]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/arm/mach-exynos/dmc_init_ddr3.c
arm: exynos: clean up checkpatch issues
[people/ms/u-boot.git] / arch / arm / mach-exynos / dmc_init_ddr3.c
1 /*
2 * DDR3 mem setup file for board based on EXYNOS5
3 *
4 * Copyright (C) 2012 Samsung Electronics
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 */
8
9 #include <common.h>
10 #include <config.h>
11 #include <asm/io.h>
12 #include <asm/arch/clock.h>
13 #include <asm/arch/cpu.h>
14 #include <asm/arch/dmc.h>
15 #include <asm/arch/power.h>
16 #include "common_setup.h"
17 #include "exynos5_setup.h"
18 #include "clock_init.h"
19
20 #define TIMEOUT_US 10000
21 #define NUM_BYTE_LANES 4
22 #define DEFAULT_DQS 8
23 #define DEFAULT_DQS_X4 ((DEFAULT_DQS << 24) || (DEFAULT_DQS << 16) \
24 || (DEFAULT_DQS << 8) || (DEFAULT_DQS << 0))
25
26 #ifdef CONFIG_EXYNOS5250
27 static void reset_phy_ctrl(void)
28 {
29 struct exynos5_clock *clk =
30 (struct exynos5_clock *)samsung_get_base_clock();
31
32 writel(DDR3PHY_CTRL_PHY_RESET_OFF, &clk->lpddr3phy_ctrl);
33 writel(DDR3PHY_CTRL_PHY_RESET, &clk->lpddr3phy_ctrl);
34 }
35
36 int ddr3_mem_ctrl_init(struct mem_timings *mem, int reset)
37 {
38 unsigned int val;
39 struct exynos5_phy_control *phy0_ctrl, *phy1_ctrl;
40 struct exynos5_dmc *dmc;
41 int i;
42
43 phy0_ctrl = (struct exynos5_phy_control *)samsung_get_base_dmc_phy();
44 phy1_ctrl = (struct exynos5_phy_control *)(samsung_get_base_dmc_phy()
45 + DMC_OFFSET);
46 dmc = (struct exynos5_dmc *)samsung_get_base_dmc_ctrl();
47
48 if (reset)
49 reset_phy_ctrl();
50
51 /* Set Impedance Output Driver */
52 val = (mem->impedance << CA_CK_DRVR_DS_OFFSET) |
53 (mem->impedance << CA_CKE_DRVR_DS_OFFSET) |
54 (mem->impedance << CA_CS_DRVR_DS_OFFSET) |
55 (mem->impedance << CA_ADR_DRVR_DS_OFFSET);
56 writel(val, &phy0_ctrl->phy_con39);
57 writel(val, &phy1_ctrl->phy_con39);
58
59 /* Set Read Latency and Burst Length for PHY0 and PHY1 */
60 val = (mem->ctrl_bstlen << PHY_CON42_CTRL_BSTLEN_SHIFT) |
61 (mem->ctrl_rdlat << PHY_CON42_CTRL_RDLAT_SHIFT);
62 writel(val, &phy0_ctrl->phy_con42);
63 writel(val, &phy1_ctrl->phy_con42);
64
65 /* ZQ Calibration */
66 if (dmc_config_zq(mem, &phy0_ctrl->phy_con16, &phy1_ctrl->phy_con16,
67 &phy0_ctrl->phy_con17, &phy1_ctrl->phy_con17))
68 return SETUP_ERR_ZQ_CALIBRATION_FAILURE;
69
70 /* DQ Signal */
71 writel(mem->phy0_pulld_dqs, &phy0_ctrl->phy_con14);
72 writel(mem->phy1_pulld_dqs, &phy1_ctrl->phy_con14);
73
74 writel(mem->concontrol | (mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT)
75 | (mem->dfi_init_start << CONCONTROL_DFI_INIT_START_SHIFT),
76 &dmc->concontrol);
77
78 update_reset_dll(&dmc->phycontrol0, DDR_MODE_DDR3);
79
80 /* DQS Signal */
81 writel(mem->phy0_dqs, &phy0_ctrl->phy_con4);
82 writel(mem->phy1_dqs, &phy1_ctrl->phy_con4);
83
84 writel(mem->phy0_dq, &phy0_ctrl->phy_con6);
85 writel(mem->phy1_dq, &phy1_ctrl->phy_con6);
86
87 writel(mem->phy0_tFS, &phy0_ctrl->phy_con10);
88 writel(mem->phy1_tFS, &phy1_ctrl->phy_con10);
89
90 val = (mem->ctrl_start_point << PHY_CON12_CTRL_START_POINT_SHIFT) |
91 (mem->ctrl_inc << PHY_CON12_CTRL_INC_SHIFT) |
92 (mem->ctrl_dll_on << PHY_CON12_CTRL_DLL_ON_SHIFT) |
93 (mem->ctrl_ref << PHY_CON12_CTRL_REF_SHIFT);
94 writel(val, &phy0_ctrl->phy_con12);
95 writel(val, &phy1_ctrl->phy_con12);
96
97 /* Start DLL locking */
98 writel(val | (mem->ctrl_start << PHY_CON12_CTRL_START_SHIFT),
99 &phy0_ctrl->phy_con12);
100 writel(val | (mem->ctrl_start << PHY_CON12_CTRL_START_SHIFT),
101 &phy1_ctrl->phy_con12);
102
103 update_reset_dll(&dmc->phycontrol0, DDR_MODE_DDR3);
104
105 writel(mem->concontrol | (mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT),
106 &dmc->concontrol);
107
108 /* Memory Channel Inteleaving Size */
109 writel(mem->iv_size, &dmc->ivcontrol);
