]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - Documentation/bpf/btf.rst
Merge tag 'vfs-6.10-rc4.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[thirdparty/kernel/stable.git] / Documentation / bpf / btf.rst
1 =====================
2 BPF Type Format (BTF)
3 =====================
4
5 1. Introduction
6 ===============
7
8 BTF (BPF Type Format) is the metadata format which encodes the debug info
9 related to BPF program/map. The name BTF was used initially to describe data
10 types. The BTF was later extended to include function info for defined
11 subroutines, and line info for source/line information.
12
13 The debug info is used for map pretty print, function signature, etc. The
14 function signature enables better bpf program/function kernel symbol. The line
15 info helps generate source annotated translated byte code, jited code and
16 verifier log.
17
18 The BTF specification contains two parts,
19 * BTF kernel API
20 * BTF ELF file format
21
22 The kernel API is the contract between user space and kernel. The kernel
23 verifies the BTF info before using it. The ELF file format is a user space
24 contract between ELF file and libbpf loader.
25
26 The type and string sections are part of the BTF kernel API, describing the
27 debug info (mostly types related) referenced by the bpf program. These two
28 sections are discussed in details in :ref:`BTF_Type_String`.
29
30 .. _BTF_Type_String:
31
32 2. BTF Type and String Encoding
33 ===============================
34
35 The file ``include/uapi/linux/btf.h`` provides high-level definition of how
36 types/strings are encoded.
37
38 The beginning of data blob must be::
39
40 struct btf_header {
41 __u16 magic;
42 __u8 version;
43 __u8 flags;
44 __u32 hdr_len;
45
46 /* All offsets are in bytes relative to the end of this header */
47 __u32 type_off; /* offset of type section */
48 __u32 type_len; /* length of type section */
49 __u32 str_off; /* offset of string section */
50 __u32 str_len; /* length of string section */
51 };
52
53 The magic is ``0xeB9F``, which has different encoding for big and little
54 endian systems, and can be used to test whether BTF is generated for big- or
55 little-endian target. The ``btf_header`` is designed to be extensible with
56 ``hdr_len`` equal to ``sizeof(struct btf_header)`` when a data blob is
57 generated.
58
59 2.1 String Encoding
60 -------------------
61
62 The first string in the string section must be a null string. The rest of
63 string table is a concatenation of other null-terminated strings.
64
65 2.2 Type Encoding
66 -----------------
67
68 The type id ``0`` is reserved for ``void`` type. The type section is parsed
69 sequentially and type id is assigned to each recognized type starting from id
70 ``1``. Currently, the following types are supported::
71
72 #define BTF_KIND_INT 1 /* Integer */
73 #define BTF_KIND_PTR 2 /* Pointer */
74 #define BTF_KIND_ARRAY 3 /* Array */
75 #define BTF_KIND_STRUCT 4 /* Struct */
76 #define BTF_KIND_UNION 5 /* Union */
77 #define BTF_KIND_ENUM 6 /* Enumeration up to 32-bit values */
78 #define BTF_KIND_FWD 7 /* Forward */
79 #define BTF_KIND_TYPEDEF 8 /* Typedef */
80 #define BTF_KIND_VOLATILE 9 /* Volatile */
81 #define BTF_KIND_CONST 10 /* Const */
82 #define BTF_KIND_RESTRICT 11 /* Restrict */
83 #define BTF_KIND_FUNC 12 /* Function */
84 #define BTF_KIND_FUNC_PROTO 13 /* Function Proto */
85 #define BTF_KIND_VAR 14 /* Variable */
86 #define BTF_KIND_DATASEC 15 /* Section */
87 #define BTF_KIND_FLOAT 16 /* Floating point */
88 #define BTF_KIND_DECL_TAG 17 /* Decl Tag */
89 #define BTF_KIND_TYPE_TAG 18 /* Type Tag */
90 #define BTF_KIND_ENUM64 19 /* Enumeration up to 64-bit values */
91
92 Note that the type section encodes debug info, not just pure types.
93 ``BTF_KIND_FUNC`` is not a type, and it represents a defined subprogram.
94
95 Each type contains the following common data::
96
97 struct btf_type {
98 __u32 name_off;
99 /* "info" bits arrangement
100 * bits 0-15: vlen (e.g. # of struct's members)
101 * bits 16-23: unused
102 * bits 24-28: kind (e.g. int, ptr, array...etc)
103 * bits 29-30: unused
104 * bit 31: kind_flag, currently used by
105 * struct, union, fwd, enum and enum64.
106 */
107 __u32 info;
108 /* "size" is used by INT, ENUM, STRUCT, UNION and ENUM64.
109 * "size" tells the size of the type it is describing.
110 *
111 * "type" is used by PTR, TYPEDEF, VOLATILE, CONST, RESTRICT,
112 * FUNC, FUNC_PROTO, DECL_TAG and TYPE_TAG.
113 * "type" is a type_id referring to another type.
114 */
115 union {
116 __u32 size;
117 __u32 type;
118 };
119 };
120
121 For certain kinds, the common data are followed by kind-specific data. The
122 ``name_off`` in ``struct btf_type`` specifies the offset in the string table.
123 The following sections detail encoding of each kind.
124
125 2.2.1 BTF_KIND_INT
126 ~~~~~~~~~~~~~~~~~~
127
128 ``struct btf_type`` encoding requirement:
129 * ``name_off``: any valid offset
130 * ``info.kind_flag``: 0
131 * ``info.kind``: BTF_KIND_INT
132 * ``info.vlen``: 0
133 * ``size``: the size of the int type in bytes.
