]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/arm/mm/dma-mapping.c
Merge tag 'iommu-updates-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[thirdparty/linux.git] / arch / arm / mm / dma-mapping.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/mm/dma-mapping.c
4 *
5 * Copyright (C) 2000-2004 Russell King
6 *
7 * DMA uncached mapping support.
8 */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/genalloc.h>
12 #include <linux/gfp.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/dma-direct.h>
18 #include <linux/dma-map-ops.h>
19 #include <linux/highmem.h>
20 #include <linux/memblock.h>
21 #include <linux/slab.h>
22 #include <linux/iommu.h>
23 #include <linux/io.h>
24 #include <linux/vmalloc.h>
25 #include <linux/sizes.h>
26 #include <linux/cma.h>
27
28 #include <asm/page.h>
29 #include <asm/highmem.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mach/arch.h>
33 #include <asm/dma-iommu.h>
34 #include <asm/mach/map.h>
35 #include <asm/system_info.h>
36 #include <asm/xen/xen-ops.h>
37
38 #include "dma.h"
39 #include "mm.h"
40
41 struct arm_dma_alloc_args {
42 struct device *dev;
43 size_t size;
44 gfp_t gfp;
45 pgprot_t prot;
46 const void *caller;
47 bool want_vaddr;
48 int coherent_flag;
49 };
50
51 struct arm_dma_free_args {
52 struct device *dev;
53 size_t size;
54 void *cpu_addr;
55 struct page *page;
56 bool want_vaddr;
57 };
58
59 #define NORMAL 0
60 #define COHERENT 1
61
62 struct arm_dma_allocator {
63 void *(*alloc)(struct arm_dma_alloc_args *args,
64 struct page **ret_page);
65 void (*free)(struct arm_dma_free_args *args);
66 };
67
68 struct arm_dma_buffer {
69 struct list_head list;
70 void *virt;
71 struct arm_dma_allocator *allocator;
72 };
73
74 static LIST_HEAD(arm_dma_bufs);
75 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76
77 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78 {
79 struct arm_dma_buffer *buf, *found = NULL;
80 unsigned long flags;
81
82 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 list_for_each_entry(buf, &arm_dma_bufs, list) {
84 if (buf->virt == virt) {
85 list_del(&buf->list);
86 found = buf;
87 break;
88 }
89 }
90 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 return found;
92 }
93
94 /*
95 * The DMA API is built upon the notion of "buffer ownership". A buffer
96 * is either exclusively owned by the CPU (and therefore may be accessed
97 * by it) or exclusively owned by the DMA device. These helper functions
98 * represent the transitions between these two ownership states.
99 *
100 * Note, however, that on later ARMs, this notion does not work due to
101 * speculative prefetches. We model our approach on the assumption that
102 * the CPU does do speculative prefetches, which means we clean caches
103 * before transfers and delay cache invalidation until transfer completion.
104 *
105 */
106
107 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
108 {
109 /*
110 * Ensure that the allocated pages are zeroed, and that any data
111 * lurking in the kernel direct-mapped region is invalidated.
112 */
113 if (PageHighMem(page)) {
114 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
115 phys_addr_t end = base + size;
116 while (size > 0) {
117 void *ptr = kmap_atomic(page);
118 memset(ptr, 0, PAGE_SIZE);
119 if (coherent_flag != COHERENT)
120 dmac_flush_range(ptr, ptr + PAGE_SIZE);
121 kunmap_atomic(ptr);
122 page++;
123 size -= PAGE_SIZE;
124 }
125 if (coherent_flag != COHERENT)
126 outer_flush_range(base, end);
127 } else {
128 void *ptr = page_address(page);
129 memset(ptr, 0, size);
130 if (coherent_flag != COHERENT) {
131 dmac_flush_range(ptr, ptr + size);
132 outer_flush_range(__pa(ptr), __pa(ptr) + size);
133 }
134 }
135 }
136
137 /*
138 * Allocate a DMA buffer for 'dev' of size 'size' using the
139 * specified gfp mask. Note that 'size' must be page aligned.
140 */
141 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
142 gfp_t gfp, int coherent_flag)
143 {
144 unsigned long order = get_order(size);
145 struct page *page, *p, *e;
146
147 page = alloc_pages(gfp, order);
148 if (!page)
149 return NULL;
150
151 /*
152 * Now split the huge page and free the excess pages
153 */
154 split_page(page, order);
155 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
156 __free_page(p);
157
158 __dma_clear_buffer(page, size, coherent_flag);
159
160 return page;
161 }
162
163 /*
164 * Free a DMA buffer. 'size' must be page aligned.
165 */
166 static void __dma_free_buffer(struct page *page, size_t size)
167 {
168 struct page *e = page + (size >> PAGE_SHIFT);
169
170 while (page < e) {
171 __free_page(page);
172 page++;
173 }
174 }
175
176 static void *__alloc_from_contiguous(struct device *dev, size_t size,
177 pgprot_t prot, struct page **ret_page,
178 const void *caller, bool want_vaddr,
179 int coherent_flag, gfp_t gfp);
180
181 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
182 pgprot_t prot, struct page **ret_page,
183 const void *caller, bool want_vaddr);
184
185 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
186 static struct gen_pool *atomic_pool __ro_after_init;
187
188 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
189
190 static int __init early_coherent_pool(char *p)
191 {
192 atomic_pool_size = memparse(p, &p);
193 return 0;
194 }
195 early_param("coherent_pool", early_coherent_pool);
196
197 /*
198 * Initialise the coherent pool for atomic allocations.
199 */
200 static int __init atomic_pool_init(void)
201 {
202 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
203 gfp_t gfp = GFP_KERNEL | GFP_DMA;
204 struct page *page;
205 void *ptr;
206
207 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
208 if (!atomic_pool)
209 goto out;
210 /*
211 * The atomic pool is only used for non-coherent allocations
212 * so we must pass NORMAL for coherent_flag.
