]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/arm64/Kconfig
Merge tag 'exfat-for-6.8-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/linkin...
[thirdparty/kernel/stable.git] / arch / arm64 / Kconfig
1 # SPDX-License-Identifier: GPL-2.0-only
2 config ARM64
3 def_bool y
4 select ACPI_APMT if ACPI
5 select ACPI_CCA_REQUIRED if ACPI
6 select ACPI_GENERIC_GSI if ACPI
7 select ACPI_GTDT if ACPI
8 select ACPI_IORT if ACPI
9 select ACPI_REDUCED_HARDWARE_ONLY if ACPI
10 select ACPI_MCFG if (ACPI && PCI)
11 select ACPI_SPCR_TABLE if ACPI
12 select ACPI_PPTT if ACPI
13 select ARCH_HAS_DEBUG_WX
14 select ARCH_BINFMT_ELF_EXTRA_PHDRS
15 select ARCH_BINFMT_ELF_STATE
16 select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
17 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18 select ARCH_ENABLE_MEMORY_HOTPLUG
19 select ARCH_ENABLE_MEMORY_HOTREMOVE
20 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22 select ARCH_HAS_CACHE_LINE_SIZE
23 select ARCH_HAS_CURRENT_STACK_POINTER
24 select ARCH_HAS_DEBUG_VIRTUAL
25 select ARCH_HAS_DEBUG_VM_PGTABLE
26 select ARCH_HAS_DMA_PREP_COHERENT
27 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
28 select ARCH_HAS_FAST_MULTIPLIER
29 select ARCH_HAS_FORTIFY_SOURCE
30 select ARCH_HAS_GCOV_PROFILE_ALL
31 select ARCH_HAS_GIGANTIC_PAGE
32 select ARCH_HAS_KCOV
33 select ARCH_HAS_KEEPINITRD
34 select ARCH_HAS_MEMBARRIER_SYNC_CORE
35 select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
36 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
37 select ARCH_HAS_PTE_DEVMAP
38 select ARCH_HAS_PTE_SPECIAL
39 select ARCH_HAS_HW_PTE_YOUNG
40 select ARCH_HAS_SETUP_DMA_OPS
41 select ARCH_HAS_SET_DIRECT_MAP
42 select ARCH_HAS_SET_MEMORY
43 select ARCH_STACKWALK
44 select ARCH_HAS_STRICT_KERNEL_RWX
45 select ARCH_HAS_STRICT_MODULE_RWX
46 select ARCH_HAS_SYNC_DMA_FOR_DEVICE
47 select ARCH_HAS_SYNC_DMA_FOR_CPU
48 select ARCH_HAS_SYSCALL_WRAPPER
49 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
50 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
51 select ARCH_HAS_ZONE_DMA_SET if EXPERT
52 select ARCH_HAVE_ELF_PROT
53 select ARCH_HAVE_NMI_SAFE_CMPXCHG
54 select ARCH_HAVE_TRACE_MMIO_ACCESS
55 select ARCH_INLINE_READ_LOCK if !PREEMPTION
56 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
57 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
58 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
59 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
60 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
61 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
62 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
63 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
64 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
65 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
66 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
67 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
68 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
69 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
70 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
71 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
72 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
73 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
74 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
75 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
76 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
77 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
78 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
79 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
80 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
81 select ARCH_KEEP_MEMBLOCK
82 select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
83 select ARCH_USE_CMPXCHG_LOCKREF
84 select ARCH_USE_GNU_PROPERTY
85 select ARCH_USE_MEMTEST
86 select ARCH_USE_QUEUED_RWLOCKS
87 select ARCH_USE_QUEUED_SPINLOCKS
88 select ARCH_USE_SYM_ANNOTATIONS
89 select ARCH_SUPPORTS_DEBUG_PAGEALLOC
90 select ARCH_SUPPORTS_HUGETLBFS
91 select ARCH_SUPPORTS_MEMORY_FAILURE
92 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
93 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
94 select ARCH_SUPPORTS_LTO_CLANG_THIN
95 select ARCH_SUPPORTS_CFI_CLANG
96 select ARCH_SUPPORTS_ATOMIC_RMW
97 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
98 select ARCH_SUPPORTS_NUMA_BALANCING
99 select ARCH_SUPPORTS_PAGE_TABLE_CHECK
100 select ARCH_SUPPORTS_PER_VMA_LOCK
101 select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
102 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
103 select ARCH_WANT_DEFAULT_BPF_JIT
104 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
105 select ARCH_WANT_FRAME_POINTERS
106 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
107 select ARCH_WANT_LD_ORPHAN_WARN
108 select ARCH_WANTS_NO_INSTR
109 select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
110 select ARCH_HAS_UBSAN_SANITIZE_ALL
111 select ARM_AMBA
112 select ARM_ARCH_TIMER
113 select ARM_GIC
114 select AUDIT_ARCH_COMPAT_GENERIC
115 select ARM_GIC_V2M if PCI
116 select ARM_GIC_V3
117 select ARM_GIC_V3_ITS if PCI
118 select ARM_PSCI_FW
119 select BUILDTIME_TABLE_SORT
120 select CLONE_BACKWARDS
121 select COMMON_CLK
122 select CPU_PM if (SUSPEND || CPU_IDLE)
123 select CRC32
124 select DCACHE_WORD_ACCESS
125 select DYNAMIC_FTRACE if FUNCTION_TRACER
126 select DMA_BOUNCE_UNALIGNED_KMALLOC
127 select DMA_DIRECT_REMAP
128 select EDAC_SUPPORT
129 select FRAME_POINTER
130 select FUNCTION_ALIGNMENT_4B
131 select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
132 select GENERIC_ALLOCATOR
133 select GENERIC_ARCH_TOPOLOGY
134 select GENERIC_CLOCKEVENTS_BROADCAST
135 select GENERIC_CPU_AUTOPROBE
136 select GENERIC_CPU_DEVICES
137 select GENERIC_CPU_VULNERABILITIES
138 select GENERIC_EARLY_IOREMAP
139 select GENERIC_IDLE_POLL_SETUP
140 select GENERIC_IOREMAP
141 select GENERIC_IRQ_IPI
142 select GENERIC_IRQ_PROBE
143 select GENERIC_IRQ_SHOW
144 select GENERIC_IRQ_SHOW_LEVEL
145 select GENERIC_LIB_DEVMEM_IS_ALLOWED
146 select GENERIC_PCI_IOMAP
147 select GENERIC_PTDUMP
148 select GENERIC_SCHED_CLOCK
149 select GENERIC_SMP_IDLE_THREAD
150 select GENERIC_TIME_VSYSCALL
151 select GENERIC_GETTIMEOFDAY
152 select GENERIC_VDSO_TIME_NS
153 select HARDIRQS_SW_RESEND
154 select HAS_IOPORT
155 select HAVE_MOVE_PMD
156 select HAVE_MOVE_PUD
157 select HAVE_PCI
158 select HAVE_ACPI_APEI if (ACPI && EFI)
159 select HAVE_ALIGNED_STRUCT_PAGE
160 select HAVE_ARCH_AUDITSYSCALL
161 select HAVE_ARCH_BITREVERSE
162 select HAVE_ARCH_COMPILER_H
163 select HAVE_ARCH_HUGE_VMALLOC
164 select HAVE_ARCH_HUGE_VMAP
165 select HAVE_ARCH_JUMP_LABEL
166 select HAVE_ARCH_JUMP_LABEL_RELATIVE
167 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
168 select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
169 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
170 select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
171 # Some instrumentation may be unsound, hence EXPERT
172 select HAVE_ARCH_KCSAN if EXPERT
173 select HAVE_ARCH_KFENCE
174 select HAVE_ARCH_KGDB
175 select HAVE_ARCH_MMAP_RND_BITS
176 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
177 select HAVE_ARCH_PREL32_RELOCATIONS
178 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
179 select HAVE_ARCH_SECCOMP_FILTER
180 select HAVE_ARCH_STACKLEAK
181 select HAVE_ARCH_THREAD_STRUCT_WHITELIST
182 select HAVE_ARCH_TRACEHOOK
183 select HAVE_ARCH_TRANSPARENT_HUGEPAGE
184 select HAVE_ARCH_VMAP_STACK
185 select HAVE_ARM_SMCCC
186 select HAVE_ASM_MODVERSIONS
187 select HAVE_EBPF_JIT
188 select HAVE_C_RECORDMCOUNT
189 select HAVE_CMPXCHG_DOUBLE
190 select HAVE_CMPXCHG_LOCAL
191 select HAVE_CONTEXT_TRACKING_USER
192 select HAVE_DEBUG_KMEMLEAK
193 select HAVE_DMA_CONTIGUOUS
194 select HAVE_DYNAMIC_FTRACE
195 select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
196 if $(cc-option,-fpatchable-function-entry=2)
197 select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
198 if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
199 select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
200 if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
201 !CC_OPTIMIZE_FOR_SIZE)
202 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
203 if DYNAMIC_FTRACE_WITH_ARGS
204 select HAVE_SAMPLE_FTRACE_DIRECT
205 select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
206 select HAVE_EFFICIENT_UNALIGNED_ACCESS
207 select HAVE_FAST_GUP
208 select HAVE_FTRACE_MCOUNT_RECORD
209 select HAVE_FUNCTION_TRACER
210 select HAVE_FUNCTION_ERROR_INJECTION
211 select HAVE_FUNCTION_GRAPH_RETVAL if HAVE_FUNCTION_GRAPH_TRACER
212 select HAVE_FUNCTION_GRAPH_TRACER
213 select HAVE_GCC_PLUGINS
214 select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
215 HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
216 select HAVE_HW_BREAKPOINT if PERF_EVENTS
217 select HAVE_IOREMAP_PROT
218 select HAVE_IRQ_TIME_ACCOUNTING
219 select HAVE_KVM
220 select HAVE_MOD_ARCH_SPECIFIC
221 select HAVE_NMI
222 select HAVE_PERF_EVENTS
223 select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
224 select HAVE_PERF_REGS
225 select HAVE_PERF_USER_STACK_DUMP
226 select HAVE_PREEMPT_DYNAMIC_KEY
227 select HAVE_REGS_AND_STACK_ACCESS_API
228 select HAVE_POSIX_CPU_TIMERS_TASK_WORK
229 select HAVE_FUNCTION_ARG_ACCESS_API
230 select MMU_GATHER_RCU_TABLE_FREE
231 select HAVE_RSEQ
232 select HAVE_STACKPROTECTOR
233 select HAVE_SYSCALL_TRACEPOINTS
234 select HAVE_KPROBES
235 select HAVE_KRETPROBES
236 select HAVE_GENERIC_VDSO
237 select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
238 select IRQ_DOMAIN
239 select IRQ_FORCED_THREADING
240 select KASAN_VMALLOC if KASAN
241 select LOCK_MM_AND_FIND_VMA
242 select MODULES_USE_ELF_RELA
243 select NEED_DMA_MAP_STATE
244 select NEED_SG_DMA_LENGTH
245 select OF
246 select OF_EARLY_FLATTREE
247 select PCI_DOMAINS_GENERIC if PCI
248 select PCI_ECAM if (ACPI && PCI)
