]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/arm/mach-tegra/tegra20/clock.c
treewide: replace with error() with pr_err()
[people/ms/u-boot.git] / arch / arm / mach-tegra / tegra20 / clock.c
1 /*
2 * Copyright (c) 2011 The Chromium OS Authors.
3 * (C) Copyright 2010-2015
4 * NVIDIA Corporation <www.nvidia.com>
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 */
8
9 /* Tegra20 Clock control functions */
10
11 #include <common.h>
12 #include <errno.h>
13 #include <asm/io.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/tegra.h>
16 #include <asm/arch-tegra/clk_rst.h>
17 #include <asm/arch-tegra/timer.h>
18 #include <div64.h>
19 #include <fdtdec.h>
20
21 /*
22 * Clock types that we can use as a source. The Tegra20 has muxes for the
23 * peripheral clocks, and in most cases there are four options for the clock
24 * source. This gives us a clock 'type' and exploits what commonality exists
25 * in the device.
26 *
27 * Letters are obvious, except for T which means CLK_M, and S which means the
28 * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
29 * datasheet) and PLL_M are different things. The former is the basic
30 * clock supplied to the SOC from an external oscillator. The latter is the
31 * memory clock PLL.
32 *
33 * See definitions in clock_id in the header file.
34 */
35 enum clock_type_id {
36 CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */
37 CLOCK_TYPE_MCPA, /* and so on */
38 CLOCK_TYPE_MCPT,
39 CLOCK_TYPE_PCM,
40 CLOCK_TYPE_PCMT,
41 CLOCK_TYPE_PCMT16, /* CLOCK_TYPE_PCMT with 16-bit divider */
42 CLOCK_TYPE_PCXTS,
43 CLOCK_TYPE_PDCT,
44
45 CLOCK_TYPE_COUNT,
46 CLOCK_TYPE_NONE = -1, /* invalid clock type */
47 };
48
49 enum {
50 CLOCK_MAX_MUX = 4 /* number of source options for each clock */
51 };
52
53 /*
54 * Clock source mux for each clock type. This just converts our enum into
55 * a list of mux sources for use by the code. Note that CLOCK_TYPE_PCXTS
56 * is special as it has 5 sources. Since it also has a different number of
57 * bits in its register for the source, we just handle it with a special
58 * case in the code.
59 */
60 #define CLK(x) CLOCK_ID_ ## x
61 static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX] = {
62 { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC) },
63 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO) },
64 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC) },
65 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE) },
66 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) },
67 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) },
68 { CLK(PERIPH), CLK(CGENERAL), CLK(XCPU), CLK(OSC) },
69 { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC) },
70 };
71
72 /*
73 * Clock peripheral IDs which sadly don't match up with PERIPH_ID. This is
74 * not in the header file since it is for purely internal use - we want
75 * callers to use the PERIPH_ID for all access to peripheral clocks to avoid
76 * confusion bewteen PERIPH_ID_... and PERIPHC_...
77 *
78 * We don't call this CLOCK_PERIPH_ID or PERIPH_CLOCK_ID as it would just be
79 * confusing.
80 *
81 * Note to SOC vendors: perhaps define a unified numbering for peripherals and
82 * use it for reset, clock enable, clock source/divider and even pinmuxing
83 * if you can.
