]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/arm/cpu/armv7/mx6/clock.c
Merge branch 'master' of git://git.denx.de/u-boot-net
[people/ms/u-boot.git] / arch / arm / cpu / armv7 / mx6 / clock.c
1 /*
2 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
3 *
4 * SPDX-License-Identifier: GPL-2.0+
5 */
6
7 #include <common.h>
8 #include <div64.h>
9 #include <asm/io.h>
10 #include <asm/errno.h>
11 #include <asm/arch/imx-regs.h>
12 #include <asm/arch/crm_regs.h>
13 #include <asm/arch/clock.h>
14 #include <asm/arch/sys_proto.h>
15
16 enum pll_clocks {
17 PLL_SYS, /* System PLL */
18 PLL_BUS, /* System Bus PLL*/
19 PLL_USBOTG, /* OTG USB PLL */
20 PLL_ENET, /* ENET PLL */
21 PLL_AUDIO, /* AUDIO PLL */
22 PLL_VIDEO, /* AUDIO PLL */
23 };
24
25 struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
26
27 #ifdef CONFIG_MXC_OCOTP
28 void enable_ocotp_clk(unsigned char enable)
29 {
30 u32 reg;
31
32 reg = __raw_readl(&imx_ccm->CCGR2);
33 if (enable)
34 reg |= MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
35 else
36 reg &= ~MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
37 __raw_writel(reg, &imx_ccm->CCGR2);
38 }
39 #endif
40
41 #ifdef CONFIG_NAND_MXS
42 void setup_gpmi_io_clk(u32 cfg)
43 {
44 /* Disable clocks per ERR007177 from MX6 errata */
45 clrbits_le32(&imx_ccm->CCGR4,
46 MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
47 MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
48 MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
49 MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
50 MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
51
52 #if defined(CONFIG_MX6SX)
53 clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
54
55 clrsetbits_le32(&imx_ccm->cs2cdr,
56 MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
57 MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
58 MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK,
59 cfg);
60
61 setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
62 #else
63 clrbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
64
65 clrsetbits_le32(&imx_ccm->cs2cdr,
66 MXC_CCM_CS2CDR_ENFC_CLK_PODF_MASK |
67 MXC_CCM_CS2CDR_ENFC_CLK_PRED_MASK |
68 MXC_CCM_CS2CDR_ENFC_CLK_SEL_MASK,
69 cfg);
70
71 setbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
72 #endif
73 setbits_le32(&imx_ccm->CCGR4,
74 MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
75 MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
76 MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
77 MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
78 MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
79 }
80 #endif
81
82 void enable_usboh3_clk(unsigned char enable)
83 {
84 u32 reg;
85
86 reg = __raw_readl(&imx_ccm->CCGR6);
87 if (enable)
88 reg |= MXC_CCM_CCGR6_USBOH3_MASK;
89 else
90 reg &= ~(MXC_CCM_CCGR6_USBOH3_MASK);
91 __raw_writel(reg, &imx_ccm->CCGR6);
92
93 }
94
95 #if defined(CONFIG_FEC_MXC) && !defined(CONFIG_MX6SX)
96 void enable_enet_clk(unsigned char enable)
97 {
98 u32 mask, *addr;
99
100 if (is_cpu_type(MXC_CPU_MX6UL)) {
101 mask = MXC_CCM_CCGR3_ENET_MASK;
102 addr = &imx_ccm->CCGR3;
103 } else {
104 mask = MXC_CCM_CCGR1_ENET_MASK;
105 addr = &imx_ccm->CCGR1;
106 }
107
108 if (enable)
109 setbits_le32(addr, mask);
110 else
111 clrbits_le32(addr, mask);
112 }
113 #endif
114
115 #ifdef CONFIG_MXC_UART
116 void enable_uart_clk(unsigned char enable)
117 {
118 u32 mask;
119
120 if (is_cpu_type(MXC_CPU_MX6UL))
121 mask = MXC_CCM_CCGR5_UART_MASK;
122 else
123 mask = MXC_CCM_CCGR5_UART_MASK | MXC_CCM_CCGR5_UART_SERIAL_MASK;
124
125 if (enable)
126 setbits_le32(&imx_ccm->CCGR5, mask);
127 else
128 clrbits_le32(&imx_ccm->CCGR5, mask);
129 }
130 #endif
131
132 #ifdef CONFIG_MMC
133 int enable_usdhc_clk(unsigned char enable, unsigned bus_num)
134 {
135 u32 mask;
136
137 if (bus_num > 3)
138 return -EINVAL;
139
140 mask = MXC_CCM_CCGR_CG_MASK << (bus_num * 2 + 2);
141 if (enable)
142 setbits_le32(&imx_ccm->CCGR6, mask);
143 else
144 clrbits_le32(&imx_ccm->CCGR6, mask);
145
146 return 0;
147 }
148 #endif
149
150 #ifdef CONFIG_SYS_I2C_MXC
151 /* i2c_num can be from 0 - 3 */
152 int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
153 {
154 u32 reg;
155 u32 mask;
156 u32 *addr;
