]> git.ipfire.org Git - thirdparty/u-boot.git/blob - arch/arm/mach-stm32mp/cmd_stm32prog/stm32prog.c
cc303214cf6d5470ce7c567bfe7bdb31f5487080
[thirdparty/u-boot.git] / arch / arm / mach-stm32mp / cmd_stm32prog / stm32prog.c
1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3 * Copyright (C) 2020, STMicroelectronics - All Rights Reserved
4 */
5
6 #include <common.h>
7 #include <console.h>
8 #include <dfu.h>
9 #include <malloc.h>
10 #include <misc.h>
11 #include <mmc.h>
12 #include <part.h>
13 #include <asm/arch/stm32mp1_smc.h>
14 #include <dm/uclass.h>
15 #include <jffs2/load_kernel.h>
16 #include <linux/list.h>
17 #include <linux/list_sort.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/sizes.h>
20
21 #include "stm32prog.h"
22
23 /* Primary GPT header size for 128 entries : 17kB = 34 LBA of 512B */
24 #define GPT_HEADER_SZ 34
25
26 #define OPT_SELECT BIT(0)
27 #define OPT_EMPTY BIT(1)
28 #define OPT_DELETE BIT(2)
29
30 #define IS_SELECT(part) ((part)->option & OPT_SELECT)
31 #define IS_EMPTY(part) ((part)->option & OPT_EMPTY)
32 #define IS_DELETE(part) ((part)->option & OPT_DELETE)
33
34 #define ALT_BUF_LEN SZ_1K
35
36 #define ROOTFS_MMC0_UUID \
37 EFI_GUID(0xE91C4E10, 0x16E6, 0x4C0E, \
38 0xBD, 0x0E, 0x77, 0xBE, 0xCF, 0x4A, 0x35, 0x82)
39
40 #define ROOTFS_MMC1_UUID \
41 EFI_GUID(0x491F6117, 0x415D, 0x4F53, \
42 0x88, 0xC9, 0x6E, 0x0D, 0xE5, 0x4D, 0xEA, 0xC6)
43
44 #define ROOTFS_MMC2_UUID \
45 EFI_GUID(0xFD58F1C7, 0xBE0D, 0x4338, \
46 0x88, 0xE9, 0xAD, 0x8F, 0x05, 0x0A, 0xEB, 0x18)
47
48 /* RAW parttion (binary / bootloader) used Linux - reserved UUID */
49 #define LINUX_RESERVED_UUID "8DA63339-0007-60C0-C436-083AC8230908"
50
51 /*
52 * unique partition guid (uuid) for partition named "rootfs"
53 * on each MMC instance = SD Card or eMMC
54 * allow fixed kernel bootcmd: "rootf=PARTUID=e91c4e10-..."
55 */
56 static const efi_guid_t uuid_mmc[3] = {
57 ROOTFS_MMC0_UUID,
58 ROOTFS_MMC1_UUID,
59 ROOTFS_MMC2_UUID
60 };
61
62 DECLARE_GLOBAL_DATA_PTR;
63
64 /* order of column in flash layout file */
65 enum stm32prog_col_t {
66 COL_OPTION,
67 COL_ID,
68 COL_NAME,
69 COL_TYPE,
70 COL_IP,
71 COL_OFFSET,
72 COL_NB_STM32
73 };
74
75 /* partition handling routines : CONFIG_CMD_MTDPARTS */
76 int mtdparts_init(void);
77 int find_dev_and_part(const char *id, struct mtd_device **dev,
78 u8 *part_num, struct part_info **part);
79
80 char *stm32prog_get_error(struct stm32prog_data *data)
81 {
82 static const char error_msg[] = "Unspecified";
83
84 if (strlen(data->error) == 0)
85 strcpy(data->error, error_msg);
86
87 return data->error;
88 }
89
90 u8 stm32prog_header_check(struct raw_header_s *raw_header,
91 struct image_header_s *header)
92 {
93 unsigned int i;
94
95 header->present = 0;
96 header->image_checksum = 0x0;
97 header->image_length = 0x0;
98
99 if (!raw_header || !header) {
100 pr_debug("%s:no header data\n", __func__);
101 return -1;
102 }
103 if (raw_header->magic_number !=
104 (('S' << 0) | ('T' << 8) | ('M' << 16) | (0x32 << 24))) {
105 pr_debug("%s:invalid magic number : 0x%x\n",
106 __func__, raw_header->magic_number);
107 return -2;
108 }
109 /* only header v1.0 supported */
110 if (raw_header->header_version != 0x00010000) {
111 pr_debug("%s:invalid header version : 0x%x\n",
112 __func__, raw_header->header_version);
113 return -3;
114 }
115 if (raw_header->reserved1 != 0x0 || raw_header->reserved2) {
116 pr_debug("%s:invalid reserved field\n", __func__);
117 return -4;
118 }
119 for (i = 0; i < (sizeof(raw_header->padding) / 4); i++) {
120 if (raw_header->padding[i] != 0) {
121 pr_debug("%s:invalid padding field\n", __func__);
122 return -5;
123 }
124 }
125 header->present = 1;
126 header->image_checksum = le32_to_cpu(raw_header->image_checksum);
127 header->image_length = le32_to_cpu(raw_header->image_length);
128
129 return 0;
130 }
131
132 static u32 stm32prog_header_checksum(u32 addr, struct image_header_s *header)
133 {
134 u32 i, checksum;
135 u8 *payload;
136
137 /* compute checksum on payload */
138 payload = (u8 *)addr;
139 checksum = 0;
140 for (i = header->image_length; i > 0; i--)
141 checksum += *(payload++);
142
143 return checksum;
144 }
145
146 /* FLASHLAYOUT PARSING *****************************************/
147 static int parse_option(struct stm32prog_data *data,
148 int i, char *p, struct stm32prog_part_t *part)
149 {
150 int result = 0;
151 char *c = p;
152
153 part->option = 0;
154 if (!strcmp(p, "-"))
155 return 0;
156
157 while (*c) {
158 switch (*c) {
159 case 'P':
160 part->option |= OPT_SELECT;
161 break;
162 case 'E':
163 part->option |= OPT_EMPTY;
164 break;
165 case 'D':
166 part->option |= OPT_DELETE;
167 break;
168 default:
169 result = -EINVAL;
170 stm32prog_err("Layout line %d: invalid option '%c' in %s)",
171 i, *c, p);
172 return -EINVAL;
173 }
174 c++;
175 }
176 if (!(part->option & OPT_SELECT)) {
177 stm32prog_err("Layout line %d: missing 'P' in option %s", i, p);
178 return -EINVAL;
179 }
180
181 return result;
182 }
183
184 static int parse_id(struct stm32prog_data *data,
185 int i, char *p, struct stm32prog_part_t *part)
186 {
187 int result = 0;
188 unsigned long value;
189
190 result = strict_strtoul(p, 0, &value);
191 part->id = value;
192 if (result || value > PHASE_LAST_USER) {
193 stm32prog_err("Layout line %d: invalid phase value = %s", i, p);
194 result = -EINVAL;
195 }
196
197 return result;
198 }
199
200 static int parse_name(struct stm32prog_data *data,
201 int i, char *p, struct stm32prog_part_t *part)
202 {
203 int result = 0;
204
205 if (strlen(p) < sizeof(part->name)) {
206 strcpy(part->name, p);
207 } else {
