]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/arm64/crypto/aes-glue.c
Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[thirdparty/linux.git] / arch / arm64 / crypto / aes-glue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES
4 *
5 * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6 */
7
8 #include <asm/neon.h>
9 #include <asm/hwcap.h>
10 #include <asm/simd.h>
11 #include <crypto/aes.h>
12 #include <crypto/ctr.h>
13 #include <crypto/sha.h>
14 #include <crypto/internal/hash.h>
15 #include <crypto/internal/simd.h>
16 #include <crypto/internal/skcipher.h>
17 #include <crypto/scatterwalk.h>
18 #include <linux/module.h>
19 #include <linux/cpufeature.h>
20 #include <crypto/xts.h>
21
22 #include "aes-ce-setkey.h"
23
24 #ifdef USE_V8_CRYPTO_EXTENSIONS
25 #define MODE "ce"
26 #define PRIO 300
27 #define aes_expandkey ce_aes_expandkey
28 #define aes_ecb_encrypt ce_aes_ecb_encrypt
29 #define aes_ecb_decrypt ce_aes_ecb_decrypt
30 #define aes_cbc_encrypt ce_aes_cbc_encrypt
31 #define aes_cbc_decrypt ce_aes_cbc_decrypt
32 #define aes_cbc_cts_encrypt ce_aes_cbc_cts_encrypt
33 #define aes_cbc_cts_decrypt ce_aes_cbc_cts_decrypt
34 #define aes_essiv_cbc_encrypt ce_aes_essiv_cbc_encrypt
35 #define aes_essiv_cbc_decrypt ce_aes_essiv_cbc_decrypt
36 #define aes_ctr_encrypt ce_aes_ctr_encrypt
37 #define aes_xts_encrypt ce_aes_xts_encrypt
38 #define aes_xts_decrypt ce_aes_xts_decrypt
39 #define aes_mac_update ce_aes_mac_update
40 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
41 #else
42 #define MODE "neon"
43 #define PRIO 200
44 #define aes_ecb_encrypt neon_aes_ecb_encrypt
45 #define aes_ecb_decrypt neon_aes_ecb_decrypt
46 #define aes_cbc_encrypt neon_aes_cbc_encrypt
47 #define aes_cbc_decrypt neon_aes_cbc_decrypt
48 #define aes_cbc_cts_encrypt neon_aes_cbc_cts_encrypt
49 #define aes_cbc_cts_decrypt neon_aes_cbc_cts_decrypt
50 #define aes_essiv_cbc_encrypt neon_aes_essiv_cbc_encrypt
51 #define aes_essiv_cbc_decrypt neon_aes_essiv_cbc_decrypt
52 #define aes_ctr_encrypt neon_aes_ctr_encrypt
53 #define aes_xts_encrypt neon_aes_xts_encrypt
54 #define aes_xts_decrypt neon_aes_xts_decrypt
55 #define aes_mac_update neon_aes_mac_update
56 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON");
57 #endif
58 #if defined(USE_V8_CRYPTO_EXTENSIONS) || !defined(CONFIG_CRYPTO_AES_ARM64_BS)
59 MODULE_ALIAS_CRYPTO("ecb(aes)");
60 MODULE_ALIAS_CRYPTO("cbc(aes)");
61 MODULE_ALIAS_CRYPTO("ctr(aes)");
62 MODULE_ALIAS_CRYPTO("xts(aes)");
63 #endif
64 MODULE_ALIAS_CRYPTO("cts(cbc(aes))");
65 MODULE_ALIAS_CRYPTO("essiv(cbc(aes),sha256)");
66 MODULE_ALIAS_CRYPTO("cmac(aes)");
67 MODULE_ALIAS_CRYPTO("xcbc(aes)");
68 MODULE_ALIAS_CRYPTO("cbcmac(aes)");
69
70 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
71 MODULE_LICENSE("GPL v2");
72
73 /* defined in aes-modes.S */
74 asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
75 int rounds, int blocks);
76 asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[],
77 int rounds, int blocks);
78
79 asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
80 int rounds, int blocks, u8 iv[]);
81 asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[],
82 int rounds, int blocks, u8 iv[]);
83
84 asmlinkage void aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[],
85 int rounds, int bytes, u8 const iv[]);
86 asmlinkage void aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
87 int rounds, int bytes, u8 const iv[]);
88
89 asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
90 int rounds, int blocks, u8 ctr[]);
91
92 asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
93 int rounds, int bytes, u32 const rk2[], u8 iv[],
94 int first);
95 asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[],
96 int rounds, int bytes, u32 const rk2[], u8 iv[],
97 int first);
98
99 asmlinkage void aes_essiv_cbc_encrypt(u8 out[], u8 const in[], u32 const rk1[],
100 int rounds, int blocks, u8 iv[],
101 u32 const rk2[]);
102 asmlinkage void aes_essiv_cbc_decrypt(u8 out[], u8 const in[], u32 const rk1[],
103 int rounds, int blocks, u8 iv[],
104 u32 const rk2[]);
105
106 asmlinkage void aes_mac_update(u8 const in[], u32 const rk[], int rounds,
107 int blocks, u8 dg[], int enc_before,
108 int enc_after);
109
110 struct crypto_aes_xts_ctx {
111 struct crypto_aes_ctx key1;
112 struct crypto_aes_ctx __aligned(8) key2;
113 };
114
115 struct crypto_aes_essiv_cbc_ctx {
116 struct crypto_aes_ctx key1;
117 struct crypto_aes_ctx __aligned(8) key2;