110
111 writel(mem->memconfig, &dmc->memconfig0);
112 writel(mem->memconfig, &dmc->memconfig1);
113 writel(mem->membaseconfig0, &dmc->membaseconfig0);
114 writel(mem->membaseconfig1, &dmc->membaseconfig1);
115
116 /* Precharge Configuration */
117 writel(mem->prechconfig_tp_cnt << PRECHCONFIG_TP_CNT_SHIFT,
118 &dmc->prechconfig);
119
120 /* Power Down mode Configuration */
121 writel(mem->dpwrdn_cyc << PWRDNCONFIG_DPWRDN_CYC_SHIFT |
122 mem->dsref_cyc << PWRDNCONFIG_DSREF_CYC_SHIFT,
123 &dmc->pwrdnconfig);
124
125 /* TimingRow, TimingData, TimingPower and Timingaref
126 * values as per Memory AC parameters
127 */
128 writel(mem->timing_ref, &dmc->timingref);
129 writel(mem->timing_row, &dmc->timingrow);
130 writel(mem->timing_data, &dmc->timingdata);
131 writel(mem->timing_power, &dmc->timingpower);
132
133 /* Send PALL command */
134 dmc_config_prech(mem, &dmc->directcmd);
135
136 /* Send NOP, MRS and ZQINIT commands */
137 dmc_config_mrs(mem, &dmc->directcmd);
138
139 if (mem->gate_leveling_enable) {
140 val = PHY_CON0_RESET_VAL;
141 val |= P0_CMD_EN;
142 writel(val, &phy0_ctrl->phy_con0);
143 writel(val, &phy1_ctrl->phy_con0);
144
145 val = PHY_CON2_RESET_VAL;
146 val |= INIT_DESKEW_EN;
147 writel(val, &phy0_ctrl->phy_con2);
148 writel(val, &phy1_ctrl->phy_con2);
149
150 val = PHY_CON0_RESET_VAL;
151 val |= P0_CMD_EN;
152 val |= BYTE_RDLVL_EN;
153 writel(val, &phy0_ctrl->phy_con0);
154 writel(val, &phy1_ctrl->phy_con0);
155
156 val = (mem->ctrl_start_point <<
157 PHY_CON12_CTRL_START_POINT_SHIFT) |
158 (mem->ctrl_inc << PHY_CON12_CTRL_INC_SHIFT) |
159 (mem->ctrl_force << PHY_CON12_CTRL_FORCE_SHIFT) |
160 (mem->ctrl_start << PHY_CON12_CTRL_START_SHIFT) |
161 (mem->ctrl_ref << PHY_CON12_CTRL_REF_SHIFT);
162 writel(val, &phy0_ctrl->phy_con12);
163 writel(val, &phy1_ctrl->phy_con12);
164
165 val = PHY_CON2_RESET_VAL;
166 val |= INIT_DESKEW_EN;
167 val |= RDLVL_GATE_EN;
168 writel(val, &phy0_ctrl->phy_con2);
169 writel(val, &phy1_ctrl->phy_con2);
170
171 val = PHY_CON0_RESET_VAL;
172 val |= P0_CMD_EN;
173 val |= BYTE_RDLVL_EN;
174 val |= CTRL_SHGATE;
175 writel(val, &phy0_ctrl->phy_con0);
176 writel(val, &phy1_ctrl->phy_con0);
177
178 val = PHY_CON1_RESET_VAL;
179 val &= ~(CTRL_GATEDURADJ_MASK);
180 writel(val, &phy0_ctrl->phy_con1);
181 writel(val, &phy1_ctrl->phy_con1);
182
183 writel(CTRL_RDLVL_GATE_ENABLE, &dmc->rdlvl_config);
184 i = TIMEOUT_US;
185 while ((readl(&dmc->phystatus) &
186 (RDLVL_COMPLETE_CHO | RDLVL_COMPLETE_CH1)) !=
187 (RDLVL_COMPLETE_CHO | RDLVL_COMPLETE_CH1) && i > 0) {
188 /*
189 * TODO(waihong): Comment on how long this take to
190 * timeout
191 */
192 sdelay(100);
193 i--;
194 }
195 if (!i)
196 return SETUP_ERR_RDLV_COMPLETE_TIMEOUT;
197 writel(CTRL_RDLVL_GATE_DISABLE, &dmc->rdlvl_config);
198
199 writel(0, &phy0_ctrl->phy_con14);
200 writel(0, &phy1_ctrl->phy_con14);
201
202 val = (mem->ctrl_start_point <<
203 PHY_CON12_CTRL_START_POINT_SHIFT) |
204 (mem->ctrl_inc << PHY_CON12_CTRL_INC_SHIFT) |
205 (mem->ctrl_force << PHY_CON12_CTRL_FORCE_SHIFT) |
206 (mem->ctrl_start << PHY_CON12_CTRL_START_SHIFT) |
207 (mem->ctrl_dll_on << PHY_CON12_CTRL_DLL_ON_SHIFT) |
208 (mem->ctrl_ref << PHY_CON12_CTRL_REF_SHIFT);
209 writel(val, &phy0_ctrl->phy_con12);
210 writel(val, &phy1_ctrl->phy_con12);
211
212 update_reset_dll(&dmc->phycontrol0, DDR_MODE_DDR3);
213 }
214
215 /* Send PALL command */
216 dmc_config_prech(mem, &dmc->directcmd);
217
218 writel(mem->memcontrol, &dmc->memcontrol);
219
220 /* Set DMC Concontrol and enable auto-refresh counter */
221 writel(mem->concontrol | (mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT)
222 | (mem->aref_en << CONCONTROL_AREF_EN_SHIFT), &dmc->concontrol);
223 return 0;
224 }
225 #endif
226
227 #ifdef CONFIG_EXYNOS5420
228 /**
229 * RAM address to use in the test.
