]> git.ipfire.org Git - people/ms/linux.git/blob - arch/arm/kernel/smp.c
Merge remote-tracking branch 'asoc/fix/sgtl5000' into asoc-linus
[people/ms/linux.git] / arch / arm / kernel / smp.c
1 /*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29
30 #include <linux/atomic.h>
31 #include <asm/smp.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpu.h>
34 #include <asm/cputype.h>
35 #include <asm/exception.h>
36 #include <asm/idmap.h>
37 #include <asm/topology.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/processor.h>
42 #include <asm/sections.h>
43 #include <asm/tlbflush.h>
44 #include <asm/ptrace.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 #include <asm/mpu.h>
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/ipi.h>
52
53 /*
54 * as from 2.5, kernels no longer have an init_tasks structure
55 * so we need some other way of telling a new secondary core
56 * where to place its SVC stack
57 */
58 struct secondary_data secondary_data;
59
60 /*
61 * control for which core is the next to come out of the secondary
62 * boot "holding pen"
63 */
64 volatile int pen_release = -1;
65
66 enum ipi_msg_type {
67 IPI_WAKEUP,
68 IPI_TIMER,
69 IPI_RESCHEDULE,
70 IPI_CALL_FUNC,
71 IPI_CALL_FUNC_SINGLE,
72 IPI_CPU_STOP,
73 IPI_IRQ_WORK,
74 IPI_COMPLETION,
75 };
76
77 static DECLARE_COMPLETION(cpu_running);
78
79 static struct smp_operations smp_ops;
80
81 void __init smp_set_ops(struct smp_operations *ops)
82 {
83 if (ops)
84 smp_ops = *ops;
85 };
86
87 static unsigned long get_arch_pgd(pgd_t *pgd)
88 {
89 phys_addr_t pgdir = virt_to_idmap(pgd);
90 BUG_ON(pgdir & ARCH_PGD_MASK);
91 return pgdir >> ARCH_PGD_SHIFT;
92 }
93
94 int __cpu_up(unsigned int cpu, struct task_struct *idle)
95 {
96 int ret;
97
98 if (!smp_ops.smp_boot_secondary)
99 return -ENOSYS;
100
101 /*
102 * We need to tell the secondary core where to find
103 * its stack and the page tables.
104 */
105 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
106 #ifdef CONFIG_ARM_MPU
107 secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
108 #endif
109
110 #ifdef CONFIG_MMU
111 secondary_data.pgdir = get_arch_pgd(idmap_pgd);
112 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
113 #endif
114 sync_cache_w(&secondary_data);
115
116 /*
117 * Now bring the CPU into our world.
118 */
119 ret = smp_ops.smp_boot_secondary(cpu, idle);
120 if (ret == 0) {
121 /*
122 * CPU was successfully started, wait for it
123 * to come online or time out.
124 */
125 wait_for_completion_timeout(&cpu_running,
126 msecs_to_jiffies(1000));
127
128 if (!cpu_online(cpu)) {
129 pr_crit("CPU%u: failed to come online\n", cpu);
130 ret = -EIO;
131 }
132 } else {
133 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
134 }
135
136
137 memset(&secondary_data, 0, sizeof(secondary_data));
138 return ret;
139 }
140
141 /* platform specific SMP operations */
142 void __init smp_init_cpus(void)
143 {
144 if (smp_ops.smp_init_cpus)
145 smp_ops.smp_init_cpus();
146 }
147
148 int platform_can_cpu_hotplug(void)
149 {
150 #ifdef CONFIG_HOTPLUG_CPU
151 if (smp_ops.cpu_kill)
152 return 1;
153 #endif
154
155 return 0;
156 }
157
158 #ifdef CONFIG_HOTPLUG_CPU
159 static int platform_cpu_kill(unsigned int cpu)
160 {
161 if (smp_ops.cpu_kill)
162 return smp_ops.cpu_kill(cpu);
163 return 1;
164 }
165
166 static int platform_cpu_disable(unsigned int cpu)
167 {
168 if (smp_ops.cpu_disable)
169 return smp_ops.cpu_disable(cpu);
170
171 /*
172 * By default, allow disabling all CPUs except the first one,
173 * since this is special on a lot of platforms, e.g. because
174 * of clock tick interrupts.