157
158 if (i2c_num > 3)
159 return -EINVAL;
160 if (i2c_num < 3) {
161 mask = MXC_CCM_CCGR_CG_MASK
162 << (MXC_CCM_CCGR2_I2C1_SERIAL_OFFSET
163 + (i2c_num << 1));
164 reg = __raw_readl(&imx_ccm->CCGR2);
165 if (enable)
166 reg |= mask;
167 else
168 reg &= ~mask;
169 __raw_writel(reg, &imx_ccm->CCGR2);
170 } else {
171 if (is_cpu_type(MXC_CPU_MX6SX) || is_cpu_type(MXC_CPU_MX6UL)) {
172 mask = MXC_CCM_CCGR6_I2C4_MASK;
173 addr = &imx_ccm->CCGR6;
174 } else {
175 mask = MXC_CCM_CCGR1_I2C4_SERIAL_MASK;
176 addr = &imx_ccm->CCGR1;
177 }
178 reg = __raw_readl(addr);
179 if (enable)
180 reg |= mask;
181 else
182 reg &= ~mask;
183 __raw_writel(reg, addr);
184 }
185 return 0;
186 }
187 #endif
188
189 /* spi_num can be from 0 - SPI_MAX_NUM */
190 int enable_spi_clk(unsigned char enable, unsigned spi_num)
191 {
192 u32 reg;
193 u32 mask;
194
195 if (spi_num > SPI_MAX_NUM)
196 return -EINVAL;
197
198 mask = MXC_CCM_CCGR_CG_MASK << (spi_num << 1);
199 reg = __raw_readl(&imx_ccm->CCGR1);
200 if (enable)
201 reg |= mask;
202 else
203 reg &= ~mask;
204 __raw_writel(reg, &imx_ccm->CCGR1);
205 return 0;
206 }
207 static u32 decode_pll(enum pll_clocks pll, u32 infreq)
208 {
209 u32 div, test_div, pll_num, pll_denom;
210
211 switch (pll) {
212 case PLL_SYS:
213 div = __raw_readl(&imx_ccm->analog_pll_sys);
214 div &= BM_ANADIG_PLL_SYS_DIV_SELECT;
215
216 return (infreq * div) >> 1;
217 case PLL_BUS:
218 div = __raw_readl(&imx_ccm->analog_pll_528);
219 div &= BM_ANADIG_PLL_528_DIV_SELECT;
220
221 return infreq * (20 + (div << 1));
222 case PLL_USBOTG:
223 div = __raw_readl(&imx_ccm->analog_usb1_pll_480_ctrl);
224 div &= BM_ANADIG_USB1_PLL_480_CTRL_DIV_SELECT;
225
226 return infreq * (20 + (div << 1));
227 case PLL_ENET:
228 div = __raw_readl(&imx_ccm->analog_pll_enet);
229 div &= BM_ANADIG_PLL_ENET_DIV_SELECT;
230
231 return 25000000 * (div + (div >> 1) + 1);
232 case PLL_AUDIO:
233 div = __raw_readl(&imx_ccm->analog_pll_audio);
234 if (!(div & BM_ANADIG_PLL_AUDIO_ENABLE))
235 return 0;
236 /* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */
237 if (div & BM_ANADIG_PLL_AUDIO_BYPASS)
238 return MXC_HCLK;
239 pll_num = __raw_readl(&imx_ccm->analog_pll_audio_num);
240 pll_denom = __raw_readl(&imx_ccm->analog_pll_audio_denom);
241 test_div = (div & BM_ANADIG_PLL_AUDIO_TEST_DIV_SELECT) >>
242 BP_ANADIG_PLL_AUDIO_TEST_DIV_SELECT;
243 div &= BM_ANADIG_PLL_AUDIO_DIV_SELECT;
244 if (test_div == 3) {
245 debug("Error test_div\n");
246 return 0;
247 }
248 test_div = 1 << (2 - test_div);
249
250 return infreq * (div + pll_num / pll_denom) / test_div;
251 case PLL_VIDEO:
252 div = __raw_readl(&imx_ccm->analog_pll_video);
253 if (!(div & BM_ANADIG_PLL_VIDEO_ENABLE))
254 return 0;
255 /* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */
256 if (div & BM_ANADIG_PLL_VIDEO_BYPASS)
257 return MXC_HCLK;
258 pll_num = __raw_readl(&imx_ccm->analog_pll_video_num);
259 pll_denom = __raw_readl(&imx_ccm->analog_pll_video_denom);
260 test_div = (div & BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT) >>
261 BP_ANADIG_PLL_VIDEO_POST_DIV_SELECT;
262 div &= BM_ANADIG_PLL_VIDEO_DIV_SELECT;
263 if (test_div == 3) {
264 debug("Error test_div\n");
265 return 0;
266 }
267 test_div = 1 << (2 - test_div);
268
269 return infreq * (div + pll_num / pll_denom) / test_div;
270 default:
271 return 0;
272 }
273 /* NOTREACHED */
274 }
275 static u32 mxc_get_pll_pfd(enum pll_clocks pll, int pfd_num)
276 {
277 u32 div;
278 u64 freq;
279
280 switch (pll) {
281 case PLL_BUS:
282 if (!is_cpu_type(MXC_CPU_MX6UL)) {
283 if (pfd_num == 3) {
284 /* No PFD3 on PPL2 */
285 return 0;
286 }
287 }
288 div = __raw_readl(&imx_ccm->analog_pfd_528);
289 freq = (u64)decode_pll(PLL_BUS, MXC_HCLK);
290 break;
291 case PLL_USBOTG:
292 div = __raw_readl(&imx_ccm->analog_pfd_480);
293 freq = (u64)decode_pll(PLL_USBOTG, MXC_HCLK);
294 break;
295 default:
296 /* No PFD on other PLL */
297 return 0;
298 }
299
300 return lldiv(freq * 18, (div & ANATOP_PFD_FRAC_MASK(pfd_num)) >>
301 ANATOP_PFD_FRAC_SHIFT(pfd_num));
302 }
303
304 static u32 get_mcu_main_clk(void)
305 {
306 u32 reg, freq;
307
308 reg = __raw_readl(&imx_ccm->cacrr);
309 reg &= MXC_CCM_CACRR_ARM_PODF_MASK;
310 reg >>= MXC_CCM_CACRR_ARM_PODF_OFFSET;