84 */
85 enum periphc_internal_id {
86 /* 0x00 */
87 PERIPHC_I2S1,
88 PERIPHC_I2S2,
89 PERIPHC_SPDIF_OUT,
90 PERIPHC_SPDIF_IN,
91 PERIPHC_PWM,
92 PERIPHC_SPI1,
93 PERIPHC_SPI2,
94 PERIPHC_SPI3,
95
96 /* 0x08 */
97 PERIPHC_XIO,
98 PERIPHC_I2C1,
99 PERIPHC_DVC_I2C,
100 PERIPHC_TWC,
101 PERIPHC_0c,
102 PERIPHC_10, /* PERIPHC_SPI1, what is this really? */
103 PERIPHC_DISP1,
104 PERIPHC_DISP2,
105
106 /* 0x10 */
107 PERIPHC_CVE,
108 PERIPHC_IDE0,
109 PERIPHC_VI,
110 PERIPHC_1c,
111 PERIPHC_SDMMC1,
112 PERIPHC_SDMMC2,
113 PERIPHC_G3D,
114 PERIPHC_G2D,
115
116 /* 0x18 */
117 PERIPHC_NDFLASH,
118 PERIPHC_SDMMC4,
119 PERIPHC_VFIR,
120 PERIPHC_EPP,
121 PERIPHC_MPE,
122 PERIPHC_MIPI,
123 PERIPHC_UART1,
124 PERIPHC_UART2,
125
126 /* 0x20 */
127 PERIPHC_HOST1X,
128 PERIPHC_21,
129 PERIPHC_TVO,
130 PERIPHC_HDMI,
131 PERIPHC_24,
132 PERIPHC_TVDAC,
133 PERIPHC_I2C2,
134 PERIPHC_EMC,
135
136 /* 0x28 */
137 PERIPHC_UART3,
138 PERIPHC_29,
139 PERIPHC_VI_SENSOR,
140 PERIPHC_2b,
141 PERIPHC_2c,
142 PERIPHC_SPI4,
143 PERIPHC_I2C3,
144 PERIPHC_SDMMC3,
145
146 /* 0x30 */
147 PERIPHC_UART4,
148 PERIPHC_UART5,
149 PERIPHC_VDE,
150 PERIPHC_OWR,
151 PERIPHC_NOR,
152 PERIPHC_CSITE,
153
154 PERIPHC_COUNT,
155
156 PERIPHC_NONE = -1,
157 };
158
159 /*
160 * Clock type for each peripheral clock source. We put the name in each
161 * record just so it is easy to match things up
162 */
163 #define TYPE(name, type) type
164 static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
165 /* 0x00 */
166 TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
167 TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
168 TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
169 TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PCM),
170 TYPE(PERIPHC_PWM, CLOCK_TYPE_PCXTS),
171 TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT),
172 TYPE(PERIPHC_SPI22, CLOCK_TYPE_PCMT),
173 TYPE(PERIPHC_SPI3, CLOCK_TYPE_PCMT),
174
175 /* 0x08 */
176 TYPE(PERIPHC_XIO, CLOCK_TYPE_PCMT),
177 TYPE(PERIPHC_I2C1, CLOCK_TYPE_PCMT16),
178 TYPE(PERIPHC_DVC_I2C, CLOCK_TYPE_PCMT16),
179 TYPE(PERIPHC_TWC, CLOCK_TYPE_PCMT),
180 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
181 TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT),
182 TYPE(PERIPHC_DISP1, CLOCK_TYPE_PDCT),
183 TYPE(PERIPHC_DISP2, CLOCK_TYPE_PDCT),
184
185 /* 0x10 */
186 TYPE(PERIPHC_CVE, CLOCK_TYPE_PDCT),
187 TYPE(PERIPHC_IDE0, CLOCK_TYPE_PCMT),
188 TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
189 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
190 TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PCMT),
191 TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PCMT),
192 TYPE(PERIPHC_G3D, CLOCK_TYPE_MCPA),
193 TYPE(PERIPHC_G2D, CLOCK_TYPE_MCPA),
194
195 /* 0x18 */
196 TYPE(PERIPHC_NDFLASH, CLOCK_TYPE_PCMT),
197 TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PCMT),
198 TYPE(PERIPHC_VFIR, CLOCK_TYPE_PCMT),
199 TYPE(PERIPHC_EPP, CLOCK_TYPE_MCPA),
200 TYPE(PERIPHC_MPE, CLOCK_TYPE_MCPA),
201 TYPE(PERIPHC_MIPI, CLOCK_TYPE_PCMT),
202 TYPE(PERIPHC_UART1, CLOCK_TYPE_PCMT),
203 TYPE(PERIPHC_UART2, CLOCK_TYPE_PCMT),
204
205 /* 0x20 */
206 TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MCPA),
207 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
208 TYPE(PERIPHC_TVO, CLOCK_TYPE_PDCT),
209 TYPE(PERIPHC_HDMI, CLOCK_TYPE_PDCT),
