]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/arm64/Kconfig
Merge tag 'mm-nonmm-stable-2024-03-14-09-36' of git://git.kernel.org/pub/scm/linux...
[thirdparty/linux.git] / arch / arm64 / Kconfig
1 # SPDX-License-Identifier: GPL-2.0-only
2 config ARM64
3 def_bool y
4 select ACPI_APMT if ACPI
5 select ACPI_CCA_REQUIRED if ACPI
6 select ACPI_GENERIC_GSI if ACPI
7 select ACPI_GTDT if ACPI
8 select ACPI_IORT if ACPI
9 select ACPI_REDUCED_HARDWARE_ONLY if ACPI
10 select ACPI_MCFG if (ACPI && PCI)
11 select ACPI_SPCR_TABLE if ACPI
12 select ACPI_PPTT if ACPI
13 select ARCH_HAS_DEBUG_WX
14 select ARCH_BINFMT_ELF_EXTRA_PHDRS
15 select ARCH_BINFMT_ELF_STATE
16 select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
17 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18 select ARCH_ENABLE_MEMORY_HOTPLUG
19 select ARCH_ENABLE_MEMORY_HOTREMOVE
20 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22 select ARCH_HAS_CACHE_LINE_SIZE
23 select ARCH_HAS_CURRENT_STACK_POINTER
24 select ARCH_HAS_DEBUG_VIRTUAL
25 select ARCH_HAS_DEBUG_VM_PGTABLE
26 select ARCH_HAS_DMA_PREP_COHERENT
27 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
28 select ARCH_HAS_FAST_MULTIPLIER
29 select ARCH_HAS_FORTIFY_SOURCE
30 select ARCH_HAS_GCOV_PROFILE_ALL
31 select ARCH_HAS_GIGANTIC_PAGE
32 select ARCH_HAS_KCOV
33 select ARCH_HAS_KEEPINITRD
34 select ARCH_HAS_MEMBARRIER_SYNC_CORE
35 select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
36 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
37 select ARCH_HAS_PTE_DEVMAP
38 select ARCH_HAS_PTE_SPECIAL
39 select ARCH_HAS_HW_PTE_YOUNG
40 select ARCH_HAS_SETUP_DMA_OPS
41 select ARCH_HAS_SET_DIRECT_MAP
42 select ARCH_HAS_SET_MEMORY
43 select ARCH_STACKWALK
44 select ARCH_HAS_STRICT_KERNEL_RWX
45 select ARCH_HAS_STRICT_MODULE_RWX
46 select ARCH_HAS_SYNC_DMA_FOR_DEVICE
47 select ARCH_HAS_SYNC_DMA_FOR_CPU
48 select ARCH_HAS_SYSCALL_WRAPPER
49 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
50 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
51 select ARCH_HAS_ZONE_DMA_SET if EXPERT
52 select ARCH_HAVE_ELF_PROT
53 select ARCH_HAVE_NMI_SAFE_CMPXCHG
54 select ARCH_HAVE_TRACE_MMIO_ACCESS
55 select ARCH_INLINE_READ_LOCK if !PREEMPTION
56 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
57 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
58 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
59 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
60 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
61 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
62 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
63 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
64 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
65 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
66 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
67 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
68 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
69 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
70 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
71 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
72 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
73 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
74 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
75 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
76 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
77 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
78 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
79 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
80 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
81 select ARCH_KEEP_MEMBLOCK
82 select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
83 select ARCH_USE_CMPXCHG_LOCKREF
84 select ARCH_USE_GNU_PROPERTY
85 select ARCH_USE_MEMTEST
86 select ARCH_USE_QUEUED_RWLOCKS
87 select ARCH_USE_QUEUED_SPINLOCKS
88 select ARCH_USE_SYM_ANNOTATIONS
89 select ARCH_SUPPORTS_DEBUG_PAGEALLOC
90 select ARCH_SUPPORTS_HUGETLBFS
91 select ARCH_SUPPORTS_MEMORY_FAILURE
92 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
93 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
94 select ARCH_SUPPORTS_LTO_CLANG_THIN
95 select ARCH_SUPPORTS_CFI_CLANG
96 select ARCH_SUPPORTS_ATOMIC_RMW
97 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
98 select ARCH_SUPPORTS_NUMA_BALANCING
99 select ARCH_SUPPORTS_PAGE_TABLE_CHECK
100 select ARCH_SUPPORTS_PER_VMA_LOCK
101 select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
102 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
103 select ARCH_WANT_DEFAULT_BPF_JIT
104 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
105 select ARCH_WANT_FRAME_POINTERS
106 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
107 select ARCH_WANT_LD_ORPHAN_WARN
108 select ARCH_WANTS_NO_INSTR
109 select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
110 select ARCH_HAS_UBSAN
111 select ARM_AMBA
112 select ARM_ARCH_TIMER
113 select ARM_GIC
114 select AUDIT_ARCH_COMPAT_GENERIC
115 select ARM_GIC_V2M if PCI
116 select ARM_GIC_V3
117 select ARM_GIC_V3_ITS if PCI
118 select ARM_PSCI_FW
119 select BUILDTIME_TABLE_SORT
120 select CLONE_BACKWARDS
121 select COMMON_CLK
122 select CPU_PM if (SUSPEND || CPU_IDLE)
123 select CRC32
124 select DCACHE_WORD_ACCESS
125 select DYNAMIC_FTRACE if FUNCTION_TRACER
126 select DMA_BOUNCE_UNALIGNED_KMALLOC
127 select DMA_DIRECT_REMAP
128 select EDAC_SUPPORT
129 select FRAME_POINTER
130 select FUNCTION_ALIGNMENT_4B
131 select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
132 select GENERIC_ALLOCATOR
133 select GENERIC_ARCH_TOPOLOGY
134 select GENERIC_CLOCKEVENTS_BROADCAST
135 select GENERIC_CPU_AUTOPROBE
136 select GENERIC_CPU_DEVICES
137 select GENERIC_CPU_VULNERABILITIES
138 select GENERIC_EARLY_IOREMAP
139 select GENERIC_IDLE_POLL_SETUP
140 select GENERIC_IOREMAP
141 select GENERIC_IRQ_IPI
142 select GENERIC_IRQ_PROBE
143 select GENERIC_IRQ_SHOW
144 select GENERIC_IRQ_SHOW_LEVEL
145 select GENERIC_LIB_DEVMEM_IS_ALLOWED
146 select GENERIC_PCI_IOMAP
147 select GENERIC_PTDUMP
148 select GENERIC_SCHED_CLOCK
149 select GENERIC_SMP_IDLE_THREAD
150 select GENERIC_TIME_VSYSCALL
151 select GENERIC_GETTIMEOFDAY
152 select GENERIC_VDSO_TIME_NS
153 select HARDIRQS_SW_RESEND
154 select HAS_IOPORT
155 select HAVE_MOVE_PMD
156 select HAVE_MOVE_PUD
157 select HAVE_PCI
158 select HAVE_ACPI_APEI if (ACPI && EFI)
159 select HAVE_ALIGNED_STRUCT_PAGE
160 select HAVE_ARCH_AUDITSYSCALL
161 select HAVE_ARCH_BITREVERSE
162 select HAVE_ARCH_COMPILER_H
163 select HAVE_ARCH_HUGE_VMALLOC
164 select HAVE_ARCH_HUGE_VMAP
165 select HAVE_ARCH_JUMP_LABEL
166 select HAVE_ARCH_JUMP_LABEL_RELATIVE
167 select HAVE_ARCH_KASAN
168 select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
169 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
170 select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
171 # Some instrumentation may be unsound, hence EXPERT
172 select HAVE_ARCH_KCSAN if EXPERT
173 select HAVE_ARCH_KFENCE
174 select HAVE_ARCH_KGDB
175 select HAVE_ARCH_MMAP_RND_BITS
176 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
177 select HAVE_ARCH_PREL32_RELOCATIONS
178 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
179 select HAVE_ARCH_SECCOMP_FILTER
180 select HAVE_ARCH_STACKLEAK
181 select HAVE_ARCH_THREAD_STRUCT_WHITELIST
182 select HAVE_ARCH_TRACEHOOK
183 select HAVE_ARCH_TRANSPARENT_HUGEPAGE
184 select HAVE_ARCH_VMAP_STACK
185 select HAVE_ARM_SMCCC
186 select HAVE_ASM_MODVERSIONS
187 select HAVE_EBPF_JIT
188 select HAVE_C_RECORDMCOUNT
189 select HAVE_CMPXCHG_DOUBLE
190 select HAVE_CMPXCHG_LOCAL
191 select HAVE_CONTEXT_TRACKING_USER
192 select HAVE_DEBUG_KMEMLEAK
193 select HAVE_DMA_CONTIGUOUS
194 select HAVE_DYNAMIC_FTRACE
195 select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
196 if $(cc-option,-fpatchable-function-entry=2)
197 select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
198 if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
199 select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
200 if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
201 (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
202 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
203 if DYNAMIC_FTRACE_WITH_ARGS
204 select HAVE_SAMPLE_FTRACE_DIRECT
205 select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
206 select HAVE_EFFICIENT_UNALIGNED_ACCESS
207 select HAVE_FAST_GUP
208 select HAVE_FTRACE_MCOUNT_RECORD
209 select HAVE_FUNCTION_TRACER
210 select HAVE_FUNCTION_ERROR_INJECTION
211 select HAVE_FUNCTION_GRAPH_RETVAL if HAVE_FUNCTION_GRAPH_TRACER
212 select HAVE_FUNCTION_GRAPH_TRACER
213 select HAVE_GCC_PLUGINS
214 select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
215 HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
216 select HAVE_HW_BREAKPOINT if PERF_EVENTS
217 select HAVE_IOREMAP_PROT
218 select HAVE_IRQ_TIME_ACCOUNTING
219 select HAVE_KVM
220 select HAVE_MOD_ARCH_SPECIFIC
221 select HAVE_NMI
222 select HAVE_PERF_EVENTS
223 select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
224 select HAVE_PERF_REGS
225 select HAVE_PERF_USER_STACK_DUMP
226 select HAVE_PREEMPT_DYNAMIC_KEY
227 select HAVE_REGS_AND_STACK_ACCESS_API
228 select HAVE_POSIX_CPU_TIMERS_TASK_WORK
229 select HAVE_FUNCTION_ARG_ACCESS_API
230 select MMU_GATHER_RCU_TABLE_FREE
231 select HAVE_RSEQ
232 select HAVE_RUST if CPU_LITTLE_ENDIAN
233 select HAVE_STACKPROTECTOR
234 select HAVE_SYSCALL_TRACEPOINTS
235 select HAVE_KPROBES
236 select HAVE_KRETPROBES
237 select HAVE_GENERIC_VDSO
238 select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
239 select IRQ_DOMAIN
240 select IRQ_FORCED_THREADING
241 select KASAN_VMALLOC if KASAN
242 select LOCK_MM_AND_FIND_VMA
243 select MODULES_USE_ELF_RELA
244 select NEED_DMA_MAP_STATE
245 select NEED_SG_DMA_LENGTH
246 select OF
247 select OF_EARLY_FLATTREE
248 select PCI_DOMAINS_GENERIC if PCI
249 select PCI_ECAM if (ACPI && PCI)