208 stm32prog_err("Layout line %d: partition name too long [%d]: %s",
209 i, strlen(p), p);
210 result = -EINVAL;
211 }
212
213 return result;
214 }
215
216 static int parse_type(struct stm32prog_data *data,
217 int i, char *p, struct stm32prog_part_t *part)
218 {
219 int result = 0;
220 int len = 0;
221
222 part->bin_nb = 0;
223 if (!strncmp(p, "Binary", 6)) {
224 part->part_type = PART_BINARY;
225
226 /* search for Binary(X) case */
227 len = strlen(p);
228 part->bin_nb = 1;
229 if (len > 6) {
230 if (len < 8 ||
231 (p[6] != '(') ||
232 (p[len - 1] != ')'))
233 result = -EINVAL;
234 else
235 part->bin_nb =
236 simple_strtoul(&p[7], NULL, 10);
237 }
238 } else if (!strcmp(p, "System")) {
239 part->part_type = PART_SYSTEM;
240 } else if (!strcmp(p, "FileSystem")) {
241 part->part_type = PART_FILESYSTEM;
242 } else if (!strcmp(p, "RawImage")) {
243 part->part_type = RAW_IMAGE;
244 } else {
245 result = -EINVAL;
246 }
247 if (result)
248 stm32prog_err("Layout line %d: type parsing error : '%s'",
249 i, p);
250
251 return result;
252 }
253
254 static int parse_ip(struct stm32prog_data *data,
255 int i, char *p, struct stm32prog_part_t *part)
256 {
257 int result = 0;
258 unsigned int len = 0;
259
260 part->dev_id = 0;
261 if (!strcmp(p, "none")) {
262 part->target = STM32PROG_NONE;
263 } else if (!strncmp(p, "mmc", 3)) {
264 part->target = STM32PROG_MMC;
265 len = 3;
266 } else if (!strncmp(p, "nor", 3)) {
267 part->target = STM32PROG_NOR;
268 len = 3;
269 } else if (!strncmp(p, "nand", 4)) {
270 part->target = STM32PROG_NAND;
271 len = 4;
272 } else if (!strncmp(p, "spi-nand", 8)) {
273 part->target = STM32PROG_SPI_NAND;
274 len = 8;
275 } else if (!strncmp(p, "ram", 3)) {
276 part->target = STM32PROG_RAM;
277 len = 0;
278 } else {
279 result = -EINVAL;
280 }
281 if (len) {
282 /* only one digit allowed for device id */
283 if (strlen(p) != len + 1) {
284 result = -EINVAL;
285 } else {
286 part->dev_id = p[len] - '0';
287 if (part->dev_id > 9)
288 result = -EINVAL;
289 }
290 }
291 if (result)
292 stm32prog_err("Layout line %d: ip parsing error: '%s'", i, p);
293
294 return result;
295 }
296
297 static int parse_offset(struct stm32prog_data *data,
298 int i, char *p, struct stm32prog_part_t *part)
299 {
300 int result = 0;
301 char *tail;
302
303 part->part_id = 0;
304 part->addr = 0;
305 part->size = 0;
306 /* eMMC boot parttion */
307 if (!strncmp(p, "boot", 4)) {
308 if (strlen(p) != 5) {
309 result = -EINVAL;
310 } else {
311 if (p[4] == '1')
312 part->part_id = -1;
313 else if (p[4] == '2')
314 part->part_id = -2;
315 else
316 result = -EINVAL;
317 }
318 if (result)
319 stm32prog_err("Layout line %d: invalid part '%s'",
320 i, p);
321 } else {
322 part->addr = simple_strtoull(p, &tail, 0);
323 if (tail == p || *tail != '\0') {
324 stm32prog_err("Layout line %d: invalid offset '%s'",
325 i, p);
326 result = -EINVAL;
327 }
328 }
329
330 return result;
331 }
332
333 static
334 int (* const parse[COL_NB_STM32])(struct stm32prog_data *data, int i, char *p,
335 struct stm32prog_part_t *part) = {
336 [COL_OPTION] = parse_option,
337 [COL_ID] = parse_id,
338 [COL_NAME] = parse_name,
339 [COL_TYPE] = parse_type,
340 [COL_IP] = parse_ip,
341 [COL_OFFSET] = parse_offset,
342 };
343
344 static int parse_flash_layout(struct stm32prog_data *data,
345 ulong addr,
346 ulong size)
347 {
348 int column = 0, part_nb = 0, ret;
349 bool end_of_line, eof;
350 char *p, *start, *last, *col;
351 struct stm32prog_part_t *part;
352 int part_list_size;
353 int i;
354
355 data->part_nb = 0;
356
357 /* check if STM32image is detected */
358 if (!stm32prog_header_check((struct raw_header_s *)addr,
359 &data->header)) {
360 u32 checksum;
361
362 addr = addr + BL_HEADER_SIZE;
363 size = data->header.image_length;
364
365 checksum = stm32prog_header_checksum(addr, &data->header);
366 if (checksum != data->header.image_checksum) {
367 stm32prog_err("Layout: invalid checksum : 0x%x expected 0x%x",
368 checksum, data->header.image_checksum);
369 return -EIO;
370 }
371 }
372 if (!size)
373 return -EINVAL;
374
375 start = (char *)addr;
376 last = start + size;
377
378 *last = 0x0; /* force null terminated string */
379 pr_debug("flash layout =\n%s\n", start);
380
381 /* calculate expected number of partitions */
382 part_list_size = 1;
383 p = start;
384 while (*p && (p < last)) {
385 if (*p++ == '\n') {
386 part_list_size++;
387 if (p < last && *p == '#')
388 part_list_size--;
389 }
390 }
391 if (part_list_size > PHASE_LAST_USER) {
392 stm32prog_err("Layout: too many partition (%d)",
393 part_list_size);
394 return -1;
395 }
396 part = calloc(sizeof(struct stm32prog_part_t), part_list_size);
397 if (!part) {
398 stm32prog_err("Layout: alloc failed");
399 return -ENOMEM;
400 }
401 data->part_array = part;
402
403 /* main parsing loop */
404 i = 1;
405 eof = false;
406 p = start;
407 col = start; /* 1st column */
408 end_of_line = false;
409 while (!eof) {
410 switch (*p) {
411 /* CR is ignored and replaced by NULL character */
412 case '\r':
413 *p = '\0';
414 p++;
415 continue;
416 case '\0':
417 end_of_line = true;
418 eof = true;
419 break;
420 case '\n':
421 end_of_line = true;
422 break;
423 case '\t':
424 break;
425 case '#':
426 /* comment line is skipped */
427 if (column == 0 && p == col) {
428 while ((p < last) && *p)
429 if (*p++ == '\n')
430 break;
431 col = p;
432 i++;
433 if (p >= last || !*p) {
434 eof = true;
435 end_of_line = true;
436 }
437 continue;
438 }
439 /* fall through */
440 /* by default continue with the next character */
441 default:
442 p++;
443 continue;
444 }
445
446 /* replace by \0: allow string parsing for each column */
447 *p = '\0';
448 p++;
