]> git.ipfire.org Git - thirdparty/qemu.git/blob - accel/tcg/cputlb.c
exec: Reduce tlb_set_dirty() declaration scope
[thirdparty/qemu.git] / accel / tcg / cputlb.c
1 /*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/tb-flush.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "tcg/tcg.h"
31 #include "qemu/error-report.h"
32 #include "exec/log.h"
33 #include "exec/helper-proto-common.h"
34 #include "qemu/atomic.h"
35 #include "qemu/atomic128.h"
36 #include "exec/translate-all.h"
37 #include "trace.h"
38 #include "tb-hash.h"
39 #include "internal-common.h"
40 #include "internal-target.h"
41 #ifdef CONFIG_PLUGIN
42 #include "qemu/plugin-memory.h"
43 #endif
44 #include "tcg/tcg-ldst.h"
45 #include "tcg/oversized-guest.h"
46
47 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
48 /* #define DEBUG_TLB */
49 /* #define DEBUG_TLB_LOG */
50
51 #ifdef DEBUG_TLB
52 # define DEBUG_TLB_GATE 1
53 # ifdef DEBUG_TLB_LOG
54 # define DEBUG_TLB_LOG_GATE 1
55 # else
56 # define DEBUG_TLB_LOG_GATE 0
57 # endif
58 #else
59 # define DEBUG_TLB_GATE 0
60 # define DEBUG_TLB_LOG_GATE 0
61 #endif
62
63 #define tlb_debug(fmt, ...) do { \
64 if (DEBUG_TLB_LOG_GATE) { \
65 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
66 ## __VA_ARGS__); \
67 } else if (DEBUG_TLB_GATE) { \
68 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
69 } \
70 } while (0)
71
72 #define assert_cpu_is_self(cpu) do { \
73 if (DEBUG_TLB_GATE) { \
74 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
75 } \
76 } while (0)
77
78 /* run_on_cpu_data.target_ptr should always be big enough for a
79 * vaddr even on 32 bit builds
80 */
81 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data));
82
83 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
84 */
85 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
86 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
87
88 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
89 {
90 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
91 }
92
93 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
94 {
95 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
96 }
97
98 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
99 size_t max_entries)
100 {
101 desc->window_begin_ns = ns;
102 desc->window_max_entries = max_entries;
103 }
104
105 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
106 {
107 CPUJumpCache *jc = cpu->tb_jmp_cache;
108 int i, i0;
109
110 if (unlikely(!jc)) {
111 return;
112 }
113
114 i0 = tb_jmp_cache_hash_page(page_addr);
115 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
116 qatomic_set(&jc->array[i0 + i].tb, NULL);
117 }
118 }
119
120 /**
121 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
122 * @desc: The CPUTLBDesc portion of the TLB
123 * @fast: The CPUTLBDescFast portion of the same TLB
124 *
125 * Called with tlb_lock_held.
126 *
127 * We have two main constraints when resizing a TLB: (1) we only resize it
128 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
129 * the array or unnecessarily flushing it), which means we do not control how
130 * frequently the resizing can occur; (2) we don't have access to the guest's
131 * future scheduling decisions, and therefore have to decide the magnitude of
132 * the resize based on past observations.
133 *
134 * In general, a memory-hungry process can benefit greatly from an appropriately
135 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
136 * we just have to make the TLB as large as possible; while an oversized TLB
137 * results in minimal TLB miss rates, it also takes longer to be flushed
138 * (flushes can be _very_ frequent), and the reduced locality can also hurt
139 * performance.
140 *
141 * To achieve near-optimal performance for all kinds of workloads, we:
142 *
143 * 1. Aggressively increase the size of the TLB when the use rate of the
144 * TLB being flushed is high, since it is likely that in the near future this
145 * memory-hungry process will execute again, and its memory hungriness will
146 * probably be similar.
147 *
148 * 2. Slowly reduce the size of the TLB as the use rate declines over a
149 * reasonably large time window. The rationale is that if in such a time window
150 * we have not observed a high TLB use rate, it is likely that we won't observe
151 * it in the near future. In that case, once a time window expires we downsize
152 * the TLB to match the maximum use rate observed in the window.
153 *
154 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
155 * since in that range performance is likely near-optimal. Recall that the TLB
156 * is direct mapped, so we want the use rate to be low (or at least not too
157 * high), since otherwise we are likely to have a significant amount of
158 * conflict misses.
159 */
160 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
161 int64_t now)
162 {
163 size_t old_size = tlb_n_entries(fast);
164 size_t rate;
165 size_t new_size = old_size;
166 int64_t window_len_ms = 100;
167 int64_t window_len_ns = window_len_ms * 1000 * 1000;
168 bool window_expired = now > desc->window_begin_ns + window_len_ns;
169
170 if (desc->n_used_entries > desc->window_max_entries) {
171 desc->window_max_entries = desc->n_used_entries;
172 }
173 rate = desc->window_max_entries * 100 / old_size;
174
175 if (rate > 70) {
176 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
177 } else if (rate < 30 && window_expired) {
178 size_t ceil = pow2ceil(desc->window_max_entries);
179 size_t expected_rate = desc->window_max_entries * 100 / ceil;
180
181 /*
182 * Avoid undersizing when the max number of entries seen is just below
183 * a pow2. For instance, if max_entries == 1025, the expected use rate
184 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
185 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
186 * later. Thus, make sure that the expected use rate remains below 70%.
187 * (and since we double the size, that means the lowest rate we'd
188 * expect to get is 35%, which is still in the 30-70% range where
189 * we consider that the size is appropriate.)
190 */
191 if (expected_rate > 70) {
192 ceil *= 2;
193 }
194 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
195 }
196
197 if (new_size == old_size) {
198 if (window_expired) {
199 tlb_window_reset(desc, now, desc->n_used_entries);
200 }
201 return;
202 }
203
204 g_free(fast->table);
205 g_free(desc->fulltlb);
206
207 tlb_window_reset(desc, now, 0);
208 /* desc->n_used_entries is cleared by the caller */
209 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
210 fast->table = g_try_new(CPUTLBEntry, new_size);
211 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
212
213 /*
214 * If the allocations fail, try smaller sizes. We just freed some
215 * memory, so going back to half of new_size has a good chance of working.
216 * Increased memory pressure elsewhere in the system might cause the
217 * allocations to fail though, so we progressively reduce the allocation
218 * size, aborting if we cannot even allocate the smallest TLB we support.
219 */
220 while (fast->table == NULL || desc->fulltlb == NULL) {
221 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
222 error_report("%s: %s", __func__, strerror(errno));
223 abort();
224 }
225 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
226 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
227
228 g_free(fast->table);
229 g_free(desc->fulltlb);
230 fast->table = g_try_new(CPUTLBEntry, new_size);
231 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
232 }
233 }
234
235 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
236 {
237 desc->n_used_entries = 0;
238 desc->large_page_addr = -1;
239 desc->large_page_mask = -1;
240 desc->vindex = 0;
241 memset(fast->table, -1, sizeof_tlb(fast));
242 memset(desc->vtable, -1, sizeof(desc->vtable));
243 }
244
245 static void tlb_flush_one_mmuidx_locked(CPUState *cpu, int mmu_idx,
246 int64_t now)
247 {
248 CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx];
249 CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx];
250
251 tlb_mmu_resize_locked(desc, fast, now);
252 tlb_mmu_flush_locked(desc, fast);
253 }
254
255 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
256 {
257 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
258
259 tlb_window_reset(desc, now, 0);
260 desc->n_used_entries = 0;
261 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
262 fast->table = g_new(CPUTLBEntry, n_entries);
263 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
264 tlb_mmu_flush_locked(desc, fast);
265 }
266
267 static inline void tlb_n_used_entries_inc(CPUState *cpu, uintptr_t mmu_idx)
268 {
269 cpu->neg.tlb.d[mmu_idx].n_used_entries++;
270 }
271
272 static inline void tlb_n_used_entries_dec(CPUState *cpu, uintptr_t mmu_idx)
273 {
274 cpu->neg.tlb.d[mmu_idx].n_used_entries--;
275 }
276
277 void tlb_init(CPUState *cpu)
278 {
279 int64_t now = get_clock_realtime();
280 int i;
281
282 qemu_spin_init(&cpu->neg.tlb.c.lock);
283
284 /* All tlbs are initialized flushed. */
285 cpu->neg.tlb.c.dirty = 0;
286
287 for (i = 0; i < NB_MMU_MODES; i++) {
288 tlb_mmu_init(&cpu->neg.tlb.d[i], &cpu->neg.tlb.f[i], now);
289 }
290 }
291
292 void tlb_destroy(CPUState *cpu)
293 {
294 int i;
295
296 qemu_spin_destroy(&cpu->neg.tlb.c.lock);
297 for (i = 0; i < NB_MMU_MODES; i++) {
298 CPUTLBDesc *desc = &cpu->neg.tlb.d[i];
299 CPUTLBDescFast *fast = &cpu->neg.tlb.f[i];
300
301 g_free(fast->table);
302 g_free(desc->fulltlb);
303 }
304 }
305
306 /* flush_all_helper: run fn across all cpus
307 *
308 * If the wait flag is set then the src cpu's helper will be queued as
309 * "safe" work and the loop exited creating a synchronisation point
310 * where all queued work will be finished before execution starts
311 * again.
312 */
313 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
314 run_on_cpu_data d)
315 {
316 CPUState *cpu;
317
318 CPU_FOREACH(cpu) {
319 if (cpu != src) {
320 async_run_on_cpu(cpu, fn, d);
321 }
322 }
323 }
324
325 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
326 {
327 uint16_t asked = data.host_int;
328 uint16_t all_dirty, work, to_clean;
329 int64_t now = get_clock_realtime();
330
331 assert_cpu_is_self(cpu);
332
333 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
334
335 qemu_spin_lock(&cpu->neg.tlb.c.lock);
336
337 all_dirty = cpu->neg.tlb.c.dirty;
338 to_clean = asked & all_dirty;
339 all_dirty &= ~to_clean;
340 cpu->neg.tlb.c.dirty = all_dirty;
341
342 for (work = to_clean; work != 0; work &= work - 1) {
343 int mmu_idx = ctz32(work);
344 tlb_flush_one_mmuidx_locked(cpu, mmu_idx, now);
345 }
346
347 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
348
349 tcg_flush_jmp_cache(cpu);
350
351 if (to_clean == ALL_MMUIDX_BITS) {
352 qatomic_set(&cpu->neg.tlb.c.full_flush_count,
353 cpu->neg.tlb.c.full_flush_count + 1);
354 } else {
355 qatomic_set(&cpu->neg.tlb.c.part_flush_count,
356 cpu->neg.tlb.c.part_flush_count + ctpop16(to_clean));
357 if (to_clean != asked) {
358 qatomic_set(&cpu->neg.tlb.c.elide_flush_count,
359 cpu->neg.tlb.c.elide_flush_count +
360 ctpop16(asked & ~to_clean));
361 }
362 }
363 }
364
365 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
366 {
367 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
368
369 if (cpu->created && !qemu_cpu_is_self(cpu)) {
370 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
371 RUN_ON_CPU_HOST_INT(idxmap));
372 } else {
373 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
374 }
375 }
376
377 void tlb_flush(CPUState *cpu)
378 {
379 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
380 }
381
382 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
383 {
384 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
385
386 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
387
388 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
389 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
390 }
391
392 void tlb_flush_all_cpus(CPUState *src_cpu)
393 {
394 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
395 }
396
397 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
398 {
399 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
400
401 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
402
403 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
404 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
405 }
406
407 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
408 {
409 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
410 }
411
412 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
413 vaddr page, vaddr mask)
414 {
415 page &= mask;
416 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
417
418 return (page == (tlb_entry->addr_read & mask) ||
419 page == (tlb_addr_write(tlb_entry) & mask) ||
420 page == (tlb_entry->addr_code & mask));
421 }
422
423 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
424 {
425 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
426 }
427
428 /**
429 * tlb_entry_is_empty - return true if the entry is not in use
430 * @te: pointer to CPUTLBEntry
431 */
432 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
433 {
434 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
435 }
436
437 /* Called with tlb_c.lock held */
438 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
439 vaddr page,
440 vaddr mask)
441 {
442 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
443 memset(tlb_entry, -1, sizeof(*tlb_entry));
444 return true;
445 }
446 return false;
447 }
448
449 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
450 {
451 return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
452 }
453
454 /* Called with tlb_c.lock held */
455 static void tlb_flush_vtlb_page_mask_locked(CPUState *cpu, int mmu_idx,
456 vaddr page,
457 vaddr mask)
458 {
459 CPUTLBDesc *d = &cpu->neg.tlb.d[mmu_idx];
460 int k;
461
462 assert_cpu_is_self(cpu);
463 for (k = 0; k < CPU_VTLB_SIZE; k++) {
464 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
465 tlb_n_used_entries_dec(cpu, mmu_idx);
466 }
467 }
468 }
469
470 static inline void tlb_flush_vtlb_page_locked(CPUState *cpu, int mmu_idx,
471 vaddr page)
472 {
473 tlb_flush_vtlb_page_mask_locked(cpu, mmu_idx, page, -1);
474 }
475
476 static void tlb_flush_page_locked(CPUState *cpu, int midx, vaddr page)
477 {
478 vaddr lp_addr = cpu->neg.tlb.d[midx].large_page_addr;
479 vaddr lp_mask = cpu->neg.tlb.d[midx].large_page_mask;
480
481 /* Check if we need to flush due to large pages. */
482 if ((page & lp_mask) == lp_addr) {
483 tlb_debug("forcing full flush midx %d (%016"
484 VADDR_PRIx "/%016" VADDR_PRIx ")\n",
485 midx, lp_addr, lp_mask);
486 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
487 } else {
488 if (tlb_flush_entry_locked(tlb_entry(cpu, midx, page), page)) {
489 tlb_n_used_entries_dec(cpu, midx);
490 }
491 tlb_flush_vtlb_page_locked(cpu, midx, page);
492 }
493 }
494
495 /**
496 * tlb_flush_page_by_mmuidx_async_0:
497 * @cpu: cpu on which to flush
498 * @addr: page of virtual address to flush
499 * @idxmap: set of mmu_idx to flush
500 *
501 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
502 * at @addr from the tlbs indicated by @idxmap from @cpu.