250 select PCI_SYSCALL if PCI
251 select POWER_RESET
252 select POWER_SUPPLY
253 select SPARSE_IRQ
254 select SWIOTLB
255 select SYSCTL_EXCEPTION_TRACE
256 select THREAD_INFO_IN_TASK
257 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
258 select TRACE_IRQFLAGS_SUPPORT
259 select TRACE_IRQFLAGS_NMI_SUPPORT
260 select HAVE_SOFTIRQ_ON_OWN_STACK
261 help
262 ARM 64-bit (AArch64) Linux support.
263
264 config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
265 def_bool CC_IS_CLANG
266 # https://github.com/ClangBuiltLinux/linux/issues/1507
267 depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
268 select HAVE_DYNAMIC_FTRACE_WITH_ARGS
269
270 config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
271 def_bool CC_IS_GCC
272 depends on $(cc-option,-fpatchable-function-entry=2)
273 select HAVE_DYNAMIC_FTRACE_WITH_ARGS
274
275 config 64BIT
276 def_bool y
277
278 config MMU
279 def_bool y
280
281 config ARM64_CONT_PTE_SHIFT
282 int
283 default 5 if PAGE_SIZE_64KB
284 default 7 if PAGE_SIZE_16KB
285 default 4
286
287 config ARM64_CONT_PMD_SHIFT
288 int
289 default 5 if PAGE_SIZE_64KB
290 default 5 if PAGE_SIZE_16KB
291 default 4
292
293 config ARCH_MMAP_RND_BITS_MIN
294 default 14 if PAGE_SIZE_64KB
295 default 16 if PAGE_SIZE_16KB
296 default 18
297
298 # max bits determined by the following formula:
299 # VA_BITS - PAGE_SHIFT - 3
300 config ARCH_MMAP_RND_BITS_MAX
301 default 19 if ARM64_VA_BITS=36
302 default 24 if ARM64_VA_BITS=39
303 default 27 if ARM64_VA_BITS=42
304 default 30 if ARM64_VA_BITS=47
305 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
306 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
307 default 33 if ARM64_VA_BITS=48
308 default 14 if ARM64_64K_PAGES
309 default 16 if ARM64_16K_PAGES
310 default 18
311
312 config ARCH_MMAP_RND_COMPAT_BITS_MIN
313 default 7 if ARM64_64K_PAGES
314 default 9 if ARM64_16K_PAGES
315 default 11
316
317 config ARCH_MMAP_RND_COMPAT_BITS_MAX
318 default 16
319
320 config NO_IOPORT_MAP
321 def_bool y if !PCI
322
323 config STACKTRACE_SUPPORT
324 def_bool y
325
326 config ILLEGAL_POINTER_VALUE
327 hex
328 default 0xdead000000000000
329
330 config LOCKDEP_SUPPORT
331 def_bool y
332
333 config GENERIC_BUG
334 def_bool y
335 depends on BUG
336
337 config GENERIC_BUG_RELATIVE_POINTERS
338 def_bool y
339 depends on GENERIC_BUG
340
341 config GENERIC_HWEIGHT
342 def_bool y
343
344 config GENERIC_CSUM
345 def_bool y
346
347 config GENERIC_CALIBRATE_DELAY
348 def_bool y
349
350 config SMP
351 def_bool y
352
353 config KERNEL_MODE_NEON
354 def_bool y
355
356 config FIX_EARLYCON_MEM
357 def_bool y
358
359 config PGTABLE_LEVELS
360 int
361 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
362 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
363 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
364 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
365 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
366 default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
367 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
368 default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
369
370 config ARCH_SUPPORTS_UPROBES
371 def_bool y
372
373 config ARCH_PROC_KCORE_TEXT
374 def_bool y
375
376 config BROKEN_GAS_INST
377 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
378
379 config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
380 bool
381 # Clang's __builtin_return_adddress() strips the PAC since 12.0.0
382 # https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
383 default y if CC_IS_CLANG
384 # GCC's __builtin_return_address() strips the PAC since 11.1.0,
385 # and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
386 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
387 default y if CC_IS_GCC && (GCC_VERSION >= 110100)
388 default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
389 default y if CC_IS_GCC && (GCC_VERSION >= 90400) && (GCC_VERSION < 100000)
390 default y if CC_IS_GCC && (GCC_VERSION >= 80500) && (GCC_VERSION < 90000)
391 default n
392
393 config KASAN_SHADOW_OFFSET
394 hex
395 depends on KASAN_GENERIC || KASAN_SW_TAGS
396 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
397 default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
398 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
399 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
400 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
401 default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
402 default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
403 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
404 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
405 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
406 default 0xffffffffffffffff
407
408 config UNWIND_TABLES
409 bool
410
411 source "arch/arm64/Kconfig.platforms"
412
413 menu "Kernel Features"
414
415 menu "ARM errata workarounds via the alternatives framework"
416
417 config AMPERE_ERRATUM_AC03_CPU_38
418 bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
419 default y
420 help
421 This option adds an alternative code sequence to work around Ampere
422 erratum AC03_CPU_38 on AmpereOne.
423
424 The affected design reports FEAT_HAFDBS as not implemented in
425 ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
426 as required by the architecture. The unadvertised HAFDBS
427 implementation suffers from an additional erratum where hardware
428 A/D updates can occur after a PTE has been marked invalid.
429
430 The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
431 which avoids enabling unadvertised hardware Access Flag management
432 at stage-2.
433
434 If unsure, say Y.
435
436 config ARM64_WORKAROUND_CLEAN_CACHE
437 bool
438
439 config ARM64_ERRATUM_826319
440 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
441 default y
442 select ARM64_WORKAROUND_CLEAN_CACHE
443 help
444 This option adds an alternative code sequence to work around ARM
445 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
446 AXI master interface and an L2 cache.
447
448 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
449 and is unable to accept a certain write via this interface, it will
450 not progress on read data presented on the read data channel and the
451 system can deadlock.
452
453 The workaround promotes data cache clean instructions to
454 data cache clean-and-invalidate.
455 Please note that this does not necessarily enable the workaround,
456 as it depends on the alternative framework, which will only patch
457 the kernel if an affected CPU is detected.
458
459 If unsure, say Y.
460
461 config ARM64_ERRATUM_827319
462 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
463 default y
464 select ARM64_WORKAROUND_CLEAN_CACHE
465 help
466 This option adds an alternative code sequence to work around ARM
467 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
468 master interface and an L2 cache.
469
470 Under certain conditions this erratum can cause a clean line eviction
471 to occur at the same time as another transaction to the same address
472 on the AMBA 5 CHI interface, which can cause data corruption if the
473 interconnect reorders the two transactions.
474
475 The workaround promotes data cache clean instructions to
476 data cache clean-and-invalidate.
477 Please note that this does not necessarily enable the workaround,
478 as it depends on the alternative framework, which will only patch
479 the kernel if an affected CPU is detected.
480
481 If unsure, say Y.
482
483 config ARM64_ERRATUM_824069
484 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
485 default y
486 select ARM64_WORKAROUND_CLEAN_CACHE
487 help
488 This option adds an alternative code sequence to work around ARM
489 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
490 to a coherent interconnect.
491
492 If a Cortex-A53 processor is executing a store or prefetch for
493 write instruction at the same time as a processor in another
494 cluster is executing a cache maintenance operation to the same
495 address, then this erratum might cause a clean cache line to be
496 incorrectly marked as dirty.
497
498 The workaround promotes data cache clean instructions to
499 data cache clean-and-invalidate.
500 Please note that this option does not necessarily enable the
501 workaround, as it depends on the alternative framework, which will
502 only patch the kernel if an affected CPU is detected.
503
504 If unsure, say Y.
505
506 config ARM64_ERRATUM_819472
507 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
508 default y
509 select ARM64_WORKAROUND_CLEAN_CACHE
510 help
511 This option adds an alternative code sequence to work around ARM
512 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
513 present when it is connected to a coherent interconnect.
514
515 If the processor is executing a load and store exclusive sequence at
516 the same time as a processor in another cluster is executing a cache
517 maintenance operation to the same address, then this erratum might
518 cause data corruption.
519
520 The workaround promotes data cache clean instructions to
521 data cache clean-and-invalidate.
522 Please note that this does not necessarily enable the workaround,
523 as it depends on the alternative framework, which will only patch
524 the kernel if an affected CPU is detected.
525
526 If unsure, say Y.
527
528 config ARM64_ERRATUM_832075
529 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
530 default y
531 help
532 This option adds an alternative code sequence to work around ARM
533 erratum 832075 on Cortex-A57 parts up to r1p2.
534
535 Affected Cortex-A57 parts might deadlock when exclusive load/store
536 instructions to Write-Back memory are mixed with Device loads.
537
538 The workaround is to promote device loads to use Load-Acquire
539 semantics.
540 Please note that this does not necessarily enable the workaround,
541 as it depends on the alternative framework, which will only patch
542 the kernel if an affected CPU is detected.
543
544 If unsure, say Y.
545
546 config ARM64_ERRATUM_834220
547 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
548 depends on KVM
549 help
550 This option adds an alternative code sequence to work around ARM
551 erratum 834220 on Cortex-A57 parts up to r1p2.