134
135 ``btf_type`` is followed by a ``u32`` with the following bits arrangement::
136
137 #define BTF_INT_ENCODING(VAL) (((VAL) & 0x0f000000) >> 24)
138 #define BTF_INT_OFFSET(VAL) (((VAL) & 0x00ff0000) >> 16)
139 #define BTF_INT_BITS(VAL) ((VAL) & 0x000000ff)
140
141 The ``BTF_INT_ENCODING`` has the following attributes::
142
143 #define BTF_INT_SIGNED (1 << 0)
144 #define BTF_INT_CHAR (1 << 1)
145 #define BTF_INT_BOOL (1 << 2)
146
147 The ``BTF_INT_ENCODING()`` provides extra information: signedness, char, or
148 bool, for the int type. The char and bool encoding are mostly useful for
149 pretty print. At most one encoding can be specified for the int type.
150
151 The ``BTF_INT_BITS()`` specifies the number of actual bits held by this int
152 type. For example, a 4-bit bitfield encodes ``BTF_INT_BITS()`` equals to 4.
153 The ``btf_type.size * 8`` must be equal to or greater than ``BTF_INT_BITS()``
154 for the type. The maximum value of ``BTF_INT_BITS()`` is 128.
155
156 The ``BTF_INT_OFFSET()`` specifies the starting bit offset to calculate values
157 for this int. For example, a bitfield struct member has:
158
159 * btf member bit offset 100 from the start of the structure,
160 * btf member pointing to an int type,
161 * the int type has ``BTF_INT_OFFSET() = 2`` and ``BTF_INT_BITS() = 4``
162
163 Then in the struct memory layout, this member will occupy ``4`` bits starting
164 from bits ``100 + 2 = 102``.
165
166 Alternatively, the bitfield struct member can be the following to access the
167 same bits as the above:
168
169 * btf member bit offset 102,
170 * btf member pointing to an int type,
171 * the int type has ``BTF_INT_OFFSET() = 0`` and ``BTF_INT_BITS() = 4``
172
173 The original intention of ``BTF_INT_OFFSET()`` is to provide flexibility of
174 bitfield encoding. Currently, both llvm and pahole generate
175 ``BTF_INT_OFFSET() = 0`` for all int types.
176
177 2.2.2 BTF_KIND_PTR
178 ~~~~~~~~~~~~~~~~~~
179
180 ``struct btf_type`` encoding requirement:
181 * ``name_off``: 0
182 * ``info.kind_flag``: 0
183 * ``info.kind``: BTF_KIND_PTR
184 * ``info.vlen``: 0
185 * ``type``: the pointee type of the pointer
186
187 No additional type data follow ``btf_type``.
188
189 2.2.3 BTF_KIND_ARRAY
190 ~~~~~~~~~~~~~~~~~~~~
191
192 ``struct btf_type`` encoding requirement:
193 * ``name_off``: 0
194 * ``info.kind_flag``: 0
195 * ``info.kind``: BTF_KIND_ARRAY
196 * ``info.vlen``: 0
197 * ``size/type``: 0, not used
198
199 ``btf_type`` is followed by one ``struct btf_array``::
200
201 struct btf_array {
202 __u32 type;
203 __u32 index_type;
204 __u32 nelems;
205 };
206
207 The ``struct btf_array`` encoding:
208 * ``type``: the element type
209 * ``index_type``: the index type
210 * ``nelems``: the number of elements for this array (``0`` is also allowed).
211
212 The ``index_type`` can be any regular int type (``u8``, ``u16``, ``u32``,
213 ``u64``, ``unsigned __int128``). The original design of including
214 ``index_type`` follows DWARF, which has an ``index_type`` for its array type.
215 Currently in BTF, beyond type verification, the ``index_type`` is not used.
216
217 The ``struct btf_array`` allows chaining through element type to represent
218 multidimensional arrays. For example, for ``int a[5][6]``, the following type
219 information illustrates the chaining:
220
221 * [1]: int
222 * [2]: array, ``btf_array.type = [1]``, ``btf_array.nelems = 6``
223 * [3]: array, ``btf_array.type = [2]``, ``btf_array.nelems = 5``
224
225 Currently, both pahole and llvm collapse multidimensional array into
226 one-dimensional array, e.g., for ``a[5][6]``, the ``btf_array.nelems`` is
227 equal to ``30``. This is because the original use case is map pretty print
228 where the whole array is dumped out so one-dimensional array is enough. As
229 more BTF usage is explored, pahole and llvm can be changed to generate proper
230 chained representation for multidimensional arrays.
231
232 2.2.4 BTF_KIND_STRUCT
233 ~~~~~~~~~~~~~~~~~~~~~
234 2.2.5 BTF_KIND_UNION
235 ~~~~~~~~~~~~~~~~~~~~
236
237 ``struct btf_type`` encoding requirement:
238 * ``name_off``: 0 or offset to a valid C identifier
239 * ``info.kind_flag``: 0 or 1
240 * ``info.kind``: BTF_KIND_STRUCT or BTF_KIND_UNION
241 * ``info.vlen``: the number of struct/union members
242 * ``info.size``: the size of the struct/union in bytes
243
244 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_member``.::
245
246 struct btf_member {
247 __u32 name_off;
248 __u32 type;
249 __u32 offset;
250 };
251
252 ``struct btf_member`` encoding:
253 * ``name_off``: offset to a valid C identifier
254 * ``type``: the member type
255 * ``offset``: <see below>
256
257 If the type info ``kind_flag`` is not set, the offset contains only bit offset
258 of the member. Note that the base type of the bitfield can only be int or enum
259 type. If the bitfield size is 32, the base type can be either int or enum
260 type. If the bitfield size is not 32, the base type must be int, and int type
261 ``BTF_INT_BITS()`` encodes the bitfield size.