311 freq = decode_pll(PLL_SYS, MXC_HCLK);
312
313 return freq / (reg + 1);
314 }
315
316 u32 get_periph_clk(void)
317 {
318 u32 reg, div = 0, freq = 0;
319
320 reg = __raw_readl(&imx_ccm->cbcdr);
321 if (reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
322 div = (reg & MXC_CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >>
323 MXC_CCM_CBCDR_PERIPH_CLK2_PODF_OFFSET;
324 reg = __raw_readl(&imx_ccm->cbcmr);
325 reg &= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_MASK;
326 reg >>= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_OFFSET;
327
328 switch (reg) {
329 case 0:
330 freq = decode_pll(PLL_USBOTG, MXC_HCLK);
331 break;
332 case 1:
333 case 2:
334 freq = MXC_HCLK;
335 break;
336 default:
337 break;
338 }
339 } else {
340 reg = __raw_readl(&imx_ccm->cbcmr);
341 reg &= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK;
342 reg >>= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET;
343
344 switch (reg) {
345 case 0:
346 freq = decode_pll(PLL_BUS, MXC_HCLK);
347 break;
348 case 1:
349 freq = mxc_get_pll_pfd(PLL_BUS, 2);
350 break;
351 case 2:
352 freq = mxc_get_pll_pfd(PLL_BUS, 0);
353 break;
354 case 3:
355 /* static / 2 divider */
356 freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2;
357 break;
358 default:
359 break;
360 }
361 }
362
363 return freq / (div + 1);
364 }
365
366 static u32 get_ipg_clk(void)
367 {
368 u32 reg, ipg_podf;
369
370 reg = __raw_readl(&imx_ccm->cbcdr);
371 reg &= MXC_CCM_CBCDR_IPG_PODF_MASK;
372 ipg_podf = reg >> MXC_CCM_CBCDR_IPG_PODF_OFFSET;
373
374 return get_ahb_clk() / (ipg_podf + 1);
375 }
376
377 static u32 get_ipg_per_clk(void)
378 {
379 u32 reg, perclk_podf;
380
381 reg = __raw_readl(&imx_ccm->cscmr1);
382 if (is_cpu_type(MXC_CPU_MX6SL) || is_cpu_type(MXC_CPU_MX6SX) ||
383 is_mx6dqp() || is_cpu_type(MXC_CPU_MX6UL)) {
384 if (reg & MXC_CCM_CSCMR1_PER_CLK_SEL_MASK)
385 return MXC_HCLK; /* OSC 24Mhz */
386 }
387
388 perclk_podf = reg & MXC_CCM_CSCMR1_PERCLK_PODF_MASK;
389
390 return get_ipg_clk() / (perclk_podf + 1);
391 }
392
393 static u32 get_uart_clk(void)
394 {
395 u32 reg, uart_podf;
396 u32 freq = decode_pll(PLL_USBOTG, MXC_HCLK) / 6; /* static divider */
397 reg = __raw_readl(&imx_ccm->cscdr1);
398
399 if (is_cpu_type(MXC_CPU_MX6SL) || is_cpu_type(MXC_CPU_MX6SX) ||
400 is_mx6dqp() || is_cpu_type(MXC_CPU_MX6UL)) {
401 if (reg & MXC_CCM_CSCDR1_UART_CLK_SEL)
402 freq = MXC_HCLK;
403 }
404
405 reg &= MXC_CCM_CSCDR1_UART_CLK_PODF_MASK;
406 uart_podf = reg >> MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
407
408 return freq / (uart_podf + 1);
409 }
410
411 static u32 get_cspi_clk(void)
412 {
413 u32 reg, cspi_podf;
414
415 reg = __raw_readl(&imx_ccm->cscdr2);
416 cspi_podf = (reg & MXC_CCM_CSCDR2_ECSPI_CLK_PODF_MASK) >>
417 MXC_CCM_CSCDR2_ECSPI_CLK_PODF_OFFSET;
418
419 if (is_mx6dqp() || is_cpu_type(MXC_CPU_MX6SL) ||
420 is_cpu_type(MXC_CPU_MX6SX) || is_cpu_type(MXC_CPU_MX6UL)) {
421 if (reg & MXC_CCM_CSCDR2_ECSPI_CLK_SEL_MASK)
422 return MXC_HCLK / (cspi_podf + 1);
423 }
424
425 return decode_pll(PLL_USBOTG, MXC_HCLK) / (8 * (cspi_podf + 1));
426 }
427
428 static u32 get_axi_clk(void)
429 {
430 u32 root_freq, axi_podf;
431 u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
432
433 axi_podf = cbcdr & MXC_CCM_CBCDR_AXI_PODF_MASK;
434 axi_podf >>= MXC_CCM_CBCDR_AXI_PODF_OFFSET;
435
436 if (cbcdr & MXC_CCM_CBCDR_AXI_SEL) {
437 if (cbcdr & MXC_CCM_CBCDR_AXI_ALT_SEL)
438 root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
439 else
440 root_freq = mxc_get_pll_pfd(PLL_USBOTG, 1);
441 } else
442 root_freq = get_periph_clk();
443
444 return root_freq / (axi_podf + 1);
445 }
446
447 static u32 get_emi_slow_clk(void)
448 {
449 u32 emi_clk_sel, emi_slow_podf, cscmr1, root_freq = 0;
450
451 cscmr1 = __raw_readl(&imx_ccm->cscmr1);
452 emi_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_MASK;
453 emi_clk_sel >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_OFFSET;
454 emi_slow_podf = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_MASK;
455 emi_slow_podf >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_OFFSET;
456
457 switch (emi_clk_sel) {
458 case 0:
459 root_freq = get_axi_clk();
460 break;
461 case 1:
462 root_freq = decode_pll(PLL_USBOTG, MXC_HCLK);