175 */
176 return cpu == 0 ? -EPERM : 0;
177 }
178 /*
179 * __cpu_disable runs on the processor to be shutdown.
180 */
181 int __cpu_disable(void)
182 {
183 unsigned int cpu = smp_processor_id();
184 int ret;
185
186 ret = platform_cpu_disable(cpu);
187 if (ret)
188 return ret;
189
190 /*
191 * Take this CPU offline. Once we clear this, we can't return,
192 * and we must not schedule until we're ready to give up the cpu.
193 */
194 set_cpu_online(cpu, false);
195
196 /*
197 * OK - migrate IRQs away from this CPU
198 */
199 migrate_irqs();
200
201 /*
202 * Flush user cache and TLB mappings, and then remove this CPU
203 * from the vm mask set of all processes.
204 *
205 * Caches are flushed to the Level of Unification Inner Shareable
206 * to write-back dirty lines to unified caches shared by all CPUs.
207 */
208 flush_cache_louis();
209 local_flush_tlb_all();
210
211 clear_tasks_mm_cpumask(cpu);
212
213 return 0;
214 }
215
216 static DECLARE_COMPLETION(cpu_died);
217
218 /*
219 * called on the thread which is asking for a CPU to be shutdown -
220 * waits until shutdown has completed, or it is timed out.
221 */
222 void __cpu_die(unsigned int cpu)
223 {
224 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
225 pr_err("CPU%u: cpu didn't die\n", cpu);
226 return;
227 }
228 pr_notice("CPU%u: shutdown\n", cpu);
229
230 /*
231 * platform_cpu_kill() is generally expected to do the powering off
232 * and/or cutting of clocks to the dying CPU. Optionally, this may
233 * be done by the CPU which is dying in preference to supporting
234 * this call, but that means there is _no_ synchronisation between
235 * the requesting CPU and the dying CPU actually losing power.
236 */
237 if (!platform_cpu_kill(cpu))
238 pr_err("CPU%u: unable to kill\n", cpu);
239 }
240
241 /*
242 * Called from the idle thread for the CPU which has been shutdown.
243 *
244 * Note that we disable IRQs here, but do not re-enable them
245 * before returning to the caller. This is also the behaviour
246 * of the other hotplug-cpu capable cores, so presumably coming
247 * out of idle fixes this.
248 */
249 void __ref cpu_die(void)
250 {
251 unsigned int cpu = smp_processor_id();
252
253 idle_task_exit();
254
255 local_irq_disable();
256
257 /*
258 * Flush the data out of the L1 cache for this CPU. This must be
259 * before the completion to ensure that data is safely written out
260 * before platform_cpu_kill() gets called - which may disable
261 * *this* CPU and power down its cache.
262 */
263 flush_cache_louis();
264
265 /*
266 * Tell __cpu_die() that this CPU is now safe to dispose of. Once
267 * this returns, power and/or clocks can be removed at any point
268 * from this CPU and its cache by platform_cpu_kill().
269 */
270 complete(&cpu_died);
271
272 /*
273 * Ensure that the cache lines associated with that completion are
274 * written out. This covers the case where _this_ CPU is doing the
275 * powering down, to ensure that the completion is visible to the
276 * CPU waiting for this one.
277 */
278 flush_cache_louis();
279
280 /*
281 * The actual CPU shutdown procedure is at least platform (if not
282 * CPU) specific. This may remove power, or it may simply spin.
283 *
284 * Platforms are generally expected *NOT* to return from this call,
285 * although there are some which do because they have no way to
286 * power down the CPU. These platforms are the _only_ reason we
287 * have a return path which uses the fragment of assembly below.
288 *
289 * The return path should not be used for platforms which can
290 * power off the CPU.