262
263 If the ``kind_flag`` is set, the ``btf_member.offset`` contains both member
264 bitfield size and bit offset. The bitfield size and bit offset are calculated
265 as below.::
266
267 #define BTF_MEMBER_BITFIELD_SIZE(val) ((val) >> 24)
268 #define BTF_MEMBER_BIT_OFFSET(val) ((val) & 0xffffff)
269
270 In this case, if the base type is an int type, it must be a regular int type:
271
272 * ``BTF_INT_OFFSET()`` must be 0.
273 * ``BTF_INT_BITS()`` must be equal to ``{1,2,4,8,16} * 8``.
274
275 Commit 9d5f9f701b18 introduced ``kind_flag`` and explains why both modes
276 exist.
277
278 2.2.6 BTF_KIND_ENUM
279 ~~~~~~~~~~~~~~~~~~~
280
281 ``struct btf_type`` encoding requirement:
282 * ``name_off``: 0 or offset to a valid C identifier
283 * ``info.kind_flag``: 0 for unsigned, 1 for signed
284 * ``info.kind``: BTF_KIND_ENUM
285 * ``info.vlen``: number of enum values
286 * ``size``: 1/2/4/8
287
288 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_enum``.::
289
290 struct btf_enum {
291 __u32 name_off;
292 __s32 val;
293 };
294
295 The ``btf_enum`` encoding:
296 * ``name_off``: offset to a valid C identifier
297 * ``val``: any value
298
299 If the original enum value is signed and the size is less than 4,
300 that value will be sign extended into 4 bytes. If the size is 8,
301 the value will be truncated into 4 bytes.
302
303 2.2.7 BTF_KIND_FWD
304 ~~~~~~~~~~~~~~~~~~
305
306 ``struct btf_type`` encoding requirement:
307 * ``name_off``: offset to a valid C identifier
308 * ``info.kind_flag``: 0 for struct, 1 for union
309 * ``info.kind``: BTF_KIND_FWD
310 * ``info.vlen``: 0
311 * ``type``: 0
312
313 No additional type data follow ``btf_type``.
314
315 2.2.8 BTF_KIND_TYPEDEF
316 ~~~~~~~~~~~~~~~~~~~~~~
317
318 ``struct btf_type`` encoding requirement:
319 * ``name_off``: offset to a valid C identifier
320 * ``info.kind_flag``: 0
321 * ``info.kind``: BTF_KIND_TYPEDEF
322 * ``info.vlen``: 0
323 * ``type``: the type which can be referred by name at ``name_off``
324
325 No additional type data follow ``btf_type``.
326
327 2.2.9 BTF_KIND_VOLATILE
328 ~~~~~~~~~~~~~~~~~~~~~~~
329
330 ``struct btf_type`` encoding requirement:
331 * ``name_off``: 0
332 * ``info.kind_flag``: 0
333 * ``info.kind``: BTF_KIND_VOLATILE
334 * ``info.vlen``: 0
335 * ``type``: the type with ``volatile`` qualifier
336
337 No additional type data follow ``btf_type``.
338
339 2.2.10 BTF_KIND_CONST
340 ~~~~~~~~~~~~~~~~~~~~~
341
342 ``struct btf_type`` encoding requirement:
343 * ``name_off``: 0
344 * ``info.kind_flag``: 0
345 * ``info.kind``: BTF_KIND_CONST
346 * ``info.vlen``: 0
347 * ``type``: the type with ``const`` qualifier
348
349 No additional type data follow ``btf_type``.
350
351 2.2.11 BTF_KIND_RESTRICT
352 ~~~~~~~~~~~~~~~~~~~~~~~~
353
354 ``struct btf_type`` encoding requirement:
355 * ``name_off``: 0
356 * ``info.kind_flag``: 0
357 * ``info.kind``: BTF_KIND_RESTRICT
358 * ``info.vlen``: 0
359 * ``type``: the type with ``restrict`` qualifier
360
361 No additional type data follow ``btf_type``.
362
363 2.2.12 BTF_KIND_FUNC
364 ~~~~~~~~~~~~~~~~~~~~
365
366 ``struct btf_type`` encoding requirement:
367 * ``name_off``: offset to a valid C identifier
368 * ``info.kind_flag``: 0
369 * ``info.kind``: BTF_KIND_FUNC
370 * ``info.vlen``: linkage information (BTF_FUNC_STATIC, BTF_FUNC_GLOBAL
371 or BTF_FUNC_EXTERN)
372 * ``type``: a BTF_KIND_FUNC_PROTO type
373
374 No additional type data follow ``btf_type``.
375
376 A BTF_KIND_FUNC defines not a type, but a subprogram (function) whose
377 signature is defined by ``type``. The subprogram is thus an instance of that
378 type. The BTF_KIND_FUNC may in turn be referenced by a func_info in the
379 :ref:`BTF_Ext_Section` (ELF) or in the arguments to :ref:`BPF_Prog_Load`
380 (ABI).
