]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/arm/cpu/arm1136/mx35/generic.c
spl: eMMC/SD: Provide one __weak spl_boot_mode() function
[people/ms/u-boot.git] / arch / arm / cpu / arm1136 / mx35 / generic.c
1 /*
2 * (C) Copyright 2007
3 * Sascha Hauer, Pengutronix
4 *
5 * (C) Copyright 2008-2010 Freescale Semiconductor, Inc.
6 *
7 * SPDX-License-Identifier: GPL-2.0+
8 */
9
10 #include <common.h>
11 #include <div64.h>
12 #include <asm/io.h>
13 #include <linux/errno.h>
14 #include <asm/arch/imx-regs.h>
15 #include <asm/arch/crm_regs.h>
16 #include <asm/arch/clock.h>
17 #include <asm/arch/sys_proto.h>
18 #ifdef CONFIG_FSL_ESDHC
19 #include <fsl_esdhc.h>
20 #endif
21 #include <netdev.h>
22 #include <spl.h>
23
24 #define CLK_CODE(arm, ahb, sel) (((arm) << 16) + ((ahb) << 8) + (sel))
25 #define CLK_CODE_ARM(c) (((c) >> 16) & 0xFF)
26 #define CLK_CODE_AHB(c) (((c) >> 8) & 0xFF)
27 #define CLK_CODE_PATH(c) ((c) & 0xFF)
28
29 #define CCM_GET_DIVIDER(x, m, o) (((x) & (m)) >> (o))
30
31 #ifdef CONFIG_FSL_ESDHC
32 DECLARE_GLOBAL_DATA_PTR;
33 #endif
34
35 static int g_clk_mux_auto[8] = {
36 CLK_CODE(1, 3, 0), CLK_CODE(1, 2, 1), CLK_CODE(2, 1, 1), -1,
37 CLK_CODE(1, 6, 0), CLK_CODE(1, 4, 1), CLK_CODE(2, 2, 1), -1,
38 };
39
40 static int g_clk_mux_consumer[16] = {
41 CLK_CODE(1, 4, 0), CLK_CODE(1, 3, 1), CLK_CODE(1, 3, 1), -1,
42 -1, -1, CLK_CODE(4, 1, 0), CLK_CODE(1, 5, 0),
43 CLK_CODE(1, 8, 1), CLK_CODE(1, 6, 1), CLK_CODE(2, 4, 0), -1,
44 -1, -1, CLK_CODE(4, 2, 0), -1,
45 };
46
47 static int hsp_div_table[3][16] = {
48 {4, 3, 2, -1, -1, -1, 1, 5, 4, 3, 2, -1, -1, -1, 1, -1},
49 {-1, -1, -1, -1, -1, -1, -1, -1, 8, 6, 4, -1, -1, -1, 2, -1},
50 {3, -1, -1, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1},
51 };
52
53 u32 get_cpu_rev(void)
54 {
55 int reg;
56 struct iim_regs *iim =
57 (struct iim_regs *)IIM_BASE_ADDR;
58 reg = readl(&iim->iim_srev);
59 if (!reg) {
60 reg = readw(ROMPATCH_REV);
61 reg <<= 4;
62 } else {
63 reg += CHIP_REV_1_0;
64 }
65
66 return 0x35000 + (reg & 0xFF);
67 }
68
69 static u32 get_arm_div(u32 pdr0, u32 *fi, u32 *fd)
70 {
71 int *pclk_mux;
72 if (pdr0 & MXC_CCM_PDR0_AUTO_CON) {
73 pclk_mux = g_clk_mux_consumer +
74 ((pdr0 & MXC_CCM_PDR0_CON_MUX_DIV_MASK) >>
75 MXC_CCM_PDR0_CON_MUX_DIV_OFFSET);
76 } else {
77 pclk_mux = g_clk_mux_auto +
78 ((pdr0 & MXC_CCM_PDR0_AUTO_MUX_DIV_MASK) >>
79 MXC_CCM_PDR0_AUTO_MUX_DIV_OFFSET);
80 }
81
82 if ((*pclk_mux) == -1)
83 return -1;
84
85 if (fi && fd) {
86 if (!CLK_CODE_PATH(*pclk_mux)) {
87 *fi = *fd = 1;
88 return CLK_CODE_ARM(*pclk_mux);
89 }
90 if (pdr0 & MXC_CCM_PDR0_AUTO_CON) {
91 *fi = 3;
92 *fd = 4;
93 } else {
94 *fi = 2;
95 *fd = 3;
96 }
97 }
98 return CLK_CODE_ARM(*pclk_mux);
99 }
100
101 static int get_ahb_div(u32 pdr0)
102 {
103 int *pclk_mux;
104
105 pclk_mux = g_clk_mux_consumer +
