]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/arm/mach-mvebu/cpu.c
ARM: mvebu: Add SoC IDs for Marvell's integrated CPUs
[people/ms/u-boot.git] / arch / arm / mach-mvebu / cpu.c
1 /*
2 * Copyright (C) 2014-2016 Stefan Roese <sr@denx.de>
3 *
4 * SPDX-License-Identifier: GPL-2.0+
5 */
6
7 #include <common.h>
8 #include <ahci.h>
9 #include <linux/mbus.h>
10 #include <asm/io.h>
11 #include <asm/pl310.h>
12 #include <asm/arch/cpu.h>
13 #include <asm/arch/soc.h>
14 #include <sdhci.h>
15
16 #define DDR_BASE_CS_OFF(n) (0x0000 + ((n) << 3))
17 #define DDR_SIZE_CS_OFF(n) (0x0004 + ((n) << 3))
18
19 static struct mbus_win windows[] = {
20 /* SPI */
21 { MBUS_SPI_BASE, MBUS_SPI_SIZE,
22 CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_SPIFLASH },
23
24 /* NOR */
25 { MBUS_BOOTROM_BASE, MBUS_BOOTROM_SIZE,
26 CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_BOOTROM },
27 };
28
29 void lowlevel_init(void)
30 {
31 /*
32 * Dummy implementation, we only need LOWLEVEL_INIT
33 * on Armada to configure CP15 in start.S / cpu_init_cp15()
34 */
35 }
36
37 void reset_cpu(unsigned long ignored)
38 {
39 struct mvebu_system_registers *reg =
40 (struct mvebu_system_registers *)MVEBU_SYSTEM_REG_BASE;
41
42 writel(readl(&reg->rstoutn_mask) | 1, &reg->rstoutn_mask);
43 writel(readl(&reg->sys_soft_rst) | 1, &reg->sys_soft_rst);
44 while (1)
45 ;
46 }
47
48 int mvebu_soc_family(void)
49 {
50 u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff;
51
52 switch (devid) {
53 case SOC_MV78230_ID:
54 case SOC_MV78260_ID:
55 case SOC_MV78460_ID:
56 return MVEBU_SOC_AXP;
57
58 case SOC_88F6720_ID:
59 return MVEBU_SOC_A375;
60
61 case SOC_88F6810_ID:
62 case SOC_88F6820_ID:
63 case SOC_88F6828_ID:
64 return MVEBU_SOC_A38X;
65
66 case SOC_98DX3236_ID:
67 case SOC_98DX3336_ID:
68 case SOC_98DX4251_ID:
69 return MVEBU_SOC_MSYS;
70 }
71
72 return MVEBU_SOC_UNKNOWN;
73 }
74
75 #if defined(CONFIG_DISPLAY_CPUINFO)
76
77 #if defined(CONFIG_ARMADA_375)
78 /* SAR frequency values for Armada 375 */
79 static const struct sar_freq_modes sar_freq_tab[] = {
80 { 0, 0x0, 266, 133, 266 },
81 { 1, 0x0, 333, 167, 167 },
82 { 2, 0x0, 333, 167, 222 },
83 { 3, 0x0, 333, 167, 333 },
84 { 4, 0x0, 400, 200, 200 },
85 { 5, 0x0, 400, 200, 267 },
86 { 6, 0x0, 400, 200, 400 },
87 { 7, 0x0, 500, 250, 250 },
88 { 8, 0x0, 500, 250, 334 },
89 { 9, 0x0, 500, 250, 500 },
90 { 10, 0x0, 533, 267, 267 },
91 { 11, 0x0, 533, 267, 356 },
92 { 12, 0x0, 533, 267, 533 },
93 { 13, 0x0, 600, 300, 300 },
94 { 14, 0x0, 600, 300, 400 },
95 { 15, 0x0, 600, 300, 600 },
96 { 16, 0x0, 666, 333, 333 },
97 { 17, 0x0, 666, 333, 444 },
98 { 18, 0x0, 666, 333, 666 },
99 { 19, 0x0, 800, 400, 267 },
100 { 20, 0x0, 800, 400, 400 },
101 { 21, 0x0, 800, 400, 534 },
102 { 22, 0x0, 900, 450, 300 },
103 { 23, 0x0, 900, 450, 450 },
104 { 24, 0x0, 900, 450, 600 },
105 { 25, 0x0, 1000, 500, 500 },
106 { 26, 0x0, 1000, 500, 667 },
107 { 27, 0x0, 1000, 333, 500 },
108 { 28, 0x0, 400, 400, 400 },
109 { 29, 0x0, 1100, 550, 550 },
110 { 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
111 };
112 #elif defined(CONFIG_ARMADA_38X)
113 /* SAR frequency values for Armada 38x */
114 static const struct sar_freq_modes sar_freq_tab[] = {
115 { 0x0, 0x0, 666, 333, 333 },
116 { 0x2, 0x0, 800, 400, 400 },
117 { 0x4, 0x0, 1066, 533, 533 },
118 { 0x6, 0x0, 1200, 600, 600 },
119 { 0x8, 0x0, 1332, 666, 666 },
120 { 0xc, 0x0, 1600, 800, 800 },
121 { 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