381
382 Currently, only linkage values of BTF_FUNC_STATIC and BTF_FUNC_GLOBAL are
383 supported in the kernel.
384
385 2.2.13 BTF_KIND_FUNC_PROTO
386 ~~~~~~~~~~~~~~~~~~~~~~~~~~
387
388 ``struct btf_type`` encoding requirement:
389 * ``name_off``: 0
390 * ``info.kind_flag``: 0
391 * ``info.kind``: BTF_KIND_FUNC_PROTO
392 * ``info.vlen``: # of parameters
393 * ``type``: the return type
394
395 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_param``.::
396
397 struct btf_param {
398 __u32 name_off;
399 __u32 type;
400 };
401
402 If a BTF_KIND_FUNC_PROTO type is referred by a BTF_KIND_FUNC type, then
403 ``btf_param.name_off`` must point to a valid C identifier except for the
404 possible last argument representing the variable argument. The btf_param.type
405 refers to parameter type.
406
407 If the function has variable arguments, the last parameter is encoded with
408 ``name_off = 0`` and ``type = 0``.
409
410 2.2.14 BTF_KIND_VAR
411 ~~~~~~~~~~~~~~~~~~~
412
413 ``struct btf_type`` encoding requirement:
414 * ``name_off``: offset to a valid C identifier
415 * ``info.kind_flag``: 0
416 * ``info.kind``: BTF_KIND_VAR
417 * ``info.vlen``: 0
418 * ``type``: the type of the variable
419
420 ``btf_type`` is followed by a single ``struct btf_variable`` with the
421 following data::
422
423 struct btf_var {
424 __u32 linkage;
425 };
426
427 ``struct btf_var`` encoding:
428 * ``linkage``: currently only static variable 0, or globally allocated
429 variable in ELF sections 1
430
431 Not all type of global variables are supported by LLVM at this point.
432 The following is currently available:
433
434 * static variables with or without section attributes
435 * global variables with section attributes
436
437 The latter is for future extraction of map key/value type id's from a
438 map definition.
439
440 2.2.15 BTF_KIND_DATASEC
441 ~~~~~~~~~~~~~~~~~~~~~~~
442
443 ``struct btf_type`` encoding requirement:
444 * ``name_off``: offset to a valid name associated with a variable or
445 one of .data/.bss/.rodata
446 * ``info.kind_flag``: 0
447 * ``info.kind``: BTF_KIND_DATASEC
448 * ``info.vlen``: # of variables
449 * ``size``: total section size in bytes (0 at compilation time, patched
450 to actual size by BPF loaders such as libbpf)
451
452 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_var_secinfo``.::
453
454 struct btf_var_secinfo {
455 __u32 type;
456 __u32 offset;
457 __u32 size;
458 };
459
460 ``struct btf_var_secinfo`` encoding:
461 * ``type``: the type of the BTF_KIND_VAR variable
462 * ``offset``: the in-section offset of the variable
463 * ``size``: the size of the variable in bytes
464
465 2.2.16 BTF_KIND_FLOAT
466 ~~~~~~~~~~~~~~~~~~~~~
467
468 ``struct btf_type`` encoding requirement:
469 * ``name_off``: any valid offset
470 * ``info.kind_flag``: 0
471 * ``info.kind``: BTF_KIND_FLOAT
472 * ``info.vlen``: 0
473 * ``size``: the size of the float type in bytes: 2, 4, 8, 12 or 16.
474
475 No additional type data follow ``btf_type``.
476
477 2.2.17 BTF_KIND_DECL_TAG
478 ~~~~~~~~~~~~~~~~~~~~~~~~
479
480 ``struct btf_type`` encoding requirement:
481 * ``name_off``: offset to a non-empty string
482 * ``info.kind_flag``: 0
483 * ``info.kind``: BTF_KIND_DECL_TAG
484 * ``info.vlen``: 0
485 * ``type``: ``struct``, ``union``, ``func``, ``var`` or ``typedef``
486
487 ``btf_type`` is followed by ``struct btf_decl_tag``.::
488
489 struct btf_decl_tag {
490 __u32 component_idx;
491 };
492
493 The ``name_off`` encodes btf_decl_tag attribute string.
494 The ``type`` should be ``struct``, ``union``, ``func``, ``var`` or ``typedef``.
495 For ``var`` or ``typedef`` type, ``btf_decl_tag.component_idx`` must be ``-1``.
496 For the other three types, if the btf_decl_tag attribute is
497 applied to the ``struct``, ``union`` or ``func`` itself,
498 ``btf_decl_tag.component_idx`` must be ``-1``. Otherwise,
499 the attribute is applied to a ``struct``/``union`` member or
500 a ``func`` argument, and ``btf_decl_tag.component_idx`` should be a
501 valid index (starting from 0) pointing to a member or an argument.