291 */
292 if (smp_ops.cpu_die)
293 smp_ops.cpu_die(cpu);
294
295 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
296 cpu);
297
298 /*
299 * Do not return to the idle loop - jump back to the secondary
300 * cpu initialisation. There's some initialisation which needs
301 * to be repeated to undo the effects of taking the CPU offline.
302 */
303 __asm__("mov sp, %0\n"
304 " mov fp, #0\n"
305 " b secondary_start_kernel"
306 :
307 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
308 }
309 #endif /* CONFIG_HOTPLUG_CPU */
310
311 /*
312 * Called by both boot and secondaries to move global data into
313 * per-processor storage.
314 */
315 static void smp_store_cpu_info(unsigned int cpuid)
316 {
317 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
318
319 cpu_info->loops_per_jiffy = loops_per_jiffy;
320 cpu_info->cpuid = read_cpuid_id();
321
322 store_cpu_topology(cpuid);
323 }
324
325 /*
326 * This is the secondary CPU boot entry. We're using this CPUs
327 * idle thread stack, but a set of temporary page tables.
328 */
329 asmlinkage void secondary_start_kernel(void)
330 {
331 struct mm_struct *mm = &init_mm;
332 unsigned int cpu;
333
334 /*
335 * The identity mapping is uncached (strongly ordered), so
336 * switch away from it before attempting any exclusive accesses.
337 */
338 cpu_switch_mm(mm->pgd, mm);
339 local_flush_bp_all();
340 enter_lazy_tlb(mm, current);
341 local_flush_tlb_all();
342
343 /*
344 * All kernel threads share the same mm context; grab a
345 * reference and switch to it.
346 */
347 cpu = smp_processor_id();
348 atomic_inc(&mm->mm_count);
349 current->active_mm = mm;
350 cpumask_set_cpu(cpu, mm_cpumask(mm));
351
352 cpu_init();
353
354 pr_debug("CPU%u: Booted secondary processor\n", cpu);
355
356 preempt_disable();
357 trace_hardirqs_off();
358
359 /*
360 * Give the platform a chance to do its own initialisation.
361 */
362 if (smp_ops.smp_secondary_init)
363 smp_ops.smp_secondary_init(cpu);
364
365 notify_cpu_starting(cpu);
366
367 calibrate_delay();
368
369 smp_store_cpu_info(cpu);
370
371 /*
372 * OK, now it's safe to let the boot CPU continue. Wait for
373 * the CPU migration code to notice that the CPU is online
374 * before we continue - which happens after __cpu_up returns.
375 */
376 set_cpu_online(cpu, true);
377 complete(&cpu_running);
378
379 local_irq_enable();
380 local_fiq_enable();
381
382 /*
383 * OK, it's off to the idle thread for us
384 */
385 cpu_startup_entry(CPUHP_ONLINE);
386 }
387
388 void __init smp_cpus_done(unsigned int max_cpus)
389 {
390 int cpu;
391 unsigned long bogosum = 0;
392
393 for_each_online_cpu(cpu)
394 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
395
396 printk(KERN_INFO "SMP: Total of %d processors activated "
397 "(%lu.%02lu BogoMIPS).\n",
398 num_online_cpus(),
399 bogosum / (500000/HZ),
400 (bogosum / (5000/HZ)) % 100);
401
402 hyp_mode_check();
403 }
404
405 void __init smp_prepare_boot_cpu(void)
406 {
407 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
408 }
409
410 void __init smp_prepare_cpus(unsigned int max_cpus)
411 {
412 unsigned int ncores = num_possible_cpus();
413
414 init_cpu_topology();
415
416 smp_store_cpu_info(smp_processor_id());
417
418 /*
419 * are we trying to boot more cores than exist?
420 */
421 if (max_cpus > ncores)
422 max_cpus = ncores;
423 if (ncores > 1 && max_cpus) {
424 /*
425 * Initialise the present map, which describes the set of CPUs
426 * actually populated at the present time. A platform should
427 * re-initialize the map in the platforms smp_prepare_cpus()
428 * if present != possible (e.g. physical hotplug).
429 */
430 init_cpu_present(cpu_possible_mask);
431
432 /*
433 * Initialise the SCU if there are more than one CPU
434 * and let them know where to start.