122 };
123 #else
124 /* SAR frequency values for Armada XP */
125 static const struct sar_freq_modes sar_freq_tab[] = {
126 { 0xa, 0x5, 800, 400, 400 },
127 { 0x1, 0x5, 1066, 533, 533 },
128 { 0x2, 0x5, 1200, 600, 600 },
129 { 0x2, 0x9, 1200, 600, 400 },
130 { 0x3, 0x5, 1333, 667, 667 },
131 { 0x4, 0x5, 1500, 750, 750 },
132 { 0x4, 0x9, 1500, 750, 500 },
133 { 0xb, 0x9, 1600, 800, 533 },
134 { 0xb, 0xa, 1600, 800, 640 },
135 { 0xb, 0x5, 1600, 800, 800 },
136 { 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
137 };
138 #endif
139
140 void get_sar_freq(struct sar_freq_modes *sar_freq)
141 {
142 u32 val;
143 u32 freq;
144 int i;
145
146 #if defined(CONFIG_ARMADA_375)
147 val = readl(CONFIG_SAR2_REG); /* SAR - Sample At Reset */
148 #else
149 val = readl(CONFIG_SAR_REG); /* SAR - Sample At Reset */
150 #endif
151 freq = (val & SAR_CPU_FREQ_MASK) >> SAR_CPU_FREQ_OFFS;
152 #if defined(SAR2_CPU_FREQ_MASK)
153 /*
154 * Shift CPU0 clock frequency select bit from SAR2 register
155 * into correct position
156 */
157 freq |= ((readl(CONFIG_SAR2_REG) & SAR2_CPU_FREQ_MASK)
158 >> SAR2_CPU_FREQ_OFFS) << 3;
159 #endif
160 for (i = 0; sar_freq_tab[i].val != 0xff; i++) {
161 if (sar_freq_tab[i].val == freq) {
162 #if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_38X)
163 *sar_freq = sar_freq_tab[i];
164 return;
165 #else
166 int k;
167 u8 ffc;
168
169 ffc = (val & SAR_FFC_FREQ_MASK) >>
170 SAR_FFC_FREQ_OFFS;
171 for (k = i; sar_freq_tab[k].ffc != 0xff; k++) {
172 if (sar_freq_tab[k].ffc == ffc) {
173 *sar_freq = sar_freq_tab[k];
174 return;
175 }
176 }
177 i = k;
178 #endif
179 }
180 }
181
182 /* SAR value not found, return 0 for frequencies */
183 *sar_freq = sar_freq_tab[i - 1];
184 }
185
186 int print_cpuinfo(void)
187 {
188 u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff;
189 u8 revid = readl(MVEBU_REG_PCIE_REVID) & 0xff;
190 struct sar_freq_modes sar_freq;
191
192 puts("SoC: ");
193
194 switch (devid) {
195 case SOC_MV78230_ID:
196 puts("MV78230-");
197 break;
198 case SOC_MV78260_ID:
199 puts("MV78260-");
200 break;
201 case SOC_MV78460_ID:
202 puts("MV78460-");
203 break;
204 case SOC_88F6720_ID:
205 puts("MV88F6720-");
206 break;
207 case SOC_88F6810_ID:
208 puts("MV88F6810-");
209 break;
210 case SOC_88F6820_ID:
211 puts("MV88F6820-");
212 break;
213 case SOC_88F6828_ID:
214 puts("MV88F6828-");
215 break;
216 case SOC_98DX3236_ID:
217 puts("98DX3236-");
218 break;
219 case SOC_98DX3336_ID:
220 puts("98DX3336-");
221 break;
222 case SOC_98DX4251_ID:
223 puts("98DX4251-");
224 break;
225 default:
226 puts("Unknown-");
227 break;
228 }
229
230 if (mvebu_soc_family() == MVEBU_SOC_AXP) {
231 switch (revid) {
232 case 1:
233 puts("A0");
234 break;
235 case 2:
236 puts("B0");
237 break;
238 default:
239 printf("?? (%x)", revid);
240 break;
241 }
242 }
243
244 if (mvebu_soc_family() == MVEBU_SOC_A375) {
245 switch (revid) {
246 case MV_88F67XX_A0_ID:
247 puts("A0");
248 break;
249 default:
250 printf("?? (%x)", revid);
251 break;
252 }
253 }
254
255 if (mvebu_soc_family() == MVEBU_SOC_A38X) {
256 switch (revid) {
257 case MV_88F68XX_Z1_ID:
258 puts("Z1");
259 break;
260 case MV_88F68XX_A0_ID:
261 puts("A0");
262 break;
263 default:
264 printf("?? (%x)", revid);
265 break;
266 }
267 }
268
269 get_sar_freq(&sar_freq);
270 printf(" at %d MHz\n", sar_freq.p_clk);
271
272 return 0;
273 }
274 #endif /* CONFIG_DISPLAY_CPUINFO */
275
276 /*
277 * This function initialize Controller DRAM Fastpath windows.