503 */
504 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
505 vaddr addr,
506 uint16_t idxmap)
507 {
508 int mmu_idx;
509
510 assert_cpu_is_self(cpu);
511
512 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
513
514 qemu_spin_lock(&cpu->neg.tlb.c.lock);
515 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
516 if ((idxmap >> mmu_idx) & 1) {
517 tlb_flush_page_locked(cpu, mmu_idx, addr);
518 }
519 }
520 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
521
522 /*
523 * Discard jump cache entries for any tb which might potentially
524 * overlap the flushed page, which includes the previous.
525 */
526 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
527 tb_jmp_cache_clear_page(cpu, addr);
528 }
529
530 /**
531 * tlb_flush_page_by_mmuidx_async_1:
532 * @cpu: cpu on which to flush
533 * @data: encoded addr + idxmap
534 *
535 * Helper for tlb_flush_page_by_mmuidx and friends, called through
536 * async_run_on_cpu. The idxmap parameter is encoded in the page
537 * offset of the target_ptr field. This limits the set of mmu_idx
538 * that can be passed via this method.
539 */
540 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
541 run_on_cpu_data data)
542 {
543 vaddr addr_and_idxmap = data.target_ptr;
544 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
545 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
546
547 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
548 }
549
550 typedef struct {
551 vaddr addr;
552 uint16_t idxmap;
553 } TLBFlushPageByMMUIdxData;
554
555 /**
556 * tlb_flush_page_by_mmuidx_async_2:
557 * @cpu: cpu on which to flush
558 * @data: allocated addr + idxmap
559 *
560 * Helper for tlb_flush_page_by_mmuidx and friends, called through
561 * async_run_on_cpu. The addr+idxmap parameters are stored in a
562 * TLBFlushPageByMMUIdxData structure that has been allocated
563 * specifically for this helper. Free the structure when done.
564 */
565 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
566 run_on_cpu_data data)
567 {
568 TLBFlushPageByMMUIdxData *d = data.host_ptr;
569
570 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
571 g_free(d);
572 }
573
574 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
575 {
576 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
577
578 /* This should already be page aligned */
579 addr &= TARGET_PAGE_MASK;
580
581 if (qemu_cpu_is_self(cpu)) {
582 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
583 } else if (idxmap < TARGET_PAGE_SIZE) {
584 /*
585 * Most targets have only a few mmu_idx. In the case where
586 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
587 * allocating memory for this operation.
588 */
589 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
590 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
591 } else {
592 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
593
594 /* Otherwise allocate a structure, freed by the worker. */
595 d->addr = addr;
596 d->idxmap = idxmap;
597 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
598 RUN_ON_CPU_HOST_PTR(d));
599 }
600 }
601
602 void tlb_flush_page(CPUState *cpu, vaddr addr)
603 {
604 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
605 }
606
607 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr,
608 uint16_t idxmap)
609 {
610 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
611
612 /* This should already be page aligned */
613 addr &= TARGET_PAGE_MASK;
614
615 /*
616 * Allocate memory to hold addr+idxmap only when needed.
617 * See tlb_flush_page_by_mmuidx for details.
618 */
619 if (idxmap < TARGET_PAGE_SIZE) {
620 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
621 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
622 } else {
623 CPUState *dst_cpu;
624
625 /* Allocate a separate data block for each destination cpu. */
626 CPU_FOREACH(dst_cpu) {
627 if (dst_cpu != src_cpu) {
628 TLBFlushPageByMMUIdxData *d
629 = g_new(TLBFlushPageByMMUIdxData, 1);
630
631 d->addr = addr;
632 d->idxmap = idxmap;
633 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
634 RUN_ON_CPU_HOST_PTR(d));
635 }
636 }
637 }
638
639 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
640 }
641
642 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr)
643 {
644 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
645 }
646
647 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
648 vaddr addr,
649 uint16_t idxmap)
650 {
651 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
652
653 /* This should already be page aligned */
654 addr &= TARGET_PAGE_MASK;
655
656 /*
657 * Allocate memory to hold addr+idxmap only when needed.
658 * See tlb_flush_page_by_mmuidx for details.
659 */
660 if (idxmap < TARGET_PAGE_SIZE) {
661 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
662 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
663 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
664 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
665 } else {
666 CPUState *dst_cpu;
667 TLBFlushPageByMMUIdxData *d;
668
669 /* Allocate a separate data block for each destination cpu. */
670 CPU_FOREACH(dst_cpu) {
671 if (dst_cpu != src_cpu) {
672 d = g_new(TLBFlushPageByMMUIdxData, 1);
673 d->addr = addr;
674 d->idxmap = idxmap;
675 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
676 RUN_ON_CPU_HOST_PTR(d));
677 }
678 }
679
680 d = g_new(TLBFlushPageByMMUIdxData, 1);
681 d->addr = addr;
682 d->idxmap = idxmap;
683 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
684 RUN_ON_CPU_HOST_PTR(d));
685 }
686 }
687
688 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
689 {
690 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
691 }
692
693 static void tlb_flush_range_locked(CPUState *cpu, int midx,
694 vaddr addr, vaddr len,
695 unsigned bits)
696 {
697 CPUTLBDesc *d = &cpu->neg.tlb.d[midx];
698 CPUTLBDescFast *f = &cpu->neg.tlb.f[midx];
699 vaddr mask = MAKE_64BIT_MASK(0, bits);
700
701 /*
702 * If @bits is smaller than the tlb size, there may be multiple entries
703 * within the TLB; otherwise all addresses that match under @mask hit
704 * the same TLB entry.
705 * TODO: Perhaps allow bits to be a few bits less than the size.
706 * For now, just flush the entire TLB.
707 *
708 * If @len is larger than the tlb size, then it will take longer to
709 * test all of the entries in the TLB than it will to flush it all.
710 */
711 if (mask < f->mask || len > f->mask) {
712 tlb_debug("forcing full flush midx %d ("
713 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n",
714 midx, addr, mask, len);
715 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
716 return;
717 }
718
719 /*
720 * Check if we need to flush due to large pages.
721 * Because large_page_mask contains all 1's from the msb,
722 * we only need to test the end of the range.
723 */
724 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
725 tlb_debug("forcing full flush midx %d ("
726 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n",
727 midx, d->large_page_addr, d->large_page_mask);
728 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
729 return;
730 }
731
732 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
733 vaddr page = addr + i;
734 CPUTLBEntry *entry = tlb_entry(cpu, midx, page);
735
736 if (tlb_flush_entry_mask_locked(entry, page, mask)) {
737 tlb_n_used_entries_dec(cpu, midx);
738 }
739 tlb_flush_vtlb_page_mask_locked(cpu, midx, page, mask);
740 }
741 }
742
743 typedef struct {
744 vaddr addr;
745 vaddr len;
746 uint16_t idxmap;
747 uint16_t bits;
748 } TLBFlushRangeData;
749
750 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
751 TLBFlushRangeData d)
752 {
753 int mmu_idx;
754
755 assert_cpu_is_self(cpu);
756
757 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n",
758 d.addr, d.bits, d.len, d.idxmap);
759
760 qemu_spin_lock(&cpu->neg.tlb.c.lock);
761 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
762 if ((d.idxmap >> mmu_idx) & 1) {
763 tlb_flush_range_locked(cpu, mmu_idx, d.addr, d.len, d.bits);
764 }
765 }
766 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
767
768 /*
769 * If the length is larger than the jump cache size, then it will take
770 * longer to clear each entry individually than it will to clear it all.
771 */
772 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
773 tcg_flush_jmp_cache(cpu);
774 return;
775 }
776
777 /*
778 * Discard jump cache entries for any tb which might potentially
779 * overlap the flushed pages, which includes the previous.
780 */
781 d.addr -= TARGET_PAGE_SIZE;
782 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
783 tb_jmp_cache_clear_page(cpu, d.addr);
784 d.addr += TARGET_PAGE_SIZE;
785 }
786 }
787
788 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
789 run_on_cpu_data data)
790 {
791 TLBFlushRangeData *d = data.host_ptr;
792 tlb_flush_range_by_mmuidx_async_0(cpu, *d);
793 g_free(d);
794 }
795
796 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
797 vaddr len, uint16_t idxmap,
798 unsigned bits)
799 {
800 TLBFlushRangeData d;
801
802 /*
803 * If all bits are significant, and len is small,
804 * this devolves to tlb_flush_page.
805 */
806 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
807 tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
808 return;
809 }
810 /* If no page bits are significant, this devolves to tlb_flush. */
811 if (bits < TARGET_PAGE_BITS) {
812 tlb_flush_by_mmuidx(cpu, idxmap);
813 return;
814 }
815
816 /* This should already be page aligned */
817 d.addr = addr & TARGET_PAGE_MASK;
818 d.len = len;
819 d.idxmap = idxmap;
820 d.bits = bits;
821
822 if (qemu_cpu_is_self(cpu)) {
823 tlb_flush_range_by_mmuidx_async_0(cpu, d);
824 } else {
825 /* Otherwise allocate a structure, freed by the worker. */
826 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
827 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
828 RUN_ON_CPU_HOST_PTR(p));
829 }
830 }
831
832 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
833 uint16_t idxmap, unsigned bits)
834 {
835 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
836 }
837
838 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
839 vaddr addr, vaddr len,
840 uint16_t idxmap, unsigned bits)
841 {
842 TLBFlushRangeData d;
843 CPUState *dst_cpu;
844
845 /*
846 * If all bits are significant, and len is small,
847 * this devolves to tlb_flush_page.