213 */
214 if (dev_get_cma_area(NULL))
215 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
216 &page, atomic_pool_init, true, NORMAL,
217 GFP_KERNEL);
218 else
219 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
220 &page, atomic_pool_init, true);
221 if (ptr) {
222 int ret;
223
224 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
225 page_to_phys(page),
226 atomic_pool_size, -1);
227 if (ret)
228 goto destroy_genpool;
229
230 gen_pool_set_algo(atomic_pool,
231 gen_pool_first_fit_order_align,
232 NULL);
233 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
234 atomic_pool_size / 1024);
235 return 0;
236 }
237
238 destroy_genpool:
239 gen_pool_destroy(atomic_pool);
240 atomic_pool = NULL;
241 out:
242 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
243 atomic_pool_size / 1024);
244 return -ENOMEM;
245 }
246 /*
247 * CMA is activated by core_initcall, so we must be called after it.
248 */
249 postcore_initcall(atomic_pool_init);
250
251 #ifdef CONFIG_CMA_AREAS
252 struct dma_contig_early_reserve {
253 phys_addr_t base;
254 unsigned long size;
255 };
256
257 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
258
259 static int dma_mmu_remap_num __initdata;
260
261 #ifdef CONFIG_DMA_CMA
262 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
263 {
264 dma_mmu_remap[dma_mmu_remap_num].base = base;
265 dma_mmu_remap[dma_mmu_remap_num].size = size;
266 dma_mmu_remap_num++;
267 }
268 #endif
269
270 void __init dma_contiguous_remap(void)
271 {
272 int i;
273 for (i = 0; i < dma_mmu_remap_num; i++) {
274 phys_addr_t start = dma_mmu_remap[i].base;
275 phys_addr_t end = start + dma_mmu_remap[i].size;
276 struct map_desc map;
277 unsigned long addr;
278
279 if (end > arm_lowmem_limit)
280 end = arm_lowmem_limit;
281 if (start >= end)
282 continue;
283
284 map.pfn = __phys_to_pfn(start);
285 map.virtual = __phys_to_virt(start);
286 map.length = end - start;
287 map.type = MT_MEMORY_DMA_READY;
288
289 /*
290 * Clear previous low-memory mapping to ensure that the
291 * TLB does not see any conflicting entries, then flush
292 * the TLB of the old entries before creating new mappings.
293 *
294 * This ensures that any speculatively loaded TLB entries
295 * (even though they may be rare) can not cause any problems,
296 * and ensures that this code is architecturally compliant.
297 */
298 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
299 addr += PMD_SIZE)
300 pmd_clear(pmd_off_k(addr));
301
302 flush_tlb_kernel_range(__phys_to_virt(start),
303 __phys_to_virt(end));
304
305 iotable_init(&map, 1);
306 }
307 }
308 #endif
309
310 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
311 {
312 struct page *page = virt_to_page((void *)addr);
313 pgprot_t prot = *(pgprot_t *)data;
314
315 set_pte_ext(pte, mk_pte(page, prot), 0);
316 return 0;
317 }
318
319 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
320 {
321 unsigned long start = (unsigned long) page_address(page);
322 unsigned end = start + size;
323
324 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
325 flush_tlb_kernel_range(start, end);
326 }
327
328 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
329 pgprot_t prot, struct page **ret_page,
330 const void *caller, bool want_vaddr)
331 {
332 struct page *page;
333 void *ptr = NULL;
334 /*
335 * __alloc_remap_buffer is only called when the device is
336 * non-coherent
337 */
338 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
339 if (!page)
340 return NULL;
341 if (!want_vaddr)
342 goto out;
343
344 ptr = dma_common_contiguous_remap(page, size, prot, caller);
345 if (!ptr) {
346 __dma_free_buffer(page, size);
347 return NULL;
348 }
349
350 out:
351 *ret_page = page;
352 return ptr;
353 }
354
355 static void *__alloc_from_pool(size_t size, struct page **ret_page)
356 {
357 unsigned long val;
358 void *ptr = NULL;
359
360 if (!atomic_pool) {
361 WARN(1, "coherent pool not initialised!\n");
362 return NULL;
363 }
364
365 val = gen_pool_alloc(atomic_pool, size);
366 if (val) {
367 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
368
369 *ret_page = phys_to_page(phys);
370 ptr = (void *)val;
371 }
372
373 return ptr;
374 }
375
376 static bool __in_atomic_pool(void *start, size_t size)
377 {
378 return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
379 }
380
381 static int __free_from_pool(void *start, size_t size)
382 {
383 if (!__in_atomic_pool(start, size))
384 return 0;
385
386 gen_pool_free(atomic_pool, (unsigned long)start, size);
387
388 return 1;
389 }
390
391 static void *__alloc_from_contiguous(struct device *dev, size_t size,
392 pgprot_t prot, struct page **ret_page,
393 const void *caller, bool want_vaddr,
394 int coherent_flag, gfp_t gfp)
395 {
396 unsigned long order = get_order(size);
397 size_t count = size >> PAGE_SHIFT;
398 struct page *page;
399 void *ptr = NULL;
400
401 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
402 if (!page)
403 return NULL;
404
405 __dma_clear_buffer(page, size, coherent_flag);
406
407 if (!want_vaddr)
408 goto out;
409
410 if (PageHighMem(page)) {
411 ptr = dma_common_contiguous_remap(page, size, prot, caller);
412 if (!ptr) {
413 dma_release_from_contiguous(dev, page, count);
414 return NULL;
415 }
416 } else {
417 __dma_remap(page, size, prot);
418 ptr = page_address(page);
419 }
420
421 out:
422 *ret_page = page;
423 return ptr;
424 }
425
426 static void __free_from_contiguous(struct device *dev, struct page *page,
427 void *cpu_addr, size_t size, bool want_vaddr)
428 {
429 if (want_vaddr) {
430 if (PageHighMem(page))
431 dma_common_free_remap(cpu_addr, size);
432 else
433 __dma_remap(page, size, PAGE_KERNEL);
434 }
435 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
436 }
437
438 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
439 {
440 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
441 pgprot_writecombine(prot) :
442 pgprot_dmacoherent(prot);
443 return prot;
444 }
445
446 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
447 struct page **ret_page)
448 {
449 struct page *page;
450 /* __alloc_simple_buffer is only called when the device is coherent */
451 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
452 if (!page)
453 return NULL;
454
455 *ret_page = page;
456 return page_address(page);
457 }
458
459 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
460 struct page **ret_page)
461 {
462 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
463 ret_page);
464 }
465
466 static void simple_allocator_free(struct arm_dma_free_args *args)
467 {
