sockets. Use
3940 * **bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the
3941 * full structure.
3942 *
3943 * This helper is available only if the kernel was compiled with
3944 * **CONFIG_NET** configuration option.
3945 * Return
3946 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
3947 * For sockets with reuseport option, the **struct bpf_sock**
3948 * result is from *reuse*\ **->socks**\ [] using the hash of the
3949 * tuple.
3950 *
3951 * long bpf_tcp_check_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
3952 * Description
3953 * Check whether *iph* and *th* contain a valid SYN cookie ACK for
3954 * the listening socket in *sk*.
3955 *
3956 * *iph* points to the start of the IPv4 or IPv6 header, while
3957 * *iph_len* contains **sizeof**\ (**struct iphdr**) or
3958 * **sizeof**\ (**struct ipv6hdr**).
3959 *
3960 * *th* points to the start of the TCP header, while *th_len*
3961 * contains the length of the TCP header (at least
3962 * **sizeof**\ (**struct tcphdr**)).
3963 * Return
3964 * 0 if *iph* and *th* are a valid SYN cookie ACK, or a negative
3965 * error otherwise.
3966 *
3967 * long bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags)
3968 * Description
3969 * Get name of sysctl in /proc/sys/ and copy it into provided by
3970 * program buffer *buf* of size *buf_len*.
3971 *
3972 * The buffer is always NUL terminated, unless it's zero-sized.
3973 *
3974 * If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is
3975 * copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name
3976 * only (e.g. "tcp_mem").
3977 * Return
3978 * Number of character copied (not including the trailing NUL).
3979 *
3980 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
3981 * truncated name in this case).
3982 *
3983 * long bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
3984 * Description
3985 * Get current value of sysctl as it is presented in /proc/sys
3986 * (incl. newline, etc), and copy it as a string into provided
3987 * by program buffer *buf* of size *buf_len*.
3988 *
3989 * The whole value is copied, no matter what file position user
3990 * space issued e.g. sys_read at.
3991 *
3992 * The buffer is always NUL terminated, unless it's zero-sized.
3993 * Return
3994 * Number of character copied (not including the trailing NUL).
3995 *
3996 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
3997 * truncated name in this case).
3998 *
3999 * **-EINVAL** if current value was unavailable, e.g. because
4000 * sysctl is uninitialized and read returns -EIO for it.
4001 *
4002 * long bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
4003 * Description
4004 * Get new value being written by user space to sysctl (before
4005 * the actual write happens) and copy it as a string into
4006 * provided by program buffer *buf* of size *buf_len*.
4007 *
4008 * User space may write new value at file position > 0.
4009 *
4010 * The buffer is always NUL terminated, unless it's zero-sized.
4011 * Return
4012 * Number of character copied (not including the trailing NUL).
4013 *
4014 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
4015 * truncated name in this case).
4016 *
4017 * **-EINVAL** if sysctl is being read.
4018 *
4019 * long bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len)
4020 * Description
4021 * Override new value being written by user space to sysctl with
4022 * value provided by program in buffer *buf* of size *buf_len*.
4023 *
4024 * *buf* should contain a string in same form as provided by user
4025 * space on sysctl write.
4026 *
4027 * User space may write new value at file position > 0. To override
4028 * the whole sysctl value file position should be set to zero.
4029 * Return
4030 * 0 on success.
4031 *
4032 * **-E2BIG** if the *buf_len* is too big.
4033 *
4034 * **-EINVAL** if sysctl is being read.
4035 *
4036 * long bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res)
4037 * Description
4038 * Convert the initial part of the string from buffer *buf* of
4039 * size *buf_len* to a long integer according to the given base
4040 * and save the result in *res*.
4041 *
4042 * The string may begin with an arbitrary amount of white space
4043 * (as determined by **isspace**\ (3)) followed by a single
4044 * optional '**-**' sign.
4045 *
4046 * Five least significant bits of *flags* encode base, other bits
4047 * are currently unused.
4048 *
4049 * Base must be either 8, 10, 16 or 0 to detect it automatically
4050 * similar to user space **strtol**\ (3).
4051 * Return
4052 * Number of characters consumed on success. Must be positive but
4053 * no more than *buf_len*.
4054 *
4055 * **-EINVAL** if no valid digits were found or unsupported base
4056 * was provided.
4057 *
4058 * **-ERANGE** if resulting value was out of range.
4059 *
4060 * long bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res)
4061 * Description
4062 * Convert the initial part of the string from buffer *buf* of
4063 * size *buf_len* to an unsigned long integer according to the
4064 * given base and save the result in *res*.
4065 *
4066 * The string may begin with an arbitrary amount of white space
4067 * (as determined by **isspace**\ (3)).
4068 *
4069 * Five least significant bits of *flags* encode base, other bits
4070 * are currently unused.
4071 *
4072 * Base must be either 8, 10, 16 or 0 to detect it automatically
4073 * similar to user space **strtoul**\ (3).
4074 * Return
4075 * Number of characters consumed on success. Must be positive but
4076 * no more than *buf_len*.
4077 *
4078 * **-EINVAL** if no valid digits were found or unsupported base
4079 * was provided.
4080 *
4081 * **-ERANGE** if resulting value was out of range.
4082 *
4083 * void *bpf_sk_storage_get(struct bpf_map *map, void *sk, void *value, u64 flags)
4084 * Description
4085 * Get a bpf-local-storage from a *sk*.
4086 *
4087 * Logically, it could be thought of getting the value from
4088 * a *map* with *sk* as the **key**. From this
4089 * perspective, the usage is not much different from
4090 * **bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this
4091 * helper enforces the key must be a full socket and the map must
4092 * be a **BPF_MAP_TYPE_SK_STORAGE** also.
4093 *
4094 * Underneath, the value is stored locally at *sk* instead of
4095 * the *map*. The *map* is used as the bpf-local-storage
4096 * "type". The bpf-local-storage "type" (i.e. the *map*) is
4097 * searched against all bpf-local-storages residing at *sk*.
4098 *
4099 * *sk* is a kernel **struct sock** pointer for LSM program.
4100 * *sk* is a **struct bpf_sock** pointer for other program types.
4101 *
4102 * An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be
4103 * used such that a new bpf-local-storage will be
4104 * created if one does not exist. *value* can be used
4105 * together with **BPF_SK_STORAGE_GET_F_CREATE** to specify
4106 * the initial value of a bpf-local-storage. If *value* is
4107 * **NULL**, the new bpf-local-storage will be zero initialized.
4108 * Return
4109 * A bpf-local-storage pointer is returned on success.
4110 *
4111 * **NULL** if not found or there was an error in adding
4112 * a new bpf-local-storage.
4113 *
4114 * long bpf_sk_storage_delete(struct bpf_map *map, void *sk)
4115 * Description
4116 * Delete a bpf-local-storage from a *sk*.
4117 * Return
4118 * 0 on success.
4119 *
4120 * **-ENOENT** if the bpf-local-storage cannot be found.
4121 * **-EINVAL** if sk is not a fullsock (e.g. a request_sock).
4122 *
4123 * long bpf_send_signal(u32 sig)
4124 * Description
4125 * Send signal *sig* to the process of the current task.
4126 * The signal may be delivered to any of this process's threads.
4127 * Return
4128 * 0 on success or successfully queued.
4129 *
4130 * **-EBUSY** if work queue under nmi is full.
4131 *
4132 * **-EINVAL** if *sig* is invalid.
4133 *
4134 * **-EPERM** if no permission to send the *sig*.
4135 *
4136 * **-EAGAIN** if bpf program can try again.
4137 *
4138 * s64 bpf_tcp_gen_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
4139 * Description
4140 * Try to issue a SYN cookie for the packet with corresponding
4141 * IP/TCP headers, *iph* and *th*, on the listening socket in *sk*.
4142 *
4143 * *iph* points to the start of the IPv4 or IPv6 header, while
4144 * *iph_len* contains **sizeof**\ (**struct iphdr**) or
4145 * **sizeof**\ (**struct ipv6hdr**).
4146 *
4147 * *th* points to the start of the TCP header, while *th_len*
4148 * contains the length of the TCP header with options (at least
4149 * **sizeof**\ (**struct tcphdr**)).
4150 * Return
4151 * On success, lower 32 bits hold the generated SYN cookie in
4152 * followed by 16 bits which hold the MSS value for that cookie,
4153 * and the top 16 bits are unused.
4154 *
4155 * On failure, the returned value is one of the following:
4156 *
4157 * **-EINVAL** SYN cookie cannot be issued due to error
4158 *
4159 * **-ENOENT** SYN cookie should not be issued (no SYN flood)
4160 *
4161 * **-EOPNOTSUPP** kernel configuration does not enable SYN cookies
4162 *
4163 * **-EPROTONOSUPPORT** IP packet version is not 4 or 6
4164 *
4165 * long bpf_skb_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
4166 * Description
4167 * Write raw *data* blob into a special BPF perf event held by
4168 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
4169 * event must have the following attributes: **PERF_SAMPLE_RAW**
4170 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
4171 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
4172 *
4173 * The *flags* are used to indicate the index in *map* for which
4174 * the value must be put, masked with **BPF_F_INDEX_MASK**.
4175 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
4176 * to indicate that the index of the current CPU core should be
4177 * used.
4178 *
4179 * The value to write, of *size*, is passed through eBPF stack and
4180 * pointed by *data*.
4181 *
4182 * *ctx* is a pointer to in-kernel struct sk_buff.
4183 *
4184 * This helper is similar to **bpf_perf_event_output**\ () but
4185 * restricted to raw_tracepoint bpf programs.
4186 * Return
4187 * 0 on success, or a negative error in case of failure.
4188 *
4189 * long bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr)
4190 * Description
4191 * Safely attempt to read *size* bytes from user space address
4192 * *unsafe_ptr* and store the data in *dst*.
4193 * Return
4194 * 0 on success, or a negative error in case of failure.
4195 *
4196 * long bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
4197 * Description
4198 * Safely attempt to read *size* bytes from kernel space address
4199 * *unsafe_ptr* and store the data in *dst*.
4200 * Return
4201 * 0 on success, or a negative error in case of failure.
4202 *
4203 * long bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr)
4204 * Description
4205 * Copy a NUL terminated string from an unsafe user address
4206 * *unsafe_ptr* to *dst*. The *size* should include the
4207 * terminating NUL byte. In case the string length is smaller than
4208 * *size*, the target is not padded with further NUL bytes. If the
4209 * string length is larger than *size*, just *size*-1 bytes are
4210 * copied and the last byte is set to NUL.
4211 *
4212 * On success, returns the number of bytes that were written,
4213 * including the terminal NUL. This makes this helper useful in
4214 * tracing programs for reading strings, and more importantly to
4215 * get its length at runtime. See the following snippet:
4216 *
4217 * ::
4218 *
4219 * SEC("kprobe/sys_open")
4220 * void bpf_sys_open(struct pt_regs *ctx)
4221 * {
4222 * char buf[PATHLEN]; // PATHLEN is defined to 256
4223 * int res = bpf_probe_read_user_str(buf, sizeof(buf),
4224 * ctx->di);
4225 *
4226 * // Consume buf, for example push it to
4227 * // userspace via bpf_perf_event_output(); we
4228 * // can use res (the string length) as event
4229 * // size, after checking its boundaries.
4230 * }
4231 *
4232 * In comparison, using **bpf_probe_read_user**\ () helper here
4233 * instead to read the string would require to estimate the length
4234 * at compile time, and would often result in copying more memory
4235 * than necessary.
4236 *
4237 * Another useful use case is when parsing individual process
4238 * arguments or individual environment variables navigating
4239 * *current*\ **->mm->arg_start** and *current*\
4240 * **->mm->env_start**: using this helper and the return value,
4241 * one can quickly iterate at the right offset of the memory area.
4242 * Return
4243 * On success, the strictly positive length of the output string,
4244 * including the trailing NUL character. On error, a negative
4245 * value.
4246 *
4247 * long bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr)
4248 * Description
4249 * Copy a NUL terminated string from an unsafe kernel address *unsafe_ptr*
4250 * to *dst*. Same semantics as with **bpf_probe_read_user_str**\ () apply.
4251 * Return
4252 * On success, the strictly positive length of the string, including
4253 * the trailing NUL character. On error, a negative value.
4254 *
4255 * long bpf_tcp_send_ack(void *tp, u32 rcv_nxt)
4256 * Description
4257 * Send out a tcp-ack. *tp* is the in-kernel struct **tcp_sock**.
4258 * *rcv_nxt* is the ack_seq to be sent out.
4259 * Return
4260 * 0 on success, or a negative error in case of failure.
4261 *
4262 * long bpf_send_signal_thread(u32 sig)
4263 * Description
4264 * Send signal *sig* to the thread corresponding to the current task.
4265 * Return
4266 * 0 on success or successfully queued.
4267 *
4268 * **-EBUSY** if work queue under nmi is full.
4269 *
4270 * **-EINVAL** if *sig* is invalid.
4271 *
4272 * **-EPERM** if no permission to send the *sig*.
4273 *
4274 * **-EAGAIN** if bpf program can try again.
4275 *
4276 * u64 bpf_jiffies64(void)
4277 * Description
4278 * Obtain the 64bit jiffies
4279 * Return
4280 * The 64 bit jiffies
4281 *
4282 * long bpf_read_branch_records(struct bpf_perf_event_data *ctx, void *buf, u32 size, u64 flags)
4283 * Description
4284 * For an eBPF program attached to a perf event, retrieve the
4285 * branch records (**struct perf_branch_entry**) associated to *ctx*
4286 * and store it in the buffer pointed by *buf* up to size
4287 * *size* bytes.
4288 * Return
4289 * On success, number of bytes written to *buf*. On error, a
4290 * negative value.
4291 *
4292 * The *flags* can be set to **BPF_F_GET_BRANCH_RECORDS_SIZE** to
4293 * instead return the number of bytes required to store all the
4294 * branch entries. If this flag is set, *buf* may be NULL.
4295 *
4296 * **-EINVAL** if arguments invalid or **size** not a multiple
4297 * of **sizeof**\ (**struct perf_branch_entry**\ ).
4298 *
4299 * **-ENOENT** if architecture does not support branch records.
4300 *
4301 * long bpf_get_ns_current_pid_tgid(u64 dev, u64 ino, struct bpf_pidns_info *nsdata, u32 size)
4302 * Description
4303 * Returns 0 on success, values for *pid* and *tgid* as seen from the current
4304 * *namespace* will be returned in *nsdata*.
4305 * Return
4306 * 0 on success, or one of the following in case of failure:
4307 *
4308 * **-EINVAL** if dev and inum supplied don't match dev_t and inode number
4309 * with nsfs of current task, or if dev conversion to dev_t lost high bits.
4310 *
4311 * **-ENOENT** if pidns does not exists for the current task.
4312 *
4313 * long bpf_xdp_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
4314 * Description
4315 * Write raw *data* blob into a special BPF perf event held by
4316 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
4317 * event must have the following attributes: **PERF_SAMPLE_RAW**
4318 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
4319 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
4320 *
4321 * The *flags* are used to indicate the index in *map* for which
4322 * the value must be put, masked with **BPF_F_INDEX_MASK**.
4323 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
4324 * to indicate that the index of the current CPU core should be
4325 * used.
4326 *
4327 * The value to write, of *size*, is passed through eBPF stack and
4328 * pointed by *data*.
4329 *
4330 * *ctx* is a pointer to in-kernel struct xdp_buff.
4331 *
4332 * This helper is similar to **bpf_perf_eventoutput**\ () but
4333 * restricted to raw_tracepoint bpf programs.
4334 * Return
4335 * 0 on success, or a negative error in case of failure.
4336 *
4337 * u64 bpf_get_netns_cookie(void *ctx)
4338 * Description
4339 * Retrieve the cookie (generated by the kernel) of the network
4340 * namespace the input *ctx* is associated with. The network
4341 * namespace cookie remains stable for its lifetime and provides
4342 * a global identifier that can be assumed unique. If *ctx* is
4343 * NULL, then the helper returns the cookie for the initial
4344 * network namespace. The cookie itself is very similar to that
4345 * of **bpf_get_socket_cookie**\ () helper, but for network
4346 * namespaces instead of sockets.
4347 * Return
4348 * A 8-byte long opaque number.
4349 *
4350 * u64 bpf_get_current_ancestor_cgroup_id(int ancestor_level)
4351 * Description
4352 * Return id of cgroup v2 that is ancestor of the cgroup associated
4353 * with the current task at the *ancestor_level*. The root cgroup
4354 * is at *ancestor_level* zero and each step down the hierarchy
4355 * increments the level. If *ancestor_level* == level of cgroup
4356 * associated with the current task, then return value will be the
4357 * same as that of **bpf_get_current_cgroup_id**\ ().
4358 *
4359 * The helper is useful to implement policies based on cgroups
4360 * that are upper in hierarchy than immediate cgroup associated
4361 * with the current task.
4362 *
4363 * The format of returned id and helper limitations are same as in
4364 * **bpf_get_current_cgroup_id**\ ().
4365 * Return
4366 * The id is returned or 0 in case the id could not be retrieved.
4367 *
4368 * long bpf_sk_assign(struct sk_buff *skb, void *sk, u64 flags)
4369 * Description
4370 * Helper is overloaded depending on BPF program type. This
4371 * description applies to **BPF_PROG_TYPE_SCHED_CLS** and
4372 * **BPF_PROG_TYPE_SCHED_ACT** programs.
4373 *
4374 * Assign the *sk* to the *skb*. When combined with appropriate
4375 * routing configuration to receive the packet towards the socket,
4376 * will cause *skb* to be delivered to the specified socket.
4377 * Subsequent redirection of *skb* via **bpf_redirect**\ (),
4378 * **bpf_clone_redirect**\ () or other methods outside of BPF may
4379 * interfere with successful delivery to the socket.
4380 *
4381 * This operation is only valid from TC ingress path.
4382 *
4383 * The *flags* argument must be zero.
4384 * Return
4385 * 0 on success, or a negative error in case of failure:
4386 *
4387 * **-EINVAL** if specified *flags* are not supported.
4388 *
4389 * **-ENOENT** if the socket is unavailable for assignment.
4390 *
4391 * **-ENETUNREACH** if the socket is unreachable (wrong netns).
4392 *
4393 * **-EOPNOTSUPP** if the operation is not supported, for example
4394 * a call from outside of TC ingress.
4395 *
4396 * long bpf_sk_assign(struct bpf_sk_lookup *ctx, struct bpf_sock *sk, u64 flags)
4397 * Description
4398 * Helper is overloaded depending on BPF program type. This
4399 * description applies to **BPF_PROG_TYPE_SK_LOOKUP** programs.
4400 *
4401 * Select the *sk* as a result of a socket lookup.
4402 *
4403 * For the operation to succeed passed socket must be compatible
4404 * with the packet description provided by the *ctx* object.
4405 *
4406 * L4 protocol (**IPPROTO_TCP** or **IPPROTO_UDP**) must
4407 * be an exact match. While IP family (**AF_INET** or
4408 * **AF_INET6**) must be compatible, that is IPv6 sockets
4409 * that are not v6-only can be selected for IPv4 packets.
4410 *
4411 * Only TCP listeners and UDP unconnected sockets can be
4412 * selected. *sk* can also be NULL to reset any previous
4413 * selection.
4414 *
4415 * *flags* argument can combination of following values:
4416 *
4417 * * **BPF_SK_LOOKUP_F_REPLACE** to override the previous
4418 * socket selection, potentially done by a BPF program
4419 * that ran before us.
4420 *
4421 * * **BPF_SK_LOOKUP_F_NO_REUSEPORT** to skip
4422 * load-balancing within reuseport group for the socket
4423 * being selected.
4424 *
4425 * On success *ctx->sk* will point to the selected socket.
