]> git.ipfire.org Git - people/ms/linux.git/blob - Documentation/arm64/memory.rst
Merge tag 'omap-for-6.0/fixes-signed' of git://git.kernel.org/pub/scm/linux/kernel...
[people/ms/linux.git] / Documentation / arm64 / memory.rst
1 ==============================
2 Memory Layout on AArch64 Linux
3 ==============================
4
5 Author: Catalin Marinas <catalin.marinas@arm.com>
6
7 This document describes the virtual memory layout used by the AArch64
8 Linux kernel. The architecture allows up to 4 levels of translation
9 tables with a 4KB page size and up to 3 levels with a 64KB page size.
10
11 AArch64 Linux uses either 3 levels or 4 levels of translation tables
12 with the 4KB page configuration, allowing 39-bit (512GB) or 48-bit
13 (256TB) virtual addresses, respectively, for both user and kernel. With
14 64KB pages, only 2 levels of translation tables, allowing 42-bit (4TB)
15 virtual address, are used but the memory layout is the same.
16
17 ARMv8.2 adds optional support for Large Virtual Address space. This is
18 only available when running with a 64KB page size and expands the
19 number of descriptors in the first level of translation.
20
21 User addresses have bits 63:48 set to 0 while the kernel addresses have
22 the same bits set to 1. TTBRx selection is given by bit 63 of the
23 virtual address. The swapper_pg_dir contains only kernel (global)
24 mappings while the user pgd contains only user (non-global) mappings.
25 The swapper_pg_dir address is written to TTBR1 and never written to
26 TTBR0.
27
28
29 AArch64 Linux memory layout with 4KB pages + 4 levels (48-bit)::
30
31 Start End Size Use
32 -----------------------------------------------------------------------
33 0000000000000000 0000ffffffffffff 256TB user
34 ffff000000000000 ffff7fffffffffff 128TB kernel logical memory map
35 [ffff600000000000 ffff7fffffffffff] 32TB [kasan shadow region]
36 ffff800000000000 ffff800007ffffff 128MB modules
37 ffff800008000000 fffffbffefffffff 124TB vmalloc
38 fffffbfff0000000 fffffbfffdffffff 224MB fixed mappings (top down)
39 fffffbfffe000000 fffffbfffe7fffff 8MB [guard region]
40 fffffbfffe800000 fffffbffff7fffff 16MB PCI I/O space
41 fffffbffff800000 fffffbffffffffff 8MB [guard region]
42 fffffc0000000000 fffffdffffffffff 2TB vmemmap
43 fffffe0000000000 ffffffffffffffff 2TB [guard region]
44
45
46 AArch64 Linux memory layout with 64KB pages + 3 levels (52-bit with HW support)::
47
48 Start End Size Use
49 -----------------------------------------------------------------------
50 0000000000000000 000fffffffffffff 4PB user
51 fff0000000000000 ffff7fffffffffff ~4PB kernel logical memory map
52 [fffd800000000000 ffff7fffffffffff] 512TB [kasan shadow region]
53 ffff800000000000 ffff800007ffffff 128MB modules
54 ffff800008000000 fffffbffefffffff 124TB vmalloc
55 fffffbfff0000000 fffffbfffdffffff 224MB fixed mappings (top down)
56 fffffbfffe000000 fffffbfffe7fffff 8MB [guard region]
57 fffffbfffe800000 fffffbffff7fffff 16MB PCI I/O space
58 fffffbffff800000 fffffbffffffffff 8MB [guard region]
59 fffffc0000000000 ffffffdfffffffff ~4TB vmemmap
60 ffffffe000000000 ffffffffffffffff 128GB [guard region]
61
62
63 Translation table lookup with 4KB pages::
64
65 +--------+--------+--------+--------+--------+--------+--------+--------+
66 |63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
67 +--------+--------+--------+--------+--------+--------+--------+--------+
68 | | | | | |
69 | | | | | v
70 | | | | | [11:0] in-page offset
71 | | | | +-> [20:12] L3 index
72 | | | +-----------> [29:21] L2 index
73 | | +---------------------> [38:30] L1 index
74 | +-------------------------------> [47:39] L0 index
75 +-------------------------------------------------> [63] TTBR0/1
76
77
78 Translation table lookup with 64KB pages::
79
80 +--------+--------+--------+--------+--------+--------+--------+--------+
81 |63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
82 +--------+--------+--------+--------+--------+--------+--------+--------+
83 | | | | |
84 | | | | v
85 | | | | [15:0] in-page offset
86 | | | +----------> [28:16] L3 index
87 | | +--------------------------> [41:29] L2 index
88 | +-------------------------------> [47:42] L1 index (48-bit)
89 | [51:42] L1 index (52-bit)