468 __dma_free_buffer(args->page, args->size);
469 }
470
471 static struct arm_dma_allocator simple_allocator = {
472 .alloc = simple_allocator_alloc,
473 .free = simple_allocator_free,
474 };
475
476 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
477 struct page **ret_page)
478 {
479 return __alloc_from_contiguous(args->dev, args->size, args->prot,
480 ret_page, args->caller,
481 args->want_vaddr, args->coherent_flag,
482 args->gfp);
483 }
484
485 static void cma_allocator_free(struct arm_dma_free_args *args)
486 {
487 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
488 args->size, args->want_vaddr);
489 }
490
491 static struct arm_dma_allocator cma_allocator = {
492 .alloc = cma_allocator_alloc,
493 .free = cma_allocator_free,
494 };
495
496 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
497 struct page **ret_page)
498 {
499 return __alloc_from_pool(args->size, ret_page);
500 }
501
502 static void pool_allocator_free(struct arm_dma_free_args *args)
503 {
504 __free_from_pool(args->cpu_addr, args->size);
505 }
506
507 static struct arm_dma_allocator pool_allocator = {
508 .alloc = pool_allocator_alloc,
509 .free = pool_allocator_free,
510 };
511
512 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
513 struct page **ret_page)
514 {
515 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
516 args->prot, ret_page, args->caller,
517 args->want_vaddr);
518 }
519
520 static void remap_allocator_free(struct arm_dma_free_args *args)
521 {
522 if (args->want_vaddr)
523 dma_common_free_remap(args->cpu_addr, args->size);
524
525 __dma_free_buffer(args->page, args->size);
526 }
527
528 static struct arm_dma_allocator remap_allocator = {
529 .alloc = remap_allocator_alloc,
530 .free = remap_allocator_free,
531 };
532
533 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
534 gfp_t gfp, pgprot_t prot, bool is_coherent,
535 unsigned long attrs, const void *caller)
536 {
537 u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
538 struct page *page = NULL;
539 void *addr;
540 bool allowblock, cma;
541 struct arm_dma_buffer *buf;
542 struct arm_dma_alloc_args args = {
543 .dev = dev,
544 .size = PAGE_ALIGN(size),
545 .gfp = gfp,
546 .prot = prot,
547 .caller = caller,
548 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
549 .coherent_flag = is_coherent ? COHERENT : NORMAL,
550 };
551
552 #ifdef CONFIG_DMA_API_DEBUG
553 u64 limit = (mask + 1) & ~mask;
554 if (limit && size >= limit) {
555 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
556 size, mask);
557 return NULL;
558 }
559 #endif
560
561 buf = kzalloc(sizeof(*buf),
562 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
563 if (!buf)
564 return NULL;
565
566 if (mask < 0xffffffffULL)
567 gfp |= GFP_DMA;
568
569 args.gfp = gfp;
570
571 *handle = DMA_MAPPING_ERROR;
572 allowblock = gfpflags_allow_blocking(gfp);
573 cma = allowblock ? dev_get_cma_area(dev) : NULL;
574
575 if (cma)
576 buf->allocator = &cma_allocator;
577 else if (is_coherent)
578 buf->allocator = &simple_allocator;
579 else if (allowblock)
580 buf->allocator = &remap_allocator;
581 else
582 buf->allocator = &pool_allocator;
583
584 addr = buf->allocator->alloc(&args, &page);
585
586 if (page) {
587 unsigned long flags;
588
589 *handle = phys_to_dma(dev, page_to_phys(page));
590 buf->virt = args.want_vaddr ? addr : page;
591
592 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
593 list_add(&buf->list, &arm_dma_bufs);
594 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
595 } else {
596 kfree(buf);
597 }
598
599 return args.want_vaddr ? addr : page;
600 }
601
602 /*
603 * Free a buffer as defined by the above mapping.
604 */
605 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
606 dma_addr_t handle, unsigned long attrs,
607 bool is_coherent)
608 {
609 struct page *page = phys_to_page(dma_to_phys(dev, handle));
610 struct arm_dma_buffer *buf;
611 struct arm_dma_free_args args = {
612 .dev = dev,
613 .size = PAGE_ALIGN(size),
614 .cpu_addr = cpu_addr,
615 .page = page,
616 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
617 };
618
619 buf = arm_dma_buffer_find(cpu_addr);
620 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
621 return;
622
623 buf->allocator->free(&args);
624 kfree(buf);
625 }
626
627 static void dma_cache_maint_page(struct page *page, unsigned long offset,
628 size_t size, enum dma_data_direction dir,
629 void (*op)(const void *, size_t, int))
630 {
631 unsigned long pfn;
632 size_t left = size;
633
634 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
635 offset %= PAGE_SIZE;
636
637 /*
638 * A single sg entry may refer to multiple physically contiguous
639 * pages. But we still need to process highmem pages individually.
640 * If highmem is not configured then the bulk of this loop gets
641 * optimized out.
642 */
643 do {
644 size_t len = left;
645 void *vaddr;
646
647 page = pfn_to_page(pfn);
648
649 if (PageHighMem(page)) {
650 if (len + offset > PAGE_SIZE)
651 len = PAGE_SIZE - offset;
652
653 if (cache_is_vipt_nonaliasing()) {
654 vaddr = kmap_atomic(page);
655 op(vaddr + offset, len, dir);
656 kunmap_atomic(vaddr);
657 } else {
658 vaddr = kmap_high_get(page);
659 if (vaddr) {
660 op(vaddr + offset, len, dir);
661 kunmap_high(page);
662 }
663 }
664 } else {
665 vaddr = page_address(page) + offset;
666 op(vaddr, len, dir);
667 }
668 offset = 0;
669 pfn++;
670 left -= len;
671 } while (left);
672 }
673
674 /*
675 * Make an area consistent for devices.
676 * Note: Drivers should NOT use this function directly.
677 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
678 */
679 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
680 size_t size, enum dma_data_direction dir)
681 {
682 phys_addr_t paddr;
683
684 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
685
686 paddr = page_to_phys(page) + off;
687 if (dir == DMA_FROM_DEVICE) {
688 outer_inv_range(paddr, paddr + size);
689 } else {
690 outer_clean_range(paddr, paddr + size);
691 }
692 /* FIXME: non-speculating: flush on bidirectional mappings? */
693 }
694
695 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
696 size_t size, enum dma_data_direction dir)
697 {
698 phys_addr_t paddr = page_to_phys(page) + off;
699
700 /* FIXME: non-speculating: not required */
701 /* in any case, don't bother invalidating if DMA to device */
702 if (dir != DMA_TO_DEVICE) {
703 outer_inv_range(paddr, paddr + size);
704
705 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
706 }
707
708 /*
709 * Mark the D-cache clean for these pages to avoid extra flushing.