848 */
849 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
850 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
851 return;
852 }
853 /* If no page bits are significant, this devolves to tlb_flush. */
854 if (bits < TARGET_PAGE_BITS) {
855 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
856 return;
857 }
858
859 /* This should already be page aligned */
860 d.addr = addr & TARGET_PAGE_MASK;
861 d.len = len;
862 d.idxmap = idxmap;
863 d.bits = bits;
864
865 /* Allocate a separate data block for each destination cpu. */
866 CPU_FOREACH(dst_cpu) {
867 if (dst_cpu != src_cpu) {
868 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
869 async_run_on_cpu(dst_cpu,
870 tlb_flush_range_by_mmuidx_async_1,
871 RUN_ON_CPU_HOST_PTR(p));
872 }
873 }
874
875 tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
876 }
877
878 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
879 vaddr addr, uint16_t idxmap,
880 unsigned bits)
881 {
882 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
883 idxmap, bits);
884 }
885
886 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
887 vaddr addr,
888 vaddr len,
889 uint16_t idxmap,
890 unsigned bits)
891 {
892 TLBFlushRangeData d, *p;
893 CPUState *dst_cpu;
894
895 /*
896 * If all bits are significant, and len is small,
897 * this devolves to tlb_flush_page.
898 */
899 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
900 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
901 return;
902 }
903 /* If no page bits are significant, this devolves to tlb_flush. */
904 if (bits < TARGET_PAGE_BITS) {
905 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
906 return;
907 }
908
909 /* This should already be page aligned */
910 d.addr = addr & TARGET_PAGE_MASK;
911 d.len = len;
912 d.idxmap = idxmap;
913 d.bits = bits;
914
915 /* Allocate a separate data block for each destination cpu. */
916 CPU_FOREACH(dst_cpu) {
917 if (dst_cpu != src_cpu) {
918 p = g_memdup(&d, sizeof(d));
919 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
920 RUN_ON_CPU_HOST_PTR(p));
921 }
922 }
923
924 p = g_memdup(&d, sizeof(d));
925 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
926 RUN_ON_CPU_HOST_PTR(p));
927 }
928
929 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
930 vaddr addr,
931 uint16_t idxmap,
932 unsigned bits)
933 {
934 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
935 idxmap, bits);
936 }
937
938 /* update the TLBs so that writes to code in the virtual page 'addr'
939 can be detected */
940 void tlb_protect_code(ram_addr_t ram_addr)
941 {
942 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
943 TARGET_PAGE_SIZE,
944 DIRTY_MEMORY_CODE);
945 }
946
947 /* update the TLB so that writes in physical page 'phys_addr' are no longer
948 tested for self modifying code */
949 void tlb_unprotect_code(ram_addr_t ram_addr)
950 {
951 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
952 }
953
954
955 /*
956 * Dirty write flag handling
957 *
958 * When the TCG code writes to a location it looks up the address in
959 * the TLB and uses that data to compute the final address. If any of
960 * the lower bits of the address are set then the slow path is forced.
961 * There are a number of reasons to do this but for normal RAM the
962 * most usual is detecting writes to code regions which may invalidate
963 * generated code.
964 *
965 * Other vCPUs might be reading their TLBs during guest execution, so we update
966 * te->addr_write with qatomic_set. We don't need to worry about this for
967 * oversized guests as MTTCG is disabled for them.
968 *
969 * Called with tlb_c.lock held.
970 */
971 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
972 uintptr_t start, uintptr_t length)
973 {
974 uintptr_t addr = tlb_entry->addr_write;
975
976 if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
977 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
978 addr &= TARGET_PAGE_MASK;
979 addr += tlb_entry->addend;
980 if ((addr - start) < length) {
981 #if TARGET_LONG_BITS == 32
982 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
983 ptr_write += HOST_BIG_ENDIAN;
984 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
985 #elif TCG_OVERSIZED_GUEST
986 tlb_entry->addr_write |= TLB_NOTDIRTY;
987 #else
988 qatomic_set(&tlb_entry->addr_write,
989 tlb_entry->addr_write | TLB_NOTDIRTY);
990 #endif
991 }
992 }
993 }
994
995 /*
996 * Called with tlb_c.lock held.
997 * Called only from the vCPU context, i.e. the TLB's owner thread.
998 */
999 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1000 {
1001 *d = *s;
1002 }
1003
1004 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1005 * the target vCPU).
1006 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1007 * thing actually updated is the target TLB entry ->addr_write flags.
1008 */
1009 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1010 {
1011 int mmu_idx;
1012
1013 qemu_spin_lock(&cpu->neg.tlb.c.lock);
1014 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1015 unsigned int i;
1016 unsigned int n = tlb_n_entries(&cpu->neg.tlb.f[mmu_idx]);
1017
1018 for (i = 0; i < n; i++) {
1019 tlb_reset_dirty_range_locked(&cpu->neg.tlb.f[mmu_idx].table[i],
1020 start1, length);
1021 }
1022
1023 for (i = 0; i < CPU_VTLB_SIZE; i++) {
1024 tlb_reset_dirty_range_locked(&cpu->neg.tlb.d[mmu_idx].vtable[i],
1025 start1, length);
1026 }
1027 }
1028 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
1029 }
1030
1031 /* Called with tlb_c.lock held */
1032 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1033 vaddr addr)
1034 {
1035 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
1036 tlb_entry->addr_write = addr;
1037 }
1038 }
1039
1040 /* update the TLB corresponding to virtual page vaddr
1041 so that it is no longer dirty */
1042 static void tlb_set_dirty(CPUState *cpu, vaddr addr)
1043 {
1044 int mmu_idx;
1045
1046 assert_cpu_is_self(cpu);
1047
1048 addr &= TARGET_PAGE_MASK;
1049 qemu_spin_lock(&cpu->neg.tlb.c.lock);
1050 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1051 tlb_set_dirty1_locked(tlb_entry(cpu, mmu_idx, addr), addr);
1052 }
1053
1054 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1055 int k;
1056 for (k = 0; k < CPU_VTLB_SIZE; k++) {
1057 tlb_set_dirty1_locked(&cpu->neg.tlb.d[mmu_idx].vtable[k], addr);
1058 }
1059 }
1060 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
1061 }
1062
1063 /* Our TLB does not support large pages, so remember the area covered by
1064 large pages and trigger a full TLB flush if these are invalidated. */
1065 static void tlb_add_large_page(CPUState *cpu, int mmu_idx,
1066 vaddr addr, uint64_t size)
1067 {
1068 vaddr lp_addr = cpu->neg.tlb.d[mmu_idx].large_page_addr;
1069 vaddr lp_mask = ~(size - 1);
1070
1071 if (lp_addr == (vaddr)-1) {
1072 /* No previous large page. */
1073 lp_addr = addr;
1074 } else {
1075 /* Extend the existing region to include the new page.
1076 This is a compromise between unnecessary flushes and
1077 the cost of maintaining a full variable size TLB. */
1078 lp_mask &= cpu->neg.tlb.d[mmu_idx].large_page_mask;
1079 while (((lp_addr ^ addr) & lp_mask) != 0) {
1080 lp_mask <<= 1;
1081 }
1082 }
1083 cpu->neg.tlb.d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1084 cpu->neg.tlb.d[mmu_idx].large_page_mask = lp_mask;
1085 }
1086
1087 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
1088 vaddr address, int flags,
1089 MMUAccessType access_type, bool enable)
1090 {
1091 if (enable) {
1092 address |= flags & TLB_FLAGS_MASK;
1093 flags &= TLB_SLOW_FLAGS_MASK;
1094 if (flags) {
1095 address |= TLB_FORCE_SLOW;
1096 }
1097 } else {
1098 address = -1;
1099 flags = 0;
1100 }
1101 ent->addr_idx[access_type] = address;
1102 full->slow_flags[access_type] = flags;
1103 }
1104
1105 /*
1106 * Add a new TLB entry. At most one entry for a given virtual address
1107 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1108 * supplied size is only used by tlb_flush_page.
1109 *
1110 * Called from TCG-generated code, which is under an RCU read-side
1111 * critical section.
1112 */
1113 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1114 vaddr addr, CPUTLBEntryFull *full)
1115 {
1116 CPUTLB *tlb = &cpu->neg.tlb;
1117 CPUTLBDesc *desc = &tlb->d[mmu_idx];
1118 MemoryRegionSection *section;
1119 unsigned int index, read_flags, write_flags;
1120 uintptr_t addend;
1121 CPUTLBEntry *te, tn;
1122 hwaddr iotlb, xlat, sz, paddr_page;
1123 vaddr addr_page;
1124 int asidx, wp_flags, prot;
1125 bool is_ram, is_romd;
1126
1127 assert_cpu_is_self(cpu);
1128
1129 if (full->lg_page_size <= TARGET_PAGE_BITS) {
1130 sz = TARGET_PAGE_SIZE;
1131 } else {
1132 sz = (hwaddr)1 << full->lg_page_size;
1133 tlb_add_large_page(cpu, mmu_idx, addr, sz);
1134 }
1135 addr_page = addr & TARGET_PAGE_MASK;
1136 paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1137
1138 prot = full->prot;
1139 asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1140 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1141 &xlat, &sz, full->attrs, &prot);
1142 assert(sz >= TARGET_PAGE_SIZE);
1143
1144 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
1145 " prot=%x idx=%d\n",
1146 addr, full->phys_addr, prot, mmu_idx);
1147
1148 read_flags = full->tlb_fill_flags;
1149 if (full->lg_page_size < TARGET_PAGE_BITS) {
1150 /* Repeat the MMU check and TLB fill on every access. */
1151 read_flags |= TLB_INVALID_MASK;
1152 }
1153
1154 is_ram = memory_region_is_ram(section->mr);
1155 is_romd = memory_region_is_romd(section->mr);
1156
1157 if (is_ram || is_romd) {
1158 /* RAM and ROMD both have associated host memory. */
1159 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1160 } else {
1161 /* I/O does not; force the host address to NULL. */
1162 addend = 0;
1163 }
1164
1165 write_flags = read_flags;
1166 if (is_ram) {
1167 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1168 assert(!(iotlb & ~TARGET_PAGE_MASK));
1169 /*
1170 * Computing is_clean is expensive; avoid all that unless
1171 * the page is actually writable.
1172 */
1173 if (prot & PAGE_WRITE) {
1174 if (section->readonly) {
1175 write_flags |= TLB_DISCARD_WRITE;
1176 } else if (cpu_physical_memory_is_clean(iotlb)) {
1177 write_flags |= TLB_NOTDIRTY;
1178 }
1179 }
1180 } else {
1181 /* I/O or ROMD */
1182 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1183 /*
1184 * Writes to romd devices must go through MMIO to enable write.
1185 * Reads to romd devices go through the ram_ptr found above,
1186 * but of course reads to I/O must go through MMIO.
1187 */
1188 write_flags |= TLB_MMIO;
1189 if (!is_romd) {
1190 read_flags = write_flags;
1191 }
1192 }
1193
1194 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
1195 TARGET_PAGE_SIZE);
1196
1197 index = tlb_index(cpu, mmu_idx, addr_page);
1198 te = tlb_entry(cpu, mmu_idx, addr_page);
1199
1200 /*
1201 * Hold the TLB lock for the rest of the function. We could acquire/release
1202 * the lock several times in the function, but it is faster to amortize the
1203 * acquisition cost by acquiring it just once. Note that this leads to
1204 * a longer critical section, but this is not a concern since the TLB lock
1205 * is unlikely to be contended.
1206 */
1207 qemu_spin_lock(&tlb->c.lock);
1208
1209 /* Note that the tlb is no longer clean. */
1210 tlb->c.dirty |= 1 << mmu_idx;
1211
1212 /* Make sure there's no cached translation for the new page. */
1213 tlb_flush_vtlb_page_locked(cpu, mmu_idx, addr_page);
1214
1215 /*
1216 * Only evict the old entry to the victim tlb if it's for a
1217 * different page; otherwise just overwrite the stale data.