278 * It takes the CS size information from the 0x1500 scratch registers
279 * and sets the correct windows sizes and base addresses accordingly.
280 *
281 * These values are set in the scratch registers by the Marvell
282 * DDR3 training code, which is executed by the BootROM before the
283 * main payload (U-Boot) is executed. This training code is currently
284 * only available in the Marvell U-Boot version. It needs to be
285 * ported to mainline U-Boot SPL at some point.
286 */
287 static void update_sdram_window_sizes(void)
288 {
289 u64 base = 0;
290 u32 size, temp;
291 int i;
292
293 for (i = 0; i < SDRAM_MAX_CS; i++) {
294 size = readl((MVEBU_SDRAM_SCRATCH + (i * 8))) & SDRAM_ADDR_MASK;
295 if (size != 0) {
296 size |= ~(SDRAM_ADDR_MASK);
297
298 /* Set Base Address */
299 temp = (base & 0xFF000000ll) | ((base >> 32) & 0xF);
300 writel(temp, MVEBU_SDRAM_BASE + DDR_BASE_CS_OFF(i));
301
302 /*
303 * Check if out of max window size and resize
304 * the window
305 */
306 temp = (readl(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i)) &
307 ~(SDRAM_ADDR_MASK)) | 1;
308 temp |= (size & SDRAM_ADDR_MASK);
309 writel(temp, MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i));
310
311 base += ((u64)size + 1);
312 } else {
313 /*
314 * Disable window if not used, otherwise this
315 * leads to overlapping enabled windows with
316 * pretty strange results
317 */
318 clrbits_le32(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i), 1);
319 }
320 }
321 }
322
323 void mmu_disable(void)
324 {
325 asm volatile(
326 "mrc p15, 0, r0, c1, c0, 0\n"
327 "bic r0, #1\n"
328 "mcr p15, 0, r0, c1, c0, 0\n");
329 }
330
331 #ifdef CONFIG_ARCH_CPU_INIT
332 static void set_cbar(u32 addr)
333 {
334 asm("mcr p15, 4, %0, c15, c0" : : "r" (addr));
335 }
336
337 #define MV_USB_PHY_BASE (MVEBU_AXP_USB_BASE + 0x800)
338 #define MV_USB_PHY_PLL_REG(reg) (MV_USB_PHY_BASE | (((reg) & 0xF) << 2))
339 #define MV_USB_X3_BASE(addr) (MVEBU_AXP_USB_BASE | BIT(11) | \
340 (((addr) & 0xF) << 6))
341 #define MV_USB_X3_PHY_CHANNEL(dev, reg) (MV_USB_X3_BASE((dev) + 1) | \
342 (((reg) & 0xF) << 2))
343
344 static void setup_usb_phys(void)
345 {
346 int dev;
347
348 /*
349 * USB PLL init
350 */
351
352 /* Setup PLL frequency */
353 /* USB REF frequency = 25 MHz */
354 clrsetbits_le32(MV_USB_PHY_PLL_REG(1), 0x3ff, 0x605);
355
356 /* Power up PLL and PHY channel */
357 setbits_le32(MV_USB_PHY_PLL_REG(2), BIT(9));
358
359 /* Assert VCOCAL_START */
360 setbits_le32(MV_USB_PHY_PLL_REG(1), BIT(21));
361
362 mdelay(1);
363
364 /*
365 * USB PHY init (change from defaults) specific for 40nm (78X30 78X60)
366 */
367
368 for (dev = 0; dev < 3; dev++) {
369 setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 3), BIT(15));
370
371 /* Assert REG_RCAL_START in channel REG 1 */
372 setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
373 udelay(40);
374 clrbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
375 }
376 }
377
378 /*
379 * This function is not called from the SPL U-Boot version
380 */
381 int arch_cpu_init(void)
382 {
383 struct pl310_regs *const pl310 =
384 (struct pl310_regs *)CONFIG_SYS_PL310_BASE;
385
386 /*
387 * Only with disabled MMU its possible to switch the base
388 * register address on Armada 38x. Without this the SDRAM
389 * located at >= 0x4000.0000 is also not accessible, as its
390 * still locked to cache.