502
503 2.2.18 BTF_KIND_TYPE_TAG
504 ~~~~~~~~~~~~~~~~~~~~~~~~
505
506 ``struct btf_type`` encoding requirement:
507 * ``name_off``: offset to a non-empty string
508 * ``info.kind_flag``: 0
509 * ``info.kind``: BTF_KIND_TYPE_TAG
510 * ``info.vlen``: 0
511 * ``type``: the type with ``btf_type_tag`` attribute
512
513 Currently, ``BTF_KIND_TYPE_TAG`` is only emitted for pointer types.
514 It has the following btf type chain:
515 ::
516
517 ptr -> [type_tag]*
518 -> [const | volatile | restrict | typedef]*
519 -> base_type
520
521 Basically, a pointer type points to zero or more
522 type_tag, then zero or more const/volatile/restrict/typedef
523 and finally the base type. The base type is one of
524 int, ptr, array, struct, union, enum, func_proto and float types.
525
526 2.2.19 BTF_KIND_ENUM64
527 ~~~~~~~~~~~~~~~~~~~~~~
528
529 ``struct btf_type`` encoding requirement:
530 * ``name_off``: 0 or offset to a valid C identifier
531 * ``info.kind_flag``: 0 for unsigned, 1 for signed
532 * ``info.kind``: BTF_KIND_ENUM64
533 * ``info.vlen``: number of enum values
534 * ``size``: 1/2/4/8
535
536 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_enum64``.::
537
538 struct btf_enum64 {
539 __u32 name_off;
540 __u32 val_lo32;
541 __u32 val_hi32;
542 };
543
544 The ``btf_enum64`` encoding:
545 * ``name_off``: offset to a valid C identifier
546 * ``val_lo32``: lower 32-bit value for a 64-bit value
547 * ``val_hi32``: high 32-bit value for a 64-bit value
548
549 If the original enum value is signed and the size is less than 8,
550 that value will be sign extended into 8 bytes.
551
552 3. BTF Kernel API
553 =================
554
555 The following bpf syscall command involves BTF:
556 * BPF_BTF_LOAD: load a blob of BTF data into kernel
557 * BPF_MAP_CREATE: map creation with btf key and value type info.
558 * BPF_PROG_LOAD: prog load with btf function and line info.
559 * BPF_BTF_GET_FD_BY_ID: get a btf fd
560 * BPF_OBJ_GET_INFO_BY_FD: btf, func_info, line_info
561 and other btf related info are returned.
562
563 The workflow typically looks like:
564 ::
565
566 Application:
567 BPF_BTF_LOAD
568 |
569 v
570 BPF_MAP_CREATE and BPF_PROG_LOAD
571 |
572 V
573 ......
574
575 Introspection tool:
576 ......
577 BPF_{PROG,MAP}_GET_NEXT_ID (get prog/map id's)
578 |
579 V
580 BPF_{PROG,MAP}_GET_FD_BY_ID (get a prog/map fd)
581 |
582 V
583 BPF_OBJ_GET_INFO_BY_FD (get bpf_prog_info/bpf_map_info with btf_id)
584 | |
585 V |
586 BPF_BTF_GET_FD_BY_ID (get btf_fd) |
587 | |
588 V |
589 BPF_OBJ_GET_INFO_BY_FD (get btf) |
590 | |
591 V V
592 pretty print types, dump func signatures and line info, etc.
593
594
595 3.1 BPF_BTF_LOAD
596 ----------------
597
598 Load a blob of BTF data into kernel. A blob of data, described in
599 :ref:`BTF_Type_String`, can be directly loaded into the kernel. A ``btf_fd``
600 is returned to a userspace.
601
602 3.2 BPF_MAP_CREATE
603 ------------------
604
605 A map can be created with ``btf_fd`` and specified key/value type id.::
606
607 __u32 btf_fd; /* fd pointing to a BTF type data */
608 __u32 btf_key_type_id; /* BTF type_id of the key */
609 __u32 btf_value_type_id; /* BTF type_id of the value */
610
611 In libbpf, the map can be defined with extra annotation like below:
612 ::
613
614 struct {
615 __uint(type, BPF_MAP_TYPE_ARRAY);
616 __type(key, int);
617 __type(value, struct ipv_counts);
618 __uint(max_entries, 4);
619 } btf_map SEC(".maps");
620
621 During ELF parsing, libbpf is able to extract key/value type_id's and assign
622 them to BPF_MAP_CREATE attributes automatically.
623
624 .. _BPF_Prog_Load:
625
626 3.3 BPF_PROG_LOAD
627 -----------------
628
629 During prog_load, func_info and line_info can be passed to kernel with proper
630 values for the following attributes:
631 ::
632
633 __u32 insn_cnt;
634 __aligned_u64 insns;
635 ......
636 __u32 prog_btf_fd; /* fd pointing to BTF type data */
637 __u32 func_info_rec_size; /* userspace bpf_func_info size */
638 __aligned_u64 func_info; /* func info */
639 __u32 func_info_cnt; /* number of bpf_func_info records */
640 __u32 line_info_rec_size; /* userspace bpf_line_info size */
641 __aligned_u64 line_info; /* line info */
642 __u32 line_info_cnt; /* number of bpf_line_info records */
643
644 The func_info and line_info are an array of below, respectively.::
645
646 struct bpf_func_info {
647 __u32 insn_off; /* [0, insn_cnt - 1] */
648 __u32 type_id; /* pointing to a BTF_KIND_FUNC type */
649 };
650 struct bpf_line_info {
651 __u32 insn_off; /* [0, insn_cnt - 1] */
652 __u32 file_name_off; /* offset to string table for the filename */
653 __u32 line_off; /* offset to string table for the source line */
654 __u32 line_col; /* line number and column number */
655 };
656
657 func_info_rec_size is the size of each func_info record, and
658 line_info_rec_size is the size of each line_info record. Passing the record
659 size to kernel make it possible to extend the record itself in the future.