463 break;
464 case 2:
465 root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
466 break;
467 case 3:
468 root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
469 break;
470 }
471
472 return root_freq / (emi_slow_podf + 1);
473 }
474
475 static u32 get_mmdc_ch0_clk(void)
476 {
477 u32 cbcmr = __raw_readl(&imx_ccm->cbcmr);
478 u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
479
480 u32 freq, podf, per2_clk2_podf, pmu_misc2_audio_div;
481
482 if (is_cpu_type(MXC_CPU_MX6SX) || is_cpu_type(MXC_CPU_MX6UL) ||
483 is_cpu_type(MXC_CPU_MX6SL)) {
484 podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH1_PODF_MASK) >>
485 MXC_CCM_CBCDR_MMDC_CH1_PODF_OFFSET;
486 if (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK_SEL) {
487 per2_clk2_podf = (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_MASK) >>
488 MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_OFFSET;
489 if (is_cpu_type(MXC_CPU_MX6SL)) {
490 if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
491 freq = MXC_HCLK;
492 else
493 freq = decode_pll(PLL_USBOTG, MXC_HCLK);
494 } else {
495 if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
496 freq = decode_pll(PLL_BUS, MXC_HCLK);
497 else
498 freq = decode_pll(PLL_USBOTG, MXC_HCLK);
499 }
500 } else {
501 per2_clk2_podf = 0;
502 switch ((cbcmr &
503 MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_MASK) >>
504 MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_OFFSET) {
505 case 0:
506 freq = decode_pll(PLL_BUS, MXC_HCLK);
507 break;
508 case 1:
509 freq = mxc_get_pll_pfd(PLL_BUS, 2);
510 break;
511 case 2:
512 freq = mxc_get_pll_pfd(PLL_BUS, 0);
513 break;
514 case 3:
515 pmu_misc2_audio_div = PMU_MISC2_AUDIO_DIV(__raw_readl(&imx_ccm->pmu_misc2));
516 switch (pmu_misc2_audio_div) {
517 case 0:
518 case 2:
519 pmu_misc2_audio_div = 1;
520 break;
521 case 1:
522 pmu_misc2_audio_div = 2;
523 break;
524 case 3:
525 pmu_misc2_audio_div = 4;
526 break;
527 }
528 freq = decode_pll(PLL_AUDIO, MXC_HCLK) /
529 pmu_misc2_audio_div;
530 break;
531 }
532 }
533 return freq / (podf + 1) / (per2_clk2_podf + 1);
534 } else {
535 podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH0_PODF_MASK) >>
536 MXC_CCM_CBCDR_MMDC_CH0_PODF_OFFSET;
537 return get_periph_clk() / (podf + 1);
538 }
539 }
540
541 #if defined(CONFIG_VIDEO_MXS)
542 static int enable_pll_video(u32 pll_div, u32 pll_num, u32 pll_denom,
543 u32 post_div)
544 {
545 u32 reg = 0;
546 ulong start;
547
548 debug("pll5 div = %d, num = %d, denom = %d\n",
549 pll_div, pll_num, pll_denom);
550
551 /* Power up PLL5 video */
552 writel(BM_ANADIG_PLL_VIDEO_POWERDOWN |
553 BM_ANADIG_PLL_VIDEO_BYPASS |
554 BM_ANADIG_PLL_VIDEO_DIV_SELECT |
555 BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT,
556 &imx_ccm->analog_pll_video_clr);
557
558 /* Set div, num and denom */
559 switch (post_div) {
560 case 1:
561 writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
562 BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x2),
563 &imx_ccm->analog_pll_video_set);
564 break;
565 case 2:
566 writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
567 BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x1),
568 &imx_ccm->analog_pll_video_set);
569 break;
570 case 4:
571 writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
572 BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x0),
573 &imx_ccm->analog_pll_video_set);
574 break;
575 default:
576 puts("Wrong test_div!\n");
577 return -EINVAL;
578 }
579
580 writel(BF_ANADIG_PLL_VIDEO_NUM_A(pll_num),
581 &imx_ccm->analog_pll_video_num);
582 writel(BF_ANADIG_PLL_VIDEO_DENOM_B(pll_denom),
583 &imx_ccm->analog_pll_video_denom);
584
585 /* Wait PLL5 lock */
586 start = get_timer(0); /* Get current timestamp */
587
588 do {
589 reg = readl(&imx_ccm->analog_pll_video);
590 if (reg & BM_ANADIG_PLL_VIDEO_LOCK) {
591 /* Enable PLL out */
592 writel(BM_ANADIG_PLL_VIDEO_ENABLE,
593 &imx_ccm->analog_pll_video_set);
594 return 0;
595 }
596 } while (get_timer(0) < (start + 10)); /* Wait 10ms */
597
598 puts("Lock PLL5 timeout\n");
599
600 return -ETIME;
601 }
602
603 /*
604 * 24M--> PLL_VIDEO -> LCDIFx_PRED -> LCDIFx_PODF -> LCD
605 *
606 * 'freq' using KHz as unit, see driver/video/mxsfb.c.