449 if (p >= last) {
450 eof = true;
451 end_of_line = true;
452 }
453
454 /* skip empty line and multiple TAB in tsv file */
455 if (strlen(col) == 0) {
456 col = p;
457 /* skip empty line */
458 if (column == 0 && end_of_line) {
459 end_of_line = false;
460 i++;
461 }
462 continue;
463 }
464
465 if (column < COL_NB_STM32) {
466 ret = parse[column](data, i, col, part);
467 if (ret)
468 return ret;
469 }
470
471 /* save the beginning of the next column */
472 column++;
473 col = p;
474
475 if (!end_of_line)
476 continue;
477
478 /* end of the line detected */
479 end_of_line = false;
480
481 if (column < COL_NB_STM32) {
482 stm32prog_err("Layout line %d: no enought column", i);
483 return -EINVAL;
484 }
485 column = 0;
486 part_nb++;
487 part++;
488 i++;
489 if (part_nb >= part_list_size) {
490 part = NULL;
491 if (!eof) {
492 stm32prog_err("Layout: no enought memory for %d part",
493 part_nb);
494 return -EINVAL;
495 }
496 }
497 }
498 data->part_nb = part_nb;
499 if (data->part_nb == 0) {
500 stm32prog_err("Layout: no partition found");
501 return -ENODEV;
502 }
503
504 return 0;
505 }
506
507 static int __init part_cmp(void *priv, struct list_head *a, struct list_head *b)
508 {
509 struct stm32prog_part_t *parta, *partb;
510
511 parta = container_of(a, struct stm32prog_part_t, list);
512 partb = container_of(b, struct stm32prog_part_t, list);
513
514 if (parta->part_id != partb->part_id)
515 return parta->part_id - partb->part_id;
516 else
517 return parta->addr > partb->addr ? 1 : -1;
518 }
519
520 static void get_mtd_by_target(char *string, enum stm32prog_target target,
521 int dev_id)
522 {
523 const char *dev_str;
524
525 switch (target) {
526 case STM32PROG_NOR:
527 dev_str = "nor";
528 break;
529 case STM32PROG_NAND:
530 dev_str = "nand";
531 break;
532 case STM32PROG_SPI_NAND:
533 dev_str = "spi-nand";
534 break;
535 default:
536 dev_str = "invalid";
537 break;
538 }
539 sprintf(string, "%s%d", dev_str, dev_id);
540 }
541
542 static int init_device(struct stm32prog_data *data,
543 struct stm32prog_dev_t *dev)
544 {
545 struct mmc *mmc = NULL;
546 struct blk_desc *block_dev = NULL;
547 #ifdef CONFIG_MTD
548 struct mtd_info *mtd = NULL;
549 char mtd_id[16];
550 #endif
551 int part_id;
552 int ret;
553 u64 first_addr = 0, last_addr = 0;
554 struct stm32prog_part_t *part, *next_part;
555 u64 part_addr, part_size;
556 bool part_found;
557 const char *part_name;
558
559 switch (dev->target) {
560 #ifdef CONFIG_MMC
561 case STM32PROG_MMC:
562 mmc = find_mmc_device(dev->dev_id);
563 if (mmc_init(mmc)) {
564 stm32prog_err("mmc device %d not found", dev->dev_id);
565 return -ENODEV;
566 }
567 block_dev = mmc_get_blk_desc(mmc);
568 if (!block_dev) {
569 stm32prog_err("mmc device %d not probed", dev->dev_id);
570 return -ENODEV;
571 }
572 dev->erase_size = mmc->erase_grp_size * block_dev->blksz;
573 dev->mmc = mmc;
574
575 /* reserve a full erase group for each GTP headers */
576 if (mmc->erase_grp_size > GPT_HEADER_SZ) {
577 first_addr = dev->erase_size;
578 last_addr = (u64)(block_dev->lba -
579 mmc->erase_grp_size) *
580 block_dev->blksz;
581 } else {
582 first_addr = (u64)GPT_HEADER_SZ * block_dev->blksz;
583 last_addr = (u64)(block_dev->lba - GPT_HEADER_SZ - 1) *
584 block_dev->blksz;
585 }
586 pr_debug("MMC %d: lba=%ld blksz=%ld\n", dev->dev_id,
587 block_dev->lba, block_dev->blksz);
588 pr_debug(" available address = 0x%llx..0x%llx\n",
589 first_addr, last_addr);
590 pr_debug(" full_update = %d\n", dev->full_update);
591 break;
592 #endif
593 #ifdef CONFIG_MTD
594 case STM32PROG_NOR:
595 case STM32PROG_NAND:
596 case STM32PROG_SPI_NAND:
597 get_mtd_by_target(mtd_id, dev->target, dev->dev_id);
598 pr_debug("%s\n", mtd_id);
599
600 mtdparts_init();
601 mtd = get_mtd_device_nm(mtd_id);
602 if (IS_ERR(mtd)) {
603 stm32prog_err("MTD device %s not found", mtd_id);
604 return -ENODEV;
605 }
606 first_addr = 0;
607 last_addr = mtd->size;
608 dev->erase_size = mtd->erasesize;
609 pr_debug("MTD device %s: size=%lld erasesize=%d\n",
610 mtd_id, mtd->size, mtd->erasesize);
611 pr_debug(" available address = 0x%llx..0x%llx\n",
612 first_addr, last_addr);
613 dev->mtd = mtd;
614 break;
615 #endif
616 case STM32PROG_RAM:
617 first_addr = gd->bd->bi_dram[0].start;
618 last_addr = first_addr + gd->bd->bi_dram[0].size;
619 dev->erase_size = 1;
620 break;
621 default:
622 stm32prog_err("unknown device type = %d", dev->target);
623 return -ENODEV;
624 }
625 pr_debug(" erase size = 0x%x\n", dev->erase_size);
626 pr_debug(" full_update = %d\n", dev->full_update);
627
628 /* order partition list in offset order */
629 list_sort(NULL, &dev->part_list, &part_cmp);
630 part_id = 1;
631 pr_debug("id : Opt Phase Name target.n dev.n addr size part_off part_size\n");
632 list_for_each_entry(part, &dev->part_list, list) {
633 if (part->bin_nb > 1) {
634 if ((dev->target != STM32PROG_NAND &&
635 dev->target != STM32PROG_SPI_NAND) ||
636 part->id >= PHASE_FIRST_USER ||
637 strncmp(part->name, "fsbl", 4)) {
638 stm32prog_err("%s (0x%x): multiple binary %d not supported",
639 part->name, part->id,
640 part->bin_nb);
641 return -EINVAL;
642 }
643 }
644 if (part->part_type == RAW_IMAGE) {
645 part->part_id = 0x0;
646 part->addr = 0x0;
647 if (block_dev)
648 part->size = block_dev->lba * block_dev->blksz;
649 else
650 part->size = last_addr;
651 pr_debug("-- : %1d %02x %14s %02d.%d %02d.%02d %08llx %08llx\n",
652 part->option, part->id, part->name,
653 part->part_type, part->bin_nb, part->target,
654 part->dev_id, part->addr, part->size);
655 continue;
656 }
657 if (part->part_id < 0) { /* boot hw partition for eMMC */
658 if (mmc) {