106 ((pdr0 & MXC_CCM_PDR0_CON_MUX_DIV_MASK) >>
107 MXC_CCM_PDR0_CON_MUX_DIV_OFFSET);
108
109 if ((*pclk_mux) == -1)
110 return -1;
111
112 return CLK_CODE_AHB(*pclk_mux);
113 }
114
115 static u32 decode_pll(u32 reg, u32 infreq)
116 {
117 u32 mfi = (reg >> 10) & 0xf;
118 s32 mfn = reg & 0x3ff;
119 u32 mfd = (reg >> 16) & 0x3ff;
120 u32 pd = (reg >> 26) & 0xf;
121
122 mfi = mfi <= 5 ? 5 : mfi;
123 mfn = mfn >= 512 ? mfn - 1024 : mfn;
124 mfd += 1;
125 pd += 1;
126
127 return lldiv(2 * (u64)infreq * (mfi * mfd + mfn),
128 mfd * pd);
129 }
130
131 static u32 get_mcu_main_clk(void)
132 {
133 u32 arm_div = 0, fi = 0, fd = 0;
134 struct ccm_regs *ccm =
135 (struct ccm_regs *)IMX_CCM_BASE;
136 arm_div = get_arm_div(readl(&ccm->pdr0), &fi, &fd);
137 fi *= decode_pll(readl(&ccm->mpctl), MXC_HCLK);
138 return fi / (arm_div * fd);
139 }
140
141 static u32 get_ipg_clk(void)
142 {
143 u32 freq = get_mcu_main_clk();
144 struct ccm_regs *ccm =
145 (struct ccm_regs *)IMX_CCM_BASE;
146 u32 pdr0 = readl(&ccm->pdr0);
147
148 return freq / (get_ahb_div(pdr0) * 2);
149 }
150
151 static u32 get_ipg_per_clk(void)
152 {
153 u32 freq = get_mcu_main_clk();
154 struct ccm_regs *ccm =
155 (struct ccm_regs *)IMX_CCM_BASE;
156 u32 pdr0 = readl(&ccm->pdr0);
157 u32 pdr4 = readl(&ccm->pdr4);
158 u32 div;
159 if (pdr0 & MXC_CCM_PDR0_PER_SEL) {
160 div = CCM_GET_DIVIDER(pdr4,
161 MXC_CCM_PDR4_PER0_PODF_MASK,
162 MXC_CCM_PDR4_PER0_PODF_OFFSET) + 1;
163 } else {
164 div = CCM_GET_DIVIDER(pdr0,
165 MXC_CCM_PDR0_PER_PODF_MASK,
166 MXC_CCM_PDR0_PER_PODF_OFFSET) + 1;
167 div *= get_ahb_div(pdr0);
168 }
169 return freq / div;
170 }
171
172 u32 imx_get_uartclk(void)
173 {
174 u32 freq;
175 struct ccm_regs *ccm =
176 (struct ccm_regs *)IMX_CCM_BASE;
177 u32 pdr4 = readl(&ccm->pdr4);
178
179 if (readl(&ccm->pdr3) & MXC_CCM_PDR3_UART_M_U)
180 freq = get_mcu_main_clk();
181 else
182 freq = decode_pll(readl(&ccm->ppctl), MXC_HCLK);
183 freq /= CCM_GET_DIVIDER(pdr4,
184 MXC_CCM_PDR4_UART_PODF_MASK,
185 MXC_CCM_PDR4_UART_PODF_OFFSET) + 1;
186 return freq;
187 }
188
189 unsigned int mxc_get_main_clock(enum mxc_main_clock clk)
190 {
191 u32 nfc_pdf, hsp_podf;
192 u32 pll, ret_val = 0, usb_podf;
193 struct ccm_regs *ccm =
194 (struct ccm_regs *)IMX_CCM_BASE;
195
196 u32 reg = readl(&ccm->pdr0);
197 u32 reg4 = readl(&ccm->pdr4);
198
199 reg |= 0x1;
200
201 switch (clk) {
202 case CPU_CLK:
203 ret_val = get_mcu_main_clk();
204 break;
205 case AHB_CLK:
206 ret_val = get_mcu_main_clk();
207 break;
208 case HSP_CLK:
209 if (reg & CLKMODE_CONSUMER) {
210 hsp_podf = (reg >> 20) & 0x3;
211 pll = get_mcu_main_clk();
212 hsp_podf = hsp_div_table[hsp_podf][(reg>>16)&0xF];
213 if (hsp_podf > 0) {
214 ret_val = pll / hsp_podf;
215 } else {
216 puts("mismatch HSP with ARM clock setting\n");
217 ret_val = 0;
218 }
219 } else {