4426 *
4427 * Return
4428 * 0 on success, or a negative errno in case of failure.
4429 *
4430 * * **-EAFNOSUPPORT** if socket family (*sk->family*) is
4431 * not compatible with packet family (*ctx->family*).
4432 *
4433 * * **-EEXIST** if socket has been already selected,
4434 * potentially by another program, and
4435 * **BPF_SK_LOOKUP_F_REPLACE** flag was not specified.
4436 *
4437 * * **-EINVAL** if unsupported flags were specified.
4438 *
4439 * * **-EPROTOTYPE** if socket L4 protocol
4440 * (*sk->protocol*) doesn't match packet protocol
4441 * (*ctx->protocol*).
4442 *
4443 * * **-ESOCKTNOSUPPORT** if socket is not in allowed
4444 * state (TCP listening or UDP unconnected).
4445 *
4446 * u64 bpf_ktime_get_boot_ns(void)
4447 * Description
4448 * Return the time elapsed since system boot, in nanoseconds.
4449 * Does include the time the system was suspended.
4450 * See: **clock_gettime**\ (**CLOCK_BOOTTIME**)
4451 * Return
4452 * Current *ktime*.
4453 *
4454 * long bpf_seq_printf(struct seq_file *m, const char *fmt, u32 fmt_size, const void *data, u32 data_len)
4455 * Description
4456 * **bpf_seq_printf**\ () uses seq_file **seq_printf**\ () to print
4457 * out the format string.
4458 * The *m* represents the seq_file. The *fmt* and *fmt_size* are for
4459 * the format string itself. The *data* and *data_len* are format string
4460 * arguments. The *data* are a **u64** array and corresponding format string
4461 * values are stored in the array. For strings and pointers where pointees
4462 * are accessed, only the pointer values are stored in the *data* array.
4463 * The *data_len* is the size of *data* in bytes - must be a multiple of 8.
4464 *
4465 * Formats **%s**, **%p{i,I}{4,6}** requires to read kernel memory.
4466 * Reading kernel memory may fail due to either invalid address or
4467 * valid address but requiring a major memory fault. If reading kernel memory
4468 * fails, the string for **%s** will be an empty string, and the ip
4469 * address for **%p{i,I}{4,6}** will be 0. Not returning error to
4470 * bpf program is consistent with what **bpf_trace_printk**\ () does for now.
4471 * Return
4472 * 0 on success, or a negative error in case of failure:
4473 *
4474 * **-EBUSY** if per-CPU memory copy buffer is busy, can try again
4475 * by returning 1 from bpf program.
4476 *
4477 * **-EINVAL** if arguments are invalid, or if *fmt* is invalid/unsupported.
4478 *
4479 * **-E2BIG** if *fmt* contains too many format specifiers.
4480 *
4481 * **-EOVERFLOW** if an overflow happened: The same object will be tried again.
4482 *
4483 * long bpf_seq_write(struct seq_file *m, const void *data, u32 len)
4484 * Description
4485 * **bpf_seq_write**\ () uses seq_file **seq_write**\ () to write the data.
4486 * The *m* represents the seq_file. The *data* and *len* represent the
4487 * data to write in bytes.
4488 * Return
4489 * 0 on success, or a negative error in case of failure:
4490 *
4491 * **-EOVERFLOW** if an overflow happened: The same object will be tried again.
4492 *
4493 * u64 bpf_sk_cgroup_id(void *sk)
4494 * Description
4495 * Return the cgroup v2 id of the socket *sk*.
4496 *
4497 * *sk* must be a non-**NULL** pointer to a socket, e.g. one
4498 * returned from **bpf_sk_lookup_xxx**\ (),
4499 * **bpf_sk_fullsock**\ (), etc. The format of returned id is
4500 * same as in **bpf_skb_cgroup_id**\ ().
4501 *
4502 * This helper is available only if the kernel was compiled with
4503 * the **CONFIG_SOCK_CGROUP_DATA** configuration option.
4504 * Return
4505 * The id is returned or 0 in case the id could not be retrieved.
4506 *
4507 * u64 bpf_sk_ancestor_cgroup_id(void *sk, int ancestor_level)
4508 * Description
4509 * Return id of cgroup v2 that is ancestor of cgroup associated
4510 * with the *sk* at the *ancestor_level*. The root cgroup is at
4511 * *ancestor_level* zero and each step down the hierarchy
4512 * increments the level. If *ancestor_level* == level of cgroup
4513 * associated with *sk*, then return value will be same as that
4514 * of **bpf_sk_cgroup_id**\ ().
4515 *
4516 * The helper is useful to implement policies based on cgroups
4517 * that are upper in hierarchy than immediate cgroup associated
4518 * with *sk*.
4519 *
4520 * The format of returned id and helper limitations are same as in
4521 * **bpf_sk_cgroup_id**\ ().
4522 * Return
4523 * The id is returned or 0 in case the id could not be retrieved.
4524 *
4525 * long bpf_ringbuf_output(void *ringbuf, void *data, u64 size, u64 flags)
4526 * Description
4527 * Copy *size* bytes from *data* into a ring buffer *ringbuf*.
4528 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
4529 * of new data availability is sent.
4530 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
4531 * of new data availability is sent unconditionally.
4532 * If **0** is specified in *flags*, an adaptive notification
4533 * of new data availability is sent.
4534 *
4535 * An adaptive notification is a notification sent whenever the user-space
4536 * process has caught up and consumed all available payloads. In case the user-space
4537 * process is still processing a previous payload, then no notification is needed
4538 * as it will process the newly added payload automatically.
4539 * Return
4540 * 0 on success, or a negative error in case of failure.
4541 *
4542 * void *bpf_ringbuf_reserve(void *ringbuf, u64 size, u64 flags)
4543 * Description
4544 * Reserve *size* bytes of payload in a ring buffer *ringbuf*.
4545 * *flags* must be 0.
4546 * Return
4547 * Valid pointer with *size* bytes of memory available; NULL,
4548 * otherwise.
4549 *
4550 * void bpf_ringbuf_submit(void *data, u64 flags)
4551 * Description
4552 * Submit reserved ring buffer sample, pointed to by *data*.
4553 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
4554 * of new data availability is sent.
4555 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
4556 * of new data availability is sent unconditionally.
4557 * If **0** is specified in *flags*, an adaptive notification
4558 * of new data availability is sent.
4559 *
4560 * See 'bpf_ringbuf_output()' for the definition of adaptive notification.
4561 * Return
4562 * Nothing. Always succeeds.
4563 *
4564 * void bpf_ringbuf_discard(void *data, u64 flags)
4565 * Description
4566 * Discard reserved ring buffer sample, pointed to by *data*.
4567 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
4568 * of new data availability is sent.
4569 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
4570 * of new data availability is sent unconditionally.
4571 * If **0** is specified in *flags*, an adaptive notification
4572 * of new data availability is sent.
4573 *
4574 * See 'bpf_ringbuf_output()' for the definition of adaptive notification.
4575 * Return
4576 * Nothing. Always succeeds.
4577 *
4578 * u64 bpf_ringbuf_query(void *ringbuf, u64 flags)
4579 * Description
4580 * Query various characteristics of provided ring buffer. What
4581 * exactly is queries is determined by *flags*:
4582 *
4583 * * **BPF_RB_AVAIL_DATA**: Amount of data not yet consumed.
4584 * * **BPF_RB_RING_SIZE**: The size of ring buffer.
4585 * * **BPF_RB_CONS_POS**: Consumer position (can wrap around).
4586 * * **BPF_RB_PROD_POS**: Producer(s) position (can wrap around).
4587 *
4588 * Data returned is just a momentary snapshot of actual values
4589 * and could be inaccurate, so this facility should be used to
4590 * power heuristics and for reporting, not to make 100% correct
4591 * calculation.
4592 * Return
4593 * Requested value, or 0, if *flags* are not recognized.
4594 *
4595 * long bpf_csum_level(struct sk_buff *skb, u64 level)
4596 * Description
4597 * Change the skbs checksum level by one layer up or down, or
4598 * reset it entirely to none in order to have the stack perform
4599 * checksum validation. The level is applicable to the following
4600 * protocols: TCP, UDP, GRE, SCTP, FCOE. For example, a decap of
4601 * | ETH | IP | UDP | GUE | IP | TCP | into | ETH | IP | TCP |
4602 * through **bpf_skb_adjust_room**\ () helper with passing in
4603 * **BPF_F_ADJ_ROOM_NO_CSUM_RESET** flag would require one call
4604 * to **bpf_csum_level**\ () with **BPF_CSUM_LEVEL_DEC** since
4605 * the UDP header is removed. Similarly, an encap of the latter
4606 * into the former could be accompanied by a helper call to
4607 * **bpf_csum_level**\ () with **BPF_CSUM_LEVEL_INC** if the
4608 * skb is still intended to be processed in higher layers of the
4609 * stack instead of just egressing at tc.
4610 *
4611 * There are three supported level settings at this time:
4612 *
4613 * * **BPF_CSUM_LEVEL_INC**: Increases skb->csum_level for skbs
4614 * with CHECKSUM_UNNECESSARY.
4615 * * **BPF_CSUM_LEVEL_DEC**: Decreases skb->csum_level for skbs
4616 * with CHECKSUM_UNNECESSARY.
4617 * * **BPF_CSUM_LEVEL_RESET**: Resets skb->csum_level to 0 and
4618 * sets CHECKSUM_NONE to force checksum validation by the stack.
4619 * * **BPF_CSUM_LEVEL_QUERY**: No-op, returns the current
4620 * skb->csum_level.
4621 * Return
4622 * 0 on success, or a negative error in case of failure. In the
4623 * case of **BPF_CSUM_LEVEL_QUERY**, the current skb->csum_level
4624 * is returned or the error code -EACCES in case the skb is not
4625 * subject to CHECKSUM_UNNECESSARY.
4626 *
4627 * struct tcp6_sock *bpf_skc_to_tcp6_sock(void *sk)
4628 * Description
4629 * Dynamically cast a *sk* pointer to a *tcp6_sock* pointer.
4630 * Return
4631 * *sk* if casting is valid, or **NULL** otherwise.
4632 *
4633 * struct tcp_sock *bpf_skc_to_tcp_sock(void *sk)
4634 * Description
4635 * Dynamically cast a *sk* pointer to a *tcp_sock* pointer.
4636 * Return
4637 * *sk* if casting is valid, or **NULL** otherwise.
4638 *
4639 * struct tcp_timewait_sock *bpf_skc_to_tcp_timewait_sock(void *sk)
4640 * Description
4641 * Dynamically cast a *sk* pointer to a *tcp_timewait_sock* pointer.
4642 * Return
4643 * *sk* if casting is valid, or **NULL** otherwise.
4644 *
4645 * struct tcp_request_sock *bpf_skc_to_tcp_request_sock(void *sk)
4646 * Description
4647 * Dynamically cast a *sk* pointer to a *tcp_request_sock* pointer.
4648 * Return
4649 * *sk* if casting is valid, or **NULL** otherwise.
4650 *
4651 * struct udp6_sock *bpf_skc_to_udp6_sock(void *sk)
4652 * Description
4653 * Dynamically cast a *sk* pointer to a *udp6_sock* pointer.
4654 * Return
4655 * *sk* if casting is valid, or **NULL** otherwise.
4656 *
4657 * long bpf_get_task_stack(struct task_struct *task, void *buf, u32 size, u64 flags)
4658 * Description
4659 * Return a user or a kernel stack in bpf program provided buffer.
4660 * Note: the user stack will only be populated if the *task* is
4661 * the current task; all other tasks will return -EOPNOTSUPP.
4662 * To achieve this, the helper needs *task*, which is a valid
4663 * pointer to **struct task_struct**. To store the stacktrace, the
4664 * bpf program provides *buf* with a nonnegative *size*.
4665 *
4666 * The last argument, *flags*, holds the number of stack frames to
4667 * skip (from 0 to 255), masked with
4668 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
4669 * the following flags:
4670 *
4671 * **BPF_F_USER_STACK**
4672 * Collect a user space stack instead of a kernel stack.
4673 * The *task* must be the current task.
4674 * **BPF_F_USER_BUILD_ID**
4675 * Collect buildid+offset instead of ips for user stack,
4676 * only valid if **BPF_F_USER_STACK** is also specified.
4677 *
4678 * **bpf_get_task_stack**\ () can collect up to
4679 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
4680 * to sufficient large buffer size. Note that
4681 * this limit can be controlled with the **sysctl** program, and
4682 * that it should be manually increased in order to profile long
4683 * user stacks (such as stacks for Java programs). To do so, use:
4684 *
4685 * ::
4686 *
4687 * # sysctl kernel.perf_event_max_stack=<new value>
4688 * Return
4689 * The non-negative copied *buf* length equal to or less than
4690 * *size* on success, or a negative error in case of failure.
4691 *
4692 * long bpf_load_hdr_opt(struct bpf_sock_ops *skops, void *searchby_res, u32 len, u64 flags)
4693 * Description
4694 * Load header option. Support reading a particular TCP header
4695 * option for bpf program (**BPF_PROG_TYPE_SOCK_OPS**).
4696 *
4697 * If *flags* is 0, it will search the option from the
4698 * *skops*\ **->skb_data**. The comment in **struct bpf_sock_ops**
4699 * has details on what skb_data contains under different
4700 * *skops*\ **->op**.
4701 *
4702 * The first byte of the *searchby_res* specifies the
4703 * kind that it wants to search.
4704 *
4705 * If the searching kind is an experimental kind
4706 * (i.e. 253 or 254 according to RFC6994). It also
4707 * needs to specify the "magic" which is either
4708 * 2 bytes or 4 bytes. It then also needs to
4709 * specify the size of the magic by using
4710 * the 2nd byte which is "kind-length" of a TCP
4711 * header option and the "kind-length" also
4712 * includes the first 2 bytes "kind" and "kind-length"
4713 * itself as a normal TCP header option also does.
4714 *
4715 * For example, to search experimental kind 254 with
4716 * 2 byte magic 0xeB9F, the searchby_res should be
4717 * [ 254, 4, 0xeB, 0x9F, 0, 0, .... 0 ].
4718 *
4719 * To search for the standard window scale option (3),
4720 * the *searchby_res* should be [ 3, 0, 0, .... 0 ].
4721 * Note, kind-length must be 0 for regular option.
4722 *
4723 * Searching for No-Op (0) and End-of-Option-List (1) are
4724 * not supported.
4725 *
4726 * *len* must be at least 2 bytes which is the minimal size
4727 * of a header option.
4728 *
4729 * Supported flags:
4730 *
4731 * * **BPF_LOAD_HDR_OPT_TCP_SYN** to search from the
4732 * saved_syn packet or the just-received syn packet.
4733 *
4734 * Return
4735 * > 0 when found, the header option is copied to *searchby_res*.
4736 * The return value is the total length copied. On failure, a
4737 * negative error code is returned:
4738 *
4739 * **-EINVAL** if a parameter is invalid.
4740 *
4741 * **-ENOMSG** if the option is not found.
4742 *
4743 * **-ENOENT** if no syn packet is available when
4744 * **BPF_LOAD_HDR_OPT_TCP_SYN** is used.
4745 *
4746 * **-ENOSPC** if there is not enough space. Only *len* number of
4747 * bytes are copied.
4748 *
4749 * **-EFAULT** on failure to parse the header options in the
4750 * packet.
4751 *
4752 * **-EPERM** if the helper cannot be used under the current
4753 * *skops*\ **->op**.
4754 *
4755 * long bpf_store_hdr_opt(struct bpf_sock_ops *skops, const void *from, u32 len, u64 flags)
4756 * Description
4757 * Store header option. The data will be copied
4758 * from buffer *from* with length *len* to the TCP header.
4759 *
4760 * The buffer *from* should have the whole option that
4761 * includes the kind, kind-length, and the actual
4762 * option data. The *len* must be at least kind-length
4763 * long. The kind-length does not have to be 4 byte
4764 * aligned. The kernel will take care of the padding
4765 * and setting the 4 bytes aligned value to th->doff.
4766 *
4767 * This helper will check for duplicated option
4768 * by searching the same option in the outgoing skb.
4769 *
4770 * This helper can only be called during
4771 * **BPF_SOCK_OPS_WRITE_HDR_OPT_CB**.
4772 *
4773 * Return
4774 * 0 on success, or negative error in case of failure:
4775 *
4776 * **-EINVAL** If param is invalid.
4777 *
4778 * **-ENOSPC** if there is not enough space in the header.
4779 * Nothing has been written
4780 *
4781 * **-EEXIST** if the option already exists.
4782 *
4783 * **-EFAULT** on failure to parse the existing header options.
4784 *
4785 * **-EPERM** if the helper cannot be used under the current
4786 * *skops*\ **->op**.
4787 *
4788 * long bpf_reserve_hdr_opt(struct bpf_sock_ops *skops, u32 len, u64 flags)
4789 * Description
4790 * Reserve *len* bytes for the bpf header option. The
4791 * space will be used by **bpf_store_hdr_opt**\ () later in
4792 * **BPF_SOCK_OPS_WRITE_HDR_OPT_CB**.
4793 *
4794 * If **bpf_reserve_hdr_opt**\ () is called multiple times,
4795 * the total number of bytes will be reserved.
4796 *
4797 * This helper can only be called during
4798 * **BPF_SOCK_OPS_HDR_OPT_LEN_CB**.
4799 *
4800 * Return
4801 * 0 on success, or negative error in case of failure:
4802 *
4803 * **-EINVAL** if a parameter is invalid.
4804 *
4805 * **-ENOSPC** if there is not enough space in the header.
4806 *
4807 * **-EPERM** if the helper cannot be used under the current
4808 * *skops*\ **->op**.
4809 *
4810 * void *bpf_inode_storage_get(struct bpf_map *map, void *inode, void *value, u64 flags)
4811 * Description
4812 * Get a bpf_local_storage from an *inode*.
4813 *
4814 * Logically, it could be thought of as getting the value from
4815 * a *map* with *inode* as the **key**. From this
4816 * perspective, the usage is not much different from
4817 * **bpf_map_lookup_elem**\ (*map*, **&**\ *inode*) except this
4818 * helper enforces the key must be an inode and the map must also
4819 * be a **BPF_MAP_TYPE_INODE_STORAGE**.
4820 *
4821 * Underneath, the value is stored locally at *inode* instead of
4822 * the *map*. The *map* is used as the bpf-local-storage
4823 * "type". The bpf-local-storage "type" (i.e. the *map*) is
4824 * searched against all bpf_local_storage residing at *inode*.
4825 *
4826 * An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be
4827 * used such that a new bpf_local_storage will be
4828 * created if one does not exist. *value* can be used
4829 * together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify
4830 * the initial value of a bpf_local_storage. If *value* is
4831 * **NULL**, the new bpf_local_storage will be zero initialized.
4832 * Return
4833 * A bpf_local_storage pointer is returned on success.
4834 *
4835 * **NULL** if not found or there was an error in adding
4836 * a new bpf_local_storage.
4837 *
4838 * int bpf_inode_storage_delete(struct bpf_map *map, void *inode)
4839 * Description
4840 * Delete a bpf_local_storage from an *inode*.
4841 * Return
4842 * 0 on success.
4843 *
4844 * **-ENOENT** if the bpf_local_storage cannot be found.
4845 *
4846 * long bpf_d_path(struct path *path, char *buf, u32 sz)
4847 * Description
4848 * Return full path for given **struct path** object, which
4849 * needs to be the kernel BTF *path* object. The path is
4850 * returned in the provided buffer *buf* of size *sz* and
4851 * is zero terminated.
4852 *
4853 * Return
4854 * On success, the strictly positive length of the string,
4855 * including the trailing NUL character. On error, a negative
4856 * value.
