]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/arm/mach-keystone/clock.c
ARM: keystone2: Cleanup init_pll definition
[people/ms/u-boot.git] / arch / arm / mach-keystone / clock.c
1 /*
2 * Keystone2: pll initialization
3 *
4 * (C) Copyright 2012-2014
5 * Texas Instruments Incorporated, <www.ti.com>
6 *
7 * SPDX-License-Identifier: GPL-2.0+
8 */
9
10 #include <common.h>
11 #include <asm/arch/clock.h>
12 #include <asm/arch/clock_defs.h>
13
14 /* DEV and ARM speed definitions as specified in DEVSPEED register */
15 int __weak speeds[DEVSPEED_NUMSPDS] = {
16 SPD1000,
17 SPD1200,
18 SPD1350,
19 SPD1400,
20 SPD1500,
21 SPD1400,
22 SPD1350,
23 SPD1200,
24 SPD1000,
25 SPD800,
26 };
27
28 const struct keystone_pll_regs keystone_pll_regs[] = {
29 [CORE_PLL] = {KS2_MAINPLLCTL0, KS2_MAINPLLCTL1},
30 [PASS_PLL] = {KS2_PASSPLLCTL0, KS2_PASSPLLCTL1},
31 [TETRIS_PLL] = {KS2_ARMPLLCTL0, KS2_ARMPLLCTL1},
32 [DDR3A_PLL] = {KS2_DDR3APLLCTL0, KS2_DDR3APLLCTL1},
33 [DDR3B_PLL] = {KS2_DDR3BPLLCTL0, KS2_DDR3BPLLCTL1},
34 };
35
36 static void wait_for_completion(const struct pll_init_data *data)
37 {
38 int i;
39 for (i = 0; i < 100; i++) {
40 sdelay(450);
41 if (!(pllctl_reg_read(data->pll, stat) & PLLSTAT_GOSTAT_MASK))
42 break;
43 }
44 }
45
46 static inline void bypass_main_pll(const struct pll_init_data *data)
47 {
48 pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLENSRC_MASK |
49 PLLCTL_PLLEN_MASK);
50
51 /* 4 cycles of reference clock CLKIN*/
52 sdelay(340);
53 }
54
55 static void configure_mult_div(const struct pll_init_data *data)
56 {
57 u32 pllm, plld, bwadj;
58
59 pllm = data->pll_m - 1;
60 plld = (data->pll_d - 1) & CFG_PLLCTL0_PLLD_MASK;
61
62 /* Program Multiplier */
63 if (data->pll == MAIN_PLL)
64 pllctl_reg_write(data->pll, mult, pllm & PLLM_MULT_LO_MASK);
65
66 clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
67 CFG_PLLCTL0_PLLM_MASK,
68 pllm << CFG_PLLCTL0_PLLM_SHIFT);
69
70 /* Program BWADJ */
71 bwadj = (data->pll_m - 1) >> 1; /* Divide pllm by 2 */
72 clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
73 CFG_PLLCTL0_BWADJ_MASK,
74 (bwadj << CFG_PLLCTL0_BWADJ_SHIFT) &
75 CFG_PLLCTL0_BWADJ_MASK);
76 bwadj = bwadj >> CFG_PLLCTL0_BWADJ_BITS;
77 clrsetbits_le32(keystone_pll_regs[data->pll].reg1,
78 CFG_PLLCTL1_BWADJ_MASK, bwadj);
79
80 /* Program Divider */
81 clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
82 CFG_PLLCTL0_PLLD_MASK, plld);
83 }
84
85 void configure_main_pll(const struct pll_init_data *data)
86 {
87 u32 tmp, pllod, i, alnctl_val = 0;
88 u32 *offset;
89
90 pllod = data->pll_od - 1;
91
92 /* 100 micro sec for stabilization */
93 sdelay(210000);
94
95 tmp = pllctl_reg_read(data->pll, secctl);
96
97 /* Check for Bypass */
98 if (tmp & SECCTL_BYPASS_MASK) {
99 setbits_le32(keystone_pll_regs[data->pll].reg1,
100 CFG_PLLCTL1_ENSAT_MASK);
101
102 bypass_main_pll(data);
103
104 /* Powerdown and powerup Main Pll */
105 pllctl_reg_setbits(data->pll, secctl, SECCTL_BYPASS_MASK);
106 pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
107 /* 5 micro sec */
108 sdelay(21000);
109
110 pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
111 } else {
112 bypass_main_pll(data);
113 }
114
115 configure_mult_div(data);
116
117 /* Program Output Divider */
118 pllctl_reg_rmw(data->pll, secctl, SECCTL_OP_DIV_MASK,
119 ((pllod << SECCTL_OP_DIV_SHIFT) & SECCTL_OP_DIV_MASK));
120
121 /* Program PLLDIVn */
122 wait_for_completion(data);
123 for (i = 0; i < PLLDIV_MAX; i++) {
124 if (i < 3)
125 offset = pllctl_reg(data->pll, div1) + i;
126 else
127 offset = pllctl_reg(data->pll, div4) + (i - 3);
128
129 if (divn_val[i] != -1) {
130 __raw_writel(divn_val[i] | PLLDIV_ENABLE_MASK, offset);