552
553 Affected Cortex-A57 parts might report a Stage 2 translation
554 fault as the result of a Stage 1 fault for load crossing a
555 page boundary when there is a permission or device memory
556 alignment fault at Stage 1 and a translation fault at Stage 2.
557
558 The workaround is to verify that the Stage 1 translation
559 doesn't generate a fault before handling the Stage 2 fault.
560 Please note that this does not necessarily enable the workaround,
561 as it depends on the alternative framework, which will only patch
562 the kernel if an affected CPU is detected.
563
564 If unsure, say N.
565
566 config ARM64_ERRATUM_1742098
567 bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
568 depends on COMPAT
569 default y
570 help
571 This option removes the AES hwcap for aarch32 user-space to
572 workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
573
574 Affected parts may corrupt the AES state if an interrupt is
575 taken between a pair of AES instructions. These instructions
576 are only present if the cryptography extensions are present.
577 All software should have a fallback implementation for CPUs
578 that don't implement the cryptography extensions.
579
580 If unsure, say Y.
581
582 config ARM64_ERRATUM_845719
583 bool "Cortex-A53: 845719: a load might read incorrect data"
584 depends on COMPAT
585 default y
586 help
587 This option adds an alternative code sequence to work around ARM
588 erratum 845719 on Cortex-A53 parts up to r0p4.
589
590 When running a compat (AArch32) userspace on an affected Cortex-A53
591 part, a load at EL0 from a virtual address that matches the bottom 32
592 bits of the virtual address used by a recent load at (AArch64) EL1
593 might return incorrect data.
594
595 The workaround is to write the contextidr_el1 register on exception
596 return to a 32-bit task.
597 Please note that this does not necessarily enable the workaround,
598 as it depends on the alternative framework, which will only patch
599 the kernel if an affected CPU is detected.
600
601 If unsure, say Y.
602
603 config ARM64_ERRATUM_843419
604 bool "Cortex-A53: 843419: A load or store might access an incorrect address"
605 default y
606 help
607 This option links the kernel with '--fix-cortex-a53-843419' and
608 enables PLT support to replace certain ADRP instructions, which can
609 cause subsequent memory accesses to use an incorrect address on
610 Cortex-A53 parts up to r0p4.
611
612 If unsure, say Y.
613
614 config ARM64_LD_HAS_FIX_ERRATUM_843419
615 def_bool $(ld-option,--fix-cortex-a53-843419)
616
617 config ARM64_ERRATUM_1024718
618 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
619 default y
620 help
621 This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
622
623 Affected Cortex-A55 cores (all revisions) could cause incorrect
624 update of the hardware dirty bit when the DBM/AP bits are updated
625 without a break-before-make. The workaround is to disable the usage
626 of hardware DBM locally on the affected cores. CPUs not affected by
627 this erratum will continue to use the feature.
628
629 If unsure, say Y.
630
631 config ARM64_ERRATUM_1418040
632 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
633 default y
634 depends on COMPAT
635 help
636 This option adds a workaround for ARM Cortex-A76/Neoverse-N1
637 errata 1188873 and 1418040.
638
639 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
640 cause register corruption when accessing the timer registers
641 from AArch32 userspace.
642
643 If unsure, say Y.
644
645 config ARM64_WORKAROUND_SPECULATIVE_AT
646 bool
647
648 config ARM64_ERRATUM_1165522
649 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
650 default y
651 select ARM64_WORKAROUND_SPECULATIVE_AT
652 help
653 This option adds a workaround for ARM Cortex-A76 erratum 1165522.
654
655 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
656 corrupted TLBs by speculating an AT instruction during a guest
657 context switch.
658
659 If unsure, say Y.
660
661 config ARM64_ERRATUM_1319367
662 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
663 default y
664 select ARM64_WORKAROUND_SPECULATIVE_AT
665 help
666 This option adds work arounds for ARM Cortex-A57 erratum 1319537
667 and A72 erratum 1319367
668
669 Cortex-A57 and A72 cores could end-up with corrupted TLBs by
670 speculating an AT instruction during a guest context switch.
671
672 If unsure, say Y.
673
674 config ARM64_ERRATUM_1530923
675 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
676 default y
677 select ARM64_WORKAROUND_SPECULATIVE_AT
678 help
679 This option adds a workaround for ARM Cortex-A55 erratum 1530923.
680
681 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
682 corrupted TLBs by speculating an AT instruction during a guest
683 context switch.
684
685 If unsure, say Y.
686
687 config ARM64_WORKAROUND_REPEAT_TLBI
688 bool
689
690 config ARM64_ERRATUM_2441007
691 bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
692 select ARM64_WORKAROUND_REPEAT_TLBI
693 help
694 This option adds a workaround for ARM Cortex-A55 erratum #2441007.
695
696 Under very rare circumstances, affected Cortex-A55 CPUs
697 may not handle a race between a break-before-make sequence on one
698 CPU, and another CPU accessing the same page. This could allow a
699 store to a page that has been unmapped.
700
701 Work around this by adding the affected CPUs to the list that needs
702 TLB sequences to be done twice.
703
704 If unsure, say N.
705
706 config ARM64_ERRATUM_1286807
707 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
708 select ARM64_WORKAROUND_REPEAT_TLBI
709 help
710 This option adds a workaround for ARM Cortex-A76 erratum 1286807.
711
712 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
713 address for a cacheable mapping of a location is being
714 accessed by a core while another core is remapping the virtual
715 address to a new physical page using the recommended
716 break-before-make sequence, then under very rare circumstances
717 TLBI+DSB completes before a read using the translation being
718 invalidated has been observed by other observers. The
719 workaround repeats the TLBI+DSB operation.
720
721 If unsure, say N.
722
723 config ARM64_ERRATUM_1463225
724 bool "Cortex-A76: Software Step might prevent interrupt recognition"
725 default y
726 help
727 This option adds a workaround for Arm Cortex-A76 erratum 1463225.
728
729 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
730 of a system call instruction (SVC) can prevent recognition of
731 subsequent interrupts when software stepping is disabled in the
732 exception handler of the system call and either kernel debugging
733 is enabled or VHE is in use.
734
735 Work around the erratum by triggering a dummy step exception
736 when handling a system call from a task that is being stepped
737 in a VHE configuration of the kernel.
738
739 If unsure, say Y.
740
741 config ARM64_ERRATUM_1542419
742 bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
743 help
744 This option adds a workaround for ARM Neoverse-N1 erratum
745 1542419.
746
747 Affected Neoverse-N1 cores could execute a stale instruction when
748 modified by another CPU. The workaround depends on a firmware
749 counterpart.
750
751 Workaround the issue by hiding the DIC feature from EL0. This
752 forces user-space to perform cache maintenance.
753
754 If unsure, say N.
755
756 config ARM64_ERRATUM_1508412
757 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
758 default y
759 help
760 This option adds a workaround for Arm Cortex-A77 erratum 1508412.
761
762 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
763 of a store-exclusive or read of PAR_EL1 and a load with device or
764 non-cacheable memory attributes. The workaround depends on a firmware
765 counterpart.
766
767 KVM guests must also have the workaround implemented or they can
768 deadlock the system.
769
770 Work around the issue by inserting DMB SY barriers around PAR_EL1
771 register reads and warning KVM users. The DMB barrier is sufficient
772 to prevent a speculative PAR_EL1 read.
773
774 If unsure, say Y.
775
776 config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
777 bool
778
779 config ARM64_ERRATUM_2051678
780 bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
781 default y
782 help
783 This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
784 Affected Cortex-A510 might not respect the ordering rules for
785 hardware update of the page table's dirty bit. The workaround
786 is to not enable the feature on affected CPUs.
787
788 If unsure, say Y.
789
790 config ARM64_ERRATUM_2077057
791 bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
792 default y
793 help
794 This option adds the workaround for ARM Cortex-A510 erratum 2077057.
795 Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
796 expected, but a Pointer Authentication trap is taken instead. The
797 erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
798 EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
799
800 This can only happen when EL2 is stepping EL1.
801
802 When these conditions occur, the SPSR_EL2 value is unchanged from the
803 previous guest entry, and can be restored from the in-memory copy.
804
805 If unsure, say Y.
806
807 config ARM64_ERRATUM_2658417
808 bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
809 default y
810 help
811 This option adds the workaround for ARM Cortex-A510 erratum 2658417.
812 Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
813 BFMMLA or VMMLA instructions in rare circumstances when a pair of
814 A510 CPUs are using shared neon hardware. As the sharing is not
815 discoverable by the kernel, hide the BF16 HWCAP to indicate that
816 user-space should not be using these instructions.
817
818 If unsure, say Y.
819
820 config ARM64_ERRATUM_2119858
821 bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
822 default y
823 depends on CORESIGHT_TRBE
824 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
825 help
826 This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
827
828 Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
829 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
830 the event of a WRAP event.
831
832 Work around the issue by always making sure we move the TRBPTR_EL1 by
833 256 bytes before enabling the buffer and filling the first 256 bytes of
834 the buffer with ETM ignore packets upon disabling.
835
836 If unsure, say Y.
837
838 config ARM64_ERRATUM_2139208
839 bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
840 default y
841 depends on CORESIGHT_TRBE
842 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
843 help
844 This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
845
846 Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
847 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
848 the event of a WRAP event.
849
850 Work around the issue by always making sure we move the TRBPTR_EL1 by
851 256 bytes before enabling the buffer and filling the first 256 bytes of
852 the buffer with ETM ignore packets upon disabling.
853
854 If unsure, say Y.
855
856 config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
857 bool
858
859 config ARM64_ERRATUM_2054223
860 bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
861 default y
862 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
863 help
864 Enable workaround for ARM Cortex-A710 erratum 2054223
865
866 Affected cores may fail to flush the trace data on a TSB instruction, when
867 the PE is in trace prohibited state. This will cause losing a few bytes
868 of the trace cached.
869
870 Workaround is to issue two TSB consecutively on affected cores.
871
872 If unsure, say Y.
873
874 config ARM64_ERRATUM_2067961
875 bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
876 default y
877 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
878 help
879 Enable workaround for ARM Neoverse-N2 erratum 2067961
880
881 Affected cores may fail to flush the trace data on a TSB instruction, when
882 the PE is in trace prohibited state. This will cause losing a few bytes
883 of the trace cached.
