]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/arm/cpu/armv8/fsl-layerscape/cpu.c
net/fm: fix MDIO controller base on FMAN2
[people/ms/u-boot.git] / arch / arm / cpu / armv8 / fsl-layerscape / cpu.c
1 /*
2 * Copyright 2014-2015 Freescale Semiconductor, Inc.
3 *
4 * SPDX-License-Identifier: GPL-2.0+
5 */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/errno.h>
10 #include <asm/system.h>
11 #include <asm/armv8/mmu.h>
12 #include <asm/io.h>
13 #include <asm/arch/fsl_serdes.h>
14 #include <asm/arch/soc.h>
15 #include <asm/arch/cpu.h>
16 #include <asm/arch/speed.h>
17 #ifdef CONFIG_MP
18 #include <asm/arch/mp.h>
19 #endif
20 #include <fm_eth.h>
21 #include <fsl_debug_server.h>
22 #include <fsl-mc/fsl_mc.h>
23 #ifdef CONFIG_FSL_ESDHC
24 #include <fsl_esdhc.h>
25 #endif
26
27 DECLARE_GLOBAL_DATA_PTR;
28
29 void cpu_name(char *name)
30 {
31 struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
32 unsigned int i, svr, ver;
33
34 svr = gur_in32(&gur->svr);
35 ver = SVR_SOC_VER(svr);
36
37 for (i = 0; i < ARRAY_SIZE(cpu_type_list); i++)
38 if ((cpu_type_list[i].soc_ver & SVR_WO_E) == ver) {
39 strcpy(name, cpu_type_list[i].name);
40
41 if (IS_E_PROCESSOR(svr))
42 strcat(name, "E");
43 break;
44 }
45
46 if (i == ARRAY_SIZE(cpu_type_list))
47 strcpy(name, "unknown");
48 }
49
50 #ifndef CONFIG_SYS_DCACHE_OFF
51 /*
52 * Set the block entries according to the information of the table.
53 */
54 static int set_block_entry(const struct sys_mmu_table *list,
55 struct table_info *table)
56 {
57 u64 block_size = 0, block_shift = 0;
58 u64 block_addr, index;
59 int j;
60
61 if (table->entry_size == BLOCK_SIZE_L1) {
62 block_size = BLOCK_SIZE_L1;
63 block_shift = SECTION_SHIFT_L1;
64 } else if (table->entry_size == BLOCK_SIZE_L2) {
65 block_size = BLOCK_SIZE_L2;
66 block_shift = SECTION_SHIFT_L2;
67 } else {
68 return -EINVAL;
69 }
70
71 block_addr = list->phys_addr;
72 index = (list->virt_addr - table->table_base) >> block_shift;
73
74 for (j = 0; j < (list->size >> block_shift); j++) {
75 set_pgtable_section(table->ptr,
76 index,
77 block_addr,
78 list->memory_type,
79 list->share);
80 block_addr += block_size;
81 index++;
82 }
83
84 return 0;
85 }
86
87 /*
88 * Find the corresponding table entry for the list.
89 */
90 static int find_table(const struct sys_mmu_table *list,
91 struct table_info *table, u64 *level0_table)
92 {
93 u64 index = 0, level = 0;
94 u64 *level_table = level0_table;
95 u64 temp_base = 0, block_size = 0, block_shift = 0;
96
97 while (level < 3) {
98 if (level == 0) {
99 block_size = BLOCK_SIZE_L0;
100 block_shift = SECTION_SHIFT_L0;
101 } else if (level == 1) {
102 block_size = BLOCK_SIZE_L1;
103 block_shift = SECTION_SHIFT_L1;
104 } else if (level == 2) {
105 block_size = BLOCK_SIZE_L2;
106 block_shift = SECTION_SHIFT_L2;
107 }
108
109 index = 0;
110 while (list->virt_addr >= temp_base) {
111 index++;
112 temp_base += block_size;
113 }
114
115 temp_base -= block_size;
116
117 if ((level_table[index - 1] & PMD_TYPE_MASK) ==
118 PMD_TYPE_TABLE) {
119 level_table = (u64 *)(level_table[index - 1] &
120 ~PMD_TYPE_MASK);
121 level++;
122 continue;
123 } else {
124 if (level == 0)
125 return -EINVAL;
126
127 if ((list->phys_addr + list->size) >
128 (temp_base + block_size * NUM_OF_ENTRY))
129 return -EINVAL;
130
131 /*
132 * Check the address and size of the list member is
133 * aligned with the block size.