4857 *
4858 * long bpf_copy_from_user(void *dst, u32 size, const void *user_ptr)
4859 * Description
4860 * Read *size* bytes from user space address *user_ptr* and store
4861 * the data in *dst*. This is a wrapper of **copy_from_user**\ ().
4862 * Return
4863 * 0 on success, or a negative error in case of failure.
4864 *
4865 * long bpf_snprintf_btf(char *str, u32 str_size, struct btf_ptr *ptr, u32 btf_ptr_size, u64 flags)
4866 * Description
4867 * Use BTF to store a string representation of *ptr*->ptr in *str*,
4868 * using *ptr*->type_id. This value should specify the type
4869 * that *ptr*->ptr points to. LLVM __builtin_btf_type_id(type, 1)
4870 * can be used to look up vmlinux BTF type ids. Traversing the
4871 * data structure using BTF, the type information and values are
4872 * stored in the first *str_size* - 1 bytes of *str*. Safe copy of
4873 * the pointer data is carried out to avoid kernel crashes during
4874 * operation. Smaller types can use string space on the stack;
4875 * larger programs can use map data to store the string
4876 * representation.
4877 *
4878 * The string can be subsequently shared with userspace via
4879 * bpf_perf_event_output() or ring buffer interfaces.
4880 * bpf_trace_printk() is to be avoided as it places too small
4881 * a limit on string size to be useful.
4882 *
4883 * *flags* is a combination of
4884 *
4885 * **BTF_F_COMPACT**
4886 * no formatting around type information
4887 * **BTF_F_NONAME**
4888 * no struct/union member names/types
4889 * **BTF_F_PTR_RAW**
4890 * show raw (unobfuscated) pointer values;
4891 * equivalent to printk specifier %px.
4892 * **BTF_F_ZERO**
4893 * show zero-valued struct/union members; they
4894 * are not displayed by default
4895 *
4896 * Return
4897 * The number of bytes that were written (or would have been
4898 * written if output had to be truncated due to string size),
4899 * or a negative error in cases of failure.
4900 *
4901 * long bpf_seq_printf_btf(struct seq_file *m, struct btf_ptr *ptr, u32 ptr_size, u64 flags)
4902 * Description
4903 * Use BTF to write to seq_write a string representation of
4904 * *ptr*->ptr, using *ptr*->type_id as per bpf_snprintf_btf().
4905 * *flags* are identical to those used for bpf_snprintf_btf.
4906 * Return
4907 * 0 on success or a negative error in case of failure.
4908 *
4909 * u64 bpf_skb_cgroup_classid(struct sk_buff *skb)
4910 * Description
4911 * See **bpf_get_cgroup_classid**\ () for the main description.
4912 * This helper differs from **bpf_get_cgroup_classid**\ () in that
4913 * the cgroup v1 net_cls class is retrieved only from the *skb*'s
4914 * associated socket instead of the current process.
4915 * Return
4916 * The id is returned or 0 in case the id could not be retrieved.
4917 *
4918 * long bpf_redirect_neigh(u32 ifindex, struct bpf_redir_neigh *params, int plen, u64 flags)
4919 * Description
4920 * Redirect the packet to another net device of index *ifindex*
4921 * and fill in L2 addresses from neighboring subsystem. This helper
4922 * is somewhat similar to **bpf_redirect**\ (), except that it
4923 * populates L2 addresses as well, meaning, internally, the helper
4924 * relies on the neighbor lookup for the L2 address of the nexthop.
4925 *
4926 * The helper will perform a FIB lookup based on the skb's
4927 * networking header to get the address of the next hop, unless
4928 * this is supplied by the caller in the *params* argument. The
4929 * *plen* argument indicates the len of *params* and should be set
4930 * to 0 if *params* is NULL.
4931 *
4932 * The *flags* argument is reserved and must be 0. The helper is
4933 * currently only supported for tc BPF program types, and enabled
4934 * for IPv4 and IPv6 protocols.
4935 * Return
4936 * The helper returns **TC_ACT_REDIRECT** on success or
4937 * **TC_ACT_SHOT** on error.
4938 *
4939 * void *bpf_per_cpu_ptr(const void *percpu_ptr, u32 cpu)
4940 * Description
4941 * Take a pointer to a percpu ksym, *percpu_ptr*, and return a
4942 * pointer to the percpu kernel variable on *cpu*. A ksym is an
4943 * extern variable decorated with '__ksym'. For ksym, there is a
4944 * global var (either static or global) defined of the same name
4945 * in the kernel. The ksym is percpu if the global var is percpu.
4946 * The returned pointer points to the global percpu var on *cpu*.
4947 *
4948 * bpf_per_cpu_ptr() has the same semantic as per_cpu_ptr() in the
4949 * kernel, except that bpf_per_cpu_ptr() may return NULL. This
4950 * happens if *cpu* is larger than nr_cpu_ids. The caller of
4951 * bpf_per_cpu_ptr() must check the returned value.
4952 * Return
4953 * A pointer pointing to the kernel percpu variable on *cpu*, or
4954 * NULL, if *cpu* is invalid.
4955 *
4956 * void *bpf_this_cpu_ptr(const void *percpu_ptr)
4957 * Description
4958 * Take a pointer to a percpu ksym, *percpu_ptr*, and return a
4959 * pointer to the percpu kernel variable on this cpu. See the
4960 * description of 'ksym' in **bpf_per_cpu_ptr**\ ().
4961 *
4962 * bpf_this_cpu_ptr() has the same semantic as this_cpu_ptr() in
4963 * the kernel. Different from **bpf_per_cpu_ptr**\ (), it would
4964 * never return NULL.
4965 * Return
4966 * A pointer pointing to the kernel percpu variable on this cpu.
4967 *
4968 * long bpf_redirect_peer(u32 ifindex, u64 flags)
4969 * Description
4970 * Redirect the packet to another net device of index *ifindex*.
4971 * This helper is somewhat similar to **bpf_redirect**\ (), except
4972 * that the redirection happens to the *ifindex*' peer device and
4973 * the netns switch takes place from ingress to ingress without
4974 * going through the CPU's backlog queue.
4975 *
4976 * *skb*\ **->mark** and *skb*\ **->tstamp** are not cleared during
4977 * the netns switch.
4978 *
4979 * The *flags* argument is reserved and must be 0. The helper is
4980 * currently only supported for tc BPF program types at the
4981 * ingress hook and for veth and netkit target device types. The
4982 * peer device must reside in a different network namespace.
4983 * Return
4984 * The helper returns **TC_ACT_REDIRECT** on success or
4985 * **TC_ACT_SHOT** on error.
4986 *
4987 * void *bpf_task_storage_get(struct bpf_map *map, struct task_struct *task, void *value, u64 flags)
4988 * Description
4989 * Get a bpf_local_storage from the *task*.
4990 *
4991 * Logically, it could be thought of as getting the value from
4992 * a *map* with *task* as the **key**. From this
4993 * perspective, the usage is not much different from
4994 * **bpf_map_lookup_elem**\ (*map*, **&**\ *task*) except this
4995 * helper enforces the key must be a task_struct and the map must also
4996 * be a **BPF_MAP_TYPE_TASK_STORAGE**.
4997 *
4998 * Underneath, the value is stored locally at *task* instead of
4999 * the *map*. The *map* is used as the bpf-local-storage
5000 * "type". The bpf-local-storage "type" (i.e. the *map*) is
5001 * searched against all bpf_local_storage residing at *task*.
5002 *
5003 * An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be
5004 * used such that a new bpf_local_storage will be
5005 * created if one does not exist. *value* can be used
5006 * together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify
5007 * the initial value of a bpf_local_storage. If *value* is
5008 * **NULL**, the new bpf_local_storage will be zero initialized.
5009 * Return
5010 * A bpf_local_storage pointer is returned on success.
5011 *
5012 * **NULL** if not found or there was an error in adding
5013 * a new bpf_local_storage.
5014 *
5015 * long bpf_task_storage_delete(struct bpf_map *map, struct task_struct *task)
5016 * Description
5017 * Delete a bpf_local_storage from a *task*.
5018 * Return
5019 * 0 on success.
5020 *
5021 * **-ENOENT** if the bpf_local_storage cannot be found.
5022 *
5023 * struct task_struct *bpf_get_current_task_btf(void)
5024 * Description
5025 * Return a BTF pointer to the "current" task.
5026 * This pointer can also be used in helpers that accept an
5027 * *ARG_PTR_TO_BTF_ID* of type *task_struct*.
5028 * Return
5029 * Pointer to the current task.
5030 *
5031 * long bpf_bprm_opts_set(struct linux_binprm *bprm, u64 flags)
5032 * Description
5033 * Set or clear certain options on *bprm*:
5034 *
5035 * **BPF_F_BPRM_SECUREEXEC** Set the secureexec bit
5036 * which sets the **AT_SECURE** auxv for glibc. The bit
5037 * is cleared if the flag is not specified.
5038 * Return
5039 * **-EINVAL** if invalid *flags* are passed, zero otherwise.
5040 *
5041 * u64 bpf_ktime_get_coarse_ns(void)
5042 * Description
5043 * Return a coarse-grained version of the time elapsed since
5044 * system boot, in nanoseconds. Does not include time the system
5045 * was suspended.
5046 *
5047 * See: **clock_gettime**\ (**CLOCK_MONOTONIC_COARSE**)
5048 * Return
5049 * Current *ktime*.
5050 *
5051 * long bpf_ima_inode_hash(struct inode *inode, void *dst, u32 size)
5052 * Description
5053 * Returns the stored IMA hash of the *inode* (if it's available).
5054 * If the hash is larger than *size*, then only *size*
5055 * bytes will be copied to *dst*
5056 * Return
5057 * The **hash_algo** is returned on success,
5058 * **-EOPNOTSUPP** if IMA is disabled or **-EINVAL** if
5059 * invalid arguments are passed.
5060 *
5061 * struct socket *bpf_sock_from_file(struct file *file)
5062 * Description
5063 * If the given file represents a socket, returns the associated
5064 * socket.
5065 * Return
5066 * A pointer to a struct socket on success or NULL if the file is
5067 * not a socket.
5068 *
5069 * long bpf_check_mtu(void *ctx, u32 ifindex, u32 *mtu_len, s32 len_diff, u64 flags)
5070 * Description
5071 * Check packet size against exceeding MTU of net device (based
5072 * on *ifindex*). This helper will likely be used in combination
5073 * with helpers that adjust/change the packet size.
5074 *
5075 * The argument *len_diff* can be used for querying with a planned
5076 * size change. This allows to check MTU prior to changing packet
5077 * ctx. Providing a *len_diff* adjustment that is larger than the
5078 * actual packet size (resulting in negative packet size) will in
5079 * principle not exceed the MTU, which is why it is not considered
5080 * a failure. Other BPF helpers are needed for performing the
5081 * planned size change; therefore the responsibility for catching
5082 * a negative packet size belongs in those helpers.
5083 *
5084 * Specifying *ifindex* zero means the MTU check is performed
5085 * against the current net device. This is practical if this isn't
5086 * used prior to redirect.
5087 *
5088 * On input *mtu_len* must be a valid pointer, else verifier will
5089 * reject BPF program. If the value *mtu_len* is initialized to
5090 * zero then the ctx packet size is use. When value *mtu_len* is
5091 * provided as input this specify the L3 length that the MTU check
5092 * is done against. Remember XDP and TC length operate at L2, but
5093 * this value is L3 as this correlate to MTU and IP-header tot_len
5094 * values which are L3 (similar behavior as bpf_fib_lookup).
5095 *
5096 * The Linux kernel route table can configure MTUs on a more
5097 * specific per route level, which is not provided by this helper.
5098 * For route level MTU checks use the **bpf_fib_lookup**\ ()
5099 * helper.
5100 *
5101 * *ctx* is either **struct xdp_md** for XDP programs or
5102 * **struct sk_buff** for tc cls_act programs.
5103 *
5104 * The *flags* argument can be a combination of one or more of the
5105 * following values:
5106 *
5107 * **BPF_MTU_CHK_SEGS**
5108 * This flag will only works for *ctx* **struct sk_buff**.
5109 * If packet context contains extra packet segment buffers
5110 * (often knows as GSO skb), then MTU check is harder to
5111 * check at this point, because in transmit path it is
5112 * possible for the skb packet to get re-segmented
5113 * (depending on net device features). This could still be
5114 * a MTU violation, so this flag enables performing MTU
5115 * check against segments, with a different violation
5116 * return code to tell it apart. Check cannot use len_diff.
5117 *
5118 * On return *mtu_len* pointer contains the MTU value of the net
5119 * device. Remember the net device configured MTU is the L3 size,
5120 * which is returned here and XDP and TC length operate at L2.
5121 * Helper take this into account for you, but remember when using
5122 * MTU value in your BPF-code.
5123 *
5124 * Return
5125 * * 0 on success, and populate MTU value in *mtu_len* pointer.
5126 *
5127 * * < 0 if any input argument is invalid (*mtu_len* not updated)
5128 *
5129 * MTU violations return positive values, but also populate MTU
5130 * value in *mtu_len* pointer, as this can be needed for
5131 * implementing PMTU handing:
5132 *
5133 * * **BPF_MTU_CHK_RET_FRAG_NEEDED**
5134 * * **BPF_MTU_CHK_RET_SEGS_TOOBIG**
5135 *
5136 * long bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, void *callback_ctx, u64 flags)
5137 * Description
5138 * For each element in **map**, call **callback_fn** function with
5139 * **map**, **callback_ctx** and other map-specific parameters.
5140 * The **callback_fn** should be a static function and
5141 * the **callback_ctx** should be a pointer to the stack.
5142 * The **flags** is used to control certain aspects of the helper.
5143 * Currently, the **flags** must be 0.
5144 *
5145 * The following are a list of supported map types and their
5146 * respective expected callback signatures:
5147 *
5148 * BPF_MAP_TYPE_HASH, BPF_MAP_TYPE_PERCPU_HASH,
5149 * BPF_MAP_TYPE_LRU_HASH, BPF_MAP_TYPE_LRU_PERCPU_HASH,
5150 * BPF_MAP_TYPE_ARRAY, BPF_MAP_TYPE_PERCPU_ARRAY
5151 *
5152 * long (\*callback_fn)(struct bpf_map \*map, const void \*key, void \*value, void \*ctx);
5153 *
5154 * For per_cpu maps, the map_value is the value on the cpu where the
5155 * bpf_prog is running.
5156 *
5157 * If **callback_fn** return 0, the helper will continue to the next
5158 * element. If return value is 1, the helper will skip the rest of
5159 * elements and return. Other return values are not used now.
5160 *
5161 * Return
5162 * The number of traversed map elements for success, **-EINVAL** for
5163 * invalid **flags**.
5164 *
5165 * long bpf_snprintf(char *str, u32 str_size, const char *fmt, u64 *data, u32 data_len)
5166 * Description
5167 * Outputs a string into the **str** buffer of size **str_size**
5168 * based on a format string stored in a read-only map pointed by
5169 * **fmt**.
5170 *
5171 * Each format specifier in **fmt** corresponds to one u64 element
5172 * in the **data** array. For strings and pointers where pointees
5173 * are accessed, only the pointer values are stored in the *data*
5174 * array. The *data_len* is the size of *data* in bytes - must be
5175 * a multiple of 8.
5176 *
5177 * Formats **%s** and **%p{i,I}{4,6}** require to read kernel
5178 * memory. Reading kernel memory may fail due to either invalid
5179 * address or valid address but requiring a major memory fault. If
5180 * reading kernel memory fails, the string for **%s** will be an
5181 * empty string, and the ip address for **%p{i,I}{4,6}** will be 0.
5182 * Not returning error to bpf program is consistent with what
5183 * **bpf_trace_printk**\ () does for now.
5184 *
5185 * Return
5186 * The strictly positive length of the formatted string, including
5187 * the trailing zero character. If the return value is greater than
5188 * **str_size**, **str** contains a truncated string, guaranteed to
5189 * be zero-terminated except when **str_size** is 0.
5190 *
5191 * Or **-EBUSY** if the per-CPU memory copy buffer is busy.
5192 *
5193 * long bpf_sys_bpf(u32 cmd, void *attr, u32 attr_size)
5194 * Description
5195 * Execute bpf syscall with given arguments.
5196 * Return
5197 * A syscall result.
5198 *
5199 * long bpf_btf_find_by_name_kind(char *name, int name_sz, u32 kind, int flags)
5200 * Description
5201 * Find BTF type with given name and kind in vmlinux BTF or in module's BTFs.
5202 * Return
5203 * Returns btf_id and btf_obj_fd in lower and upper 32 bits.
5204 *
5205 * long bpf_sys_close(u32 fd)
5206 * Description
5207 * Execute close syscall for given FD.
5208 * Return
5209 * A syscall result.
5210 *
5211 * long bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map, u64 flags)
5212 * Description
5213 * Initialize the timer.
5214 * First 4 bits of *flags* specify clockid.
5215 * Only CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOTTIME are allowed.
5216 * All other bits of *flags* are reserved.
5217 * The verifier will reject the program if *timer* is not from
5218 * the same *map*.
5219 * Return
5220 * 0 on success.
5221 * **-EBUSY** if *timer* is already initialized.
5222 * **-EINVAL** if invalid *flags* are passed.
5223 * **-EPERM** if *timer* is in a map that doesn't have any user references.
5224 * The user space should either hold a file descriptor to a map with timers
5225 * or pin such map in bpffs. When map is unpinned or file descriptor is
5226 * closed all timers in the map will be cancelled and freed.
5227 *
5228 * long bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn)
5229 * Description
5230 * Configure the timer to call *callback_fn* static function.
5231 * Return
5232 * 0 on success.
5233 * **-EINVAL** if *timer* was not initialized with bpf_timer_init() earlier.
5234 * **-EPERM** if *timer* is in a map that doesn't have any user references.
5235 * The user space should either hold a file descriptor to a map with timers
5236 * or pin such map in bpffs. When map is unpinned or file descriptor is
5237 * closed all timers in the map will be cancelled and freed.
5238 *
5239 * long bpf_timer_start(struct bpf_timer *timer, u64 nsecs, u64 flags)
5240 * Description
5241 * Set timer expiration N nanoseconds from the current time. The
5242 * configured callback will be invoked in soft irq context on some cpu
5243 * and will not repeat unless another bpf_timer_start() is made.
5244 * In such case the next invocation can migrate to a different cpu.
5245 * Since struct bpf_timer is a field inside map element the map
5246 * owns the timer. The bpf_timer_set_callback() will increment refcnt
5247 * of BPF program to make sure that callback_fn code stays valid.
5248 * When user space reference to a map reaches zero all timers
5249 * in a map are cancelled and corresponding program's refcnts are
5250 * decremented. This is done to make sure that Ctrl-C of a user
5251 * process doesn't leave any timers running. If map is pinned in
5252 * bpffs the callback_fn can re-arm itself indefinitely.
5253 * bpf_map_update/delete_elem() helpers and user space sys_bpf commands
5254 * cancel and free the timer in the given map element.
5255 * The map can contain timers that invoke callback_fn-s from different
5256 * programs. The same callback_fn can serve different timers from
5257 * different maps if key/value layout matches across maps.
5258 * Every bpf_timer_set_callback() can have different callback_fn.
5259 *
5260 * *flags* can be one of:
5261 *
5262 * **BPF_F_TIMER_ABS**
5263 * Start the timer in absolute expire value instead of the
5264 * default relative one.
5265 * **BPF_F_TIMER_CPU_PIN**
5266 * Timer will be pinned to the CPU of the caller.
5267 *
5268 * Return
5269 * 0 on success.
5270 * **-EINVAL** if *timer* was not initialized with bpf_timer_init() earlier
5271 * or invalid *flags* are passed.