659 part->size = mmc->capacity_boot;
660 } else {
661 stm32prog_err("%s (0x%x): hw partition not expected : %d",
662 part->name, part->id,
663 part->part_id);
664 return -ENODEV;
665 }
666 } else {
667 part->part_id = part_id++;
668
669 /* last partition : size to the end of the device */
670 if (part->list.next != &dev->part_list) {
671 next_part =
672 container_of(part->list.next,
673 struct stm32prog_part_t,
674 list);
675 if (part->addr < next_part->addr) {
676 part->size = next_part->addr -
677 part->addr;
678 } else {
679 stm32prog_err("%s (0x%x): same address : 0x%llx == %s (0x%x): 0x%llx",
680 part->name, part->id,
681 part->addr,
682 next_part->name,
683 next_part->id,
684 next_part->addr);
685 return -EINVAL;
686 }
687 } else {
688 if (part->addr <= last_addr) {
689 part->size = last_addr - part->addr;
690 } else {
691 stm32prog_err("%s (0x%x): invalid address 0x%llx (max=0x%llx)",
692 part->name, part->id,
693 part->addr, last_addr);
694 return -EINVAL;
695 }
696 }
697 if (part->addr < first_addr) {
698 stm32prog_err("%s (0x%x): invalid address 0x%llx (min=0x%llx)",
699 part->name, part->id,
700 part->addr, first_addr);
701 return -EINVAL;
702 }
703 }
704 if ((part->addr & ((u64)part->dev->erase_size - 1)) != 0) {
705 stm32prog_err("%s (0x%x): not aligned address : 0x%llx on erase size 0x%x",
706 part->name, part->id, part->addr,
707 part->dev->erase_size);
708 return -EINVAL;
709 }
710 pr_debug("%02d : %1d %02x %14s %02d.%d %02d.%02d %08llx %08llx",
711 part->part_id, part->option, part->id, part->name,
712 part->part_type, part->bin_nb, part->target,
713 part->dev_id, part->addr, part->size);
714
715 part_addr = 0;
716 part_size = 0;
717 part_found = false;
718
719 /* check coherency with existing partition */
720 if (block_dev) {
721 /*
722 * block devices with GPT: check user partition size
723 * only for partial update, the GPT partions are be
724 * created for full update
725 */
726 if (dev->full_update || part->part_id < 0) {
727 pr_debug("\n");
728 continue;
729 }
730 disk_partition_t partinfo;
731
732 ret = part_get_info(block_dev, part->part_id,
733 &partinfo);
734
735 if (ret) {
736 stm32prog_err("%s (0x%x):Couldn't find part %d on device mmc %d",
737 part->name, part->id,
738 part_id, part->dev_id);
739 return -ENODEV;
740 }
741 part_addr = (u64)partinfo.start * partinfo.blksz;
742 part_size = (u64)partinfo.size * partinfo.blksz;
743 part_name = (char *)partinfo.name;
744 part_found = true;
745 }
746
747 #ifdef CONFIG_MTD
748 if (mtd) {
749 char mtd_part_id[32];
750 struct part_info *mtd_part;
751 struct mtd_device *mtd_dev;
752 u8 part_num;
753
754 sprintf(mtd_part_id, "%s,%d", mtd_id,
755 part->part_id - 1);
756 ret = find_dev_and_part(mtd_part_id, &mtd_dev,
757 &part_num, &mtd_part);
758 if (ret != 0) {
759 stm32prog_err("%s (0x%x): Invalid MTD partition %s",
760 part->name, part->id,
761 mtd_part_id);
762 return -ENODEV;
763 }
764 part_addr = mtd_part->offset;
765 part_size = mtd_part->size;
766 part_name = mtd_part->name;
767 part_found = true;
768 }
769 #endif
770 if (!part_found) {
771 stm32prog_err("%s (0x%x): Invalid partition",
772 part->name, part->id);
773 pr_debug("\n");
774 continue;
775 }
776
777 pr_debug(" %08llx %08llx\n", part_addr, part_size);
778
779 if (part->addr != part_addr) {
780 stm32prog_err("%s (0x%x): Bad address for partition %d (%s) = 0x%llx <> 0x%llx expected",
781 part->name, part->id, part->part_id,
782 part_name, part->addr, part_addr);
783 return -ENODEV;
784 }
785 if (part->size != part_size) {
786 stm32prog_err("%s (0x%x): Bad size for partition %d (%s) at 0x%llx = 0x%llx <> 0x%llx expected",
787 part->name, part->id, part->part_id,
788 part_name, part->addr, part->size,
789 part_size);
790 return -ENODEV;
791 }
792 }
793 return 0;
794 }
795
796 static int treat_partition_list(struct stm32prog_data *data)
797 {
798 int i, j;
799 struct stm32prog_part_t *part;
800
801 for (j = 0; j < STM32PROG_MAX_DEV; j++) {
802 data->dev[j].target = STM32PROG_NONE;
803 INIT_LIST_HEAD(&data->dev[j].part_list);
804 }
805
806 data->tee_detected = false;
807 data->fsbl_nor_detected = false;
808 for (i = 0; i < data->part_nb; i++) {
809 part = &data->part_array[i];
810 part->alt_id = -1;
811
812 /* skip partition with IP="none" */
813 if (part->target == STM32PROG_NONE) {
814 if (IS_SELECT(part)) {
815 stm32prog_err("Layout: selected none phase = 0x%x",
816 part->id);
817 return -EINVAL;
818 }
819 continue;
820 }
821
822 if (part->id == PHASE_FLASHLAYOUT ||
823 part->id > PHASE_LAST_USER) {
824 stm32prog_err("Layout: invalid phase = 0x%x",
825 part->id);
826 return -EINVAL;
827 }
828 for (j = i + 1; j < data->part_nb; j++) {
829 if (part->id == data->part_array[j].id) {
830 stm32prog_err("Layout: duplicated phase 0x%x at line %d and %d",
831 part->id, i, j);
832 return -EINVAL;
833 }
834 }
835 for (j = 0; j < STM32PROG_MAX_DEV; j++) {
836 if (data->dev[j].target == STM32PROG_NONE) {
837 /* new device found */
838 data->dev[j].target = part->target;
839 data->dev[j].dev_id = part->dev_id;
840 data->dev[j].full_update = true;
841 data->dev_nb++;
842 break;
843 } else if ((part->target == data->dev[j].target) &&
844 (part->dev_id == data->dev[j].dev_id)) {
845 break;
846 }
847 }
848 if (j == STM32PROG_MAX_DEV) {
849 stm32prog_err("Layout: too many device");
850 return -EINVAL;
851 }
852 switch (part->target) {
853 case STM32PROG_NOR:
854 if (!data->fsbl_nor_detected &&
855 !strncmp(part->name, "fsbl", 4))
856 data->fsbl_nor_detected = true;
857 /* fallthrough */
858 case STM32PROG_NAND:
859 case STM32PROG_SPI_NAND:
860 if (!data->tee_detected &&
861 !strncmp(part->name, "tee", 3))