884
885 Workaround is to issue two TSB consecutively on affected cores.
886
887 If unsure, say Y.
888
889 config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
890 bool
891
892 config ARM64_ERRATUM_2253138
893 bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
894 depends on CORESIGHT_TRBE
895 default y
896 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
897 help
898 This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
899
900 Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
901 for TRBE. Under some conditions, the TRBE might generate a write to the next
902 virtually addressed page following the last page of the TRBE address space
903 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
904
905 Work around this in the driver by always making sure that there is a
906 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
907
908 If unsure, say Y.
909
910 config ARM64_ERRATUM_2224489
911 bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
912 depends on CORESIGHT_TRBE
913 default y
914 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
915 help
916 This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
917
918 Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
919 for TRBE. Under some conditions, the TRBE might generate a write to the next
920 virtually addressed page following the last page of the TRBE address space
921 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
922
923 Work around this in the driver by always making sure that there is a
924 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
925
926 If unsure, say Y.
927
928 config ARM64_ERRATUM_2441009
929 bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
930 select ARM64_WORKAROUND_REPEAT_TLBI
931 help
932 This option adds a workaround for ARM Cortex-A510 erratum #2441009.
933
934 Under very rare circumstances, affected Cortex-A510 CPUs
935 may not handle a race between a break-before-make sequence on one
936 CPU, and another CPU accessing the same page. This could allow a
937 store to a page that has been unmapped.
938
939 Work around this by adding the affected CPUs to the list that needs
940 TLB sequences to be done twice.
941
942 If unsure, say N.
943
944 config ARM64_ERRATUM_2064142
945 bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
946 depends on CORESIGHT_TRBE
947 default y
948 help
949 This option adds the workaround for ARM Cortex-A510 erratum 2064142.
950
951 Affected Cortex-A510 core might fail to write into system registers after the
952 TRBE has been disabled. Under some conditions after the TRBE has been disabled
953 writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
954 and TRBTRG_EL1 will be ignored and will not be effected.
955
956 Work around this in the driver by executing TSB CSYNC and DSB after collection
957 is stopped and before performing a system register write to one of the affected
958 registers.
959
960 If unsure, say Y.
961
962 config ARM64_ERRATUM_2038923
963 bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
964 depends on CORESIGHT_TRBE
965 default y
966 help
967 This option adds the workaround for ARM Cortex-A510 erratum 2038923.
968
969 Affected Cortex-A510 core might cause an inconsistent view on whether trace is
970 prohibited within the CPU. As a result, the trace buffer or trace buffer state
971 might be corrupted. This happens after TRBE buffer has been enabled by setting
972 TRBLIMITR_EL1.E, followed by just a single context synchronization event before
973 execution changes from a context, in which trace is prohibited to one where it
974 isn't, or vice versa. In these mentioned conditions, the view of whether trace
975 is prohibited is inconsistent between parts of the CPU, and the trace buffer or
976 the trace buffer state might be corrupted.
977
978 Work around this in the driver by preventing an inconsistent view of whether the
979 trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
980 change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
981 two ISB instructions if no ERET is to take place.
982
983 If unsure, say Y.
984
985 config ARM64_ERRATUM_1902691
986 bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
987 depends on CORESIGHT_TRBE
988 default y
989 help
990 This option adds the workaround for ARM Cortex-A510 erratum 1902691.
991
992 Affected Cortex-A510 core might cause trace data corruption, when being written
993 into the memory. Effectively TRBE is broken and hence cannot be used to capture
994 trace data.
995
996 Work around this problem in the driver by just preventing TRBE initialization on
997 affected cpus. The firmware must have disabled the access to TRBE for the kernel
998 on such implementations. This will cover the kernel for any firmware that doesn't
999 do this already.
1000
1001 If unsure, say Y.
1002
1003 config ARM64_ERRATUM_2457168
1004 bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1005 depends on ARM64_AMU_EXTN
1006 default y
1007 help
1008 This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1009
1010 The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1011 as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1012 incorrectly giving a significantly higher output value.
1013
1014 Work around this problem by returning 0 when reading the affected counter in
1015 key locations that results in disabling all users of this counter. This effect
1016 is the same to firmware disabling affected counters.
1017
1018 If unsure, say Y.
1019
1020 config ARM64_ERRATUM_2645198
1021 bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1022 default y
1023 help
1024 This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1025
1026 If a Cortex-A715 cpu sees a page mapping permissions change from executable
1027 to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1028 next instruction abort caused by permission fault.
1029
1030 Only user-space does executable to non-executable permission transition via
1031 mprotect() system call. Workaround the problem by doing a break-before-make
1032 TLB invalidation, for all changes to executable user space mappings.
1033
1034 If unsure, say Y.
1035
1036 config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1037 bool
1038
1039 config ARM64_ERRATUM_2966298
1040 bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1041 select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1042 default y
1043 help
1044 This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1045
1046 On an affected Cortex-A520 core, a speculatively executed unprivileged
1047 load might leak data from a privileged level via a cache side channel.
1048
1049 Work around this problem by executing a TLBI before returning to EL0.
1050
1051 If unsure, say Y.
1052
1053 config ARM64_ERRATUM_3117295
1054 bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1055 select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1056 default y
1057 help
1058 This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1059
1060 On an affected Cortex-A510 core, a speculatively executed unprivileged
1061 load might leak data from a privileged level via a cache side channel.
1062
1063 Work around this problem by executing a TLBI before returning to EL0.
1064
1065 If unsure, say Y.
1066
1067 config CAVIUM_ERRATUM_22375
1068 bool "Cavium erratum 22375, 24313"
1069 default y
1070 help
1071 Enable workaround for errata 22375 and 24313.
1072
1073 This implements two gicv3-its errata workarounds for ThunderX. Both
1074 with a small impact affecting only ITS table allocation.
1075
1076 erratum 22375: only alloc 8MB table size
1077 erratum 24313: ignore memory access type
1078
1079 The fixes are in ITS initialization and basically ignore memory access
1080 type and table size provided by the TYPER and BASER registers.
1081
1082 If unsure, say Y.
1083
1084 config CAVIUM_ERRATUM_23144
1085 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1086 depends on NUMA
1087 default y
1088 help
1089 ITS SYNC command hang for cross node io and collections/cpu mapping.
1090
1091 If unsure, say Y.
1092
1093 config CAVIUM_ERRATUM_23154
1094 bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1095 default y
1096 help
1097 The ThunderX GICv3 implementation requires a modified version for
1098 reading the IAR status to ensure data synchronization
1099 (access to icc_iar1_el1 is not sync'ed before and after).
1100
1101 It also suffers from erratum 38545 (also present on Marvell's
1102 OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1103 spuriously presented to the CPU interface.
1104
1105 If unsure, say Y.
1106
1107 config CAVIUM_ERRATUM_27456
1108 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1109 default y
1110 help
1111 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1112 instructions may cause the icache to become corrupted if it
1113 contains data for a non-current ASID. The fix is to
1114 invalidate the icache when changing the mm context.
1115
1116 If unsure, say Y.
1117
1118 config CAVIUM_ERRATUM_30115
1119 bool "Cavium erratum 30115: Guest may disable interrupts in host"
1120 default y
1121 help
1122 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1123 1.2, and T83 Pass 1.0, KVM guest execution may disable
1124 interrupts in host. Trapping both GICv3 group-0 and group-1
1125 accesses sidesteps the issue.
1126
1127 If unsure, say Y.
1128
1129 config CAVIUM_TX2_ERRATUM_219
1130 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1131 default y
1132 help
1133 On Cavium ThunderX2, a load, store or prefetch instruction between a
1134 TTBR update and the corresponding context synchronizing operation can
1135 cause a spurious Data Abort to be delivered to any hardware thread in
1136 the CPU core.
1137
1138 Work around the issue by avoiding the problematic code sequence and
1139 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1140 trap handler performs the corresponding register access, skips the
1141 instruction and ensures context synchronization by virtue of the
1142 exception return.
1143
1144 If unsure, say Y.
1145
1146 config FUJITSU_ERRATUM_010001
1147 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1148 default y
1149 help
1150 This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1151 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1152 accesses may cause undefined fault (Data abort, DFSC=0b111111).
1153 This fault occurs under a specific hardware condition when a
1154 load/store instruction performs an address translation using:
1155 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1156 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1157 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1158 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1159
1160 The workaround is to ensure these bits are clear in TCR_ELx.
1161 The workaround only affects the Fujitsu-A64FX.
1162
1163 If unsure, say Y.
1164
1165 config HISILICON_ERRATUM_161600802
1166 bool "Hip07 161600802: Erroneous redistributor VLPI base"
1167 default y
1168 help
1169 The HiSilicon Hip07 SoC uses the wrong redistributor base
1170 when issued ITS commands such as VMOVP and VMAPP, and requires
1171 a 128kB offset to be applied to the target address in this commands.
1172
1173 If unsure, say Y.
1174
1175 config QCOM_FALKOR_ERRATUM_1003
1176 bool "Falkor E1003: Incorrect translation due to ASID change"
1177 default y
1178 help
1179 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1180 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1181 in TTBR1_EL1, this situation only occurs in the entry trampoline and
1182 then only for entries in the walk cache, since the leaf translation
1183 is unchanged. Work around the erratum by invalidating the walk cache
1184 entries for the trampoline before entering the kernel proper.
1185
1186 config QCOM_FALKOR_ERRATUM_1009
1187 bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1188 default y
1189 select ARM64_WORKAROUND_REPEAT_TLBI
1190 help
1191 On Falkor v1, the CPU may prematurely complete a DSB following a
1192 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1193 one more time to fix the issue.
1194
1195 If unsure, say Y.
1196
1197 config QCOM_QDF2400_ERRATUM_0065
1198 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1199 default y
1200 help
1201 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1202 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1203 been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1204
1205 If unsure, say Y.
1206
1207 config QCOM_FALKOR_ERRATUM_E1041
1208 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1209 default y
1210 help
1211 Falkor CPU may speculatively fetch instructions from an improper
1212 memory location when MMU translation is changed from SCTLR_ELn[M]=1
1213 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1214
1215 If unsure, say Y.
1216
1217 config NVIDIA_CARMEL_CNP_ERRATUM
1218 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1219 default y
1220 help
1221 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1222 invalidate shared TLB entries installed by a different core, as it would
1223 on standard ARM cores.