230 *
231 * We'll use 4 words at this address and 4 at this address + 0x80 (Ares
232 * interleaves channels every 128 bytes). This will allow us to evaluate all of
233 * the chips in a 1 chip per channel (2GB) system and half the chips in a 2
234 * chip per channel (4GB) system. We can't test the 2nd chip since we need to
235 * do tests before the 2nd chip is enabled. Looking at the 2nd chip isn't
236 * critical because the 1st and 2nd chip have very similar timings (they'd
237 * better have similar timings, since there's only a single adjustment that is
238 * shared by both chips).
239 */
240 const unsigned int test_addr = CONFIG_SYS_SDRAM_BASE;
241
242 /* Test pattern with which RAM will be tested */
243 static const unsigned int test_pattern[] = {
244 0x5a5a5a5a,
245 0xa5a5a5a5,
246 0xf0f0f0f0,
247 0x0f0f0f0f,
248 };
249
250 /**
251 * This function is a test vector for sw read leveling,
252 * it compares the read data with the written data.
253 *
254 * @param ch DMC channel number
255 * @param byte_lane which DQS byte offset,
256 * possible values are 0,1,2,3
257 * @return TRUE if memory was good, FALSE if not.
258 */
259 static bool dmc_valid_window_test_vector(int ch, int byte_lane)
260 {
261 unsigned int read_data;
262 unsigned int mask;
263 int i;
264
265 mask = 0xFF << (8 * byte_lane);
266
267 for (i = 0; i < ARRAY_SIZE(test_pattern); i++) {
268 read_data = readl(test_addr + i * 4 + ch * 0x80);
269 if ((read_data & mask) != (test_pattern[i] & mask))
270 return false;
271 }
272
273 return true;
274 }
275
276 /**
277 * This function returns current read offset value.
278 *
279 * @param phy_ctrl pointer to the current phy controller
280 */
281 static unsigned int dmc_get_read_offset_value(struct exynos5420_phy_control
282 *phy_ctrl)
283 {
284 return readl(&phy_ctrl->phy_con4);
285 }
286
287 /**
288 * This function performs resync, so that slave DLL is updated.
289 *
290 * @param phy_ctrl pointer to the current phy controller
291 */
292 static void ddr_phy_set_do_resync(struct exynos5420_phy_control *phy_ctrl)
293 {
294 setbits_le32(&phy_ctrl->phy_con10, PHY_CON10_CTRL_OFFSETR3);
295 clrbits_le32(&phy_ctrl->phy_con10, PHY_CON10_CTRL_OFFSETR3);
296 }
297
298 /**
299 * This function sets read offset value register with 'offset'.
300 *
301 * ...we also call call ddr_phy_set_do_resync().
302 *
303 * @param phy_ctrl pointer to the current phy controller
304 * @param offset offset to read DQS
305 */
306 static void dmc_set_read_offset_value(struct exynos5420_phy_control *phy_ctrl,
307 unsigned int offset)
308 {
309 writel(offset, &phy_ctrl->phy_con4);
310 ddr_phy_set_do_resync(phy_ctrl);
311 }
312
313 /**
314 * Convert a 2s complement byte to a byte with a sign bit.
315 *
316 * NOTE: you shouldn't use normal math on the number returned by this function.
317 * As an example, -10 = 0xf6. After this function -10 = 0x8a. If you wanted
318 * to do math and get the average of 10 and -10 (should be 0):
319 * 0x8a + 0xa = 0x94 (-108)
320 * 0x94 / 2 = 0xca (-54)
321 * ...and 0xca = sign bit plus 0x4a, or -74
322 *
323 * Also note that you lose the ability to represent -128 since there are two
324 * representations of 0.
325 *
326 * @param b The byte to convert in two's complement.
327 * @return The 7-bit value + sign bit.
328 */
329
330 unsigned char make_signed_byte(signed char b)
331 {
332 if (b < 0)
333 return 0x80 | -b;
334 else
335 return b;
336 }
337
338 /**
339 * Test various shifts starting at 'start' and going to 'end'.