249 select PCI_SYSCALL if PCI
250 select POWER_RESET
251 select POWER_SUPPLY
252 select SPARSE_IRQ
253 select SWIOTLB
254 select SYSCTL_EXCEPTION_TRACE
255 select THREAD_INFO_IN_TASK
256 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
257 select TRACE_IRQFLAGS_SUPPORT
258 select TRACE_IRQFLAGS_NMI_SUPPORT
259 select HAVE_SOFTIRQ_ON_OWN_STACK
260 help
261 ARM 64-bit (AArch64) Linux support.
262
263 config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
264 def_bool CC_IS_CLANG
265 # https://github.com/ClangBuiltLinux/linux/issues/1507
266 depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
267 select HAVE_DYNAMIC_FTRACE_WITH_ARGS
268
269 config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
270 def_bool CC_IS_GCC
271 depends on $(cc-option,-fpatchable-function-entry=2)
272 select HAVE_DYNAMIC_FTRACE_WITH_ARGS
273
274 config 64BIT
275 def_bool y
276
277 config MMU
278 def_bool y
279
280 config ARM64_PAGE_SHIFT
281 int
282 default 16 if ARM64_64K_PAGES
283 default 14 if ARM64_16K_PAGES
284 default 12
285
286 config ARM64_CONT_PTE_SHIFT
287 int
288 default 5 if ARM64_64K_PAGES
289 default 7 if ARM64_16K_PAGES
290 default 4
291
292 config ARM64_CONT_PMD_SHIFT
293 int
294 default 5 if ARM64_64K_PAGES
295 default 5 if ARM64_16K_PAGES
296 default 4
297
298 config ARCH_MMAP_RND_BITS_MIN
299 default 14 if ARM64_64K_PAGES
300 default 16 if ARM64_16K_PAGES
301 default 18
302
303 # max bits determined by the following formula:
304 # VA_BITS - PAGE_SHIFT - 3
305 config ARCH_MMAP_RND_BITS_MAX
306 default 19 if ARM64_VA_BITS=36
307 default 24 if ARM64_VA_BITS=39
308 default 27 if ARM64_VA_BITS=42
309 default 30 if ARM64_VA_BITS=47
310 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
311 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
312 default 33 if ARM64_VA_BITS=48
313 default 14 if ARM64_64K_PAGES
314 default 16 if ARM64_16K_PAGES
315 default 18
316
317 config ARCH_MMAP_RND_COMPAT_BITS_MIN
318 default 7 if ARM64_64K_PAGES
319 default 9 if ARM64_16K_PAGES
320 default 11
321
322 config ARCH_MMAP_RND_COMPAT_BITS_MAX
323 default 16
324
325 config NO_IOPORT_MAP
326 def_bool y if !PCI
327
328 config STACKTRACE_SUPPORT
329 def_bool y
330
331 config ILLEGAL_POINTER_VALUE
332 hex
333 default 0xdead000000000000
334
335 config LOCKDEP_SUPPORT
336 def_bool y
337
338 config GENERIC_BUG
339 def_bool y
340 depends on BUG
341
342 config GENERIC_BUG_RELATIVE_POINTERS
343 def_bool y
344 depends on GENERIC_BUG
345
346 config GENERIC_HWEIGHT
347 def_bool y
348
349 config GENERIC_CSUM
350 def_bool y
351
352 config GENERIC_CALIBRATE_DELAY
353 def_bool y
354
355 config SMP
356 def_bool y
357
358 config KERNEL_MODE_NEON
359 def_bool y
360
361 config FIX_EARLYCON_MEM
362 def_bool y
363
364 config PGTABLE_LEVELS
365 int
366 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
367 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
368 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
369 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
370 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
371 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
372
373 config ARCH_SUPPORTS_UPROBES
374 def_bool y
375
376 config ARCH_PROC_KCORE_TEXT
377 def_bool y
378
379 config BROKEN_GAS_INST
380 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
381
382 config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
383 bool
384 # Clang's __builtin_return_adddress() strips the PAC since 12.0.0
385 # https://reviews.llvm.org/D75044
386 default y if CC_IS_CLANG && (CLANG_VERSION >= 120000)
387 # GCC's __builtin_return_address() strips the PAC since 11.1.0,
388 # and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
389 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
390 default y if CC_IS_GCC && (GCC_VERSION >= 110100)
391 default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
392 default y if CC_IS_GCC && (GCC_VERSION >= 90400) && (GCC_VERSION < 100000)
393 default y if CC_IS_GCC && (GCC_VERSION >= 80500) && (GCC_VERSION < 90000)
394 default n
395
396 config KASAN_SHADOW_OFFSET
397 hex
398 depends on KASAN_GENERIC || KASAN_SW_TAGS
399 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
400 default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
401 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
402 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
403 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
404 default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
405 default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
406 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
407 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
408 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
409 default 0xffffffffffffffff
410
411 config UNWIND_TABLES
412 bool
413
414 source "arch/arm64/Kconfig.platforms"
415
416 menu "Kernel Features"
417
418 menu "ARM errata workarounds via the alternatives framework"
419
420 config AMPERE_ERRATUM_AC03_CPU_38
421 bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
422 default y
423 help
424 This option adds an alternative code sequence to work around Ampere
425 erratum AC03_CPU_38 on AmpereOne.
426
427 The affected design reports FEAT_HAFDBS as not implemented in
428 ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
429 as required by the architecture. The unadvertised HAFDBS
430 implementation suffers from an additional erratum where hardware
431 A/D updates can occur after a PTE has been marked invalid.
432
433 The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
434 which avoids enabling unadvertised hardware Access Flag management
435 at stage-2.
436
437 If unsure, say Y.
438
439 config ARM64_WORKAROUND_CLEAN_CACHE
440 bool
441
442 config ARM64_ERRATUM_826319
443 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
444 default y
445 select ARM64_WORKAROUND_CLEAN_CACHE
446 help
447 This option adds an alternative code sequence to work around ARM
448 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
449 AXI master interface and an L2 cache.
450
451 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
452 and is unable to accept a certain write via this interface, it will
453 not progress on read data presented on the read data channel and the
454 system can deadlock.
455
456 The workaround promotes data cache clean instructions to
457 data cache clean-and-invalidate.
458 Please note that this does not necessarily enable the workaround,
459 as it depends on the alternative framework, which will only patch
460 the kernel if an affected CPU is detected.
461
462 If unsure, say Y.
463
464 config ARM64_ERRATUM_827319
465 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
466 default y
467 select ARM64_WORKAROUND_CLEAN_CACHE
468 help
469 This option adds an alternative code sequence to work around ARM
470 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
471 master interface and an L2 cache.
472
473 Under certain conditions this erratum can cause a clean line eviction
474 to occur at the same time as another transaction to the same address
475 on the AMBA 5 CHI interface, which can cause data corruption if the
476 interconnect reorders the two transactions.
477
478 The workaround promotes data cache clean instructions to
479 data cache clean-and-invalidate.
480 Please note that this does not necessarily enable the workaround,
481 as it depends on the alternative framework, which will only patch
482 the kernel if an affected CPU is detected.
483
484 If unsure, say Y.
485
486 config ARM64_ERRATUM_824069
487 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
488 default y
489 select ARM64_WORKAROUND_CLEAN_CACHE
490 help
491 This option adds an alternative code sequence to work around ARM
492 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
493 to a coherent interconnect.
494
495 If a Cortex-A53 processor is executing a store or prefetch for
496 write instruction at the same time as a processor in another
497 cluster is executing a cache maintenance operation to the same
498 address, then this erratum might cause a clean cache line to be
499 incorrectly marked as dirty.
500
501 The workaround promotes data cache clean instructions to
502 data cache clean-and-invalidate.
503 Please note that this option does not necessarily enable the
504 workaround, as it depends on the alternative framework, which will
505 only patch the kernel if an affected CPU is detected.
506
507 If unsure, say Y.
508
509 config ARM64_ERRATUM_819472
510 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
511 default y
512 select ARM64_WORKAROUND_CLEAN_CACHE
513 help
514 This option adds an alternative code sequence to work around ARM
515 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
516 present when it is connected to a coherent interconnect.
517
518 If the processor is executing a load and store exclusive sequence at
519 the same time as a processor in another cluster is executing a cache
520 maintenance operation to the same address, then this erratum might
521 cause data corruption.
522
523 The workaround promotes data cache clean instructions to
524 data cache clean-and-invalidate.
525 Please note that this does not necessarily enable the workaround,
526 as it depends on the alternative framework, which will only patch
527 the kernel if an affected CPU is detected.
528
529 If unsure, say Y.
530
531 config ARM64_ERRATUM_832075
532 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
533 default y
534 help
535 This option adds an alternative code sequence to work around ARM
536 erratum 832075 on Cortex-A57 parts up to r1p2.
537
538 Affected Cortex-A57 parts might deadlock when exclusive load/store
539 instructions to Write-Back memory are mixed with Device loads.
540
541 The workaround is to promote device loads to use Load-Acquire
542 semantics.
543 Please note that this does not necessarily enable the workaround,
544 as it depends on the alternative framework, which will only patch
545 the kernel if an affected CPU is detected.
546
547 If unsure, say Y.
548
549 config ARM64_ERRATUM_834220
550 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
551 depends on KVM
552 default y
553 help
554 This option adds an alternative code sequence to work around ARM
555 erratum 834220 on Cortex-A57 parts up to r1p2.