210 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
211 TYPE(PERIPHC_TVDAC, CLOCK_TYPE_PDCT),
212 TYPE(PERIPHC_I2C2, CLOCK_TYPE_PCMT16),
213 TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPT),
214
215 /* 0x28 */
216 TYPE(PERIPHC_UART3, CLOCK_TYPE_PCMT),
217 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
218 TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
219 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
220 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
221 TYPE(PERIPHC_SPI4, CLOCK_TYPE_PCMT),
222 TYPE(PERIPHC_I2C3, CLOCK_TYPE_PCMT16),
223 TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PCMT),
224
225 /* 0x30 */
226 TYPE(PERIPHC_UART4, CLOCK_TYPE_PCMT),
227 TYPE(PERIPHC_UART5, CLOCK_TYPE_PCMT),
228 TYPE(PERIPHC_VDE, CLOCK_TYPE_PCMT),
229 TYPE(PERIPHC_OWR, CLOCK_TYPE_PCMT),
230 TYPE(PERIPHC_NOR, CLOCK_TYPE_PCMT),
231 TYPE(PERIPHC_CSITE, CLOCK_TYPE_PCMT),
232 };
233
234 /*
235 * This array translates a periph_id to a periphc_internal_id
236 *
237 * Not present/matched up:
238 * uint vi_sensor; _VI_SENSOR_0, 0x1A8
239 * SPDIF - which is both 0x08 and 0x0c
240 *
241 */
242 #define NONE(name) (-1)
243 #define OFFSET(name, value) PERIPHC_ ## name
244 static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
245 /* Low word: 31:0 */
246 NONE(CPU),
247 NONE(RESERVED1),
248 NONE(RESERVED2),
249 NONE(AC97),
250 NONE(RTC),
251 NONE(TMR),
252 PERIPHC_UART1,
253 PERIPHC_UART2, /* and vfir 0x68 */
254
255 /* 0x08 */
256 NONE(GPIO),
257 PERIPHC_SDMMC2,
258 NONE(SPDIF), /* 0x08 and 0x0c, unclear which to use */
259 PERIPHC_I2S1,
260 PERIPHC_I2C1,
261 PERIPHC_NDFLASH,
262 PERIPHC_SDMMC1,
263 PERIPHC_SDMMC4,
264
265 /* 0x10 */
266 PERIPHC_TWC,
267 PERIPHC_PWM,
268 PERIPHC_I2S2,
269 PERIPHC_EPP,
270 PERIPHC_VI,
271 PERIPHC_G2D,
272 NONE(USBD),
273 NONE(ISP),
274
275 /* 0x18 */
276 PERIPHC_G3D,
277 PERIPHC_IDE0,
278 PERIPHC_DISP2,
279 PERIPHC_DISP1,
280 PERIPHC_HOST1X,
281 NONE(VCP),
282 NONE(RESERVED30),
283 NONE(CACHE2),
284
285 /* Middle word: 63:32 */
286 NONE(MEM),
287 NONE(AHBDMA),
288 NONE(APBDMA),
289 NONE(RESERVED35),
290 NONE(KBC),
291 NONE(STAT_MON),
292 NONE(PMC),
293 NONE(FUSE),
294
295 /* 0x28 */
296 NONE(KFUSE),
297 NONE(SBC1), /* SBC1, 0x34, is this SPI1? */
298 PERIPHC_NOR,
299 PERIPHC_SPI1,
300 PERIPHC_SPI2,
301 PERIPHC_XIO,
302 PERIPHC_SPI3,
303 PERIPHC_DVC_I2C,
304
305 /* 0x30 */
306 NONE(DSI),
307 PERIPHC_TVO, /* also CVE 0x40 */
308 PERIPHC_MIPI,
309 PERIPHC_HDMI,
310 PERIPHC_CSITE,
311 PERIPHC_TVDAC,
312 PERIPHC_I2C2,
313 PERIPHC_UART3,
314
315 /* 0x38 */
316 NONE(RESERVED56),
317 PERIPHC_EMC,
318 NONE(USB2),
319 NONE(USB3),
320 PERIPHC_MPE,
321 PERIPHC_VDE,
322 NONE(BSEA),
323 NONE(BSEV),
324
325 /* Upper word 95:64 */
326 NONE(SPEEDO),
327 PERIPHC_UART4,
328 PERIPHC_UART5,
329 PERIPHC_I2C3,
330 PERIPHC_SPI4,
331 PERIPHC_SDMMC3,
332 NONE(PCIE),
333 PERIPHC_OWR,
334
335 /* 0x48 */
336 NONE(AFI),
337 NONE(CORESIGHT),
338 NONE(PCIEXCLK),
339 NONE(AVPUCQ),
340 NONE(RESERVED76),
341 NONE(RESERVED77),
342 NONE(RESERVED78),
343 NONE(RESERVED79),
344
345 /* 0x50 */
346 NONE(RESERVED80),
347 NONE(RESERVED81),
348 NONE(RESERVED82),
349 NONE(RESERVED83),
350 NONE(IRAMA),
351 NONE(IRAMB),
352 NONE(IRAMC),
353 NONE(IRAMD),
354
355 /* 0x58 */
356 NONE(CRAM2),
357 };
358
359 /*
360 * PLL divider shift/mask tables for all PLL IDs.