1224
1225 If unsure, say Y.
1226
1227 config ROCKCHIP_ERRATUM_3588001
1228 bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1229 default y
1230 help
1231 The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1232 This means, that its sharability feature may not be used, even though it
1233 is supported by the IP itself.
1234
1235 If unsure, say Y.
1236
1237 config SOCIONEXT_SYNQUACER_PREITS
1238 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1239 default y
1240 help
1241 Socionext Synquacer SoCs implement a separate h/w block to generate
1242 MSI doorbell writes with non-zero values for the device ID.
1243
1244 If unsure, say Y.
1245
1246 endmenu # "ARM errata workarounds via the alternatives framework"
1247
1248 choice
1249 prompt "Page size"
1250 default ARM64_4K_PAGES
1251 help
1252 Page size (translation granule) configuration.
1253
1254 config ARM64_4K_PAGES
1255 bool "4KB"
1256 select HAVE_PAGE_SIZE_4KB
1257 help
1258 This feature enables 4KB pages support.
1259
1260 config ARM64_16K_PAGES
1261 bool "16KB"
1262 select HAVE_PAGE_SIZE_16KB
1263 help
1264 The system will use 16KB pages support. AArch32 emulation
1265 requires applications compiled with 16K (or a multiple of 16K)
1266 aligned segments.
1267
1268 config ARM64_64K_PAGES
1269 bool "64KB"
1270 select HAVE_PAGE_SIZE_64KB
1271 help
1272 This feature enables 64KB pages support (4KB by default)
1273 allowing only two levels of page tables and faster TLB
1274 look-up. AArch32 emulation requires applications compiled
1275 with 64K aligned segments.
1276
1277 endchoice
1278
1279 choice
1280 prompt "Virtual address space size"
1281 default ARM64_VA_BITS_52
1282 help
1283 Allows choosing one of multiple possible virtual address
1284 space sizes. The level of translation table is determined by
1285 a combination of page size and virtual address space size.
1286
1287 config ARM64_VA_BITS_36
1288 bool "36-bit" if EXPERT
1289 depends on PAGE_SIZE_16KB
1290
1291 config ARM64_VA_BITS_39
1292 bool "39-bit"
1293 depends on PAGE_SIZE_4KB
1294
1295 config ARM64_VA_BITS_42
1296 bool "42-bit"
1297 depends on PAGE_SIZE_64KB
1298
1299 config ARM64_VA_BITS_47
1300 bool "47-bit"
1301 depends on PAGE_SIZE_16KB
1302
1303 config ARM64_VA_BITS_48
1304 bool "48-bit"
1305
1306 config ARM64_VA_BITS_52
1307 bool "52-bit"
1308 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1309 help
1310 Enable 52-bit virtual addressing for userspace when explicitly
1311 requested via a hint to mmap(). The kernel will also use 52-bit
1312 virtual addresses for its own mappings (provided HW support for
1313 this feature is available, otherwise it reverts to 48-bit).
1314
1315 NOTE: Enabling 52-bit virtual addressing in conjunction with
1316 ARMv8.3 Pointer Authentication will result in the PAC being
1317 reduced from 7 bits to 3 bits, which may have a significant
1318 impact on its susceptibility to brute-force attacks.
1319
1320 If unsure, select 48-bit virtual addressing instead.
1321
1322 endchoice
1323
1324 config ARM64_FORCE_52BIT
1325 bool "Force 52-bit virtual addresses for userspace"
1326 depends on ARM64_VA_BITS_52 && EXPERT
1327 help
1328 For systems with 52-bit userspace VAs enabled, the kernel will attempt
1329 to maintain compatibility with older software by providing 48-bit VAs
1330 unless a hint is supplied to mmap.
1331
1332 This configuration option disables the 48-bit compatibility logic, and
1333 forces all userspace addresses to be 52-bit on HW that supports it. One
1334 should only enable this configuration option for stress testing userspace
1335 memory management code. If unsure say N here.
1336
1337 config ARM64_VA_BITS
1338 int
1339 default 36 if ARM64_VA_BITS_36
1340 default 39 if ARM64_VA_BITS_39
1341 default 42 if ARM64_VA_BITS_42
1342 default 47 if ARM64_VA_BITS_47
1343 default 48 if ARM64_VA_BITS_48
1344 default 52 if ARM64_VA_BITS_52
1345
1346 choice
1347 prompt "Physical address space size"
1348 default ARM64_PA_BITS_48
1349 help
1350 Choose the maximum physical address range that the kernel will
1351 support.
1352
1353 config ARM64_PA_BITS_48
1354 bool "48-bit"
1355 depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1356
1357 config ARM64_PA_BITS_52
1358 bool "52-bit"
1359 depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1360 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1361 help
1362 Enable support for a 52-bit physical address space, introduced as
1363 part of the ARMv8.2-LPA extension.
1364
1365 With this enabled, the kernel will also continue to work on CPUs that
1366 do not support ARMv8.2-LPA, but with some added memory overhead (and
1367 minor performance overhead).
1368
1369 endchoice
1370
1371 config ARM64_PA_BITS
1372 int
1373 default 48 if ARM64_PA_BITS_48
1374 default 52 if ARM64_PA_BITS_52
1375
1376 config ARM64_LPA2
1377 def_bool y
1378 depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1379
1380 choice
1381 prompt "Endianness"
1382 default CPU_LITTLE_ENDIAN
1383 help
1384 Select the endianness of data accesses performed by the CPU. Userspace
1385 applications will need to be compiled and linked for the endianness
1386 that is selected here.
1387
1388 config CPU_BIG_ENDIAN
1389 bool "Build big-endian kernel"
1390 # https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1391 depends on AS_IS_GNU || AS_VERSION >= 150000
1392 help
1393 Say Y if you plan on running a kernel with a big-endian userspace.
1394
1395 config CPU_LITTLE_ENDIAN
1396 bool "Build little-endian kernel"
1397 help
1398 Say Y if you plan on running a kernel with a little-endian userspace.
1399 This is usually the case for distributions targeting arm64.
1400
1401 endchoice
1402
1403 config SCHED_MC
1404 bool "Multi-core scheduler support"
1405 help
1406 Multi-core scheduler support improves the CPU scheduler's decision
1407 making when dealing with multi-core CPU chips at a cost of slightly
1408 increased overhead in some places. If unsure say N here.
1409
1410 config SCHED_CLUSTER
1411 bool "Cluster scheduler support"
1412 help
1413 Cluster scheduler support improves the CPU scheduler's decision
1414 making when dealing with machines that have clusters of CPUs.
1415 Cluster usually means a couple of CPUs which are placed closely
1416 by sharing mid-level caches, last-level cache tags or internal
1417 busses.
1418
1419 config SCHED_SMT
1420 bool "SMT scheduler support"
1421 help
1422 Improves the CPU scheduler's decision making when dealing with
1423 MultiThreading at a cost of slightly increased overhead in some
1424 places. If unsure say N here.
1425
1426 config NR_CPUS
1427 int "Maximum number of CPUs (2-4096)"
1428 range 2 4096
1429 default "256"
1430
1431 config HOTPLUG_CPU
1432 bool "Support for hot-pluggable CPUs"
1433 select GENERIC_IRQ_MIGRATION
1434 help
1435 Say Y here to experiment with turning CPUs off and on. CPUs
1436 can be controlled through /sys/devices/system/cpu.
1437
1438 # Common NUMA Features
1439 config NUMA
1440 bool "NUMA Memory Allocation and Scheduler Support"
1441 select GENERIC_ARCH_NUMA
1442 select ACPI_NUMA if ACPI
1443 select OF_NUMA
1444 select HAVE_SETUP_PER_CPU_AREA
1445 select NEED_PER_CPU_EMBED_FIRST_CHUNK
1446 select NEED_PER_CPU_PAGE_FIRST_CHUNK
1447 select USE_PERCPU_NUMA_NODE_ID
1448 help
1449 Enable NUMA (Non-Uniform Memory Access) support.
1450
1451 The kernel will try to allocate memory used by a CPU on the
1452 local memory of the CPU and add some more
1453 NUMA awareness to the kernel.
1454
1455 config NODES_SHIFT
1456 int "Maximum NUMA Nodes (as a power of 2)"
1457 range 1 10
1458 default "4"
1459 depends on NUMA
1460 help
1461 Specify the maximum number of NUMA Nodes available on the target
1462 system. Increases memory reserved to accommodate various tables.
1463
1464 source "kernel/Kconfig.hz"
1465
1466 config ARCH_SPARSEMEM_ENABLE
1467 def_bool y
1468 select SPARSEMEM_VMEMMAP_ENABLE
1469 select SPARSEMEM_VMEMMAP
1470
1471 config HW_PERF_EVENTS
1472 def_bool y
1473 depends on ARM_PMU
1474
1475 # Supported by clang >= 7.0 or GCC >= 12.0.0
1476 config CC_HAVE_SHADOW_CALL_STACK
1477 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1478
1479 config PARAVIRT
1480 bool "Enable paravirtualization code"
1481 help
1482 This changes the kernel so it can modify itself when it is run
1483 under a hypervisor, potentially improving performance significantly
1484 over full virtualization.
1485
1486 config PARAVIRT_TIME_ACCOUNTING
1487 bool "Paravirtual steal time accounting"
1488 select PARAVIRT
1489 help
1490 Select this option to enable fine granularity task steal time
1491 accounting. Time spent executing other tasks in parallel with
1492 the current vCPU is discounted from the vCPU power. To account for
1493 that, there can be a small performance impact.
