]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/arm/cpu/armv8/fsl-layerscape/cpu.c
travis-ci: Build mvebu boards (arm & aarch64) in separate job
[people/ms/u-boot.git] / arch / arm / cpu / armv8 / fsl-layerscape / cpu.c
1 /*
2 * Copyright 2014-2015 Freescale Semiconductor, Inc.
3 *
4 * SPDX-License-Identifier: GPL-2.0+
5 */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <linux/errno.h>
10 #include <asm/system.h>
11 #include <asm/armv8/mmu.h>
12 #include <asm/io.h>
13 #include <asm/arch/fsl_serdes.h>
14 #include <asm/arch/soc.h>
15 #include <asm/arch/cpu.h>
16 #include <asm/arch/speed.h>
17 #ifdef CONFIG_MP
18 #include <asm/arch/mp.h>
19 #endif
20 #include <efi_loader.h>
21 #include <fm_eth.h>
22 #include <fsl-mc/fsl_mc.h>
23 #ifdef CONFIG_FSL_ESDHC
24 #include <fsl_esdhc.h>
25 #endif
26 #ifdef CONFIG_ARMV8_SEC_FIRMWARE_SUPPORT
27 #include <asm/armv8/sec_firmware.h>
28 #endif
29
30 DECLARE_GLOBAL_DATA_PTR;
31
32 struct mm_region *mem_map = early_map;
33
34 void cpu_name(char *name)
35 {
36 struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
37 unsigned int i, svr, ver;
38
39 svr = gur_in32(&gur->svr);
40 ver = SVR_SOC_VER(svr);
41
42 for (i = 0; i < ARRAY_SIZE(cpu_type_list); i++)
43 if ((cpu_type_list[i].soc_ver & SVR_WO_E) == ver) {
44 strcpy(name, cpu_type_list[i].name);
45
46 if (IS_E_PROCESSOR(svr))
47 strcat(name, "E");
48
49 sprintf(name + strlen(name), " Rev%d.%d",
50 SVR_MAJ(svr), SVR_MIN(svr));
51 break;
52 }
53
54 if (i == ARRAY_SIZE(cpu_type_list))
55 strcpy(name, "unknown");
56 }
57
58 #ifndef CONFIG_SYS_DCACHE_OFF
59 /*
60 * To start MMU before DDR is available, we create MMU table in SRAM.
61 * The base address of SRAM is CONFIG_SYS_FSL_OCRAM_BASE. We use three
62 * levels of translation tables here to cover 40-bit address space.
63 * We use 4KB granule size, with 40 bits physical address, T0SZ=24
64 * Address above EARLY_PGTABLE_SIZE (0x5000) is free for other purpose.
65 * Note, the debug print in cache_v8.c is not usable for debugging
66 * these early MMU tables because UART is not yet available.
67 */
68 static inline void early_mmu_setup(void)
69 {
70 unsigned int el = current_el();
71
72 /* global data is already setup, no allocation yet */
73 gd->arch.tlb_addr = CONFIG_SYS_FSL_OCRAM_BASE;
74 gd->arch.tlb_fillptr = gd->arch.tlb_addr;
75 gd->arch.tlb_size = EARLY_PGTABLE_SIZE;
76
77 /* Create early page tables */
78 setup_pgtables();
79
80 /* point TTBR to the new table */
81 set_ttbr_tcr_mair(el, gd->arch.tlb_addr,
82 get_tcr(el, NULL, NULL) &
83 ~(TCR_ORGN_MASK | TCR_IRGN_MASK),
84 MEMORY_ATTRIBUTES);
85
86 set_sctlr(get_sctlr() | CR_M);
87 }
88
89 /*
90 * The final tables look similar to early tables, but different in detail.
91 * These tables are in DRAM. Sub tables are added to enable cache for
92 * QBMan and OCRAM.
93 *
94 * Put the MMU table in secure memory if gd->arch.secure_ram is valid.
95 * OCRAM will be not used for this purpose so gd->arch.secure_ram can't be 0.
96 */
97 static inline void final_mmu_setup(void)
98 {
99 u64 tlb_addr_save = gd->arch.tlb_addr;
100 unsigned int el = current_el();
101 #ifdef CONFIG_SYS_MEM_RESERVE_SECURE
102 int index;
103 #endif
104
105 mem_map = final_map;
106
107 #ifdef CONFIG_SYS_MEM_RESERVE_SECURE
108 if (gd->arch.secure_ram & MEM_RESERVE_SECURE_MAINTAINED) {
109 if (el == 3) {
110 /*
111 * Only use gd->arch.secure_ram if the address is
112 * recalculated. Align to 4KB for MMU table.