5272 *
5273 * long bpf_timer_cancel(struct bpf_timer *timer)
5274 * Description
5275 * Cancel the timer and wait for callback_fn to finish if it was running.
5276 * Return
5277 * 0 if the timer was not active.
5278 * 1 if the timer was active.
5279 * **-EINVAL** if *timer* was not initialized with bpf_timer_init() earlier.
5280 * **-EDEADLK** if callback_fn tried to call bpf_timer_cancel() on its
5281 * own timer which would have led to a deadlock otherwise.
5282 *
5283 * u64 bpf_get_func_ip(void *ctx)
5284 * Description
5285 * Get address of the traced function (for tracing and kprobe programs).
5286 *
5287 * When called for kprobe program attached as uprobe it returns
5288 * probe address for both entry and return uprobe.
5289 *
5290 * Return
5291 * Address of the traced function for kprobe.
5292 * 0 for kprobes placed within the function (not at the entry).
5293 * Address of the probe for uprobe and return uprobe.
5294 *
5295 * u64 bpf_get_attach_cookie(void *ctx)
5296 * Description
5297 * Get bpf_cookie value provided (optionally) during the program
5298 * attachment. It might be different for each individual
5299 * attachment, even if BPF program itself is the same.
5300 * Expects BPF program context *ctx* as a first argument.
5301 *
5302 * Supported for the following program types:
5303 * - kprobe/uprobe;
5304 * - tracepoint;
5305 * - perf_event.
5306 * Return
5307 * Value specified by user at BPF link creation/attachment time
5308 * or 0, if it was not specified.
5309 *
5310 * long bpf_task_pt_regs(struct task_struct *task)
5311 * Description
5312 * Get the struct pt_regs associated with **task**.
5313 * Return
5314 * A pointer to struct pt_regs.
5315 *
5316 * long bpf_get_branch_snapshot(void *entries, u32 size, u64 flags)
5317 * Description
5318 * Get branch trace from hardware engines like Intel LBR. The
5319 * hardware engine is stopped shortly after the helper is
5320 * called. Therefore, the user need to filter branch entries
5321 * based on the actual use case. To capture branch trace
5322 * before the trigger point of the BPF program, the helper
5323 * should be called at the beginning of the BPF program.
5324 *
5325 * The data is stored as struct perf_branch_entry into output
5326 * buffer *entries*. *size* is the size of *entries* in bytes.
5327 * *flags* is reserved for now and must be zero.
5328 *
5329 * Return
5330 * On success, number of bytes written to *buf*. On error, a
5331 * negative value.
5332 *
5333 * **-EINVAL** if *flags* is not zero.
5334 *
5335 * **-ENOENT** if architecture does not support branch records.
5336 *
5337 * long bpf_trace_vprintk(const char *fmt, u32 fmt_size, const void *data, u32 data_len)
5338 * Description
5339 * Behaves like **bpf_trace_printk**\ () helper, but takes an array of u64
5340 * to format and can handle more format args as a result.
5341 *
5342 * Arguments are to be used as in **bpf_seq_printf**\ () helper.
5343 * Return
5344 * The number of bytes written to the buffer, or a negative error
5345 * in case of failure.
5346 *
5347 * struct unix_sock *bpf_skc_to_unix_sock(void *sk)
5348 * Description
5349 * Dynamically cast a *sk* pointer to a *unix_sock* pointer.
5350 * Return
5351 * *sk* if casting is valid, or **NULL** otherwise.
5352 *
5353 * long bpf_kallsyms_lookup_name(const char *name, int name_sz, int flags, u64 *res)
5354 * Description
5355 * Get the address of a kernel symbol, returned in *res*. *res* is
5356 * set to 0 if the symbol is not found.
5357 * Return
5358 * On success, zero. On error, a negative value.
5359 *
5360 * **-EINVAL** if *flags* is not zero.
5361 *
5362 * **-EINVAL** if string *name* is not the same size as *name_sz*.
5363 *
5364 * **-ENOENT** if symbol is not found.
5365 *
5366 * **-EPERM** if caller does not have permission to obtain kernel address.
5367 *
5368 * long bpf_find_vma(struct task_struct *task, u64 addr, void *callback_fn, void *callback_ctx, u64 flags)
5369 * Description
5370 * Find vma of *task* that contains *addr*, call *callback_fn*
5371 * function with *task*, *vma*, and *callback_ctx*.
5372 * The *callback_fn* should be a static function and
5373 * the *callback_ctx* should be a pointer to the stack.
5374 * The *flags* is used to control certain aspects of the helper.
5375 * Currently, the *flags* must be 0.
5376 *
5377 * The expected callback signature is
5378 *
5379 * long (\*callback_fn)(struct task_struct \*task, struct vm_area_struct \*vma, void \*callback_ctx);
5380 *
5381 * Return
5382 * 0 on success.
5383 * **-ENOENT** if *task->mm* is NULL, or no vma contains *addr*.
5384 * **-EBUSY** if failed to try lock mmap_lock.
5385 * **-EINVAL** for invalid **flags**.
5386 *
5387 * long bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, u64 flags)
5388 * Description
5389 * For **nr_loops**, call **callback_fn** function
5390 * with **callback_ctx** as the context parameter.
5391 * The **callback_fn** should be a static function and
5392 * the **callback_ctx** should be a pointer to the stack.
5393 * The **flags** is used to control certain aspects of the helper.
5394 * Currently, the **flags** must be 0. Currently, nr_loops is
5395 * limited to 1 << 23 (~8 million) loops.
5396 *
5397 * long (\*callback_fn)(u64 index, void \*ctx);
5398 *
5399 * where **index** is the current index in the loop. The index
5400 * is zero-indexed.
5401 *
5402 * If **callback_fn** returns 0, the helper will continue to the next
5403 * loop. If return value is 1, the helper will skip the rest of
5404 * the loops and return. Other return values are not used now,
5405 * and will be rejected by the verifier.
5406 *
5407 * Return
5408 * The number of loops performed, **-EINVAL** for invalid **flags**,
5409 * **-E2BIG** if **nr_loops** exceeds the maximum number of loops.
5410 *
5411 * long bpf_strncmp(const char *s1, u32 s1_sz, const char *s2)
5412 * Description
5413 * Do strncmp() between **s1** and **s2**. **s1** doesn't need
5414 * to be null-terminated and **s1_sz** is the maximum storage
5415 * size of **s1**. **s2** must be a read-only string.
5416 * Return
5417 * An integer less than, equal to, or greater than zero
5418 * if the first **s1_sz** bytes of **s1** is found to be
5419 * less than, to match, or be greater than **s2**.
5420 *
5421 * long bpf_get_func_arg(void *ctx, u32 n, u64 *value)
5422 * Description
5423 * Get **n**-th argument register (zero based) of the traced function (for tracing programs)
5424 * returned in **value**.
5425 *
5426 * Return
5427 * 0 on success.
5428 * **-EINVAL** if n >= argument register count of traced function.
5429 *
5430 * long bpf_get_func_ret(void *ctx, u64 *value)
5431 * Description
5432 * Get return value of the traced function (for tracing programs)
5433 * in **value**.
5434 *
5435 * Return
5436 * 0 on success.
5437 * **-EOPNOTSUPP** for tracing programs other than BPF_TRACE_FEXIT or BPF_MODIFY_RETURN.
5438 *
5439 * long bpf_get_func_arg_cnt(void *ctx)
5440 * Description
5441 * Get number of registers of the traced function (for tracing programs) where
5442 * function arguments are stored in these registers.
5443 *
5444 * Return
5445 * The number of argument registers of the traced function.
5446 *
5447 * int bpf_get_retval(void)
5448 * Description
5449 * Get the BPF program's return value that will be returned to the upper layers.
5450 *
5451 * This helper is currently supported by cgroup programs and only by the hooks
5452 * where BPF program's return value is returned to the userspace via errno.
5453 * Return
5454 * The BPF program's return value.
5455 *
5456 * int bpf_set_retval(int retval)
5457 * Description
5458 * Set the BPF program's return value that will be returned to the upper layers.
5459 *
5460 * This helper is currently supported by cgroup programs and only by the hooks
5461 * where BPF program's return value is returned to the userspace via errno.
5462 *
5463 * Note that there is the following corner case where the program exports an error
5464 * via bpf_set_retval but signals success via 'return 1':
5465 *
5466 * bpf_set_retval(-EPERM);
5467 * return 1;
5468 *
5469 * In this case, the BPF program's return value will use helper's -EPERM. This
5470 * still holds true for cgroup/bind{4,6} which supports extra 'return 3' success case.
5471 *
5472 * Return
5473 * 0 on success, or a negative error in case of failure.
5474 *
5475 * u64 bpf_xdp_get_buff_len(struct xdp_buff *xdp_md)
5476 * Description
5477 * Get the total size of a given xdp buff (linear and paged area)
5478 * Return
5479 * The total size of a given xdp buffer.
5480 *
5481 * long bpf_xdp_load_bytes(struct xdp_buff *xdp_md, u32 offset, void *buf, u32 len)
5482 * Description
5483 * This helper is provided as an easy way to load data from a
5484 * xdp buffer. It can be used to load *len* bytes from *offset* from
5485 * the frame associated to *xdp_md*, into the buffer pointed by
5486 * *buf*.
5487 * Return
5488 * 0 on success, or a negative error in case of failure.
5489 *
5490 * long bpf_xdp_store_bytes(struct xdp_buff *xdp_md, u32 offset, void *buf, u32 len)
5491 * Description
5492 * Store *len* bytes from buffer *buf* into the frame
5493 * associated to *xdp_md*, at *offset*.
5494 * Return
5495 * 0 on success, or a negative error in case of failure.
5496 *
5497 * long bpf_copy_from_user_task(void *dst, u32 size, const void *user_ptr, struct task_struct *tsk, u64 flags)
5498 * Description
5499 * Read *size* bytes from user space address *user_ptr* in *tsk*'s
5500 * address space, and stores the data in *dst*. *flags* is not
5501 * used yet and is provided for future extensibility. This helper
5502 * can only be used by sleepable programs.
5503 * Return
5504 * 0 on success, or a negative error in case of failure. On error
5505 * *dst* buffer is zeroed out.
5506 *
5507 * long bpf_skb_set_tstamp(struct sk_buff *skb, u64 tstamp, u32 tstamp_type)
5508 * Description
5509 * Change the __sk_buff->tstamp_type to *tstamp_type*
5510 * and set *tstamp* to the __sk_buff->tstamp together.
5511 *
5512 * If there is no need to change the __sk_buff->tstamp_type,
5513 * the tstamp value can be directly written to __sk_buff->tstamp
5514 * instead.
5515 *
5516 * BPF_SKB_TSTAMP_DELIVERY_MONO is the only tstamp that
5517 * will be kept during bpf_redirect_*(). A non zero
5518 * *tstamp* must be used with the BPF_SKB_TSTAMP_DELIVERY_MONO
5519 * *tstamp_type*.
5520 *
5521 * A BPF_SKB_TSTAMP_UNSPEC *tstamp_type* can only be used
5522 * with a zero *tstamp*.
5523 *
5524 * Only IPv4 and IPv6 skb->protocol are supported.
5525 *
5526 * This function is most useful when it needs to set a
5527 * mono delivery time to __sk_buff->tstamp and then
5528 * bpf_redirect_*() to the egress of an iface. For example,
5529 * changing the (rcv) timestamp in __sk_buff->tstamp at
5530 * ingress to a mono delivery time and then bpf_redirect_*()
5531 * to sch_fq@phy-dev.
5532 * Return
5533 * 0 on success.
5534 * **-EINVAL** for invalid input
5535 * **-EOPNOTSUPP** for unsupported protocol
5536 *
5537 * long bpf_ima_file_hash(struct file *file, void *dst, u32 size)
5538 * Description
5539 * Returns a calculated IMA hash of the *file*.
5540 * If the hash is larger than *size*, then only *size*
5541 * bytes will be copied to *dst*
5542 * Return
5543 * The **hash_algo** is returned on success,
5544 * **-EOPNOTSUPP** if the hash calculation failed or **-EINVAL** if
5545 * invalid arguments are passed.
5546 *
5547 * void *bpf_kptr_xchg(void *dst, void *ptr)
5548 * Description
5549 * Exchange kptr at pointer *dst* with *ptr*, and return the old value.
5550 * *dst* can be map value or local kptr. *ptr* can be NULL, otherwise
5551 * it must be a referenced pointer which will be released when this helper
5552 * is called.
5553 * Return
5554 * The old value of kptr (which can be NULL). The returned pointer
5555 * if not NULL, is a reference which must be released using its
5556 * corresponding release function, or moved into a BPF map before
5557 * program exit.
5558 *
5559 * void *bpf_map_lookup_percpu_elem(struct bpf_map *map, const void *key, u32 cpu)
5560 * Description
5561 * Perform a lookup in *percpu map* for an entry associated to
5562 * *key* on *cpu*.
5563 * Return
5564 * Map value associated to *key* on *cpu*, or **NULL** if no entry
5565 * was found or *cpu* is invalid.
5566 *
5567 * struct mptcp_sock *bpf_skc_to_mptcp_sock(void *sk)
5568 * Description
5569 * Dynamically cast a *sk* pointer to a *mptcp_sock* pointer.
5570 * Return
5571 * *sk* if casting is valid, or **NULL** otherwise.
5572 *
5573 * long bpf_dynptr_from_mem(void *data, u32 size, u64 flags, struct bpf_dynptr *ptr)
5574 * Description
5575 * Get a dynptr to local memory *data*.
5576 *
5577 * *data* must be a ptr to a map value.
5578 * The maximum *size* supported is DYNPTR_MAX_SIZE.
5579 * *flags* is currently unused.
5580 * Return
5581 * 0 on success, -E2BIG if the size exceeds DYNPTR_MAX_SIZE,
5582 * -EINVAL if flags is not 0.
5583 *
5584 * long bpf_ringbuf_reserve_dynptr(void *ringbuf, u32 size, u64 flags, struct bpf_dynptr *ptr)
5585 * Description
5586 * Reserve *size* bytes of payload in a ring buffer *ringbuf*
5587 * through the dynptr interface. *flags* must be 0.
5588 *
5589 * Please note that a corresponding bpf_ringbuf_submit_dynptr or
5590 * bpf_ringbuf_discard_dynptr must be called on *ptr*, even if the
5591 * reservation fails. This is enforced by the verifier.
5592 * Return
5593 * 0 on success, or a negative error in case of failure.
5594 *
5595 * void bpf_ringbuf_submit_dynptr(struct bpf_dynptr *ptr, u64 flags)
5596 * Description
5597 * Submit reserved ring buffer sample, pointed to by *data*,
5598 * through the dynptr interface. This is a no-op if the dynptr is
5599 * invalid/null.
5600 *
5601 * For more information on *flags*, please see
5602 * 'bpf_ringbuf_submit'.
5603 * Return
5604 * Nothing. Always succeeds.
5605 *
5606 * void bpf_ringbuf_discard_dynptr(struct bpf_dynptr *ptr, u64 flags)
5607 * Description
5608 * Discard reserved ring buffer sample through the dynptr
5609 * interface. This is a no-op if the dynptr is invalid/null.
5610 *
5611 * For more information on *flags*, please see
5612 * 'bpf_ringbuf_discard'.
5613 * Return
5614 * Nothing. Always succeeds.
5615 *
5616 * long bpf_dynptr_read(void *dst, u32 len, const struct bpf_dynptr *src, u32 offset, u64 flags)
5617 * Description
5618 * Read *len* bytes from *src* into *dst*, starting from *offset*
5619 * into *src*.
5620 * *flags* is currently unused.
5621 * Return
5622 * 0 on success, -E2BIG if *offset* + *len* exceeds the length
5623 * of *src*'s data, -EINVAL if *src* is an invalid dynptr or if
5624 * *flags* is not 0.
5625 *
5626 * long bpf_dynptr_write(const struct bpf_dynptr *dst, u32 offset, void *src, u32 len, u64 flags)
5627 * Description
5628 * Write *len* bytes from *src* into *dst*, starting from *offset*
5629 * into *dst*.
5630 *
5631 * *flags* must be 0 except for skb-type dynptrs.
5632 *
5633 * For skb-type dynptrs:
5634 * * All data slices of the dynptr are automatically
5635 * invalidated after **bpf_dynptr_write**\ (). This is
5636 * because writing may pull the skb and change the
5637 * underlying packet buffer.
5638 *
5639 * * For *flags*, please see the flags accepted by
5640 * **bpf_skb_store_bytes**\ ().
5641 * Return
5642 * 0 on success, -E2BIG if *offset* + *len* exceeds the length
5643 * of *dst*'s data, -EINVAL if *dst* is an invalid dynptr or if *dst*
5644 * is a read-only dynptr or if *flags* is not correct. For skb-type dynptrs,
5645 * other errors correspond to errors returned by **bpf_skb_store_bytes**\ ().
5646 *
5647 * void *bpf_dynptr_data(const struct bpf_dynptr *ptr, u32 offset, u32 len)
5648 * Description
5649 * Get a pointer to the underlying dynptr data.
5650 *
5651 * *len* must be a statically known value. The returned data slice
5652 * is invalidated whenever the dynptr is invalidated.
5653 *
5654 * skb and xdp type dynptrs may not use bpf_dynptr_data. They should
5655 * instead use bpf_dynptr_slice and bpf_dynptr_slice_rdwr.
5656 * Return
5657 * Pointer to the underlying dynptr data, NULL if the dynptr is
5658 * read-only, if the dynptr is invalid, or if the offset and length
5659 * is out of bounds.
5660 *
5661 * s64 bpf_tcp_raw_gen_syncookie_ipv4(struct iphdr *iph, struct tcphdr *th, u32 th_len)
5662 * Description
5663 * Try to issue a SYN cookie for the packet with corresponding
5664 * IPv4/TCP headers, *iph* and *th*, without depending on a
5665 * listening socket.
5666 *
5667 * *iph* points to the IPv4 header.
5668 *
5669 * *th* points to the start of the TCP header, while *th_len*
5670 * contains the length of the TCP header (at least
5671 * **sizeof**\ (**struct tcphdr**)).
5672 * Return
5673 * On success, lower 32 bits hold the generated SYN cookie in
5674 * followed by 16 bits which hold the MSS value for that cookie,
5675 * and the top 16 bits are unused.
5676 *
5677 * On failure, the returned value is one of the following:
5678 *
5679 * **-EINVAL** if *th_len* is invalid.
5680 *
5681 * s64 bpf_tcp_raw_gen_syncookie_ipv6(struct ipv6hdr *iph, struct tcphdr *th, u32 th_len)
5682 * Description
5683 * Try to issue a SYN cookie for the packet with corresponding
5684 * IPv6/TCP headers, *iph* and *th*, without depending on a
5685 * listening socket.
5686 *
5687 * *iph* points to the IPv6 header.
5688 *
5689 * *th* points to the start of the TCP header, while *th_len*
5690 * contains the length of the TCP header (at least
5691 * **sizeof**\ (**struct tcphdr**)).
5692 * Return
5693 * On success, lower 32 bits hold the generated SYN cookie in
5694 * followed by 16 bits which hold the MSS value for that cookie,
5695 * and the top 16 bits are unused.
5696 *
5697 * On failure, the returned value is one of the following:
5698 *
5699 * **-EINVAL** if *th_len* is invalid.
5700 *
5701 * **-EPROTONOSUPPORT** if CONFIG_IPV6 is not builtin.
5702 *
5703 * long bpf_tcp_raw_check_syncookie_ipv4(struct iphdr *iph, struct tcphdr *th)
5704 * Description
5705 * Check whether *iph* and *th* contain a valid SYN cookie ACK
5706 * without depending on a listening socket.
5707 *
5708 * *iph* points to the IPv4 header.
5709 *
5710 * *th* points to the TCP header.
