]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - arch/arm/include/asm/bitops.h
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[thirdparty/kernel/linux.git] / arch / arm / include / asm / bitops.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright 1995, Russell King.
4 * Various bits and pieces copyrights include:
5 * Linus Torvalds (test_bit).
6 * Big endian support: Copyright 2001, Nicolas Pitre
7 * reworked by rmk.
8 *
9 * bit 0 is the LSB of an "unsigned long" quantity.
10 *
11 * Please note that the code in this file should never be included
12 * from user space. Many of these are not implemented in assembler
13 * since they would be too costly. Also, they require privileged
14 * instructions (which are not available from user mode) to ensure
15 * that they are atomic.
16 */
17
18 #ifndef __ASM_ARM_BITOPS_H
19 #define __ASM_ARM_BITOPS_H
20
21 #ifdef __KERNEL__
22
23 #ifndef _LINUX_BITOPS_H
24 #error only <linux/bitops.h> can be included directly
25 #endif
26
27 #include <linux/compiler.h>
28 #include <linux/irqflags.h>
29 #include <asm/barrier.h>
30
31 /*
32 * These functions are the basis of our bit ops.
33 *
34 * First, the atomic bitops. These use native endian.
35 */
36 static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
37 {
38 unsigned long flags;
39 unsigned long mask = BIT_MASK(bit);
40
41 p += BIT_WORD(bit);
42
43 raw_local_irq_save(flags);
44 *p |= mask;
45 raw_local_irq_restore(flags);
46 }
47
48 static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
49 {
50 unsigned long flags;
51 unsigned long mask = BIT_MASK(bit);
52
53 p += BIT_WORD(bit);
54
55 raw_local_irq_save(flags);
56 *p &= ~mask;
57 raw_local_irq_restore(flags);
58 }
59
60 static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
61 {
62 unsigned long flags;
63 unsigned long mask = BIT_MASK(bit);
64
65 p += BIT_WORD(bit);
66
67 raw_local_irq_save(flags);
68 *p ^= mask;
69 raw_local_irq_restore(flags);
70 }
71
72 static inline int
73 ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
74 {
75 unsigned long flags;
76 unsigned int res;
77 unsigned long mask = BIT_MASK(bit);
78
79 p += BIT_WORD(bit);
80
81 raw_local_irq_save(flags);
82 res = *p;
83 *p = res | mask;
84 raw_local_irq_restore(flags);
85
86 return (res & mask) != 0;
87 }
88
89 static inline int
90 ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
91 {
92 unsigned long flags;
93 unsigned int res;
94 unsigned long mask = BIT_MASK(bit);
95
96 p += BIT_WORD(bit);
97
98 raw_local_irq_save(flags);
99 res = *p;
100 *p = res & ~mask;
101 raw_local_irq_restore(flags);
102
103 return (res & mask) != 0;
104 }
105
106 static inline int
107 ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
108 {
109 unsigned long flags;
110 unsigned int res;
111 unsigned long mask = BIT_MASK(bit);
112
113 p += BIT_WORD(bit);
114
115 raw_local_irq_save(flags);
116 res = *p;
117 *p = res ^ mask;
118 raw_local_irq_restore(flags);
119
120 return (res & mask) != 0;
121 }
122
123 #include <asm-generic/bitops/non-atomic.h>
124
125 /*
126 * A note about Endian-ness.
127 * -------------------------
128 *
129 * When the ARM is put into big endian mode via CR15, the processor
130 * merely swaps the order of bytes within words, thus:
131 *
132 * ------------ physical data bus bits -----------
133 * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0
134 * little byte 3 byte 2 byte 1 byte 0
135 * big byte 0 byte 1 byte 2 byte 3
136 *
137 * This means that reading a 32-bit word at address 0 returns the same
138 * value irrespective of the endian mode bit.
139 *
140 * Peripheral devices should be connected with the data bus reversed in
141 * "Big Endian" mode. ARM Application Note 61 is applicable, and is
142 * available from http://www.arm.com/.
143 *
144 * The following assumes that the data bus connectivity for big endian
145 * mode has been followed.
146 *
147 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
148 */
149
150 /*
151 * Native endian assembly bitops. nr = 0 -> word 0 bit 0.
152 */
153 extern void _set_bit(int nr, volatile unsigned long * p);
154 extern void _clear_bit(int nr, volatile unsigned long * p);
155 extern void _change_bit(int nr, volatile unsigned long * p);
156 extern int _test_and_set_bit(int nr, volatile unsigned long * p);
157 extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
158 extern int _test_and_change_bit(int nr, volatile unsigned long * p);
159
160 /*
161 * Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
162 */
163 extern int _find_first_zero_bit_le(const unsigned long *p, unsigned size);
164 extern int _find_next_zero_bit_le(const unsigned long *p, int size, int offset);
165 extern int _find_first_bit_le(const unsigned long *p, unsigned size);
166 extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
167
168 /*
169 * Big endian assembly bitops. nr = 0 -> byte 3 bit 0.
170 */
171 extern int _find_first_zero_bit_be(const unsigned long *p, unsigned size);
172 extern int _find_next_zero_bit_be(const unsigned long *p, int size, int offset);
173 extern int _find_first_bit_be(const unsigned long *p, unsigned size);
174 extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
175
176 #ifndef CONFIG_SMP
177 /*
178 * The __* form of bitops are non-atomic and may be reordered.