391 */
392 mmu_disable();
393
394 /* Linux expects the internal registers to be at 0xf1000000 */
395 writel(SOC_REGS_PHY_BASE, INTREG_BASE_ADDR_REG);
396 set_cbar(SOC_REGS_PHY_BASE + 0xC000);
397
398 /*
399 * From this stage on, the SoC detection is working. As we have
400 * configured the internal register base to the value used
401 * in the macros / defines in the U-Boot header (soc.h).
402 */
403
404 if (mvebu_soc_family() == MVEBU_SOC_A38X) {
405 /*
406 * To fully release / unlock this area from cache, we need
407 * to flush all caches and disable the L2 cache.
408 */
409 icache_disable();
410 dcache_disable();
411 clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
412 }
413
414 /*
415 * We need to call mvebu_mbus_probe() before calling
416 * update_sdram_window_sizes() as it disables all previously
417 * configured mbus windows and then configures them as
418 * required for U-Boot. Calling update_sdram_window_sizes()
419 * without this configuration will not work, as the internal
420 * registers can't be accessed reliably because of potenial
421 * double mapping.
422 * After updating the SDRAM access windows we need to call
423 * mvebu_mbus_probe() again, as this now correctly configures
424 * the SDRAM areas that are later used by the MVEBU drivers
425 * (e.g. USB, NETA).
426 */
427
428 /*
429 * First disable all windows
430 */
431 mvebu_mbus_probe(NULL, 0);
432
433 if (mvebu_soc_family() == MVEBU_SOC_AXP) {
434 /*
435 * Now the SDRAM access windows can be reconfigured using
436 * the information in the SDRAM scratch pad registers
437 */
438 update_sdram_window_sizes();
439 }
440
441 /*
442 * Finally the mbus windows can be configured with the
443 * updated SDRAM sizes
444 */
445 mvebu_mbus_probe(windows, ARRAY_SIZE(windows));
446
447 if (mvebu_soc_family() == MVEBU_SOC_AXP) {
448 /* Enable GBE0, GBE1, LCD and NFC PUP */
449 clrsetbits_le32(ARMADA_XP_PUP_ENABLE, 0,
450 GE0_PUP_EN | GE1_PUP_EN | LCD_PUP_EN |
451 NAND_PUP_EN | SPI_PUP_EN);
452
453 /* Configure USB PLL and PHYs on AXP */
454 setup_usb_phys();
455 }
456
457 /* Enable NAND and NAND arbiter */
458 clrsetbits_le32(MVEBU_SOC_DEV_MUX_REG, 0, NAND_EN | NAND_ARBITER_EN);
459
460 /* Disable MBUS error propagation */
461 clrsetbits_le32(SOC_COHERENCY_FABRIC_CTRL_REG, MBUS_ERR_PROP_EN, 0);
462
463 return 0;
464 }
465 #endif /* CONFIG_ARCH_CPU_INIT */
466
467 u32 mvebu_get_nand_clock(void)
468 {
469 u32 reg;
470
471 if (mvebu_soc_family() == MVEBU_SOC_A38X)
472 reg = MVEBU_DFX_DIV_CLK_CTRL(1);
473 else
474 reg = MVEBU_CORE_DIV_CLK_CTRL(1);
475
476 return CONFIG_SYS_MVEBU_PLL_CLOCK /
477 ((readl(reg) &
478 NAND_ECC_DIVCKL_RATIO_MASK) >> NAND_ECC_DIVCKL_RATIO_OFFS);
479 }
480
481 /*
482 * SOC specific misc init
483 */
484 #if defined(CONFIG_ARCH_MISC_INIT)
485 int arch_misc_init(void)
486 {
487 /* Nothing yet, perhaps we need something here later */
488 return 0;
489 }
490 #endif /* CONFIG_ARCH_MISC_INIT */
491
492 #ifdef CONFIG_MMC_SDHCI_MV
493 int board_mmc_init(bd_t *bis)
494 {
495 mv_sdh_init(MVEBU_SDIO_BASE, 0, 0,