862 data->tee_detected = true;
863 break;
864 default:
865 break;
866 }
867 part->dev = &data->dev[j];
868 if (!IS_SELECT(part))
869 part->dev->full_update = false;
870 list_add_tail(&part->list, &data->dev[j].part_list);
871 }
872
873 return 0;
874 }
875
876 static int create_partitions(struct stm32prog_data *data)
877 {
878 #ifdef CONFIG_MMC
879 int offset = 0;
880 const int buflen = SZ_8K;
881 char *buf;
882 char uuid[UUID_STR_LEN + 1];
883 unsigned char *uuid_bin;
884 unsigned int mmc_id;
885 int i;
886 bool rootfs_found;
887 struct stm32prog_part_t *part;
888
889 buf = malloc(buflen);
890 if (!buf)
891 return -ENOMEM;
892
893 puts("partitions : ");
894 /* initialize the selected device */
895 for (i = 0; i < data->dev_nb; i++) {
896 /* create gpt partition support only for full update on MMC */
897 if (data->dev[i].target != STM32PROG_MMC ||
898 !data->dev[i].full_update)
899 continue;
900
901 offset = 0;
902 rootfs_found = false;
903 memset(buf, 0, buflen);
904
905 list_for_each_entry(part, &data->dev[i].part_list, list) {
906 /* skip eMMC boot partitions */
907 if (part->part_id < 0)
908 continue;
909 /* skip Raw Image */
910 if (part->part_type == RAW_IMAGE)
911 continue;
912
913 if (offset + 100 > buflen) {
914 pr_debug("\n%s: buffer too small, %s skippped",
915 __func__, part->name);
916 continue;
917 }
918
919 if (!offset)
920 offset += sprintf(buf, "gpt write mmc %d \"",
921 data->dev[i].dev_id);
922
923 offset += snprintf(buf + offset, buflen - offset,
924 "name=%s,start=0x%llx,size=0x%llx",
925 part->name,
926 part->addr,
927 part->size);
928
929 if (part->part_type == PART_BINARY)
930 offset += snprintf(buf + offset,
931 buflen - offset,
932 ",type="
933 LINUX_RESERVED_UUID);
934 else
935 offset += snprintf(buf + offset,
936 buflen - offset,
937 ",type=linux");
938
939 if (part->part_type == PART_SYSTEM)
940 offset += snprintf(buf + offset,
941 buflen - offset,
942 ",bootable");
943
944 if (!rootfs_found && !strcmp(part->name, "rootfs")) {
945 mmc_id = part->dev_id;
946 rootfs_found = true;
947 if (mmc_id < ARRAY_SIZE(uuid_mmc)) {
948 uuid_bin =
949 (unsigned char *)uuid_mmc[mmc_id].b;
950 uuid_bin_to_str(uuid_bin, uuid,
951 UUID_STR_FORMAT_GUID);
952 offset += snprintf(buf + offset,
953 buflen - offset,
954 ",uuid=%s", uuid);
955 }
956 }
957
958 offset += snprintf(buf + offset, buflen - offset, ";");
959 }
960
961 if (offset) {
962 offset += snprintf(buf + offset, buflen - offset, "\"");
963 pr_debug("\ncmd: %s\n", buf);
964 if (run_command(buf, 0)) {
965 stm32prog_err("GPT partitionning fail: %s",
966 buf);
967 free(buf);
968
969 return -1;
970 }
971 }
972
973 if (data->dev[i].mmc)
974 part_init(mmc_get_blk_desc(data->dev[i].mmc));
975
976 #ifdef DEBUG
977 sprintf(buf, "gpt verify mmc %d", data->dev[i].dev_id);
978 pr_debug("\ncmd: %s", buf);
979 if (run_command(buf, 0))
980 printf("fail !\n");
981 else
982 printf("OK\n");
983
984 sprintf(buf, "part list mmc %d", data->dev[i].dev_id);
985 run_command(buf, 0);
986 #endif
987 }
988 puts("done\n");
989
990 #ifdef DEBUG
991 run_command("mtd list", 0);
992 #endif
993 free(buf);
994 #endif
995
996 return 0;
997 }
998
999 static int stm32prog_alt_add(struct stm32prog_data *data,
1000 struct dfu_entity *dfu,
1001 struct stm32prog_part_t *part)
1002 {
1003 int ret = 0;
1004 int offset = 0;
1005 char devstr[10];
1006 char dfustr[10];
1007 char buf[ALT_BUF_LEN];
1008 u32 size;
1009 char multiplier, type;
1010
1011 /* max 3 digit for sector size */
1012 if (part->size > SZ_1M) {
1013 size = (u32)(part->size / SZ_1M);
1014 multiplier = 'M';
1015 } else if (part->size > SZ_1K) {
1016 size = (u32)(part->size / SZ_1K);
1017 multiplier = 'K';
1018 } else {
1019 size = (u32)part->size;
1020 multiplier = 'B';
1021 }
1022 if (IS_SELECT(part) && !IS_EMPTY(part))
1023 type = 'e'; /*Readable and Writeable*/
1024 else
1025 type = 'a';/*Readable*/
1026
1027 memset(buf, 0, sizeof(buf));
1028 offset = snprintf(buf, ALT_BUF_LEN - offset,
1029 "@%s/0x%02x/1*%d%c%c ",
1030 part->name, part->id,
1031 size, multiplier, type);
1032
1033 if (part->target == STM32PROG_RAM) {
1034 offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1035 "ram 0x%llx 0x%llx",
1036 part->addr, part->size);
1037 } else if (part->part_type == RAW_IMAGE) {
1038 u64 dfu_size;
1039
1040 if (part->dev->target == STM32PROG_MMC)
1041 dfu_size = part->size / part->dev->mmc->read_bl_len;
1042 else
1043 dfu_size = part->size;
1044 offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1045 "raw 0x0 0x%llx", dfu_size);
1046 } else if (part->part_id < 0) {
1047 u64 nb_blk = part->size / part->dev->mmc->read_bl_len;
1048
1049 offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1050 "raw 0x%llx 0x%llx",
1051 part->addr, nb_blk);
1052 offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1053 " mmcpart %d;", -(part->part_id));
1054 } else {
1055 if (part->part_type == PART_SYSTEM &&
1056 (part->target == STM32PROG_NAND ||
1057 part->target == STM32PROG_NOR ||
1058 part->target == STM32PROG_SPI_NAND))
1059 offset += snprintf(buf + offset,
1060 ALT_BUF_LEN - offset,
1061 "partubi");
1062 else
1063 offset += snprintf(buf + offset,
1064 ALT_BUF_LEN - offset,
1065 "part");
1066 /* dev_id requested by DFU MMC */
1067 if (part->target == STM32PROG_MMC)
1068 offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1069 " %d", part->dev_id);
1070 offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1071 " %d;", part->part_id);
1072 }
1073 switch (part->target) {
1074 #ifdef CONFIG_MMC
1075 case STM32PROG_MMC:
1076 sprintf(dfustr, "mmc");
1077 sprintf(devstr, "%d", part->dev_id);
1078 break;
1079 #endif
1080 #ifdef CONFIG_MTD
