]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/arm/mach-tegra/clock.c
ARM: tegra: Initialize timer earlier
[people/ms/u-boot.git] / arch / arm / mach-tegra / clock.c
1 /*
2 * Copyright (c) 2010-2014, NVIDIA CORPORATION. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 */
16
17 /* Tegra SoC common clock control functions */
18
19 #include <common.h>
20 #include <errno.h>
21 #include <asm/io.h>
22 #include <asm/arch/clock.h>
23 #include <asm/arch/tegra.h>
24 #include <asm/arch-tegra/ap.h>
25 #include <asm/arch-tegra/clk_rst.h>
26 #include <asm/arch-tegra/pmc.h>
27 #include <asm/arch-tegra/timer.h>
28 #include <div64.h>
29 #include <fdtdec.h>
30
31 /*
32 * This is our record of the current clock rate of each clock. We don't
33 * fill all of these in since we are only really interested in clocks which
34 * we use as parents.
35 */
36 static unsigned pll_rate[CLOCK_ID_COUNT];
37
38 /*
39 * The oscillator frequency is fixed to one of four set values. Based on this
40 * the other clocks are set up appropriately.
41 */
42 static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
43 13000000,
44 19200000,
45 12000000,
46 26000000,
47 };
48
49 /* return 1 if a peripheral ID is in range */
50 #define clock_type_id_isvalid(id) ((id) >= 0 && \
51 (id) < CLOCK_TYPE_COUNT)
52
53 char pllp_valid = 1; /* PLLP is set up correctly */
54
55 /* return 1 if a periphc_internal_id is in range */
56 #define periphc_internal_id_isvalid(id) ((id) >= 0 && \
57 (id) < PERIPHC_COUNT)
58
59 /* number of clock outputs of a PLL */
60 static const u8 pll_num_clkouts[] = {
61 1, /* PLLC */
62 1, /* PLLM */
63 4, /* PLLP */
64 1, /* PLLA */
65 0, /* PLLU */
66 0, /* PLLD */
67 };
68
69 int clock_get_osc_bypass(void)
70 {
71 struct clk_rst_ctlr *clkrst =
72 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
73 u32 reg;
74
75 reg = readl(&clkrst->crc_osc_ctrl);
76 return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
77 }
78
79 /* Returns a pointer to the registers of the given pll */
80 static struct clk_pll *get_pll(enum clock_id clkid)
81 {
82 struct clk_rst_ctlr *clkrst =
83 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
84
85 assert(clock_id_is_pll(clkid));
86 if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) {
87 debug("%s: Invalid PLL %d\n", __func__, clkid);
88 return NULL;
89 }
90 return &clkrst->crc_pll[clkid];
91 }
92
93 __weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
94 {
95 return NULL;
96 }
97
98 int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
99 u32 *divp, u32 *cpcon, u32 *lfcon)
100 {
101 struct clk_pll *pll = get_pll(clkid);
102 u32 data;
103
104 assert(clkid != CLOCK_ID_USB);
105
106 /* Safety check, adds to code size but is small */
107 if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
108 return -1;
109 data = readl(&pll->pll_base);
110 *divm = (data & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
111 *divn = (data & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT;
112 *divp = (data & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
113 data = readl(&pll->pll_misc);
114 *cpcon = (data & PLL_CPCON_MASK) >> PLL_CPCON_SHIFT;
115 *lfcon = (data & PLL_LFCON_MASK) >> PLL_LFCON_SHIFT;
116
117 return 0;
118 }
119
120 unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
121 u32 divp, u32 cpcon, u32 lfcon)
122 {
123 struct clk_pll *pll = NULL;
124 u32 misc_data, data;
125
126 if (clkid < (enum clock_id)TEGRA_CLK_PLLS)
127 pll = get_pll(clkid);
128
129 /*
130 * We cheat by treating all PLL (except PLLU) in the same fashion.