1218 */
1219 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
1220 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1221 CPUTLBEntry *tv = &desc->vtable[vidx];
1222
1223 /* Evict the old entry into the victim tlb. */
1224 copy_tlb_helper_locked(tv, te);
1225 desc->vfulltlb[vidx] = desc->fulltlb[index];
1226 tlb_n_used_entries_dec(cpu, mmu_idx);
1227 }
1228
1229 /* refill the tlb */
1230 /*
1231 * When memory region is ram, iotlb contains a TARGET_PAGE_BITS
1232 * aligned ram_addr_t of the page base of the target RAM.
1233 * Otherwise, iotlb contains
1234 * - a physical section number in the lower TARGET_PAGE_BITS
1235 * - the offset within section->mr of the page base (I/O, ROMD) with the
1236 * TARGET_PAGE_BITS masked off.
1237 * We subtract addr_page (which is page aligned and thus won't
1238 * disturb the low bits) to give an offset which can be added to the
1239 * (non-page-aligned) vaddr of the eventual memory access to get
1240 * the MemoryRegion offset for the access. Note that the vaddr we
1241 * subtract here is that of the page base, and not the same as the
1242 * vaddr we add back in io_prepare()/get_page_addr_code().
1243 */
1244 desc->fulltlb[index] = *full;
1245 full = &desc->fulltlb[index];
1246 full->xlat_section = iotlb - addr_page;
1247 full->phys_addr = paddr_page;
1248
1249 /* Now calculate the new entry */
1250 tn.addend = addend - addr_page;
1251
1252 tlb_set_compare(full, &tn, addr_page, read_flags,
1253 MMU_INST_FETCH, prot & PAGE_EXEC);
1254
1255 if (wp_flags & BP_MEM_READ) {
1256 read_flags |= TLB_WATCHPOINT;
1257 }
1258 tlb_set_compare(full, &tn, addr_page, read_flags,
1259 MMU_DATA_LOAD, prot & PAGE_READ);
1260
1261 if (prot & PAGE_WRITE_INV) {
1262 write_flags |= TLB_INVALID_MASK;
1263 }
1264 if (wp_flags & BP_MEM_WRITE) {
1265 write_flags |= TLB_WATCHPOINT;
1266 }
1267 tlb_set_compare(full, &tn, addr_page, write_flags,
1268 MMU_DATA_STORE, prot & PAGE_WRITE);
1269
1270 copy_tlb_helper_locked(te, &tn);
1271 tlb_n_used_entries_inc(cpu, mmu_idx);
1272 qemu_spin_unlock(&tlb->c.lock);
1273 }
1274
1275 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
1276 hwaddr paddr, MemTxAttrs attrs, int prot,
1277 int mmu_idx, uint64_t size)
1278 {
1279 CPUTLBEntryFull full = {
1280 .phys_addr = paddr,
1281 .attrs = attrs,
1282 .prot = prot,
1283 .lg_page_size = ctz64(size)
1284 };
1285
1286 assert(is_power_of_2(size));
1287 tlb_set_page_full(cpu, mmu_idx, addr, &full);
1288 }
1289
1290 void tlb_set_page(CPUState *cpu, vaddr addr,
1291 hwaddr paddr, int prot,
1292 int mmu_idx, uint64_t size)
1293 {
1294 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
1295 prot, mmu_idx, size);
1296 }
1297
1298 /*
1299 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1300 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1301 * be discarded and looked up again (e.g. via tlb_entry()).
1302 */
1303 static void tlb_fill(CPUState *cpu, vaddr addr, int size,
1304 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1305 {
1306 bool ok;
1307
1308 /*
1309 * This is not a probe, so only valid return is success; failure
1310 * should result in exception + longjmp to the cpu loop.
1311 */
1312 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1313 access_type, mmu_idx, false, retaddr);
1314 assert(ok);
1315 }
1316
1317 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1318 MMUAccessType access_type,
1319 int mmu_idx, uintptr_t retaddr)
1320 {
1321 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1322 mmu_idx, retaddr);
1323 }
1324
1325 static MemoryRegionSection *
1326 io_prepare(hwaddr *out_offset, CPUState *cpu, hwaddr xlat,
1327 MemTxAttrs attrs, vaddr addr, uintptr_t retaddr)
1328 {
1329 MemoryRegionSection *section;
1330 hwaddr mr_offset;
1331
1332 section = iotlb_to_section(cpu, xlat, attrs);
1333 mr_offset = (xlat & TARGET_PAGE_MASK) + addr;
1334 cpu->mem_io_pc = retaddr;
1335 if (!cpu->neg.can_do_io) {
1336 cpu_io_recompile(cpu, retaddr);
1337 }
1338
1339 *out_offset = mr_offset;
1340 return section;
1341 }
1342
1343 static void io_failed(CPUState *cpu, CPUTLBEntryFull *full, vaddr addr,
1344 unsigned size, MMUAccessType access_type, int mmu_idx,
1345 MemTxResult response, uintptr_t retaddr)
1346 {
1347 if (!cpu->ignore_memory_transaction_failures
1348 && cpu->cc->tcg_ops->do_transaction_failed) {
1349 hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1350
1351 cpu->cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1352 access_type, mmu_idx,
1353 full->attrs, response, retaddr);
1354 }
1355 }
1356
1357 /* Return true if ADDR is present in the victim tlb, and has been copied
1358 back to the main tlb. */
1359 static bool victim_tlb_hit(CPUState *cpu, size_t mmu_idx, size_t index,
1360 MMUAccessType access_type, vaddr page)
1361 {
1362 size_t vidx;
1363
1364 assert_cpu_is_self(cpu);
1365 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1366 CPUTLBEntry *vtlb = &cpu->neg.tlb.d[mmu_idx].vtable[vidx];
1367 uint64_t cmp = tlb_read_idx(vtlb, access_type);
1368
1369 if (cmp == page) {
1370 /* Found entry in victim tlb, swap tlb and iotlb. */
1371 CPUTLBEntry tmptlb, *tlb = &cpu->neg.tlb.f[mmu_idx].table[index];
1372
1373 qemu_spin_lock(&cpu->neg.tlb.c.lock);
1374 copy_tlb_helper_locked(&tmptlb, tlb);
1375 copy_tlb_helper_locked(tlb, vtlb);
1376 copy_tlb_helper_locked(vtlb, &tmptlb);
1377 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
1378
1379 CPUTLBEntryFull *f1 = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1380 CPUTLBEntryFull *f2 = &cpu->neg.tlb.d[mmu_idx].vfulltlb[vidx];
1381 CPUTLBEntryFull tmpf;
1382 tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1383 return true;
1384 }
1385 }
1386 return false;
1387 }
1388
1389 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1390 CPUTLBEntryFull *full, uintptr_t retaddr)
1391 {
1392 ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1393
1394 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1395
1396 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1397 tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1398 }
1399
1400 /*
1401 * Set both VGA and migration bits for simplicity and to remove
1402 * the notdirty callback faster.
1403 */
1404 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1405
1406 /* We remove the notdirty callback only if the code has been flushed. */
1407 if (!cpu_physical_memory_is_clean(ram_addr)) {
1408 trace_memory_notdirty_set_dirty(mem_vaddr);
1409 tlb_set_dirty(cpu, mem_vaddr);
1410 }
1411 }
1412
1413 static int probe_access_internal(CPUState *cpu, vaddr addr,
1414 int fault_size, MMUAccessType access_type,
1415 int mmu_idx, bool nonfault,
1416 void **phost, CPUTLBEntryFull **pfull,
1417 uintptr_t retaddr, bool check_mem_cbs)
1418 {
1419 uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1420 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
1421 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1422 vaddr page_addr = addr & TARGET_PAGE_MASK;
1423 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
1424 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(cpu);
1425 CPUTLBEntryFull *full;
1426
1427 if (!tlb_hit_page(tlb_addr, page_addr)) {
1428 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, page_addr)) {
1429 if (!cpu->cc->tcg_ops->tlb_fill(cpu, addr, fault_size, access_type,
1430 mmu_idx, nonfault, retaddr)) {
1431 /* Non-faulting page table read failed. */
1432 *phost = NULL;
1433 *pfull = NULL;
1434 return TLB_INVALID_MASK;
1435 }
1436
1437 /* TLB resize via tlb_fill may have moved the entry. */
1438 index = tlb_index(cpu, mmu_idx, addr);
1439 entry = tlb_entry(cpu, mmu_idx, addr);
1440
1441 /*
1442 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1443 * to force the next access through tlb_fill. We've just
1444 * called tlb_fill, so we know that this entry *is* valid.
1445 */
1446 flags &= ~TLB_INVALID_MASK;
1447 }
1448 tlb_addr = tlb_read_idx(entry, access_type);
1449 }
1450 flags &= tlb_addr;
1451
1452 *pfull = full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1453 flags |= full->slow_flags[access_type];
1454
1455 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1456 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY | TLB_CHECK_ALIGNED))
1457 || (access_type != MMU_INST_FETCH && force_mmio)) {
1458 *phost = NULL;
1459 return TLB_MMIO;
1460 }
1461
1462 /* Everything else is RAM. */
1463 *phost = (void *)((uintptr_t)addr + entry->addend);
1464 return flags;
1465 }
1466
1467 int probe_access_full(CPUArchState *env, vaddr addr, int size,
1468 MMUAccessType access_type, int mmu_idx,
1469 bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1470 uintptr_t retaddr)
1471 {
1472 int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1473 mmu_idx, nonfault, phost, pfull, retaddr,
1474 true);
1475
1476 /* Handle clean RAM pages. */
1477 if (unlikely(flags & TLB_NOTDIRTY)) {
1478 int dirtysize = size == 0 ? 1 : size;
1479 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, retaddr);
1480 flags &= ~TLB_NOTDIRTY;
1481 }
1482
1483 return flags;
1484 }
1485
1486 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
1487 MMUAccessType access_type, int mmu_idx,
1488 void **phost, CPUTLBEntryFull **pfull)
1489 {
1490 void *discard_phost;
1491 CPUTLBEntryFull *discard_tlb;
1492
1493 /* privately handle users that don't need full results */
1494 phost = phost ? phost : &discard_phost;
1495 pfull = pfull ? pfull : &discard_tlb;
1496
1497 int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1498 mmu_idx, true, phost, pfull, 0, false);
1499
1500 /* Handle clean RAM pages. */
1501 if (unlikely(flags & TLB_NOTDIRTY)) {
1502 int dirtysize = size == 0 ? 1 : size;
1503 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, 0);
1504 flags &= ~TLB_NOTDIRTY;
1505 }
1506
1507 return flags;
1508 }
1509
1510 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
1511 MMUAccessType access_type, int mmu_idx,
1512 bool nonfault, void **phost, uintptr_t retaddr)
1513 {
1514 CPUTLBEntryFull *full;
1515 int flags;
1516
1517 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1518
1519 flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1520 mmu_idx, nonfault, phost, &full, retaddr,
1521 true);
1522
1523 /* Handle clean RAM pages. */
1524 if (unlikely(flags & TLB_NOTDIRTY)) {
1525 int dirtysize = size == 0 ? 1 : size;
1526 notdirty_write(env_cpu(env), addr, dirtysize, full, retaddr);
1527 flags &= ~TLB_NOTDIRTY;
1528 }
1529
1530 return flags;
1531 }
1532
1533 void *probe_access(CPUArchState *env, vaddr addr, int size,
1534 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1535 {
1536 CPUTLBEntryFull *full;
1537 void *host;
1538 int flags;
1539
1540 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1541
1542 flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1543 mmu_idx, false, &host, &full, retaddr,
1544 true);
1545
1546 /* Per the interface, size == 0 merely faults the access. */
1547 if (size == 0) {
1548 return NULL;
1549 }
1550
1551 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1552 /* Handle watchpoints. */
1553 if (flags & TLB_WATCHPOINT) {
1554 int wp_access = (access_type == MMU_DATA_STORE
1555 ? BP_MEM_WRITE : BP_MEM_READ);
1556 cpu_check_watchpoint(env_cpu(env), addr, size,
1557 full->attrs, wp_access, retaddr);
1558 }
1559
1560 /* Handle clean RAM pages. */
1561 if (flags & TLB_NOTDIRTY) {
1562 notdirty_write(env_cpu(env), addr, size, full, retaddr);
1563 }
1564 }
1565
1566 return host;
1567 }
1568
1569 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1570 MMUAccessType access_type, int mmu_idx)
1571 {
1572 CPUTLBEntryFull *full;
1573 void *host;
1574 int flags;
1575
1576 flags = probe_access_internal(env_cpu(env), addr, 0, access_type,
1577 mmu_idx, true, &host, &full, 0, false);
1578
1579 /* No combination of flags are expected by the caller. */
1580 return flags ? NULL : host;
1581 }
1582
1583 /*
1584 * Return a ram_addr_t for the virtual address for execution.