1081 case STM32PROG_NAND:
1082 case STM32PROG_NOR:
1083 case STM32PROG_SPI_NAND:
1084 sprintf(dfustr, "mtd");
1085 get_mtd_by_target(devstr, part->target, part->dev_id);
1086 break;
1087 #endif
1088 case STM32PROG_RAM:
1089 sprintf(dfustr, "ram");
1090 sprintf(devstr, "0");
1091 break;
1092 default:
1093 stm32prog_err("invalid target: %d", part->target);
1094 return -ENODEV;
1095 }
1096 pr_debug("dfu_alt_add(%s,%s,%s)\n", dfustr, devstr, buf);
1097 ret = dfu_alt_add(dfu, dfustr, devstr, buf);
1098 pr_debug("dfu_alt_add(%s,%s,%s) result %d\n",
1099 dfustr, devstr, buf, ret);
1100
1101 return ret;
1102 }
1103
1104 static int stm32prog_alt_add_virt(struct dfu_entity *dfu,
1105 char *name, int phase, int size)
1106 {
1107 int ret = 0;
1108 char devstr[4];
1109 char buf[ALT_BUF_LEN];
1110
1111 sprintf(devstr, "%d", phase);
1112 sprintf(buf, "@%s/0x%02x/1*%dBe", name, phase, size);
1113 ret = dfu_alt_add(dfu, "virt", devstr, buf);
1114 pr_debug("dfu_alt_add(virt,%s,%s) result %d\n", devstr, buf, ret);
1115
1116 return ret;
1117 }
1118
1119 static int dfu_init_entities(struct stm32prog_data *data)
1120 {
1121 int ret = 0;
1122 int phase, i, alt_id;
1123 struct stm32prog_part_t *part;
1124 struct dfu_entity *dfu;
1125 int alt_nb;
1126
1127 alt_nb = 3; /* number of virtual = CMD, OTP, PMIC*/
1128 if (data->part_nb == 0)
1129 alt_nb++; /* +1 for FlashLayout */
1130 else
1131 for (i = 0; i < data->part_nb; i++) {
1132 if (data->part_array[i].target != STM32PROG_NONE)
1133 alt_nb++;
1134 }
1135
1136 if (dfu_alt_init(alt_nb, &dfu))
1137 return -ENODEV;
1138
1139 puts("DFU alt info setting: ");
1140 if (data->part_nb) {
1141 alt_id = 0;
1142 for (phase = 1;
1143 (phase <= PHASE_LAST_USER) &&
1144 (alt_id < alt_nb) && !ret;
1145 phase++) {
1146 /* ordering alt setting by phase id */
1147 part = NULL;
1148 for (i = 0; i < data->part_nb; i++) {
1149 if (phase == data->part_array[i].id) {
1150 part = &data->part_array[i];
1151 break;
1152 }
1153 }
1154 if (!part)
1155 continue;
1156 if (part->target == STM32PROG_NONE)
1157 continue;
1158 part->alt_id = alt_id;
1159 alt_id++;
1160
1161 ret = stm32prog_alt_add(data, dfu, part);
1162 }
1163 } else {
1164 char buf[ALT_BUF_LEN];
1165
1166 sprintf(buf, "@FlashLayout/0x%02x/1*256Ke ram %x 40000",
1167 PHASE_FLASHLAYOUT, STM32_DDR_BASE);
1168 ret = dfu_alt_add(dfu, "ram", NULL, buf);
1169 pr_debug("dfu_alt_add(ram, NULL,%s) result %d\n", buf, ret);
1170 }
1171
1172 if (!ret)
1173 ret = stm32prog_alt_add_virt(dfu, "virtual", PHASE_CMD, 512);
1174
1175 if (!ret)
1176 ret = stm32prog_alt_add_virt(dfu, "OTP", PHASE_OTP, 512);
1177
1178 if (!ret && CONFIG_IS_ENABLED(DM_PMIC))
1179 ret = stm32prog_alt_add_virt(dfu, "PMIC", PHASE_PMIC, 8);
1180
1181 if (ret)
1182 stm32prog_err("dfu init failed: %d", ret);
1183 puts("done\n");
1184
1185 #ifdef DEBUG
1186 dfu_show_entities();
1187 #endif
1188 return ret;
1189 }
1190
1191 int stm32prog_otp_write(struct stm32prog_data *data, u32 offset, u8 *buffer,
1192 long *size)
1193 {
1194 pr_debug("%s: %x %lx\n", __func__, offset, *size);
1195
1196 if (!data->otp_part) {
1197 data->otp_part = memalign(CONFIG_SYS_CACHELINE_SIZE, OTP_SIZE);
1198 if (!data->otp_part)
1199 return -ENOMEM;
1200 }
1201
1202 if (!offset)
1203 memset(data->otp_part, 0, OTP_SIZE);
1204
1205 if (offset + *size > OTP_SIZE)
1206 *size = OTP_SIZE - offset;
1207
1208 memcpy((void *)((u32)data->otp_part + offset), buffer, *size);
1209
1210 return 0;
1211 }
1212
1213 int stm32prog_otp_read(struct stm32prog_data *data, u32 offset, u8 *buffer,
1214 long *size)
1215 {
1216 #ifndef CONFIG_ARM_SMCCC
1217 stm32prog_err("OTP update not supported");
1218
1219 return -1;
1220 #else
1221 int result = 0;
1222
1223 pr_debug("%s: %x %lx\n", __func__, offset, *size);
1224 /* alway read for first packet */
1225 if (!offset) {
1226 if (!data->otp_part)
1227 data->otp_part =
1228 memalign(CONFIG_SYS_CACHELINE_SIZE, OTP_SIZE);
1229
1230 if (!data->otp_part) {
1231 result = -ENOMEM;
1232 goto end_otp_read;
1233 }
1234
1235 /* init struct with 0 */
1236 memset(data->otp_part, 0, OTP_SIZE);
1237
1238 /* call the service */
1239 result = stm32_smc_exec(STM32_SMC_BSEC, STM32_SMC_READ_ALL,
1240 (u32)data->otp_part, 0);
1241 if (result)
1242 goto end_otp_read;
1243 }
1244
1245 if (!data->otp_part) {
1246 result = -ENOMEM;
1247 goto end_otp_read;
1248 }
1249
1250 if (offset + *size > OTP_SIZE)
1251 *size = OTP_SIZE - offset;
1252 memcpy(buffer, (void *)((u32)data->otp_part + offset), *size);
1253
1254 end_otp_read:
1255 pr_debug("%s: result %i\n", __func__, result);
1256
1257 return result;
1258 #endif
1259 }
1260
1261 int stm32prog_otp_start(struct stm32prog_data *data)
1262 {
1263 #ifndef CONFIG_ARM_SMCCC
1264 stm32prog_err("OTP update not supported");
1265
1266 return -1;
1267 #else
1268 int result = 0;
1269 struct arm_smccc_res res;
1270
1271 if (!data->otp_part) {
1272 stm32prog_err("start OTP without data");
1273 return -1;
1274 }
1275
1276 arm_smccc_smc(STM32_SMC_BSEC, STM32_SMC_WRITE_ALL,
1277 (u32)data->otp_part, 0, 0, 0, 0, 0, &res);
1278
1279 if (!res.a0) {
1280 switch (res.a1) {
1281 case 0:
1282 result = 0;
1283 break;
1284 case 1:
1285 stm32prog_err("Provisioning");
1286 result = 0;
1287 break;
1288 default:
1289 pr_err("%s: OTP incorrect value (err = %ld)\n",
1290 __func__, res.a1);
1291 result = -EINVAL;
1292 break;
1293 }
1294 } else {
1295 pr_err("%s: Failed to exec svc=%x op=%x in secure mode (err = %ld)\n",
1296 __func__, STM32_SMC_BSEC, STM32_SMC_WRITE_ALL, res.a0);
1297 result = -EINVAL;
1298 }
1299
1300 free(data->otp_part);
1301 data->otp_part = NULL;
1302 pr_debug("%s: result %i\n", __func__, result);