118 struct crypto_shash *hash;
119 };
120
121 struct mac_tfm_ctx {
122 struct crypto_aes_ctx key;
123 u8 __aligned(8) consts[];
124 };
125
126 struct mac_desc_ctx {
127 unsigned int len;
128 u8 dg[AES_BLOCK_SIZE];
129 };
130
131 static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
132 unsigned int key_len)
133 {
134 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
135
136 return aes_expandkey(ctx, in_key, key_len);
137 }
138
139 static int __maybe_unused xts_set_key(struct crypto_skcipher *tfm,
140 const u8 *in_key, unsigned int key_len)
141 {
142 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
143 int ret;
144
145 ret = xts_verify_key(tfm, in_key, key_len);
146 if (ret)
147 return ret;
148
149 ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
150 if (!ret)
151 ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
152 key_len / 2);
153 return ret;
154 }
155
156 static int __maybe_unused essiv_cbc_set_key(struct crypto_skcipher *tfm,
157 const u8 *in_key,
158 unsigned int key_len)
159 {
160 struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
161 u8 digest[SHA256_DIGEST_SIZE];
162 int ret;
163
164 ret = aes_expandkey(&ctx->key1, in_key, key_len);
165 if (ret)
166 return ret;
167
168 crypto_shash_tfm_digest(ctx->hash, in_key, key_len, digest);
169
170 return aes_expandkey(&ctx->key2, digest, sizeof(digest));
171 }
172
173 static int __maybe_unused ecb_encrypt(struct skcipher_request *req)
174 {
175 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
176 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
177 int err, rounds = 6 + ctx->key_length / 4;
178 struct skcipher_walk walk;
179 unsigned int blocks;
180
181 err = skcipher_walk_virt(&walk, req, false);
182
183 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
184 kernel_neon_begin();
185 aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
186 ctx->key_enc, rounds, blocks);
187 kernel_neon_end();
188 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
189 }
190 return err;
191 }
192
193 static int __maybe_unused ecb_decrypt(struct skcipher_request *req)
194 {
195 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
196 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
197 int err, rounds = 6 + ctx->key_length / 4;
198 struct skcipher_walk walk;
199 unsigned int blocks;
200
201 err = skcipher_walk_virt(&walk, req, false);
202
203 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
204 kernel_neon_begin();
205 aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
206 ctx->key_dec, rounds, blocks);
207 kernel_neon_end();
208 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
209 }
210 return err;
211 }
212
213 static int cbc_encrypt_walk(struct skcipher_request *req,
214 struct skcipher_walk *walk)
215 {
216 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
217 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
218 int err = 0, rounds = 6 + ctx->key_length / 4;
219 unsigned int blocks;
220
221 while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
222 kernel_neon_begin();
223 aes_cbc_encrypt(walk->dst.virt.addr, walk->src.virt.addr,
224 ctx->key_enc, rounds, blocks, walk->iv);
225 kernel_neon_end();
226 err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
227 }
228 return err;
229 }
230
231 static int __maybe_unused cbc_encrypt(struct skcipher_request *req)
232 {
233 struct skcipher_walk walk;
234 int err;
235
236 err = skcipher_walk_virt(&walk, req, false);
237 if (err)
238 return err;
239 return cbc_encrypt_walk(req, &walk);
240 }
241
242 static int cbc_decrypt_walk(struct skcipher_request *req,
243 struct skcipher_walk *walk)
244 {
245 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
246 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
247 int err = 0, rounds = 6 + ctx->key_length / 4;
248 unsigned int blocks;
249
250 while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
251 kernel_neon_begin();
252 aes_cbc_decrypt(walk->dst.virt.addr, walk->src.virt.addr,
253 ctx->key_dec, rounds, blocks, walk->iv);
254 kernel_neon_end();
255 err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
256 }
257 return err;
258 }
259
260 static int __maybe_unused cbc_decrypt(struct skcipher_request *req)
261 {
262 struct skcipher_walk walk;
263 int err;
264
265 err = skcipher_walk_virt(&walk, req, false);
266 if (err)
267 return err;
268 return cbc_decrypt_walk(req, &walk);
269 }
270
271 static int cts_cbc_encrypt(struct skcipher_request *req)
272 {
273 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