607 */
608 void mxs_set_lcdclk(u32 base_addr, u32 freq)
609 {
610 u32 reg = 0;
611 u32 hck = MXC_HCLK / 1000;
612 /* DIV_SELECT ranges from 27 to 54 */
613 u32 min = hck * 27;
614 u32 max = hck * 54;
615 u32 temp, best = 0;
616 u32 i, j, max_pred = 8, max_postd = 8, pred = 1, postd = 1;
617 u32 pll_div, pll_num, pll_denom, post_div = 1;
618
619 debug("mxs_set_lcdclk, freq = %dKHz\n", freq);
620
621 if ((!is_cpu_type(MXC_CPU_MX6SX)) && !is_cpu_type(MXC_CPU_MX6UL)) {
622 debug("This chip not support lcd!\n");
623 return;
624 }
625
626 if (base_addr == LCDIF1_BASE_ADDR) {
627 reg = readl(&imx_ccm->cscdr2);
628 /* Can't change clocks when clock not from pre-mux */
629 if ((reg & MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK) != 0)
630 return;
631 }
632
633 if (is_cpu_type(MXC_CPU_MX6SX)) {
634 reg = readl(&imx_ccm->cscdr2);
635 /* Can't change clocks when clock not from pre-mux */
636 if ((reg & MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK) != 0)
637 return;
638 }
639
640 temp = freq * max_pred * max_postd;
641 if (temp > max) {
642 puts("Please decrease freq, too large!\n");
643 return;
644 }
645 if (temp < min) {
646 /*
647 * Register: PLL_VIDEO
648 * Bit Field: POST_DIV_SELECT
649 * 00 — Divide by 4.
650 * 01 — Divide by 2.
651 * 10 — Divide by 1.
652 * 11 — Reserved
653 * No need to check post_div(1)
654 */
655 for (post_div = 2; post_div <= 4; post_div <<= 1) {
656 if ((temp * post_div) > min) {
657 freq *= post_div;
658 break;
659 }
660 }
661
662 if (post_div > 4) {
663 printf("Fail to set rate to %dkhz", freq);
664 return;
665 }
666 }
667
668 /* Choose the best pred and postd to match freq for lcd */
669 for (i = 1; i <= max_pred; i++) {
670 for (j = 1; j <= max_postd; j++) {
671 temp = freq * i * j;
672 if (temp > max || temp < min)
673 continue;
674 if (best == 0 || temp < best) {
675 best = temp;
676 pred = i;
677 postd = j;
678 }
679 }
680 }
681
682 if (best == 0) {
683 printf("Fail to set rate to %dKHz", freq);
684 return;
685 }
686
687 debug("best %d, pred = %d, postd = %d\n", best, pred, postd);
688
689 pll_div = best / hck;
690 pll_denom = 1000000;
691 pll_num = (best - hck * pll_div) * pll_denom / hck;
692
693 /*
694 * pll_num
695 * (24MHz * (pll_div + --------- ))
696 * pll_denom
697 *freq KHz = --------------------------------
698 * post_div * pred * postd * 1000
699 */
700
701 if (base_addr == LCDIF1_BASE_ADDR) {
702 if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
703 return;
704
705 /* Select pre-lcd clock to PLL5 and set pre divider */
706 clrsetbits_le32(&imx_ccm->cscdr2,
707 MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_MASK |
708 MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_MASK,
709 (0x2 << MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_OFFSET) |
710 ((pred - 1) <<
711 MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_OFFSET));
712
713 /* Set the post divider */
714 clrsetbits_le32(&imx_ccm->cbcmr,
715 MXC_CCM_CBCMR_LCDIF1_PODF_MASK,
716 ((postd - 1) <<
717 MXC_CCM_CBCMR_LCDIF1_PODF_OFFSET));
718 } else if (is_cpu_type(MXC_CPU_MX6SX)) {
719 /* Setting LCDIF2 for i.MX6SX */
720 if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
721 return;
722
723 /* Select pre-lcd clock to PLL5 and set pre divider */
724 clrsetbits_le32(&imx_ccm->cscdr2,
725 MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_MASK |
726 MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_MASK,
727 (0x2 << MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_OFFSET) |
728 ((pred - 1) <<
729 MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_OFFSET));
730
731 /* Set the post divider */
732 clrsetbits_le32(&imx_ccm->cscmr1,
733 MXC_CCM_CSCMR1_LCDIF2_PODF_MASK,
734 ((postd - 1) <<
735 MXC_CCM_CSCMR1_LCDIF2_PODF_OFFSET));
736 }
737 }
738
739 int enable_lcdif_clock(u32 base_addr)
740 {
741 u32 reg = 0;
742 u32 lcdif_clk_sel_mask, lcdif_ccgr3_mask;
743
744 if (is_cpu_type(MXC_CPU_MX6SX)) {
745 if ((base_addr == LCDIF1_BASE_ADDR) ||
746 (base_addr == LCDIF2_BASE_ADDR)) {
747 puts("Wrong LCD interface!\n");
748 return -EINVAL;
749 }
750 /* Set to pre-mux clock at default */
751 lcdif_clk_sel_mask = (base_addr == LCDIF2_BASE_ADDR) ?
752 MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK :
753 MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
754 lcdif_ccgr3_mask = (base_addr == LCDIF2_BASE_ADDR) ?