556
557 Affected Cortex-A57 parts might report a Stage 2 translation
558 fault as the result of a Stage 1 fault for load crossing a
559 page boundary when there is a permission or device memory
560 alignment fault at Stage 1 and a translation fault at Stage 2.
561
562 The workaround is to verify that the Stage 1 translation
563 doesn't generate a fault before handling the Stage 2 fault.
564 Please note that this does not necessarily enable the workaround,
565 as it depends on the alternative framework, which will only patch
566 the kernel if an affected CPU is detected.
567
568 If unsure, say Y.
569
570 config ARM64_ERRATUM_1742098
571 bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
572 depends on COMPAT
573 default y
574 help
575 This option removes the AES hwcap for aarch32 user-space to
576 workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
577
578 Affected parts may corrupt the AES state if an interrupt is
579 taken between a pair of AES instructions. These instructions
580 are only present if the cryptography extensions are present.
581 All software should have a fallback implementation for CPUs
582 that don't implement the cryptography extensions.
583
584 If unsure, say Y.
585
586 config ARM64_ERRATUM_845719
587 bool "Cortex-A53: 845719: a load might read incorrect data"
588 depends on COMPAT
589 default y
590 help
591 This option adds an alternative code sequence to work around ARM
592 erratum 845719 on Cortex-A53 parts up to r0p4.
593
594 When running a compat (AArch32) userspace on an affected Cortex-A53
595 part, a load at EL0 from a virtual address that matches the bottom 32
596 bits of the virtual address used by a recent load at (AArch64) EL1
597 might return incorrect data.
598
599 The workaround is to write the contextidr_el1 register on exception
600 return to a 32-bit task.
601 Please note that this does not necessarily enable the workaround,
602 as it depends on the alternative framework, which will only patch
603 the kernel if an affected CPU is detected.
604
605 If unsure, say Y.
606
607 config ARM64_ERRATUM_843419
608 bool "Cortex-A53: 843419: A load or store might access an incorrect address"
609 default y
610 help
611 This option links the kernel with '--fix-cortex-a53-843419' and
612 enables PLT support to replace certain ADRP instructions, which can
613 cause subsequent memory accesses to use an incorrect address on
614 Cortex-A53 parts up to r0p4.
615
616 If unsure, say Y.
617
618 config ARM64_LD_HAS_FIX_ERRATUM_843419
619 def_bool $(ld-option,--fix-cortex-a53-843419)
620
621 config ARM64_ERRATUM_1024718
622 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
623 default y
624 help
625 This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
626
627 Affected Cortex-A55 cores (all revisions) could cause incorrect
628 update of the hardware dirty bit when the DBM/AP bits are updated
629 without a break-before-make. The workaround is to disable the usage
630 of hardware DBM locally on the affected cores. CPUs not affected by
631 this erratum will continue to use the feature.
632
633 If unsure, say Y.
634
635 config ARM64_ERRATUM_1418040
636 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
637 default y
638 depends on COMPAT
639 help
640 This option adds a workaround for ARM Cortex-A76/Neoverse-N1
641 errata 1188873 and 1418040.
642
643 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
644 cause register corruption when accessing the timer registers
645 from AArch32 userspace.
646
647 If unsure, say Y.
648
649 config ARM64_WORKAROUND_SPECULATIVE_AT
650 bool
651
652 config ARM64_ERRATUM_1165522
653 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
654 default y
655 select ARM64_WORKAROUND_SPECULATIVE_AT
656 help
657 This option adds a workaround for ARM Cortex-A76 erratum 1165522.
658
659 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
660 corrupted TLBs by speculating an AT instruction during a guest
661 context switch.
662
663 If unsure, say Y.
664
665 config ARM64_ERRATUM_1319367
666 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
667 default y
668 select ARM64_WORKAROUND_SPECULATIVE_AT
669 help
670 This option adds work arounds for ARM Cortex-A57 erratum 1319537
671 and A72 erratum 1319367
672
673 Cortex-A57 and A72 cores could end-up with corrupted TLBs by
674 speculating an AT instruction during a guest context switch.
675
676 If unsure, say Y.
677
678 config ARM64_ERRATUM_1530923
679 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
680 default y
681 select ARM64_WORKAROUND_SPECULATIVE_AT
682 help
683 This option adds a workaround for ARM Cortex-A55 erratum 1530923.
684
685 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
686 corrupted TLBs by speculating an AT instruction during a guest
687 context switch.
688
689 If unsure, say Y.
690
691 config ARM64_WORKAROUND_REPEAT_TLBI
692 bool
693
694 config ARM64_ERRATUM_2441007
695 bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
696 default y
697 select ARM64_WORKAROUND_REPEAT_TLBI
698 help
699 This option adds a workaround for ARM Cortex-A55 erratum #2441007.
700
701 Under very rare circumstances, affected Cortex-A55 CPUs
702 may not handle a race between a break-before-make sequence on one
703 CPU, and another CPU accessing the same page. This could allow a
704 store to a page that has been unmapped.
705
706 Work around this by adding the affected CPUs to the list that needs
707 TLB sequences to be done twice.
708
709 If unsure, say Y.
710
711 config ARM64_ERRATUM_1286807
712 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
713 default y
714 select ARM64_WORKAROUND_REPEAT_TLBI
715 help
716 This option adds a workaround for ARM Cortex-A76 erratum 1286807.
717
718 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
719 address for a cacheable mapping of a location is being
720 accessed by a core while another core is remapping the virtual
721 address to a new physical page using the recommended
722 break-before-make sequence, then under very rare circumstances
723 TLBI+DSB completes before a read using the translation being
724 invalidated has been observed by other observers. The
725 workaround repeats the TLBI+DSB operation.
726
727 config ARM64_ERRATUM_1463225
728 bool "Cortex-A76: Software Step might prevent interrupt recognition"
729 default y
730 help
731 This option adds a workaround for Arm Cortex-A76 erratum 1463225.
732
733 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
734 of a system call instruction (SVC) can prevent recognition of
735 subsequent interrupts when software stepping is disabled in the
736 exception handler of the system call and either kernel debugging
737 is enabled or VHE is in use.
738
739 Work around the erratum by triggering a dummy step exception
740 when handling a system call from a task that is being stepped
741 in a VHE configuration of the kernel.
742
743 If unsure, say Y.
744
745 config ARM64_ERRATUM_1542419
746 bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
747 default y
748 help
749 This option adds a workaround for ARM Neoverse-N1 erratum
750 1542419.
751
752 Affected Neoverse-N1 cores could execute a stale instruction when
753 modified by another CPU. The workaround depends on a firmware
754 counterpart.
755
756 Workaround the issue by hiding the DIC feature from EL0. This
757 forces user-space to perform cache maintenance.
758
759 If unsure, say Y.
760
761 config ARM64_ERRATUM_1508412
762 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
763 default y
764 help
765 This option adds a workaround for Arm Cortex-A77 erratum 1508412.
766
767 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
768 of a store-exclusive or read of PAR_EL1 and a load with device or
769 non-cacheable memory attributes. The workaround depends on a firmware
770 counterpart.
771
772 KVM guests must also have the workaround implemented or they can
773 deadlock the system.
774
775 Work around the issue by inserting DMB SY barriers around PAR_EL1
776 register reads and warning KVM users. The DMB barrier is sufficient
777 to prevent a speculative PAR_EL1 read.
778
779 If unsure, say Y.
780
781 config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
782 bool
783
784 config ARM64_ERRATUM_2051678
785 bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
786 default y
787 help
788 This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
789 Affected Cortex-A510 might not respect the ordering rules for
790 hardware update of the page table's dirty bit. The workaround
791 is to not enable the feature on affected CPUs.
792
793 If unsure, say Y.
794
795 config ARM64_ERRATUM_2077057
796 bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
797 default y
798 help
799 This option adds the workaround for ARM Cortex-A510 erratum 2077057.
800 Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
801 expected, but a Pointer Authentication trap is taken instead. The
802 erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
803 EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
804
805 This can only happen when EL2 is stepping EL1.
806
807 When these conditions occur, the SPSR_EL2 value is unchanged from the
808 previous guest entry, and can be restored from the in-memory copy.
809
810 If unsure, say Y.
811
812 config ARM64_ERRATUM_2658417
813 bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
814 default y
815 help
816 This option adds the workaround for ARM Cortex-A510 erratum 2658417.
817 Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
818 BFMMLA or VMMLA instructions in rare circumstances when a pair of
819 A510 CPUs are using shared neon hardware. As the sharing is not
820 discoverable by the kernel, hide the BF16 HWCAP to indicate that
821 user-space should not be using these instructions.
822
823 If unsure, say Y.
824
825 config ARM64_ERRATUM_2119858
826 bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
827 default y
828 depends on CORESIGHT_TRBE
829 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
830 help
831 This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
832
833 Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
834 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
835 the event of a WRAP event.
836
837 Work around the issue by always making sure we move the TRBPTR_EL1 by
838 256 bytes before enabling the buffer and filling the first 256 bytes of
839 the buffer with ETM ignore packets upon disabling.
840
841 If unsure, say Y.
842
843 config ARM64_ERRATUM_2139208
844 bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
845 default y
846 depends on CORESIGHT_TRBE
847 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
848 help
849 This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
850
851 Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
852 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
853 the event of a WRAP event.
854
855 Work around the issue by always making sure we move the TRBPTR_EL1 by
856 256 bytes before enabling the buffer and filling the first 256 bytes of
857 the buffer with ETM ignore packets upon disabling.
858
859 If unsure, say Y.
860
861 config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
862 bool
863
864 config ARM64_ERRATUM_2054223
865 bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
866 default y
867 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
868 help
869 Enable workaround for ARM Cortex-A710 erratum 2054223
870
871 Affected cores may fail to flush the trace data on a TSB instruction, when
872 the PE is in trace prohibited state. This will cause losing a few bytes
873 of the trace cached.
874
875 Workaround is to issue two TSB consecutively on affected cores.
876
877 If unsure, say Y.
878
879 config ARM64_ERRATUM_2067961
880 bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
881 default y
882 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
883 help
884 Enable workaround for ARM Neoverse-N2 erratum 2067961
885
886 Affected cores may fail to flush the trace data on a TSB instruction, when
887 the PE is in trace prohibited state. This will cause losing a few bytes
888 of the trace cached.