340 *
341 * For each byte lane, we'll walk through shift starting at 'start' and going
342 * to 'end' (inclusive). When we are finally able to read the test pattern
343 * we'll store the value in the results array.
344 *
345 * @param phy_ctrl pointer to the current phy controller
346 * @param ch channel number
347 * @param start the start shift. -127 to 127
348 * @param end the end shift. -127 to 127
349 * @param results we'll store results for each byte lane.
350 */
351
352 void test_shifts(struct exynos5420_phy_control *phy_ctrl, int ch,
353 int start, int end, int results[NUM_BYTE_LANES])
354 {
355 int incr = (start < end) ? 1 : -1;
356 int byte_lane;
357
358 for (byte_lane = 0; byte_lane < NUM_BYTE_LANES; byte_lane++) {
359 int shift;
360
361 dmc_set_read_offset_value(phy_ctrl, DEFAULT_DQS_X4);
362 results[byte_lane] = DEFAULT_DQS;
363
364 for (shift = start; shift != (end + incr); shift += incr) {
365 unsigned int byte_offsetr;
366 unsigned int offsetr;
367
368 byte_offsetr = make_signed_byte(shift);
369
370 offsetr = dmc_get_read_offset_value(phy_ctrl);
371 offsetr &= ~(0xFF << (8 * byte_lane));
372 offsetr |= (byte_offsetr << (8 * byte_lane));
373 dmc_set_read_offset_value(phy_ctrl, offsetr);
374
375 if (dmc_valid_window_test_vector(ch, byte_lane)) {
376 results[byte_lane] = shift;
377 break;
378 }
379 }
380 }
381 }
382
383 /**
384 * This function performs SW read leveling to compensate DQ-DQS skew at
385 * receiver it first finds the optimal read offset value on each DQS
386 * then applies the value to PHY.
387 *
388 * Read offset value has its min margin and max margin. If read offset
389 * value exceeds its min or max margin, read data will have corruption.
390 * To avoid this we are doing sw read leveling.
391 *
392 * SW read leveling is:
393 * 1> Finding offset value's left_limit and right_limit
394 * 2> and calculate its center value
395 * 3> finally programs that center value to PHY
396 * 4> then PHY gets its optimal offset value.
397 *
398 * @param phy_ctrl pointer to the current phy controller
399 * @param ch channel number
400 * @param coarse_lock_val The coarse lock value read from PHY_CON13.
401 * (0 - 0x7f)
402 */
403 static void software_find_read_offset(struct exynos5420_phy_control *phy_ctrl,
404 int ch, unsigned int coarse_lock_val)
405 {
406 unsigned int offsetr_cent;
407 int byte_lane;
408 int left_limit;
409 int right_limit;
410 int left[NUM_BYTE_LANES];
411 int right[NUM_BYTE_LANES];
412 int i;
413
414 /* Fill the memory with test patterns */
415 for (i = 0; i < ARRAY_SIZE(test_pattern); i++)
416 writel(test_pattern[i], test_addr + i * 4 + ch * 0x80);
417
418 /* Figure out the limits we'll test with; keep -127 < limit < 127 */
419 left_limit = DEFAULT_DQS - coarse_lock_val;
420 right_limit = DEFAULT_DQS + coarse_lock_val;
421 if (right_limit > 127)
422 right_limit = 127;
423
424 /* Fill in the location where reads were OK from left and right */
425 test_shifts(phy_ctrl, ch, left_limit, right_limit, left);
426 test_shifts(phy_ctrl, ch, right_limit, left_limit, right);
427
428 /* Make a final value by taking the center between the left and right */
429 offsetr_cent = 0;
430 for (byte_lane = 0; byte_lane < NUM_BYTE_LANES; byte_lane++) {
431 int temp_center;
432 unsigned int vmwc;
433
434 temp_center = (left[byte_lane] + right[byte_lane]) / 2;
435 vmwc = make_signed_byte(temp_center);
436 offsetr_cent |= vmwc << (8 * byte_lane);
437 }
438 dmc_set_read_offset_value(phy_ctrl, offsetr_cent);
439 }
440
441 int ddr3_mem_ctrl_init(struct mem_timings *mem, int reset)
442 {
443 struct exynos5420_clock *clk =