113 */
114 /* put page tables in secure ram */
115 index = ARRAY_SIZE(final_map) - 2;
116 gd->arch.tlb_addr = gd->arch.secure_ram & ~0xfff;
117 final_map[index].virt = gd->arch.secure_ram & ~0x3;
118 final_map[index].phys = final_map[index].virt;
119 final_map[index].size = CONFIG_SYS_MEM_RESERVE_SECURE;
120 final_map[index].attrs = PTE_BLOCK_OUTER_SHARE;
121 gd->arch.secure_ram |= MEM_RESERVE_SECURE_SECURED;
122 tlb_addr_save = gd->arch.tlb_addr;
123 } else {
124 /* Use allocated (board_f.c) memory for TLB */
125 tlb_addr_save = gd->arch.tlb_allocated;
126 gd->arch.tlb_addr = tlb_addr_save;
127 }
128 }
129 #endif
130
131 /* Reset the fill ptr */
132 gd->arch.tlb_fillptr = tlb_addr_save;
133
134 /* Create normal system page tables */
135 setup_pgtables();
136
137 /* Create emergency page tables */
138 gd->arch.tlb_addr = gd->arch.tlb_fillptr;
139 gd->arch.tlb_emerg = gd->arch.tlb_addr;
140 setup_pgtables();
141 gd->arch.tlb_addr = tlb_addr_save;
142
143 /* flush new MMU table */
144 flush_dcache_range(gd->arch.tlb_addr,
145 gd->arch.tlb_addr + gd->arch.tlb_size);
146
147 /* point TTBR to the new table */
148 set_ttbr_tcr_mair(el, gd->arch.tlb_addr, get_tcr(el, NULL, NULL),
149 MEMORY_ATTRIBUTES);
150 /*
151 * EL3 MMU is already enabled, just need to invalidate TLB to load the
152 * new table. The new table is compatible with the current table, if
153 * MMU somehow walks through the new table before invalidation TLB,
154 * it still works. So we don't need to turn off MMU here.
155 * When EL2 MMU table is created by calling this function, MMU needs
156 * to be enabled.
157 */
158 set_sctlr(get_sctlr() | CR_M);
159 }
160
161 u64 get_page_table_size(void)
162 {
163 return 0x10000;
164 }
165
166 int arch_cpu_init(void)
167 {
168 icache_enable();
169 __asm_invalidate_dcache_all();
170 __asm_invalidate_tlb_all();
171 early_mmu_setup();
172 set_sctlr(get_sctlr() | CR_C);
173 return 0;
174 }
175
176 void mmu_setup(void)
177 {
178 final_mmu_setup();
179 }
180
181 /*
182 * This function is called from common/board_r.c.
183 * It recreates MMU table in main memory.
184 */
185 void enable_caches(void)
186 {
187 mmu_setup();
188 __asm_invalidate_tlb_all();
189 icache_enable();
190 dcache_enable();
191 }
192 #endif
193
194 u32 initiator_type(u32 cluster, int init_id)
195 {
196 struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
197 u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK;
198 u32 type = 0;
199
200 type = gur_in32(&gur->tp_ityp[idx]);
201 if (type & TP_ITYP_AV)
202 return type;
203
204 return 0;
205 }
206
207 u32 cpu_pos_mask(void)
208 {
209 struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
210 int i = 0;
211 u32 cluster, type, mask = 0;
212
213 do {
214 int j;
215
216 cluster = gur_in32(&gur->tp_cluster[i].lower);
217 for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
218 type = initiator_type(cluster, j);
219 if (type && (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM))
220 mask |= 1 << (i * TP_INIT_PER_CLUSTER + j);
221 }
222 i++;
223 } while ((cluster & TP_CLUSTER_EOC) == 0x0);
224
225 return mask;
226 }
227
228 u32 cpu_mask(void)
229 {
230 struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
231 int i = 0, count = 0;
232 u32 cluster, type, mask = 0;
233
234 do {
235 int j;
236
237 cluster = gur_in32(&gur->tp_cluster[i].lower);
238 for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
239 type = initiator_type(cluster, j);
240 if (type) {
241 if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
242 mask |= 1 << count;
243 count++;
244 }
245 }
246 i++;
247 } while ((cluster & TP_CLUSTER_EOC) == 0x0);
248
249 return mask;
250 }
251
252 /*
253 * Return the number of cores on this SOC.