660
661 Below are requirements for func_info:
662 * func_info[0].insn_off must be 0.
663 * the func_info insn_off is in strictly increasing order and matches
664 bpf func boundaries.
665
666 Below are requirements for line_info:
667 * the first insn in each func must have a line_info record pointing to it.
668 * the line_info insn_off is in strictly increasing order.
669
670 For line_info, the line number and column number are defined as below:
671 ::
672
673 #define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10)
674 #define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff)
675
676 3.4 BPF_{PROG,MAP}_GET_NEXT_ID
677 ------------------------------
678
679 In kernel, every loaded program, map or btf has a unique id. The id won't
680 change during the lifetime of a program, map, or btf.
681
682 The bpf syscall command BPF_{PROG,MAP}_GET_NEXT_ID returns all id's, one for
683 each command, to user space, for bpf program or maps, respectively, so an
684 inspection tool can inspect all programs and maps.
685
686 3.5 BPF_{PROG,MAP}_GET_FD_BY_ID
687 -------------------------------
688
689 An introspection tool cannot use id to get details about program or maps.
690 A file descriptor needs to be obtained first for reference-counting purpose.
691
692 3.6 BPF_OBJ_GET_INFO_BY_FD
693 --------------------------
694
695 Once a program/map fd is acquired, an introspection tool can get the detailed
696 information from kernel about this fd, some of which are BTF-related. For
697 example, ``bpf_map_info`` returns ``btf_id`` and key/value type ids.
698 ``bpf_prog_info`` returns ``btf_id``, func_info, and line info for translated
699 bpf byte codes, and jited_line_info.
700
701 3.7 BPF_BTF_GET_FD_BY_ID
702 ------------------------
703
704 With ``btf_id`` obtained in ``bpf_map_info`` and ``bpf_prog_info``, bpf
705 syscall command BPF_BTF_GET_FD_BY_ID can retrieve a btf fd. Then, with
706 command BPF_OBJ_GET_INFO_BY_FD, the btf blob, originally loaded into the
707 kernel with BPF_BTF_LOAD, can be retrieved.
708
709 With the btf blob, ``bpf_map_info``, and ``bpf_prog_info``, an introspection
710 tool has full btf knowledge and is able to pretty print map key/values, dump
711 func signatures and line info, along with byte/jit codes.
712
713 4. ELF File Format Interface
714 ============================
715
716 4.1 .BTF section
717 ----------------
718
719 The .BTF section contains type and string data. The format of this section is
720 same as the one describe in :ref:`BTF_Type_String`.
721
722 .. _BTF_Ext_Section:
723
724 4.2 .BTF.ext section
725 --------------------
726
727 The .BTF.ext section encodes func_info, line_info and CO-RE relocations
728 which needs loader manipulation before loading into the kernel.
729
730 The specification for .BTF.ext section is defined at ``tools/lib/bpf/btf.h``
731 and ``tools/lib/bpf/btf.c``.
732
733 The current header of .BTF.ext section::
734
735 struct btf_ext_header {
736 __u16 magic;
737 __u8 version;
738 __u8 flags;
739 __u32 hdr_len;
740
741 /* All offsets are in bytes relative to the end of this header */
742 __u32 func_info_off;
743 __u32 func_info_len;
744 __u32 line_info_off;
745 __u32 line_info_len;
746
747 /* optional part of .BTF.ext header */
748 __u32 core_relo_off;
749 __u32 core_relo_len;
750 };
751
752 It is very similar to .BTF section. Instead of type/string section, it
753 contains func_info, line_info and core_relo sub-sections.
754 See :ref:`BPF_Prog_Load` for details about func_info and line_info
755 record format.
756
757 The func_info is organized as below.::
758
759 func_info_rec_size /* __u32 value */
760 btf_ext_info_sec for section #1 /* func_info for section #1 */
761 btf_ext_info_sec for section #2 /* func_info for section #2 */
762 ...
763
764 ``func_info_rec_size`` specifies the size of ``bpf_func_info`` structure when
765 .BTF.ext is generated. ``btf_ext_info_sec``, defined below, is a collection of
766 func_info for each specific ELF section.::
767
768 struct btf_ext_info_sec {
769 __u32 sec_name_off; /* offset to section name */
770 __u32 num_info;
771 /* Followed by num_info * record_size number of bytes */
772 __u8 data[0];
773 };
774
775 Here, num_info must be greater than 0.
776
777 The line_info is organized as below.::
778
779 line_info_rec_size /* __u32 value */
780 btf_ext_info_sec for section #1 /* line_info for section #1 */
781 btf_ext_info_sec for section #2 /* line_info for section #2 */
782 ...
783
784 ``line_info_rec_size`` specifies the size of ``bpf_line_info`` structure when
785 .BTF.ext is generated.
786
787 The interpretation of ``bpf_func_info->insn_off`` and
788 ``bpf_line_info->insn_off`` is different between kernel API and ELF API. For
789 kernel API, the ``insn_off`` is the instruction offset in the unit of ``struct
790 bpf_insn``. For ELF API, the ``insn_off`` is the byte offset from the
791 beginning of section (``btf_ext_info_sec->sec_name_off``).