435 */
436 if (smp_ops.smp_prepare_cpus)
437 smp_ops.smp_prepare_cpus(max_cpus);
438 }
439 }
440
441 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
442
443 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
444 {
445 if (!__smp_cross_call)
446 __smp_cross_call = fn;
447 }
448
449 static const char *ipi_types[NR_IPI] __tracepoint_string = {
450 #define S(x,s) [x] = s
451 S(IPI_WAKEUP, "CPU wakeup interrupts"),
452 S(IPI_TIMER, "Timer broadcast interrupts"),
453 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
454 S(IPI_CALL_FUNC, "Function call interrupts"),
455 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
456 S(IPI_CPU_STOP, "CPU stop interrupts"),
457 S(IPI_IRQ_WORK, "IRQ work interrupts"),
458 S(IPI_COMPLETION, "completion interrupts"),
459 };
460
461 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
462 {
463 trace_ipi_raise(target, ipi_types[ipinr]);
464 __smp_cross_call(target, ipinr);
465 }
466
467 void show_ipi_list(struct seq_file *p, int prec)
468 {
469 unsigned int cpu, i;
470
471 for (i = 0; i < NR_IPI; i++) {
472 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
473
474 for_each_online_cpu(cpu)
475 seq_printf(p, "%10u ",
476 __get_irq_stat(cpu, ipi_irqs[i]));
477
478 seq_printf(p, " %s\n", ipi_types[i]);
479 }
480 }
481
482 u64 smp_irq_stat_cpu(unsigned int cpu)
483 {
484 u64 sum = 0;
485 int i;
486
487 for (i = 0; i < NR_IPI; i++)
488 sum += __get_irq_stat(cpu, ipi_irqs[i]);
489
490 return sum;
491 }
492
493 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
494 {
495 smp_cross_call(mask, IPI_CALL_FUNC);
496 }
497
498 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
499 {
500 smp_cross_call(mask, IPI_WAKEUP);
501 }
502
503 void arch_send_call_function_single_ipi(int cpu)
504 {
505 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
506 }
507
508 #ifdef CONFIG_IRQ_WORK
509 void arch_irq_work_raise(void)
510 {
511 if (arch_irq_work_has_interrupt())
512 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
513 }
514 #endif
515
516 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
517 void tick_broadcast(const struct cpumask *mask)
518 {
519 smp_cross_call(mask, IPI_TIMER);
520 }
521 #endif
522
523 static DEFINE_RAW_SPINLOCK(stop_lock);
524
525 /*
526 * ipi_cpu_stop - handle IPI from smp_send_stop()
527 */
528 static void ipi_cpu_stop(unsigned int cpu)
529 {
530 if (system_state == SYSTEM_BOOTING ||
531 system_state == SYSTEM_RUNNING) {
532 raw_spin_lock(&stop_lock);
533 pr_crit("CPU%u: stopping\n", cpu);
534 dump_stack();
535 raw_spin_unlock(&stop_lock);
536 }
537
538 set_cpu_online(cpu, false);
539
540 local_fiq_disable();
541 local_irq_disable();
542
543 while (1)
544 cpu_relax();
545 }
546
547 static DEFINE_PER_CPU(struct completion *, cpu_completion);
548
549 int register_ipi_completion(struct completion *completion, int cpu)
550 {
551 per_cpu(cpu_completion, cpu) = completion;
552 return IPI_COMPLETION;
553 }
554
555 static void ipi_complete(unsigned int cpu)
556 {
557 complete(per_cpu(cpu_completion, cpu));
558 }
559
560 /*
561 * Main handler for inter-processor interrupts
562 */
563 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
564 {
565 handle_IPI(ipinr, regs);
566 }
567
568 void handle_IPI(int ipinr, struct pt_regs *regs)
569 {
570 unsigned int cpu = smp_processor_id();
571 struct pt_regs *old_regs = set_irq_regs(regs);
572
573 if ((unsigned)ipinr < NR_IPI) {