755 (MXC_CCM_CCGR3_LCDIF2_PIX_MASK |
756 MXC_CCM_CCGR3_DISP_AXI_MASK) :
757 (MXC_CCM_CCGR3_LCDIF1_PIX_MASK |
758 MXC_CCM_CCGR3_DISP_AXI_MASK);
759 } else if (is_cpu_type(MXC_CPU_MX6UL)) {
760 if (base_addr != LCDIF1_BASE_ADDR) {
761 puts("Wrong LCD interface!\n");
762 return -EINVAL;
763 }
764 /* Set to pre-mux clock at default */
765 lcdif_clk_sel_mask = MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
766 lcdif_ccgr3_mask = MXC_CCM_CCGR3_LCDIF1_PIX_MASK;
767 } else {
768 return 0;
769 }
770
771 reg = readl(&imx_ccm->cscdr2);
772 reg &= ~lcdif_clk_sel_mask;
773 writel(reg, &imx_ccm->cscdr2);
774
775 /* Enable the LCDIF pix clock */
776 reg = readl(&imx_ccm->CCGR3);
777 reg |= lcdif_ccgr3_mask;
778 writel(reg, &imx_ccm->CCGR3);
779
780 reg = readl(&imx_ccm->CCGR2);
781 reg |= MXC_CCM_CCGR2_LCD_MASK;
782 writel(reg, &imx_ccm->CCGR2);
783
784 return 0;
785 }
786 #endif
787
788 #ifdef CONFIG_FSL_QSPI
789 /* qspi_num can be from 0 - 1 */
790 void enable_qspi_clk(int qspi_num)
791 {
792 u32 reg = 0;
793 /* Enable QuadSPI clock */
794 switch (qspi_num) {
795 case 0:
796 /* disable the clock gate */
797 clrbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
798
799 /* set 50M : (50 = 396 / 2 / 4) */
800 reg = readl(&imx_ccm->cscmr1);
801 reg &= ~(MXC_CCM_CSCMR1_QSPI1_PODF_MASK |
802 MXC_CCM_CSCMR1_QSPI1_CLK_SEL_MASK);
803 reg |= ((1 << MXC_CCM_CSCMR1_QSPI1_PODF_OFFSET) |
804 (2 << MXC_CCM_CSCMR1_QSPI1_CLK_SEL_OFFSET));
805 writel(reg, &imx_ccm->cscmr1);
806
807 /* enable the clock gate */
808 setbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
809 break;
810 case 1:
811 /*
812 * disable the clock gate
813 * QSPI2 and GPMI_BCH_INPUT_GPMI_IO share the same clock gate,
814 * disable both of them.
815 */
816 clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
817 MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
818
819 /* set 50M : (50 = 396 / 2 / 4) */
820 reg = readl(&imx_ccm->cs2cdr);
821 reg &= ~(MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
822 MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
823 MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK);
824 reg |= (MXC_CCM_CS2CDR_QSPI2_CLK_PRED(0x1) |
825 MXC_CCM_CS2CDR_QSPI2_CLK_SEL(0x3));
826 writel(reg, &imx_ccm->cs2cdr);
827
828 /*enable the clock gate*/
829 setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
830 MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
831 break;
832 default:
833 break;
834 }
835 }
836 #endif
837
838 #ifdef CONFIG_FEC_MXC
839 int enable_fec_anatop_clock(int fec_id, enum enet_freq freq)
840 {
841 u32 reg = 0;
842 s32 timeout = 100000;
843
844 struct anatop_regs __iomem *anatop =
845 (struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
846
847 if (freq < ENET_25MHZ || freq > ENET_125MHZ)
848 return -EINVAL;
849
850 reg = readl(&anatop->pll_enet);
851
852 if (fec_id == 0) {
853 reg &= ~BM_ANADIG_PLL_ENET_DIV_SELECT;
854 reg |= BF_ANADIG_PLL_ENET_DIV_SELECT(freq);
855 } else if (fec_id == 1) {
856 /* Only i.MX6SX/UL support ENET2 */
857 if (!(is_cpu_type(MXC_CPU_MX6SX) ||
858 is_cpu_type(MXC_CPU_MX6UL)))
859 return -EINVAL;
860 reg &= ~BM_ANADIG_PLL_ENET2_DIV_SELECT;
861 reg |= BF_ANADIG_PLL_ENET2_DIV_SELECT(freq);
862 } else {
863 return -EINVAL;
864 }
865
866 if ((reg & BM_ANADIG_PLL_ENET_POWERDOWN) ||
867 (!(reg & BM_ANADIG_PLL_ENET_LOCK))) {
868 reg &= ~BM_ANADIG_PLL_ENET_POWERDOWN;
869 writel(reg, &anatop->pll_enet);
870 while (timeout--) {
871 if (readl(&anatop->pll_enet) & BM_ANADIG_PLL_ENET_LOCK)
872 break;
873 }
874 if (timeout < 0)
875 return -ETIMEDOUT;
876 }
877
878 /* Enable FEC clock */
879 if (fec_id == 0)
880 reg |= BM_ANADIG_PLL_ENET_ENABLE;
881 else
882 reg |= BM_ANADIG_PLL_ENET2_ENABLE;
883 reg &= ~BM_ANADIG_PLL_ENET_BYPASS;
884 writel(reg, &anatop->pll_enet);
885
886 #ifdef CONFIG_MX6SX
887 /*
888 * Set enet ahb clock to 200MHz
889 * pll2_pfd2_396m-> ENET_PODF-> ENET_AHB
890 */
891 reg = readl(&imx_ccm->chsccdr);
892 reg &= ~(MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_MASK
893 | MXC_CCM_CHSCCDR_ENET_PODF_MASK
894 | MXC_CCM_CHSCCDR_ENET_CLK_SEL_MASK);
895 /* PLL2 PFD2 */
896 reg |= (4 << MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_OFFSET);
897 /* Div = 2*/