444 (struct exynos5420_clock *)samsung_get_base_clock();
445 struct exynos5420_power *power =
446 (struct exynos5420_power *)samsung_get_base_power();
447 struct exynos5420_phy_control *phy0_ctrl, *phy1_ctrl;
448 struct exynos5420_dmc *drex0, *drex1;
449 struct exynos5420_tzasc *tzasc0, *tzasc1;
450 struct exynos5_power *pmu;
451 uint32_t val, n_lock_r, n_lock_w_phy0, n_lock_w_phy1;
452 uint32_t lock0_info, lock1_info;
453 int chip;
454 int i;
455
456 phy0_ctrl = (struct exynos5420_phy_control *)samsung_get_base_dmc_phy();
457 phy1_ctrl = (struct exynos5420_phy_control *)(samsung_get_base_dmc_phy()
458 + DMC_OFFSET);
459 drex0 = (struct exynos5420_dmc *)samsung_get_base_dmc_ctrl();
460 drex1 = (struct exynos5420_dmc *)(samsung_get_base_dmc_ctrl()
461 + DMC_OFFSET);
462 tzasc0 = (struct exynos5420_tzasc *)samsung_get_base_dmc_tzasc();
463 tzasc1 = (struct exynos5420_tzasc *)(samsung_get_base_dmc_tzasc()
464 + DMC_OFFSET);
465 pmu = (struct exynos5_power *)EXYNOS5420_POWER_BASE;
466
467 if (CONFIG_NR_DRAM_BANKS > 4) {
468 /* Need both controllers. */
469 mem->memcontrol |= DMC_MEMCONTROL_NUM_CHIP_2;
470 mem->chips_per_channel = 2;
471 mem->chips_to_configure = 2;
472 } else {
473 /* 2GB requires a single controller */
474 mem->memcontrol |= DMC_MEMCONTROL_NUM_CHIP_1;
475 }
476
477 /* Enable PAUSE for DREX */
478 setbits_le32(&clk->pause, ENABLE_BIT);
479
480 /* Enable BYPASS mode */
481 setbits_le32(&clk->bpll_con1, BYPASS_EN);
482
483 writel(MUX_BPLL_SEL_FOUTBPLL, &clk->src_cdrex);
484 do {
485 val = readl(&clk->mux_stat_cdrex);
486 val &= BPLL_SEL_MASK;
487 } while (val != FOUTBPLL);
488
489 clrbits_le32(&clk->bpll_con1, BYPASS_EN);
490
491 /* Specify the DDR memory type as DDR3 */
492 val = readl(&phy0_ctrl->phy_con0);
493 val &= ~(PHY_CON0_CTRL_DDR_MODE_MASK << PHY_CON0_CTRL_DDR_MODE_SHIFT);
494 val |= (DDR_MODE_DDR3 << PHY_CON0_CTRL_DDR_MODE_SHIFT);
495 writel(val, &phy0_ctrl->phy_con0);
496
497 val = readl(&phy1_ctrl->phy_con0);
498 val &= ~(PHY_CON0_CTRL_DDR_MODE_MASK << PHY_CON0_CTRL_DDR_MODE_SHIFT);
499 val |= (DDR_MODE_DDR3 << PHY_CON0_CTRL_DDR_MODE_SHIFT);
500 writel(val, &phy1_ctrl->phy_con0);
501
502 /* Set Read Latency and Burst Length for PHY0 and PHY1 */
503 val = (mem->ctrl_bstlen << PHY_CON42_CTRL_BSTLEN_SHIFT) |
504 (mem->ctrl_rdlat << PHY_CON42_CTRL_RDLAT_SHIFT);
505 writel(val, &phy0_ctrl->phy_con42);
506 writel(val, &phy1_ctrl->phy_con42);
507
508 val = readl(&phy0_ctrl->phy_con26);
509 val &= ~(T_WRDATA_EN_MASK << T_WRDATA_EN_OFFSET);
510 val |= (T_WRDATA_EN_DDR3 << T_WRDATA_EN_OFFSET);
511 writel(val, &phy0_ctrl->phy_con26);
512
513 val = readl(&phy1_ctrl->phy_con26);
514 val &= ~(T_WRDATA_EN_MASK << T_WRDATA_EN_OFFSET);
515 val |= (T_WRDATA_EN_DDR3 << T_WRDATA_EN_OFFSET);
516 writel(val, &phy1_ctrl->phy_con26);
517
518 /*
519 * Set Driver strength for CK, CKE, CS & CA to 0x7
520 * Set Driver strength for Data Slice 0~3 to 0x7
521 */
522 val = (0x7 << CA_CK_DRVR_DS_OFFSET) | (0x7 << CA_CKE_DRVR_DS_OFFSET) |
523 (0x7 << CA_CS_DRVR_DS_OFFSET) | (0x7 << CA_ADR_DRVR_DS_OFFSET);
524 val |= (0x7 << DA_3_DS_OFFSET) | (0x7 << DA_2_DS_OFFSET) |
525 (0x7 << DA_1_DS_OFFSET) | (0x7 << DA_0_DS_OFFSET);
526 writel(val, &phy0_ctrl->phy_con39);
527 writel(val, &phy1_ctrl->phy_con39);
528
529 /* ZQ Calibration */
530 if (dmc_config_zq(mem, &phy0_ctrl->phy_con16, &phy1_ctrl->phy_con16,
531 &phy0_ctrl->phy_con17, &phy1_ctrl->phy_con17))
532 return SETUP_ERR_ZQ_CALIBRATION_FAILURE;
533
534 clrbits_le32(&phy0_ctrl->phy_con16, ZQ_CLK_DIV_EN);
535 clrbits_le32(&phy1_ctrl->phy_con16, ZQ_CLK_DIV_EN);
536
537 /* DQ Signal */
538 val = readl(&phy0_ctrl->phy_con14);