1494
1495 If in doubt, say N here.
1496
1497 config ARCH_SUPPORTS_KEXEC
1498 def_bool PM_SLEEP_SMP
1499
1500 config ARCH_SUPPORTS_KEXEC_FILE
1501 def_bool y
1502
1503 config ARCH_SELECTS_KEXEC_FILE
1504 def_bool y
1505 depends on KEXEC_FILE
1506 select HAVE_IMA_KEXEC if IMA
1507
1508 config ARCH_SUPPORTS_KEXEC_SIG
1509 def_bool y
1510
1511 config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1512 def_bool y
1513
1514 config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1515 def_bool y
1516
1517 config ARCH_SUPPORTS_CRASH_DUMP
1518 def_bool y
1519
1520 config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1521 def_bool CRASH_RESERVE
1522
1523 config TRANS_TABLE
1524 def_bool y
1525 depends on HIBERNATION || KEXEC_CORE
1526
1527 config XEN_DOM0
1528 def_bool y
1529 depends on XEN
1530
1531 config XEN
1532 bool "Xen guest support on ARM64"
1533 depends on ARM64 && OF
1534 select SWIOTLB_XEN
1535 select PARAVIRT
1536 help
1537 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1538
1539 # include/linux/mmzone.h requires the following to be true:
1540 #
1541 # MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1542 #
1543 # so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1544 #
1545 # | SECTION_SIZE_BITS | PAGE_SHIFT | max MAX_PAGE_ORDER | default MAX_PAGE_ORDER |
1546 # ----+-------------------+--------------+----------------------+-------------------------+
1547 # 4K | 27 | 12 | 15 | 10 |
1548 # 16K | 27 | 14 | 13 | 11 |
1549 # 64K | 29 | 16 | 13 | 13 |
1550 config ARCH_FORCE_MAX_ORDER
1551 int
1552 default "13" if ARM64_64K_PAGES
1553 default "11" if ARM64_16K_PAGES
1554 default "10"
1555 help
1556 The kernel page allocator limits the size of maximal physically
1557 contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1558 defines the maximal power of two of number of pages that can be
1559 allocated as a single contiguous block. This option allows
1560 overriding the default setting when ability to allocate very
1561 large blocks of physically contiguous memory is required.
1562
1563 The maximal size of allocation cannot exceed the size of the
1564 section, so the value of MAX_PAGE_ORDER should satisfy
1565
1566 MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1567
1568 Don't change if unsure.
1569
1570 config UNMAP_KERNEL_AT_EL0
1571 bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1572 default y
1573 help
1574 Speculation attacks against some high-performance processors can
1575 be used to bypass MMU permission checks and leak kernel data to
1576 userspace. This can be defended against by unmapping the kernel
1577 when running in userspace, mapping it back in on exception entry
1578 via a trampoline page in the vector table.
1579
1580 If unsure, say Y.
1581
1582 config MITIGATE_SPECTRE_BRANCH_HISTORY
1583 bool "Mitigate Spectre style attacks against branch history" if EXPERT
1584 default y
1585 help
1586 Speculation attacks against some high-performance processors can
1587 make use of branch history to influence future speculation.
1588 When taking an exception from user-space, a sequence of branches
1589 or a firmware call overwrites the branch history.
1590
1591 config RODATA_FULL_DEFAULT_ENABLED
1592 bool "Apply r/o permissions of VM areas also to their linear aliases"
1593 default y
1594 help
1595 Apply read-only attributes of VM areas to the linear alias of
1596 the backing pages as well. This prevents code or read-only data
1597 from being modified (inadvertently or intentionally) via another
1598 mapping of the same memory page. This additional enhancement can
1599 be turned off at runtime by passing rodata=[off|on] (and turned on
1600 with rodata=full if this option is set to 'n')
1601
1602 This requires the linear region to be mapped down to pages,
1603 which may adversely affect performance in some cases.
1604
1605 config ARM64_SW_TTBR0_PAN
1606 bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1607 help
1608 Enabling this option prevents the kernel from accessing
1609 user-space memory directly by pointing TTBR0_EL1 to a reserved
1610 zeroed area and reserved ASID. The user access routines
1611 restore the valid TTBR0_EL1 temporarily.
1612
1613 config ARM64_TAGGED_ADDR_ABI
1614 bool "Enable the tagged user addresses syscall ABI"
1615 default y
1616 help
1617 When this option is enabled, user applications can opt in to a
1618 relaxed ABI via prctl() allowing tagged addresses to be passed
1619 to system calls as pointer arguments. For details, see
1620 Documentation/arch/arm64/tagged-address-abi.rst.
1621
1622 menuconfig COMPAT
1623 bool "Kernel support for 32-bit EL0"
1624 depends on ARM64_4K_PAGES || EXPERT
1625 select HAVE_UID16
1626 select OLD_SIGSUSPEND3
1627 select COMPAT_OLD_SIGACTION
1628 help
1629 This option enables support for a 32-bit EL0 running under a 64-bit
1630 kernel at EL1. AArch32-specific components such as system calls,
1631 the user helper functions, VFP support and the ptrace interface are
1632 handled appropriately by the kernel.
1633
1634 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1635 that you will only be able to execute AArch32 binaries that were compiled
1636 with page size aligned segments.
1637
1638 If you want to execute 32-bit userspace applications, say Y.
1639
1640 if COMPAT
1641
1642 config KUSER_HELPERS
1643 bool "Enable kuser helpers page for 32-bit applications"
1644 default y
1645 help
1646 Warning: disabling this option may break 32-bit user programs.
1647
1648 Provide kuser helpers to compat tasks. The kernel provides
1649 helper code to userspace in read only form at a fixed location
1650 to allow userspace to be independent of the CPU type fitted to
1651 the system. This permits binaries to be run on ARMv4 through
1652 to ARMv8 without modification.
1653
1654 See Documentation/arch/arm/kernel_user_helpers.rst for details.
1655
1656 However, the fixed address nature of these helpers can be used
1657 by ROP (return orientated programming) authors when creating
1658 exploits.
1659
1660 If all of the binaries and libraries which run on your platform
1661 are built specifically for your platform, and make no use of
1662 these helpers, then you can turn this option off to hinder
1663 such exploits. However, in that case, if a binary or library
1664 relying on those helpers is run, it will not function correctly.
1665
1666 Say N here only if you are absolutely certain that you do not
1667 need these helpers; otherwise, the safe option is to say Y.
1668
1669 config COMPAT_VDSO
1670 bool "Enable vDSO for 32-bit applications"
1671 depends on !CPU_BIG_ENDIAN
1672 depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1673 select GENERIC_COMPAT_VDSO
1674 default y
1675 help
1676 Place in the process address space of 32-bit applications an
1677 ELF shared object providing fast implementations of gettimeofday
1678 and clock_gettime.
1679
1680 You must have a 32-bit build of glibc 2.22 or later for programs
1681 to seamlessly take advantage of this.
1682
1683 config THUMB2_COMPAT_VDSO
1684 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1685 depends on COMPAT_VDSO
1686 default y
1687 help
1688 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1689 otherwise with '-marm'.
1690
1691 config COMPAT_ALIGNMENT_FIXUPS
1692 bool "Fix up misaligned multi-word loads and stores in user space"
1693
1694 menuconfig ARMV8_DEPRECATED
1695 bool "Emulate deprecated/obsolete ARMv8 instructions"
1696 depends on SYSCTL
1697 help
1698 Legacy software support may require certain instructions
1699 that have been deprecated or obsoleted in the architecture.
1700
1701 Enable this config to enable selective emulation of these
1702 features.
1703
1704 If unsure, say Y
1705
1706 if ARMV8_DEPRECATED
1707
1708 config SWP_EMULATION
1709 bool "Emulate SWP/SWPB instructions"
1710 help
1711 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1712 they are always undefined. Say Y here to enable software
1713 emulation of these instructions for userspace using LDXR/STXR.
1714 This feature can be controlled at runtime with the abi.swp
1715 sysctl which is disabled by default.
1716
1717 In some older versions of glibc [<=2.8] SWP is used during futex
1718 trylock() operations with the assumption that the code will not
1719 be preempted. This invalid assumption may be more likely to fail
1720 with SWP emulation enabled, leading to deadlock of the user
1721 application.
1722
1723 NOTE: when accessing uncached shared regions, LDXR/STXR rely
1724 on an external transaction monitoring block called a global
1725 monitor to maintain update atomicity. If your system does not
1726 implement a global monitor, this option can cause programs that
1727 perform SWP operations to uncached memory to deadlock.
1728
1729 If unsure, say Y
1730
1731 config CP15_BARRIER_EMULATION
1732 bool "Emulate CP15 Barrier instructions"
1733 help
1734 The CP15 barrier instructions - CP15ISB, CP15DSB, and
1735 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1736 strongly recommended to use the ISB, DSB, and DMB
1737 instructions instead.
1738
1739 Say Y here to enable software emulation of these
1740 instructions for AArch32 userspace code. When this option is
1741 enabled, CP15 barrier usage is traced which can help
1742 identify software that needs updating. This feature can be
1743 controlled at runtime with the abi.cp15_barrier sysctl.
1744
1745 If unsure, say Y
1746
1747 config SETEND_EMULATION
1748 bool "Emulate SETEND instruction"
1749 help
1750 The SETEND instruction alters the data-endianness of the
1751 AArch32 EL0, and is deprecated in ARMv8.
1752
1753 Say Y here to enable software emulation of the instruction
1754 for AArch32 userspace code. This feature can be controlled
1755 at runtime with the abi.setend sysctl.
1756
1757 Note: All the cpus on the system must have mixed endian support at EL0
1758 for this feature to be enabled. If a new CPU - which doesn't support mixed
1759 endian - is hotplugged in after this feature has been enabled, there could
1760 be unexpected results in the applications.
1761
1762 If unsure, say Y
1763 endif # ARMV8_DEPRECATED
1764
1765 endif # COMPAT
1766
1767 menu "ARMv8.1 architectural features"
1768
1769 config ARM64_HW_AFDBM
1770 bool "Support for hardware updates of the Access and Dirty page flags"
1771 default y
1772 help
1773 The ARMv8.1 architecture extensions introduce support for
1774 hardware updates of the access and dirty information in page
1775 table entries. When enabled in TCR_EL1 (HA and HD bits) on
1776 capable processors, accesses to pages with PTE_AF cleared will
1777 set this bit instead of raising an access flag fault.
1778 Similarly, writes to read-only pages with the DBM bit set will
1779 clear the read-only bit (AP[2]) instead of raising a
1780 permission fault.
1781
1782 Kernels built with this configuration option enabled continue
1783 to work on pre-ARMv8.1 hardware and the performance impact is
1784 minimal. If unsure, say Y.
1785
1786 config ARM64_PAN
1787 bool "Enable support for Privileged Access Never (PAN)"
1788 default y
1789 help
1790 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1791 prevents the kernel or hypervisor from accessing user-space (EL0)
1792 memory directly.
1793
1794 Choosing this option will cause any unprotected (not using
1795 copy_to_user et al) memory access to fail with a permission fault.