792
793 The core_relo is organized as below.::
794
795 core_relo_rec_size /* __u32 value */
796 btf_ext_info_sec for section #1 /* core_relo for section #1 */
797 btf_ext_info_sec for section #2 /* core_relo for section #2 */
798
799 ``core_relo_rec_size`` specifies the size of ``bpf_core_relo``
800 structure when .BTF.ext is generated. All ``bpf_core_relo`` structures
801 within a single ``btf_ext_info_sec`` describe relocations applied to
802 section named by ``btf_ext_info_sec->sec_name_off``.
803
804 See :ref:`Documentation/bpf/llvm_reloc.rst <btf-co-re-relocations>`
805 for more information on CO-RE relocations.
806
807 4.2 .BTF_ids section
808 --------------------
809
810 The .BTF_ids section encodes BTF ID values that are used within the kernel.
811
812 This section is created during the kernel compilation with the help of
813 macros defined in ``include/linux/btf_ids.h`` header file. Kernel code can
814 use them to create lists and sets (sorted lists) of BTF ID values.
815
816 The ``BTF_ID_LIST`` and ``BTF_ID`` macros define unsorted list of BTF ID values,
817 with following syntax::
818
819 BTF_ID_LIST(list)
820 BTF_ID(type1, name1)
821 BTF_ID(type2, name2)
822
823 resulting in following layout in .BTF_ids section::
824
825 __BTF_ID__type1__name1__1:
826 .zero 4
827 __BTF_ID__type2__name2__2:
828 .zero 4
829
830 The ``u32 list[];`` variable is defined to access the list.
831
832 The ``BTF_ID_UNUSED`` macro defines 4 zero bytes. It's used when we
833 want to define unused entry in BTF_ID_LIST, like::
834
835 BTF_ID_LIST(bpf_skb_output_btf_ids)
836 BTF_ID(struct, sk_buff)
837 BTF_ID_UNUSED
838 BTF_ID(struct, task_struct)
839
840 The ``BTF_SET_START/END`` macros pair defines sorted list of BTF ID values
841 and their count, with following syntax::
842
843 BTF_SET_START(set)
844 BTF_ID(type1, name1)
845 BTF_ID(type2, name2)
846 BTF_SET_END(set)
847
848 resulting in following layout in .BTF_ids section::
849
850 __BTF_ID__set__set:
851 .zero 4
852 __BTF_ID__type1__name1__3:
853 .zero 4
854 __BTF_ID__type2__name2__4:
855 .zero 4
856
857 The ``struct btf_id_set set;`` variable is defined to access the list.
858
859 The ``typeX`` name can be one of following::
860
861 struct, union, typedef, func
862
863 and is used as a filter when resolving the BTF ID value.
864
865 All the BTF ID lists and sets are compiled in the .BTF_ids section and
866 resolved during the linking phase of kernel build by ``resolve_btfids`` tool.
867
868 5. Using BTF
869 ============
870
871 5.1 bpftool map pretty print
872 ----------------------------
873
874 With BTF, the map key/value can be printed based on fields rather than simply
875 raw bytes. This is especially valuable for large structure or if your data
876 structure has bitfields. For example, for the following map,::
877
878 enum A { A1, A2, A3, A4, A5 };
879 typedef enum A ___A;
880 struct tmp_t {
881 char a1:4;
882 int a2:4;
883 int :4;
884 __u32 a3:4;
885 int b;
886 ___A b1:4;
887 enum A b2:4;
888 };
889 struct {
890 __uint(type, BPF_MAP_TYPE_ARRAY);
891 __type(key, int);
892 __type(value, struct tmp_t);
893 __uint(max_entries, 1);
894 } tmpmap SEC(".maps");
895
896 bpftool is able to pretty print like below:
897 ::
898
899 [{
900 "key": 0,
901 "value": {
902 "a1": 0x2,
903 "a2": 0x4,
904 "a3": 0x6,
905 "b": 7,
906 "b1": 0x8,
907 "b2": 0xa
908 }
909 }
910 ]
911
912 5.2 bpftool prog dump
913 ---------------------
914
915 The following is an example showing how func_info and line_info can help prog
916 dump with better kernel symbol names, function prototypes and line
917 information.::
918
919 $ bpftool prog dump jited pinned /sys/fs/bpf/test_btf_haskv
920 [...]
921 int test_long_fname_2(struct dummy_tracepoint_args * arg):
922 bpf_prog_44a040bf25481309_test_long_fname_2:
923 ; static int test_long_fname_2(struct dummy_tracepoint_args *arg)
924 0: push %rbp
925 1: mov %rsp,%rbp
926 4: sub $0x30,%rsp
927 b: sub $0x28,%rbp
928 f: mov %rbx,0x0(%rbp)
929 13: mov %r13,0x8(%rbp)
930 17: mov %r14,0x10(%rbp)
931 1b: mov %r15,0x18(%rbp)
932 1f: xor %eax,%eax
933 21: mov %rax,0x20(%rbp)
934 25: xor %esi,%esi
935 ; int key = 0;
936 27: mov %esi,-0x4(%rbp)
937 ; if (!arg->sock)
938 2a: mov 0x8(%rdi),%rdi
939 ; if (!arg->sock)
940 2e: cmp $0x0,%rdi
941 32: je 0x0000000000000070
942 34: mov %rbp,%rsi
943 ; counts = bpf_map_lookup_elem(&btf_map, &key);
944 [...]