179 */
180 #define ATOMIC_BITOP(name,nr,p) \
181 (__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
182 #else
183 #define ATOMIC_BITOP(name,nr,p) _##name(nr,p)
184 #endif
185
186 /*
187 * Native endian atomic definitions.
188 */
189 #define set_bit(nr,p) ATOMIC_BITOP(set_bit,nr,p)
190 #define clear_bit(nr,p) ATOMIC_BITOP(clear_bit,nr,p)
191 #define change_bit(nr,p) ATOMIC_BITOP(change_bit,nr,p)
192 #define test_and_set_bit(nr,p) ATOMIC_BITOP(test_and_set_bit,nr,p)
193 #define test_and_clear_bit(nr,p) ATOMIC_BITOP(test_and_clear_bit,nr,p)
194 #define test_and_change_bit(nr,p) ATOMIC_BITOP(test_and_change_bit,nr,p)
195
196 #ifndef __ARMEB__
197 /*
198 * These are the little endian, atomic definitions.
199 */
200 #define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
201 #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
202 #define find_first_bit(p,sz) _find_first_bit_le(p,sz)
203 #define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
204
205 #else
206 /*
207 * These are the big endian, atomic definitions.
208 */
209 #define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz)
210 #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off)
211 #define find_first_bit(p,sz) _find_first_bit_be(p,sz)
212 #define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off)
213
214 #endif
215
216 #if __LINUX_ARM_ARCH__ < 5
217
218 #include <asm-generic/bitops/ffz.h>
219 #include <asm-generic/bitops/__fls.h>
220 #include <asm-generic/bitops/__ffs.h>
221 #include <asm-generic/bitops/fls.h>
222 #include <asm-generic/bitops/ffs.h>
223
224 #else
225
226 static inline int constant_fls(int x)
227 {
228 int r = 32;
229
230 if (!x)
231 return 0;
232 if (!(x & 0xffff0000u)) {
233 x <<= 16;
234 r -= 16;
235 }
236 if (!(x & 0xff000000u)) {
237 x <<= 8;
238 r -= 8;
239 }
240 if (!(x & 0xf0000000u)) {
241 x <<= 4;
242 r -= 4;
243 }
244 if (!(x & 0xc0000000u)) {
245 x <<= 2;
246 r -= 2;
247 }
248 if (!(x & 0x80000000u)) {
249 x <<= 1;
250 r -= 1;
251 }
252 return r;
253 }
254
255 /*
256 * On ARMv5 and above those functions can be implemented around the
257 * clz instruction for much better code efficiency. __clz returns
258 * the number of leading zeros, zero input will return 32, and
259 * 0x80000000 will return 0.
260 */
261 static inline unsigned int __clz(unsigned int x)
262 {
263 unsigned int ret;
264
265 asm("clz\t%0, %1" : "=r" (ret) : "r" (x));
266
267 return ret;
268 }
269
270 /*
271 * fls() returns zero if the input is zero, otherwise returns the bit
272 * position of the last set bit, where the LSB is 1 and MSB is 32.
273 */
274 static inline int fls(int x)
275 {
276 if (__builtin_constant_p(x))
277 return constant_fls(x);
278
279 return 32 - __clz(x);
280 }
281
282 /*
283 * __fls() returns the bit position of the last bit set, where the
284 * LSB is 0 and MSB is 31. Zero input is undefined.
285 */
286 static inline unsigned long __fls(unsigned long x)
287 {
288 return fls(x) - 1;
289 }
290
291 /*
292 * ffs() returns zero if the input was zero, otherwise returns the bit
293 * position of the first set bit, where the LSB is 1 and MSB is 32.
294 */
295 static inline int ffs(int x)
296 {
297 return fls(x & -x);
298 }
299
300 /*
301 * __ffs() returns the bit position of the first bit set, where the
302 * LSB is 0 and MSB is 31. Zero input is undefined.
303 */
304 static inline unsigned long __ffs(unsigned long x)
305 {
306 return ffs(x) - 1;
307 }
308
309 #define ffz(x) __ffs( ~(x) )
310
311 #endif
312
313 #include <asm-generic/bitops/fls64.h>
314
315 #include <asm-generic/bitops/sched.h>
316 #include <asm-generic/bitops/hweight.h>
317 #include <asm-generic/bitops/lock.h>
318
319 #ifdef __ARMEB__
320
321 static inline int find_first_zero_bit_le(const void *p, unsigned size)
322 {
323 return _find_first_zero_bit_le(p, size);
324 }
325 #define find_first_zero_bit_le find_first_zero_bit_le
326
327 static inline int find_next_zero_bit_le(const void *p, int size, int offset)
328 {
329 return _find_next_zero_bit_le(p, size, offset);
330 }
331 #define find_next_zero_bit_le find_next_zero_bit_le
332
333 static inline int find_next_bit_le(const void *p, int size, int offset)
334 {
335 return _find_next_bit_le(p, size, offset);
336 }
337 #define find_next_bit_le find_next_bit_le
338
339 #endif
340
341 #include <asm-generic/bitops/le.h>
342
343 /*
344 * Ext2 is defined to use little-endian byte ordering.
345 */
346 #include <asm-generic/bitops/ext2-atomic-setbit.h>
347
348 #endif /* __KERNEL__ */
349
350 #endif /* _ARM_BITOPS_H */