361 */
362 struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
363 /*
364 * T20 and T25
365 * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLX, etc.)
366 * If lock_ena or lock_det are >31, they're not used in that PLL.
367 */
368
369 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x0F,
370 .lock_ena = 24, .lock_det = 27, .kcp_shift = 28, .kcp_mask = 3, .kvco_shift = 27, .kvco_mask = 1 }, /* PLLC */
371 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 0, .p_mask = 0,
372 .lock_ena = 0, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLM */
373 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
374 .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLP */
375 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
376 .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLA */
377 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x01,
378 .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLU */
379 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
380 .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLD */
381 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x0F,
382 .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 0, .kvco_mask = 0 }, /* PLLX */
383 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 0, .p_mask = 0,
384 .lock_ena = 9, .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLE */
385 { .m_shift = 0, .m_mask = 0x0F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
386 .lock_ena = 18, .lock_det = 0, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLS */
387 };
388
389 /*
390 * Get the oscillator frequency, from the corresponding hardware configuration
391 * field. T20 has 4 frequencies that it supports.
392 */
393 enum clock_osc_freq clock_get_osc_freq(void)
394 {
395 struct clk_rst_ctlr *clkrst =
396 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
397 u32 reg;
398
399 reg = readl(&clkrst->crc_osc_ctrl);
400 return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
401 }
402
403 /* Returns a pointer to the clock source register for a peripheral */
404 u32 *get_periph_source_reg(enum periph_id periph_id)
405 {
406 struct clk_rst_ctlr *clkrst =
407 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
408 enum periphc_internal_id internal_id;
409
410 assert(clock_periph_id_isvalid(periph_id));
411 internal_id = periph_id_to_internal_id[periph_id];
412 assert(internal_id != -1);
413 return &clkrst->crc_clk_src[internal_id];
414 }
415
416 int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
417 int *divider_bits, int *type)
418 {
419 enum periphc_internal_id internal_id;
420
421 if (!clock_periph_id_isvalid(periph_id))
422 return -1;
423
424 internal_id = periph_id_to_internal_id[periph_id];
425 if (!periphc_internal_id_isvalid(internal_id))
426 return -1;
427
428 *type = clock_periph_type[internal_id];
429 if (!clock_type_id_isvalid(*type))
430 return -1;
431
432 /*
433 * Special cases here for the clock with a 4-bit source mux and I2C
434 * with its 16-bit divisor
435 */
436 if (*type == CLOCK_TYPE_PCXTS)
437 *mux_bits = MASK_BITS_31_28;
438 else
439 *mux_bits = MASK_BITS_31_30;
440 if (*type == CLOCK_TYPE_PCMT16)
441 *divider_bits = 16;
442 else
443 *divider_bits = 8;
444
445 return 0;
446 }
447
448 enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
449 {
450 enum periphc_internal_id internal_id;
451 int type;
452
453 if (!clock_periph_id_isvalid(periph_id))
454 return CLOCK_ID_NONE;
455
456 internal_id = periph_id_to_internal_id[periph_id];
457 if (!periphc_internal_id_isvalid(internal_id))
458 return CLOCK_ID_NONE;
459
460 type = clock_periph_type[internal_id];
461 if (!clock_type_id_isvalid(type))
462 return CLOCK_ID_NONE;
463
464 return clock_source[type][source];
465 }
466
467 /**
468 * Given a peripheral ID and the required source clock, this returns which
469 * value should be programmed into the source mux for that peripheral.
470 *
471 * There is special code here to handle the one source type with 5 sources.
472 *
473 * @param periph_id peripheral to start
474 * @param source PLL id of required parent clock
475 * @param mux_bits Set to number of bits in mux register: 2 or 4
476 * @param divider_bits Set to number of divider bits (8 or 16)
477 * @return mux value (0-4, or -1 if not found)
478 */
479 int get_periph_clock_source(enum periph_id periph_id,
480 enum clock_id parent, int *mux_bits, int *divider_bits)
481 {
482 enum clock_type_id type;
483 int mux, err;
484
485 err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
486 assert(!err);
487
488 for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
489 if (clock_source[type][mux] == parent)
490 return mux;
491
492 /*
493 * Not found: it might be looking for the 'S' in CLOCK_TYPE_PCXTS
494 * which is not in our table. If not, then they are asking for a
495 * source which this peripheral can't access through its mux.
