]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/arm/cpu/arm720t/tegra-common/cpu.c
Merge branch 'u-boot-imx/master' into 'u-boot-arm/master'
[people/ms/u-boot.git] / arch / arm / cpu / arm720t / tegra-common / cpu.c
1 /*
2 * Copyright (c) 2010-2012, NVIDIA CORPORATION. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 */
16
17 #include <common.h>
18 #include <asm/io.h>
19 #include <asm/arch/clock.h>
20 #include <asm/arch/gp_padctrl.h>
21 #include <asm/arch/pinmux.h>
22 #include <asm/arch/tegra.h>
23 #include <asm/arch-tegra/clk_rst.h>
24 #include <asm/arch-tegra/pmc.h>
25 #include <asm/arch-tegra/scu.h>
26 #include "cpu.h"
27
28 enum tegra_family_t {
29 TEGRA_FAMILY_T2x,
30 TEGRA_FAMILY_T3x,
31 };
32
33
34 enum tegra_family_t get_family(void)
35 {
36 u32 reg, chip_id;
37
38 reg = readl(NV_PA_APB_MISC_BASE + GP_HIDREV);
39
40 chip_id = reg >> 8;
41 chip_id &= 0xff;
42 debug(" tegra_get_family: chip_id = %x\n", chip_id);
43 if (chip_id == 0x30)
44 return TEGRA_FAMILY_T3x;
45 else
46 return TEGRA_FAMILY_T2x;
47 }
48
49 int get_num_cpus(void)
50 {
51 return get_family() == TEGRA_FAMILY_T3x ? 4 : 2;
52 }
53
54 /*
55 * Timing tables for each SOC for all four oscillator options.
56 */
57 struct clk_pll_table tegra_pll_x_table[TEGRA_SOC_CNT][CLOCK_OSC_FREQ_COUNT] = {
58 /* T20: 1 GHz */
59 {{ 1000, 13, 0, 12}, /* OSC 13M */
60 { 625, 12, 0, 8}, /* OSC 19.2M */
61 { 1000, 12, 0, 12}, /* OSC 12M */
62 { 1000, 26, 0, 12}, /* OSC 26M */
63 },
64
65 /* T25: 1.2 GHz */
66 {{ 923, 10, 0, 12},
67 { 750, 12, 0, 8},
68 { 600, 6, 0, 12},
69 { 600, 13, 0, 12},
70 },
71
72 /* T30: 1.4 GHz */
73 {{ 862, 8, 0, 8},
74 { 583, 8, 0, 4},
75 { 700, 6, 0, 8},
76 { 700, 13, 0, 8},
77 },
78
79 /* TEGRA_SOC2_SLOW: 312 MHz */
80 {{ 312, 13, 0, 12}, /* OSC 13M */
81 { 260, 16, 0, 8}, /* OSC 19.2M */
82 { 312, 12, 0, 12}, /* OSC 12M */
83 { 312, 26, 0, 12}, /* OSC 26M */
84 },
85 };
86
87 void adjust_pllp_out_freqs(void)
88 {
89 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
90 struct clk_pll *pll = &clkrst->crc_pll[CLOCK_ID_PERIPH];
91 u32 reg;
92
93 /* Set T30 PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
94 reg = readl(&pll->pll_out[0]); /* OUTA, contains OUT2 / OUT1 */
95 reg |= (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO) | PLLP_OUT2_OVR
96 | (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO) | PLLP_OUT1_OVR;
97 writel(reg, &pll->pll_out[0]);
98
99 reg = readl(&pll->pll_out[1]); /* OUTB, contains OUT4 / OUT3 */
100 reg |= (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO) | PLLP_OUT4_OVR
101 | (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO) | PLLP_OUT3_OVR;
102 writel(reg, &pll->pll_out[1]);
103 }
104
105 int pllx_set_rate(struct clk_pll_simple *pll , u32 divn, u32 divm,
106 u32 divp, u32 cpcon)
107 {
108 u32 reg;
109
110 /* If PLLX is already enabled, just return */
111 if (readl(&pll->pll_base) & PLL_ENABLE_MASK) {
112 debug("pllx_set_rate: PLLX already enabled, returning\n");
113 return 0;
114 }
115
116 debug(" pllx_set_rate entry\n");
117
118 /* Set BYPASS, m, n and p to PLLX_BASE */
119 reg = PLL_BYPASS_MASK | (divm << PLL_DIVM_SHIFT);
120 reg |= ((divn << PLL_DIVN_SHIFT) | (divp << PLL_DIVP_SHIFT));
121 writel(reg, &pll->pll_base);
122
123 /* Set cpcon to PLLX_MISC */
124 reg = (cpcon << PLL_CPCON_SHIFT);
125
126 /* Set dccon to PLLX_MISC if freq > 600MHz */
127 if (divn > 600)
128 reg |= (1 << PLL_DCCON_SHIFT);
129 writel(reg, &pll->pll_misc);
130
131 /* Enable PLLX */