1585 *
1586 * Return -1 if we can't translate and execute from an entire page
1587 * of RAM. This will force us to execute by loading and translating
1588 * one insn at a time, without caching.
1589 *
1590 * NOTE: This function will trigger an exception if the page is
1591 * not executable.
1592 */
1593 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
1594 void **hostp)
1595 {
1596 CPUTLBEntryFull *full;
1597 void *p;
1598
1599 (void)probe_access_internal(env_cpu(env), addr, 1, MMU_INST_FETCH,
1600 cpu_mmu_index(env_cpu(env), true), false,
1601 &p, &full, 0, false);
1602 if (p == NULL) {
1603 return -1;
1604 }
1605
1606 if (full->lg_page_size < TARGET_PAGE_BITS) {
1607 return -1;
1608 }
1609
1610 if (hostp) {
1611 *hostp = p;
1612 }
1613 return qemu_ram_addr_from_host_nofail(p);
1614 }
1615
1616 /* Load/store with atomicity primitives. */
1617 #include "ldst_atomicity.c.inc"
1618
1619 #ifdef CONFIG_PLUGIN
1620 /*
1621 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1622 * This should be a hot path as we will have just looked this path up
1623 * in the softmmu lookup code (or helper). We don't handle re-fills or
1624 * checking the victim table. This is purely informational.
1625 *
1626 * The one corner case is i/o write, which can cause changes to the
1627 * address space. Those changes, and the corresponding tlb flush,
1628 * should be delayed until the next TB, so even then this ought not fail.
1629 * But check, Just in Case.
1630 */
1631 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
1632 bool is_store, struct qemu_plugin_hwaddr *data)
1633 {
1634 CPUTLBEntry *tlbe = tlb_entry(cpu, mmu_idx, addr);
1635 uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1636 MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD;
1637 uint64_t tlb_addr = tlb_read_idx(tlbe, access_type);
1638 CPUTLBEntryFull *full;
1639
1640 if (unlikely(!tlb_hit(tlb_addr, addr))) {
1641 return false;
1642 }
1643
1644 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1645 data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1646
1647 /* We must have an iotlb entry for MMIO */
1648 if (tlb_addr & TLB_MMIO) {
1649 MemoryRegionSection *section =
1650 iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK,
1651 full->attrs);
1652 data->is_io = true;
1653 data->mr = section->mr;
1654 } else {
1655 data->is_io = false;
1656 data->mr = NULL;
1657 }
1658 return true;
1659 }
1660 #endif
1661
1662 /*
1663 * Probe for a load/store operation.
1664 * Return the host address and into @flags.
1665 */
1666
1667 typedef struct MMULookupPageData {
1668 CPUTLBEntryFull *full;
1669 void *haddr;
1670 vaddr addr;
1671 int flags;
1672 int size;
1673 } MMULookupPageData;
1674
1675 typedef struct MMULookupLocals {
1676 MMULookupPageData page[2];
1677 MemOp memop;
1678 int mmu_idx;
1679 } MMULookupLocals;
1680
1681 /**
1682 * mmu_lookup1: translate one page
1683 * @cpu: generic cpu state
1684 * @data: lookup parameters
1685 * @mmu_idx: virtual address context
1686 * @access_type: load/store/code
1687 * @ra: return address into tcg generated code, or 0
1688 *
1689 * Resolve the translation for the one page at @data.addr, filling in
1690 * the rest of @data with the results. If the translation fails,
1691 * tlb_fill will longjmp out. Return true if the softmmu tlb for
1692 * @mmu_idx may have resized.
1693 */
1694 static bool mmu_lookup1(CPUState *cpu, MMULookupPageData *data,
1695 int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1696 {
1697 vaddr addr = data->addr;
1698 uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1699 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
1700 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1701 bool maybe_resized = false;
1702 CPUTLBEntryFull *full;
1703 int flags;
1704
1705 /* If the TLB entry is for a different page, reload and try again. */
1706 if (!tlb_hit(tlb_addr, addr)) {
1707 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type,
1708 addr & TARGET_PAGE_MASK)) {
1709 tlb_fill(cpu, addr, data->size, access_type, mmu_idx, ra);
1710 maybe_resized = true;
1711 index = tlb_index(cpu, mmu_idx, addr);
1712 entry = tlb_entry(cpu, mmu_idx, addr);
1713 }
1714 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1715 }
1716
1717 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1718 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
1719 flags |= full->slow_flags[access_type];
1720
1721 data->full = full;
1722 data->flags = flags;
1723 /* Compute haddr speculatively; depending on flags it might be invalid. */
1724 data->haddr = (void *)((uintptr_t)addr + entry->addend);
1725
1726 return maybe_resized;
1727 }
1728
1729 /**
1730 * mmu_watch_or_dirty
1731 * @cpu: generic cpu state
1732 * @data: lookup parameters
1733 * @access_type: load/store/code
1734 * @ra: return address into tcg generated code, or 0
1735 *
1736 * Trigger watchpoints for @data.addr:@data.size;
1737 * record writes to protected clean pages.
1738 */
1739 static void mmu_watch_or_dirty(CPUState *cpu, MMULookupPageData *data,
1740 MMUAccessType access_type, uintptr_t ra)
1741 {
1742 CPUTLBEntryFull *full = data->full;
1743 vaddr addr = data->addr;
1744 int flags = data->flags;
1745 int size = data->size;
1746
1747 /* On watchpoint hit, this will longjmp out. */
1748 if (flags & TLB_WATCHPOINT) {
1749 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1750 cpu_check_watchpoint(cpu, addr, size, full->attrs, wp, ra);
1751 flags &= ~TLB_WATCHPOINT;
1752 }
1753
1754 /* Note that notdirty is only set for writes. */
1755 if (flags & TLB_NOTDIRTY) {
1756 notdirty_write(cpu, addr, size, full, ra);
1757 flags &= ~TLB_NOTDIRTY;
1758 }
1759 data->flags = flags;
1760 }
1761
1762 /**
1763 * mmu_lookup: translate page(s)
1764 * @cpu: generic cpu state
1765 * @addr: virtual address
1766 * @oi: combined mmu_idx and MemOp
1767 * @ra: return address into tcg generated code, or 0
1768 * @access_type: load/store/code
1769 * @l: output result
1770 *
1771 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1772 * bytes. Return true if the lookup crosses a page boundary.
1773 */
1774 static bool mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1775 uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1776 {
1777 unsigned a_bits;
1778 bool crosspage;
1779 int flags;
1780
1781 l->memop = get_memop(oi);
1782 l->mmu_idx = get_mmuidx(oi);
1783
1784 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1785
1786 /* Handle CPU specific unaligned behaviour */
1787 a_bits = get_alignment_bits(l->memop);
1788 if (addr & ((1 << a_bits) - 1)) {
1789 cpu_unaligned_access(cpu, addr, type, l->mmu_idx, ra);
1790 }
1791
1792 l->page[0].addr = addr;
1793 l->page[0].size = memop_size(l->memop);
1794 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1795 l->page[1].size = 0;
1796 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1797
1798 if (likely(!crosspage)) {
1799 mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra);
1800
1801 flags = l->page[0].flags;
1802 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1803 mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
1804 }
1805 if (unlikely(flags & TLB_BSWAP)) {
1806 l->memop ^= MO_BSWAP;
1807 }
1808 } else {
1809 /* Finish compute of page crossing. */
1810 int size0 = l->page[1].addr - addr;
1811 l->page[1].size = l->page[0].size - size0;
1812 l->page[0].size = size0;
1813
1814 /*
1815 * Lookup both pages, recognizing exceptions from either. If the
1816 * second lookup potentially resized, refresh first CPUTLBEntryFull.
1817 */
1818 mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra);
1819 if (mmu_lookup1(cpu, &l->page[1], l->mmu_idx, type, ra)) {
1820 uintptr_t index = tlb_index(cpu, l->mmu_idx, addr);
1821 l->page[0].full = &cpu->neg.tlb.d[l->mmu_idx].fulltlb[index];
1822 }
1823
1824 flags = l->page[0].flags | l->page[1].flags;
1825 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1826 mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
1827 mmu_watch_or_dirty(cpu, &l->page[1], type, ra);
1828 }
1829
1830 /*
1831 * Since target/sparc is the only user of TLB_BSWAP, and all
1832 * Sparc accesses are aligned, any treatment across two pages
1833 * would be arbitrary. Refuse it until there's a use.
1834 */
1835 tcg_debug_assert((flags & TLB_BSWAP) == 0);
1836 }
1837
1838 /*
1839 * This alignment check differs from the one above, in that this is
1840 * based on the atomicity of the operation. The intended use case is
1841 * the ARM memory type field of each PTE, where access to pages with
1842 * Device memory type require alignment.
1843 */
1844 if (unlikely(flags & TLB_CHECK_ALIGNED)) {
1845 MemOp size = l->memop & MO_SIZE;
1846
1847 switch (l->memop & MO_ATOM_MASK) {
1848 case MO_ATOM_NONE:
1849 size = MO_8;
1850 break;
1851 case MO_ATOM_IFALIGN_PAIR:
1852 case MO_ATOM_WITHIN16_PAIR:
1853 size = size ? size - 1 : 0;
1854 break;
1855 default:
1856 break;
1857 }
1858 if (addr & ((1 << size) - 1)) {
1859 cpu_unaligned_access(cpu, addr, type, l->mmu_idx, ra);
1860 }
1861 }
1862
1863 return crosspage;
1864 }
1865
1866 /*
1867 * Probe for an atomic operation. Do not allow unaligned operations,
1868 * or io operations to proceed. Return the host address.
1869 */
1870 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1871 int size, uintptr_t retaddr)
1872 {
1873 uintptr_t mmu_idx = get_mmuidx(oi);
1874 MemOp mop = get_memop(oi);
1875 int a_bits = get_alignment_bits(mop);
1876 uintptr_t index;
1877 CPUTLBEntry *tlbe;
1878 vaddr tlb_addr;
1879 void *hostaddr;
1880 CPUTLBEntryFull *full;
1881
1882 tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1883
1884 /* Adjust the given return address. */
1885 retaddr -= GETPC_ADJ;
1886
1887 /* Enforce guest required alignment. */
1888 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1889 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1890 cpu_unaligned_access(cpu, addr, MMU_DATA_STORE,
1891 mmu_idx, retaddr);
1892 }
1893
1894 /* Enforce qemu required alignment. */
1895 if (unlikely(addr & (size - 1))) {
1896 /* We get here if guest alignment was not requested,
1897 or was not enforced by cpu_unaligned_access above.
1898 We might widen the access and emulate, but for now
1899 mark an exception and exit the cpu loop. */
1900 goto stop_the_world;
1901 }
1902
1903 index = tlb_index(cpu, mmu_idx, addr);
1904 tlbe = tlb_entry(cpu, mmu_idx, addr);
1905
1906 /* Check TLB entry and enforce page permissions. */
1907 tlb_addr = tlb_addr_write(tlbe);
1908 if (!tlb_hit(tlb_addr, addr)) {
1909 if (!victim_tlb_hit(cpu, mmu_idx, index, MMU_DATA_STORE,
1910 addr & TARGET_PAGE_MASK)) {
1911 tlb_fill(cpu, addr, size,
1912 MMU_DATA_STORE, mmu_idx, retaddr);
1913 index = tlb_index(cpu, mmu_idx, addr);
1914 tlbe = tlb_entry(cpu, mmu_idx, addr);
1915 }
1916 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1917 }
1918
1919 /*
1920 * Let the guest notice RMW on a write-only page.