898 reg |= (1 << MXC_CCM_CHSCCDR_ENET_PODF_OFFSET);
899 reg |= (0 << MXC_CCM_CHSCCDR_ENET_CLK_SEL_OFFSET);
900 writel(reg, &imx_ccm->chsccdr);
901
902 /* Enable enet system clock */
903 reg = readl(&imx_ccm->CCGR3);
904 reg |= MXC_CCM_CCGR3_ENET_MASK;
905 writel(reg, &imx_ccm->CCGR3);
906 #endif
907 return 0;
908 }
909 #endif
910
911 static u32 get_usdhc_clk(u32 port)
912 {
913 u32 root_freq = 0, usdhc_podf = 0, clk_sel = 0;
914 u32 cscmr1 = __raw_readl(&imx_ccm->cscmr1);
915 u32 cscdr1 = __raw_readl(&imx_ccm->cscdr1);
916
917 switch (port) {
918 case 0:
919 usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC1_PODF_MASK) >>
920 MXC_CCM_CSCDR1_USDHC1_PODF_OFFSET;
921 clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC1_CLK_SEL;
922
923 break;
924 case 1:
925 usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC2_PODF_MASK) >>
926 MXC_CCM_CSCDR1_USDHC2_PODF_OFFSET;
927 clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC2_CLK_SEL;
928
929 break;
930 case 2:
931 usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC3_PODF_MASK) >>
932 MXC_CCM_CSCDR1_USDHC3_PODF_OFFSET;
933 clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC3_CLK_SEL;
934
935 break;
936 case 3:
937 usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC4_PODF_MASK) >>
938 MXC_CCM_CSCDR1_USDHC4_PODF_OFFSET;
939 clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC4_CLK_SEL;
940
941 break;
942 default:
943 break;
944 }
945
946 if (clk_sel)
947 root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
948 else
949 root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
950
951 return root_freq / (usdhc_podf + 1);
952 }
953
954 u32 imx_get_uartclk(void)
955 {
956 return get_uart_clk();
957 }
958
959 u32 imx_get_fecclk(void)
960 {
961 return mxc_get_clock(MXC_IPG_CLK);
962 }
963
964 #if defined(CONFIG_CMD_SATA) || defined(CONFIG_PCIE_IMX)
965 static int enable_enet_pll(uint32_t en)
966 {
967 struct mxc_ccm_reg *const imx_ccm
968 = (struct mxc_ccm_reg *) CCM_BASE_ADDR;
969 s32 timeout = 100000;
970 u32 reg = 0;
971
972 /* Enable PLLs */
973 reg = readl(&imx_ccm->analog_pll_enet);
974 reg &= ~BM_ANADIG_PLL_SYS_POWERDOWN;
975 writel(reg, &imx_ccm->analog_pll_enet);
976 reg |= BM_ANADIG_PLL_SYS_ENABLE;
977 while (timeout--) {
978 if (readl(&imx_ccm->analog_pll_enet) & BM_ANADIG_PLL_SYS_LOCK)
979 break;
980 }
981 if (timeout <= 0)
982 return -EIO;
983 reg &= ~BM_ANADIG_PLL_SYS_BYPASS;
984 writel(reg, &imx_ccm->analog_pll_enet);
985 reg |= en;
986 writel(reg, &imx_ccm->analog_pll_enet);
987 return 0;
988 }
989 #endif
990
991 #ifdef CONFIG_CMD_SATA
992 static void ungate_sata_clock(void)
993 {
994 struct mxc_ccm_reg *const imx_ccm =
995 (struct mxc_ccm_reg *)CCM_BASE_ADDR;
996
997 /* Enable SATA clock. */
998 setbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
999 }
1000
1001 int enable_sata_clock(void)
1002 {
1003 ungate_sata_clock();
1004 return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA);
1005 }
1006
1007 void disable_sata_clock(void)
1008 {
1009 struct mxc_ccm_reg *const imx_ccm =
1010 (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1011
1012 clrbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
1013 }
1014 #endif
1015
1016 #ifdef CONFIG_PCIE_IMX
1017 static void ungate_pcie_clock(void)
1018 {
1019 struct mxc_ccm_reg *const imx_ccm =
1020 (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1021
1022 /* Enable PCIe clock. */
1023 setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_PCIE_MASK);
1024 }
1025
1026 int enable_pcie_clock(void)
1027 {
1028 struct anatop_regs *anatop_regs =
1029 (struct anatop_regs *)ANATOP_BASE_ADDR;
1030 struct mxc_ccm_reg *ccm_regs = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1031 u32 lvds1_clk_sel;
1032
1033 /*
1034 * Here be dragons!
1035 *
1036 * The register ANATOP_MISC1 is not documented in the Freescale
1037 * MX6RM. The register that is mapped in the ANATOP space and
1038 * marked as ANATOP_MISC1 is actually documented in the PMU section
1039 * of the datasheet as PMU_MISC1.
1040 *
1041 * Switch LVDS clock source to SATA (0xb) on mx6q/dl or PCI (0xa) on
1042 * mx6sx, disable clock INPUT and enable clock OUTPUT. This is important
1043 * for PCI express link that is clocked from the i.MX6.
