]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/arm/include/asm/kvm_mmu.h
Merge tag 'sound-5.1-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[thirdparty/kernel/stable.git] / arch / arm / include / asm / kvm_mmu.h
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #ifndef __ARM_KVM_MMU_H__
20 #define __ARM_KVM_MMU_H__
21
22 #include <asm/memory.h>
23 #include <asm/page.h>
24
25 /*
26 * We directly use the kernel VA for the HYP, as we can directly share
27 * the mapping (HTTBR "covers" TTBR1).
28 */
29 #define kern_hyp_va(kva) (kva)
30
31 /* Contrary to arm64, there is no need to generate a PC-relative address */
32 #define hyp_symbol_addr(s) \
33 ({ \
34 typeof(s) *addr = &(s); \
35 addr; \
36 })
37
38 #ifndef __ASSEMBLY__
39
40 #include <linux/highmem.h>
41 #include <asm/cacheflush.h>
42 #include <asm/cputype.h>
43 #include <asm/kvm_arm.h>
44 #include <asm/kvm_hyp.h>
45 #include <asm/pgalloc.h>
46 #include <asm/stage2_pgtable.h>
47
48 /* Ensure compatibility with arm64 */
49 #define VA_BITS 32
50
51 #define kvm_phys_shift(kvm) KVM_PHYS_SHIFT
52 #define kvm_phys_size(kvm) (1ULL << kvm_phys_shift(kvm))
53 #define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - 1ULL)
54 #define kvm_vttbr_baddr_mask(kvm) VTTBR_BADDR_MASK
55
56 #define stage2_pgd_size(kvm) (PTRS_PER_S2_PGD * sizeof(pgd_t))
57
58 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
59 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
60 void __iomem **kaddr,
61 void __iomem **haddr);
62 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
63 void **haddr);
64 void free_hyp_pgds(void);
65
66 void stage2_unmap_vm(struct kvm *kvm);
67 int kvm_alloc_stage2_pgd(struct kvm *kvm);
68 void kvm_free_stage2_pgd(struct kvm *kvm);
69 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
70 phys_addr_t pa, unsigned long size, bool writable);
71
72 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
73
74 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
75
76 phys_addr_t kvm_mmu_get_httbr(void);
77 phys_addr_t kvm_get_idmap_vector(void);
78 int kvm_mmu_init(void);
79 void kvm_clear_hyp_idmap(void);
80
81 #define kvm_mk_pmd(ptep) __pmd(__pa(ptep) | PMD_TYPE_TABLE)
82 #define kvm_mk_pud(pmdp) __pud(__pa(pmdp) | PMD_TYPE_TABLE)
83 #define kvm_mk_pgd(pudp) ({ BUILD_BUG(); 0; })
84
85 #define kvm_pfn_pte(pfn, prot) pfn_pte(pfn, prot)
86 #define kvm_pfn_pmd(pfn, prot) pfn_pmd(pfn, prot)
87 #define kvm_pfn_pud(pfn, prot) (__pud(0))
88
89 #define kvm_pud_pfn(pud) ({ WARN_ON(1); 0; })
90
91
92 #define kvm_pmd_mkhuge(pmd) pmd_mkhuge(pmd)
93 /* No support for pud hugepages */
94 #define kvm_pud_mkhuge(pud) ( {WARN_ON(1); pud; })
95
96 /*
97 * The following kvm_*pud*() functions are provided strictly to allow
98 * sharing code with arm64. They should never be called in practice.