1921 * We have just verified that the page is writable.
1922 * Subpage lookups may have left TLB_INVALID_MASK set,
1923 * but addr_read will only be -1 if PAGE_READ was unset.
1924 */
1925 if (unlikely(tlbe->addr_read == -1)) {
1926 tlb_fill(cpu, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
1927 /*
1928 * Since we don't support reads and writes to different
1929 * addresses, and we do have the proper page loaded for
1930 * write, this shouldn't ever return. But just in case,
1931 * handle via stop-the-world.
1932 */
1933 goto stop_the_world;
1934 }
1935 /* Collect tlb flags for read. */
1936 tlb_addr |= tlbe->addr_read;
1937
1938 /* Notice an IO access or a needs-MMU-lookup access */
1939 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
1940 /* There's really nothing that can be done to
1941 support this apart from stop-the-world. */
1942 goto stop_the_world;
1943 }
1944
1945 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1946 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1947
1948 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1949 notdirty_write(cpu, addr, size, full, retaddr);
1950 }
1951
1952 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) {
1953 int wp_flags = 0;
1954
1955 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
1956 wp_flags |= BP_MEM_WRITE;
1957 }
1958 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
1959 wp_flags |= BP_MEM_READ;
1960 }
1961 if (wp_flags) {
1962 cpu_check_watchpoint(cpu, addr, size,
1963 full->attrs, wp_flags, retaddr);
1964 }
1965 }
1966
1967 return hostaddr;
1968
1969 stop_the_world:
1970 cpu_loop_exit_atomic(cpu, retaddr);
1971 }
1972
1973 /*
1974 * Load Helpers
1975 *
1976 * We support two different access types. SOFTMMU_CODE_ACCESS is
1977 * specifically for reading instructions from system memory. It is
1978 * called by the translation loop and in some helpers where the code
1979 * is disassembled. It shouldn't be called directly by guest code.
1980 *
1981 * For the benefit of TCG generated code, we want to avoid the
1982 * complication of ABI-specific return type promotion and always
1983 * return a value extended to the register size of the host. This is
1984 * tcg_target_long, except in the case of a 32-bit host and 64-bit
1985 * data, and for that we always have uint64_t.
1986 *
1987 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1988 */
1989
1990 /**
1991 * do_ld_mmio_beN:
1992 * @cpu: generic cpu state
1993 * @full: page parameters
1994 * @ret_be: accumulated data
1995 * @addr: virtual address
1996 * @size: number of bytes
1997 * @mmu_idx: virtual address context
1998 * @ra: return address into tcg generated code, or 0
1999 * Context: BQL held
2000 *
2001 * Load @size bytes from @addr, which is memory-mapped i/o.
2002 * The bytes are concatenated in big-endian order with @ret_be.
2003 */
2004 static uint64_t int_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
2005 uint64_t ret_be, vaddr addr, int size,
2006 int mmu_idx, MMUAccessType type, uintptr_t ra,
2007 MemoryRegion *mr, hwaddr mr_offset)
2008 {
2009 do {
2010 MemOp this_mop;
2011 unsigned this_size;
2012 uint64_t val;
2013 MemTxResult r;
2014
2015 /* Read aligned pieces up to 8 bytes. */
2016 this_mop = ctz32(size | (int)addr | 8);
2017 this_size = 1 << this_mop;
2018 this_mop |= MO_BE;
2019
2020 r = memory_region_dispatch_read(mr, mr_offset, &val,
2021 this_mop, full->attrs);
2022 if (unlikely(r != MEMTX_OK)) {
2023 io_failed(cpu, full, addr, this_size, type, mmu_idx, r, ra);
2024 }
2025 if (this_size == 8) {
2026 return val;
2027 }
2028
2029 ret_be = (ret_be << (this_size * 8)) | val;
2030 addr += this_size;
2031 mr_offset += this_size;
2032 size -= this_size;
2033 } while (size);
2034
2035 return ret_be;
2036 }
2037
2038 static uint64_t do_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
2039 uint64_t ret_be, vaddr addr, int size,
2040 int mmu_idx, MMUAccessType type, uintptr_t ra)
2041 {
2042 MemoryRegionSection *section;
2043 MemoryRegion *mr;
2044 hwaddr mr_offset;
2045 MemTxAttrs attrs;
2046
2047 tcg_debug_assert(size > 0 && size <= 8);
2048
2049 attrs = full->attrs;
2050 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2051 mr = section->mr;
2052
2053 BQL_LOCK_GUARD();
2054 return int_ld_mmio_beN(cpu, full, ret_be, addr, size, mmu_idx,
2055 type, ra, mr, mr_offset);
2056 }
2057
2058 static Int128 do_ld16_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
2059 uint64_t ret_be, vaddr addr, int size,
2060 int mmu_idx, uintptr_t ra)
2061 {
2062 MemoryRegionSection *section;
2063 MemoryRegion *mr;
2064 hwaddr mr_offset;
2065 MemTxAttrs attrs;
2066 uint64_t a, b;
2067
2068 tcg_debug_assert(size > 8 && size <= 16);
2069
2070 attrs = full->attrs;
2071 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2072 mr = section->mr;
2073
2074 BQL_LOCK_GUARD();
2075 a = int_ld_mmio_beN(cpu, full, ret_be, addr, size - 8, mmu_idx,
2076 MMU_DATA_LOAD, ra, mr, mr_offset);
2077 b = int_ld_mmio_beN(cpu, full, ret_be, addr + size - 8, 8, mmu_idx,
2078 MMU_DATA_LOAD, ra, mr, mr_offset + size - 8);
2079 return int128_make128(b, a);
2080 }
2081
2082 /**
2083 * do_ld_bytes_beN
2084 * @p: translation parameters
2085 * @ret_be: accumulated data
2086 *
2087 * Load @p->size bytes from @p->haddr, which is RAM.
2088 * The bytes to concatenated in big-endian order with @ret_be.
2089 */
2090 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2091 {
2092 uint8_t *haddr = p->haddr;
2093 int i, size = p->size;
2094
2095 for (i = 0; i < size; i++) {
2096 ret_be = (ret_be << 8) | haddr[i];
2097 }
2098 return ret_be;
2099 }
2100
2101 /**
2102 * do_ld_parts_beN
2103 * @p: translation parameters
2104 * @ret_be: accumulated data
2105 *
2106 * As do_ld_bytes_beN, but atomically on each aligned part.
2107 */
2108 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2109 {
2110 void *haddr = p->haddr;
2111 int size = p->size;
2112
2113 do {
2114 uint64_t x;
2115 int n;
2116
2117 /*
2118 * Find minimum of alignment and size.
2119 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2120 * would have only checked the low bits of addr|size once at the start,
2121 * but is just as easy.
2122 */
2123 switch (((uintptr_t)haddr | size) & 7) {
2124 case 4:
2125 x = cpu_to_be32(load_atomic4(haddr));
2126 ret_be = (ret_be << 32) | x;
2127 n = 4;
2128 break;
2129 case 2:
2130 case 6:
2131 x = cpu_to_be16(load_atomic2(haddr));
2132 ret_be = (ret_be << 16) | x;
2133 n = 2;
2134 break;
2135 default:
2136 x = *(uint8_t *)haddr;
2137 ret_be = (ret_be << 8) | x;
2138 n = 1;
2139 break;
2140 case 0:
2141 g_assert_not_reached();
2142 }
2143 haddr += n;
2144 size -= n;
2145 } while (size != 0);
2146 return ret_be;
2147 }
2148
2149 /**
2150 * do_ld_parts_be4
2151 * @p: translation parameters
2152 * @ret_be: accumulated data
2153 *
2154 * As do_ld_bytes_beN, but with one atomic load.
2155 * Four aligned bytes are guaranteed to cover the load.
2156 */
2157 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2158 {
2159 int o = p->addr & 3;
2160 uint32_t x = load_atomic4(p->haddr - o);
2161
2162 x = cpu_to_be32(x);
2163 x <<= o * 8;
2164 x >>= (4 - p->size) * 8;
2165 return (ret_be << (p->size * 8)) | x;
2166 }
2167
2168 /**
2169 * do_ld_parts_be8
2170 * @p: translation parameters
2171 * @ret_be: accumulated data
2172 *
2173 * As do_ld_bytes_beN, but with one atomic load.
2174 * Eight aligned bytes are guaranteed to cover the load.
2175 */
2176 static uint64_t do_ld_whole_be8(CPUState *cpu, uintptr_t ra,
2177 MMULookupPageData *p, uint64_t ret_be)
2178 {
2179 int o = p->addr & 7;
2180 uint64_t x = load_atomic8_or_exit(cpu, ra, p->haddr - o);
2181
2182 x = cpu_to_be64(x);
2183 x <<= o * 8;
2184 x >>= (8 - p->size) * 8;
2185 return (ret_be << (p->size * 8)) | x;
2186 }
2187
2188 /**
2189 * do_ld_parts_be16
2190 * @p: translation parameters
2191 * @ret_be: accumulated data
2192 *
2193 * As do_ld_bytes_beN, but with one atomic load.
2194 * 16 aligned bytes are guaranteed to cover the load.
2195 */
2196 static Int128 do_ld_whole_be16(CPUState *cpu, uintptr_t ra,
2197 MMULookupPageData *p, uint64_t ret_be)
2198 {
2199 int o = p->addr & 15;
2200 Int128 x, y = load_atomic16_or_exit(cpu, ra, p->haddr - o);
2201 int size = p->size;
2202
2203 if (!HOST_BIG_ENDIAN) {
2204 y = bswap128(y);
2205 }
2206 y = int128_lshift(y, o * 8);
2207 y = int128_urshift(y, (16 - size) * 8);
2208 x = int128_make64(ret_be);
2209 x = int128_lshift(x, size * 8);
2210 return int128_or(x, y);
2211 }
2212
2213 /*
2214 * Wrapper for the above.
2215 */
2216 static uint64_t do_ld_beN(CPUState *cpu, MMULookupPageData *p,
2217 uint64_t ret_be, int mmu_idx, MMUAccessType type,
2218 MemOp mop, uintptr_t ra)
2219 {
2220 MemOp atom;
2221 unsigned tmp, half_size;
2222
2223 if (unlikely(p->flags & TLB_MMIO)) {
2224 return do_ld_mmio_beN(cpu, p->full, ret_be, p->addr, p->size,
2225 mmu_idx, type, ra);
2226 }
2227
2228 /*
2229 * It is a given that we cross a page and therefore there is no
2230 * atomicity for the load as a whole, but subobjects may need attention.
2231 */
2232 atom = mop & MO_ATOM_MASK;
2233 switch (atom) {
2234 case MO_ATOM_SUBALIGN:
2235 return do_ld_parts_beN(p, ret_be);
2236
2237 case MO_ATOM_IFALIGN_PAIR:
2238 case MO_ATOM_WITHIN16_PAIR:
2239 tmp = mop & MO_SIZE;
2240 tmp = tmp ? tmp - 1 : 0;
2241 half_size = 1 << tmp;
2242 if (atom == MO_ATOM_IFALIGN_PAIR
2243 ? p->size == half_size
2244 : p->size >= half_size) {
2245 if (!HAVE_al8_fast && p->size < 4) {
2246 return do_ld_whole_be4(p, ret_be);
2247 } else {
2248 return do_ld_whole_be8(cpu, ra, p, ret_be);
2249 }
2250 }
2251 /* fall through */
2252
2253 case MO_ATOM_IFALIGN:
2254 case MO_ATOM_WITHIN16:
2255 case MO_ATOM_NONE:
2256 return do_ld_bytes_beN(p, ret_be);
2257
2258 default:
2259 g_assert_not_reached();
2260 }
2261 }
2262
2263 /*
2264 * Wrapper for the above, for 8 < size < 16.