132 reg = readl(&pll->pll_base);
133 reg |= PLL_ENABLE_MASK;
134
135 /* Disable BYPASS */
136 reg &= ~PLL_BYPASS_MASK;
137 writel(reg, &pll->pll_base);
138
139 /* Set lock_enable to PLLX_MISC */
140 reg = readl(&pll->pll_misc);
141 reg |= PLL_LOCK_ENABLE_MASK;
142 writel(reg, &pll->pll_misc);
143
144 return 0;
145 }
146
147 void init_pllx(void)
148 {
149 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
150 struct clk_pll_simple *pll = &clkrst->crc_pll_simple[SIMPLE_PLLX];
151 int chip_type;
152 enum clock_osc_freq osc;
153 struct clk_pll_table *sel;
154
155 debug("init_pllx entry\n");
156
157 /* get chip type */
158 chip_type = tegra_get_chip_type();
159 debug(" init_pllx: chip_type = %d\n", chip_type);
160
161 /* get osc freq */
162 osc = clock_get_osc_freq();
163 debug(" init_pllx: osc = %d\n", osc);
164
165 /* set pllx */
166 sel = &tegra_pll_x_table[chip_type][osc];
167 pllx_set_rate(pll, sel->n, sel->m, sel->p, sel->cpcon);
168
169 /* adjust PLLP_out1-4 on T30 */
170 if (chip_type == TEGRA_SOC_T30) {
171 debug(" init_pllx: adjusting PLLP out freqs\n");
172 adjust_pllp_out_freqs();
173 }
174 }
175
176 void enable_cpu_clock(int enable)
177 {
178 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
179 u32 clk;
180
181 /*
182 * NOTE:
183 * Regardless of whether the request is to enable or disable the CPU
184 * clock, every processor in the CPU complex except the master (CPU 0)
185 * will have it's clock stopped because the AVP only talks to the
186 * master.
187 */
188
189 if (enable) {
190 /* Initialize PLLX */
191 init_pllx();
192
193 /* Wait until all clocks are stable */
194 udelay(PLL_STABILIZATION_DELAY);
195
196 writel(CCLK_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
197 writel(SUPER_CCLK_DIVIDER, &clkrst->crc_super_cclk_div);
198 }
199
200 /*
201 * Read the register containing the individual CPU clock enables and
202 * always stop the clocks to CPUs > 0.
203 */
204 clk = readl(&clkrst->crc_clk_cpu_cmplx);
205 clk |= 1 << CPU1_CLK_STP_SHIFT;
206 #if defined(CONFIG_TEGRA30)
207 clk |= 1 << CPU2_CLK_STP_SHIFT;
208 clk |= 1 << CPU3_CLK_STP_SHIFT;
209 #endif
210 /* Stop/Unstop the CPU clock */
211 clk &= ~CPU0_CLK_STP_MASK;
212 clk |= !enable << CPU0_CLK_STP_SHIFT;
213 writel(clk, &clkrst->crc_clk_cpu_cmplx);
214
215 clock_enable(PERIPH_ID_CPU);
216 }
217
218 static int is_cpu_powered(void)
219 {
220 struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
221
222 return (readl(&pmc->pmc_pwrgate_status) & CPU_PWRED) ? 1 : 0;
223 }
224
225 static void remove_cpu_io_clamps(void)
226 {
227 struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
228 u32 reg;
229
230 /* Remove the clamps on the CPU I/O signals */
231 reg = readl(&pmc->pmc_remove_clamping);
232 reg |= CPU_CLMP;
233 writel(reg, &pmc->pmc_remove_clamping);
234
235 /* Give I/O signals time to stabilize */
236 udelay(IO_STABILIZATION_DELAY);
237 }
238
239 void powerup_cpu(void)
240 {
241 struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
242 u32 reg;
243 int timeout = IO_STABILIZATION_DELAY;
244
245 if (!is_cpu_powered()) {
246 /* Toggle the CPU power state (OFF -> ON) */
247 reg = readl(&pmc->pmc_pwrgate_toggle);
248 reg &= PARTID_CP;
249 reg |= START_CP;
250 writel(reg, &pmc->pmc_pwrgate_toggle);
251
252 /* Wait for the power to come up */
253 while (!is_cpu_powered()) {
254 if (timeout-- == 0)
255 printf("CPU failed to power up!\n");
256 else
257 udelay(10);
258 }
259
260 /*
261 * Remove the I/O clamps from CPU power partition.