889
890 Workaround is to issue two TSB consecutively on affected cores.
891
892 If unsure, say Y.
893
894 config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
895 bool
896
897 config ARM64_ERRATUM_2253138
898 bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
899 depends on CORESIGHT_TRBE
900 default y
901 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
902 help
903 This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
904
905 Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
906 for TRBE. Under some conditions, the TRBE might generate a write to the next
907 virtually addressed page following the last page of the TRBE address space
908 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
909
910 Work around this in the driver by always making sure that there is a
911 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
912
913 If unsure, say Y.
914
915 config ARM64_ERRATUM_2224489
916 bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
917 depends on CORESIGHT_TRBE
918 default y
919 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
920 help
921 This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
922
923 Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
924 for TRBE. Under some conditions, the TRBE might generate a write to the next
925 virtually addressed page following the last page of the TRBE address space
926 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
927
928 Work around this in the driver by always making sure that there is a
929 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
930
931 If unsure, say Y.
932
933 config ARM64_ERRATUM_2441009
934 bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
935 default y
936 select ARM64_WORKAROUND_REPEAT_TLBI
937 help
938 This option adds a workaround for ARM Cortex-A510 erratum #2441009.
939
940 Under very rare circumstances, affected Cortex-A510 CPUs
941 may not handle a race between a break-before-make sequence on one
942 CPU, and another CPU accessing the same page. This could allow a
943 store to a page that has been unmapped.
944
945 Work around this by adding the affected CPUs to the list that needs
946 TLB sequences to be done twice.
947
948 If unsure, say Y.
949
950 config ARM64_ERRATUM_2064142
951 bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
952 depends on CORESIGHT_TRBE
953 default y
954 help
955 This option adds the workaround for ARM Cortex-A510 erratum 2064142.
956
957 Affected Cortex-A510 core might fail to write into system registers after the
958 TRBE has been disabled. Under some conditions after the TRBE has been disabled
959 writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
960 and TRBTRG_EL1 will be ignored and will not be effected.
961
962 Work around this in the driver by executing TSB CSYNC and DSB after collection
963 is stopped and before performing a system register write to one of the affected
964 registers.
965
966 If unsure, say Y.
967
968 config ARM64_ERRATUM_2038923
969 bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
970 depends on CORESIGHT_TRBE
971 default y
972 help
973 This option adds the workaround for ARM Cortex-A510 erratum 2038923.
974
975 Affected Cortex-A510 core might cause an inconsistent view on whether trace is
976 prohibited within the CPU. As a result, the trace buffer or trace buffer state
977 might be corrupted. This happens after TRBE buffer has been enabled by setting
978 TRBLIMITR_EL1.E, followed by just a single context synchronization event before
979 execution changes from a context, in which trace is prohibited to one where it
980 isn't, or vice versa. In these mentioned conditions, the view of whether trace
981 is prohibited is inconsistent between parts of the CPU, and the trace buffer or
982 the trace buffer state might be corrupted.
983
984 Work around this in the driver by preventing an inconsistent view of whether the
985 trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
986 change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
987 two ISB instructions if no ERET is to take place.
988
989 If unsure, say Y.
990
991 config ARM64_ERRATUM_1902691
992 bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
993 depends on CORESIGHT_TRBE
994 default y
995 help
996 This option adds the workaround for ARM Cortex-A510 erratum 1902691.
997
998 Affected Cortex-A510 core might cause trace data corruption, when being written
999 into the memory. Effectively TRBE is broken and hence cannot be used to capture
1000 trace data.
1001
1002 Work around this problem in the driver by just preventing TRBE initialization on
1003 affected cpus. The firmware must have disabled the access to TRBE for the kernel
1004 on such implementations. This will cover the kernel for any firmware that doesn't
1005 do this already.
1006
1007 If unsure, say Y.
1008
1009 config ARM64_ERRATUM_2457168
1010 bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1011 depends on ARM64_AMU_EXTN
1012 default y
1013 help
1014 This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1015
1016 The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1017 as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1018 incorrectly giving a significantly higher output value.
1019
1020 Work around this problem by returning 0 when reading the affected counter in
1021 key locations that results in disabling all users of this counter. This effect
1022 is the same to firmware disabling affected counters.
1023
1024 If unsure, say Y.
1025
1026 config ARM64_ERRATUM_2645198
1027 bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1028 default y
1029 help
1030 This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1031
1032 If a Cortex-A715 cpu sees a page mapping permissions change from executable
1033 to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1034 next instruction abort caused by permission fault.
1035
1036 Only user-space does executable to non-executable permission transition via
1037 mprotect() system call. Workaround the problem by doing a break-before-make
1038 TLB invalidation, for all changes to executable user space mappings.
1039
1040 If unsure, say Y.
1041
1042 config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1043 bool
1044
1045 config ARM64_ERRATUM_2966298
1046 bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1047 select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1048 default y
1049 help
1050 This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1051
1052 On an affected Cortex-A520 core, a speculatively executed unprivileged
1053 load might leak data from a privileged level via a cache side channel.
1054
1055 Work around this problem by executing a TLBI before returning to EL0.
1056
1057 If unsure, say Y.
1058
1059 config ARM64_ERRATUM_3117295
1060 bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1061 select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1062 default y
1063 help
1064 This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1065
1066 On an affected Cortex-A510 core, a speculatively executed unprivileged
1067 load might leak data from a privileged level via a cache side channel.
1068
1069 Work around this problem by executing a TLBI before returning to EL0.
1070
1071 If unsure, say Y.
1072
1073 config CAVIUM_ERRATUM_22375
1074 bool "Cavium erratum 22375, 24313"
1075 default y
1076 help
1077 Enable workaround for errata 22375 and 24313.
1078
1079 This implements two gicv3-its errata workarounds for ThunderX. Both
1080 with a small impact affecting only ITS table allocation.
1081
1082 erratum 22375: only alloc 8MB table size
1083 erratum 24313: ignore memory access type
1084
1085 The fixes are in ITS initialization and basically ignore memory access
1086 type and table size provided by the TYPER and BASER registers.
1087
1088 If unsure, say Y.
1089
1090 config CAVIUM_ERRATUM_23144
1091 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1092 depends on NUMA
1093 default y
1094 help
1095 ITS SYNC command hang for cross node io and collections/cpu mapping.
1096
1097 If unsure, say Y.
1098
1099 config CAVIUM_ERRATUM_23154
1100 bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1101 default y
1102 help
1103 The ThunderX GICv3 implementation requires a modified version for
1104 reading the IAR status to ensure data synchronization
1105 (access to icc_iar1_el1 is not sync'ed before and after).
1106
1107 It also suffers from erratum 38545 (also present on Marvell's
1108 OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1109 spuriously presented to the CPU interface.
1110
1111 If unsure, say Y.
1112
1113 config CAVIUM_ERRATUM_27456
1114 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1115 default y
1116 help
1117 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1118 instructions may cause the icache to become corrupted if it
1119 contains data for a non-current ASID. The fix is to
1120 invalidate the icache when changing the mm context.
1121
1122 If unsure, say Y.
1123
1124 config CAVIUM_ERRATUM_30115
1125 bool "Cavium erratum 30115: Guest may disable interrupts in host"
1126 default y
1127 help
1128 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1129 1.2, and T83 Pass 1.0, KVM guest execution may disable
1130 interrupts in host. Trapping both GICv3 group-0 and group-1
1131 accesses sidesteps the issue.
1132
1133 If unsure, say Y.
1134
1135 config CAVIUM_TX2_ERRATUM_219
1136 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1137 default y
1138 help
1139 On Cavium ThunderX2, a load, store or prefetch instruction between a
1140 TTBR update and the corresponding context synchronizing operation can
1141 cause a spurious Data Abort to be delivered to any hardware thread in
1142 the CPU core.
1143
1144 Work around the issue by avoiding the problematic code sequence and
1145 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1146 trap handler performs the corresponding register access, skips the
1147 instruction and ensures context synchronization by virtue of the
1148 exception return.
1149
1150 If unsure, say Y.
1151
1152 config FUJITSU_ERRATUM_010001
1153 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1154 default y
1155 help
1156 This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1157 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1158 accesses may cause undefined fault (Data abort, DFSC=0b111111).
1159 This fault occurs under a specific hardware condition when a
1160 load/store instruction performs an address translation using:
1161 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1162 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1163 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1164 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1165
1166 The workaround is to ensure these bits are clear in TCR_ELx.
1167 The workaround only affects the Fujitsu-A64FX.
1168
1169 If unsure, say Y.
1170
1171 config HISILICON_ERRATUM_161600802
1172 bool "Hip07 161600802: Erroneous redistributor VLPI base"
1173 default y
1174 help
1175 The HiSilicon Hip07 SoC uses the wrong redistributor base
1176 when issued ITS commands such as VMOVP and VMAPP, and requires
1177 a 128kB offset to be applied to the target address in this commands.
1178
1179 If unsure, say Y.
1180
1181 config QCOM_FALKOR_ERRATUM_1003
1182 bool "Falkor E1003: Incorrect translation due to ASID change"
1183 default y
1184 help
1185 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1186 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1187 in TTBR1_EL1, this situation only occurs in the entry trampoline and
1188 then only for entries in the walk cache, since the leaf translation
1189 is unchanged. Work around the erratum by invalidating the walk cache
1190 entries for the trampoline before entering the kernel proper.
1191
1192 config QCOM_FALKOR_ERRATUM_1009
1193 bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1194 default y
1195 select ARM64_WORKAROUND_REPEAT_TLBI
1196 help
1197 On Falkor v1, the CPU may prematurely complete a DSB following a
1198 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1199 one more time to fix the issue.
1200
1201 If unsure, say Y.
1202
1203 config QCOM_QDF2400_ERRATUM_0065
1204 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1205 default y
1206 help
1207 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1208 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1209 been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1210
1211 If unsure, say Y.
1212
1213 config QCOM_FALKOR_ERRATUM_E1041
1214 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1215 default y
1216 help
1217 Falkor CPU may speculatively fetch instructions from an improper
1218 memory location when MMU translation is changed from SCTLR_ELn[M]=1
1219 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1220
1221 If unsure, say Y.
1222
1223 config NVIDIA_CARMEL_CNP_ERRATUM
1224 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1225 default y
1226 help
1227 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1228 invalidate shared TLB entries installed by a different core, as it would
1229 on standard ARM cores.