220 ret_val = get_mcu_main_clk();
221 }
222 break;
223 case IPG_CLK:
224 ret_val = get_ipg_clk();
225 break;
226 case IPG_PER_CLK:
227 ret_val = get_ipg_per_clk();
228 break;
229 case NFC_CLK:
230 nfc_pdf = (reg4 >> 28) & 0xF;
231 pll = get_mcu_main_clk();
232 /* AHB/nfc_pdf */
233 ret_val = pll / (nfc_pdf + 1);
234 break;
235 case USB_CLK:
236 usb_podf = (reg4 >> 22) & 0x3F;
237 if (reg4 & 0x200)
238 pll = get_mcu_main_clk();
239 else
240 pll = decode_pll(readl(&ccm->ppctl), MXC_HCLK);
241
242 ret_val = pll / (usb_podf + 1);
243 break;
244 default:
245 printf("Unknown clock: %d\n", clk);
246 break;
247 }
248
249 return ret_val;
250 }
251 unsigned int mxc_get_peri_clock(enum mxc_peri_clock clk)
252 {
253 u32 ret_val = 0, pdf, pre_pdf, clk_sel;
254 struct ccm_regs *ccm =
255 (struct ccm_regs *)IMX_CCM_BASE;
256 u32 mpdr2 = readl(&ccm->pdr2);
257 u32 mpdr3 = readl(&ccm->pdr3);
258 u32 mpdr4 = readl(&ccm->pdr4);
259
260 switch (clk) {
261 case UART1_BAUD:
262 case UART2_BAUD:
263 case UART3_BAUD:
264 clk_sel = mpdr3 & (1 << 14);
265 pdf = (mpdr4 >> 10) & 0x3F;
266 ret_val = ((clk_sel != 0) ? mxc_get_main_clock(CPU_CLK) :
267 decode_pll(readl(&ccm->ppctl), MXC_HCLK)) / (pdf + 1);
268 break;
269 case SSI1_BAUD:
270 pre_pdf = (mpdr2 >> 24) & 0x7;
271 pdf = mpdr2 & 0x3F;
272 clk_sel = mpdr2 & (1 << 6);
273 ret_val = ((clk_sel != 0) ? mxc_get_main_clock(CPU_CLK) :
274 decode_pll(readl(&ccm->ppctl), MXC_HCLK)) /
275 ((pre_pdf + 1) * (pdf + 1));
276 break;
277 case SSI2_BAUD:
278 pre_pdf = (mpdr2 >> 27) & 0x7;
279 pdf = (mpdr2 >> 8) & 0x3F;
280 clk_sel = mpdr2 & (1 << 6);
281 ret_val = ((clk_sel != 0) ? mxc_get_main_clock(CPU_CLK) :
282 decode_pll(readl(&ccm->ppctl), MXC_HCLK)) /
283 ((pre_pdf + 1) * (pdf + 1));
284 break;
285 case CSI_BAUD:
286 clk_sel = mpdr2 & (1 << 7);
287 pdf = (mpdr2 >> 16) & 0x3F;
288 ret_val = ((clk_sel != 0) ? mxc_get_main_clock(CPU_CLK) :
289 decode_pll(readl(&ccm->ppctl), MXC_HCLK)) / (pdf + 1);
290 break;
291 case MSHC_CLK:
292 pre_pdf = readl(&ccm->pdr1);
293 clk_sel = (pre_pdf & 0x80);
294 pdf = (pre_pdf >> 22) & 0x3F;
295 pre_pdf = (pre_pdf >> 28) & 0x7;
296 ret_val = ((clk_sel != 0) ? mxc_get_main_clock(CPU_CLK) :
297 decode_pll(readl(&ccm->ppctl), MXC_HCLK)) /
298 ((pre_pdf + 1) * (pdf + 1));
299 break;
300 case ESDHC1_CLK:
301 clk_sel = mpdr3 & 0x40;
302 pdf = mpdr3 & 0x3F;
303 ret_val = ((clk_sel != 0) ? mxc_get_main_clock(CPU_CLK) :
304 decode_pll(readl(&ccm->ppctl), MXC_HCLK)) / (pdf + 1);
305 break;
306 case ESDHC2_CLK:
307 clk_sel = mpdr3 & 0x40;
308 pdf = (mpdr3 >> 8) & 0x3F;
309 ret_val = ((clk_sel != 0) ? mxc_get_main_clock(CPU_CLK) :
310 decode_pll(readl(&ccm->ppctl), MXC_HCLK)) / (pdf + 1);
311 break;
312 case ESDHC3_CLK:
313 clk_sel = mpdr3 & 0x40;
314 pdf = (mpdr3 >> 16) & 0x3F;
315 ret_val = ((clk_sel != 0) ? mxc_get_main_clock(CPU_CLK) :