1303
1304 return result;
1305 #endif
1306 }
1307
1308 int stm32prog_pmic_write(struct stm32prog_data *data, u32 offset, u8 *buffer,
1309 long *size)
1310 {
1311 pr_debug("%s: %x %lx\n", __func__, offset, *size);
1312
1313 if (!offset)
1314 memset(data->pmic_part, 0, PMIC_SIZE);
1315
1316 if (offset + *size > PMIC_SIZE)
1317 *size = PMIC_SIZE - offset;
1318
1319 memcpy(&data->pmic_part[offset], buffer, *size);
1320
1321 return 0;
1322 }
1323
1324 int stm32prog_pmic_read(struct stm32prog_data *data, u32 offset, u8 *buffer,
1325 long *size)
1326 {
1327 int result = 0, ret;
1328 struct udevice *dev;
1329
1330 if (!CONFIG_IS_ENABLED(PMIC_STPMIC1)) {
1331 stm32prog_err("PMIC update not supported");
1332
1333 return -EOPNOTSUPP;
1334 }
1335
1336 pr_debug("%s: %x %lx\n", __func__, offset, *size);
1337 ret = uclass_get_device_by_driver(UCLASS_MISC,
1338 DM_GET_DRIVER(stpmic1_nvm),
1339 &dev);
1340 if (ret)
1341 return ret;
1342
1343 /* alway request PMIC for first packet */
1344 if (!offset) {
1345 /* init struct with 0 */
1346 memset(data->pmic_part, 0, PMIC_SIZE);
1347
1348 ret = uclass_get_device_by_driver(UCLASS_MISC,
1349 DM_GET_DRIVER(stpmic1_nvm),
1350 &dev);
1351 if (ret)
1352 return ret;
1353
1354 ret = misc_read(dev, 0xF8, data->pmic_part, PMIC_SIZE);
1355 if (ret < 0) {
1356 result = ret;
1357 goto end_pmic_read;
1358 }
1359 if (ret != PMIC_SIZE) {
1360 result = -EACCES;
1361 goto end_pmic_read;
1362 }
1363 }
1364
1365 if (offset + *size > PMIC_SIZE)
1366 *size = PMIC_SIZE - offset;
1367
1368 memcpy(buffer, &data->pmic_part[offset], *size);
1369
1370 end_pmic_read:
1371 pr_debug("%s: result %i\n", __func__, result);
1372 return result;
1373 }
1374
1375 int stm32prog_pmic_start(struct stm32prog_data *data)
1376 {
1377 int ret;
1378 struct udevice *dev;
1379
1380 if (!CONFIG_IS_ENABLED(PMIC_STPMIC1)) {
1381 stm32prog_err("PMIC update not supported");
1382
1383 return -EOPNOTSUPP;
1384 }
1385
1386 ret = uclass_get_device_by_driver(UCLASS_MISC,
1387 DM_GET_DRIVER(stpmic1_nvm),
1388 &dev);
1389 if (ret)
1390 return ret;
1391
1392 return misc_write(dev, 0xF8, data->pmic_part, PMIC_SIZE);
1393 }
1394
1395 /* copy FSBL on NAND to improve reliability on NAND */
1396 static int stm32prog_copy_fsbl(struct stm32prog_part_t *part)
1397 {
1398 int ret, i;
1399 void *fsbl;
1400 struct image_header_s header;
1401 struct raw_header_s raw_header;
1402 struct dfu_entity *dfu;
1403 long size, offset;
1404
1405 if (part->target != STM32PROG_NAND &&
1406 part->target != STM32PROG_SPI_NAND)
1407 return -1;
1408
1409 dfu = dfu_get_entity(part->alt_id);
1410
1411 /* read header */
1412 dfu_transaction_cleanup(dfu);
1413 size = BL_HEADER_SIZE;
1414 ret = dfu->read_medium(dfu, 0, (void *)&raw_header, &size);
1415 if (ret)
1416 return ret;
1417 if (stm32prog_header_check(&raw_header, &header))
1418 return -1;
1419
1420 /* read header + payload */
1421 size = header.image_length + BL_HEADER_SIZE;
1422 size = round_up(size, part->dev->mtd->erasesize);
1423 fsbl = calloc(1, size);
1424 if (!fsbl)
1425 return -ENOMEM;
1426 ret = dfu->read_medium(dfu, 0, fsbl, &size);
1427 pr_debug("%s read size=%lx ret=%d\n", __func__, size, ret);
1428 if (ret)
1429 goto error;
1430
1431 dfu_transaction_cleanup(dfu);
1432 offset = 0;
1433 for (i = part->bin_nb - 1; i > 0; i--) {
1434 offset += size;
1435 /* write to the next erase block */
1436 ret = dfu->write_medium(dfu, offset, fsbl, &size);
1437 pr_debug("%s copy at ofset=%lx size=%lx ret=%d",
1438 __func__, offset, size, ret);
1439 if (ret)
1440 goto error;
1441 }
1442
1443 error:
1444 free(fsbl);
1445 return ret;
1446 }
1447
1448 static void stm32prog_end_phase(struct stm32prog_data *data)
1449 {
1450 if (data->phase == PHASE_FLASHLAYOUT) {
1451 if (parse_flash_layout(data, STM32_DDR_BASE, 0))
1452 stm32prog_err("Layout: invalid FlashLayout");
1453 return;
1454 }
1455
1456 if (!data->cur_part)
1457 return;
1458
1459 if (data->cur_part->target == STM32PROG_RAM) {
1460 if (data->cur_part->part_type == PART_SYSTEM)
1461 data->uimage = data->cur_part->addr;
1462 if (data->cur_part->part_type == PART_FILESYSTEM)
1463 data->dtb = data->cur_part->addr;
1464 }
1465
1466 if (CONFIG_IS_ENABLED(MMC) &&
1467 data->cur_part->part_id < 0) {
1468 char cmdbuf[60];
1469
1470 sprintf(cmdbuf, "mmc bootbus %d 0 0 0; mmc partconf %d 1 %d 0",
1471 data->cur_part->dev_id, data->cur_part->dev_id,
1472 -(data->cur_part->part_id));
1473 if (run_command(cmdbuf, 0)) {
1474 stm32prog_err("commands '%s' failed", cmdbuf);
1475 return;
1476 }
1477 }
1478
1479 if (CONFIG_IS_ENABLED(MTD) &&
1480 data->cur_part->bin_nb > 1) {
1481 if (stm32prog_copy_fsbl(data->cur_part)) {
1482 stm32prog_err("%s (0x%x): copy of fsbl failed",
1483 data->cur_part->name, data->cur_part->id);
1484 return;
1485 }
1486 }
1487 }
1488
1489 void stm32prog_do_reset(struct stm32prog_data *data)
1490 {
1491 if (data->phase == PHASE_RESET) {
1492 data->phase = PHASE_DO_RESET;
1493 puts("Reset requested\n");
1494 }
1495 }
1496
1497 void stm32prog_next_phase(struct stm32prog_data *data)
1498 {
1499 int phase, i;
1500 struct stm32prog_part_t *part;
1501 bool found;
1502
1503 phase = data->phase;
1504 switch (phase) {
1505 case PHASE_RESET:
1506 case PHASE_END:
1507 case PHASE_DO_RESET:
1508 return;
1509 }
1510
1511 /* found next selected partition */
1512 data->dfu_seq = 0;
1513 data->cur_part = NULL;
1514 data->phase = PHASE_END;
1515 found = false;
1516 do {
1517 phase++;
1518 if (phase > PHASE_LAST_USER)
1519 break;
1520 for (i = 0; i < data->part_nb; i++) {
1521 part = &data->part_array[i];
1522 if (part->id == phase) {
1523 if (IS_SELECT(part) && !IS_EMPTY(part)) {