5711 * Return
5712 * 0 if *iph* and *th* are a valid SYN cookie ACK.
5713 *
5714 * On failure, the returned value is one of the following:
5715 *
5716 * **-EACCES** if the SYN cookie is not valid.
5717 *
5718 * long bpf_tcp_raw_check_syncookie_ipv6(struct ipv6hdr *iph, struct tcphdr *th)
5719 * Description
5720 * Check whether *iph* and *th* contain a valid SYN cookie ACK
5721 * without depending on a listening socket.
5722 *
5723 * *iph* points to the IPv6 header.
5724 *
5725 * *th* points to the TCP header.
5726 * Return
5727 * 0 if *iph* and *th* are a valid SYN cookie ACK.
5728 *
5729 * On failure, the returned value is one of the following:
5730 *
5731 * **-EACCES** if the SYN cookie is not valid.
5732 *
5733 * **-EPROTONOSUPPORT** if CONFIG_IPV6 is not builtin.
5734 *
5735 * u64 bpf_ktime_get_tai_ns(void)
5736 * Description
5737 * A nonsettable system-wide clock derived from wall-clock time but
5738 * ignoring leap seconds. This clock does not experience
5739 * discontinuities and backwards jumps caused by NTP inserting leap
5740 * seconds as CLOCK_REALTIME does.
5741 *
5742 * See: **clock_gettime**\ (**CLOCK_TAI**)
5743 * Return
5744 * Current *ktime*.
5745 *
5746 * long bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void *ctx, u64 flags)
5747 * Description
5748 * Drain samples from the specified user ring buffer, and invoke
5749 * the provided callback for each such sample:
5750 *
5751 * long (\*callback_fn)(const struct bpf_dynptr \*dynptr, void \*ctx);
5752 *
5753 * If **callback_fn** returns 0, the helper will continue to try
5754 * and drain the next sample, up to a maximum of
5755 * BPF_MAX_USER_RINGBUF_SAMPLES samples. If the return value is 1,
5756 * the helper will skip the rest of the samples and return. Other
5757 * return values are not used now, and will be rejected by the
5758 * verifier.
5759 * Return
5760 * The number of drained samples if no error was encountered while
5761 * draining samples, or 0 if no samples were present in the ring
5762 * buffer. If a user-space producer was epoll-waiting on this map,
5763 * and at least one sample was drained, they will receive an event
5764 * notification notifying them of available space in the ring
5765 * buffer. If the BPF_RB_NO_WAKEUP flag is passed to this
5766 * function, no wakeup notification will be sent. If the
5767 * BPF_RB_FORCE_WAKEUP flag is passed, a wakeup notification will
5768 * be sent even if no sample was drained.
5769 *
5770 * On failure, the returned value is one of the following:
5771 *
5772 * **-EBUSY** if the ring buffer is contended, and another calling
5773 * context was concurrently draining the ring buffer.
5774 *
5775 * **-EINVAL** if user-space is not properly tracking the ring
5776 * buffer due to the producer position not being aligned to 8
5777 * bytes, a sample not being aligned to 8 bytes, or the producer
5778 * position not matching the advertised length of a sample.
5779 *
5780 * **-E2BIG** if user-space has tried to publish a sample which is
5781 * larger than the size of the ring buffer, or which cannot fit
5782 * within a struct bpf_dynptr.
5783 *
5784 * void *bpf_cgrp_storage_get(struct bpf_map *map, struct cgroup *cgroup, void *value, u64 flags)
5785 * Description
5786 * Get a bpf_local_storage from the *cgroup*.
5787 *
5788 * Logically, it could be thought of as getting the value from
5789 * a *map* with *cgroup* as the **key**. From this
5790 * perspective, the usage is not much different from
5791 * **bpf_map_lookup_elem**\ (*map*, **&**\ *cgroup*) except this
5792 * helper enforces the key must be a cgroup struct and the map must also
5793 * be a **BPF_MAP_TYPE_CGRP_STORAGE**.
5794 *
5795 * In reality, the local-storage value is embedded directly inside of the
5796 * *cgroup* object itself, rather than being located in the
5797 * **BPF_MAP_TYPE_CGRP_STORAGE** map. When the local-storage value is
5798 * queried for some *map* on a *cgroup* object, the kernel will perform an
5799 * O(n) iteration over all of the live local-storage values for that
5800 * *cgroup* object until the local-storage value for the *map* is found.
5801 *
5802 * An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be
5803 * used such that a new bpf_local_storage will be
5804 * created if one does not exist. *value* can be used
5805 * together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify
5806 * the initial value of a bpf_local_storage. If *value* is
5807 * **NULL**, the new bpf_local_storage will be zero initialized.
5808 * Return
5809 * A bpf_local_storage pointer is returned on success.
5810 *
5811 * **NULL** if not found or there was an error in adding
5812 * a new bpf_local_storage.
5813 *
5814 * long bpf_cgrp_storage_delete(struct bpf_map *map, struct cgroup *cgroup)
5815 * Description
5816 * Delete a bpf_local_storage from a *cgroup*.
5817 * Return
5818 * 0 on success.
5819 *
5820 * **-ENOENT** if the bpf_local_storage cannot be found.
5821 */
5822#define ___BPF_FUNC_MAPPER(FN, ctx...) \
5823 FN(unspec, 0, ##ctx) \
5824 FN(map_lookup_elem, 1, ##ctx) \
5825 FN(map_update_elem, 2, ##ctx) \
5826 FN(map_delete_elem, 3, ##ctx) \
5827 FN(probe_read, 4, ##ctx) \
5828 FN(ktime_get_ns, 5, ##ctx) \
5829 FN(trace_printk, 6, ##ctx) \
5830 FN(get_prandom_u32, 7, ##ctx) \
5831 FN(get_smp_processor_id, 8, ##ctx) \
5832 FN(skb_store_bytes, 9, ##ctx) \
5833 FN(l3_csum_replace, 10, ##ctx) \
5834 FN(l4_csum_replace, 11, ##ctx) \
5835 FN(tail_call, 12, ##ctx) \
5836 FN(clone_redirect, 13, ##ctx) \
5837 FN(get_current_pid_tgid, 14, ##ctx) \
5838 FN(get_current_uid_gid, 15, ##ctx) \
5839 FN(get_current_comm, 16, ##ctx) \
5840 FN(get_cgroup_classid, 17, ##ctx) \
5841 FN(skb_vlan_push, 18, ##ctx) \
5842 FN(skb_vlan_pop, 19, ##ctx) \
5843 FN(skb_get_tunnel_key, 20, ##ctx) \
5844 FN(skb_set_tunnel_key, 21, ##ctx) \
5845 FN(perf_event_read, 22, ##ctx) \
5846 FN(redirect, 23, ##ctx) \
5847 FN(get_route_realm, 24, ##ctx) \
5848 FN(perf_event_output, 25, ##ctx) \
5849 FN(skb_load_bytes, 26, ##ctx) \
5850 FN(get_stackid, 27, ##ctx) \
5851 FN(csum_diff, 28, ##ctx) \
5852 FN(skb_get_tunnel_opt, 29, ##ctx) \
5853 FN(skb_set_tunnel_opt, 30, ##ctx) \
5854 FN(skb_change_proto, 31, ##ctx) \
5855 FN(skb_change_type, 32, ##ctx) \
5856 FN(skb_under_cgroup, 33, ##ctx) \
5857 FN(get_hash_recalc, 34, ##ctx) \
5858 FN(get_current_task, 35, ##ctx) \
5859 FN(probe_write_user, 36, ##ctx) \
5860 FN(current_task_under_cgroup, 37, ##ctx) \
5861 FN(skb_change_tail, 38, ##ctx) \
5862 FN(skb_pull_data, 39, ##ctx) \
5863 FN(csum_update, 40, ##ctx) \
5864 FN(set_hash_invalid, 41, ##ctx) \
5865 FN(get_numa_node_id, 42, ##ctx) \
5866 FN(skb_change_head, 43, ##ctx) \
5867 FN(xdp_adjust_head, 44, ##ctx) \
5868 FN(probe_read_str, 45, ##ctx) \
5869 FN(get_socket_cookie, 46, ##ctx) \
5870 FN(get_socket_uid, 47, ##ctx) \
5871 FN(set_hash, 48, ##ctx) \
5872 FN(setsockopt, 49, ##ctx) \
5873 FN(skb_adjust_room, 50, ##ctx) \
5874 FN(redirect_map, 51, ##ctx) \
5875 FN(sk_redirect_map, 52, ##ctx) \
5876 FN(sock_map_update, 53, ##ctx) \
5877 FN(xdp_adjust_meta, 54, ##ctx) \
5878 FN(perf_event_read_value, 55, ##ctx) \
5879 FN(perf_prog_read_value, 56, ##ctx) \
5880 FN(getsockopt, 57, ##ctx) \
5881 FN(override_return, 58, ##ctx) \
5882 FN(sock_ops_cb_flags_set, 59, ##ctx) \
5883 FN(msg_redirect_map, 60, ##ctx) \
5884 FN(msg_apply_bytes, 61, ##ctx) \
5885 FN(msg_cork_bytes, 62, ##ctx) \
5886 FN(msg_pull_data, 63, ##ctx) \
5887 FN(bind, 64, ##ctx) \
5888 FN(xdp_adjust_tail, 65, ##ctx) \
5889 FN(skb_get_xfrm_state, 66, ##ctx) \
5890 FN(get_stack, 67, ##ctx) \
5891 FN(skb_load_bytes_relative, 68, ##ctx) \
5892 FN(fib_lookup, 69, ##ctx) \
5893 FN(sock_hash_update, 70, ##ctx) \
5894 FN(msg_redirect_hash, 71, ##ctx) \
5895 FN(sk_redirect_hash, 72, ##ctx) \
5896 FN(lwt_push_encap, 73, ##ctx) \
5897 FN(lwt_seg6_store_bytes, 74, ##ctx) \
5898 FN(lwt_seg6_adjust_srh, 75, ##ctx) \
5899 FN(lwt_seg6_action, 76, ##ctx) \
5900 FN(rc_repeat, 77, ##ctx) \
5901 FN(rc_keydown, 78, ##ctx) \
5902 FN(skb_cgroup_id, 79, ##ctx) \
5903 FN(get_current_cgroup_id, 80, ##ctx) \
5904 FN(get_local_storage, 81, ##ctx) \
5905 FN(sk_select_reuseport, 82, ##ctx) \
5906 FN(skb_ancestor_cgroup_id, 83, ##ctx) \
5907 FN(sk_lookup_tcp, 84, ##ctx) \
5908 FN(sk_lookup_udp, 85, ##ctx) \
5909 FN(sk_release, 86, ##ctx) \
5910 FN(map_push_elem, 87, ##ctx) \
5911 FN(map_pop_elem, 88, ##ctx) \
5912 FN(map_peek_elem, 89, ##ctx) \
5913 FN(msg_push_data, 90, ##ctx) \
5914 FN(msg_pop_data, 91, ##ctx) \
5915 FN(rc_pointer_rel, 92, ##ctx) \
5916 FN(spin_lock, 93, ##ctx) \
5917 FN(spin_unlock, 94, ##ctx) \
5918 FN(sk_fullsock, 95, ##ctx) \
5919 FN(tcp_sock, 96, ##ctx) \
5920 FN(skb_ecn_set_ce, 97, ##ctx) \
5921 FN(get_listener_sock, 98, ##ctx) \
5922 FN(skc_lookup_tcp, 99, ##ctx) \
5923 FN(tcp_check_syncookie, 100, ##ctx) \
5924 FN(sysctl_get_name, 101, ##ctx) \
5925 FN(sysctl_get_current_value, 102, ##ctx) \
5926 FN(sysctl_get_new_value, 103, ##ctx) \
5927 FN(sysctl_set_new_value, 104, ##ctx) \
5928 FN(strtol, 105, ##ctx) \
5929 FN(strtoul, 106, ##ctx) \
5930 FN(sk_storage_get, 107, ##ctx) \
5931 FN(sk_storage_delete, 108, ##ctx) \
5932 FN(send_signal, 109, ##ctx) \
5933 FN(tcp_gen_syncookie, 110, ##ctx) \
5934 FN(skb_output, 111, ##ctx) \
5935 FN(probe_read_user, 112, ##ctx) \
5936 FN(probe_read_kernel, 113, ##ctx) \
5937 FN(probe_read_user_str, 114, ##ctx) \
5938 FN(probe_read_kernel_str, 115, ##ctx) \
5939 FN(tcp_send_ack, 116, ##ctx) \
5940 FN(send_signal_thread, 117, ##ctx) \
5941 FN(jiffies64, 118, ##ctx) \
5942 FN(read_branch_records, 119, ##ctx) \
5943 FN(get_ns_current_pid_tgid, 120, ##ctx) \
5944 FN(xdp_output, 121, ##ctx) \
5945 FN(get_netns_cookie, 122, ##ctx) \
5946 FN(get_current_ancestor_cgroup_id, 123, ##ctx) \
5947 FN(sk_assign, 124, ##ctx) \
5948 FN(ktime_get_boot_ns, 125, ##ctx) \
5949 FN(seq_printf, 126, ##ctx) \
5950 FN(seq_write, 127, ##ctx) \
5951 FN(sk_cgroup_id, 128, ##ctx) \
5952 FN(sk_ancestor_cgroup_id, 129, ##ctx) \
5953 FN(ringbuf_output, 130, ##ctx) \
5954 FN(ringbuf_reserve, 131, ##ctx) \
5955 FN(ringbuf_submit, 132, ##ctx) \
5956 FN(ringbuf_discard, 133, ##ctx) \
5957 FN(ringbuf_query, 134, ##ctx) \
5958 FN(csum_level, 135, ##ctx) \
5959 FN(skc_to_tcp6_sock, 136, ##ctx) \
5960 FN(skc_to_tcp_sock, 137, ##ctx) \
5961 FN(skc_to_tcp_timewait_sock, 138, ##ctx) \
5962 FN(skc_to_tcp_request_sock, 139, ##ctx) \
5963 FN(skc_to_udp6_sock, 140, ##ctx) \
5964 FN(get_task_stack, 141, ##ctx) \
5965 FN(load_hdr_opt, 142, ##ctx) \
5966 FN(store_hdr_opt, 143, ##ctx) \
5967 FN(reserve_hdr_opt, 144, ##ctx) \
5968 FN(inode_storage_get, 145, ##ctx) \
5969 FN(inode_storage_delete, 146, ##ctx) \
5970 FN(d_path, 147, ##ctx) \
5971 FN(copy_from_user, 148, ##ctx) \
5972 FN(snprintf_btf, 149, ##ctx) \
5973 FN(seq_printf_btf, 150, ##ctx) \
5974 FN(skb_cgroup_classid, 151, ##ctx) \
5975 FN(redirect_neigh, 152, ##ctx) \
5976 FN(per_cpu_ptr, 153, ##ctx) \
5977 FN(this_cpu_ptr, 154, ##ctx) \
5978 FN(redirect_peer, 155, ##ctx) \
5979 FN(task_storage_get, 156, ##ctx) \
5980 FN(task_storage_delete, 157, ##ctx) \
5981 FN(get_current_task_btf, 158, ##ctx) \
5982 FN(bprm_opts_set, 159, ##ctx) \
5983 FN(ktime_get_coarse_ns, 160, ##ctx) \
5984 FN(ima_inode_hash, 161, ##ctx) \
5985 FN(sock_from_file, 162, ##ctx) \
5986 FN(check_mtu, 163, ##ctx) \
5987 FN(for_each_map_elem, 164, ##ctx) \
5988 FN(snprintf, 165, ##ctx) \
5989 FN(sys_bpf, 166, ##ctx) \
5990 FN(btf_find_by_name_kind, 167, ##ctx) \
5991 FN(sys_close, 168, ##ctx) \
5992 FN(timer_init, 169, ##ctx) \
5993 FN(timer_set_callback, 170, ##ctx) \
5994 FN(timer_start, 171, ##ctx) \
5995 FN(timer_cancel, 172, ##ctx) \
5996 FN(get_func_ip, 173, ##ctx) \
5997 FN(get_attach_cookie, 174, ##ctx) \
5998 FN(task_pt_regs, 175, ##ctx) \
5999 FN(get_branch_snapshot, 176, ##ctx) \
6000 FN(trace_vprintk, 177, ##ctx) \
6001 FN(skc_to_unix_sock, 178, ##ctx) \
6002 FN(kallsyms_lookup_name, 179, ##ctx) \
6003 FN(find_vma, 180, ##ctx) \
6004 FN(loop, 181, ##ctx) \
6005 FN(strncmp, 182, ##ctx) \
6006 FN(get_func_arg, 183, ##ctx) \
6007 FN(get_func_ret, 184, ##ctx) \
6008 FN(get_func_arg_cnt, 185, ##ctx) \
6009 FN(get_retval, 186, ##ctx) \
6010 FN(set_retval, 187, ##ctx) \
6011 FN(xdp_get_buff_len, 188, ##ctx) \
6012 FN(xdp_load_bytes, 189, ##ctx) \
6013 FN(xdp_store_bytes, 190, ##ctx) \
6014 FN(copy_from_user_task, 191, ##ctx) \
6015 FN(skb_set_tstamp, 192, ##ctx) \
6016 FN(ima_file_hash, 193, ##ctx) \
6017 FN(kptr_xchg, 194, ##ctx) \
6018 FN(map_lookup_percpu_elem, 195, ##ctx) \
6019 FN(skc_to_mptcp_sock, 196, ##ctx) \
6020 FN(dynptr_from_mem, 197, ##ctx) \
6021 FN(ringbuf_reserve_dynptr, 198, ##ctx) \
6022 FN(ringbuf_submit_dynptr, 199, ##ctx) \
6023 FN(ringbuf_discard_dynptr, 200, ##ctx) \
6024 FN(dynptr_read, 201, ##ctx) \
6025 FN(dynptr_write, 202, ##ctx) \
6026 FN(dynptr_data, 203, ##ctx) \
6027 FN(tcp_raw_gen_syncookie_ipv4, 204, ##ctx) \
6028 FN(tcp_raw_gen_syncookie_ipv6, 205, ##ctx) \
6029 FN(tcp_raw_check_syncookie_ipv4, 206, ##ctx) \
6030 FN(tcp_raw_check_syncookie_ipv6, 207, ##ctx) \
6031 FN(ktime_get_tai_ns, 208, ##ctx) \
6032 FN(user_ringbuf_drain, 209, ##ctx) \
6033 FN(cgrp_storage_get, 210, ##ctx) \
6034 FN(cgrp_storage_delete, 211, ##ctx) \
6035 /* This helper list is effectively frozen. If you are trying to \
6036 * add a new helper, you should add a kfunc instead which has \
6037 * less stability guarantees. See Documentation/bpf/kfuncs.rst \
6038 */
6039
6040/* backwards-compatibility macros for users of __BPF_FUNC_MAPPER that don't
6041 * know or care about integer value that is now passed as second argument
6042 */
6043#define __BPF_FUNC_MAPPER_APPLY(name, value, FN) FN(name),
6044#define __BPF_FUNC_MAPPER(FN) ___BPF_FUNC_MAPPER(__BPF_FUNC_MAPPER_APPLY, FN)
6045
6046/* integer value in 'imm' field of BPF_CALL instruction selects which helper
6047 * function eBPF program intends to call
6048 */
6049#define __BPF_ENUM_FN(x, y) BPF_FUNC_ ## x = y,
6050enum bpf_func_id {
6051 ___BPF_FUNC_MAPPER(__BPF_ENUM_FN)
6052 __BPF_FUNC_MAX_ID,
6053};
6054#undef __BPF_ENUM_FN
6055
6056/* All flags used by eBPF helper functions, placed here. */
6057
6058/* BPF_FUNC_skb_store_bytes flags. */
6059enum {
6060 BPF_F_RECOMPUTE_CSUM = (1ULL << 0),
6061 BPF_F_INVALIDATE_HASH = (1ULL << 1),
6062};
6063
6064/* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
6065 * First 4 bits are for passing the header field size.