710 */
711 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
712 struct folio *folio = pfn_folio(paddr / PAGE_SIZE);
713 size_t offset = offset_in_folio(folio, paddr);
714
715 for (;;) {
716 size_t sz = folio_size(folio) - offset;
717
718 if (size < sz)
719 break;
720 if (!offset)
721 set_bit(PG_dcache_clean, &folio->flags);
722 offset = 0;
723 size -= sz;
724 if (!size)
725 break;
726 folio = folio_next(folio);
727 }
728 }
729 }
730
731 #ifdef CONFIG_ARM_DMA_USE_IOMMU
732
733 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
734 {
735 int prot = 0;
736
737 if (attrs & DMA_ATTR_PRIVILEGED)
738 prot |= IOMMU_PRIV;
739
740 switch (dir) {
741 case DMA_BIDIRECTIONAL:
742 return prot | IOMMU_READ | IOMMU_WRITE;
743 case DMA_TO_DEVICE:
744 return prot | IOMMU_READ;
745 case DMA_FROM_DEVICE:
746 return prot | IOMMU_WRITE;
747 default:
748 return prot;
749 }
750 }
751
752 /* IOMMU */
753
754 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
755
756 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
757 size_t size)
758 {
759 unsigned int order = get_order(size);
760 unsigned int align = 0;
761 unsigned int count, start;
762 size_t mapping_size = mapping->bits << PAGE_SHIFT;
763 unsigned long flags;
764 dma_addr_t iova;
765 int i;
766
767 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
768 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
769
770 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
771 align = (1 << order) - 1;
772
773 spin_lock_irqsave(&mapping->lock, flags);
774 for (i = 0; i < mapping->nr_bitmaps; i++) {
775 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
776 mapping->bits, 0, count, align);
777
778 if (start > mapping->bits)
779 continue;
780
781 bitmap_set(mapping->bitmaps[i], start, count);
782 break;
783 }
784
785 /*
786 * No unused range found. Try to extend the existing mapping
787 * and perform a second attempt to reserve an IO virtual
788 * address range of size bytes.
789 */
790 if (i == mapping->nr_bitmaps) {
791 if (extend_iommu_mapping(mapping)) {
792 spin_unlock_irqrestore(&mapping->lock, flags);
793 return DMA_MAPPING_ERROR;
794 }
795
796 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
797 mapping->bits, 0, count, align);
798
799 if (start > mapping->bits) {
800 spin_unlock_irqrestore(&mapping->lock, flags);
801 return DMA_MAPPING_ERROR;
802 }
803
804 bitmap_set(mapping->bitmaps[i], start, count);
805 }
806 spin_unlock_irqrestore(&mapping->lock, flags);
807
808 iova = mapping->base + (mapping_size * i);
809 iova += start << PAGE_SHIFT;
810
811 return iova;
812 }
813
814 static inline void __free_iova(struct dma_iommu_mapping *mapping,
815 dma_addr_t addr, size_t size)
816 {
817 unsigned int start, count;
818 size_t mapping_size = mapping->bits << PAGE_SHIFT;
819 unsigned long flags;
820 dma_addr_t bitmap_base;
821 u32 bitmap_index;
822
823 if (!size)
824 return;
825
826 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
827 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
828
829 bitmap_base = mapping->base + mapping_size * bitmap_index;
830
831 start = (addr - bitmap_base) >> PAGE_SHIFT;
832
833 if (addr + size > bitmap_base + mapping_size) {
834 /*
835 * The address range to be freed reaches into the iova
836 * range of the next bitmap. This should not happen as
837 * we don't allow this in __alloc_iova (at the
838 * moment).
839 */
840 BUG();
841 } else
842 count = size >> PAGE_SHIFT;
843
844 spin_lock_irqsave(&mapping->lock, flags);
845 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
846 spin_unlock_irqrestore(&mapping->lock, flags);
847 }
848
849 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
850 static const int iommu_order_array[] = { 9, 8, 4, 0 };
851
852 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
853 gfp_t gfp, unsigned long attrs,
854 int coherent_flag)
855 {
856 struct page **pages;
857 int count = size >> PAGE_SHIFT;
858 int array_size = count * sizeof(struct page *);
859 int i = 0;
860 int order_idx = 0;
861
862 pages = kvzalloc(array_size, GFP_KERNEL);
863 if (!pages)
864 return NULL;
865
866 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
867 {
868 unsigned long order = get_order(size);
869 struct page *page;
870
871 page = dma_alloc_from_contiguous(dev, count, order,
872 gfp & __GFP_NOWARN);
873 if (!page)
874 goto error;
875
876 __dma_clear_buffer(page, size, coherent_flag);
877
878 for (i = 0; i < count; i++)
879 pages[i] = page + i;
880
881 return pages;
882 }
883
884 /* Go straight to 4K chunks if caller says it's OK. */
885 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
886 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
887
888 /*
889 * IOMMU can map any pages, so himem can also be used here
890 */
891 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
892
893 while (count) {
894 int j, order;
895
896 order = iommu_order_array[order_idx];
897
898 /* Drop down when we get small */
899 if (__fls(count) < order) {
900 order_idx++;
901 continue;
902 }
903
904 if (order) {
905 /* See if it's easy to allocate a high-order chunk */
906 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
907
908 /* Go down a notch at first sign of pressure */
909 if (!pages[i]) {
910 order_idx++;
911 continue;
912 }
913 } else {
914 pages[i] = alloc_pages(gfp, 0);
915 if (!pages[i])
916 goto error;
917 }
918
919 if (order) {
920 split_page(pages[i], order);
921 j = 1 << order;
922 while (--j)
923 pages[i + j] = pages[i] + j;
924 }
925
926 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
927 i += 1 << order;
928 count -= 1 << order;