131 * This works only because:
132 * - same fields are always mapped at same offsets, except DCCON
133 * - DCCON is always 0, doesn't conflict
134 * - M,N, P of PLLP values are ignored for PLLP
135 */
136 misc_data = (cpcon << PLL_CPCON_SHIFT) | (lfcon << PLL_LFCON_SHIFT);
137
138 data = (divm << PLL_DIVM_SHIFT) | (divn << PLL_DIVN_SHIFT) |
139 (0 << PLL_BYPASS_SHIFT) | (1 << PLL_ENABLE_SHIFT);
140
141 if (clkid == CLOCK_ID_USB)
142 data |= divp << PLLU_VCO_FREQ_SHIFT;
143 else
144 data |= divp << PLL_DIVP_SHIFT;
145 if (pll) {
146 writel(misc_data, &pll->pll_misc);
147 writel(data, &pll->pll_base);
148 } else {
149 struct clk_pll_simple *pll = clock_get_simple_pll(clkid);
150
151 if (!pll) {
152 debug("%s: Uknown simple PLL %d\n", __func__, clkid);
153 return 0;
154 }
155 writel(misc_data, &pll->pll_misc);
156 writel(data, &pll->pll_base);
157 }
158
159 /* calculate the stable time */
160 return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
161 }
162
163 void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
164 unsigned divisor)
165 {
166 u32 *reg = get_periph_source_reg(periph_id);
167 u32 value;
168
169 value = readl(reg);
170
171 value &= ~OUT_CLK_SOURCE_31_30_MASK;
172 value |= source << OUT_CLK_SOURCE_31_30_SHIFT;
173
174 value &= ~OUT_CLK_DIVISOR_MASK;
175 value |= divisor << OUT_CLK_DIVISOR_SHIFT;
176
177 writel(value, reg);
178 }
179
180 int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits,
181 unsigned source)
182 {
183 u32 *reg = get_periph_source_reg(periph_id);
184
185 switch (mux_bits) {
186 case MASK_BITS_31_30:
187 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
188 source << OUT_CLK_SOURCE_31_30_SHIFT);
189 break;
190
191 case MASK_BITS_31_29:
192 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
193 source << OUT_CLK_SOURCE_31_29_SHIFT);
194 break;
195
196 case MASK_BITS_31_28:
197 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
198 source << OUT_CLK_SOURCE_31_28_SHIFT);
199 break;
200
201 default:
202 return -1;
203 }
204
205 return 0;
206 }
207
208 void clock_ll_set_source(enum periph_id periph_id, unsigned source)
209 {
210 clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source);
211 }
212
213 /**
214 * Given the parent's rate and the required rate for the children, this works
215 * out the peripheral clock divider to use, in 7.1 binary format.
216 *
217 * @param divider_bits number of divider bits (8 or 16)
218 * @param parent_rate clock rate of parent clock in Hz
219 * @param rate required clock rate for this clock
220 * @return divider which should be used
221 */
222 static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
223 unsigned long rate)
224 {
225 u64 divider = parent_rate * 2;
226 unsigned max_divider = 1 << divider_bits;
227
228 divider += rate - 1;
229 do_div(divider, rate);
230
231 if ((s64)divider - 2 < 0)
232 return 0;
233
234 if ((s64)divider - 2 >= max_divider)
235 return -1;
236
237 return divider - 2;
238 }
239
240 int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
241 {
242 struct clk_pll *pll = get_pll(clkid);
243 int data = 0, div = 0, offset = 0;
244
245 if (!clock_id_is_pll(clkid))
246 return -1;
247
248 if (pllout + 1 > pll_num_clkouts[clkid])
249 return -1;
250
251 div = clk_get_divider(8, pll_rate[clkid], rate);
252
253 if (div < 0)
254 return -1;
255
256 /* out2 and out4 are in the high part of the register */
257 if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
258 offset = 16;
259
260 data = (div << PLL_OUT_RATIO_SHIFT) |
261 PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
262 clrsetbits_le32(&pll->pll_out[pllout >> 1],
263 PLL_OUT_RATIO_MASK << offset, data << offset);
264
265 return 0;
266 }
267
268 /**
269 * Given the parent's rate and the divider in 7.1 format, this works out the
270 * resulting peripheral clock rate.