6066 */
6067enum {
6068 BPF_F_HDR_FIELD_MASK = 0xfULL,
6069};
6070
6071/* BPF_FUNC_l4_csum_replace flags. */
6072enum {
6073 BPF_F_PSEUDO_HDR = (1ULL << 4),
6074 BPF_F_MARK_MANGLED_0 = (1ULL << 5),
6075 BPF_F_MARK_ENFORCE = (1ULL << 6),
6076 BPF_F_IPV6 = (1ULL << 7),
6077};
6078
6079/* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
6080enum {
6081 BPF_F_TUNINFO_IPV6 = (1ULL << 0),
6082};
6083
6084/* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
6085enum {
6086 BPF_F_SKIP_FIELD_MASK = 0xffULL,
6087 BPF_F_USER_STACK = (1ULL << 8),
6088/* flags used by BPF_FUNC_get_stackid only. */
6089 BPF_F_FAST_STACK_CMP = (1ULL << 9),
6090 BPF_F_REUSE_STACKID = (1ULL << 10),
6091/* flags used by BPF_FUNC_get_stack only. */
6092 BPF_F_USER_BUILD_ID = (1ULL << 11),
6093};
6094
6095/* BPF_FUNC_skb_set_tunnel_key flags. */
6096enum {
6097 BPF_F_ZERO_CSUM_TX = (1ULL << 1),
6098 BPF_F_DONT_FRAGMENT = (1ULL << 2),
6099 BPF_F_SEQ_NUMBER = (1ULL << 3),
6100 BPF_F_NO_TUNNEL_KEY = (1ULL << 4),
6101};
6102
6103/* BPF_FUNC_skb_get_tunnel_key flags. */
6104enum {
6105 BPF_F_TUNINFO_FLAGS = (1ULL << 4),
6106};
6107
6108/* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
6109 * BPF_FUNC_perf_event_read_value flags.
6110 */
6111enum {
6112 BPF_F_INDEX_MASK = 0xffffffffULL,
6113 BPF_F_CURRENT_CPU = BPF_F_INDEX_MASK,
6114/* BPF_FUNC_perf_event_output for sk_buff input context. */
6115 BPF_F_CTXLEN_MASK = (0xfffffULL << 32),
6116};
6117
6118/* Current network namespace */
6119enum {
6120 BPF_F_CURRENT_NETNS = (-1L),
6121};
6122
6123/* BPF_FUNC_csum_level level values. */
6124enum {
6125 BPF_CSUM_LEVEL_QUERY,
6126 BPF_CSUM_LEVEL_INC,
6127 BPF_CSUM_LEVEL_DEC,
6128 BPF_CSUM_LEVEL_RESET,
6129};
6130
6131/* BPF_FUNC_skb_adjust_room flags. */
6132enum {
6133 BPF_F_ADJ_ROOM_FIXED_GSO = (1ULL << 0),
6134 BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 = (1ULL << 1),
6135 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 = (1ULL << 2),
6136 BPF_F_ADJ_ROOM_ENCAP_L4_GRE = (1ULL << 3),
6137 BPF_F_ADJ_ROOM_ENCAP_L4_UDP = (1ULL << 4),
6138 BPF_F_ADJ_ROOM_NO_CSUM_RESET = (1ULL << 5),
6139 BPF_F_ADJ_ROOM_ENCAP_L2_ETH = (1ULL << 6),
6140 BPF_F_ADJ_ROOM_DECAP_L3_IPV4 = (1ULL << 7),
6141 BPF_F_ADJ_ROOM_DECAP_L3_IPV6 = (1ULL << 8),
6142};
6143
6144enum {
6145 BPF_ADJ_ROOM_ENCAP_L2_MASK = 0xff,
6146 BPF_ADJ_ROOM_ENCAP_L2_SHIFT = 56,
6147};
6148
6149#define BPF_F_ADJ_ROOM_ENCAP_L2(len) (((__u64)len & \
6150 BPF_ADJ_ROOM_ENCAP_L2_MASK) \
6151 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT)
6152
6153/* BPF_FUNC_sysctl_get_name flags. */
6154enum {
6155 BPF_F_SYSCTL_BASE_NAME = (1ULL << 0),
6156};
6157
6158/* BPF_FUNC_<kernel_obj>_storage_get flags */
6159enum {
6160 BPF_LOCAL_STORAGE_GET_F_CREATE = (1ULL << 0),
6161 /* BPF_SK_STORAGE_GET_F_CREATE is only kept for backward compatibility
6162 * and BPF_LOCAL_STORAGE_GET_F_CREATE must be used instead.
6163 */
6164 BPF_SK_STORAGE_GET_F_CREATE = BPF_LOCAL_STORAGE_GET_F_CREATE,
6165};
6166
6167/* BPF_FUNC_read_branch_records flags. */
6168enum {
6169 BPF_F_GET_BRANCH_RECORDS_SIZE = (1ULL << 0),
6170};
6171
6172/* BPF_FUNC_bpf_ringbuf_commit, BPF_FUNC_bpf_ringbuf_discard, and
6173 * BPF_FUNC_bpf_ringbuf_output flags.
6174 */
6175enum {
6176 BPF_RB_NO_WAKEUP = (1ULL << 0),
6177 BPF_RB_FORCE_WAKEUP = (1ULL << 1),
6178};
6179
6180/* BPF_FUNC_bpf_ringbuf_query flags */
6181enum {
6182 BPF_RB_AVAIL_DATA = 0,
6183 BPF_RB_RING_SIZE = 1,
6184 BPF_RB_CONS_POS = 2,
6185 BPF_RB_PROD_POS = 3,
6186};
6187
6188/* BPF ring buffer constants */
6189enum {
6190 BPF_RINGBUF_BUSY_BIT = (1U << 31),
6191 BPF_RINGBUF_DISCARD_BIT = (1U << 30),
6192 BPF_RINGBUF_HDR_SZ = 8,
6193};
6194
6195/* BPF_FUNC_sk_assign flags in bpf_sk_lookup context. */
6196enum {
6197 BPF_SK_LOOKUP_F_REPLACE = (1ULL << 0),
6198 BPF_SK_LOOKUP_F_NO_REUSEPORT = (1ULL << 1),
6199};
6200
6201/* Mode for BPF_FUNC_skb_adjust_room helper. */
6202enum bpf_adj_room_mode {
6203 BPF_ADJ_ROOM_NET,
6204 BPF_ADJ_ROOM_MAC,
6205};
6206
6207/* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
6208enum bpf_hdr_start_off {
6209 BPF_HDR_START_MAC,
6210 BPF_HDR_START_NET,
6211};
6212
6213/* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
6214enum bpf_lwt_encap_mode {
6215 BPF_LWT_ENCAP_SEG6,
6216 BPF_LWT_ENCAP_SEG6_INLINE,
6217 BPF_LWT_ENCAP_IP,
6218};
6219
6220/* Flags for bpf_bprm_opts_set helper */
6221enum {
6222 BPF_F_BPRM_SECUREEXEC = (1ULL << 0),
6223};
6224
6225/* Flags for bpf_redirect and bpf_redirect_map helpers */
6226enum {
6227 BPF_F_INGRESS = (1ULL << 0), /* used for skb path */
6228 BPF_F_BROADCAST = (1ULL << 3), /* used for XDP path */
6229 BPF_F_EXCLUDE_INGRESS = (1ULL << 4), /* used for XDP path */
6230#define BPF_F_REDIRECT_FLAGS (BPF_F_INGRESS | BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS)
6231};
6232
6233#define __bpf_md_ptr(type, name) \
6234union { \
6235 type name; \
6236 __u64 :64; \
6237} __attribute__((aligned(8)))
6238
6239/* The enum used in skb->tstamp_type. It specifies the clock type
6240 * of the time stored in the skb->tstamp.
6241 */
6242enum {
6243 BPF_SKB_TSTAMP_UNSPEC = 0, /* DEPRECATED */
6244 BPF_SKB_TSTAMP_DELIVERY_MONO = 1, /* DEPRECATED */
6245 BPF_SKB_CLOCK_REALTIME = 0,
6246 BPF_SKB_CLOCK_MONOTONIC = 1,
6247 BPF_SKB_CLOCK_TAI = 2,
6248 /* For any future BPF_SKB_CLOCK_* that the bpf prog cannot handle,
6249 * the bpf prog can try to deduce it by ingress/egress/skb->sk->sk_clockid.
6250 */
6251};
6252
6253/* user accessible mirror of in-kernel sk_buff.
6254 * new fields can only be added to the end of this structure
6255 */
6256struct __sk_buff {
6257 __u32 len;
6258 __u32 pkt_type;
6259 __u32 mark;
6260 __u32 queue_mapping;
6261 __u32 protocol;
6262 __u32 vlan_present;
6263 __u32 vlan_tci;
6264 __u32 vlan_proto;
6265 __u32 priority;
6266 __u32 ingress_ifindex;
6267 __u32 ifindex;
6268 __u32 tc_index;
6269 __u32 cb[5];
6270 __u32 hash;
6271 __u32 tc_classid;
6272 __u32 data;
6273 __u32 data_end;
6274 __u32 napi_id;
6275
6276 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
6277 __u32 family;
6278 __u32 remote_ip4; /* Stored in network byte order */
6279 __u32 local_ip4; /* Stored in network byte order */
6280 __u32 remote_ip6[4]; /* Stored in network byte order */
6281 __u32 local_ip6[4]; /* Stored in network byte order */
6282 __u32 remote_port; /* Stored in network byte order */
6283 __u32 local_port; /* stored in host byte order */
6284 /* ... here. */
6285
6286 __u32 data_meta;
6287 __bpf_md_ptr(struct bpf_flow_keys *, flow_keys);
6288 __u64 tstamp;
6289 __u32 wire_len;
6290 __u32 gso_segs;
6291 __bpf_md_ptr(struct bpf_sock *, sk);
6292 __u32 gso_size;
6293 __u8 tstamp_type;
6294 __u32 :24; /* Padding, future use. */
6295 __u64 hwtstamp;
6296};
6297
6298struct bpf_tunnel_key {
6299 __u32 tunnel_id;
6300 union {
6301 __u32 remote_ipv4;
6302 __u32 remote_ipv6[4];
6303 };
6304 __u8 tunnel_tos;
6305 __u8 tunnel_ttl;
6306 union {
6307 __u16 tunnel_ext; /* compat */
6308 __be16 tunnel_flags;
6309 };
6310 __u32 tunnel_label;
6311 union {
6312 __u32 local_ipv4;
6313 __u32 local_ipv6[4];
6314 };
6315};
6316
6317/* user accessible mirror of in-kernel xfrm_state.
6318 * new fields can only be added to the end of this structure
6319 */
6320struct bpf_xfrm_state {
6321 __u32 reqid;
6322 __u32 spi; /* Stored in network byte order */
6323 __u16 family;
6324 __u16 ext; /* Padding, future use. */
6325 union {
6326 __u32 remote_ipv4; /* Stored in network byte order */
6327 __u32 remote_ipv6[4]; /* Stored in network byte order */
6328 };
6329};
6330
6331/* Generic BPF return codes which all BPF program types may support.
6332 * The values are binary compatible with their TC_ACT_* counter-part to
6333 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
6334 * programs.
6335 *
6336 * XDP is handled seprately, see XDP_*.
6337 */
6338enum bpf_ret_code {
6339 BPF_OK = 0,
6340 /* 1 reserved */
6341 BPF_DROP = 2,
6342 /* 3-6 reserved */
6343 BPF_REDIRECT = 7,
6344 /* >127 are reserved for prog type specific return codes.
6345 *
6346 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and
6347 * BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been
6348 * changed and should be routed based on its new L3 header.
6349 * (This is an L3 redirect, as opposed to L2 redirect
6350 * represented by BPF_REDIRECT above).
6351 */
6352 BPF_LWT_REROUTE = 128,
6353 /* BPF_FLOW_DISSECTOR_CONTINUE: used by BPF_PROG_TYPE_FLOW_DISSECTOR
6354 * to indicate that no custom dissection was performed, and
6355 * fallback to standard dissector is requested.
6356 */
6357 BPF_FLOW_DISSECTOR_CONTINUE = 129,
6358};
6359
6360struct bpf_sock {
6361 __u32 bound_dev_if;
6362 __u32 family;
6363 __u32 type;
6364 __u32 protocol;
6365 __u32 mark;
6366 __u32 priority;
6367 /* IP address also allows 1 and 2 bytes access */
6368 __u32 src_ip4;
6369 __u32 src_ip6[4];
6370 __u32 src_port; /* host byte order */
6371 __be16 dst_port; /* network byte order */
6372 __u16 :16; /* zero padding */
6373 __u32 dst_ip4;
6374 __u32 dst_ip6[4];
6375 __u32 state;
6376 __s32 rx_queue_mapping;
6377};
6378
6379struct bpf_tcp_sock {
6380 __u32 snd_cwnd; /* Sending congestion window */
6381 __u32 srtt_us; /* smoothed round trip time << 3 in usecs */
6382 __u32 rtt_min;
6383 __u32 snd_ssthresh; /* Slow start size threshold */
6384 __u32 rcv_nxt; /* What we want to receive next */
6385 __u32 snd_nxt; /* Next sequence we send */
6386 __u32 snd_una; /* First byte we want an ack for */
6387 __u32 mss_cache; /* Cached effective mss, not including SACKS */
6388 __u32 ecn_flags; /* ECN status bits. */
6389 __u32 rate_delivered; /* saved rate sample: packets delivered */
6390 __u32 rate_interval_us; /* saved rate sample: time elapsed */
6391 __u32 packets_out; /* Packets which are "in flight" */
6392 __u32 retrans_out; /* Retransmitted packets out */
6393 __u32 total_retrans; /* Total retransmits for entire connection */
6394 __u32 segs_in; /* RFC4898 tcpEStatsPerfSegsIn
6395 * total number of segments in.
6396 */
6397 __u32 data_segs_in; /* RFC4898 tcpEStatsPerfDataSegsIn
6398 * total number of data segments in.
6399 */
6400 __u32 segs_out; /* RFC4898 tcpEStatsPerfSegsOut
6401 * The total number of segments sent.
6402 */
6403 __u32 data_segs_out; /* RFC4898 tcpEStatsPerfDataSegsOut
6404 * total number of data segments sent.
6405 */
6406 __u32 lost_out; /* Lost packets */
6407 __u32 sacked_out; /* SACK'd packets */
6408 __u64 bytes_received; /* RFC4898 tcpEStatsAppHCThruOctetsReceived
6409 * sum(delta(rcv_nxt)), or how many bytes
6410 * were acked.
6411 */
6412 __u64 bytes_acked; /* RFC4898 tcpEStatsAppHCThruOctetsAcked
6413 * sum(delta(snd_una)), or how many bytes
6414 * were acked.
6415 */
6416 __u32 dsack_dups; /* RFC4898 tcpEStatsStackDSACKDups
6417 * total number of DSACK blocks received
6418 */
6419 __u32 delivered; /* Total data packets delivered incl. rexmits */
6420 __u32 delivered_ce; /* Like the above but only ECE marked packets */
6421 __u32 icsk_retransmits; /* Number of unrecovered [RTO] timeouts */
6422};
6423
6424struct bpf_sock_tuple {
6425 union {
6426 struct {
6427 __be32 saddr;
6428 __be32 daddr;
6429 __be16 sport;
6430 __be16 dport;
6431 } ipv4;
6432 struct {
6433 __be32 saddr[4];
6434 __be32 daddr[4];
6435 __be16 sport;
6436 __be16 dport;
6437 } ipv6;
6438 };
6439};
6440
6441/* (Simplified) user return codes for tcx prog type.
6442 * A valid tcx program must return one of these defined values. All other
6443 * return codes are reserved for future use. Must remain compatible with
6444 * their TC_ACT_* counter-parts. For compatibility in behavior, unknown
6445 * return codes are mapped to TCX_NEXT.
6446 */
6447enum tcx_action_base {
6448 TCX_NEXT = -1,
6449 TCX_PASS = 0,
6450 TCX_DROP = 2,
6451 TCX_REDIRECT = 7,
6452};
6453
6454struct bpf_xdp_sock {
6455 __u32 queue_id;
6456};
6457
6458#define XDP_PACKET_HEADROOM 256
6459
6460/* User return codes for XDP prog type.
6461 * A valid XDP program must return one of these defined values. All other
6462 * return codes are reserved for future use. Unknown return codes will
6463 * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
6464 */
6465enum xdp_action {
6466 XDP_ABORTED = 0,
6467 XDP_DROP,
6468 XDP_PASS,
6469 XDP_TX,
6470 XDP_REDIRECT,
6471};
6472
6473/* user accessible metadata for XDP packet hook
6474 * new fields must be added to the end of this structure
6475 */
6476struct xdp_md {
6477 __u32 data;
6478 __u32 data_end;
6479 __u32 data_meta;
6480 /* Below access go through struct xdp_rxq_info */
6481 __u32 ingress_ifindex; /* rxq->dev->ifindex */
6482 __u32 rx_queue_index; /* rxq->queue_index */
6483
6484 __u32 egress_ifindex; /* txq->dev->ifindex */
6485};
6486
6487/* DEVMAP map-value layout
6488 *
6489 * The struct data-layout of map-value is a configuration interface.
6490 * New members can only be added to the end of this structure.
6491 */
6492struct bpf_devmap_val {
6493 __u32 ifindex; /* device index */
6494 union {
6495 int fd; /* prog fd on map write */
6496 __u32 id; /* prog id on map read */
6497 } bpf_prog;
6498};
6499
6500/* CPUMAP map-value layout
6501 *
6502 * The struct data-layout of map-value is a configuration interface.
6503 * New members can only be added to the end of this structure.
6504 */
6505struct bpf_cpumap_val {
6506 __u32 qsize; /* queue size to remote target CPU */
6507 union {
6508 int fd; /* prog fd on map write */
6509 __u32 id; /* prog id on map read */
6510 } bpf_prog;
6511};
6512
6513enum sk_action {
6514 SK_DROP = 0,
6515 SK_PASS,
6516};
6517
6518/* user accessible metadata for SK_MSG packet hook, new fields must
6519 * be added to the end of this structure
6520 */
6521struct sk_msg_md {
6522 __bpf_md_ptr(void *, data);
6523 __bpf_md_ptr(void *, data_end);
6524
6525 __u32 family;
6526 __u32 remote_ip4; /* Stored in network byte order */
6527 __u32 local_ip4; /* Stored in network byte order */
6528 __u32 remote_ip6[4]; /* Stored in network byte order */
6529 __u32 local_ip6[4]; /* Stored in network byte order */
6530 __u32 remote_port; /* Stored in network byte order */
6531 __u32 local_port; /* stored in host byte order */
6532 __u32 size; /* Total size of sk_msg */
6533
6534 __bpf_md_ptr(struct bpf_sock *, sk); /* current socket */
6535};
6536
6537struct sk_reuseport_md {
6538 /*
6539 * Start of directly accessible data. It begins from
6540 * the tcp/udp header.
6541 */
6542 __bpf_md_ptr(void *, data);
6543 /* End of directly accessible data */
6544 __bpf_md_ptr(void *, data_end);
6545 /*
6546 * Total length of packet (starting from the tcp/udp header).
6547 * Note that the directly accessible bytes (data_end - data)
6548 * could be less than this "len". Those bytes could be
6549 * indirectly read by a helper "bpf_skb_load_bytes()".
6550 */
6551 __u32 len;
6552 /*
6553 * Eth protocol in the mac header (network byte order). e.g.