945
946 5.3 Verifier Log
947 ----------------
948
949 The following is an example of how line_info can help debugging verification
950 failure.::
951
952 /* The code at tools/testing/selftests/bpf/test_xdp_noinline.c
953 * is modified as below.
954 */
955 data = (void *)(long)xdp->data;
956 data_end = (void *)(long)xdp->data_end;
957 /*
958 if (data + 4 > data_end)
959 return XDP_DROP;
960 */
961 *(u32 *)data = dst->dst;
962
963 $ bpftool prog load ./test_xdp_noinline.o /sys/fs/bpf/test_xdp_noinline type xdp
964 ; data = (void *)(long)xdp->data;
965 224: (79) r2 = *(u64 *)(r10 -112)
966 225: (61) r2 = *(u32 *)(r2 +0)
967 ; *(u32 *)data = dst->dst;
968 226: (63) *(u32 *)(r2 +0) = r1
969 invalid access to packet, off=0 size=4, R2(id=0,off=0,r=0)
970 R2 offset is outside of the packet
971
972 6. BTF Generation
973 =================
974
975 You need latest pahole
976
977 https://git.kernel.org/pub/scm/devel/pahole/pahole.git/
978
979 or llvm (8.0 or later). The pahole acts as a dwarf2btf converter. It doesn't
980 support .BTF.ext and btf BTF_KIND_FUNC type yet. For example,::
981
982 -bash-4.4$ cat t.c
983 struct t {
984 int a:2;
985 int b:3;
986 int c:2;
987 } g;
988 -bash-4.4$ gcc -c -O2 -g t.c
989 -bash-4.4$ pahole -JV t.o
990 File t.o:
991 [1] STRUCT t kind_flag=1 size=4 vlen=3
992 a type_id=2 bitfield_size=2 bits_offset=0
993 b type_id=2 bitfield_size=3 bits_offset=2
994 c type_id=2 bitfield_size=2 bits_offset=5
995 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED
996
997 The llvm is able to generate .BTF and .BTF.ext directly with -g for bpf target
998 only. The assembly code (-S) is able to show the BTF encoding in assembly
999 format.::
1000
1001 -bash-4.4$ cat t2.c
1002 typedef int __int32;
1003 struct t2 {
1004 int a2;
1005 int (*f2)(char q1, __int32 q2, ...);
1006 int (*f3)();
1007 } g2;
1008 int main() { return 0; }
1009 int test() { return 0; }
1010 -bash-4.4$ clang -c -g -O2 --target=bpf t2.c
1011 -bash-4.4$ readelf -S t2.o
1012 ......
1013 [ 8] .BTF PROGBITS 0000000000000000 00000247
1014 000000000000016e 0000000000000000 0 0 1
1015 [ 9] .BTF.ext PROGBITS 0000000000000000 000003b5
1016 0000000000000060 0000000000000000 0 0 1
1017 [10] .rel.BTF.ext REL 0000000000000000 000007e0
1018 0000000000000040 0000000000000010 16 9 8
1019 ......
1020 -bash-4.4$ clang -S -g -O2 --target=bpf t2.c
1021 -bash-4.4$ cat t2.s
1022 ......
1023 .section .BTF,"",@progbits
1024 .short 60319 # 0xeb9f
1025 .byte 1
1026 .byte 0
1027 .long 24
1028 .long 0
1029 .long 220
1030 .long 220
1031 .long 122
1032 .long 0 # BTF_KIND_FUNC_PROTO(id = 1)
1033 .long 218103808 # 0xd000000
1034 .long 2
1035 .long 83 # BTF_KIND_INT(id = 2)
1036 .long 16777216 # 0x1000000
1037 .long 4
1038 .long 16777248 # 0x1000020
1039 ......
1040 .byte 0 # string offset=0
1041 .ascii ".text" # string offset=1
1042 .byte 0
1043 .ascii "/home/yhs/tmp-pahole/t2.c" # string offset=7
1044 .byte 0
1045 .ascii "int main() { return 0; }" # string offset=33
1046 .byte 0
1047 .ascii "int test() { return 0; }" # string offset=58
1048 .byte 0
1049 .ascii "int" # string offset=83
1050 ......
1051 .section .BTF.ext,"",@progbits
1052 .short 60319 # 0xeb9f
1053 .byte 1
1054 .byte 0
1055 .long 24
1056 .long 0
1057 .long 28
1058 .long 28
1059 .long 44
1060 .long 8 # FuncInfo
1061 .long 1 # FuncInfo section string offset=1
1062 .long 2
1063 .long .Lfunc_begin0
1064 .long 3
1065 .long .Lfunc_begin1
1066 .long 5
1067 .long 16 # LineInfo
1068 .long 1 # LineInfo section string offset=1
1069 .long 2
1070 .long .Ltmp0
1071 .long 7
1072 .long 33
1073 .long 7182 # Line 7 Col 14
1074 .long .Ltmp3
1075 .long 7
1076 .long 58
1077 .long 8206 # Line 8 Col 14
1078
1079 7. Testing
1080 ==========
1081
1082 The kernel BPF selftest `tools/testing/selftests/bpf/prog_tests/btf.c`_
1083 provides an extensive set of BTF-related tests.
1084
1085 .. Links
1086 .. _tools/testing/selftests/bpf/prog_tests/btf.c:
1087 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/tools/testing/selftests/bpf/prog_tests/btf.c