2265 */
2266 static Int128 do_ld16_beN(CPUState *cpu, MMULookupPageData *p,
2267 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2268 {
2269 int size = p->size;
2270 uint64_t b;
2271 MemOp atom;
2272
2273 if (unlikely(p->flags & TLB_MMIO)) {
2274 return do_ld16_mmio_beN(cpu, p->full, a, p->addr, size, mmu_idx, ra);
2275 }
2276
2277 /*
2278 * It is a given that we cross a page and therefore there is no
2279 * atomicity for the load as a whole, but subobjects may need attention.
2280 */
2281 atom = mop & MO_ATOM_MASK;
2282 switch (atom) {
2283 case MO_ATOM_SUBALIGN:
2284 p->size = size - 8;
2285 a = do_ld_parts_beN(p, a);
2286 p->haddr += size - 8;
2287 p->size = 8;
2288 b = do_ld_parts_beN(p, 0);
2289 break;
2290
2291 case MO_ATOM_WITHIN16_PAIR:
2292 /* Since size > 8, this is the half that must be atomic. */
2293 return do_ld_whole_be16(cpu, ra, p, a);
2294
2295 case MO_ATOM_IFALIGN_PAIR:
2296 /*
2297 * Since size > 8, both halves are misaligned,
2298 * and so neither is atomic.
2299 */
2300 case MO_ATOM_IFALIGN:
2301 case MO_ATOM_WITHIN16:
2302 case MO_ATOM_NONE:
2303 p->size = size - 8;
2304 a = do_ld_bytes_beN(p, a);
2305 b = ldq_be_p(p->haddr + size - 8);
2306 break;
2307
2308 default:
2309 g_assert_not_reached();
2310 }
2311
2312 return int128_make128(b, a);
2313 }
2314
2315 static uint8_t do_ld_1(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2316 MMUAccessType type, uintptr_t ra)
2317 {
2318 if (unlikely(p->flags & TLB_MMIO)) {
2319 return do_ld_mmio_beN(cpu, p->full, 0, p->addr, 1, mmu_idx, type, ra);
2320 } else {
2321 return *(uint8_t *)p->haddr;
2322 }
2323 }
2324
2325 static uint16_t do_ld_2(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2326 MMUAccessType type, MemOp memop, uintptr_t ra)
2327 {
2328 uint16_t ret;
2329
2330 if (unlikely(p->flags & TLB_MMIO)) {
2331 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 2, mmu_idx, type, ra);
2332 if ((memop & MO_BSWAP) == MO_LE) {
2333 ret = bswap16(ret);
2334 }
2335 } else {
2336 /* Perform the load host endian, then swap if necessary. */
2337 ret = load_atom_2(cpu, ra, p->haddr, memop);
2338 if (memop & MO_BSWAP) {
2339 ret = bswap16(ret);
2340 }
2341 }
2342 return ret;
2343 }
2344
2345 static uint32_t do_ld_4(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2346 MMUAccessType type, MemOp memop, uintptr_t ra)
2347 {
2348 uint32_t ret;
2349
2350 if (unlikely(p->flags & TLB_MMIO)) {
2351 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 4, mmu_idx, type, ra);
2352 if ((memop & MO_BSWAP) == MO_LE) {
2353 ret = bswap32(ret);
2354 }
2355 } else {
2356 /* Perform the load host endian. */
2357 ret = load_atom_4(cpu, ra, p->haddr, memop);
2358 if (memop & MO_BSWAP) {
2359 ret = bswap32(ret);
2360 }
2361 }
2362 return ret;
2363 }
2364
2365 static uint64_t do_ld_8(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2366 MMUAccessType type, MemOp memop, uintptr_t ra)
2367 {
2368 uint64_t ret;
2369
2370 if (unlikely(p->flags & TLB_MMIO)) {
2371 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 8, mmu_idx, type, ra);
2372 if ((memop & MO_BSWAP) == MO_LE) {
2373 ret = bswap64(ret);
2374 }
2375 } else {
2376 /* Perform the load host endian. */
2377 ret = load_atom_8(cpu, ra, p->haddr, memop);
2378 if (memop & MO_BSWAP) {
2379 ret = bswap64(ret);
2380 }
2381 }
2382 return ret;
2383 }
2384
2385 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2386 uintptr_t ra, MMUAccessType access_type)
2387 {
2388 MMULookupLocals l;
2389 bool crosspage;
2390
2391 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2392 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2393 tcg_debug_assert(!crosspage);
2394
2395 return do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
2396 }
2397
2398 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2399 uintptr_t ra, MMUAccessType access_type)
2400 {
2401 MMULookupLocals l;
2402 bool crosspage;
2403 uint16_t ret;
2404 uint8_t a, b;
2405
2406 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2407 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2408 if (likely(!crosspage)) {
2409 return do_ld_2(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2410 }
2411
2412 a = do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
2413 b = do_ld_1(cpu, &l.page[1], l.mmu_idx, access_type, ra);
2414
2415 if ((l.memop & MO_BSWAP) == MO_LE) {
2416 ret = a | (b << 8);
2417 } else {
2418 ret = b | (a << 8);
2419 }
2420 return ret;
2421 }
2422
2423 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2424 uintptr_t ra, MMUAccessType access_type)
2425 {
2426 MMULookupLocals l;
2427 bool crosspage;
2428 uint32_t ret;
2429
2430 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2431 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2432 if (likely(!crosspage)) {
2433 return do_ld_4(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2434 }
2435
2436 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2437 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2438 if ((l.memop & MO_BSWAP) == MO_LE) {
2439 ret = bswap32(ret);
2440 }
2441 return ret;
2442 }
2443
2444 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2445 uintptr_t ra, MMUAccessType access_type)
2446 {
2447 MMULookupLocals l;
2448 bool crosspage;
2449 uint64_t ret;
2450
2451 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2452 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2453 if (likely(!crosspage)) {
2454 return do_ld_8(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2455 }
2456
2457 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2458 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2459 if ((l.memop & MO_BSWAP) == MO_LE) {
2460 ret = bswap64(ret);
2461 }
2462 return ret;
2463 }
2464
2465 static Int128 do_ld16_mmu(CPUState *cpu, vaddr addr,
2466 MemOpIdx oi, uintptr_t ra)
2467 {
2468 MMULookupLocals l;
2469 bool crosspage;
2470 uint64_t a, b;
2471 Int128 ret;
2472 int first;
2473
2474 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2475 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_LOAD, &l);
2476 if (likely(!crosspage)) {
2477 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2478 ret = do_ld16_mmio_beN(cpu, l.page[0].full, 0, addr, 16,
2479 l.mmu_idx, ra);
2480 if ((l.memop & MO_BSWAP) == MO_LE) {
2481 ret = bswap128(ret);
2482 }
2483 } else {
2484 /* Perform the load host endian. */
2485 ret = load_atom_16(cpu, ra, l.page[0].haddr, l.memop);
2486 if (l.memop & MO_BSWAP) {
2487 ret = bswap128(ret);
2488 }
2489 }
2490 return ret;
2491 }
2492
2493 first = l.page[0].size;
2494 if (first == 8) {
2495 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2496
2497 a = do_ld_8(cpu, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2498 b = do_ld_8(cpu, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2499 if ((mop8 & MO_BSWAP) == MO_LE) {
2500 ret = int128_make128(a, b);
2501 } else {
2502 ret = int128_make128(b, a);
2503 }
2504 return ret;
2505 }
2506
2507 if (first < 8) {
2508 a = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx,
2509 MMU_DATA_LOAD, l.memop, ra);
2510 ret = do_ld16_beN(cpu, &l.page[1], a, l.mmu_idx, l.memop, ra);
2511 } else {
2512 ret = do_ld16_beN(cpu, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2513 b = int128_getlo(ret);
2514 ret = int128_lshift(ret, l.page[1].size * 8);
2515 a = int128_gethi(ret);
2516 b = do_ld_beN(cpu, &l.page[1], b, l.mmu_idx,
2517 MMU_DATA_LOAD, l.memop, ra);
2518 ret = int128_make128(b, a);
2519 }
2520 if ((l.memop & MO_BSWAP) == MO_LE) {
2521 ret = bswap128(ret);
2522 }
2523 return ret;
2524 }
2525
2526 /*
2527 * Store Helpers
2528 */
2529
2530 /**
2531 * do_st_mmio_leN:
2532 * @cpu: generic cpu state
2533 * @full: page parameters
2534 * @val_le: data to store
2535 * @addr: virtual address
2536 * @size: number of bytes
2537 * @mmu_idx: virtual address context
2538 * @ra: return address into tcg generated code, or 0
2539 * Context: BQL held
2540 *
2541 * Store @size bytes at @addr, which is memory-mapped i/o.
2542 * The bytes to store are extracted in little-endian order from @val_le;
2543 * return the bytes of @val_le beyond @p->size that have not been stored.
2544 */
2545 static uint64_t int_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2546 uint64_t val_le, vaddr addr, int size,
2547 int mmu_idx, uintptr_t ra,
2548 MemoryRegion *mr, hwaddr mr_offset)
2549 {
2550 do {
2551 MemOp this_mop;
2552 unsigned this_size;
2553 MemTxResult r;
2554
2555 /* Store aligned pieces up to 8 bytes. */
2556 this_mop = ctz32(size | (int)addr | 8);
2557 this_size = 1 << this_mop;
2558 this_mop |= MO_LE;
2559
2560 r = memory_region_dispatch_write(mr, mr_offset, val_le,
2561 this_mop, full->attrs);
2562 if (unlikely(r != MEMTX_OK)) {
2563 io_failed(cpu, full, addr, this_size, MMU_DATA_STORE,
2564 mmu_idx, r, ra);
2565 }
2566 if (this_size == 8) {
2567 return 0;
2568 }
2569
2570 val_le >>= this_size * 8;
2571 addr += this_size;
2572 mr_offset += this_size;
2573 size -= this_size;
2574 } while (size);
2575
2576 return val_le;
2577 }
2578
2579 static uint64_t do_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2580 uint64_t val_le, vaddr addr, int size,
2581 int mmu_idx, uintptr_t ra)
2582 {
2583 MemoryRegionSection *section;
2584 hwaddr mr_offset;
2585 MemoryRegion *mr;
2586 MemTxAttrs attrs;
2587
2588 tcg_debug_assert(size > 0 && size <= 8);
2589
2590 attrs = full->attrs;
2591 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2592 mr = section->mr;
2593
2594 BQL_LOCK_GUARD();
2595 return int_st_mmio_leN(cpu, full, val_le, addr, size, mmu_idx,
2596 ra, mr, mr_offset);
2597 }
2598
2599 static uint64_t do_st16_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2600 Int128 val_le, vaddr addr, int size,
2601 int mmu_idx, uintptr_t ra)
2602 {
2603 MemoryRegionSection *section;
2604 MemoryRegion *mr;
2605 hwaddr mr_offset;
2606 MemTxAttrs attrs;
2607
2608 tcg_debug_assert(size > 8 && size <= 16);
2609
2610 attrs = full->attrs;
2611 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2612 mr = section->mr;
2613
2614 BQL_LOCK_GUARD();
2615 int_st_mmio_leN(cpu, full, int128_getlo(val_le), addr, 8,
2616 mmu_idx, ra, mr, mr_offset);
2617 return int_st_mmio_leN(cpu, full, int128_gethi(val_le), addr + 8,
2618 size - 8, mmu_idx, ra, mr, mr_offset + 8);
2619 }
2620
2621 /*
2622 * Wrapper for the above.
2623 */
2624 static uint64_t do_st_leN(CPUState *cpu, MMULookupPageData *p,
2625 uint64_t val_le, int mmu_idx,
2626 MemOp mop, uintptr_t ra)
2627 {
2628 MemOp atom;
2629 unsigned tmp, half_size;
2630
2631 if (unlikely(p->flags & TLB_MMIO)) {
2632 return do_st_mmio_leN(cpu, p->full, val_le, p->addr,
2633 p->size, mmu_idx, ra);
2634 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2635 return val_le >> (p->size * 8);
2636 }
2637
2638 /*
2639 * It is a given that we cross a page and therefore there is no atomicity
2640 * for the store as a whole, but subobjects may need attention.