496 */
497 assert(type == CLOCK_TYPE_PCXTS);
498 assert(parent == CLOCK_ID_SFROM32KHZ);
499 if (type == CLOCK_TYPE_PCXTS && parent == CLOCK_ID_SFROM32KHZ)
500 return 4; /* mux value for this clock */
501
502 /* if we get here, either us or the caller has made a mistake */
503 printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
504 parent);
505 return -1;
506 }
507
508 void clock_set_enable(enum periph_id periph_id, int enable)
509 {
510 struct clk_rst_ctlr *clkrst =
511 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
512 u32 *clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
513 u32 reg;
514
515 /* Enable/disable the clock to this peripheral */
516 assert(clock_periph_id_isvalid(periph_id));
517 reg = readl(clk);
518 if (enable)
519 reg |= PERIPH_MASK(periph_id);
520 else
521 reg &= ~PERIPH_MASK(periph_id);
522 writel(reg, clk);
523 }
524
525 void reset_set_enable(enum periph_id periph_id, int enable)
526 {
527 struct clk_rst_ctlr *clkrst =
528 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
529 u32 *reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
530 u32 reg;
531
532 /* Enable/disable reset to the peripheral */
533 assert(clock_periph_id_isvalid(periph_id));
534 reg = readl(reset);
535 if (enable)
536 reg |= PERIPH_MASK(periph_id);
537 else
538 reg &= ~PERIPH_MASK(periph_id);
539 writel(reg, reset);
540 }
541
542 #if CONFIG_IS_ENABLED(OF_CONTROL)
543 /*
544 * Convert a device tree clock ID to our peripheral ID. They are mostly
545 * the same but we are very cautious so we check that a valid clock ID is
546 * provided.
547 *
548 * @param clk_id Clock ID according to tegra20 device tree binding
549 * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
550 */
551 enum periph_id clk_id_to_periph_id(int clk_id)
552 {
553 if (clk_id > PERIPH_ID_COUNT)
554 return PERIPH_ID_NONE;
555
556 switch (clk_id) {
557 case PERIPH_ID_RESERVED1:
558 case PERIPH_ID_RESERVED2:
559 case PERIPH_ID_RESERVED30:
560 case PERIPH_ID_RESERVED35:
561 case PERIPH_ID_RESERVED56:
562 case PERIPH_ID_PCIEXCLK:
563 case PERIPH_ID_RESERVED76:
564 case PERIPH_ID_RESERVED77:
565 case PERIPH_ID_RESERVED78:
566 case PERIPH_ID_RESERVED79:
567 case PERIPH_ID_RESERVED80:
568 case PERIPH_ID_RESERVED81:
569 case PERIPH_ID_RESERVED82:
570 case PERIPH_ID_RESERVED83:
571 case PERIPH_ID_RESERVED91:
572 return PERIPH_ID_NONE;
573 default:
574 return clk_id;
575 }
576 }
577 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
578
579 void clock_early_init(void)
580 {
581 /*
582 * PLLP output frequency set to 216MHz
583 * PLLC output frequency set to 600Mhz
584 *
585 * TODO: Can we calculate these values instead of hard-coding?
586 */
587 switch (clock_get_osc_freq()) {
588 case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
589 clock_set_rate(CLOCK_ID_PERIPH, 432, 12, 1, 8);
590 clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
591 break;
592
593 case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
594 clock_set_rate(CLOCK_ID_PERIPH, 432, 26, 1, 8);
595 clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
596 break;
597
598 case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
599 clock_set_rate(CLOCK_ID_PERIPH, 432, 13, 1, 8);
600 clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
601 break;
602 case CLOCK_OSC_FREQ_19_2:
603 default:
604 /*
605 * These are not supported. It is too early to print a
606 * message and the UART likely won't work anyway due to the
607 * oscillator being wrong.