316 decode_pll(readl(&ccm->ppctl), MXC_HCLK)) / (pdf + 1);
317 break;
318 case SPDIF_CLK:
319 clk_sel = mpdr3 & 0x400000;
320 pre_pdf = (mpdr3 >> 29) & 0x7;
321 pdf = (mpdr3 >> 23) & 0x3F;
322 ret_val = ((clk_sel != 0) ? mxc_get_main_clock(CPU_CLK) :
323 decode_pll(readl(&ccm->ppctl), MXC_HCLK)) /
324 ((pre_pdf + 1) * (pdf + 1));
325 break;
326 default:
327 printf("%s(): This clock: %d not supported yet\n",
328 __func__, clk);
329 break;
330 }
331
332 return ret_val;
333 }
334
335 unsigned int mxc_get_clock(enum mxc_clock clk)
336 {
337 switch (clk) {
338 case MXC_ARM_CLK:
339 return get_mcu_main_clk();
340 case MXC_AHB_CLK:
341 break;
342 case MXC_IPG_CLK:
343 return get_ipg_clk();
344 case MXC_IPG_PERCLK:
345 case MXC_I2C_CLK:
346 return get_ipg_per_clk();
347 case MXC_UART_CLK:
348 return imx_get_uartclk();
349 case MXC_ESDHC1_CLK:
350 return mxc_get_peri_clock(ESDHC1_CLK);
351 case MXC_ESDHC2_CLK:
352 return mxc_get_peri_clock(ESDHC2_CLK);
353 case MXC_ESDHC3_CLK:
354 return mxc_get_peri_clock(ESDHC3_CLK);
355 case MXC_USB_CLK:
356 return mxc_get_main_clock(USB_CLK);
357 case MXC_FEC_CLK:
358 return get_ipg_clk();
359 case MXC_CSPI_CLK:
360 return get_ipg_clk();
361 }
362 return -1;
363 }
364
365 #ifdef CONFIG_FEC_MXC
366 /*
367 * The MX35 has no fuse for MAC, return a NULL MAC
368 */
369 void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
370 {
371 memset(mac, 0, 6);
372 }
373
374 u32 imx_get_fecclk(void)
375 {
376 return mxc_get_clock(MXC_IPG_CLK);
377 }
378 #endif
379
380 int do_mx35_showclocks(cmd_tbl_t *cmdtp,
381 int flag, int argc, char * const argv[])
382 {
383 u32 cpufreq = get_mcu_main_clk();
384 printf("mx35 cpu clock: %dMHz\n", cpufreq / 1000000);
385 printf("ipg clock : %dHz\n", get_ipg_clk());
386 printf("ipg per clock : %dHz\n", get_ipg_per_clk());
387 printf("uart clock : %dHz\n", mxc_get_clock(MXC_UART_CLK));
388
389 return 0;
390 }
391
392 U_BOOT_CMD(
393 clocks, CONFIG_SYS_MAXARGS, 1, do_mx35_showclocks,
394 "display clocks",
395 ""
396 );
397
398 #if defined(CONFIG_DISPLAY_CPUINFO)
399 static char *get_reset_cause(void)
400 {
401 /* read RCSR register from CCM module */
402 struct ccm_regs *ccm =
403 (struct ccm_regs *)IMX_CCM_BASE;
404
405 u32 cause = readl(&ccm->rcsr) & 0x0F;
406
407 switch (cause) {
408 case 0x0000:
409 return "POR";
410 case 0x0002:
411 return "JTAG";
412 case 0x0004:
413 return "RST";
414 case 0x0008:
415 return "WDOG";
416 default:
417 return "unknown reset";
418 }
419 }
420
421 int print_cpuinfo(void)
422 {
423 u32 srev = get_cpu_rev();
424
425 printf("CPU: Freescale i.MX35 rev %d.%d at %d MHz.\n",
426 (srev & 0xF0) >> 4, (srev & 0x0F),
427 get_mcu_main_clk() / 1000000);
428
429 printf("Reset cause: %s\n", get_reset_cause());
430
431 return 0;
432 }
433 #endif
434
435 /*
436 * Initializes on-chip ethernet controllers.