1796
1797 The feature is detected at runtime, and will remain as a 'nop'
1798 instruction if the cpu does not implement the feature.
1799
1800 config AS_HAS_LSE_ATOMICS
1801 def_bool $(as-instr,.arch_extension lse)
1802
1803 config ARM64_LSE_ATOMICS
1804 bool
1805 default ARM64_USE_LSE_ATOMICS
1806 depends on AS_HAS_LSE_ATOMICS
1807
1808 config ARM64_USE_LSE_ATOMICS
1809 bool "Atomic instructions"
1810 default y
1811 help
1812 As part of the Large System Extensions, ARMv8.1 introduces new
1813 atomic instructions that are designed specifically to scale in
1814 very large systems.
1815
1816 Say Y here to make use of these instructions for the in-kernel
1817 atomic routines. This incurs a small overhead on CPUs that do
1818 not support these instructions and requires the kernel to be
1819 built with binutils >= 2.25 in order for the new instructions
1820 to be used.
1821
1822 endmenu # "ARMv8.1 architectural features"
1823
1824 menu "ARMv8.2 architectural features"
1825
1826 config AS_HAS_ARMV8_2
1827 def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1828
1829 config AS_HAS_SHA3
1830 def_bool $(as-instr,.arch armv8.2-a+sha3)
1831
1832 config ARM64_PMEM
1833 bool "Enable support for persistent memory"
1834 select ARCH_HAS_PMEM_API
1835 select ARCH_HAS_UACCESS_FLUSHCACHE
1836 help
1837 Say Y to enable support for the persistent memory API based on the
1838 ARMv8.2 DCPoP feature.
1839
1840 The feature is detected at runtime, and the kernel will use DC CVAC
1841 operations if DC CVAP is not supported (following the behaviour of
1842 DC CVAP itself if the system does not define a point of persistence).
1843
1844 config ARM64_RAS_EXTN
1845 bool "Enable support for RAS CPU Extensions"
1846 default y
1847 help
1848 CPUs that support the Reliability, Availability and Serviceability
1849 (RAS) Extensions, part of ARMv8.2 are able to track faults and
1850 errors, classify them and report them to software.
1851
1852 On CPUs with these extensions system software can use additional
1853 barriers to determine if faults are pending and read the
1854 classification from a new set of registers.
1855
1856 Selecting this feature will allow the kernel to use these barriers
1857 and access the new registers if the system supports the extension.
1858 Platform RAS features may additionally depend on firmware support.
1859
1860 config ARM64_CNP
1861 bool "Enable support for Common Not Private (CNP) translations"
1862 default y
1863 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1864 help
1865 Common Not Private (CNP) allows translation table entries to
1866 be shared between different PEs in the same inner shareable
1867 domain, so the hardware can use this fact to optimise the
1868 caching of such entries in the TLB.
1869
1870 Selecting this option allows the CNP feature to be detected
1871 at runtime, and does not affect PEs that do not implement
1872 this feature.
1873
1874 endmenu # "ARMv8.2 architectural features"
1875
1876 menu "ARMv8.3 architectural features"
1877
1878 config ARM64_PTR_AUTH
1879 bool "Enable support for pointer authentication"
1880 default y
1881 help
1882 Pointer authentication (part of the ARMv8.3 Extensions) provides
1883 instructions for signing and authenticating pointers against secret
1884 keys, which can be used to mitigate Return Oriented Programming (ROP)
1885 and other attacks.
1886
1887 This option enables these instructions at EL0 (i.e. for userspace).
1888 Choosing this option will cause the kernel to initialise secret keys
1889 for each process at exec() time, with these keys being
1890 context-switched along with the process.
1891
1892 The feature is detected at runtime. If the feature is not present in
1893 hardware it will not be advertised to userspace/KVM guest nor will it
1894 be enabled.
1895
1896 If the feature is present on the boot CPU but not on a late CPU, then
1897 the late CPU will be parked. Also, if the boot CPU does not have
1898 address auth and the late CPU has then the late CPU will still boot
1899 but with the feature disabled. On such a system, this option should
1900 not be selected.
1901
1902 config ARM64_PTR_AUTH_KERNEL
1903 bool "Use pointer authentication for kernel"
1904 default y
1905 depends on ARM64_PTR_AUTH
1906 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1907 # Modern compilers insert a .note.gnu.property section note for PAC
1908 # which is only understood by binutils starting with version 2.33.1.
1909 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1910 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1911 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1912 help
1913 If the compiler supports the -mbranch-protection or
1914 -msign-return-address flag (e.g. GCC 7 or later), then this option
1915 will cause the kernel itself to be compiled with return address
1916 protection. In this case, and if the target hardware is known to
1917 support pointer authentication, then CONFIG_STACKPROTECTOR can be
1918 disabled with minimal loss of protection.
1919
1920 This feature works with FUNCTION_GRAPH_TRACER option only if
1921 DYNAMIC_FTRACE_WITH_ARGS is enabled.
1922
1923 config CC_HAS_BRANCH_PROT_PAC_RET
1924 # GCC 9 or later, clang 8 or later
1925 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1926
1927 config CC_HAS_SIGN_RETURN_ADDRESS
1928 # GCC 7, 8
1929 def_bool $(cc-option,-msign-return-address=all)
1930
1931 config AS_HAS_ARMV8_3
1932 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1933
1934 config AS_HAS_CFI_NEGATE_RA_STATE
1935 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1936
1937 config AS_HAS_LDAPR
1938 def_bool $(as-instr,.arch_extension rcpc)
1939
1940 endmenu # "ARMv8.3 architectural features"
1941
1942 menu "ARMv8.4 architectural features"
1943
1944 config ARM64_AMU_EXTN
1945 bool "Enable support for the Activity Monitors Unit CPU extension"
1946 default y
1947 help
1948 The activity monitors extension is an optional extension introduced
1949 by the ARMv8.4 CPU architecture. This enables support for version 1
1950 of the activity monitors architecture, AMUv1.
1951
1952 To enable the use of this extension on CPUs that implement it, say Y.
1953
1954 Note that for architectural reasons, firmware _must_ implement AMU
1955 support when running on CPUs that present the activity monitors
1956 extension. The required support is present in:
1957 * Version 1.5 and later of the ARM Trusted Firmware
1958
1959 For kernels that have this configuration enabled but boot with broken
1960 firmware, you may need to say N here until the firmware is fixed.
1961 Otherwise you may experience firmware panics or lockups when
1962 accessing the counter registers. Even if you are not observing these
1963 symptoms, the values returned by the register reads might not
1964 correctly reflect reality. Most commonly, the value read will be 0,
1965 indicating that the counter is not enabled.
1966
1967 config AS_HAS_ARMV8_4
1968 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1969
1970 config ARM64_TLB_RANGE
1971 bool "Enable support for tlbi range feature"
1972 default y
1973 depends on AS_HAS_ARMV8_4
1974 help
1975 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1976 range of input addresses.
1977
1978 The feature introduces new assembly instructions, and they were
1979 support when binutils >= 2.30.
1980
1981 endmenu # "ARMv8.4 architectural features"
1982
1983 menu "ARMv8.5 architectural features"
1984
1985 config AS_HAS_ARMV8_5
1986 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1987
1988 config ARM64_BTI
1989 bool "Branch Target Identification support"
1990 default y
1991 help
1992 Branch Target Identification (part of the ARMv8.5 Extensions)
1993 provides a mechanism to limit the set of locations to which computed
1994 branch instructions such as BR or BLR can jump.
1995
1996 To make use of BTI on CPUs that support it, say Y.
1997
1998 BTI is intended to provide complementary protection to other control
1999 flow integrity protection mechanisms, such as the Pointer
2000 authentication mechanism provided as part of the ARMv8.3 Extensions.
2001 For this reason, it does not make sense to enable this option without
2002 also enabling support for pointer authentication. Thus, when
2003 enabling this option you should also select ARM64_PTR_AUTH=y.
2004
2005 Userspace binaries must also be specifically compiled to make use of
2006 this mechanism. If you say N here or the hardware does not support
2007 BTI, such binaries can still run, but you get no additional
2008 enforcement of branch destinations.
2009
2010 config ARM64_BTI_KERNEL
2011 bool "Use Branch Target Identification for kernel"
2012 default y
2013 depends on ARM64_BTI
2014 depends on ARM64_PTR_AUTH_KERNEL
2015 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2016 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2017 depends on !CC_IS_GCC || GCC_VERSION >= 100100
2018 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2019 depends on !CC_IS_GCC
2020 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2021 help
2022 Build the kernel with Branch Target Identification annotations
2023 and enable enforcement of this for kernel code. When this option
2024 is enabled and the system supports BTI all kernel code including
2025 modular code must have BTI enabled.
2026
2027 config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2028 # GCC 9 or later, clang 8 or later
2029 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2030
2031 config ARM64_E0PD
2032 bool "Enable support for E0PD"
2033 default y
2034 help
2035 E0PD (part of the ARMv8.5 extensions) allows us to ensure
2036 that EL0 accesses made via TTBR1 always fault in constant time,
2037 providing similar benefits to KASLR as those provided by KPTI, but
2038 with lower overhead and without disrupting legitimate access to
2039 kernel memory such as SPE.
2040
2041 This option enables E0PD for TTBR1 where available.
2042
2043 config ARM64_AS_HAS_MTE
2044 # Initial support for MTE went in binutils 2.32.0, checked with
2045 # ".arch armv8.5-a+memtag" below. However, this was incomplete
2046 # as a late addition to the final architecture spec (LDGM/STGM)
2047 # is only supported in the newer 2.32.x and 2.33 binutils
2048 # versions, hence the extra "stgm" instruction check below.
2049 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2050
2051 config ARM64_MTE
2052 bool "Memory Tagging Extension support"
2053 default y
2054 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2055 depends on AS_HAS_ARMV8_5
2056 depends on AS_HAS_LSE_ATOMICS
2057 # Required for tag checking in the uaccess routines
2058 depends on ARM64_PAN
2059 select ARCH_HAS_SUBPAGE_FAULTS
2060 select ARCH_USES_HIGH_VMA_FLAGS
2061 select ARCH_USES_PG_ARCH_X
2062 help
2063 Memory Tagging (part of the ARMv8.5 Extensions) provides
2064 architectural support for run-time, always-on detection of
2065 various classes of memory error to aid with software debugging
2066 to eliminate vulnerabilities arising from memory-unsafe
2067 languages.