6554 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
6555 */
6556 __u32 eth_protocol;
6557 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
6558 __u32 bind_inany; /* Is sock bound to an INANY address? */
6559 __u32 hash; /* A hash of the packet 4 tuples */
6560 /* When reuse->migrating_sk is NULL, it is selecting a sk for the
6561 * new incoming connection request (e.g. selecting a listen sk for
6562 * the received SYN in the TCP case). reuse->sk is one of the sk
6563 * in the reuseport group. The bpf prog can use reuse->sk to learn
6564 * the local listening ip/port without looking into the skb.
6565 *
6566 * When reuse->migrating_sk is not NULL, reuse->sk is closed and
6567 * reuse->migrating_sk is the socket that needs to be migrated
6568 * to another listening socket. migrating_sk could be a fullsock
6569 * sk that is fully established or a reqsk that is in-the-middle
6570 * of 3-way handshake.
6571 */
6572 __bpf_md_ptr(struct bpf_sock *, sk);
6573 __bpf_md_ptr(struct bpf_sock *, migrating_sk);
6574};
6575
6576#define BPF_TAG_SIZE 8
6577
6578struct bpf_prog_info {
6579 __u32 type;
6580 __u32 id;
6581 __u8 tag[BPF_TAG_SIZE];
6582 __u32 jited_prog_len;
6583 __u32 xlated_prog_len;
6584 __aligned_u64 jited_prog_insns;
6585 __aligned_u64 xlated_prog_insns;
6586 __u64 load_time; /* ns since boottime */
6587 __u32 created_by_uid;
6588 __u32 nr_map_ids;
6589 __aligned_u64 map_ids;
6590 char name[BPF_OBJ_NAME_LEN];
6591 __u32 ifindex;
6592 __u32 gpl_compatible:1;
6593 __u32 :31; /* alignment pad */
6594 __u64 netns_dev;
6595 __u64 netns_ino;
6596 __u32 nr_jited_ksyms;
6597 __u32 nr_jited_func_lens;
6598 __aligned_u64 jited_ksyms;
6599 __aligned_u64 jited_func_lens;
6600 __u32 btf_id;
6601 __u32 func_info_rec_size;
6602 __aligned_u64 func_info;
6603 __u32 nr_func_info;
6604 __u32 nr_line_info;
6605 __aligned_u64 line_info;
6606 __aligned_u64 jited_line_info;
6607 __u32 nr_jited_line_info;
6608 __u32 line_info_rec_size;
6609 __u32 jited_line_info_rec_size;
6610 __u32 nr_prog_tags;
6611 __aligned_u64 prog_tags;
6612 __u64 run_time_ns;
6613 __u64 run_cnt;
6614 __u64 recursion_misses;
6615 __u32 verified_insns;
6616 __u32 attach_btf_obj_id;
6617 __u32 attach_btf_id;
6618} __attribute__((aligned(8)));
6619
6620struct bpf_map_info {
6621 __u32 type;
6622 __u32 id;
6623 __u32 key_size;
6624 __u32 value_size;
6625 __u32 max_entries;
6626 __u32 map_flags;
6627 char name[BPF_OBJ_NAME_LEN];
6628 __u32 ifindex;
6629 __u32 btf_vmlinux_value_type_id;
6630 __u64 netns_dev;
6631 __u64 netns_ino;
6632 __u32 btf_id;
6633 __u32 btf_key_type_id;
6634 __u32 btf_value_type_id;
6635 __u32 btf_vmlinux_id;
6636 __u64 map_extra;
6637} __attribute__((aligned(8)));
6638
6639struct bpf_btf_info {
6640 __aligned_u64 btf;
6641 __u32 btf_size;
6642 __u32 id;
6643 __aligned_u64 name;
6644 __u32 name_len;
6645 __u32 kernel_btf;
6646} __attribute__((aligned(8)));
6647
6648struct bpf_link_info {
6649 __u32 type;
6650 __u32 id;
6651 __u32 prog_id;
6652 union {
6653 struct {
6654 __aligned_u64 tp_name; /* in/out: tp_name buffer ptr */
6655 __u32 tp_name_len; /* in/out: tp_name buffer len */
6656 } raw_tracepoint;
6657 struct {
6658 __u32 attach_type;
6659 __u32 target_obj_id; /* prog_id for PROG_EXT, otherwise btf object id */
6660 __u32 target_btf_id; /* BTF type id inside the object */
6661 } tracing;
6662 struct {
6663 __u64 cgroup_id;
6664 __u32 attach_type;
6665 } cgroup;
6666 struct {
6667 __aligned_u64 target_name; /* in/out: target_name buffer ptr */
6668 __u32 target_name_len; /* in/out: target_name buffer len */
6669
6670 /* If the iter specific field is 32 bits, it can be put
6671 * in the first or second union. Otherwise it should be
6672 * put in the second union.
6673 */
6674 union {
6675 struct {
6676 __u32 map_id;
6677 } map;
6678 };
6679 union {
6680 struct {
6681 __u64 cgroup_id;
6682 __u32 order;
6683 } cgroup;
6684 struct {
6685 __u32 tid;
6686 __u32 pid;
6687 } task;
6688 };
6689 } iter;
6690 struct {
6691 __u32 netns_ino;
6692 __u32 attach_type;
6693 } netns;
6694 struct {
6695 __u32 ifindex;
6696 } xdp;
6697 struct {
6698 __u32 map_id;
6699 } struct_ops;
6700 struct {
6701 __u32 pf;
6702 __u32 hooknum;
6703 __s32 priority;
6704 __u32 flags;
6705 } netfilter;
6706 struct {
6707 __aligned_u64 addrs;
6708 __u32 count; /* in/out: kprobe_multi function count */
6709 __u32 flags;
6710 __u64 missed;
6711 __aligned_u64 cookies;
6712 } kprobe_multi;
6713 struct {
6714 __aligned_u64 path;
6715 __aligned_u64 offsets;
6716 __aligned_u64 ref_ctr_offsets;
6717 __aligned_u64 cookies;
6718 __u32 path_size; /* in/out: real path size on success, including zero byte */
6719 __u32 count; /* in/out: uprobe_multi offsets/ref_ctr_offsets/cookies count */
6720 __u32 flags;
6721 __u32 pid;
6722 } uprobe_multi;
6723 struct {
6724 __u32 type; /* enum bpf_perf_event_type */
6725 __u32 :32;
6726 union {
6727 struct {
6728 __aligned_u64 file_name; /* in/out */
6729 __u32 name_len;
6730 __u32 offset; /* offset from file_name */
6731 __u64 cookie;
6732 __u64 ref_ctr_offset;
6733 } uprobe; /* BPF_PERF_EVENT_UPROBE, BPF_PERF_EVENT_URETPROBE */
6734 struct {
6735 __aligned_u64 func_name; /* in/out */
6736 __u32 name_len;
6737 __u32 offset; /* offset from func_name */
6738 __u64 addr;
6739 __u64 missed;
6740 __u64 cookie;
6741 } kprobe; /* BPF_PERF_EVENT_KPROBE, BPF_PERF_EVENT_KRETPROBE */
6742 struct {
6743 __aligned_u64 tp_name; /* in/out */
6744 __u32 name_len;
6745 __u32 :32;
6746 __u64 cookie;
6747 } tracepoint; /* BPF_PERF_EVENT_TRACEPOINT */
6748 struct {
6749 __u64 config;
6750 __u32 type;
6751 __u32 :32;
6752 __u64 cookie;
6753 } event; /* BPF_PERF_EVENT_EVENT */
6754 };
6755 } perf_event;
6756 struct {
6757 __u32 ifindex;
6758 __u32 attach_type;
6759 } tcx;
6760 struct {
6761 __u32 ifindex;
6762 __u32 attach_type;
6763 } netkit;
6764 struct {
6765 __u32 map_id;
6766 __u32 attach_type;
6767 } sockmap;
6768 };
6769} __attribute__((aligned(8)));
6770
6771/* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
6772 * by user and intended to be used by socket (e.g. to bind to, depends on
6773 * attach type).
6774 */
6775struct bpf_sock_addr {
6776 __u32 user_family; /* Allows 4-byte read, but no write. */
6777 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write.
6778 * Stored in network byte order.
6779 */
6780 __u32 user_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write.
6781 * Stored in network byte order.
6782 */
6783 __u32 user_port; /* Allows 1,2,4-byte read and 4-byte write.
6784 * Stored in network byte order
6785 */
6786 __u32 family; /* Allows 4-byte read, but no write */
6787 __u32 type; /* Allows 4-byte read, but no write */
6788 __u32 protocol; /* Allows 4-byte read, but no write */
6789 __u32 msg_src_ip4; /* Allows 1,2,4-byte read and 4-byte write.
6790 * Stored in network byte order.
6791 */
6792 __u32 msg_src_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write.
6793 * Stored in network byte order.
6794 */
6795 __bpf_md_ptr(struct bpf_sock *, sk);
6796};
6797
6798/* User bpf_sock_ops struct to access socket values and specify request ops
6799 * and their replies.
6800 * Some of this fields are in network (bigendian) byte order and may need
6801 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
6802 * New fields can only be added at the end of this structure
6803 */
6804struct bpf_sock_ops {
6805 __u32 op;
6806 union {
6807 __u32 args[4]; /* Optionally passed to bpf program */
6808 __u32 reply; /* Returned by bpf program */
6809 __u32 replylong[4]; /* Optionally returned by bpf prog */
6810 };
6811 __u32 family;
6812 __u32 remote_ip4; /* Stored in network byte order */
6813 __u32 local_ip4; /* Stored in network byte order */
6814 __u32 remote_ip6[4]; /* Stored in network byte order */
6815 __u32 local_ip6[4]; /* Stored in network byte order */
6816 __u32 remote_port; /* Stored in network byte order */
6817 __u32 local_port; /* stored in host byte order */
6818 __u32 is_fullsock; /* Some TCP fields are only valid if
6819 * there is a full socket. If not, the
6820 * fields read as zero.
6821 */
6822 __u32 snd_cwnd;
6823 __u32 srtt_us; /* Averaged RTT << 3 in usecs */
6824 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
6825 __u32 state;
6826 __u32 rtt_min;
6827 __u32 snd_ssthresh;
6828 __u32 rcv_nxt;
6829 __u32 snd_nxt;
6830 __u32 snd_una;
6831 __u32 mss_cache;
6832 __u32 ecn_flags;
6833 __u32 rate_delivered;
6834 __u32 rate_interval_us;
6835 __u32 packets_out;
6836 __u32 retrans_out;
6837 __u32 total_retrans;
6838 __u32 segs_in;
6839 __u32 data_segs_in;
6840 __u32 segs_out;
6841 __u32 data_segs_out;
6842 __u32 lost_out;
6843 __u32 sacked_out;
6844 __u32 sk_txhash;
6845 __u64 bytes_received;
6846 __u64 bytes_acked;
6847 __bpf_md_ptr(struct bpf_sock *, sk);
6848 /* [skb_data, skb_data_end) covers the whole TCP header.
6849 *
6850 * BPF_SOCK_OPS_PARSE_HDR_OPT_CB: The packet received
6851 * BPF_SOCK_OPS_HDR_OPT_LEN_CB: Not useful because the
6852 * header has not been written.
6853 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB: The header and options have
6854 * been written so far.
6855 * BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB: The SYNACK that concludes
6856 * the 3WHS.
6857 * BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB: The ACK that concludes
6858 * the 3WHS.
6859 *
6860 * bpf_load_hdr_opt() can also be used to read a particular option.
6861 */
6862 __bpf_md_ptr(void *, skb_data);
6863 __bpf_md_ptr(void *, skb_data_end);
6864 __u32 skb_len; /* The total length of a packet.
6865 * It includes the header, options,
6866 * and payload.
6867 */
6868 __u32 skb_tcp_flags; /* tcp_flags of the header. It provides
6869 * an easy way to check for tcp_flags
6870 * without parsing skb_data.
6871 *
6872 * In particular, the skb_tcp_flags
6873 * will still be available in
6874 * BPF_SOCK_OPS_HDR_OPT_LEN even though
6875 * the outgoing header has not
6876 * been written yet.
6877 */
6878 __u64 skb_hwtstamp;
6879};
6880
6881/* Definitions for bpf_sock_ops_cb_flags */
6882enum {
6883 BPF_SOCK_OPS_RTO_CB_FLAG = (1<<0),
6884 BPF_SOCK_OPS_RETRANS_CB_FLAG = (1<<1),
6885 BPF_SOCK_OPS_STATE_CB_FLAG = (1<<2),
6886 BPF_SOCK_OPS_RTT_CB_FLAG = (1<<3),
6887 /* Call bpf for all received TCP headers. The bpf prog will be
6888 * called under sock_ops->op == BPF_SOCK_OPS_PARSE_HDR_OPT_CB
6889 *
6890 * Please refer to the comment in BPF_SOCK_OPS_PARSE_HDR_OPT_CB
6891 * for the header option related helpers that will be useful
6892 * to the bpf programs.
6893 *
6894 * It could be used at the client/active side (i.e. connect() side)
6895 * when the server told it that the server was in syncookie
6896 * mode and required the active side to resend the bpf-written
6897 * options. The active side can keep writing the bpf-options until
6898 * it received a valid packet from the server side to confirm
6899 * the earlier packet (and options) has been received. The later
6900 * example patch is using it like this at the active side when the
6901 * server is in syncookie mode.
6902 *
6903 * The bpf prog will usually turn this off in the common cases.
6904 */
6905 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG = (1<<4),
6906 /* Call bpf when kernel has received a header option that
6907 * the kernel cannot handle. The bpf prog will be called under
6908 * sock_ops->op == BPF_SOCK_OPS_PARSE_HDR_OPT_CB.
6909 *
6910 * Please refer to the comment in BPF_SOCK_OPS_PARSE_HDR_OPT_CB
6911 * for the header option related helpers that will be useful
6912 * to the bpf programs.
6913 */
6914 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG = (1<<5),
6915 /* Call bpf when the kernel is writing header options for the
6916 * outgoing packet. The bpf prog will first be called
6917 * to reserve space in a skb under
6918 * sock_ops->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB. Then
6919 * the bpf prog will be called to write the header option(s)
6920 * under sock_ops->op == BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
6921 *
6922 * Please refer to the comment in BPF_SOCK_OPS_HDR_OPT_LEN_CB
6923 * and BPF_SOCK_OPS_WRITE_HDR_OPT_CB for the header option
6924 * related helpers that will be useful to the bpf programs.
6925 *
6926 * The kernel gets its chance to reserve space and write
6927 * options first before the BPF program does.
6928 */
6929 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG = (1<<6),
6930/* Mask of all currently supported cb flags */
6931 BPF_SOCK_OPS_ALL_CB_FLAGS = 0x7F,
6932};
6933
6934enum {
6935 SK_BPF_CB_TX_TIMESTAMPING = 1<<0,
6936 SK_BPF_CB_MASK = (SK_BPF_CB_TX_TIMESTAMPING - 1) |
6937 SK_BPF_CB_TX_TIMESTAMPING
6938};
6939
6940/* List of known BPF sock_ops operators.
6941 * New entries can only be added at the end
6942 */
6943enum {
6944 BPF_SOCK_OPS_VOID,
6945 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or
6946 * -1 if default value should be used
6947 */
6948 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized
6949 * window (in packets) or -1 if default
6950 * value should be used
6951 */
6952 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an
6953 * active connection is initialized
6954 */
6955 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an
6956 * active connection is
6957 * established
6958 */
6959 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a
6960 * passive connection is
6961 * established
6962 */
6963 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control
6964 * needs ECN
6965 */
6966 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is
6967 * based on the path and may be
6968 * dependent on the congestion control
6969 * algorithm. In general it indicates
6970 * a congestion threshold. RTTs above
6971 * this indicate congestion
6972 */
6973 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered.
6974 * Arg1: value of icsk_retransmits
6975 * Arg2: value of icsk_rto
6976 * Arg3: whether RTO has expired
6977 */
6978 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted.
6979 * Arg1: sequence number of 1st byte
6980 * Arg2: # segments
6981 * Arg3: return value of
6982 * tcp_transmit_skb (0 => success)
6983 */
6984 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state.
6985 * Arg1: old_state
6986 * Arg2: new_state
6987 */
6988 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after
6989 * socket transition to LISTEN state.
6990 */
6991 BPF_SOCK_OPS_RTT_CB, /* Called on every RTT.
6992 * Arg1: measured RTT input (mrtt)
6993 * Arg2: updated srtt
6994 */
6995 BPF_SOCK_OPS_PARSE_HDR_OPT_CB, /* Parse the header option.
6996 * It will be called to handle
6997 * the packets received at
6998 * an already established
6999 * connection.
7000 *
7001 * sock_ops->skb_data:
7002 * Referring to the received skb.
7003 * It covers the TCP header only.
7004 *
7005 * bpf_load_hdr_opt() can also
7006 * be used to search for a
7007 * particular option.
7008 */
7009 BPF_SOCK_OPS_HDR_OPT_LEN_CB, /* Reserve space for writing the
7010 * header option later in
7011 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
7012 * Arg1: bool want_cookie. (in
7013 * writing SYNACK only)
7014 *
7015 * sock_ops->skb_data:
7016 * Not available because no header has
7017 * been written yet.
7018 *
7019 * sock_ops->skb_tcp_flags:
7020 * The tcp_flags of the
7021 * outgoing skb. (e.g. SYN, ACK, FIN).
7022 *
7023 * bpf_reserve_hdr_opt() should
7024 * be used to reserve space.
7025 */
7026 BPF_SOCK_OPS_WRITE_HDR_OPT_CB, /* Write the header options
7027 * Arg1: bool want_cookie. (in
7028 * writing SYNACK only)
7029 *
7030 * sock_ops->skb_data:
7031 * Referring to the outgoing skb.
7032 * It covers the TCP header
7033 * that has already been written
7034 * by the kernel and the
7035 * earlier bpf-progs.
7036 *
7037 * sock_ops->skb_tcp_flags:
7038 * The tcp_flags of the outgoing
7039 * skb. (e.g. SYN, ACK, FIN).
7040 *
7041 * bpf_store_hdr_opt() should
7042 * be used to write the
7043 * option.
7044 *
7045 * bpf_load_hdr_opt() can also
7046 * be used to search for a
7047 * particular option that
7048 * has already been written
7049 * by the kernel or the
7050 * earlier bpf-progs.
7051 */
7052 BPF_SOCK_OPS_TSTAMP_SCHED_CB, /* Called when skb is passing
7053 * through dev layer when
7054 * SK_BPF_CB_TX_TIMESTAMPING
7055 * feature is on.
7056 */
7057 BPF_SOCK_OPS_TSTAMP_SND_SW_CB, /* Called when skb is about to send
7058 * to the nic when SK_BPF_CB_TX_TIMESTAMPING
7059 * feature is on.
7060 */
7061 BPF_SOCK_OPS_TSTAMP_SND_HW_CB, /* Called in hardware phase when
7062 * SK_BPF_CB_TX_TIMESTAMPING feature
7063 * is on.
7064 */
7065 BPF_SOCK_OPS_TSTAMP_ACK_CB, /* Called when all the skbs in the
7066 * same sendmsg call are acked
7067 * when SK_BPF_CB_TX_TIMESTAMPING
7068 * feature is on.
7069 */
7070 BPF_SOCK_OPS_TSTAMP_SENDMSG_CB, /* Called when every sendmsg syscall
7071 * is triggered. It's used to correlate
7072 * sendmsg timestamp with corresponding
7073 * tskey.
7074 */
7075};
7076
7077/* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
7078 * changes between the TCP and BPF versions. Ideally this should never happen.
7079 * If it does, we need to add code to convert them before calling
7080 * the BPF sock_ops function.