99 */
100 static inline void kvm_set_s2pud_readonly(pud_t *pud)
101 {
102 WARN_ON(1);
103 }
104
105 static inline bool kvm_s2pud_readonly(pud_t *pud)
106 {
107 WARN_ON(1);
108 return false;
109 }
110
111 static inline void kvm_set_pud(pud_t *pud, pud_t new_pud)
112 {
113 WARN_ON(1);
114 }
115
116 static inline pud_t kvm_s2pud_mkwrite(pud_t pud)
117 {
118 WARN_ON(1);
119 return pud;
120 }
121
122 static inline pud_t kvm_s2pud_mkexec(pud_t pud)
123 {
124 WARN_ON(1);
125 return pud;
126 }
127
128 static inline bool kvm_s2pud_exec(pud_t *pud)
129 {
130 WARN_ON(1);
131 return false;
132 }
133
134 static inline pud_t kvm_s2pud_mkyoung(pud_t pud)
135 {
136 BUG();
137 return pud;
138 }
139
140 static inline bool kvm_s2pud_young(pud_t pud)
141 {
142 WARN_ON(1);
143 return false;
144 }
145
146 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
147 {
148 pte_val(pte) |= L_PTE_S2_RDWR;
149 return pte;
150 }
151
152 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
153 {
154 pmd_val(pmd) |= L_PMD_S2_RDWR;
155 return pmd;
156 }
157
158 static inline pte_t kvm_s2pte_mkexec(pte_t pte)
159 {
160 pte_val(pte) &= ~L_PTE_XN;
161 return pte;
162 }
163
164 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
165 {
166 pmd_val(pmd) &= ~PMD_SECT_XN;
167 return pmd;
168 }
169
170 static inline void kvm_set_s2pte_readonly(pte_t *pte)
171 {
172 pte_val(*pte) = (pte_val(*pte) & ~L_PTE_S2_RDWR) | L_PTE_S2_RDONLY;
173 }
174
175 static inline bool kvm_s2pte_readonly(pte_t *pte)
176 {
177 return (pte_val(*pte) & L_PTE_S2_RDWR) == L_PTE_S2_RDONLY;
178 }
179
180 static inline bool kvm_s2pte_exec(pte_t *pte)
181 {
182 return !(pte_val(*pte) & L_PTE_XN);
183 }
184
185 static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
186 {
187 pmd_val(*pmd) = (pmd_val(*pmd) & ~L_PMD_S2_RDWR) | L_PMD_S2_RDONLY;
188 }
189
190 static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
191 {
192 return (pmd_val(*pmd) & L_PMD_S2_RDWR) == L_PMD_S2_RDONLY;
193 }
194
195 static inline bool kvm_s2pmd_exec(pmd_t *pmd)
196 {
197 return !(pmd_val(*pmd) & PMD_SECT_XN);
198 }
199
200 static inline bool kvm_page_empty(void *ptr)
201 {
202 struct page *ptr_page = virt_to_page(ptr);
203 return page_count(ptr_page) == 1;
204 }
205
206 #define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep)
207 #define kvm_pmd_table_empty(kvm, pmdp) kvm_page_empty(pmdp)
208 #define kvm_pud_table_empty(kvm, pudp) false
209
210 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
211 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
212 #define hyp_pud_table_empty(pudp) false
213
214 struct kvm;
215
216 #define kvm_flush_dcache_to_poc(a,l) __cpuc_flush_dcache_area((a), (l))
217
218 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
219 {
220 return (vcpu_cp15(vcpu, c1_SCTLR) & 0b101) == 0b101;
221 }
222
223 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
224 {
225 /*
226 * Clean the dcache to the Point of Coherency.
227 *
228 * We need to do this through a kernel mapping (using the
229 * user-space mapping has proved to be the wrong
230 * solution). For that, we need to kmap one page at a time,
231 * and iterate over the range.
232 */
233
234 VM_BUG_ON(size & ~PAGE_MASK);
235
236 while (size) {
237 void *va = kmap_atomic_pfn(pfn);
238
239 kvm_flush_dcache_to_poc(va, PAGE_SIZE);
240
241 size -= PAGE_SIZE;
242 pfn++;
243
244 kunmap_atomic(va);
245 }
246 }
247
248 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
249 unsigned long size)
250 {
251 u32 iclsz;
252
253 /*
254 * If we are going to insert an instruction page and the icache is
255 * either VIPT or PIPT, there is a potential problem where the host
256 * (or another VM) may have used the same page as this guest, and we
257 * read incorrect data from the icache. If we're using a PIPT cache,
258 * we can invalidate just that page, but if we are using a VIPT cache
259 * we need to invalidate the entire icache - damn shame - as written
260 * in the ARM ARM (DDI 0406C.b - Page B3-1393).
261 *
262 * VIVT caches are tagged using both the ASID and the VMID and doesn't
263 * need any kind of flushing (DDI 0406C.b - Page B3-1392).
264 */
265
266 VM_BUG_ON(size & ~PAGE_MASK);
267
268 if (icache_is_vivt_asid_tagged())
269 return;
270
271 if (!icache_is_pipt()) {
272 /* any kind of VIPT cache */
273 __flush_icache_all();
274 return;
275 }
276
277 /*
278 * CTR IminLine contains Log2 of the number of words in the
279 * cache line, so we can get the number of words as
280 * 2 << (IminLine - 1). To get the number of bytes, we
281 * multiply by 4 (the number of bytes in a 32-bit word), and
282 * get 4 << (IminLine).