929 }
930
931 return pages;
932 error:
933 while (i--)
934 if (pages[i])
935 __free_pages(pages[i], 0);
936 kvfree(pages);
937 return NULL;
938 }
939
940 static int __iommu_free_buffer(struct device *dev, struct page **pages,
941 size_t size, unsigned long attrs)
942 {
943 int count = size >> PAGE_SHIFT;
944 int i;
945
946 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
947 dma_release_from_contiguous(dev, pages[0], count);
948 } else {
949 for (i = 0; i < count; i++)
950 if (pages[i])
951 __free_pages(pages[i], 0);
952 }
953
954 kvfree(pages);
955 return 0;
956 }
957
958 /*
959 * Create a mapping in device IO address space for specified pages
960 */
961 static dma_addr_t
962 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
963 unsigned long attrs)
964 {
965 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
966 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
967 dma_addr_t dma_addr, iova;
968 int i;
969
970 dma_addr = __alloc_iova(mapping, size);
971 if (dma_addr == DMA_MAPPING_ERROR)
972 return dma_addr;
973
974 iova = dma_addr;
975 for (i = 0; i < count; ) {
976 int ret;
977
978 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
979 phys_addr_t phys = page_to_phys(pages[i]);
980 unsigned int len, j;
981
982 for (j = i + 1; j < count; j++, next_pfn++)
983 if (page_to_pfn(pages[j]) != next_pfn)
984 break;
985
986 len = (j - i) << PAGE_SHIFT;
987 ret = iommu_map(mapping->domain, iova, phys, len,
988 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs),
989 GFP_KERNEL);
990 if (ret < 0)
991 goto fail;
992 iova += len;
993 i = j;
994 }
995 return dma_addr;
996 fail:
997 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
998 __free_iova(mapping, dma_addr, size);
999 return DMA_MAPPING_ERROR;
1000 }
1001
1002 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1003 {
1004 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1005
1006 /*
1007 * add optional in-page offset from iova to size and align
1008 * result to page size
1009 */
1010 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1011 iova &= PAGE_MASK;
1012
1013 iommu_unmap(mapping->domain, iova, size);
1014 __free_iova(mapping, iova, size);
1015 return 0;
1016 }
1017
1018 static struct page **__atomic_get_pages(void *addr)
1019 {
1020 struct page *page;
1021 phys_addr_t phys;
1022
1023 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1024 page = phys_to_page(phys);
1025
1026 return (struct page **)page;
1027 }
1028
1029 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1030 {
1031 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1032 return __atomic_get_pages(cpu_addr);
1033
1034 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1035 return cpu_addr;
1036
1037 return dma_common_find_pages(cpu_addr);
1038 }
1039
1040 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1041 dma_addr_t *handle, int coherent_flag,
1042 unsigned long attrs)
1043 {
1044 struct page *page;
1045 void *addr;
1046
1047 if (coherent_flag == COHERENT)
1048 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1049 else
1050 addr = __alloc_from_pool(size, &page);
1051 if (!addr)
1052 return NULL;
1053
1054 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1055 if (*handle == DMA_MAPPING_ERROR)
1056 goto err_mapping;
1057
1058 return addr;
1059
1060 err_mapping:
1061 __free_from_pool(addr, size);
1062 return NULL;
1063 }
1064
1065 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1066 dma_addr_t handle, size_t size, int coherent_flag)
1067 {
1068 __iommu_remove_mapping(dev, handle, size);
1069 if (coherent_flag == COHERENT)
1070 __dma_free_buffer(virt_to_page(cpu_addr), size);
1071 else
1072 __free_from_pool(cpu_addr, size);
1073 }
1074
1075 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1076 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1077 {
1078 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1079 struct page **pages;
1080 void *addr = NULL;
1081 int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1082
1083 *handle = DMA_MAPPING_ERROR;
1084 size = PAGE_ALIGN(size);
1085
1086 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1087 return __iommu_alloc_simple(dev, size, gfp, handle,
1088 coherent_flag, attrs);
1089
1090 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1091 if (!pages)
1092 return NULL;
1093
1094 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1095 if (*handle == DMA_MAPPING_ERROR)
1096 goto err_buffer;
1097
1098 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1099 return pages;
1100
1101 addr = dma_common_pages_remap(pages, size, prot,
1102 __builtin_return_address(0));
1103 if (!addr)
1104 goto err_mapping;
1105
1106 return addr;
1107
1108 err_mapping:
1109 __iommu_remove_mapping(dev, *handle, size);
1110 err_buffer:
1111 __iommu_free_buffer(dev, pages, size, attrs);
1112 return NULL;
1113 }
1114
1115 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1116 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1117 unsigned long attrs)
1118 {
1119 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1120 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1121 int err;
1122
1123 if (!pages)
1124 return -ENXIO;
1125
1126 if (vma->vm_pgoff >= nr_pages)
1127 return -ENXIO;
1128
1129 if (!dev->dma_coherent)
1130 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1131
1132 err = vm_map_pages(vma, pages, nr_pages);
1133 if (err)
1134 pr_err("Remapping memory failed: %d\n", err);
1135
1136 return err;
1137 }
1138
1139 /*
1140 * free a page as defined by the above mapping.
1141 * Must not be called with IRQs disabled.