2068
2069 This option enables the support for the Memory Tagging
2070 Extension at EL0 (i.e. for userspace).
2071
2072 Selecting this option allows the feature to be detected at
2073 runtime. Any secondary CPU not implementing this feature will
2074 not be allowed a late bring-up.
2075
2076 Userspace binaries that want to use this feature must
2077 explicitly opt in. The mechanism for the userspace is
2078 described in:
2079
2080 Documentation/arch/arm64/memory-tagging-extension.rst.
2081
2082 endmenu # "ARMv8.5 architectural features"
2083
2084 menu "ARMv8.7 architectural features"
2085
2086 config ARM64_EPAN
2087 bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2088 default y
2089 depends on ARM64_PAN
2090 help
2091 Enhanced Privileged Access Never (EPAN) allows Privileged
2092 Access Never to be used with Execute-only mappings.
2093
2094 The feature is detected at runtime, and will remain disabled
2095 if the cpu does not implement the feature.
2096 endmenu # "ARMv8.7 architectural features"
2097
2098 config ARM64_SVE
2099 bool "ARM Scalable Vector Extension support"
2100 default y
2101 help
2102 The Scalable Vector Extension (SVE) is an extension to the AArch64
2103 execution state which complements and extends the SIMD functionality
2104 of the base architecture to support much larger vectors and to enable
2105 additional vectorisation opportunities.
2106
2107 To enable use of this extension on CPUs that implement it, say Y.
2108
2109 On CPUs that support the SVE2 extensions, this option will enable
2110 those too.
2111
2112 Note that for architectural reasons, firmware _must_ implement SVE
2113 support when running on SVE capable hardware. The required support
2114 is present in:
2115
2116 * version 1.5 and later of the ARM Trusted Firmware
2117 * the AArch64 boot wrapper since commit 5e1261e08abf
2118 ("bootwrapper: SVE: Enable SVE for EL2 and below").
2119
2120 For other firmware implementations, consult the firmware documentation
2121 or vendor.
2122
2123 If you need the kernel to boot on SVE-capable hardware with broken
2124 firmware, you may need to say N here until you get your firmware
2125 fixed. Otherwise, you may experience firmware panics or lockups when
2126 booting the kernel. If unsure and you are not observing these
2127 symptoms, you should assume that it is safe to say Y.
2128
2129 config ARM64_SME
2130 bool "ARM Scalable Matrix Extension support"
2131 default y
2132 depends on ARM64_SVE
2133 help
2134 The Scalable Matrix Extension (SME) is an extension to the AArch64
2135 execution state which utilises a substantial subset of the SVE
2136 instruction set, together with the addition of new architectural
2137 register state capable of holding two dimensional matrix tiles to
2138 enable various matrix operations.
2139
2140 config ARM64_PSEUDO_NMI
2141 bool "Support for NMI-like interrupts"
2142 select ARM_GIC_V3
2143 help
2144 Adds support for mimicking Non-Maskable Interrupts through the use of
2145 GIC interrupt priority. This support requires version 3 or later of
2146 ARM GIC.
2147
2148 This high priority configuration for interrupts needs to be
2149 explicitly enabled by setting the kernel parameter
2150 "irqchip.gicv3_pseudo_nmi" to 1.
2151
2152 If unsure, say N
2153
2154 if ARM64_PSEUDO_NMI
2155 config ARM64_DEBUG_PRIORITY_MASKING
2156 bool "Debug interrupt priority masking"
2157 help
2158 This adds runtime checks to functions enabling/disabling
2159 interrupts when using priority masking. The additional checks verify
2160 the validity of ICC_PMR_EL1 when calling concerned functions.
2161
2162 If unsure, say N
2163 endif # ARM64_PSEUDO_NMI
2164
2165 config RELOCATABLE
2166 bool "Build a relocatable kernel image" if EXPERT
2167 select ARCH_HAS_RELR
2168 default y
2169 help
2170 This builds the kernel as a Position Independent Executable (PIE),
2171 which retains all relocation metadata required to relocate the
2172 kernel binary at runtime to a different virtual address than the
2173 address it was linked at.
2174 Since AArch64 uses the RELA relocation format, this requires a
2175 relocation pass at runtime even if the kernel is loaded at the
2176 same address it was linked at.
2177
2178 config RANDOMIZE_BASE
2179 bool "Randomize the address of the kernel image"
2180 select RELOCATABLE
2181 help
2182 Randomizes the virtual address at which the kernel image is
2183 loaded, as a security feature that deters exploit attempts
2184 relying on knowledge of the location of kernel internals.
2185
2186 It is the bootloader's job to provide entropy, by passing a
2187 random u64 value in /chosen/kaslr-seed at kernel entry.
2188
2189 When booting via the UEFI stub, it will invoke the firmware's
2190 EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2191 to the kernel proper. In addition, it will randomise the physical
2192 location of the kernel Image as well.
2193
2194 If unsure, say N.
2195
2196 config RANDOMIZE_MODULE_REGION_FULL
2197 bool "Randomize the module region over a 2 GB range"
2198 depends on RANDOMIZE_BASE
2199 default y
2200 help
2201 Randomizes the location of the module region inside a 2 GB window
2202 covering the core kernel. This way, it is less likely for modules
2203 to leak information about the location of core kernel data structures
2204 but it does imply that function calls between modules and the core
2205 kernel will need to be resolved via veneers in the module PLT.
2206
2207 When this option is not set, the module region will be randomized over
2208 a limited range that contains the [_stext, _etext] interval of the
2209 core kernel, so branch relocations are almost always in range unless
2210 the region is exhausted. In this particular case of region
2211 exhaustion, modules might be able to fall back to a larger 2GB area.
2212
2213 config CC_HAVE_STACKPROTECTOR_SYSREG
2214 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2215
2216 config STACKPROTECTOR_PER_TASK
2217 def_bool y
2218 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2219
2220 config UNWIND_PATCH_PAC_INTO_SCS
2221 bool "Enable shadow call stack dynamically using code patching"
2222 # needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated
2223 depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2224 depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2225 depends on SHADOW_CALL_STACK
2226 select UNWIND_TABLES
2227 select DYNAMIC_SCS
2228
2229 config ARM64_CONTPTE
2230 bool "Contiguous PTE mappings for user memory" if EXPERT
2231 depends on TRANSPARENT_HUGEPAGE
2232 default y
2233 help
2234 When enabled, user mappings are configured using the PTE contiguous
2235 bit, for any mappings that meet the size and alignment requirements.
2236 This reduces TLB pressure and improves performance.
2237
2238 endmenu # "Kernel Features"
2239
2240 menu "Boot options"
2241
2242 config ARM64_ACPI_PARKING_PROTOCOL
2243 bool "Enable support for the ARM64 ACPI parking protocol"
2244 depends on ACPI
2245 help
2246 Enable support for the ARM64 ACPI parking protocol. If disabled
2247 the kernel will not allow booting through the ARM64 ACPI parking
2248 protocol even if the corresponding data is present in the ACPI
2249 MADT table.
2250
2251 config CMDLINE
2252 string "Default kernel command string"
2253 default ""
2254 help
2255 Provide a set of default command-line options at build time by
2256 entering them here. As a minimum, you should specify the the
2257 root device (e.g. root=/dev/nfs).
2258
2259 choice
2260 prompt "Kernel command line type" if CMDLINE != ""
2261 default CMDLINE_FROM_BOOTLOADER
2262 help
2263 Choose how the kernel will handle the provided default kernel
2264 command line string.
2265
2266 config CMDLINE_FROM_BOOTLOADER
2267 bool "Use bootloader kernel arguments if available"
2268 help
2269 Uses the command-line options passed by the boot loader. If
2270 the boot loader doesn't provide any, the default kernel command
2271 string provided in CMDLINE will be used.
2272
2273 config CMDLINE_FORCE
2274 bool "Always use the default kernel command string"
2275 help
2276 Always use the default kernel command string, even if the boot
2277 loader passes other arguments to the kernel.
2278 This is useful if you cannot or don't want to change the
2279 command-line options your boot loader passes to the kernel.
2280
2281 endchoice
2282
2283 config EFI_STUB
2284 bool
2285
2286 config EFI
2287 bool "UEFI runtime support"
2288 depends on OF && !CPU_BIG_ENDIAN
2289 depends on KERNEL_MODE_NEON
2290 select ARCH_SUPPORTS_ACPI
2291 select LIBFDT
2292 select UCS2_STRING
2293 select EFI_PARAMS_FROM_FDT
2294 select EFI_RUNTIME_WRAPPERS
2295 select EFI_STUB
2296 select EFI_GENERIC_STUB
2297 imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2298 default y
2299 help
2300 This option provides support for runtime services provided
2301 by UEFI firmware (such as non-volatile variables, realtime
2302 clock, and platform reset). A UEFI stub is also provided to
2303 allow the kernel to be booted as an EFI application. This
2304 is only useful on systems that have UEFI firmware.
2305
2306 config DMI
2307 bool "Enable support for SMBIOS (DMI) tables"
2308 depends on EFI
2309 default y
2310 help
2311 This enables SMBIOS/DMI feature for systems.
2312
2313 This option is only useful on systems that have UEFI firmware.
2314 However, even with this option, the resultant kernel should
2315 continue to boot on existing non-UEFI platforms.
2316
2317 endmenu # "Boot options"
2318
2319 menu "Power management options"
2320
2321 source "kernel/power/Kconfig"
2322
2323 config ARCH_HIBERNATION_POSSIBLE
2324 def_bool y
2325 depends on CPU_PM
2326
2327 config ARCH_HIBERNATION_HEADER
2328 def_bool y
2329 depends on HIBERNATION
2330
2331 config ARCH_SUSPEND_POSSIBLE
2332 def_bool y
2333
2334 endmenu # "Power management options"
2335
2336 menu "CPU Power Management"
2337
2338 source "drivers/cpuidle/Kconfig"
2339
2340 source "drivers/cpufreq/Kconfig"
2341
2342 endmenu # "CPU Power Management"
2343
2344 source "drivers/acpi/Kconfig"
2345
2346 source "arch/arm64/kvm/Kconfig"
2347