539 val |= mem->phy0_pulld_dqs;
540 writel(val, &phy0_ctrl->phy_con14);
541 val = readl(&phy1_ctrl->phy_con14);
542 val |= mem->phy1_pulld_dqs;
543 writel(val, &phy1_ctrl->phy_con14);
544
545 val = MEM_TERM_EN | PHY_TERM_EN;
546 writel(val, &drex0->phycontrol0);
547 writel(val, &drex1->phycontrol0);
548
549 writel(mem->concontrol |
550 (mem->dfi_init_start << CONCONTROL_DFI_INIT_START_SHIFT) |
551 (mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT),
552 &drex0->concontrol);
553 writel(mem->concontrol |
554 (mem->dfi_init_start << CONCONTROL_DFI_INIT_START_SHIFT) |
555 (mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT),
556 &drex1->concontrol);
557
558 do {
559 val = readl(&drex0->phystatus);
560 } while ((val & DFI_INIT_COMPLETE) != DFI_INIT_COMPLETE);
561 do {
562 val = readl(&drex1->phystatus);
563 } while ((val & DFI_INIT_COMPLETE) != DFI_INIT_COMPLETE);
564
565 clrbits_le32(&drex0->concontrol, DFI_INIT_START);
566 clrbits_le32(&drex1->concontrol, DFI_INIT_START);
567
568 update_reset_dll(&drex0->phycontrol0, DDR_MODE_DDR3);
569 update_reset_dll(&drex1->phycontrol0, DDR_MODE_DDR3);
570
571 /*
572 * Set Base Address:
573 * 0x2000_0000 ~ 0x5FFF_FFFF
574 * 0x6000_0000 ~ 0x9FFF_FFFF
575 */
576 /* MEMBASECONFIG0 */
577 val = DMC_MEMBASECONFIGX_CHIP_BASE(DMC_CHIP_BASE_0) |
578 DMC_MEMBASECONFIGX_CHIP_MASK(DMC_CHIP_MASK);
579 writel(val, &tzasc0->membaseconfig0);
580 writel(val, &tzasc1->membaseconfig0);
581
582 /* MEMBASECONFIG1 */
583 val = DMC_MEMBASECONFIGX_CHIP_BASE(DMC_CHIP_BASE_1) |
584 DMC_MEMBASECONFIGX_CHIP_MASK(DMC_CHIP_MASK);
585 writel(val, &tzasc0->membaseconfig1);
586 writel(val, &tzasc1->membaseconfig1);
587
588 /*
589 * Memory Channel Inteleaving Size
590 * Ares Channel interleaving = 128 bytes
591 */
592 /* MEMCONFIG0/1 */
593 writel(mem->memconfig, &tzasc0->memconfig0);
594 writel(mem->memconfig, &tzasc1->memconfig0);
595 writel(mem->memconfig, &tzasc0->memconfig1);
596 writel(mem->memconfig, &tzasc1->memconfig1);
597
598 /* Precharge Configuration */
599 writel(mem->prechconfig_tp_cnt << PRECHCONFIG_TP_CNT_SHIFT,
600 &drex0->prechconfig0);
601 writel(mem->prechconfig_tp_cnt << PRECHCONFIG_TP_CNT_SHIFT,
602 &drex1->prechconfig0);
603
604 /*
605 * TimingRow, TimingData, TimingPower and Timingaref
606 * values as per Memory AC parameters
607 */
608 writel(mem->timing_ref, &drex0->timingref);
609 writel(mem->timing_ref, &drex1->timingref);
610 writel(mem->timing_row, &drex0->timingrow0);
611 writel(mem->timing_row, &drex1->timingrow0);
612 writel(mem->timing_data, &drex0->timingdata0);
613 writel(mem->timing_data, &drex1->timingdata0);
614 writel(mem->timing_power, &drex0->timingpower0);
615 writel(mem->timing_power, &drex1->timingpower0);
616
617 if (reset) {
618 /*
619 * Send NOP, MRS and ZQINIT commands
620 * Sending MRS command will reset the DRAM. We should not be
621 * reseting the DRAM after resume, this will lead to memory
622 * corruption as DRAM content is lost after DRAM reset
623 */
624 dmc_config_mrs(mem, &drex0->directcmd);
625 dmc_config_mrs(mem, &drex1->directcmd);
626 }
627
628 /*
629 * Get PHY_CON13 from both phys. Gate CLKM around reading since
630 * PHY_CON13 is glitchy when CLKM is running. We're paranoid and
631 * wait until we get a "fine lock", though a coarse lock is probably
632 * OK (we only use the coarse numbers below). We try to gate the
633 * clock for as short a time as possible in case SDRAM is somehow
634 * sensitive. sdelay(10) in the loop is arbitrary to make sure
635 * there is some time for PHY_CON13 to get updated. In practice
636 * no delay appears to be needed.