2641 */
2642 atom = mop & MO_ATOM_MASK;
2643 switch (atom) {
2644 case MO_ATOM_SUBALIGN:
2645 return store_parts_leN(p->haddr, p->size, val_le);
2646
2647 case MO_ATOM_IFALIGN_PAIR:
2648 case MO_ATOM_WITHIN16_PAIR:
2649 tmp = mop & MO_SIZE;
2650 tmp = tmp ? tmp - 1 : 0;
2651 half_size = 1 << tmp;
2652 if (atom == MO_ATOM_IFALIGN_PAIR
2653 ? p->size == half_size
2654 : p->size >= half_size) {
2655 if (!HAVE_al8_fast && p->size <= 4) {
2656 return store_whole_le4(p->haddr, p->size, val_le);
2657 } else if (HAVE_al8) {
2658 return store_whole_le8(p->haddr, p->size, val_le);
2659 } else {
2660 cpu_loop_exit_atomic(cpu, ra);
2661 }
2662 }
2663 /* fall through */
2664
2665 case MO_ATOM_IFALIGN:
2666 case MO_ATOM_WITHIN16:
2667 case MO_ATOM_NONE:
2668 return store_bytes_leN(p->haddr, p->size, val_le);
2669
2670 default:
2671 g_assert_not_reached();
2672 }
2673 }
2674
2675 /*
2676 * Wrapper for the above, for 8 < size < 16.
2677 */
2678 static uint64_t do_st16_leN(CPUState *cpu, MMULookupPageData *p,
2679 Int128 val_le, int mmu_idx,
2680 MemOp mop, uintptr_t ra)
2681 {
2682 int size = p->size;
2683 MemOp atom;
2684
2685 if (unlikely(p->flags & TLB_MMIO)) {
2686 return do_st16_mmio_leN(cpu, p->full, val_le, p->addr,
2687 size, mmu_idx, ra);
2688 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2689 return int128_gethi(val_le) >> ((size - 8) * 8);
2690 }
2691
2692 /*
2693 * It is a given that we cross a page and therefore there is no atomicity
2694 * for the store as a whole, but subobjects may need attention.
2695 */
2696 atom = mop & MO_ATOM_MASK;
2697 switch (atom) {
2698 case MO_ATOM_SUBALIGN:
2699 store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2700 return store_parts_leN(p->haddr + 8, p->size - 8,
2701 int128_gethi(val_le));
2702
2703 case MO_ATOM_WITHIN16_PAIR:
2704 /* Since size > 8, this is the half that must be atomic. */
2705 if (!HAVE_CMPXCHG128) {
2706 cpu_loop_exit_atomic(cpu, ra);
2707 }
2708 return store_whole_le16(p->haddr, p->size, val_le);
2709
2710 case MO_ATOM_IFALIGN_PAIR:
2711 /*
2712 * Since size > 8, both halves are misaligned,
2713 * and so neither is atomic.
2714 */
2715 case MO_ATOM_IFALIGN:
2716 case MO_ATOM_WITHIN16:
2717 case MO_ATOM_NONE:
2718 stq_le_p(p->haddr, int128_getlo(val_le));
2719 return store_bytes_leN(p->haddr + 8, p->size - 8,
2720 int128_gethi(val_le));
2721
2722 default:
2723 g_assert_not_reached();
2724 }
2725 }
2726
2727 static void do_st_1(CPUState *cpu, MMULookupPageData *p, uint8_t val,
2728 int mmu_idx, uintptr_t ra)
2729 {
2730 if (unlikely(p->flags & TLB_MMIO)) {
2731 do_st_mmio_leN(cpu, p->full, val, p->addr, 1, mmu_idx, ra);
2732 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2733 /* nothing */
2734 } else {
2735 *(uint8_t *)p->haddr = val;
2736 }
2737 }
2738
2739 static void do_st_2(CPUState *cpu, MMULookupPageData *p, uint16_t val,
2740 int mmu_idx, MemOp memop, uintptr_t ra)
2741 {
2742 if (unlikely(p->flags & TLB_MMIO)) {
2743 if ((memop & MO_BSWAP) != MO_LE) {
2744 val = bswap16(val);
2745 }
2746 do_st_mmio_leN(cpu, p->full, val, p->addr, 2, mmu_idx, ra);
2747 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2748 /* nothing */
2749 } else {
2750 /* Swap to host endian if necessary, then store. */
2751 if (memop & MO_BSWAP) {
2752 val = bswap16(val);
2753 }
2754 store_atom_2(cpu, ra, p->haddr, memop, val);
2755 }
2756 }
2757
2758 static void do_st_4(CPUState *cpu, MMULookupPageData *p, uint32_t val,
2759 int mmu_idx, MemOp memop, uintptr_t ra)
2760 {
2761 if (unlikely(p->flags & TLB_MMIO)) {
2762 if ((memop & MO_BSWAP) != MO_LE) {
2763 val = bswap32(val);
2764 }
2765 do_st_mmio_leN(cpu, p->full, val, p->addr, 4, mmu_idx, ra);
2766 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2767 /* nothing */
2768 } else {
2769 /* Swap to host endian if necessary, then store. */
2770 if (memop & MO_BSWAP) {
2771 val = bswap32(val);
2772 }
2773 store_atom_4(cpu, ra, p->haddr, memop, val);
2774 }
2775 }
2776
2777 static void do_st_8(CPUState *cpu, MMULookupPageData *p, uint64_t val,
2778 int mmu_idx, MemOp memop, uintptr_t ra)
2779 {
2780 if (unlikely(p->flags & TLB_MMIO)) {
2781 if ((memop & MO_BSWAP) != MO_LE) {
2782 val = bswap64(val);
2783 }
2784 do_st_mmio_leN(cpu, p->full, val, p->addr, 8, mmu_idx, ra);
2785 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2786 /* nothing */
2787 } else {
2788 /* Swap to host endian if necessary, then store. */
2789 if (memop & MO_BSWAP) {
2790 val = bswap64(val);
2791 }
2792 store_atom_8(cpu, ra, p->haddr, memop, val);
2793 }
2794 }
2795
2796 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val,
2797 MemOpIdx oi, uintptr_t ra)
2798 {
2799 MMULookupLocals l;
2800 bool crosspage;
2801
2802 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2803 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2804 tcg_debug_assert(!crosspage);
2805
2806 do_st_1(cpu, &l.page[0], val, l.mmu_idx, ra);
2807 }
2808
2809 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val,
2810 MemOpIdx oi, uintptr_t ra)
2811 {
2812 MMULookupLocals l;
2813 bool crosspage;
2814 uint8_t a, b;
2815
2816 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2817 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2818 if (likely(!crosspage)) {
2819 do_st_2(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2820 return;
2821 }
2822
2823 if ((l.memop & MO_BSWAP) == MO_LE) {
2824 a = val, b = val >> 8;
2825 } else {
2826 b = val, a = val >> 8;
2827 }
2828 do_st_1(cpu, &l.page[0], a, l.mmu_idx, ra);
2829 do_st_1(cpu, &l.page[1], b, l.mmu_idx, ra);
2830 }
2831
2832 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val,
2833 MemOpIdx oi, uintptr_t ra)
2834 {
2835 MMULookupLocals l;
2836 bool crosspage;
2837
2838 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2839 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2840 if (likely(!crosspage)) {
2841 do_st_4(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2842 return;
2843 }
2844
2845 /* Swap to little endian for simplicity, then store by bytes. */
2846 if ((l.memop & MO_BSWAP) != MO_LE) {
2847 val = bswap32(val);
2848 }
2849 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2850 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2851 }
2852
2853 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val,
2854 MemOpIdx oi, uintptr_t ra)
2855 {
2856 MMULookupLocals l;
2857 bool crosspage;
2858
2859 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2860 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2861 if (likely(!crosspage)) {
2862 do_st_8(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2863 return;
2864 }
2865
2866 /* Swap to little endian for simplicity, then store by bytes. */
2867 if ((l.memop & MO_BSWAP) != MO_LE) {
2868 val = bswap64(val);
2869 }
2870 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2871 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2872 }
2873
2874 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val,
2875 MemOpIdx oi, uintptr_t ra)
2876 {
2877 MMULookupLocals l;
2878 bool crosspage;
2879 uint64_t a, b;
2880 int first;
2881
2882 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2883 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2884 if (likely(!crosspage)) {
2885 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2886 if ((l.memop & MO_BSWAP) != MO_LE) {
2887 val = bswap128(val);
2888 }
2889 do_st16_mmio_leN(cpu, l.page[0].full, val, addr, 16, l.mmu_idx, ra);
2890 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
2891 /* nothing */
2892 } else {
2893 /* Swap to host endian if necessary, then store. */
2894 if (l.memop & MO_BSWAP) {
2895 val = bswap128(val);
2896 }
2897 store_atom_16(cpu, ra, l.page[0].haddr, l.memop, val);
2898 }
2899 return;
2900 }
2901
2902 first = l.page[0].size;
2903 if (first == 8) {
2904 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
2905
2906 if (l.memop & MO_BSWAP) {
2907 val = bswap128(val);
2908 }
2909 if (HOST_BIG_ENDIAN) {
2910 b = int128_getlo(val), a = int128_gethi(val);
2911 } else {
2912 a = int128_getlo(val), b = int128_gethi(val);
2913 }
2914 do_st_8(cpu, &l.page[0], a, l.mmu_idx, mop8, ra);
2915 do_st_8(cpu, &l.page[1], b, l.mmu_idx, mop8, ra);
2916 return;
2917 }
2918
2919 if ((l.memop & MO_BSWAP) != MO_LE) {
2920 val = bswap128(val);
2921 }
2922 if (first < 8) {
2923 do_st_leN(cpu, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
2924 val = int128_urshift(val, first * 8);
2925 do_st16_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2926 } else {
2927 b = do_st16_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2928 do_st_leN(cpu, &l.page[1], b, l.mmu_idx, l.memop, ra);
2929 }
2930 }
2931
2932 #include "ldst_common.c.inc"
2933
2934 /*
2935 * First set of functions passes in OI and RETADDR.
2936 * This makes them callable from other helpers.
2937 */
2938
2939 #define ATOMIC_NAME(X) \
2940 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2941
2942 #define ATOMIC_MMU_CLEANUP
2943
2944 #include "atomic_common.c.inc"
2945
2946 #define DATA_SIZE 1
2947 #include "atomic_template.h"
2948
2949 #define DATA_SIZE 2
2950 #include "atomic_template.h"
2951
2952 #define DATA_SIZE 4
2953 #include "atomic_template.h"
2954
2955 #ifdef CONFIG_ATOMIC64
2956 #define DATA_SIZE 8
2957 #include "atomic_template.h"
2958 #endif
2959
2960 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
2961 #define DATA_SIZE 16
2962 #include "atomic_template.h"
2963 #endif
2964
2965 /* Code access functions. */
2966
2967 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
2968 {
2969 CPUState *cs = env_cpu(env);
2970 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(cs, true));
2971 return do_ld1_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2972 }
2973
2974 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
2975 {
2976 CPUState *cs = env_cpu(env);
2977 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(cs, true));
2978 return do_ld2_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2979 }
2980
2981 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
2982 {
2983 CPUState *cs = env_cpu(env);
2984 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(cs, true));
2985 return do_ld4_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2986 }
2987
2988 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
2989 {
2990 CPUState *cs = env_cpu(env);
2991 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(cs, true));
2992 return do_ld8_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2993 }
2994
2995 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
2996 MemOpIdx oi, uintptr_t retaddr)
2997 {
2998 return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2999 }
3000
3001 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
3002 MemOpIdx oi, uintptr_t retaddr)
3003 {
3004 return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
3005 }
3006
3007 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
3008 MemOpIdx oi, uintptr_t retaddr)
3009 {
3010 return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
3011 }
3012
3013 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
3014 MemOpIdx oi, uintptr_t retaddr)
3015 {
3016 return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
3017 }