90 +-------------------------------------------------> [63] TTBR0/1
91
92
93 When using KVM without the Virtualization Host Extensions, the
94 hypervisor maps kernel pages in EL2 at a fixed (and potentially
95 random) offset from the linear mapping. See the kern_hyp_va macro and
96 kvm_update_va_mask function for more details. MMIO devices such as
97 GICv2 gets mapped next to the HYP idmap page, as do vectors when
98 ARM64_SPECTRE_V3A is enabled for particular CPUs.
99
100 When using KVM with the Virtualization Host Extensions, no additional
101 mappings are created, since the host kernel runs directly in EL2.
102
103 52-bit VA support in the kernel
104 -------------------------------
105 If the ARMv8.2-LVA optional feature is present, and we are running
106 with a 64KB page size; then it is possible to use 52-bits of address
107 space for both userspace and kernel addresses. However, any kernel
108 binary that supports 52-bit must also be able to fall back to 48-bit
109 at early boot time if the hardware feature is not present.
110
111 This fallback mechanism necessitates the kernel .text to be in the
112 higher addresses such that they are invariant to 48/52-bit VAs. Due
113 to the kasan shadow being a fraction of the entire kernel VA space,
114 the end of the kasan shadow must also be in the higher half of the
115 kernel VA space for both 48/52-bit. (Switching from 48-bit to 52-bit,
116 the end of the kasan shadow is invariant and dependent on ~0UL,
117 whilst the start address will "grow" towards the lower addresses).
118
119 In order to optimise phys_to_virt and virt_to_phys, the PAGE_OFFSET
120 is kept constant at 0xFFF0000000000000 (corresponding to 52-bit),
121 this obviates the need for an extra variable read. The physvirt
122 offset and vmemmap offsets are computed at early boot to enable
123 this logic.
124
125 As a single binary will need to support both 48-bit and 52-bit VA
126 spaces, the VMEMMAP must be sized large enough for 52-bit VAs and
127 also must be sized large enough to accommodate a fixed PAGE_OFFSET.
128
129 Most code in the kernel should not need to consider the VA_BITS, for
130 code that does need to know the VA size the variables are
131 defined as follows:
132
133 VA_BITS constant the *maximum* VA space size
134
135 VA_BITS_MIN constant the *minimum* VA space size
136
137 vabits_actual variable the *actual* VA space size
138
139
140 Maximum and minimum sizes can be useful to ensure that buffers are
141 sized large enough or that addresses are positioned close enough for
142 the "worst" case.
143
144 52-bit userspace VAs
145 --------------------
146 To maintain compatibility with software that relies on the ARMv8.0
147 VA space maximum size of 48-bits, the kernel will, by default,
148 return virtual addresses to userspace from a 48-bit range.
149
150 Software can "opt-in" to receiving VAs from a 52-bit space by
151 specifying an mmap hint parameter that is larger than 48-bit.
152
153 For example:
154
155 .. code-block:: c
156
157 maybe_high_address = mmap(~0UL, size, prot, flags,...);
158
159 It is also possible to build a debug kernel that returns addresses
160 from a 52-bit space by enabling the following kernel config options:
161
162 .. code-block:: sh
163
164 CONFIG_EXPERT=y && CONFIG_ARM64_FORCE_52BIT=y
165
166 Note that this option is only intended for debugging applications
167 and should not be used in production.