262 * Recommended only on a Warm boot, if the CPU partition gets
263 * power gated. Shouldn't cause any harm when called after a
264 * cold boot according to HW, probably just redundant.
265 */
266 remove_cpu_io_clamps();
267 }
268 }
269
270 void reset_A9_cpu(int reset)
271 {
272 /*
273 * NOTE: Regardless of whether the request is to hold the CPU in reset
274 * or take it out of reset, every processor in the CPU complex
275 * except the master (CPU 0) will be held in reset because the
276 * AVP only talks to the master. The AVP does not know that there
277 * are multiple processors in the CPU complex.
278 */
279 int mask = crc_rst_cpu | crc_rst_de | crc_rst_debug;
280 int num_cpus = get_num_cpus();
281 int cpu;
282
283 debug("reset_a9_cpu entry\n");
284 /* Hold CPUs 1 onwards in reset, and CPU 0 if asked */
285 for (cpu = 1; cpu < num_cpus; cpu++)
286 reset_cmplx_set_enable(cpu, mask, 1);
287 reset_cmplx_set_enable(0, mask, reset);
288
289 /* Enable/Disable master CPU reset */
290 reset_set_enable(PERIPH_ID_CPU, reset);
291 }
292
293 void clock_enable_coresight(int enable)
294 {
295 u32 rst, src;
296
297 debug("clock_enable_coresight entry\n");
298 clock_set_enable(PERIPH_ID_CORESIGHT, enable);
299 reset_set_enable(PERIPH_ID_CORESIGHT, !enable);
300
301 if (enable) {
302 /*
303 * Put CoreSight on PLLP_OUT0 (216 MHz) and divide it down by
304 * 1.5, giving an effective frequency of 144MHz.
305 * Set PLLP_OUT0 [bits31:30 = 00], and use a 7.1 divisor
306 * (bits 7:0), so 00000001b == 1.5 (n+1 + .5)
307 *
308 * Clock divider request for 204MHz would setup CSITE clock as
309 * 144MHz for PLLP base 216MHz and 204MHz for PLLP base 408MHz
310 */
311 if (tegra_get_chip_type() == TEGRA_SOC_T30)
312 src = CLK_DIVIDER(NVBL_PLLP_KHZ, 204000);
313 else
314 src = CLK_DIVIDER(NVBL_PLLP_KHZ, 144000);
315 clock_ll_set_source_divisor(PERIPH_ID_CSI, 0, src);
316
317 /* Unlock the CPU CoreSight interfaces */
318 rst = CORESIGHT_UNLOCK;
319 writel(rst, CSITE_CPU_DBG0_LAR);
320 writel(rst, CSITE_CPU_DBG1_LAR);
321 #if defined(CONFIG_TEGRA30)
322 writel(rst, CSITE_CPU_DBG2_LAR);
323 writel(rst, CSITE_CPU_DBG3_LAR);
324 #endif
325 }
326 }
327
328 void halt_avp(void)
329 {
330 for (;;) {
331 writel((HALT_COP_EVENT_JTAG | HALT_COP_EVENT_IRQ_1 \
332 | HALT_COP_EVENT_FIQ_1 | (FLOW_MODE_STOP<<29)),
333 FLOW_CTLR_HALT_COP_EVENTS);
334 }
335 }