437 * to override, implement board_eth_init()
438 */
439 int cpu_eth_init(bd_t *bis)
440 {
441 int rc = -ENODEV;
442
443 #if defined(CONFIG_FEC_MXC)
444 rc = fecmxc_initialize(bis);
445 #endif
446
447 return rc;
448 }
449
450 #ifdef CONFIG_FSL_ESDHC
451 /*
452 * Initializes on-chip MMC controllers.
453 * to override, implement board_mmc_init()
454 */
455 int cpu_mmc_init(bd_t *bis)
456 {
457 return fsl_esdhc_mmc_init(bis);
458 }
459 #endif
460
461 int get_clocks(void)
462 {
463 #ifdef CONFIG_FSL_ESDHC
464 #if CONFIG_SYS_FSL_ESDHC_ADDR == MMC_SDHC2_BASE_ADDR
465 gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC2_CLK);
466 #elif CONFIG_SYS_FSL_ESDHC_ADDR == MMC_SDHC3_BASE_ADDR
467 gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC3_CLK);
468 #else
469 gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC1_CLK);
470 #endif
471 #endif
472 return 0;
473 }
474
475 #define RCSR_MEM_CTL_WEIM 0
476 #define RCSR_MEM_CTL_NAND 1
477 #define RCSR_MEM_CTL_ATA 2
478 #define RCSR_MEM_CTL_EXPANSION 3
479 #define RCSR_MEM_TYPE_NOR 0
480 #define RCSR_MEM_TYPE_ONENAND 2
481 #define RCSR_MEM_TYPE_SD 0
482 #define RCSR_MEM_TYPE_I2C 2
483 #define RCSR_MEM_TYPE_SPI 3
484
485 u32 spl_boot_device(void)
486 {
487 struct ccm_regs *ccm =
488 (struct ccm_regs *)IMX_CCM_BASE;
489
490 u32 rcsr = readl(&ccm->rcsr);
491 u32 mem_type, mem_ctl;
492
493 /* In external mode, no boot device is returned */
494 if ((rcsr >> 10) & 0x03)
495 return BOOT_DEVICE_NONE;
496
497 mem_ctl = (rcsr >> 25) & 0x03;
498 mem_type = (rcsr >> 23) & 0x03;
499
500 switch (mem_ctl) {
501 case RCSR_MEM_CTL_WEIM:
502 switch (mem_type) {
503 case RCSR_MEM_TYPE_NOR:
504 return BOOT_DEVICE_NOR;
505 case RCSR_MEM_TYPE_ONENAND:
506 return BOOT_DEVICE_ONENAND;
507 default:
508 return BOOT_DEVICE_NONE;
509 }
510 case RCSR_MEM_CTL_NAND:
511 return BOOT_DEVICE_NAND;
512 case RCSR_MEM_CTL_EXPANSION:
513 switch (mem_type) {
514 case RCSR_MEM_TYPE_SD:
515 return BOOT_DEVICE_MMC1;
516 case RCSR_MEM_TYPE_I2C:
517 return BOOT_DEVICE_I2C;
518 case RCSR_MEM_TYPE_SPI:
519 return BOOT_DEVICE_SPI;
520 default:
521 return BOOT_DEVICE_NONE;
522 }
523 }
524
525 return BOOT_DEVICE_NONE;
526 }