283 */
284 iclsz = 4 << (read_cpuid(CPUID_CACHETYPE) & 0xf);
285
286 while (size) {
287 void *va = kmap_atomic_pfn(pfn);
288 void *end = va + PAGE_SIZE;
289 void *addr = va;
290
291 do {
292 write_sysreg(addr, ICIMVAU);
293 addr += iclsz;
294 } while (addr < end);
295
296 dsb(ishst);
297 isb();
298
299 size -= PAGE_SIZE;
300 pfn++;
301
302 kunmap_atomic(va);
303 }
304
305 /* Check if we need to invalidate the BTB */
306 if ((read_cpuid_ext(CPUID_EXT_MMFR1) >> 28) != 4) {
307 write_sysreg(0, BPIALLIS);
308 dsb(ishst);
309 isb();
310 }
311 }
312
313 static inline void __kvm_flush_dcache_pte(pte_t pte)
314 {
315 void *va = kmap_atomic(pte_page(pte));
316
317 kvm_flush_dcache_to_poc(va, PAGE_SIZE);
318
319 kunmap_atomic(va);
320 }
321
322 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
323 {
324 unsigned long size = PMD_SIZE;
325 kvm_pfn_t pfn = pmd_pfn(pmd);
326
327 while (size) {
328 void *va = kmap_atomic_pfn(pfn);
329
330 kvm_flush_dcache_to_poc(va, PAGE_SIZE);
331
332 pfn++;
333 size -= PAGE_SIZE;
334
335 kunmap_atomic(va);
336 }
337 }
338
339 static inline void __kvm_flush_dcache_pud(pud_t pud)
340 {
341 }
342
343 #define kvm_virt_to_phys(x) virt_to_idmap((unsigned long)(x))
344
345 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
346 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
347
348 static inline bool __kvm_cpu_uses_extended_idmap(void)
349 {
350 return false;
351 }
352
353 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
354 {
355 return PTRS_PER_PGD;
356 }
357
358 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
359 pgd_t *hyp_pgd,
360 pgd_t *merged_hyp_pgd,
361 unsigned long hyp_idmap_start) { }
362
363 static inline unsigned int kvm_get_vmid_bits(void)
364 {
365 return 8;
366 }
367
368 /*
369 * We are not in the kvm->srcu critical section most of the time, so we take
370 * the SRCU read lock here. Since we copy the data from the user page, we
371 * can immediately drop the lock again.
372 */
373 static inline int kvm_read_guest_lock(struct kvm *kvm,
374 gpa_t gpa, void *data, unsigned long len)
375 {
376 int srcu_idx = srcu_read_lock(&kvm->srcu);
377 int ret = kvm_read_guest(kvm, gpa, data, len);
378
379 srcu_read_unlock(&kvm->srcu, srcu_idx);
380
381 return ret;
382 }
383
384 static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
385 const void *data, unsigned long len)
386 {
387 int srcu_idx = srcu_read_lock(&kvm->srcu);
388 int ret = kvm_write_guest(kvm, gpa, data, len);
389
390 srcu_read_unlock(&kvm->srcu, srcu_idx);
391
392 return ret;
393 }
394
395 static inline void *kvm_get_hyp_vector(void)
396 {
397 switch(read_cpuid_part()) {
398 #ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
399 case ARM_CPU_PART_CORTEX_A12:
400 case ARM_CPU_PART_CORTEX_A17:
401 {
402 extern char __kvm_hyp_vector_bp_inv[];
403 return kvm_ksym_ref(__kvm_hyp_vector_bp_inv);
404 }
405
406 case ARM_CPU_PART_BRAHMA_B15:
407 case ARM_CPU_PART_CORTEX_A15:
408 {
409 extern char __kvm_hyp_vector_ic_inv[];
410 return kvm_ksym_ref(__kvm_hyp_vector_ic_inv);
411 }
412 #endif
413 default:
414 {
415 extern char __kvm_hyp_vector[];
416 return kvm_ksym_ref(__kvm_hyp_vector);
417 }
418 }
419 }
420
421 static inline int kvm_map_vectors(void)
422 {
423 return 0;
424 }
425
426 static inline int hyp_map_aux_data(void)
427 {
428 return 0;
429 }
430
431 #define kvm_phys_to_vttbr(addr) (addr)
432
433 static inline void kvm_set_ipa_limit(void) {}
434
435 static __always_inline u64 kvm_get_vttbr(struct kvm *kvm)
436 {
437 struct kvm_vmid *vmid = &kvm->arch.vmid;
438 u64 vmid_field, baddr;
439
440 baddr = kvm->arch.pgd_phys;
441 vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT;
442 return kvm_phys_to_vttbr(baddr) | vmid_field;
443 }
444
445 #endif /* !__ASSEMBLY__ */
446
447 #endif /* __ARM_KVM_MMU_H__ */