1142 */
1143 static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1144 dma_addr_t handle, unsigned long attrs)
1145 {
1146 int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1147 struct page **pages;
1148 size = PAGE_ALIGN(size);
1149
1150 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1151 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1152 return;
1153 }
1154
1155 pages = __iommu_get_pages(cpu_addr, attrs);
1156 if (!pages) {
1157 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1158 return;
1159 }
1160
1161 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1162 dma_common_free_remap(cpu_addr, size);
1163
1164 __iommu_remove_mapping(dev, handle, size);
1165 __iommu_free_buffer(dev, pages, size, attrs);
1166 }
1167
1168 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1169 void *cpu_addr, dma_addr_t dma_addr,
1170 size_t size, unsigned long attrs)
1171 {
1172 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1173 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1174
1175 if (!pages)
1176 return -ENXIO;
1177
1178 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1179 GFP_KERNEL);
1180 }
1181
1182 /*
1183 * Map a part of the scatter-gather list into contiguous io address space
1184 */
1185 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1186 size_t size, dma_addr_t *handle,
1187 enum dma_data_direction dir, unsigned long attrs)
1188 {
1189 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1190 dma_addr_t iova, iova_base;
1191 int ret = 0;
1192 unsigned int count;
1193 struct scatterlist *s;
1194 int prot;
1195
1196 size = PAGE_ALIGN(size);
1197 *handle = DMA_MAPPING_ERROR;
1198
1199 iova_base = iova = __alloc_iova(mapping, size);
1200 if (iova == DMA_MAPPING_ERROR)
1201 return -ENOMEM;
1202
1203 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1204 phys_addr_t phys = page_to_phys(sg_page(s));
1205 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1206
1207 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1208 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1209
1210 prot = __dma_info_to_prot(dir, attrs);
1211
1212 ret = iommu_map(mapping->domain, iova, phys, len, prot,
1213 GFP_KERNEL);
1214 if (ret < 0)
1215 goto fail;
1216 count += len >> PAGE_SHIFT;
1217 iova += len;
1218 }
1219 *handle = iova_base;
1220
1221 return 0;
1222 fail:
1223 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1224 __free_iova(mapping, iova_base, size);
1225 return ret;
1226 }
1227
1228 /**
1229 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1230 * @dev: valid struct device pointer
1231 * @sg: list of buffers
1232 * @nents: number of buffers to map
1233 * @dir: DMA transfer direction
1234 *
1235 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1236 * The scatter gather list elements are merged together (if possible) and
1237 * tagged with the appropriate dma address and length. They are obtained via
1238 * sg_dma_{address,length}.
1239 */
1240 static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1241 int nents, enum dma_data_direction dir, unsigned long attrs)
1242 {
1243 struct scatterlist *s = sg, *dma = sg, *start = sg;
1244 int i, count = 0, ret;
1245 unsigned int offset = s->offset;
1246 unsigned int size = s->offset + s->length;
1247 unsigned int max = dma_get_max_seg_size(dev);
1248
1249 for (i = 1; i < nents; i++) {
1250 s = sg_next(s);
1251
1252 s->dma_length = 0;
1253
1254 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1255 ret = __map_sg_chunk(dev, start, size,
1256 &dma->dma_address, dir, attrs);
1257 if (ret < 0)
1258 goto bad_mapping;
1259
1260 dma->dma_address += offset;
1261 dma->dma_length = size - offset;
1262
1263 size = offset = s->offset;
1264 start = s;
1265 dma = sg_next(dma);
1266 count += 1;
1267 }
1268 size += s->length;
1269 }
1270 ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs);
1271 if (ret < 0)
1272 goto bad_mapping;
1273
1274 dma->dma_address += offset;
1275 dma->dma_length = size - offset;
1276
1277 return count+1;
1278
1279 bad_mapping:
1280 for_each_sg(sg, s, count, i)
1281 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1282 if (ret == -ENOMEM)
1283 return ret;
1284 return -EINVAL;
1285 }
1286
1287 /**
1288 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1289 * @dev: valid struct device pointer
1290 * @sg: list of buffers
1291 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1292 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1293 *
1294 * Unmap a set of streaming mode DMA translations. Again, CPU access
1295 * rules concerning calls here are the same as for dma_unmap_single().
1296 */
1297 static void arm_iommu_unmap_sg(struct device *dev,
1298 struct scatterlist *sg, int nents,
1299 enum dma_data_direction dir,
1300 unsigned long attrs)
1301 {
1302 struct scatterlist *s;
1303 int i;
1304
1305 for_each_sg(sg, s, nents, i) {
1306 if (sg_dma_len(s))
1307 __iommu_remove_mapping(dev, sg_dma_address(s),
1308 sg_dma_len(s));
1309 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1310 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1311 s->length, dir);
1312 }
1313 }
1314
1315 /**
1316 * arm_iommu_sync_sg_for_cpu
1317 * @dev: valid struct device pointer
1318 * @sg: list of buffers
1319 * @nents: number of buffers to map (returned from dma_map_sg)
1320 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1321 */
1322 static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1323 struct scatterlist *sg,
1324 int nents, enum dma_data_direction dir)
1325 {
1326 struct scatterlist *s;
1327 int i;
1328
1329 if (dev->dma_coherent)
1330 return;
1331
1332 for_each_sg(sg, s, nents, i)
1333 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1334
1335 }
1336
1337 /**
1338 * arm_iommu_sync_sg_for_device
1339 * @dev: valid struct device pointer
1340 * @sg: list of buffers
1341 * @nents: number of buffers to map (returned from dma_map_sg)
1342 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1343 */
1344 static void arm_iommu_sync_sg_for_device(struct device *dev,
1345 struct scatterlist *sg,
1346 int nents, enum dma_data_direction dir)
1347 {
1348 struct scatterlist *s;
1349 int i;
1350
1351 if (dev->dma_coherent)
1352 return;
1353
1354 for_each_sg(sg, s, nents, i)