608 */
609 break;
610 }
611 }
612
613 void arch_timer_init(void)
614 {
615 }
616
617 #define PMC_SATA_PWRGT 0x1ac
618 #define PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE (1 << 5)
619 #define PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL (1 << 4)
620
621 #define PLLE_SS_CNTL 0x68
622 #define PLLE_SS_CNTL_SSCINCINTRV(x) (((x) & 0x3f) << 24)
623 #define PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
624 #define PLLE_SS_CNTL_SSCBYP (1 << 12)
625 #define PLLE_SS_CNTL_INTERP_RESET (1 << 11)
626 #define PLLE_SS_CNTL_BYPASS_SS (1 << 10)
627 #define PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
628
629 #define PLLE_BASE 0x0e8
630 #define PLLE_BASE_ENABLE_CML (1 << 31)
631 #define PLLE_BASE_ENABLE (1 << 30)
632 #define PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
633 #define PLLE_BASE_PLDIV(x) (((x) & 0x3f) << 16)
634 #define PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
635 #define PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
636
637 #define PLLE_MISC 0x0ec
638 #define PLLE_MISC_SETUP_BASE(x) (((x) & 0xffff) << 16)
639 #define PLLE_MISC_PLL_READY (1 << 15)
640 #define PLLE_MISC_LOCK (1 << 11)
641 #define PLLE_MISC_LOCK_ENABLE (1 << 9)
642 #define PLLE_MISC_SETUP_EXT(x) (((x) & 0x3) << 2)
643
644 static int tegra_plle_train(void)
645 {
646 unsigned int timeout = 2000;
647 unsigned long value;
648
649 value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
650 value |= PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
651 writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
652
653 value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
654 value |= PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL;
655 writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
656
657 value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
658 value &= ~PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
659 writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
660
661 do {
662 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
663 if (value & PLLE_MISC_PLL_READY)
664 break;
665
666 udelay(100);
667 } while (--timeout);
668
669 if (timeout == 0) {
670 pr_err("timeout waiting for PLLE to become ready");
671 return -ETIMEDOUT;
672 }
673
674 return 0;
675 }
676
677 int tegra_plle_enable(void)
678 {
679 unsigned int timeout = 1000;
680 u32 value;
681 int err;
682
683 /* disable PLLE clock */
684 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
685 value &= ~PLLE_BASE_ENABLE_CML;
686 value &= ~PLLE_BASE_ENABLE;
687 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
688
689 /* clear lock enable and setup field */
690 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
691 value &= ~PLLE_MISC_LOCK_ENABLE;
692 value &= ~PLLE_MISC_SETUP_BASE(0xffff);
693 value &= ~PLLE_MISC_SETUP_EXT(0x3);
694 writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
695
696 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
697 if ((value & PLLE_MISC_PLL_READY) == 0) {
698 err = tegra_plle_train();
699 if (err < 0) {
700 pr_err("failed to train PLLE: %d", err);
701 return err;
702 }
703 }
704
705 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
706 value |= PLLE_MISC_SETUP_BASE(0x7);
707 value |= PLLE_MISC_LOCK_ENABLE;
708 value |= PLLE_MISC_SETUP_EXT(0);
709 writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
710
711 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
712 value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
713 PLLE_SS_CNTL_BYPASS_SS;
714 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
715
716 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
717 value |= PLLE_BASE_ENABLE_CML | PLLE_BASE_ENABLE;
718 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
719
720 do {
721 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
722 if (value & PLLE_MISC_LOCK)
723 break;
724
725 udelay(2);
726 } while (--timeout);
727
728 if (timeout == 0) {
729 pr_err("timeout waiting for PLLE to lock");
730 return -ETIMEDOUT;
731 }
732
733 udelay(50);
734
735 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
736 value &= ~PLLE_SS_CNTL_SSCINCINTRV(0x3f);
737 value |= PLLE_SS_CNTL_SSCINCINTRV(0x18);
738
739 value &= ~PLLE_SS_CNTL_SSCINC(0xff);
740 value |= PLLE_SS_CNTL_SSCINC(0x01);
741
742 value &= ~PLLE_SS_CNTL_SSCBYP;
743 value &= ~PLLE_SS_CNTL_INTERP_RESET;
744 value &= ~PLLE_SS_CNTL_BYPASS_SS;
745
746 value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
747 value |= PLLE_SS_CNTL_SSCMAX(0x24);
748 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
749
750 return 0;
751 }
752
753 struct periph_clk_init periph_clk_init_table[] = {
754 { PERIPH_ID_SPI1, CLOCK_ID_PERIPH },
755 { PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
756 { PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
757 { PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
758 { PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
759 { PERIPH_ID_HOST1X, CLOCK_ID_PERIPH },
760 { PERIPH_ID_DISP1, CLOCK_ID_CGENERAL },
761 { PERIPH_ID_NDFLASH, CLOCK_ID_PERIPH },
762 { PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
763 { PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
764 { PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
765 { PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
766 { PERIPH_ID_PWM, CLOCK_ID_SFROM32KHZ },
767 { PERIPH_ID_DVC_I2C, CLOCK_ID_PERIPH },
768 { PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
769 { PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
770 { PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
771 { -1, },
772 };