271 *
272 * @param parent_rate clock rate of parent clock in Hz
273 * @param divider which should be used in 7.1 format
274 * @return effective clock rate of peripheral
275 */
276 static unsigned long get_rate_from_divider(unsigned long parent_rate,
277 int divider)
278 {
279 u64 rate;
280
281 rate = (u64)parent_rate * 2;
282 do_div(rate, divider + 2);
283 return rate;
284 }
285
286 unsigned long clock_get_periph_rate(enum periph_id periph_id,
287 enum clock_id parent)
288 {
289 u32 *reg = get_periph_source_reg(periph_id);
290
291 return get_rate_from_divider(pll_rate[parent],
292 (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT);
293 }
294
295 /**
296 * Find the best available 7.1 format divisor given a parent clock rate and
297 * required child clock rate. This function assumes that a second-stage
298 * divisor is available which can divide by powers of 2 from 1 to 256.
299 *
300 * @param divider_bits number of divider bits (8 or 16)
301 * @param parent_rate clock rate of parent clock in Hz
302 * @param rate required clock rate for this clock
303 * @param extra_div value for the second-stage divisor (not set if this
304 * function returns -1.
305 * @return divider which should be used, or -1 if nothing is valid
306 *
307 */
308 static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
309 unsigned long rate, int *extra_div)
310 {
311 int shift;
312 int best_divider = -1;
313 int best_error = rate;
314
315 /* try dividers from 1 to 256 and find closest match */
316 for (shift = 0; shift <= 8 && best_error > 0; shift++) {
317 unsigned divided_parent = parent_rate >> shift;
318 int divider = clk_get_divider(divider_bits, divided_parent,
319 rate);
320 unsigned effective_rate = get_rate_from_divider(divided_parent,
321 divider);
322 int error = rate - effective_rate;
323
324 /* Given a valid divider, look for the lowest error */
325 if (divider != -1 && error < best_error) {
326 best_error = error;
327 *extra_div = 1 << shift;
328 best_divider = divider;
329 }
330 }
331
332 /* return what we found - *extra_div will already be set */
333 return best_divider;
334 }
335
336 /**
337 * Adjust peripheral PLL to use the given divider and source.
338 *
339 * @param periph_id peripheral to adjust
340 * @param source Source number (0-3 or 0-7)
341 * @param mux_bits Number of mux bits (2 or 4)
342 * @param divider Required divider in 7.1 or 15.1 format
343 * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
344 * for this peripheral)
345 */
346 static int adjust_periph_pll(enum periph_id periph_id, int source,
347 int mux_bits, unsigned divider)
348 {
349 u32 *reg = get_periph_source_reg(periph_id);
350
351 clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
352 divider << OUT_CLK_DIVISOR_SHIFT);
353 udelay(1);
354
355 /* work out the source clock and set it */
356 if (source < 0)
357 return -1;
358
359 clock_ll_set_source_bits(periph_id, mux_bits, source);
360
361 udelay(2);
362 return 0;
363 }
364
365 unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
366 enum clock_id parent, unsigned rate, int *extra_div)
367 {
368 unsigned effective_rate;
369 int mux_bits, divider_bits, source;
370 int divider;
371 int xdiv = 0;
372
373 /* work out the source clock and set it */
374 source = get_periph_clock_source(periph_id, parent, &mux_bits,
375 &divider_bits);
376
377 divider = find_best_divider(divider_bits, pll_rate[parent],
378 rate, &xdiv);
379 if (extra_div)
380 *extra_div = xdiv;
381
382 assert(divider >= 0);
383 if (adjust_periph_pll(periph_id, source, mux_bits, divider))
384 return -1U;
385 debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
386 get_periph_source_reg(periph_id),
387 readl(get_periph_source_reg(periph_id)));
388
389 /* Check what we ended up with. This shouldn't matter though */