254 */
255 int cpu_numcores(void)
256 {
257 return hweight32(cpu_mask());
258 }
259
260 int fsl_qoriq_core_to_cluster(unsigned int core)
261 {
262 struct ccsr_gur __iomem *gur =
263 (void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
264 int i = 0, count = 0;
265 u32 cluster;
266
267 do {
268 int j;
269
270 cluster = gur_in32(&gur->tp_cluster[i].lower);
271 for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
272 if (initiator_type(cluster, j)) {
273 if (count == core)
274 return i;
275 count++;
276 }
277 }
278 i++;
279 } while ((cluster & TP_CLUSTER_EOC) == 0x0);
280
281 return -1; /* cannot identify the cluster */
282 }
283
284 u32 fsl_qoriq_core_to_type(unsigned int core)
285 {
286 struct ccsr_gur __iomem *gur =
287 (void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
288 int i = 0, count = 0;
289 u32 cluster, type;
290
291 do {
292 int j;
293
294 cluster = gur_in32(&gur->tp_cluster[i].lower);
295 for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
296 type = initiator_type(cluster, j);
297 if (type) {
298 if (count == core)
299 return type;
300 count++;
301 }
302 }
303 i++;
304 } while ((cluster & TP_CLUSTER_EOC) == 0x0);
305
306 return -1; /* cannot identify the cluster */
307 }
308
309 #ifndef CONFIG_FSL_LSCH3
310 uint get_svr(void)
311 {
312 struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
313
314 return gur_in32(&gur->svr);
315 }
316 #endif
317
318 #ifdef CONFIG_DISPLAY_CPUINFO
319 int print_cpuinfo(void)
320 {
321 struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
322 struct sys_info sysinfo;
323 char buf[32];
324 unsigned int i, core;
325 u32 type, rcw, svr = gur_in32(&gur->svr);
326
327 puts("SoC: ");
328
329 cpu_name(buf);
330 printf(" %s (0x%x)\n", buf, svr);
331 memset((u8 *)buf, 0x00, ARRAY_SIZE(buf));
332 get_sys_info(&sysinfo);
333 puts("Clock Configuration:");
334 for_each_cpu(i, core, cpu_numcores(), cpu_mask()) {
335 if (!(i % 3))
336 puts("\n ");
337 type = TP_ITYP_VER(fsl_qoriq_core_to_type(core));
338 printf("CPU%d(%s):%-4s MHz ", core,
339 type == TY_ITYP_VER_A7 ? "A7 " :
340 (type == TY_ITYP_VER_A53 ? "A53" :
341 (type == TY_ITYP_VER_A57 ? "A57" :
342 (type == TY_ITYP_VER_A72 ? "A72" : " "))),
343 strmhz(buf, sysinfo.freq_processor[core]));
344 }
345 printf("\n Bus: %-4s MHz ",
346 strmhz(buf, sysinfo.freq_systembus));
347 printf("DDR: %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus));
348 #ifdef CONFIG_SYS_DPAA_FMAN
349 printf(" FMAN: %-4s MHz", strmhz(buf, sysinfo.freq_fman[0]));
350 #endif
351 #ifdef CONFIG_SYS_FSL_HAS_DP_DDR
352 if (soc_has_dp_ddr()) {
353 printf(" DP-DDR: %-4s MT/s",
354 strmhz(buf, sysinfo.freq_ddrbus2));
355 }
356 #endif
357 puts("\n");
358
359 /*
360 * Display the RCW, so that no one gets confused as to what RCW
361 * we're actually using for this boot.