1230
1231 If unsure, say Y.
1232
1233 config ROCKCHIP_ERRATUM_3588001
1234 bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1235 default y
1236 help
1237 The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1238 This means, that its sharability feature may not be used, even though it
1239 is supported by the IP itself.
1240
1241 If unsure, say Y.
1242
1243 config SOCIONEXT_SYNQUACER_PREITS
1244 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1245 default y
1246 help
1247 Socionext Synquacer SoCs implement a separate h/w block to generate
1248 MSI doorbell writes with non-zero values for the device ID.
1249
1250 If unsure, say Y.
1251
1252 endmenu # "ARM errata workarounds via the alternatives framework"
1253
1254 choice
1255 prompt "Page size"
1256 default ARM64_4K_PAGES
1257 help
1258 Page size (translation granule) configuration.
1259
1260 config ARM64_4K_PAGES
1261 bool "4KB"
1262 help
1263 This feature enables 4KB pages support.
1264
1265 config ARM64_16K_PAGES
1266 bool "16KB"
1267 help
1268 The system will use 16KB pages support. AArch32 emulation
1269 requires applications compiled with 16K (or a multiple of 16K)
1270 aligned segments.
1271
1272 config ARM64_64K_PAGES
1273 bool "64KB"
1274 help
1275 This feature enables 64KB pages support (4KB by default)
1276 allowing only two levels of page tables and faster TLB
1277 look-up. AArch32 emulation requires applications compiled
1278 with 64K aligned segments.
1279
1280 endchoice
1281
1282 choice
1283 prompt "Virtual address space size"
1284 default ARM64_VA_BITS_39 if ARM64_4K_PAGES
1285 default ARM64_VA_BITS_47 if ARM64_16K_PAGES
1286 default ARM64_VA_BITS_42 if ARM64_64K_PAGES
1287 help
1288 Allows choosing one of multiple possible virtual address
1289 space sizes. The level of translation table is determined by
1290 a combination of page size and virtual address space size.
1291
1292 config ARM64_VA_BITS_36
1293 bool "36-bit" if EXPERT
1294 depends on ARM64_16K_PAGES
1295
1296 config ARM64_VA_BITS_39
1297 bool "39-bit"
1298 depends on ARM64_4K_PAGES
1299
1300 config ARM64_VA_BITS_42
1301 bool "42-bit"
1302 depends on ARM64_64K_PAGES
1303
1304 config ARM64_VA_BITS_47
1305 bool "47-bit"
1306 depends on ARM64_16K_PAGES
1307
1308 config ARM64_VA_BITS_48
1309 bool "48-bit"
1310
1311 config ARM64_VA_BITS_52
1312 bool "52-bit"
1313 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1314 help
1315 Enable 52-bit virtual addressing for userspace when explicitly
1316 requested via a hint to mmap(). The kernel will also use 52-bit
1317 virtual addresses for its own mappings (provided HW support for
1318 this feature is available, otherwise it reverts to 48-bit).
1319
1320 NOTE: Enabling 52-bit virtual addressing in conjunction with
1321 ARMv8.3 Pointer Authentication will result in the PAC being
1322 reduced from 7 bits to 3 bits, which may have a significant
1323 impact on its susceptibility to brute-force attacks.
1324
1325 If unsure, select 48-bit virtual addressing instead.
1326
1327 endchoice
1328
1329 config ARM64_FORCE_52BIT
1330 bool "Force 52-bit virtual addresses for userspace"
1331 depends on ARM64_VA_BITS_52 && EXPERT
1332 help
1333 For systems with 52-bit userspace VAs enabled, the kernel will attempt
1334 to maintain compatibility with older software by providing 48-bit VAs
1335 unless a hint is supplied to mmap.
1336
1337 This configuration option disables the 48-bit compatibility logic, and
1338 forces all userspace addresses to be 52-bit on HW that supports it. One
1339 should only enable this configuration option for stress testing userspace
1340 memory management code. If unsure say N here.
1341
1342 config ARM64_VA_BITS
1343 int
1344 default 36 if ARM64_VA_BITS_36
1345 default 39 if ARM64_VA_BITS_39
1346 default 42 if ARM64_VA_BITS_42
1347 default 47 if ARM64_VA_BITS_47
1348 default 48 if ARM64_VA_BITS_48
1349 default 52 if ARM64_VA_BITS_52
1350
1351 choice
1352 prompt "Physical address space size"
1353 default ARM64_PA_BITS_48
1354 help
1355 Choose the maximum physical address range that the kernel will
1356 support.
1357
1358 config ARM64_PA_BITS_48
1359 bool "48-bit"
1360
1361 config ARM64_PA_BITS_52
1362 bool "52-bit (ARMv8.2)"
1363 depends on ARM64_64K_PAGES
1364 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1365 help
1366 Enable support for a 52-bit physical address space, introduced as
1367 part of the ARMv8.2-LPA extension.
1368
1369 With this enabled, the kernel will also continue to work on CPUs that
1370 do not support ARMv8.2-LPA, but with some added memory overhead (and
1371 minor performance overhead).
1372
1373 endchoice
1374
1375 config ARM64_PA_BITS
1376 int
1377 default 48 if ARM64_PA_BITS_48
1378 default 52 if ARM64_PA_BITS_52
1379
1380 choice
1381 prompt "Endianness"
1382 default CPU_LITTLE_ENDIAN
1383 help
1384 Select the endianness of data accesses performed by the CPU. Userspace
1385 applications will need to be compiled and linked for the endianness
1386 that is selected here.
1387
1388 config CPU_BIG_ENDIAN
1389 bool "Build big-endian kernel"
1390 depends on !LD_IS_LLD || LLD_VERSION >= 130000
1391 # https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1392 depends on AS_IS_GNU || AS_VERSION >= 150000
1393 help
1394 Say Y if you plan on running a kernel with a big-endian userspace.
1395
1396 config CPU_LITTLE_ENDIAN
1397 bool "Build little-endian kernel"
1398 help
1399 Say Y if you plan on running a kernel with a little-endian userspace.
1400 This is usually the case for distributions targeting arm64.
1401
1402 endchoice
1403
1404 config SCHED_MC
1405 bool "Multi-core scheduler support"
1406 help
1407 Multi-core scheduler support improves the CPU scheduler's decision
1408 making when dealing with multi-core CPU chips at a cost of slightly
1409 increased overhead in some places. If unsure say N here.
1410
1411 config SCHED_CLUSTER
1412 bool "Cluster scheduler support"
1413 help
1414 Cluster scheduler support improves the CPU scheduler's decision
1415 making when dealing with machines that have clusters of CPUs.
1416 Cluster usually means a couple of CPUs which are placed closely
1417 by sharing mid-level caches, last-level cache tags or internal
1418 busses.
1419
1420 config SCHED_SMT
1421 bool "SMT scheduler support"
1422 help
1423 Improves the CPU scheduler's decision making when dealing with
1424 MultiThreading at a cost of slightly increased overhead in some
1425 places. If unsure say N here.
1426
1427 config NR_CPUS
1428 int "Maximum number of CPUs (2-4096)"
1429 range 2 4096
1430 default "256"
1431
1432 config HOTPLUG_CPU
1433 bool "Support for hot-pluggable CPUs"
1434 select GENERIC_IRQ_MIGRATION
1435 help
1436 Say Y here to experiment with turning CPUs off and on. CPUs
1437 can be controlled through /sys/devices/system/cpu.
1438
1439 # Common NUMA Features
1440 config NUMA
1441 bool "NUMA Memory Allocation and Scheduler Support"
1442 select GENERIC_ARCH_NUMA
1443 select ACPI_NUMA if ACPI
1444 select OF_NUMA
1445 select HAVE_SETUP_PER_CPU_AREA
1446 select NEED_PER_CPU_EMBED_FIRST_CHUNK
1447 select NEED_PER_CPU_PAGE_FIRST_CHUNK
1448 select USE_PERCPU_NUMA_NODE_ID
1449 help
1450 Enable NUMA (Non-Uniform Memory Access) support.
1451
1452 The kernel will try to allocate memory used by a CPU on the
1453 local memory of the CPU and add some more
1454 NUMA awareness to the kernel.
1455
1456 config NODES_SHIFT
1457 int "Maximum NUMA Nodes (as a power of 2)"
1458 range 1 10
1459 default "4"
1460 depends on NUMA
1461 help
1462 Specify the maximum number of NUMA Nodes available on the target
1463 system. Increases memory reserved to accommodate various tables.
1464
1465 source "kernel/Kconfig.hz"
1466
1467 config ARCH_SPARSEMEM_ENABLE
1468 def_bool y
1469 select SPARSEMEM_VMEMMAP_ENABLE
1470 select SPARSEMEM_VMEMMAP
1471
1472 config HW_PERF_EVENTS
1473 def_bool y
1474 depends on ARM_PMU
1475
1476 # Supported by clang >= 7.0 or GCC >= 12.0.0
1477 config CC_HAVE_SHADOW_CALL_STACK
1478 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1479
1480 config PARAVIRT
1481 bool "Enable paravirtualization code"
1482 help
1483 This changes the kernel so it can modify itself when it is run
1484 under a hypervisor, potentially improving performance significantly
1485 over full virtualization.
1486
1487 config PARAVIRT_TIME_ACCOUNTING
1488 bool "Paravirtual steal time accounting"
1489 select PARAVIRT
1490 help
1491 Select this option to enable fine granularity task steal time
1492 accounting. Time spent executing other tasks in parallel with
1493 the current vCPU is discounted from the vCPU power. To account for
1494 that, there can be a small performance impact.