134 */
135 if (((list->phys_addr & (block_size - 1)) != 0) ||
136 ((list->size & (block_size - 1)) != 0))
137 return -EINVAL;
138
139 table->ptr = level_table;
140 table->table_base = temp_base -
141 ((index - 1) << block_shift);
142 table->entry_size = block_size;
143
144 return 0;
145 }
146 }
147 return -EINVAL;
148 }
149
150 /*
151 * To start MMU before DDR is available, we create MMU table in SRAM.
152 * The base address of SRAM is CONFIG_SYS_FSL_OCRAM_BASE. We use three
153 * levels of translation tables here to cover 40-bit address space.
154 * We use 4KB granule size, with 40 bits physical address, T0SZ=24
155 * Level 0 IA[39], table address @0
156 * Level 1 IA[38:30], table address @0x1000, 0x2000
157 * Level 2 IA[29:21], table address @0x3000, 0x4000
158 * Address above 0x5000 is free for other purpose.
159 */
160 static inline void early_mmu_setup(void)
161 {
162 unsigned int el, i;
163 u64 *level0_table = (u64 *)CONFIG_SYS_FSL_OCRAM_BASE;
164 u64 *level1_table0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x1000);
165 u64 *level1_table1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x2000);
166 u64 *level2_table0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x3000);
167 u64 *level2_table1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x4000);
168
169 struct table_info table = {level0_table, 0, BLOCK_SIZE_L0};
170
171 /* Invalidate all table entries */
172 memset(level0_table, 0, 0x5000);
173
174 /* Fill in the table entries */
175 set_pgtable_table(level0_table, 0, level1_table0);
176 set_pgtable_table(level0_table, 1, level1_table1);
177 set_pgtable_table(level1_table0, 0, level2_table0);
178
179 #ifdef CONFIG_FSL_LSCH3
180 set_pgtable_table(level1_table0,
181 CONFIG_SYS_FLASH_BASE >> SECTION_SHIFT_L1,
182 level2_table1);
183 #endif
184 /* Find the table and fill in the block entries */
185 for (i = 0; i < ARRAY_SIZE(early_mmu_table); i++) {
186 if (find_table(&early_mmu_table[i],
187 &table, level0_table) == 0) {
188 /*
189 * If find_table() returns error, it cannot be dealt
190 * with here. Breakpoint can be added for debugging.
191 */
192 set_block_entry(&early_mmu_table[i], &table);
193 /*
194 * If set_block_entry() returns error, it cannot be
195 * dealt with here too.
196 */
197 }
198 }
199
200 el = current_el();
201
202 set_ttbr_tcr_mair(el, (u64)level0_table, LAYERSCAPE_TCR,
203 MEMORY_ATTRIBUTES);
204 set_sctlr(get_sctlr() | CR_M);
205 }
206
207 /*
208 * The final tables look similar to early tables, but different in detail.
209 * These tables are in DRAM. Sub tables are added to enable cache for
210 * QBMan and OCRAM.
211 *
212 * Level 1 table 0 contains 512 entries for each 1GB from 0 to 512GB.
213 * Level 1 table 1 contains 512 entries for each 1GB from 512GB to 1TB.
214 * Level 2 table 0 contains 512 entries for each 2MB from 0 to 1GB.
215 *
216 * For LSCH3:
217 * Level 2 table 1 contains 512 entries for each 2MB from 32GB to 33GB.