362 */
363 puts("Reset Configuration Word (RCW):");
364 for (i = 0; i < ARRAY_SIZE(gur->rcwsr); i++) {
365 rcw = gur_in32(&gur->rcwsr[i]);
366 if ((i % 4) == 0)
367 printf("\n %08x:", i * 4);
368 printf(" %08x", rcw);
369 }
370 puts("\n");
371
372 return 0;
373 }
374 #endif
375
376 #ifdef CONFIG_FSL_ESDHC
377 int cpu_mmc_init(bd_t *bis)
378 {
379 return fsl_esdhc_mmc_init(bis);
380 }
381 #endif
382
383 int cpu_eth_init(bd_t *bis)
384 {
385 int error = 0;
386
387 #ifdef CONFIG_FSL_MC_ENET
388 error = fsl_mc_ldpaa_init(bis);
389 #endif
390 #ifdef CONFIG_FMAN_ENET
391 fm_standard_init(bis);
392 #endif
393 return error;
394 }
395
396 int arch_early_init_r(void)
397 {
398 #ifdef CONFIG_MP
399 int rv = 1;
400 u32 psci_ver = 0xffffffff;
401 #endif
402
403 #ifdef CONFIG_SYS_FSL_ERRATUM_A009635
404 erratum_a009635();
405 #endif
406
407 #ifdef CONFIG_MP
408 #if defined(CONFIG_ARMV8_SEC_FIRMWARE_SUPPORT) && defined(CONFIG_ARMV8_PSCI)
409 /* Check the psci version to determine if the psci is supported */
410 psci_ver = sec_firmware_support_psci_version();
411 #endif
412 if (psci_ver == 0xffffffff) {
413 rv = fsl_layerscape_wake_seconday_cores();
414 if (rv)
415 printf("Did not wake secondary cores\n");
416 }
417 #endif
418
419 #ifdef CONFIG_SYS_HAS_SERDES
420 fsl_serdes_init();
421 #endif
422 #ifdef CONFIG_FMAN_ENET
423 fman_enet_init();
424 #endif
425 return 0;
426 }
427
428 int timer_init(void)
429 {
430 u32 __iomem *cntcr = (u32 *)CONFIG_SYS_FSL_TIMER_ADDR;
431 #ifdef CONFIG_FSL_LSCH3
432 u32 __iomem *cltbenr = (u32 *)CONFIG_SYS_FSL_PMU_CLTBENR;
433 #endif
434 #ifdef CONFIG_LS2080A
435 u32 __iomem *pctbenr = (u32 *)FSL_PMU_PCTBENR_OFFSET;
436 u32 svr_dev_id;
437 #endif
438 #ifdef COUNTER_FREQUENCY_REAL
439 unsigned long cntfrq = COUNTER_FREQUENCY_REAL;
440
441 /* Update with accurate clock frequency */
442 asm volatile("msr cntfrq_el0, %0" : : "r" (cntfrq) : "memory");
443 #endif
444
445 #ifdef CONFIG_FSL_LSCH3
446 /* Enable timebase for all clusters.
447 * It is safe to do so even some clusters are not enabled.
448 */
449 out_le32(cltbenr, 0xf);
450 #endif
451
452 #ifdef CONFIG_LS2080A
453 /*
454 * In certain Layerscape SoCs, the clock for each core's
455 * has an enable bit in the PMU Physical Core Time Base Enable
456 * Register (PCTBENR), which allows the watchdog to operate.
457 */
458 setbits_le32(pctbenr, 0xff);
459 /*
460 * For LS2080A SoC and its personalities, timer controller
461 * offset is different
462 */
463 svr_dev_id = get_svr() >> 16;
464 if (svr_dev_id == SVR_DEV_LS2080A)
465 cntcr = (u32 *)SYS_FSL_LS2080A_LS2085A_TIMER_ADDR;
466
467 #endif
468
469 /* Enable clock for timer
470 * This is a global setting.
471 */
472 out_le32(cntcr, 0x1);
473
474 return 0;
475 }
476
477 __efi_runtime_data u32 __iomem *rstcr = (u32 *)CONFIG_SYS_FSL_RST_ADDR;
478
479 void __efi_runtime reset_cpu(ulong addr)
480 {
481 u32 val;
482
483 /* Raise RESET_REQ_B */
484 val = scfg_in32(rstcr);
485 val |= 0x02;
486 scfg_out32(rstcr, val);
487 }
488
489 #ifdef CONFIG_EFI_LOADER
490
491 void __efi_runtime EFIAPI efi_reset_system(
492 enum efi_reset_type reset_type,
493 efi_status_t reset_status,
494 unsigned long data_size, void *reset_data)
495 {
496 switch (reset_type) {
497 case EFI_RESET_COLD:
498 case EFI_RESET_WARM:
499 reset_cpu(0);
500 break;
501 case EFI_RESET_SHUTDOWN:
502 /* Nothing we can do */
503 break;
504 }
505
506 while (1) { }
507 }
508
509 void efi_reset_system_init(void)
510 {
511 efi_add_runtime_mmio(&rstcr, sizeof(*rstcr));
512 }
513
514 #endif
515
516 phys_size_t board_reserve_ram_top(phys_size_t ram_size)
517 {
518 phys_size_t ram_top = ram_size;
519
520 #ifdef CONFIG_SYS_MEM_TOP_HIDE
521 #error CONFIG_SYS_MEM_TOP_HIDE not to be used together with this function
522 #endif
523
524 /* Carve the MC private DRAM block from the end of DRAM */
525 #ifdef CONFIG_FSL_MC_ENET
526 ram_top -= mc_get_dram_block_size();
527 ram_top &= ~(CONFIG_SYS_MC_RSV_MEM_ALIGN - 1);
528 #endif
529
530 return ram_top;
531 }