1495
1496 If in doubt, say N here.
1497
1498 config ARCH_SUPPORTS_KEXEC
1499 def_bool PM_SLEEP_SMP
1500
1501 config ARCH_SUPPORTS_KEXEC_FILE
1502 def_bool y
1503
1504 config ARCH_SELECTS_KEXEC_FILE
1505 def_bool y
1506 depends on KEXEC_FILE
1507 select HAVE_IMA_KEXEC if IMA
1508
1509 config ARCH_SUPPORTS_KEXEC_SIG
1510 def_bool y
1511
1512 config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1513 def_bool y
1514
1515 config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1516 def_bool y
1517
1518 config ARCH_SUPPORTS_CRASH_DUMP
1519 def_bool y
1520
1521 config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1522 def_bool CRASH_CORE
1523
1524 config TRANS_TABLE
1525 def_bool y
1526 depends on HIBERNATION || KEXEC_CORE
1527
1528 config XEN_DOM0
1529 def_bool y
1530 depends on XEN
1531
1532 config XEN
1533 bool "Xen guest support on ARM64"
1534 depends on ARM64 && OF
1535 select SWIOTLB_XEN
1536 select PARAVIRT
1537 help
1538 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1539
1540 # include/linux/mmzone.h requires the following to be true:
1541 #
1542 # MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1543 #
1544 # so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1545 #
1546 # | SECTION_SIZE_BITS | PAGE_SHIFT | max MAX_PAGE_ORDER | default MAX_PAGE_ORDER |
1547 # ----+-------------------+--------------+----------------------+-------------------------+
1548 # 4K | 27 | 12 | 15 | 10 |
1549 # 16K | 27 | 14 | 13 | 11 |
1550 # 64K | 29 | 16 | 13 | 13 |
1551 config ARCH_FORCE_MAX_ORDER
1552 int
1553 default "13" if ARM64_64K_PAGES
1554 default "11" if ARM64_16K_PAGES
1555 default "10"
1556 help
1557 The kernel page allocator limits the size of maximal physically
1558 contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1559 defines the maximal power of two of number of pages that can be
1560 allocated as a single contiguous block. This option allows
1561 overriding the default setting when ability to allocate very
1562 large blocks of physically contiguous memory is required.
1563
1564 The maximal size of allocation cannot exceed the size of the
1565 section, so the value of MAX_PAGE_ORDER should satisfy
1566
1567 MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1568
1569 Don't change if unsure.
1570
1571 config UNMAP_KERNEL_AT_EL0
1572 bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1573 default y
1574 help
1575 Speculation attacks against some high-performance processors can
1576 be used to bypass MMU permission checks and leak kernel data to
1577 userspace. This can be defended against by unmapping the kernel
1578 when running in userspace, mapping it back in on exception entry
1579 via a trampoline page in the vector table.
1580
1581 If unsure, say Y.
1582
1583 config MITIGATE_SPECTRE_BRANCH_HISTORY
1584 bool "Mitigate Spectre style attacks against branch history" if EXPERT
1585 default y
1586 help
1587 Speculation attacks against some high-performance processors can
1588 make use of branch history to influence future speculation.
1589 When taking an exception from user-space, a sequence of branches
1590 or a firmware call overwrites the branch history.
1591
1592 config RODATA_FULL_DEFAULT_ENABLED
1593 bool "Apply r/o permissions of VM areas also to their linear aliases"
1594 default y
1595 help
1596 Apply read-only attributes of VM areas to the linear alias of
1597 the backing pages as well. This prevents code or read-only data
1598 from being modified (inadvertently or intentionally) via another
1599 mapping of the same memory page. This additional enhancement can
1600 be turned off at runtime by passing rodata=[off|on] (and turned on
1601 with rodata=full if this option is set to 'n')
1602
1603 This requires the linear region to be mapped down to pages,
1604 which may adversely affect performance in some cases.
1605
1606 config ARM64_SW_TTBR0_PAN
1607 bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1608 help
1609 Enabling this option prevents the kernel from accessing
1610 user-space memory directly by pointing TTBR0_EL1 to a reserved
1611 zeroed area and reserved ASID. The user access routines
1612 restore the valid TTBR0_EL1 temporarily.
1613
1614 config ARM64_TAGGED_ADDR_ABI
1615 bool "Enable the tagged user addresses syscall ABI"
1616 default y
1617 help
1618 When this option is enabled, user applications can opt in to a
1619 relaxed ABI via prctl() allowing tagged addresses to be passed
1620 to system calls as pointer arguments. For details, see
1621 Documentation/arch/arm64/tagged-address-abi.rst.
1622
1623 menuconfig COMPAT
1624 bool "Kernel support for 32-bit EL0"
1625 depends on ARM64_4K_PAGES || EXPERT
1626 select HAVE_UID16
1627 select OLD_SIGSUSPEND3
1628 select COMPAT_OLD_SIGACTION
1629 help
1630 This option enables support for a 32-bit EL0 running under a 64-bit
1631 kernel at EL1. AArch32-specific components such as system calls,
1632 the user helper functions, VFP support and the ptrace interface are
1633 handled appropriately by the kernel.
1634
1635 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1636 that you will only be able to execute AArch32 binaries that were compiled
1637 with page size aligned segments.
1638
1639 If you want to execute 32-bit userspace applications, say Y.
1640
1641 if COMPAT
1642
1643 config KUSER_HELPERS
1644 bool "Enable kuser helpers page for 32-bit applications"
1645 default y
1646 help
1647 Warning: disabling this option may break 32-bit user programs.
1648
1649 Provide kuser helpers to compat tasks. The kernel provides
1650 helper code to userspace in read only form at a fixed location
1651 to allow userspace to be independent of the CPU type fitted to
1652 the system. This permits binaries to be run on ARMv4 through
1653 to ARMv8 without modification.
1654
1655 See Documentation/arch/arm/kernel_user_helpers.rst for details.
1656
1657 However, the fixed address nature of these helpers can be used
1658 by ROP (return orientated programming) authors when creating
1659 exploits.
1660
1661 If all of the binaries and libraries which run on your platform
1662 are built specifically for your platform, and make no use of
1663 these helpers, then you can turn this option off to hinder
1664 such exploits. However, in that case, if a binary or library
1665 relying on those helpers is run, it will not function correctly.
1666
1667 Say N here only if you are absolutely certain that you do not
1668 need these helpers; otherwise, the safe option is to say Y.
1669
1670 config COMPAT_VDSO
1671 bool "Enable vDSO for 32-bit applications"
1672 depends on !CPU_BIG_ENDIAN
1673 depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1674 select GENERIC_COMPAT_VDSO
1675 default y
1676 help
1677 Place in the process address space of 32-bit applications an
1678 ELF shared object providing fast implementations of gettimeofday
1679 and clock_gettime.
1680
1681 You must have a 32-bit build of glibc 2.22 or later for programs
1682 to seamlessly take advantage of this.
1683
1684 config THUMB2_COMPAT_VDSO
1685 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1686 depends on COMPAT_VDSO
1687 default y
1688 help
1689 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1690 otherwise with '-marm'.
1691
1692 config COMPAT_ALIGNMENT_FIXUPS
1693 bool "Fix up misaligned multi-word loads and stores in user space"
1694
1695 menuconfig ARMV8_DEPRECATED
1696 bool "Emulate deprecated/obsolete ARMv8 instructions"
1697 depends on SYSCTL
1698 help
1699 Legacy software support may require certain instructions
1700 that have been deprecated or obsoleted in the architecture.
1701
1702 Enable this config to enable selective emulation of these
1703 features.
1704
1705 If unsure, say Y
1706
1707 if ARMV8_DEPRECATED
1708
1709 config SWP_EMULATION
1710 bool "Emulate SWP/SWPB instructions"
1711 help
1712 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1713 they are always undefined. Say Y here to enable software
1714 emulation of these instructions for userspace using LDXR/STXR.
1715 This feature can be controlled at runtime with the abi.swp
1716 sysctl which is disabled by default.
1717
1718 In some older versions of glibc [<=2.8] SWP is used during futex
1719 trylock() operations with the assumption that the code will not
1720 be preempted. This invalid assumption may be more likely to fail
1721 with SWP emulation enabled, leading to deadlock of the user
1722 application.
1723
1724 NOTE: when accessing uncached shared regions, LDXR/STXR rely
1725 on an external transaction monitoring block called a global
1726 monitor to maintain update atomicity. If your system does not
1727 implement a global monitor, this option can cause programs that
1728 perform SWP operations to uncached memory to deadlock.
1729
1730 If unsure, say Y
1731
1732 config CP15_BARRIER_EMULATION
1733 bool "Emulate CP15 Barrier instructions"
1734 help
1735 The CP15 barrier instructions - CP15ISB, CP15DSB, and
1736 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1737 strongly recommended to use the ISB, DSB, and DMB
1738 instructions instead.
1739
1740 Say Y here to enable software emulation of these
1741 instructions for AArch32 userspace code. When this option is
1742 enabled, CP15 barrier usage is traced which can help
1743 identify software that needs updating. This feature can be
1744 controlled at runtime with the abi.cp15_barrier sysctl.
1745
1746 If unsure, say Y
1747
1748 config SETEND_EMULATION
1749 bool "Emulate SETEND instruction"
1750 help
1751 The SETEND instruction alters the data-endianness of the
1752 AArch32 EL0, and is deprecated in ARMv8.
1753
1754 Say Y here to enable software emulation of the instruction
1755 for AArch32 userspace code. This feature can be controlled
1756 at runtime with the abi.setend sysctl.
1757
1758 Note: All the cpus on the system must have mixed endian support at EL0
1759 for this feature to be enabled. If a new CPU - which doesn't support mixed
1760 endian - is hotplugged in after this feature has been enabled, there could
1761 be unexpected results in the applications.
1762
1763 If unsure, say Y
1764 endif # ARMV8_DEPRECATED
1765
1766 endif # COMPAT
1767
1768 menu "ARMv8.1 architectural features"
1769
1770 config ARM64_HW_AFDBM
1771 bool "Support for hardware updates of the Access and Dirty page flags"
1772 default y
1773 help
1774 The ARMv8.1 architecture extensions introduce support for
1775 hardware updates of the access and dirty information in page
1776 table entries. When enabled in TCR_EL1 (HA and HD bits) on
1777 capable processors, accesses to pages with PTE_AF cleared will
1778 set this bit instead of raising an access flag fault.
1779 Similarly, writes to read-only pages with the DBM bit set will
1780 clear the read-only bit (AP[2]) instead of raising a
1781 permission fault.
1782
1783 Kernels built with this configuration option enabled continue
1784 to work on pre-ARMv8.1 hardware and the performance impact is
1785 minimal. If unsure, say Y.