574 trace_ipi_entry(ipi_types[ipinr]);
575 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
576 }
577
578 switch (ipinr) {
579 case IPI_WAKEUP:
580 break;
581
582 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
583 case IPI_TIMER:
584 irq_enter();
585 tick_receive_broadcast();
586 irq_exit();
587 break;
588 #endif
589
590 case IPI_RESCHEDULE:
591 scheduler_ipi();
592 break;
593
594 case IPI_CALL_FUNC:
595 irq_enter();
596 generic_smp_call_function_interrupt();
597 irq_exit();
598 break;
599
600 case IPI_CALL_FUNC_SINGLE:
601 irq_enter();
602 generic_smp_call_function_single_interrupt();
603 irq_exit();
604 break;
605
606 case IPI_CPU_STOP:
607 irq_enter();
608 ipi_cpu_stop(cpu);
609 irq_exit();
610 break;
611
612 #ifdef CONFIG_IRQ_WORK
613 case IPI_IRQ_WORK:
614 irq_enter();
615 irq_work_run();
616 irq_exit();
617 break;
618 #endif
619
620 case IPI_COMPLETION:
621 irq_enter();
622 ipi_complete(cpu);
623 irq_exit();
624 break;
625
626 default:
627 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
628 cpu, ipinr);
629 break;
630 }
631
632 if ((unsigned)ipinr < NR_IPI)
633 trace_ipi_exit(ipi_types[ipinr]);
634 set_irq_regs(old_regs);
635 }
636
637 void smp_send_reschedule(int cpu)
638 {
639 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
640 }
641
642 void smp_send_stop(void)
643 {
644 unsigned long timeout;
645 struct cpumask mask;
646
647 cpumask_copy(&mask, cpu_online_mask);
648 cpumask_clear_cpu(smp_processor_id(), &mask);
649 if (!cpumask_empty(&mask))
650 smp_cross_call(&mask, IPI_CPU_STOP);
651
652 /* Wait up to one second for other CPUs to stop */
653 timeout = USEC_PER_SEC;
654 while (num_online_cpus() > 1 && timeout--)
655 udelay(1);
656
657 if (num_online_cpus() > 1)
658 pr_warn("SMP: failed to stop secondary CPUs\n");
659 }
660
661 /*
662 * not supported here
663 */
664 int setup_profiling_timer(unsigned int multiplier)
665 {
666 return -EINVAL;
667 }
668
669 #ifdef CONFIG_CPU_FREQ
670
671 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
672 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
673 static unsigned long global_l_p_j_ref;
674 static unsigned long global_l_p_j_ref_freq;
675
676 static int cpufreq_callback(struct notifier_block *nb,
677 unsigned long val, void *data)
678 {
679 struct cpufreq_freqs *freq = data;
680 int cpu = freq->cpu;
681
682 if (freq->flags & CPUFREQ_CONST_LOOPS)
683 return NOTIFY_OK;
684
685 if (!per_cpu(l_p_j_ref, cpu)) {
686 per_cpu(l_p_j_ref, cpu) =
687 per_cpu(cpu_data, cpu).loops_per_jiffy;
688 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
689 if (!global_l_p_j_ref) {
690 global_l_p_j_ref = loops_per_jiffy;
691 global_l_p_j_ref_freq = freq->old;
692 }
693 }
694
695 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
696 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
697 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
698 global_l_p_j_ref_freq,
699 freq->new);
700 per_cpu(cpu_data, cpu).loops_per_jiffy =
701 cpufreq_scale(per_cpu(l_p_j_ref, cpu),
702 per_cpu(l_p_j_ref_freq, cpu),
703 freq->new);
704 }
705 return NOTIFY_OK;
706 }
707
708 static struct notifier_block cpufreq_notifier = {
709 .notifier_call = cpufreq_callback,
710 };
711
712 static int __init register_cpufreq_notifier(void)
713 {
714 return cpufreq_register_notifier(&cpufreq_notifier,
715 CPUFREQ_TRANSITION_NOTIFIER);
716 }
717 core_initcall(register_cpufreq_notifier);
718
719 #endif