1355 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1356 }
1357
1358 /**
1359 * arm_iommu_map_page
1360 * @dev: valid struct device pointer
1361 * @page: page that buffer resides in
1362 * @offset: offset into page for start of buffer
1363 * @size: size of buffer to map
1364 * @dir: DMA transfer direction
1365 *
1366 * IOMMU aware version of arm_dma_map_page()
1367 */
1368 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1369 unsigned long offset, size_t size, enum dma_data_direction dir,
1370 unsigned long attrs)
1371 {
1372 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1373 dma_addr_t dma_addr;
1374 int ret, prot, len = PAGE_ALIGN(size + offset);
1375
1376 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1377 __dma_page_cpu_to_dev(page, offset, size, dir);
1378
1379 dma_addr = __alloc_iova(mapping, len);
1380 if (dma_addr == DMA_MAPPING_ERROR)
1381 return dma_addr;
1382
1383 prot = __dma_info_to_prot(dir, attrs);
1384
1385 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len,
1386 prot, GFP_KERNEL);
1387 if (ret < 0)
1388 goto fail;
1389
1390 return dma_addr + offset;
1391 fail:
1392 __free_iova(mapping, dma_addr, len);
1393 return DMA_MAPPING_ERROR;
1394 }
1395
1396 /**
1397 * arm_iommu_unmap_page
1398 * @dev: valid struct device pointer
1399 * @handle: DMA address of buffer
1400 * @size: size of buffer (same as passed to dma_map_page)
1401 * @dir: DMA transfer direction (same as passed to dma_map_page)
1402 *
1403 * IOMMU aware version of arm_dma_unmap_page()
1404 */
1405 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1406 size_t size, enum dma_data_direction dir, unsigned long attrs)
1407 {
1408 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1409 dma_addr_t iova = handle & PAGE_MASK;
1410 struct page *page;
1411 int offset = handle & ~PAGE_MASK;
1412 int len = PAGE_ALIGN(size + offset);
1413
1414 if (!iova)
1415 return;
1416
1417 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
1418 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1419 __dma_page_dev_to_cpu(page, offset, size, dir);
1420 }
1421
1422 iommu_unmap(mapping->domain, iova, len);
1423 __free_iova(mapping, iova, len);
1424 }
1425
1426 /**
1427 * arm_iommu_map_resource - map a device resource for DMA
1428 * @dev: valid struct device pointer
1429 * @phys_addr: physical address of resource
1430 * @size: size of resource to map
1431 * @dir: DMA transfer direction
1432 */
1433 static dma_addr_t arm_iommu_map_resource(struct device *dev,
1434 phys_addr_t phys_addr, size_t size,
1435 enum dma_data_direction dir, unsigned long attrs)
1436 {
1437 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1438 dma_addr_t dma_addr;
1439 int ret, prot;
1440 phys_addr_t addr = phys_addr & PAGE_MASK;
1441 unsigned int offset = phys_addr & ~PAGE_MASK;
1442 size_t len = PAGE_ALIGN(size + offset);
1443
1444 dma_addr = __alloc_iova(mapping, len);
1445 if (dma_addr == DMA_MAPPING_ERROR)
1446 return dma_addr;
1447
1448 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1449
1450 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot, GFP_KERNEL);
1451 if (ret < 0)
1452 goto fail;
1453
1454 return dma_addr + offset;
1455 fail:
1456 __free_iova(mapping, dma_addr, len);
1457 return DMA_MAPPING_ERROR;
1458 }
1459
1460 /**
1461 * arm_iommu_unmap_resource - unmap a device DMA resource
1462 * @dev: valid struct device pointer
1463 * @dma_handle: DMA address to resource
1464 * @size: size of resource to map
1465 * @dir: DMA transfer direction
1466 */
1467 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1468 size_t size, enum dma_data_direction dir,
1469 unsigned long attrs)
1470 {
1471 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1472 dma_addr_t iova = dma_handle & PAGE_MASK;
1473 unsigned int offset = dma_handle & ~PAGE_MASK;
1474 size_t len = PAGE_ALIGN(size + offset);
1475
1476 if (!iova)
1477 return;
1478
1479 iommu_unmap(mapping->domain, iova, len);
1480 __free_iova(mapping, iova, len);
1481 }
1482
1483 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1484 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1485 {
1486 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1487 dma_addr_t iova = handle & PAGE_MASK;
1488 struct page *page;
1489 unsigned int offset = handle & ~PAGE_MASK;
1490
1491 if (dev->dma_coherent || !iova)
1492 return;
1493
1494 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1495 __dma_page_dev_to_cpu(page, offset, size, dir);
1496 }
1497
1498 static void arm_iommu_sync_single_for_device(struct device *dev,
1499 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1500 {
1501 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1502 dma_addr_t iova = handle & PAGE_MASK;
1503 struct page *page;
1504 unsigned int offset = handle & ~PAGE_MASK;
1505
1506 if (dev->dma_coherent || !iova)
1507 return;
1508
1509 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1510 __dma_page_cpu_to_dev(page, offset, size, dir);
1511 }
1512
1513 static const struct dma_map_ops iommu_ops = {
1514 .alloc = arm_iommu_alloc_attrs,
1515 .free = arm_iommu_free_attrs,
1516 .mmap = arm_iommu_mmap_attrs,
1517 .get_sgtable = arm_iommu_get_sgtable,
1518
1519 .map_page = arm_iommu_map_page,
1520 .unmap_page = arm_iommu_unmap_page,
1521 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1522 .sync_single_for_device = arm_iommu_sync_single_for_device,
1523
1524 .map_sg = arm_iommu_map_sg,
1525 .unmap_sg = arm_iommu_unmap_sg,
1526 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1527 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1528
1529 .map_resource = arm_iommu_map_resource,
1530 .unmap_resource = arm_iommu_unmap_resource,
1531 };
1532
1533 /**
1534 * arm_iommu_create_mapping
1535 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1536 * @base: start address of the valid IO address space
1537 * @size: maximum size of the valid IO address space
1538 *
1539 * Creates a mapping structure which holds information about used/unused
1540 * IO address ranges, which is required to perform memory allocation and
1541 * mapping with IOMMU aware functions.
1542 *
1543 * The client device need to be attached to the mapping with
1544 * arm_iommu_attach_device function.