1044 */
1045 #define ANADIG_ANA_MISC1_LVDSCLK1_IBEN (1 << 12)
1046 #define ANADIG_ANA_MISC1_LVDSCLK1_OBEN (1 << 10)
1047 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK 0x0000001F
1048 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF 0xa
1049 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF 0xb
1050
1051 if (is_cpu_type(MXC_CPU_MX6SX))
1052 lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF;
1053 else
1054 lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF;
1055
1056 clrsetbits_le32(&anatop_regs->ana_misc1,
1057 ANADIG_ANA_MISC1_LVDSCLK1_IBEN |
1058 ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK,
1059 ANADIG_ANA_MISC1_LVDSCLK1_OBEN | lvds1_clk_sel);
1060
1061 /* PCIe reference clock sourced from AXI. */
1062 clrbits_le32(&ccm_regs->cbcmr, MXC_CCM_CBCMR_PCIE_AXI_CLK_SEL);
1063
1064 /* Party time! Ungate the clock to the PCIe. */
1065 #ifdef CONFIG_CMD_SATA
1066 ungate_sata_clock();
1067 #endif
1068 ungate_pcie_clock();
1069
1070 return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA |
1071 BM_ANADIG_PLL_ENET_ENABLE_PCIE);
1072 }
1073 #endif
1074
1075 #ifdef CONFIG_SECURE_BOOT
1076 void hab_caam_clock_enable(unsigned char enable)
1077 {
1078 u32 reg;
1079
1080 /* CG4 ~ CG6, CAAM clocks */
1081 reg = __raw_readl(&imx_ccm->CCGR0);
1082 if (enable)
1083 reg |= (MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
1084 MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
1085 MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
1086 else
1087 reg &= ~(MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
1088 MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
1089 MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
1090 __raw_writel(reg, &imx_ccm->CCGR0);
1091
1092 /* EMI slow clk */
1093 reg = __raw_readl(&imx_ccm->CCGR6);
1094 if (enable)
1095 reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
1096 else
1097 reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
1098 __raw_writel(reg, &imx_ccm->CCGR6);
1099 }
1100 #endif
1101
1102 static void enable_pll3(void)
1103 {
1104 struct anatop_regs __iomem *anatop =
1105 (struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
1106
1107 /* make sure pll3 is enabled */
1108 if ((readl(&anatop->usb1_pll_480_ctrl) &
1109 BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0) {
1110 /* enable pll's power */
1111 writel(BM_ANADIG_USB1_PLL_480_CTRL_POWER,
1112 &anatop->usb1_pll_480_ctrl_set);
1113 writel(0x80, &anatop->ana_misc2_clr);
1114 /* wait for pll lock */
1115 while ((readl(&anatop->usb1_pll_480_ctrl) &
1116 BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0)
1117 ;
1118 /* disable bypass */
1119 writel(BM_ANADIG_USB1_PLL_480_CTRL_BYPASS,
1120 &anatop->usb1_pll_480_ctrl_clr);
1121 /* enable pll output */
1122 writel(BM_ANADIG_USB1_PLL_480_CTRL_ENABLE,
1123 &anatop->usb1_pll_480_ctrl_set);
1124 }
1125 }
1126
1127 void enable_thermal_clk(void)
1128 {
1129 enable_pll3();
1130 }
1131
1132 unsigned int mxc_get_clock(enum mxc_clock clk)
1133 {
1134 switch (clk) {
1135 case MXC_ARM_CLK:
1136 return get_mcu_main_clk();
1137 case MXC_PER_CLK:
1138 return get_periph_clk();
1139 case MXC_AHB_CLK:
1140 return get_ahb_clk();
1141 case MXC_IPG_CLK:
1142 return get_ipg_clk();
1143 case MXC_IPG_PERCLK:
1144 case MXC_I2C_CLK:
1145 return get_ipg_per_clk();
1146 case MXC_UART_CLK:
1147 return get_uart_clk();
1148 case MXC_CSPI_CLK:
1149 return get_cspi_clk();
1150 case MXC_AXI_CLK:
1151 return get_axi_clk();
1152 case MXC_EMI_SLOW_CLK:
1153 return get_emi_slow_clk();
1154 case MXC_DDR_CLK:
1155 return get_mmdc_ch0_clk();
1156 case MXC_ESDHC_CLK:
1157 return get_usdhc_clk(0);
1158 case MXC_ESDHC2_CLK:
1159 return get_usdhc_clk(1);
1160 case MXC_ESDHC3_CLK:
1161 return get_usdhc_clk(2);
1162 case MXC_ESDHC4_CLK:
1163 return get_usdhc_clk(3);
1164 case MXC_SATA_CLK:
1165 return get_ahb_clk();
1166 default:
1167 printf("Unsupported MXC CLK: %d\n", clk);
1168 break;
1169 }
1170
1171 return 0;
1172 }
1173
1174 /*
1175 * Dump some core clockes.
1176 */
1177 int do_mx6_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1178 {
1179 u32 freq;
1180 freq = decode_pll(PLL_SYS, MXC_HCLK);
1181 printf("PLL_SYS %8d MHz\n", freq / 1000000);
1182 freq = decode_pll(PLL_BUS, MXC_HCLK);
1183 printf("PLL_BUS %8d MHz\n", freq / 1000000);
1184 freq = decode_pll(PLL_USBOTG, MXC_HCLK);
1185 printf("PLL_OTG %8d MHz\n", freq / 1000000);
1186 freq = decode_pll(PLL_ENET, MXC_HCLK);
1187 printf("PLL_NET %8d MHz\n", freq / 1000000);
1188
1189 printf("\n");
1190 printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
1191 printf("UART %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000);
1192 #ifdef CONFIG_MXC_SPI
1193 printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
1194 #endif
1195 printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
1196 printf("AXI %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000);
1197 printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
1198 printf("USDHC1 %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000);
1199 printf("USDHC2 %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000);
1200 printf("USDHC3 %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000);
1201 printf("USDHC4 %8d kHz\n", mxc_get_clock(MXC_ESDHC4_CLK) / 1000);
1202 printf("EMI SLOW %8d kHz\n", mxc_get_clock(MXC_EMI_SLOW_CLK) / 1000);
1203 printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
1204
1205 return 0;
1206 }
1207
1208 #ifndef CONFIG_MX6SX
1209 void enable_ipu_clock(void)
1210 {
1211 struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1212 int reg;
1213 reg = readl(&mxc_ccm->CCGR3);
1214 reg |= MXC_CCM_CCGR3_IPU1_IPU_MASK;
1215 writel(reg, &mxc_ccm->CCGR3);
1216
1217 if (is_mx6dqp()) {
1218 setbits_le32(&mxc_ccm->CCGR6, MXC_CCM_CCGR6_PRG_CLK0_MASK);
1219 setbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU2_IPU_MASK);
1220 }
1221 }
1222 #endif
1223 /***************************************************/
1224
1225 U_BOOT_CMD(
1226 clocks, CONFIG_SYS_MAXARGS, 1, do_mx6_showclocks,
1227 "display clocks",
1228 ""
1229 );