637 */
638 val = readl(&clk->gate_bus_cdrex);
639 while (true) {
640 writel(val & ~0x1, &clk->gate_bus_cdrex);
641 lock0_info = readl(&phy0_ctrl->phy_con13);
642 writel(val, &clk->gate_bus_cdrex);
643
644 if ((lock0_info & CTRL_FINE_LOCKED) == CTRL_FINE_LOCKED)
645 break;
646
647 sdelay(10);
648 }
649 while (true) {
650 writel(val & ~0x2, &clk->gate_bus_cdrex);
651 lock1_info = readl(&phy1_ctrl->phy_con13);
652 writel(val, &clk->gate_bus_cdrex);
653
654 if ((lock1_info & CTRL_FINE_LOCKED) == CTRL_FINE_LOCKED)
655 break;
656
657 sdelay(10);
658 }
659
660 if (!reset) {
661 /*
662 * During Suspend-Resume & S/W-Reset, as soon as PMU releases
663 * pad retention, CKE goes high. This causes memory contents
664 * not to be retained during DRAM initialization. Therfore,
665 * there is a new control register(0x100431e8[28]) which lets us
666 * release pad retention and retain the memory content until the
667 * initialization is complete.
668 */
669 writel(PAD_RETENTION_DRAM_COREBLK_VAL,
670 &power->pad_retention_dram_coreblk_option);
671 do {
672 val = readl(&power->pad_retention_dram_status);
673 } while (val != 0x1);
674
675 /*
676 * CKE PAD retention disables DRAM self-refresh mode.
677 * Send auto refresh command for DRAM refresh.
678 */
679 for (i = 0; i < 128; i++) {
680 for (chip = 0; chip < mem->chips_to_configure; chip++) {
681 writel(DIRECT_CMD_REFA |
682 (chip << DIRECT_CMD_CHIP_SHIFT),
683 &drex0->directcmd);
684 writel(DIRECT_CMD_REFA |
685 (chip << DIRECT_CMD_CHIP_SHIFT),
686 &drex1->directcmd);
687 }
688 }
689 }
690
691 if (mem->gate_leveling_enable) {
692 writel(PHY_CON0_RESET_VAL, &phy0_ctrl->phy_con0);
693 writel(PHY_CON0_RESET_VAL, &phy1_ctrl->phy_con0);
694
695 setbits_le32(&phy0_ctrl->phy_con0, P0_CMD_EN);
696 setbits_le32(&phy1_ctrl->phy_con0, P0_CMD_EN);
697
698 val = PHY_CON2_RESET_VAL;
699 val |= INIT_DESKEW_EN;
700 writel(val, &phy0_ctrl->phy_con2);
701 writel(val, &phy1_ctrl->phy_con2);
702
703 val = readl(&phy0_ctrl->phy_con1);
704 val |= (RDLVL_PASS_ADJ_VAL << RDLVL_PASS_ADJ_OFFSET);
705 writel(val, &phy0_ctrl->phy_con1);
706
707 val = readl(&phy1_ctrl->phy_con1);
708 val |= (RDLVL_PASS_ADJ_VAL << RDLVL_PASS_ADJ_OFFSET);
709 writel(val, &phy1_ctrl->phy_con1);
710
711 n_lock_w_phy0 = (lock0_info & CTRL_LOCK_COARSE_MASK) >> 2;
712 n_lock_r = readl(&phy0_ctrl->phy_con12);
713 n_lock_r &= ~CTRL_DLL_ON;
714 n_lock_r |= n_lock_w_phy0;
715 writel(n_lock_r, &phy0_ctrl->phy_con12);
716
717 n_lock_w_phy1 = (lock1_info & CTRL_LOCK_COARSE_MASK) >> 2;
718 n_lock_r = readl(&phy1_ctrl->phy_con12);
719 n_lock_r &= ~CTRL_DLL_ON;
720 n_lock_r |= n_lock_w_phy1;
721 writel(n_lock_r, &phy1_ctrl->phy_con12);
722
723 val = (0x3 << DIRECT_CMD_BANK_SHIFT) | 0x4;
724 for (chip = 0; chip < mem->chips_to_configure; chip++) {
725 writel(val | (chip << DIRECT_CMD_CHIP_SHIFT),
726 &drex0->directcmd);
727 writel(val | (chip << DIRECT_CMD_CHIP_SHIFT),
728 &drex1->directcmd);
729 }
730
731 setbits_le32(&phy0_ctrl->phy_con2, RDLVL_GATE_EN);
732 setbits_le32(&phy1_ctrl->phy_con2, RDLVL_GATE_EN);
733
734 setbits_le32(&phy0_ctrl->phy_con0, CTRL_SHGATE);
735 setbits_le32(&phy1_ctrl->phy_con0, CTRL_SHGATE);
736
737 val = readl(&phy0_ctrl->phy_con1);
738 val &= ~(CTRL_GATEDURADJ_MASK);
739 writel(val, &phy0_ctrl->phy_con1);
740
741 val = readl(&phy1_ctrl->phy_con1);
742 val &= ~(CTRL_GATEDURADJ_MASK);
743 writel(val, &phy1_ctrl->phy_con1);
744
745 writel(CTRL_RDLVL_GATE_ENABLE, &drex0->rdlvl_config);
746 i = TIMEOUT_US;
747 while (((readl(&drex0->phystatus) & RDLVL_COMPLETE_CHO) !=
748 RDLVL_COMPLETE_CHO) && (i > 0)) {
749 /*
750 * TODO(waihong): Comment on how long this take to
751 * timeout
752 */
753 sdelay(100);
754 i--;
755 }
756 if (!i)
757 return SETUP_ERR_RDLV_COMPLETE_TIMEOUT;
758 writel(CTRL_RDLVL_GATE_DISABLE, &drex0->rdlvl_config);