390 effective_rate = clock_get_periph_rate(periph_id, parent);
391 if (extra_div)
392 effective_rate /= *extra_div;
393 if (rate != effective_rate)
394 debug("Requested clock rate %u not honored (got %u)\n",
395 rate, effective_rate);
396 return effective_rate;
397 }
398
399 unsigned clock_start_periph_pll(enum periph_id periph_id,
400 enum clock_id parent, unsigned rate)
401 {
402 unsigned effective_rate;
403
404 reset_set_enable(periph_id, 1);
405 clock_enable(periph_id);
406
407 effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
408 NULL);
409
410 reset_set_enable(periph_id, 0);
411 return effective_rate;
412 }
413
414 void clock_enable(enum periph_id clkid)
415 {
416 clock_set_enable(clkid, 1);
417 }
418
419 void clock_disable(enum periph_id clkid)
420 {
421 clock_set_enable(clkid, 0);
422 }
423
424 void reset_periph(enum periph_id periph_id, int us_delay)
425 {
426 /* Put peripheral into reset */
427 reset_set_enable(periph_id, 1);
428 udelay(us_delay);
429
430 /* Remove reset */
431 reset_set_enable(periph_id, 0);
432
433 udelay(us_delay);
434 }
435
436 void reset_cmplx_set_enable(int cpu, int which, int reset)
437 {
438 struct clk_rst_ctlr *clkrst =
439 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
440 u32 mask;
441
442 /* Form the mask, which depends on the cpu chosen (2 or 4) */
443 assert(cpu >= 0 && cpu < MAX_NUM_CPU);
444 mask = which << cpu;
445
446 /* either enable or disable those reset for that CPU */
447 if (reset)
448 writel(mask, &clkrst->crc_cpu_cmplx_set);
449 else
450 writel(mask, &clkrst->crc_cpu_cmplx_clr);
451 }
452
453 unsigned clock_get_rate(enum clock_id clkid)
454 {
455 struct clk_pll *pll;
456 u32 base;
457 u32 divm;
458 u64 parent_rate;
459 u64 rate;
460
461 parent_rate = osc_freq[clock_get_osc_freq()];
462 if (clkid == CLOCK_ID_OSC)
463 return parent_rate;
464
465 pll = get_pll(clkid);
466 if (!pll)
467 return 0;
468 base = readl(&pll->pll_base);
469
470 /* Oh for bf_unpack()... */
471 rate = parent_rate * ((base & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT);
472 divm = (base & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
473 if (clkid == CLOCK_ID_USB)
474 divm <<= (base & PLLU_VCO_FREQ_MASK) >> PLLU_VCO_FREQ_SHIFT;
475 else
476 divm <<= (base & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
477 do_div(rate, divm);
478 return rate;
479 }
480
481 /**
482 * Set the output frequency you want for each PLL clock.
483 * PLL output frequencies are programmed by setting their N, M and P values.
484 * The governing equations are:
485 * VCO = (Fi / m) * n, Fo = VCO / (2^p)
486 * where Fo is the output frequency from the PLL.
487 * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
488 * 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
489 * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
490 *
491 * @param n PLL feedback divider(DIVN)
492 * @param m PLL input divider(DIVN)
493 * @param p post divider(DIVP)
494 * @param cpcon base PLL charge pump(CPCON)
495 * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
496 * be overriden), 1 if PLL is already correct
497 */
498 int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
499 {
500 u32 base_reg;
501 u32 misc_reg;
502 struct clk_pll *pll;
503
504 pll = get_pll(clkid);
505
506 base_reg = readl(&pll->pll_base);
507
508 /* Set BYPASS, m, n and p to PLL_BASE */
509 base_reg &= ~PLL_DIVM_MASK;
510 base_reg |= m << PLL_DIVM_SHIFT;
511
512 base_reg &= ~PLL_DIVN_MASK;
513 base_reg |= n << PLL_DIVN_SHIFT;
514
515 base_reg &= ~PLL_DIVP_MASK;
516 base_reg |= p << PLL_DIVP_SHIFT;
517
518 if (clkid == CLOCK_ID_PERIPH) {
519 /*
520 * If the PLL is already set up, check that it is correct
521 * and record this info for clock_verify() to check.