7081 */
7082enum {
7083 BPF_TCP_ESTABLISHED = 1,
7084 BPF_TCP_SYN_SENT,
7085 BPF_TCP_SYN_RECV,
7086 BPF_TCP_FIN_WAIT1,
7087 BPF_TCP_FIN_WAIT2,
7088 BPF_TCP_TIME_WAIT,
7089 BPF_TCP_CLOSE,
7090 BPF_TCP_CLOSE_WAIT,
7091 BPF_TCP_LAST_ACK,
7092 BPF_TCP_LISTEN,
7093 BPF_TCP_CLOSING, /* Now a valid state */
7094 BPF_TCP_NEW_SYN_RECV,
7095 BPF_TCP_BOUND_INACTIVE,
7096
7097 BPF_TCP_MAX_STATES /* Leave at the end! */
7098};
7099
7100enum {
7101 TCP_BPF_IW = 1001, /* Set TCP initial congestion window */
7102 TCP_BPF_SNDCWND_CLAMP = 1002, /* Set sndcwnd_clamp */
7103 TCP_BPF_DELACK_MAX = 1003, /* Max delay ack in usecs */
7104 TCP_BPF_RTO_MIN = 1004, /* Min delay ack in usecs */
7105 /* Copy the SYN pkt to optval
7106 *
7107 * BPF_PROG_TYPE_SOCK_OPS only. It is similar to the
7108 * bpf_getsockopt(TCP_SAVED_SYN) but it does not limit
7109 * to only getting from the saved_syn. It can either get the
7110 * syn packet from:
7111 *
7112 * 1. the just-received SYN packet (only available when writing the
7113 * SYNACK). It will be useful when it is not necessary to
7114 * save the SYN packet for latter use. It is also the only way
7115 * to get the SYN during syncookie mode because the syn
7116 * packet cannot be saved during syncookie.
7117 *
7118 * OR
7119 *
7120 * 2. the earlier saved syn which was done by
7121 * bpf_setsockopt(TCP_SAVE_SYN).
7122 *
7123 * The bpf_getsockopt(TCP_BPF_SYN*) option will hide where the
7124 * SYN packet is obtained.
7125 *
7126 * If the bpf-prog does not need the IP[46] header, the
7127 * bpf-prog can avoid parsing the IP header by using
7128 * TCP_BPF_SYN. Otherwise, the bpf-prog can get both
7129 * IP[46] and TCP header by using TCP_BPF_SYN_IP.
7130 *
7131 * >0: Total number of bytes copied
7132 * -ENOSPC: Not enough space in optval. Only optlen number of
7133 * bytes is copied.
7134 * -ENOENT: The SYN skb is not available now and the earlier SYN pkt
7135 * is not saved by setsockopt(TCP_SAVE_SYN).
7136 */
7137 TCP_BPF_SYN = 1005, /* Copy the TCP header */
7138 TCP_BPF_SYN_IP = 1006, /* Copy the IP[46] and TCP header */
7139 TCP_BPF_SYN_MAC = 1007, /* Copy the MAC, IP[46], and TCP header */
7140 TCP_BPF_SOCK_OPS_CB_FLAGS = 1008, /* Get or Set TCP sock ops flags */
7141 SK_BPF_CB_FLAGS = 1009, /* Get or set sock ops flags in socket */
7142};
7143
7144enum {
7145 BPF_LOAD_HDR_OPT_TCP_SYN = (1ULL << 0),
7146};
7147
7148/* args[0] value during BPF_SOCK_OPS_HDR_OPT_LEN_CB and
7149 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
7150 */
7151enum {
7152 BPF_WRITE_HDR_TCP_CURRENT_MSS = 1, /* Kernel is finding the
7153 * total option spaces
7154 * required for an established
7155 * sk in order to calculate the
7156 * MSS. No skb is actually
7157 * sent.
7158 */
7159 BPF_WRITE_HDR_TCP_SYNACK_COOKIE = 2, /* Kernel is in syncookie mode
7160 * when sending a SYN.
7161 */
7162};
7163
7164struct bpf_perf_event_value {
7165 __u64 counter;
7166 __u64 enabled;
7167 __u64 running;
7168};
7169
7170enum {
7171 BPF_DEVCG_ACC_MKNOD = (1ULL << 0),
7172 BPF_DEVCG_ACC_READ = (1ULL << 1),
7173 BPF_DEVCG_ACC_WRITE = (1ULL << 2),
7174};
7175
7176enum {
7177 BPF_DEVCG_DEV_BLOCK = (1ULL << 0),
7178 BPF_DEVCG_DEV_CHAR = (1ULL << 1),
7179};
7180
7181struct bpf_cgroup_dev_ctx {
7182 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
7183 __u32 access_type;
7184 __u32 major;
7185 __u32 minor;
7186};
7187
7188struct bpf_raw_tracepoint_args {
7189 __u64 args[0];
7190};
7191
7192/* DIRECT: Skip the FIB rules and go to FIB table associated with device
7193 * OUTPUT: Do lookup from egress perspective; default is ingress
7194 */
7195enum {
7196 BPF_FIB_LOOKUP_DIRECT = (1U << 0),
7197 BPF_FIB_LOOKUP_OUTPUT = (1U << 1),
7198 BPF_FIB_LOOKUP_SKIP_NEIGH = (1U << 2),
7199 BPF_FIB_LOOKUP_TBID = (1U << 3),
7200 BPF_FIB_LOOKUP_SRC = (1U << 4),
7201 BPF_FIB_LOOKUP_MARK = (1U << 5),
7202};
7203
7204enum {
7205 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */
7206 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */
7207 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */
7208 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */
7209 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */
7210 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
7211 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */
7212 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */
7213 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */
7214 BPF_FIB_LKUP_RET_NO_SRC_ADDR, /* failed to derive IP src addr */
7215};
7216
7217struct bpf_fib_lookup {
7218 /* input: network family for lookup (AF_INET, AF_INET6)
7219 * output: network family of egress nexthop
7220 */
7221 __u8 family;
7222
7223 /* set if lookup is to consider L4 data - e.g., FIB rules */
7224 __u8 l4_protocol;
7225 __be16 sport;
7226 __be16 dport;
7227
7228 union { /* used for MTU check */
7229 /* input to lookup */
7230 __u16 tot_len; /* L3 length from network hdr (iph->tot_len) */
7231
7232 /* output: MTU value */
7233 __u16 mtu_result;
7234 } __attribute__((packed, aligned(2)));
7235 /* input: L3 device index for lookup
7236 * output: device index from FIB lookup
7237 */
7238 __u32 ifindex;
7239
7240 union {
7241 /* inputs to lookup */
7242 __u8 tos; /* AF_INET */
7243 __be32 flowinfo; /* AF_INET6, flow_label + priority */
7244
7245 /* output: metric of fib result (IPv4/IPv6 only) */
7246 __u32 rt_metric;
7247 };
7248
7249 /* input: source address to consider for lookup
7250 * output: source address result from lookup
7251 */
7252 union {
7253 __be32 ipv4_src;
7254 __u32 ipv6_src[4]; /* in6_addr; network order */
7255 };
7256
7257 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
7258 * network header. output: bpf_fib_lookup sets to gateway address
7259 * if FIB lookup returns gateway route
7260 */
7261 union {
7262 __be32 ipv4_dst;
7263 __u32 ipv6_dst[4]; /* in6_addr; network order */
7264 };
7265
7266 union {
7267 struct {
7268 /* output */
7269 __be16 h_vlan_proto;
7270 __be16 h_vlan_TCI;
7271 };
7272 /* input: when accompanied with the
7273 * 'BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_TBID` flags, a
7274 * specific routing table to use for the fib lookup.
7275 */
7276 __u32 tbid;
7277 };
7278
7279 union {
7280 /* input */
7281 struct {
7282 __u32 mark; /* policy routing */
7283 /* 2 4-byte holes for input */
7284 };
7285
7286 /* output: source and dest mac */
7287 struct {
7288 __u8 smac[6]; /* ETH_ALEN */
7289 __u8 dmac[6]; /* ETH_ALEN */
7290 };
7291 };
7292};
7293
7294struct bpf_redir_neigh {
7295 /* network family for lookup (AF_INET, AF_INET6) */
7296 __u32 nh_family;
7297 /* network address of nexthop; skips fib lookup to find gateway */
7298 union {
7299 __be32 ipv4_nh;
7300 __u32 ipv6_nh[4]; /* in6_addr; network order */
7301 };
7302};
7303
7304/* bpf_check_mtu flags*/
7305enum bpf_check_mtu_flags {
7306 BPF_MTU_CHK_SEGS = (1U << 0),
7307};
7308
7309enum bpf_check_mtu_ret {
7310 BPF_MTU_CHK_RET_SUCCESS, /* check and lookup successful */
7311 BPF_MTU_CHK_RET_FRAG_NEEDED, /* fragmentation required to fwd */
7312 BPF_MTU_CHK_RET_SEGS_TOOBIG, /* GSO re-segmentation needed to fwd */
7313};
7314
7315enum bpf_task_fd_type {
7316 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */
7317 BPF_FD_TYPE_TRACEPOINT, /* tp name */
7318 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */
7319 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */
7320 BPF_FD_TYPE_UPROBE, /* filename + offset */
7321 BPF_FD_TYPE_URETPROBE, /* filename + offset */
7322};
7323
7324enum {
7325 BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG = (1U << 0),
7326 BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL = (1U << 1),
7327 BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP = (1U << 2),
7328};
7329
7330struct bpf_flow_keys {
7331 __u16 nhoff;
7332 __u16 thoff;
7333 __u16 addr_proto; /* ETH_P_* of valid addrs */
7334 __u8 is_frag;
7335 __u8 is_first_frag;
7336 __u8 is_encap;
7337 __u8 ip_proto;
7338 __be16 n_proto;
7339 __be16 sport;
7340 __be16 dport;
7341 union {
7342 struct {
7343 __be32 ipv4_src;
7344 __be32 ipv4_dst;
7345 };
7346 struct {
7347 __u32 ipv6_src[4]; /* in6_addr; network order */
7348 __u32 ipv6_dst[4]; /* in6_addr; network order */
7349 };
7350 };
7351 __u32 flags;
7352 __be32 flow_label;
7353};
7354
7355struct bpf_func_info {
7356 __u32 insn_off;
7357 __u32 type_id;
7358};
7359
7360#define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10)
7361#define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff)
7362
7363struct bpf_line_info {
7364 __u32 insn_off;
7365 __u32 file_name_off;
7366 __u32 line_off;
7367 __u32 line_col;
7368};
7369
7370struct bpf_spin_lock {
7371 __u32 val;
7372};
7373
7374struct bpf_timer {
7375 __u64 __opaque[2];
7376} __attribute__((aligned(8)));
7377
7378struct bpf_wq {
7379 __u64 __opaque[2];
7380} __attribute__((aligned(8)));
7381
7382struct bpf_dynptr {
7383 __u64 __opaque[2];
7384} __attribute__((aligned(8)));
7385
7386struct bpf_list_head {
7387 __u64 __opaque[2];
7388} __attribute__((aligned(8)));
7389
7390struct bpf_list_node {
7391 __u64 __opaque[3];
7392} __attribute__((aligned(8)));
7393
7394struct bpf_rb_root {
7395 __u64 __opaque[2];
7396} __attribute__((aligned(8)));
7397
7398struct bpf_rb_node {
7399 __u64 __opaque[4];
7400} __attribute__((aligned(8)));
7401
7402struct bpf_refcount {
7403 __u32 __opaque[1];
7404} __attribute__((aligned(4)));
7405
7406struct bpf_sysctl {
7407 __u32 write; /* Sysctl is being read (= 0) or written (= 1).
7408 * Allows 1,2,4-byte read, but no write.
7409 */
7410 __u32 file_pos; /* Sysctl file position to read from, write to.
7411 * Allows 1,2,4-byte read an 4-byte write.
7412 */
7413};
7414
7415struct bpf_sockopt {
7416 __bpf_md_ptr(struct bpf_sock *, sk);
7417 __bpf_md_ptr(void *, optval);
7418 __bpf_md_ptr(void *, optval_end);
7419
7420 __s32 level;
7421 __s32 optname;
7422 __s32 optlen;
7423 __s32 retval;
7424};
7425
7426struct bpf_pidns_info {
7427 __u32 pid;
7428 __u32 tgid;
7429};
7430
7431/* User accessible data for SK_LOOKUP programs. Add new fields at the end. */
7432struct bpf_sk_lookup {
7433 union {
7434 __bpf_md_ptr(struct bpf_sock *, sk); /* Selected socket */
7435 __u64 cookie; /* Non-zero if socket was selected in PROG_TEST_RUN */
7436 };
7437
7438 __u32 family; /* Protocol family (AF_INET, AF_INET6) */
7439 __u32 protocol; /* IP protocol (IPPROTO_TCP, IPPROTO_UDP) */
7440 __u32 remote_ip4; /* Network byte order */
7441 __u32 remote_ip6[4]; /* Network byte order */
7442 __be16 remote_port; /* Network byte order */
7443 __u16 :16; /* Zero padding */
7444 __u32 local_ip4; /* Network byte order */
7445 __u32 local_ip6[4]; /* Network byte order */
7446 __u32 local_port; /* Host byte order */
7447 __u32 ingress_ifindex; /* The arriving interface. Determined by inet_iif. */
7448};
7449
7450/*
7451 * struct btf_ptr is used for typed pointer representation; the
7452 * type id is used to render the pointer data as the appropriate type
7453 * via the bpf_snprintf_btf() helper described above. A flags field -
7454 * potentially to specify additional details about the BTF pointer
7455 * (rather than its mode of display) - is included for future use.
7456 * Display flags - BTF_F_* - are passed to bpf_snprintf_btf separately.
7457 */
7458struct btf_ptr {
7459 void *ptr;
7460 __u32 type_id;
7461 __u32 flags; /* BTF ptr flags; unused at present. */
7462};
7463
7464/*
7465 * Flags to control bpf_snprintf_btf() behaviour.
7466 * - BTF_F_COMPACT: no formatting around type information
7467 * - BTF_F_NONAME: no struct/union member names/types
7468 * - BTF_F_PTR_RAW: show raw (unobfuscated) pointer values;
7469 * equivalent to %px.
7470 * - BTF_F_ZERO: show zero-valued struct/union members; they
7471 * are not displayed by default
7472 */
7473enum {
7474 BTF_F_COMPACT = (1ULL << 0),
7475 BTF_F_NONAME = (1ULL << 1),
7476 BTF_F_PTR_RAW = (1ULL << 2),
7477 BTF_F_ZERO = (1ULL << 3),
7478};
7479
7480/* bpf_core_relo_kind encodes which aspect of captured field/type/enum value
7481 * has to be adjusted by relocations. It is emitted by llvm and passed to
7482 * libbpf and later to the kernel.
7483 */
7484enum bpf_core_relo_kind {
7485 BPF_CORE_FIELD_BYTE_OFFSET = 0, /* field byte offset */
7486 BPF_CORE_FIELD_BYTE_SIZE = 1, /* field size in bytes */
7487 BPF_CORE_FIELD_EXISTS = 2, /* field existence in target kernel */
7488 BPF_CORE_FIELD_SIGNED = 3, /* field signedness (0 - unsigned, 1 - signed) */
7489 BPF_CORE_FIELD_LSHIFT_U64 = 4, /* bitfield-specific left bitshift */
7490 BPF_CORE_FIELD_RSHIFT_U64 = 5, /* bitfield-specific right bitshift */
7491 BPF_CORE_TYPE_ID_LOCAL = 6, /* type ID in local BPF object */
7492 BPF_CORE_TYPE_ID_TARGET = 7, /* type ID in target kernel */
7493 BPF_CORE_TYPE_EXISTS = 8, /* type existence in target kernel */
7494 BPF_CORE_TYPE_SIZE = 9, /* type size in bytes */
7495 BPF_CORE_ENUMVAL_EXISTS = 10, /* enum value existence in target kernel */
7496 BPF_CORE_ENUMVAL_VALUE = 11, /* enum value integer value */
7497 BPF_CORE_TYPE_MATCHES = 12, /* type match in target kernel */
7498};
7499
7500/*
7501 * "struct bpf_core_relo" is used to pass relocation data form LLVM to libbpf
7502 * and from libbpf to the kernel.
7503 *
7504 * CO-RE relocation captures the following data:
7505 * - insn_off - instruction offset (in bytes) within a BPF program that needs
7506 * its insn->imm field to be relocated with actual field info;
7507 * - type_id - BTF type ID of the "root" (containing) entity of a relocatable
7508 * type or field;
7509 * - access_str_off - offset into corresponding .BTF string section. String
7510 * interpretation depends on specific relocation kind:
7511 * - for field-based relocations, string encodes an accessed field using
7512 * a sequence of field and array indices, separated by colon (:). It's
7513 * conceptually very close to LLVM's getelementptr ([0]) instruction's
7514 * arguments for identifying offset to a field.
7515 * - for type-based relocations, strings is expected to be just "0";
7516 * - for enum value-based relocations, string contains an index of enum
7517 * value within its enum type;
7518 * - kind - one of enum bpf_core_relo_kind;
7519 *
7520 * Example:
7521 * struct sample {
7522 * int a;
7523 * struct {
7524 * int b[10];
7525 * };
7526 * };
7527 *
7528 * struct sample *s = ...;
7529 * int *x = &s->a; // encoded as "0:0" (a is field #0)
7530 * int *y = &s->b[5]; // encoded as "0:1:0:5" (anon struct is field #1,
7531 * // b is field #0 inside anon struct, accessing elem #5)
7532 * int *z = &s[10]->b; // encoded as "10:1" (ptr is used as an array)
7533 *
7534 * type_id for all relocs in this example will capture BTF type id of
7535 * `struct sample`.
7536 *
7537 * Such relocation is emitted when using __builtin_preserve_access_index()
7538 * Clang built-in, passing expression that captures field address, e.g.:
7539 *
7540 * bpf_probe_read(&dst, sizeof(dst),
7541 * __builtin_preserve_access_index(&src->a.b.c));
7542 *
7543 * In this case Clang will emit field relocation recording necessary data to
7544 * be able to find offset of embedded `a.b.c` field within `src` struct.
7545 *
7546 * [0] https://llvm.org/docs/LangRef.html#getelementptr-instruction
7547 */
7548struct bpf_core_relo {
7549 __u32 insn_off;
7550 __u32 type_id;
7551 __u32 access_str_off;
7552 enum bpf_core_relo_kind kind;
7553};
7554
7555/*
7556 * Flags to control bpf_timer_start() behaviour.
7557 * - BPF_F_TIMER_ABS: Timeout passed is absolute time, by default it is
7558 * relative to current time.
7559 * - BPF_F_TIMER_CPU_PIN: Timer will be pinned to the CPU of the caller.
7560 */
7561enum {
7562 BPF_F_TIMER_ABS = (1ULL << 0),
7563 BPF_F_TIMER_CPU_PIN = (1ULL << 1),
7564};
7565
7566/* BPF numbers iterator state */
7567struct bpf_iter_num {
7568 /* opaque iterator state; having __u64 here allows to preserve correct
7569 * alignment requirements in vmlinux.h, generated from BTF
7570 */
7571 __u64 __opaque[1];
7572} __attribute__((aligned(8)));
7573
7574/*
7575 * Flags to control BPF kfunc behaviour.
7576 * - BPF_F_PAD_ZEROS: Pad destination buffer with zeros. (See the respective
7577 * helper documentation for details.)
7578 */
7579enum bpf_kfunc_flags {
7580 BPF_F_PAD_ZEROS = (1ULL << 0),
7581};
7582
7583#endif /* _UAPI__LINUX_BPF_H__ */