759
760 writel(CTRL_RDLVL_GATE_ENABLE, &drex1->rdlvl_config);
761 i = TIMEOUT_US;
762 while (((readl(&drex1->phystatus) & RDLVL_COMPLETE_CHO) !=
763 RDLVL_COMPLETE_CHO) && (i > 0)) {
764 /*
765 * TODO(waihong): Comment on how long this take to
766 * timeout
767 */
768 sdelay(100);
769 i--;
770 }
771 if (!i)
772 return SETUP_ERR_RDLV_COMPLETE_TIMEOUT;
773 writel(CTRL_RDLVL_GATE_DISABLE, &drex1->rdlvl_config);
774
775 writel(0, &phy0_ctrl->phy_con14);
776 writel(0, &phy1_ctrl->phy_con14);
777
778 val = (0x3 << DIRECT_CMD_BANK_SHIFT);
779 for (chip = 0; chip < mem->chips_to_configure; chip++) {
780 writel(val | (chip << DIRECT_CMD_CHIP_SHIFT),
781 &drex0->directcmd);
782 writel(val | (chip << DIRECT_CMD_CHIP_SHIFT),
783 &drex1->directcmd);
784 }
785
786 /* Common Settings for Leveling */
787 val = PHY_CON12_RESET_VAL;
788 writel((val + n_lock_w_phy0), &phy0_ctrl->phy_con12);
789 writel((val + n_lock_w_phy1), &phy1_ctrl->phy_con12);
790
791 setbits_le32(&phy0_ctrl->phy_con2, DLL_DESKEW_EN);
792 setbits_le32(&phy1_ctrl->phy_con2, DLL_DESKEW_EN);
793 }
794
795 /*
796 * Do software read leveling
797 *
798 * Do this before we turn on auto refresh since the auto refresh can
799 * be in conflict with the resync operation that's part of setting
800 * read leveling.
801 */
802 if (!reset) {
803 /* restore calibrated value after resume */
804 dmc_set_read_offset_value(phy0_ctrl, readl(&pmu->pmu_spare1));
805 dmc_set_read_offset_value(phy1_ctrl, readl(&pmu->pmu_spare2));
806 } else {
807 software_find_read_offset(phy0_ctrl, 0,
808 CTRL_LOCK_COARSE(lock0_info));
809 software_find_read_offset(phy1_ctrl, 1,
810 CTRL_LOCK_COARSE(lock1_info));
811 /* save calibrated value to restore after resume */
812 writel(dmc_get_read_offset_value(phy0_ctrl), &pmu->pmu_spare1);
813 writel(dmc_get_read_offset_value(phy1_ctrl), &pmu->pmu_spare2);
814 }
815
816 /* Send PALL command */
817 dmc_config_prech(mem, &drex0->directcmd);
818 dmc_config_prech(mem, &drex1->directcmd);
819
820 writel(mem->memcontrol, &drex0->memcontrol);
821 writel(mem->memcontrol, &drex1->memcontrol);
822
823 /*
824 * Set DMC Concontrol: Enable auto-refresh counter, provide
825 * read data fetch cycles and enable DREX auto set powerdown
826 * for input buffer of I/O in none read memory state.
827 */
828 writel(mem->concontrol | (mem->aref_en << CONCONTROL_AREF_EN_SHIFT) |
829 (mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT)|
830 DMC_CONCONTROL_IO_PD_CON(0x2),
831 &drex0->concontrol);
832 writel(mem->concontrol | (mem->aref_en << CONCONTROL_AREF_EN_SHIFT) |
833 (mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT)|
834 DMC_CONCONTROL_IO_PD_CON(0x2),
835 &drex1->concontrol);
836
837 /*
838 * Enable Clock Gating Control for DMC
839 * this saves around 25 mw dmc power as compared to the power
840 * consumption without these bits enabled
841 */
842 setbits_le32(&drex0->cgcontrol, DMC_INTERNAL_CG);
843 setbits_le32(&drex1->cgcontrol, DMC_INTERNAL_CG);
844
845 /*
846 * As per Exynos5800 UM ver 0.00 section 17.13.2.1
847 * CONCONTROL register bit 3 [update_mode], Exynos5800 does not
848 * support the PHY initiated update. And it is recommended to set
849 * this field to 1'b1 during initialization
850 *
851 * When we apply PHY-initiated mode, DLL lock value is determined
852 * once at DMC init time and not updated later when we change the MIF
853 * voltage based on ASV group in kernel. Applying MC-initiated mode
854 * makes sure that DLL tracing is ON so that silicon is able to
855 * compensate the voltage variation.
856 */
857 val = readl(&drex0->concontrol);
858 val |= CONCONTROL_UPDATE_MODE;
859 writel(val, &drex0->concontrol);
860 val = readl(&drex1->concontrol);
861 val |= CONCONTROL_UPDATE_MODE;
862 writel(val, &drex1->concontrol);
863
864 return 0;
865 }
866 #endif