131 alnctl_val |= BIT(i);
132 }
133 }
134
135 if (alnctl_val) {
136 pllctl_reg_setbits(data->pll, alnctl, alnctl_val);
137 /*
138 * Set GOSET bit in PLLCMD to initiate the GO operation
139 * to change the divide
140 */
141 pllctl_reg_setbits(data->pll, cmd, PLLSTAT_GOSTAT_MASK);
142 wait_for_completion(data);
143 }
144
145 /* Reset PLL */
146 pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
147 sdelay(21000); /* Wait for a minimum of 7 us*/
148 pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
149 sdelay(105000); /* Wait for PLL Lock time (min 50 us) */
150
151 /* Enable PLL */
152 pllctl_reg_clrbits(data->pll, secctl, SECCTL_BYPASS_MASK);
153 pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLEN_MASK);
154 }
155
156 void configure_secondary_pll(const struct pll_init_data *data)
157 {
158 int pllod = data->pll_od - 1;
159
160 /* Enable Bypass mode */
161 setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_ENSAT_MASK);
162 setbits_le32(keystone_pll_regs[data->pll].reg0,
163 CFG_PLLCTL0_BYPASS_MASK);
164
165 /* Enable Glitch free bypass for ARM PLL */
166 if (cpu_is_k2hk() && data->pll == TETRIS_PLL)
167 clrbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
168
169 configure_mult_div(data);
170
171 /* Program Output Divider */
172 clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
173 CFG_PLLCTL0_CLKOD_MASK,
174 (pllod << CFG_PLLCTL0_CLKOD_SHIFT) &
175 CFG_PLLCTL0_CLKOD_MASK);
176
177 /* Reset PLL */
178 setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
179 /* Wait for 5 micro seconds */
180 sdelay(21000);
181
182 /* Select the Output of PASS PLL as input to PASS */
183 if (data->pll == PASS_PLL)
184 setbits_le32(keystone_pll_regs[data->pll].reg1,
185 CFG_PLLCTL1_PAPLL_MASK);
186
187 /* Select the Output of ARM PLL as input to ARM */
188 if (data->pll == TETRIS_PLL)
189 setbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
190
191 clrbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
192 /* Wait for 500 * REFCLK cucles * (PLLD + 1) */
193 sdelay(105000);
194
195 /* Switch to PLL mode */
196 clrbits_le32(keystone_pll_regs[data->pll].reg0,
197 CFG_PLLCTL0_BYPASS_MASK);
198 }
199
200 void init_pll(const struct pll_init_data *data)
201 {
202 if (data->pll == MAIN_PLL)
203 configure_main_pll(data);
204 else
205 configure_secondary_pll(data);
206
207 /*
208 * This is required to provide a delay between multiple
209 * consequent PPL configurations
210 */
211 sdelay(210000);
212 }
213
214 void init_plls(void)
215 {
216 struct pll_init_data *data;
217 int pll;
218
219 for (pll = MAIN_PLL; pll < MAX_PLL_COUNT; pll++) {
220 data = get_pll_init_data(pll);
221 if (data)
222 init_pll(data);
223 }
224 }
225
226 static int get_max_speed(u32 val, u32 speed_supported)
227 {
228 int speed;
229
230 /* Left most setbit gives the speed */
231 for (speed = DEVSPEED_NUMSPDS; speed >= 0; speed--) {
232 if ((val & BIT(speed)) & speed_supported)
233 return speeds[speed];
234 }
235
236 /* If no bit is set, use SPD800 */
237 return SPD800;
238 }
239
240 static inline u32 read_efuse_bootrom(void)
241 {
242 if (cpu_is_k2hk() && (cpu_revision() <= 1))
243 return __raw_readl(KS2_REV1_DEVSPEED);
244 else
245 return __raw_readl(KS2_EFUSE_BOOTROM);
246 }
247
248 int get_max_arm_speed(void)
249 {
250 u32 armspeed = read_efuse_bootrom();
251
252 armspeed = (armspeed & DEVSPEED_ARMSPEED_MASK) >>
253 DEVSPEED_ARMSPEED_SHIFT;
254
255 return get_max_speed(armspeed, ARM_SUPPORTED_SPEEDS);
256 }
257
258 int get_max_dev_speed(void)
259 {
260 u32 devspeed = read_efuse_bootrom();
261
262 devspeed = (devspeed & DEVSPEED_DEVSPEED_MASK) >>
263 DEVSPEED_DEVSPEED_SHIFT;
264
265 return get_max_speed(devspeed, DEV_SUPPORTED_SPEEDS);
266 }