218 */
219 static inline void final_mmu_setup(void)
220 {
221 unsigned int el, i;
222 u64 *level0_table = (u64 *)gd->arch.tlb_addr;
223 u64 *level1_table0 = (u64 *)(gd->arch.tlb_addr + 0x1000);
224 u64 *level1_table1 = (u64 *)(gd->arch.tlb_addr + 0x2000);
225 u64 *level2_table0 = (u64 *)(gd->arch.tlb_addr + 0x3000);
226 #ifdef CONFIG_FSL_LSCH3
227 u64 *level2_table1 = (u64 *)(gd->arch.tlb_addr + 0x4000);
228 #endif
229 struct table_info table = {level0_table, 0, BLOCK_SIZE_L0};
230
231 /* Invalidate all table entries */
232 memset(level0_table, 0, PGTABLE_SIZE);
233
234 /* Fill in the table entries */
235 set_pgtable_table(level0_table, 0, level1_table0);
236 set_pgtable_table(level0_table, 1, level1_table1);
237 set_pgtable_table(level1_table0, 0, level2_table0);
238 #ifdef CONFIG_FSL_LSCH3
239 set_pgtable_table(level1_table0,
240 CONFIG_SYS_FSL_QBMAN_BASE >> SECTION_SHIFT_L1,
241 level2_table1);
242 #endif
243
244 /* Find the table and fill in the block entries */
245 for (i = 0; i < ARRAY_SIZE(final_mmu_table); i++) {
246 if (find_table(&final_mmu_table[i],
247 &table, level0_table) == 0) {
248 if (set_block_entry(&final_mmu_table[i],
249 &table) != 0) {
250 printf("MMU error: could not set block entry for %p\n",
251 &final_mmu_table[i]);
252 }
253
254 } else {
255 printf("MMU error: could not find the table for %p\n",
256 &final_mmu_table[i]);
257 }
258 }
259
260 /* flush new MMU table */
261 flush_dcache_range(gd->arch.tlb_addr,
262 gd->arch.tlb_addr + gd->arch.tlb_size);
263
264 /* point TTBR to the new table */
265 el = current_el();
266
267 set_ttbr_tcr_mair(el, (u64)level0_table, LAYERSCAPE_TCR_FINAL,
268 MEMORY_ATTRIBUTES);
269 /*
270 * MMU is already enabled, just need to invalidate TLB to load the
271 * new table. The new table is compatible with the current table, if
272 * MMU somehow walks through the new table before invalidation TLB,
273 * it still works. So we don't need to turn off MMU here.
274 */
275 }
276
277 int arch_cpu_init(void)
278 {
279 icache_enable();
280 __asm_invalidate_dcache_all();
281 __asm_invalidate_tlb_all();
282 early_mmu_setup();
283 set_sctlr(get_sctlr() | CR_C);
284 return 0;
285 }
286
287 /*
288 * This function is called from lib/board.c.
289 * It recreates MMU table in main memory. MMU and d-cache are enabled earlier.
290 * There is no need to disable d-cache for this operation.
291 */
292 void enable_caches(void)
293 {
294 final_mmu_setup();
295 __asm_invalidate_tlb_all();
296 }
297 #endif
298
299 static inline u32 initiator_type(u32 cluster, int init_id)
300 {
301 struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
302 u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK;
303 u32 type = 0;
304
305 type = gur_in32(&gur->tp_ityp[idx]);
306 if (type & TP_ITYP_AV)
307 return type;
308
309 return 0;
310 }
311
312 u32 cpu_mask(void)
313 {
314 struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
315 int i = 0, count = 0;
316 u32 cluster, type, mask = 0;
317
318 do {
319 int j;
320
321 cluster = gur_in32(&gur->tp_cluster[i].lower);
322 for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
323 type = initiator_type(cluster, j);
324 if (type) {
325 if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
326 mask |= 1 << count;
327 count++;
328 }
329 }
330 i++;
331 } while ((cluster & TP_CLUSTER_EOC) == 0x0);
332
333 return mask;
334 }
335
336 /*
337 * Return the number of cores on this SOC.