1545 */
1546 struct dma_iommu_mapping *
1547 arm_iommu_create_mapping(const struct bus_type *bus, dma_addr_t base, u64 size)
1548 {
1549 unsigned int bits = size >> PAGE_SHIFT;
1550 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1551 struct dma_iommu_mapping *mapping;
1552 int extensions = 1;
1553 int err = -ENOMEM;
1554
1555 /* currently only 32-bit DMA address space is supported */
1556 if (size > DMA_BIT_MASK(32) + 1)
1557 return ERR_PTR(-ERANGE);
1558
1559 if (!bitmap_size)
1560 return ERR_PTR(-EINVAL);
1561
1562 if (bitmap_size > PAGE_SIZE) {
1563 extensions = bitmap_size / PAGE_SIZE;
1564 bitmap_size = PAGE_SIZE;
1565 }
1566
1567 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1568 if (!mapping)
1569 goto err;
1570
1571 mapping->bitmap_size = bitmap_size;
1572 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
1573 GFP_KERNEL);
1574 if (!mapping->bitmaps)
1575 goto err2;
1576
1577 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1578 if (!mapping->bitmaps[0])
1579 goto err3;
1580
1581 mapping->nr_bitmaps = 1;
1582 mapping->extensions = extensions;
1583 mapping->base = base;
1584 mapping->bits = BITS_PER_BYTE * bitmap_size;
1585
1586 spin_lock_init(&mapping->lock);
1587
1588 mapping->domain = iommu_domain_alloc(bus);
1589 if (!mapping->domain)
1590 goto err4;
1591
1592 kref_init(&mapping->kref);
1593 return mapping;
1594 err4:
1595 kfree(mapping->bitmaps[0]);
1596 err3:
1597 kfree(mapping->bitmaps);
1598 err2:
1599 kfree(mapping);
1600 err:
1601 return ERR_PTR(err);
1602 }
1603 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1604
1605 static void release_iommu_mapping(struct kref *kref)
1606 {
1607 int i;
1608 struct dma_iommu_mapping *mapping =
1609 container_of(kref, struct dma_iommu_mapping, kref);
1610
1611 iommu_domain_free(mapping->domain);
1612 for (i = 0; i < mapping->nr_bitmaps; i++)
1613 kfree(mapping->bitmaps[i]);
1614 kfree(mapping->bitmaps);
1615 kfree(mapping);
1616 }
1617
1618 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1619 {
1620 int next_bitmap;
1621
1622 if (mapping->nr_bitmaps >= mapping->extensions)
1623 return -EINVAL;
1624
1625 next_bitmap = mapping->nr_bitmaps;
1626 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1627 GFP_ATOMIC);
1628 if (!mapping->bitmaps[next_bitmap])
1629 return -ENOMEM;
1630
1631 mapping->nr_bitmaps++;
1632
1633 return 0;
1634 }
1635
1636 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1637 {
1638 if (mapping)
1639 kref_put(&mapping->kref, release_iommu_mapping);
1640 }
1641 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1642
1643 static int __arm_iommu_attach_device(struct device *dev,
1644 struct dma_iommu_mapping *mapping)
1645 {
1646 int err;
1647
1648 err = iommu_attach_device(mapping->domain, dev);
1649 if (err)
1650 return err;
1651
1652 kref_get(&mapping->kref);
1653 to_dma_iommu_mapping(dev) = mapping;
1654
1655 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1656 return 0;
1657 }
1658
1659 /**
1660 * arm_iommu_attach_device
1661 * @dev: valid struct device pointer
1662 * @mapping: io address space mapping structure (returned from
1663 * arm_iommu_create_mapping)
1664 *
1665 * Attaches specified io address space mapping to the provided device.
1666 * This replaces the dma operations (dma_map_ops pointer) with the
1667 * IOMMU aware version.
1668 *
1669 * More than one client might be attached to the same io address space
1670 * mapping.
1671 */
1672 int arm_iommu_attach_device(struct device *dev,
1673 struct dma_iommu_mapping *mapping)
1674 {
1675 int err;
1676
1677 err = __arm_iommu_attach_device(dev, mapping);
1678 if (err)
1679 return err;
1680
1681 set_dma_ops(dev, &iommu_ops);
1682 return 0;
1683 }
1684 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1685
1686 /**
1687 * arm_iommu_detach_device
1688 * @dev: valid struct device pointer
1689 *
1690 * Detaches the provided device from a previously attached map.
1691 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
1692 */
1693 void arm_iommu_detach_device(struct device *dev)
1694 {
1695 struct dma_iommu_mapping *mapping;
1696
1697 mapping = to_dma_iommu_mapping(dev);
1698 if (!mapping) {
1699 dev_warn(dev, "Not attached\n");
1700 return;
1701 }
1702
1703 iommu_detach_device(mapping->domain, dev);
1704 kref_put(&mapping->kref, release_iommu_mapping);
1705 to_dma_iommu_mapping(dev) = NULL;
1706 set_dma_ops(dev, NULL);
1707
1708 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1709 }
1710 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1711
1712 static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1713 bool coherent)
1714 {
1715 struct dma_iommu_mapping *mapping;
1716
1717 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
1718 if (IS_ERR(mapping)) {
1719 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
1720 size, dev_name(dev));
1721 return;
1722 }
1723
1724 if (__arm_iommu_attach_device(dev, mapping)) {
1725 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
1726 dev_name(dev));
1727 arm_iommu_release_mapping(mapping);
1728 return;
1729 }
1730
1731 set_dma_ops(dev, &iommu_ops);
1732 }
1733
1734 static void arm_teardown_iommu_dma_ops(struct device *dev)
1735 {
1736 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1737
1738 if (!mapping)
1739 return;
1740
1741 arm_iommu_detach_device(dev);
1742 arm_iommu_release_mapping(mapping);
1743 }
1744
1745 #else
1746
1747 static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1748 bool coherent)
1749 {
1750 }
1751
1752 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
1753
1754 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
1755
1756 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
1757 bool coherent)
1758 {
1759 /*
1760 * Due to legacy code that sets the ->dma_coherent flag from a bus
1761 * notifier we can't just assign coherent to the ->dma_coherent flag
1762 * here, but instead have to make sure we only set but never clear it
1763 * for now.
1764 */
1765 if (coherent)
1766 dev->dma_coherent = true;
1767
1768 /*
1769 * Don't override the dma_ops if they have already been set. Ideally
1770 * this should be the only location where dma_ops are set, remove this
1771 * check when all other callers of set_dma_ops will have disappeared.
1772 */
1773 if (dev->dma_ops)
1774 return;
1775
1776 if (device_iommu_mapped(dev))
1777 arm_setup_iommu_dma_ops(dev, dma_base, size, coherent);
1778
1779 xen_setup_dma_ops(dev);
1780 dev->archdata.dma_ops_setup = true;
1781 }
1782
1783 void arch_teardown_dma_ops(struct device *dev)
1784 {
1785 if (!dev->archdata.dma_ops_setup)
1786 return;
1787
1788 arm_teardown_iommu_dma_ops(dev);
1789 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
1790 set_dma_ops(dev, NULL);
1791 }
1792
1793 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
1794 enum dma_data_direction dir)
1795 {
1796 __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1797 size, dir);
1798 }
1799
1800 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
1801 enum dma_data_direction dir)
1802 {
1803 __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1804 size, dir);
1805 }
1806
1807 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1808 gfp_t gfp, unsigned long attrs)
1809 {
1810 return __dma_alloc(dev, size, dma_handle, gfp,
1811 __get_dma_pgprot(attrs, PAGE_KERNEL), false,
1812 attrs, __builtin_return_address(0));
1813 }
1814
1815 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
1816 dma_addr_t dma_handle, unsigned long attrs)
1817 {
1818 __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
1819 }