1786
1787 config ARM64_PAN
1788 bool "Enable support for Privileged Access Never (PAN)"
1789 default y
1790 help
1791 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1792 prevents the kernel or hypervisor from accessing user-space (EL0)
1793 memory directly.
1794
1795 Choosing this option will cause any unprotected (not using
1796 copy_to_user et al) memory access to fail with a permission fault.
1797
1798 The feature is detected at runtime, and will remain as a 'nop'
1799 instruction if the cpu does not implement the feature.
1800
1801 config AS_HAS_LSE_ATOMICS
1802 def_bool $(as-instr,.arch_extension lse)
1803
1804 config ARM64_LSE_ATOMICS
1805 bool
1806 default ARM64_USE_LSE_ATOMICS
1807 depends on AS_HAS_LSE_ATOMICS
1808
1809 config ARM64_USE_LSE_ATOMICS
1810 bool "Atomic instructions"
1811 default y
1812 help
1813 As part of the Large System Extensions, ARMv8.1 introduces new
1814 atomic instructions that are designed specifically to scale in
1815 very large systems.
1816
1817 Say Y here to make use of these instructions for the in-kernel
1818 atomic routines. This incurs a small overhead on CPUs that do
1819 not support these instructions and requires the kernel to be
1820 built with binutils >= 2.25 in order for the new instructions
1821 to be used.
1822
1823 endmenu # "ARMv8.1 architectural features"
1824
1825 menu "ARMv8.2 architectural features"
1826
1827 config AS_HAS_ARMV8_2
1828 def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1829
1830 config AS_HAS_SHA3
1831 def_bool $(as-instr,.arch armv8.2-a+sha3)
1832
1833 config ARM64_PMEM
1834 bool "Enable support for persistent memory"
1835 select ARCH_HAS_PMEM_API
1836 select ARCH_HAS_UACCESS_FLUSHCACHE
1837 help
1838 Say Y to enable support for the persistent memory API based on the
1839 ARMv8.2 DCPoP feature.
1840
1841 The feature is detected at runtime, and the kernel will use DC CVAC
1842 operations if DC CVAP is not supported (following the behaviour of
1843 DC CVAP itself if the system does not define a point of persistence).
1844
1845 config ARM64_RAS_EXTN
1846 bool "Enable support for RAS CPU Extensions"
1847 default y
1848 help
1849 CPUs that support the Reliability, Availability and Serviceability
1850 (RAS) Extensions, part of ARMv8.2 are able to track faults and
1851 errors, classify them and report them to software.
1852
1853 On CPUs with these extensions system software can use additional
1854 barriers to determine if faults are pending and read the
1855 classification from a new set of registers.
1856
1857 Selecting this feature will allow the kernel to use these barriers
1858 and access the new registers if the system supports the extension.
1859 Platform RAS features may additionally depend on firmware support.
1860
1861 config ARM64_CNP
1862 bool "Enable support for Common Not Private (CNP) translations"
1863 default y
1864 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1865 help
1866 Common Not Private (CNP) allows translation table entries to
1867 be shared between different PEs in the same inner shareable
1868 domain, so the hardware can use this fact to optimise the
1869 caching of such entries in the TLB.
1870
1871 Selecting this option allows the CNP feature to be detected
1872 at runtime, and does not affect PEs that do not implement
1873 this feature.
1874
1875 endmenu # "ARMv8.2 architectural features"
1876
1877 menu "ARMv8.3 architectural features"
1878
1879 config ARM64_PTR_AUTH
1880 bool "Enable support for pointer authentication"
1881 default y
1882 help
1883 Pointer authentication (part of the ARMv8.3 Extensions) provides
1884 instructions for signing and authenticating pointers against secret
1885 keys, which can be used to mitigate Return Oriented Programming (ROP)
1886 and other attacks.
1887
1888 This option enables these instructions at EL0 (i.e. for userspace).
1889 Choosing this option will cause the kernel to initialise secret keys
1890 for each process at exec() time, with these keys being
1891 context-switched along with the process.
1892
1893 The feature is detected at runtime. If the feature is not present in
1894 hardware it will not be advertised to userspace/KVM guest nor will it
1895 be enabled.
1896
1897 If the feature is present on the boot CPU but not on a late CPU, then
1898 the late CPU will be parked. Also, if the boot CPU does not have
1899 address auth and the late CPU has then the late CPU will still boot
1900 but with the feature disabled. On such a system, this option should
1901 not be selected.
1902
1903 config ARM64_PTR_AUTH_KERNEL
1904 bool "Use pointer authentication for kernel"
1905 default y
1906 depends on ARM64_PTR_AUTH
1907 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1908 # Modern compilers insert a .note.gnu.property section note for PAC
1909 # which is only understood by binutils starting with version 2.33.1.
1910 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1911 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1912 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1913 help
1914 If the compiler supports the -mbranch-protection or
1915 -msign-return-address flag (e.g. GCC 7 or later), then this option
1916 will cause the kernel itself to be compiled with return address
1917 protection. In this case, and if the target hardware is known to
1918 support pointer authentication, then CONFIG_STACKPROTECTOR can be
1919 disabled with minimal loss of protection.
1920
1921 This feature works with FUNCTION_GRAPH_TRACER option only if
1922 DYNAMIC_FTRACE_WITH_ARGS is enabled.
1923
1924 config CC_HAS_BRANCH_PROT_PAC_RET
1925 # GCC 9 or later, clang 8 or later
1926 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1927
1928 config CC_HAS_SIGN_RETURN_ADDRESS
1929 # GCC 7, 8
1930 def_bool $(cc-option,-msign-return-address=all)
1931
1932 config AS_HAS_ARMV8_3
1933 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1934
1935 config AS_HAS_CFI_NEGATE_RA_STATE
1936 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1937
1938 config AS_HAS_LDAPR
1939 def_bool $(as-instr,.arch_extension rcpc)
1940
1941 endmenu # "ARMv8.3 architectural features"
1942
1943 menu "ARMv8.4 architectural features"
1944
1945 config ARM64_AMU_EXTN
1946 bool "Enable support for the Activity Monitors Unit CPU extension"
1947 default y
1948 help
1949 The activity monitors extension is an optional extension introduced
1950 by the ARMv8.4 CPU architecture. This enables support for version 1
1951 of the activity monitors architecture, AMUv1.
1952
1953 To enable the use of this extension on CPUs that implement it, say Y.
1954
1955 Note that for architectural reasons, firmware _must_ implement AMU
1956 support when running on CPUs that present the activity monitors
1957 extension. The required support is present in:
1958 * Version 1.5 and later of the ARM Trusted Firmware
1959
1960 For kernels that have this configuration enabled but boot with broken
1961 firmware, you may need to say N here until the firmware is fixed.
1962 Otherwise you may experience firmware panics or lockups when
1963 accessing the counter registers. Even if you are not observing these
1964 symptoms, the values returned by the register reads might not
1965 correctly reflect reality. Most commonly, the value read will be 0,
1966 indicating that the counter is not enabled.
1967
1968 config AS_HAS_ARMV8_4
1969 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1970
1971 config ARM64_TLB_RANGE
1972 bool "Enable support for tlbi range feature"
1973 default y
1974 depends on AS_HAS_ARMV8_4
1975 help
1976 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1977 range of input addresses.
1978
1979 The feature introduces new assembly instructions, and they were
1980 support when binutils >= 2.30.
1981
1982 endmenu # "ARMv8.4 architectural features"
1983
1984 menu "ARMv8.5 architectural features"
1985
1986 config AS_HAS_ARMV8_5
1987 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1988
1989 config ARM64_BTI
1990 bool "Branch Target Identification support"
1991 default y
1992 help
1993 Branch Target Identification (part of the ARMv8.5 Extensions)
1994 provides a mechanism to limit the set of locations to which computed
1995 branch instructions such as BR or BLR can jump.
1996
1997 To make use of BTI on CPUs that support it, say Y.
1998
1999 BTI is intended to provide complementary protection to other control
2000 flow integrity protection mechanisms, such as the Pointer
2001 authentication mechanism provided as part of the ARMv8.3 Extensions.
2002 For this reason, it does not make sense to enable this option without
2003 also enabling support for pointer authentication. Thus, when
2004 enabling this option you should also select ARM64_PTR_AUTH=y.
2005
2006 Userspace binaries must also be specifically compiled to make use of
2007 this mechanism. If you say N here or the hardware does not support
2008 BTI, such binaries can still run, but you get no additional
2009 enforcement of branch destinations.
2010
2011 config ARM64_BTI_KERNEL
2012 bool "Use Branch Target Identification for kernel"
2013 default y
2014 depends on ARM64_BTI
2015 depends on ARM64_PTR_AUTH_KERNEL
2016 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2017 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2018 depends on !CC_IS_GCC || GCC_VERSION >= 100100
2019 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2020 depends on !CC_IS_GCC
2021 # https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
2022 depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
2023 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2024 help
2025 Build the kernel with Branch Target Identification annotations
2026 and enable enforcement of this for kernel code. When this option
2027 is enabled and the system supports BTI all kernel code including
2028 modular code must have BTI enabled.
2029
2030 config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2031 # GCC 9 or later, clang 8 or later
2032 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2033
2034 config ARM64_E0PD
2035 bool "Enable support for E0PD"
2036 default y
2037 help
2038 E0PD (part of the ARMv8.5 extensions) allows us to ensure
2039 that EL0 accesses made via TTBR1 always fault in constant time,
2040 providing similar benefits to KASLR as those provided by KPTI, but
2041 with lower overhead and without disrupting legitimate access to
2042 kernel memory such as SPE.
2043
2044 This option enables E0PD for TTBR1 where available.
2045
2046 config ARM64_AS_HAS_MTE
2047 # Initial support for MTE went in binutils 2.32.0, checked with
2048 # ".arch armv8.5-a+memtag" below. However, this was incomplete
2049 # as a late addition to the final architecture spec (LDGM/STGM)
2050 # is only supported in the newer 2.32.x and 2.33 binutils
2051 # versions, hence the extra "stgm" instruction check below.