338 */
339 int cpu_numcores(void)
340 {
341 return hweight32(cpu_mask());
342 }
343
344 int fsl_qoriq_core_to_cluster(unsigned int core)
345 {
346 struct ccsr_gur __iomem *gur =
347 (void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
348 int i = 0, count = 0;
349 u32 cluster;
350
351 do {
352 int j;
353
354 cluster = gur_in32(&gur->tp_cluster[i].lower);
355 for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
356 if (initiator_type(cluster, j)) {
357 if (count == core)
358 return i;
359 count++;
360 }
361 }
362 i++;
363 } while ((cluster & TP_CLUSTER_EOC) == 0x0);
364
365 return -1; /* cannot identify the cluster */
366 }
367
368 u32 fsl_qoriq_core_to_type(unsigned int core)
369 {
370 struct ccsr_gur __iomem *gur =
371 (void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
372 int i = 0, count = 0;
373 u32 cluster, type;
374
375 do {
376 int j;
377
378 cluster = gur_in32(&gur->tp_cluster[i].lower);
379 for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
380 type = initiator_type(cluster, j);
381 if (type) {
382 if (count == core)
383 return type;
384 count++;
385 }
386 }
387 i++;
388 } while ((cluster & TP_CLUSTER_EOC) == 0x0);
389
390 return -1; /* cannot identify the cluster */
391 }
392
393 #ifdef CONFIG_DISPLAY_CPUINFO
394 int print_cpuinfo(void)
395 {
396 struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
397 struct sys_info sysinfo;
398 char buf[32];
399 unsigned int i, core;
400 u32 type, rcw;
401
402 puts("SoC: ");
403
404 cpu_name(buf);
405 printf(" %s (0x%x)\n", buf, gur_in32(&gur->svr));
406 memset((u8 *)buf, 0x00, ARRAY_SIZE(buf));
407 get_sys_info(&sysinfo);
408 puts("Clock Configuration:");
409 for_each_cpu(i, core, cpu_numcores(), cpu_mask()) {
410 if (!(i % 3))
411 puts("\n ");
412 type = TP_ITYP_VER(fsl_qoriq_core_to_type(core));
413 printf("CPU%d(%s):%-4s MHz ", core,
414 type == TY_ITYP_VER_A7 ? "A7 " :
415 (type == TY_ITYP_VER_A53 ? "A53" :
416 (type == TY_ITYP_VER_A57 ? "A57" : " ")),
417 strmhz(buf, sysinfo.freq_processor[core]));
418 }
419 printf("\n Bus: %-4s MHz ",
420 strmhz(buf, sysinfo.freq_systembus));
421 printf("DDR: %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus));
422 #ifdef CONFIG_FSL_LSCH3
423 printf(" DP-DDR: %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus2));
424 #endif
425 puts("\n");
426
427 /*
428 * Display the RCW, so that no one gets confused as to what RCW
429 * we're actually using for this boot.
430 */
431 puts("Reset Configuration Word (RCW):");
432 for (i = 0; i < ARRAY_SIZE(gur->rcwsr); i++) {
433 rcw = gur_in32(&gur->rcwsr[i]);
434 if ((i % 4) == 0)
435 printf("\n %08x:", i * 4);
436 printf(" %08x", rcw);
437 }
438 puts("\n");
439
440 return 0;
441 }
442 #endif
443
444 #ifdef CONFIG_FSL_ESDHC
445 int cpu_mmc_init(bd_t *bis)
446 {
447 return fsl_esdhc_mmc_init(bis);
448 }
449 #endif
450
451 int cpu_eth_init(bd_t *bis)
452 {
453 int error = 0;
454
455 #ifdef CONFIG_FSL_MC_ENET
456 error = fsl_mc_ldpaa_init(bis);
457 #endif
458 return error;
459 }
460
461 int arch_early_init_r(void)
462 {
463 #ifdef CONFIG_MP
464 int rv = 1;
465
466 rv = fsl_layerscape_wake_seconday_cores();
467 if (rv)
468 printf("Did not wake secondary cores\n");
469 #endif
470
471 #ifdef CONFIG_SYS_HAS_SERDES
472 fsl_serdes_init();
473 #endif
474 return 0;
475 }
476
477 int timer_init(void)
478 {
479 u32 __iomem *cntcr = (u32 *)CONFIG_SYS_FSL_TIMER_ADDR;
480 #ifdef CONFIG_FSL_LSCH3
481 u32 __iomem *cltbenr = (u32 *)CONFIG_SYS_FSL_PMU_CLTBENR;
482 #endif
483 #ifdef COUNTER_FREQUENCY_REAL
484 unsigned long cntfrq = COUNTER_FREQUENCY_REAL;
485
486 /* Update with accurate clock frequency */
487 asm volatile("msr cntfrq_el0, %0" : : "r" (cntfrq) : "memory");
488 #endif
489
490 #ifdef CONFIG_FSL_LSCH3
491 /* Enable timebase for all clusters.
492 * It is safe to do so even some clusters are not enabled.
493 */
494 out_le32(cltbenr, 0xf);
495 #endif
496
497 /* Enable clock for timer
498 * This is a global setting.
499 */
500 out_le32(cntcr, 0x1);
501
502 return 0;
503 }
504
505 void reset_cpu(ulong addr)
506 {
507 u32 __iomem *rstcr = (u32 *)CONFIG_SYS_FSL_RST_ADDR;
508 u32 val;
509
510 /* Raise RESET_REQ_B */
511 val = scfg_in32(rstcr);
512 val |= 0x02;
513 scfg_out32(rstcr, val);
514 }