496 SDHCI_QUIRK_32BIT_DMA_ADDR | SDHCI_QUIRK_WAIT_SEND_CMD);
497
498 return 0;
499 }
500 #endif
501
502 #ifdef CONFIG_SCSI_AHCI_PLAT
503 #define AHCI_VENDOR_SPECIFIC_0_ADDR 0xa0
504 #define AHCI_VENDOR_SPECIFIC_0_DATA 0xa4
505
506 #define AHCI_WINDOW_CTRL(win) (0x60 + ((win) << 4))
507 #define AHCI_WINDOW_BASE(win) (0x64 + ((win) << 4))
508 #define AHCI_WINDOW_SIZE(win) (0x68 + ((win) << 4))
509
510 static void ahci_mvebu_mbus_config(void __iomem *base)
511 {
512 const struct mbus_dram_target_info *dram;
513 int i;
514
515 dram = mvebu_mbus_dram_info();
516
517 for (i = 0; i < 4; i++) {
518 writel(0, base + AHCI_WINDOW_CTRL(i));
519 writel(0, base + AHCI_WINDOW_BASE(i));
520 writel(0, base + AHCI_WINDOW_SIZE(i));
521 }
522
523 for (i = 0; i < dram->num_cs; i++) {
524 const struct mbus_dram_window *cs = dram->cs + i;
525
526 writel((cs->mbus_attr << 8) |
527 (dram->mbus_dram_target_id << 4) | 1,
528 base + AHCI_WINDOW_CTRL(i));
529 writel(cs->base >> 16, base + AHCI_WINDOW_BASE(i));
530 writel(((cs->size - 1) & 0xffff0000),
531 base + AHCI_WINDOW_SIZE(i));
532 }
533 }
534
535 static void ahci_mvebu_regret_option(void __iomem *base)
536 {
537 /*
538 * Enable the regret bit to allow the SATA unit to regret a
539 * request that didn't receive an acknowlegde and avoid a
540 * deadlock
541 */
542 writel(0x4, base + AHCI_VENDOR_SPECIFIC_0_ADDR);
543 writel(0x80, base + AHCI_VENDOR_SPECIFIC_0_DATA);
544 }
545
546 void scsi_init(void)
547 {
548 printf("MVEBU SATA INIT\n");
549 ahci_mvebu_mbus_config((void __iomem *)MVEBU_SATA0_BASE);
550 ahci_mvebu_regret_option((void __iomem *)MVEBU_SATA0_BASE);
551 ahci_init((void __iomem *)MVEBU_SATA0_BASE);
552 }
553 #endif
554
555 void enable_caches(void)
556 {
557 /* Avoid problem with e.g. neta ethernet driver */
558 invalidate_dcache_all();
559
560 /*
561 * Armada 375 still has some problems with d-cache enabled in the
562 * ethernet driver (mvpp2). So lets keep the d-cache disabled
563 * until this is solved.
564 */
565 if (mvebu_soc_family() != MVEBU_SOC_A375) {
566 /* Enable D-cache. I-cache is already enabled in start.S */
567 dcache_enable();
568 }
569 }
570
571 void v7_outer_cache_enable(void)
572 {
573 if (mvebu_soc_family() == MVEBU_SOC_AXP) {
574 struct pl310_regs *const pl310 =
575 (struct pl310_regs *)CONFIG_SYS_PL310_BASE;
576 u32 u;
577
578 /* The L2 cache is already disabled at this point */
579
580 /*
581 * For Aurora cache in no outer mode, enable via the CP15
582 * coprocessor broadcasting of cache commands to L2.
583 */
584 asm volatile("mrc p15, 1, %0, c15, c2, 0" : "=r" (u));
585 u |= BIT(8); /* Set the FW bit */
586 asm volatile("mcr p15, 1, %0, c15, c2, 0" : : "r" (u));
587
588 isb();
589
590 /* Enable the L2 cache */
591 setbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
592 }
593 }
594
595 void v7_outer_cache_disable(void)
596 {
597 struct pl310_regs *const pl310 =
598 (struct pl310_regs *)CONFIG_SYS_PL310_BASE;
599
600 clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
601 }