522 */
523 if (base_reg & PLL_BASE_OVRRIDE_MASK) {
524 base_reg |= PLL_ENABLE_MASK;
525 if (base_reg != readl(&pll->pll_base))
526 pllp_valid = 0;
527 return pllp_valid ? 1 : -1;
528 }
529 base_reg |= PLL_BASE_OVRRIDE_MASK;
530 }
531
532 base_reg |= PLL_BYPASS_MASK;
533 writel(base_reg, &pll->pll_base);
534
535 /* Set cpcon to PLL_MISC */
536 misc_reg = readl(&pll->pll_misc);
537 misc_reg &= ~PLL_CPCON_MASK;
538 misc_reg |= cpcon << PLL_CPCON_SHIFT;
539 writel(misc_reg, &pll->pll_misc);
540
541 /* Enable PLL */
542 base_reg |= PLL_ENABLE_MASK;
543 writel(base_reg, &pll->pll_base);
544
545 /* Disable BYPASS */
546 base_reg &= ~PLL_BYPASS_MASK;
547 writel(base_reg, &pll->pll_base);
548
549 return 0;
550 }
551
552 void clock_ll_start_uart(enum periph_id periph_id)
553 {
554 /* Assert UART reset and enable clock */
555 reset_set_enable(periph_id, 1);
556 clock_enable(periph_id);
557 clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
558
559 /* wait for 2us */
560 udelay(2);
561
562 /* De-assert reset to UART */
563 reset_set_enable(periph_id, 0);
564 }
565
566 #ifdef CONFIG_OF_CONTROL
567 int clock_decode_periph_id(const void *blob, int node)
568 {
569 enum periph_id id;
570 u32 cell[2];
571 int err;
572
573 err = fdtdec_get_int_array(blob, node, "clocks", cell,
574 ARRAY_SIZE(cell));
575 if (err)
576 return -1;
577 id = clk_id_to_periph_id(cell[1]);
578 assert(clock_periph_id_isvalid(id));
579 return id;
580 }
581 #endif /* CONFIG_OF_CONTROL */
582
583 int clock_verify(void)
584 {
585 struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
586 u32 reg = readl(&pll->pll_base);
587
588 if (!pllp_valid) {
589 printf("Warning: PLLP %x is not correct\n", reg);
590 return -1;
591 }
592 debug("PLLP %x is correct\n", reg);
593 return 0;
594 }
595
596 void clock_init(void)
597 {
598 pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
599 pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
600 pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
601 pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY);
602 pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
603 pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
604 pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
605 debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
606 debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
607 debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
608 debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
609 debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]);
610 debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
611 }
612
613 static void set_avp_clock_source(u32 src)
614 {
615 struct clk_rst_ctlr *clkrst =
616 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
617 u32 val;
618
619 val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
620 (src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
621 (src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
622 (src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
623 (SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
624 writel(val, &clkrst->crc_sclk_brst_pol);
625 udelay(3);
626 }
627
628 /*
629 * This function is useful on Tegra30, and any later SoCs that have compatible
630 * PLLP configuration registers.
631 */
632 void tegra30_set_up_pllp(void)
633 {
634 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
635 u32 reg;
636
637 /*
638 * Based on the Tegra TRM, the system clock (which is the AVP clock) can
639 * run up to 275MHz. On power on, the default sytem clock source is set
640 * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
641 * 408MHz which is beyond system clock's upper limit.
642 *
643 * The fix is to set the system clock to CLK_M before initializing PLLP,
644 * and then switch back to PLLP_OUT4, which has an appropriate divider
645 * configured, after PLLP has been configured
646 */
647 set_avp_clock_source(SCLK_SOURCE_CLKM);
648
649 /*
650 * PLLP output frequency set to 408Mhz
651 * PLLC output frequency set to 228Mhz
652 */
653 switch (clock_get_osc_freq()) {
654 case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
655 clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
656 clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
657 break;
658
659 case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
660 clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
661 clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
662 break;
663
664 case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
665 clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
666 clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
667 break;
668 case CLOCK_OSC_FREQ_19_2:
669 default:
670 /*
671 * These are not supported. It is too early to print a
672 * message and the UART likely won't work anyway due to the
673 * oscillator being wrong.
674 */
675 break;
676 }
677
678 /* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
679
680 /* OUT1, 2 */
681 /* Assert RSTN before enable */
682 reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
683 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
684 /* Set divisor and reenable */
685 reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
686 | PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
687 | (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
688 | PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
689 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
690
691 /* OUT3, 4 */
692 /* Assert RSTN before enable */
693 reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
694 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
695 /* Set divisor and reenable */
696 reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
697 | PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
698 | (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
699 | PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
700 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
701
702 set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
703 }
704
705 int clock_external_output(int clk_id)
706 {
707 struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
708
709 if (clk_id >= 1 && clk_id <= 3) {
710 setbits_le32(&pmc->pmc_clk_out_cntrl,
711 1 << (2 + (clk_id - 1) * 8));
712 } else {
713 printf("%s: Unknown output clock id %d\n", __func__, clk_id);
714 return -EINVAL;
715 }
716
717 return 0;
718 }