2052 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2053
2054 config ARM64_MTE
2055 bool "Memory Tagging Extension support"
2056 default y
2057 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2058 depends on AS_HAS_ARMV8_5
2059 depends on AS_HAS_LSE_ATOMICS
2060 # Required for tag checking in the uaccess routines
2061 depends on ARM64_PAN
2062 select ARCH_HAS_SUBPAGE_FAULTS
2063 select ARCH_USES_HIGH_VMA_FLAGS
2064 select ARCH_USES_PG_ARCH_X
2065 help
2066 Memory Tagging (part of the ARMv8.5 Extensions) provides
2067 architectural support for run-time, always-on detection of
2068 various classes of memory error to aid with software debugging
2069 to eliminate vulnerabilities arising from memory-unsafe
2070 languages.
2071
2072 This option enables the support for the Memory Tagging
2073 Extension at EL0 (i.e. for userspace).
2074
2075 Selecting this option allows the feature to be detected at
2076 runtime. Any secondary CPU not implementing this feature will
2077 not be allowed a late bring-up.
2078
2079 Userspace binaries that want to use this feature must
2080 explicitly opt in. The mechanism for the userspace is
2081 described in:
2082
2083 Documentation/arch/arm64/memory-tagging-extension.rst.
2084
2085 endmenu # "ARMv8.5 architectural features"
2086
2087 menu "ARMv8.7 architectural features"
2088
2089 config ARM64_EPAN
2090 bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2091 default y
2092 depends on ARM64_PAN
2093 help
2094 Enhanced Privileged Access Never (EPAN) allows Privileged
2095 Access Never to be used with Execute-only mappings.
2096
2097 The feature is detected at runtime, and will remain disabled
2098 if the cpu does not implement the feature.
2099 endmenu # "ARMv8.7 architectural features"
2100
2101 config ARM64_SVE
2102 bool "ARM Scalable Vector Extension support"
2103 default y
2104 help
2105 The Scalable Vector Extension (SVE) is an extension to the AArch64
2106 execution state which complements and extends the SIMD functionality
2107 of the base architecture to support much larger vectors and to enable
2108 additional vectorisation opportunities.
2109
2110 To enable use of this extension on CPUs that implement it, say Y.
2111
2112 On CPUs that support the SVE2 extensions, this option will enable
2113 those too.
2114
2115 Note that for architectural reasons, firmware _must_ implement SVE
2116 support when running on SVE capable hardware. The required support
2117 is present in:
2118
2119 * version 1.5 and later of the ARM Trusted Firmware
2120 * the AArch64 boot wrapper since commit 5e1261e08abf
2121 ("bootwrapper: SVE: Enable SVE for EL2 and below").
2122
2123 For other firmware implementations, consult the firmware documentation
2124 or vendor.
2125
2126 If you need the kernel to boot on SVE-capable hardware with broken
2127 firmware, you may need to say N here until you get your firmware
2128 fixed. Otherwise, you may experience firmware panics or lockups when
2129 booting the kernel. If unsure and you are not observing these
2130 symptoms, you should assume that it is safe to say Y.
2131
2132 config ARM64_SME
2133 bool "ARM Scalable Matrix Extension support"
2134 default y
2135 depends on ARM64_SVE
2136 help
2137 The Scalable Matrix Extension (SME) is an extension to the AArch64
2138 execution state which utilises a substantial subset of the SVE
2139 instruction set, together with the addition of new architectural
2140 register state capable of holding two dimensional matrix tiles to
2141 enable various matrix operations.
2142
2143 config ARM64_PSEUDO_NMI
2144 bool "Support for NMI-like interrupts"
2145 select ARM_GIC_V3
2146 help
2147 Adds support for mimicking Non-Maskable Interrupts through the use of
2148 GIC interrupt priority. This support requires version 3 or later of
2149 ARM GIC.
2150
2151 This high priority configuration for interrupts needs to be
2152 explicitly enabled by setting the kernel parameter
2153 "irqchip.gicv3_pseudo_nmi" to 1.
2154
2155 If unsure, say N
2156
2157 if ARM64_PSEUDO_NMI
2158 config ARM64_DEBUG_PRIORITY_MASKING
2159 bool "Debug interrupt priority masking"
2160 help
2161 This adds runtime checks to functions enabling/disabling
2162 interrupts when using priority masking. The additional checks verify
2163 the validity of ICC_PMR_EL1 when calling concerned functions.
2164
2165 If unsure, say N
2166 endif # ARM64_PSEUDO_NMI
2167
2168 config RELOCATABLE
2169 bool "Build a relocatable kernel image" if EXPERT
2170 select ARCH_HAS_RELR
2171 default y
2172 help
2173 This builds the kernel as a Position Independent Executable (PIE),
2174 which retains all relocation metadata required to relocate the
2175 kernel binary at runtime to a different virtual address than the
2176 address it was linked at.
2177 Since AArch64 uses the RELA relocation format, this requires a
2178 relocation pass at runtime even if the kernel is loaded at the
2179 same address it was linked at.
2180
2181 config RANDOMIZE_BASE
2182 bool "Randomize the address of the kernel image"
2183 select RELOCATABLE
2184 help
2185 Randomizes the virtual address at which the kernel image is
2186 loaded, as a security feature that deters exploit attempts
2187 relying on knowledge of the location of kernel internals.
2188
2189 It is the bootloader's job to provide entropy, by passing a
2190 random u64 value in /chosen/kaslr-seed at kernel entry.
2191
2192 When booting via the UEFI stub, it will invoke the firmware's
2193 EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2194 to the kernel proper. In addition, it will randomise the physical
2195 location of the kernel Image as well.
2196
2197 If unsure, say N.
2198
2199 config RANDOMIZE_MODULE_REGION_FULL
2200 bool "Randomize the module region over a 2 GB range"
2201 depends on RANDOMIZE_BASE
2202 default y
2203 help
2204 Randomizes the location of the module region inside a 2 GB window
2205 covering the core kernel. This way, it is less likely for modules
2206 to leak information about the location of core kernel data structures
2207 but it does imply that function calls between modules and the core
2208 kernel will need to be resolved via veneers in the module PLT.
2209
2210 When this option is not set, the module region will be randomized over
2211 a limited range that contains the [_stext, _etext] interval of the
2212 core kernel, so branch relocations are almost always in range unless
2213 the region is exhausted. In this particular case of region
2214 exhaustion, modules might be able to fall back to a larger 2GB area.
2215
2216 config CC_HAVE_STACKPROTECTOR_SYSREG
2217 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2218
2219 config STACKPROTECTOR_PER_TASK
2220 def_bool y
2221 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2222
2223 config UNWIND_PATCH_PAC_INTO_SCS
2224 bool "Enable shadow call stack dynamically using code patching"
2225 # needs Clang with https://reviews.llvm.org/D111780 incorporated
2226 depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2227 depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2228 depends on SHADOW_CALL_STACK
2229 select UNWIND_TABLES
2230 select DYNAMIC_SCS
2231
2232 endmenu # "Kernel Features"
2233
2234 menu "Boot options"
2235
2236 config ARM64_ACPI_PARKING_PROTOCOL
2237 bool "Enable support for the ARM64 ACPI parking protocol"
2238 depends on ACPI
2239 help
2240 Enable support for the ARM64 ACPI parking protocol. If disabled
2241 the kernel will not allow booting through the ARM64 ACPI parking
2242 protocol even if the corresponding data is present in the ACPI
2243 MADT table.
2244
2245 config CMDLINE
2246 string "Default kernel command string"
2247 default ""
2248 help
2249 Provide a set of default command-line options at build time by
2250 entering them here. As a minimum, you should specify the the
2251 root device (e.g. root=/dev/nfs).
2252
2253 choice
2254 prompt "Kernel command line type" if CMDLINE != ""
2255 default CMDLINE_FROM_BOOTLOADER
2256 help
2257 Choose how the kernel will handle the provided default kernel
2258 command line string.
2259
2260 config CMDLINE_FROM_BOOTLOADER
2261 bool "Use bootloader kernel arguments if available"
2262 help
2263 Uses the command-line options passed by the boot loader. If
2264 the boot loader doesn't provide any, the default kernel command
2265 string provided in CMDLINE will be used.
2266
2267 config CMDLINE_FORCE
2268 bool "Always use the default kernel command string"
2269 help
2270 Always use the default kernel command string, even if the boot
2271 loader passes other arguments to the kernel.
2272 This is useful if you cannot or don't want to change the
2273 command-line options your boot loader passes to the kernel.
2274
2275 endchoice
2276
2277 config EFI_STUB
2278 bool
2279
2280 config EFI
2281 bool "UEFI runtime support"
2282 depends on OF && !CPU_BIG_ENDIAN
2283 depends on KERNEL_MODE_NEON
2284 select ARCH_SUPPORTS_ACPI
2285 select LIBFDT
2286 select UCS2_STRING
2287 select EFI_PARAMS_FROM_FDT
2288 select EFI_RUNTIME_WRAPPERS
2289 select EFI_STUB
2290 select EFI_GENERIC_STUB
2291 imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2292 default y
2293 help
2294 This option provides support for runtime services provided
2295 by UEFI firmware (such as non-volatile variables, realtime
2296 clock, and platform reset). A UEFI stub is also provided to
2297 allow the kernel to be booted as an EFI application. This
2298 is only useful on systems that have UEFI firmware.
2299
2300 config DMI
2301 bool "Enable support for SMBIOS (DMI) tables"
2302 depends on EFI
2303 default y
2304 help
2305 This enables SMBIOS/DMI feature for systems.
2306
2307 This option is only useful on systems that have UEFI firmware.
2308 However, even with this option, the resultant kernel should
2309 continue to boot on existing non-UEFI platforms.
2310
2311 endmenu # "Boot options"
2312
2313 menu "Power management options"
2314
2315 source "kernel/power/Kconfig"
2316
2317 config ARCH_HIBERNATION_POSSIBLE
2318 def_bool y
2319 depends on CPU_PM
2320
2321 config ARCH_HIBERNATION_HEADER
2322 def_bool y
2323 depends on HIBERNATION
2324
2325 config ARCH_SUSPEND_POSSIBLE
2326 def_bool y
2327
2328 endmenu # "Power management options"
2329
2330 menu "CPU Power Management"
2331
2332 source "drivers/cpuidle/Kconfig"
2333
2334 source "drivers/cpufreq/Kconfig"
2335
2336 endmenu # "CPU Power Management"
2337
2338 source "drivers/acpi/Kconfig"
2339
2340 source "arch/arm64/kvm/Kconfig"
2341