1524 data->cur_part = part;
1525 data->phase = phase;
1526 found = true;
1527 }
1528 break;
1529 }
1530 }
1531 } while (!found);
1532
1533 if (data->phase == PHASE_END)
1534 puts("Phase=END\n");
1535 }
1536
1537 static int part_delete(struct stm32prog_data *data,
1538 struct stm32prog_part_t *part)
1539 {
1540 int ret = 0;
1541 #ifdef CONFIG_MMC
1542 unsigned long blks, blks_offset, blks_size;
1543 struct blk_desc *block_dev = NULL;
1544 #endif
1545 #ifdef CONFIG_MTD
1546 char cmdbuf[40];
1547 char devstr[10];
1548 #endif
1549
1550 printf("Erasing %s ", part->name);
1551 switch (part->target) {
1552 #ifdef CONFIG_MMC
1553 case STM32PROG_MMC:
1554 printf("on mmc %d: ", part->dev->dev_id);
1555 block_dev = mmc_get_blk_desc(part->dev->mmc);
1556 blks_offset = lldiv(part->addr, part->dev->mmc->read_bl_len);
1557 blks_size = lldiv(part->size, part->dev->mmc->read_bl_len);
1558 /* -1 or -2 : delete boot partition of MMC
1559 * need to switch to associated hwpart 1 or 2
1560 */
1561 if (part->part_id < 0)
1562 if (blk_select_hwpart_devnum(IF_TYPE_MMC,
1563 part->dev->dev_id,
1564 -part->part_id))
1565 return -1;
1566
1567 blks = blk_derase(block_dev, blks_offset, blks_size);
1568
1569 /* return to user partition */
1570 if (part->part_id < 0)
1571 blk_select_hwpart_devnum(IF_TYPE_MMC,
1572 part->dev->dev_id, 0);
1573 if (blks != blks_size) {
1574 ret = -1;
1575 stm32prog_err("%s (0x%x): MMC erase failed",
1576 part->name, part->id);
1577 }
1578 break;
1579 #endif
1580 #ifdef CONFIG_MTD
1581 case STM32PROG_NOR:
1582 case STM32PROG_NAND:
1583 case STM32PROG_SPI_NAND:
1584 get_mtd_by_target(devstr, part->target, part->dev->dev_id);
1585 printf("on %s: ", devstr);
1586 sprintf(cmdbuf, "mtd erase %s 0x%llx 0x%llx",
1587 devstr, part->addr, part->size);
1588 if (run_command(cmdbuf, 0)) {
1589 ret = -1;
1590 stm32prog_err("%s (0x%x): MTD erase commands failed (%s)",
1591 part->name, part->id, cmdbuf);
1592 }
1593 break;
1594 #endif
1595 case STM32PROG_RAM:
1596 printf("on ram: ");
1597 memset((void *)(uintptr_t)part->addr, 0, (size_t)part->size);
1598 break;
1599 default:
1600 ret = -1;
1601 stm32prog_err("%s (0x%x): erase invalid", part->name, part->id);
1602 break;
1603 }
1604 if (!ret)
1605 printf("done\n");
1606
1607 return ret;
1608 }
1609
1610 static void stm32prog_devices_init(struct stm32prog_data *data)
1611 {
1612 int i;
1613 int ret;
1614 struct stm32prog_part_t *part;
1615
1616 ret = treat_partition_list(data);
1617 if (ret)
1618 goto error;
1619
1620 /* initialize the selected device */
1621 for (i = 0; i < data->dev_nb; i++) {
1622 ret = init_device(data, &data->dev[i]);
1623 if (ret)
1624 goto error;
1625 }
1626
1627 /* delete RAW partition before create partition */
1628 for (i = 0; i < data->part_nb; i++) {
1629 part = &data->part_array[i];
1630
1631 if (part->part_type != RAW_IMAGE)
1632 continue;
1633
1634 if (!IS_SELECT(part) || !IS_DELETE(part))
1635 continue;
1636
1637 ret = part_delete(data, part);
1638 if (ret)
1639 goto error;
1640 }
1641
1642 ret = create_partitions(data);
1643 if (ret)
1644 goto error;
1645
1646 /* delete partition GPT or MTD */
1647 for (i = 0; i < data->part_nb; i++) {
1648 part = &data->part_array[i];
1649
1650 if (part->part_type == RAW_IMAGE)
1651 continue;
1652
1653 if (!IS_SELECT(part) || !IS_DELETE(part))
1654 continue;
1655
1656 ret = part_delete(data, part);
1657 if (ret)
1658 goto error;
1659 }
1660
1661 return;
1662
1663 error:
1664 data->part_nb = 0;
1665 }
1666
1667 int stm32prog_dfu_init(struct stm32prog_data *data)
1668 {
1669 /* init device if no error */
1670 if (data->part_nb)
1671 stm32prog_devices_init(data);
1672
1673 if (data->part_nb)
1674 stm32prog_next_phase(data);
1675
1676 /* prepare DFU for device read/write */
1677 dfu_free_entities();
1678 return dfu_init_entities(data);
1679 }
1680
1681 int stm32prog_init(struct stm32prog_data *data, ulong addr, ulong size)
1682 {
1683 memset(data, 0x0, sizeof(*data));
1684 data->read_phase = PHASE_RESET;
1685 data->phase = PHASE_FLASHLAYOUT;
1686
1687 return parse_flash_layout(data, addr, size);
1688 }
1689
1690 void stm32prog_clean(struct stm32prog_data *data)
1691 {
1692 /* clean */
1693 dfu_free_entities();
1694 free(data->part_array);
1695 free(data->otp_part);
1696 free(data->buffer);
1697 free(data->header_data);
1698 }
1699
1700 /* DFU callback: used after serial and direct DFU USB access */
1701 void dfu_flush_callback(struct dfu_entity *dfu)
1702 {
1703 if (!stm32prog_data)
1704 return;
1705
1706 if (dfu->dev_type == DFU_DEV_VIRT) {
1707 if (dfu->data.virt.dev_num == PHASE_OTP)
1708 stm32prog_otp_start(stm32prog_data);
1709 else if (dfu->data.virt.dev_num == PHASE_PMIC)
1710 stm32prog_pmic_start(stm32prog_data);
1711 return;
1712 }
1713
1714 if (dfu->dev_type == DFU_DEV_RAM) {
1715 if (dfu->alt == 0 &&
1716 stm32prog_data->phase == PHASE_FLASHLAYOUT) {
1717 stm32prog_end_phase(stm32prog_data);
1718 /* waiting DFU DETACH for reenumeration */
1719 }
1720 }
1721
1722 if (!stm32prog_data->cur_part)
1723 return;
1724
1725 if (dfu->alt == stm32prog_data->cur_part->alt_id) {
1726 stm32prog_end_phase(stm32prog_data);
1727 stm32prog_next_phase(stm32prog_data);
1728 }
1729 }
1730
1731 void dfu_initiated_callback(struct dfu_entity *dfu)
1732 {
1733 if (!stm32prog_data)
1734 return;
1735
1736 if (!stm32prog_data->cur_part)
1737 return;
1738
1739 /* force the saved offset for the current partition */
1740 if (dfu->alt == stm32prog_data->cur_part->alt_id) {
1741 dfu->offset = stm32prog_data->offset;
1742 stm32prog_data->dfu_seq = 0;
1743 pr_debug("dfu offset = 0x%llx\n", dfu->offset);
1744 }
1745 }