274 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
275 int err, rounds = 6 + ctx->key_length / 4;
276 int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
277 struct scatterlist *src = req->src, *dst = req->dst;
278 struct scatterlist sg_src[2], sg_dst[2];
279 struct skcipher_request subreq;
280 struct skcipher_walk walk;
281
282 skcipher_request_set_tfm(&subreq, tfm);
283 skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
284 NULL, NULL);
285
286 if (req->cryptlen <= AES_BLOCK_SIZE) {
287 if (req->cryptlen < AES_BLOCK_SIZE)
288 return -EINVAL;
289 cbc_blocks = 1;
290 }
291
292 if (cbc_blocks > 0) {
293 skcipher_request_set_crypt(&subreq, req->src, req->dst,
294 cbc_blocks * AES_BLOCK_SIZE,
295 req->iv);
296
297 err = skcipher_walk_virt(&walk, &subreq, false) ?:
298 cbc_encrypt_walk(&subreq, &walk);
299 if (err)
300 return err;
301
302 if (req->cryptlen == AES_BLOCK_SIZE)
303 return 0;
304
305 dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
306 if (req->dst != req->src)
307 dst = scatterwalk_ffwd(sg_dst, req->dst,
308 subreq.cryptlen);
309 }
310
311 /* handle ciphertext stealing */
312 skcipher_request_set_crypt(&subreq, src, dst,
313 req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
314 req->iv);
315
316 err = skcipher_walk_virt(&walk, &subreq, false);
317 if (err)
318 return err;
319
320 kernel_neon_begin();
321 aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
322 ctx->key_enc, rounds, walk.nbytes, walk.iv);
323 kernel_neon_end();
324
325 return skcipher_walk_done(&walk, 0);
326 }
327
328 static int cts_cbc_decrypt(struct skcipher_request *req)
329 {
330 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
331 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
332 int err, rounds = 6 + ctx->key_length / 4;
333 int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
334 struct scatterlist *src = req->src, *dst = req->dst;
335 struct scatterlist sg_src[2], sg_dst[2];
336 struct skcipher_request subreq;
337 struct skcipher_walk walk;
338
339 skcipher_request_set_tfm(&subreq, tfm);
340 skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
341 NULL, NULL);
342
343 if (req->cryptlen <= AES_BLOCK_SIZE) {
344 if (req->cryptlen < AES_BLOCK_SIZE)
345 return -EINVAL;
346 cbc_blocks = 1;
347 }
348
349 if (cbc_blocks > 0) {
350 skcipher_request_set_crypt(&subreq, req->src, req->dst,
351 cbc_blocks * AES_BLOCK_SIZE,
352 req->iv);
353
354 err = skcipher_walk_virt(&walk, &subreq, false) ?:
355 cbc_decrypt_walk(&subreq, &walk);
356 if (err)
357 return err;
358
359 if (req->cryptlen == AES_BLOCK_SIZE)
360 return 0;
361
362 dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
363 if (req->dst != req->src)
364 dst = scatterwalk_ffwd(sg_dst, req->dst,
365 subreq.cryptlen);
366 }
367
368 /* handle ciphertext stealing */
369 skcipher_request_set_crypt(&subreq, src, dst,
370 req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
371 req->iv);
372
373 err = skcipher_walk_virt(&walk, &subreq, false);
374 if (err)
375 return err;
376
377 kernel_neon_begin();
378 aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
379 ctx->key_dec, rounds, walk.nbytes, walk.iv);
380 kernel_neon_end();
381
382 return skcipher_walk_done(&walk, 0);
383 }
384
385 static int __maybe_unused essiv_cbc_init_tfm(struct crypto_skcipher *tfm)
386 {
387 struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
388
389 ctx->hash = crypto_alloc_shash("sha256", 0, 0);
390
391 return PTR_ERR_OR_ZERO(ctx->hash);
392 }
393
394 static void __maybe_unused essiv_cbc_exit_tfm(struct crypto_skcipher *tfm)
395 {
396 struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
397
398 crypto_free_shash(ctx->hash);
399 }
400
401 static int __maybe_unused essiv_cbc_encrypt(struct skcipher_request *req)
402 {
403 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
404 struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
405 int err, rounds = 6 + ctx->key1.key_length / 4;
406 struct skcipher_walk walk;
407 unsigned int blocks;
408
409 err = skcipher_walk_virt(&walk, req, false);
410
411 blocks = walk.nbytes / AES_BLOCK_SIZE;
412 if (blocks) {
413 kernel_neon_begin();
414 aes_essiv_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
415 ctx->key1.key_enc, rounds, blocks,
416 req->iv, ctx->key2.key_enc);
417 kernel_neon_end();
418 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
419 }
420 return err ?: cbc_encrypt_walk(req, &walk);
421 }
422
423 static int __maybe_unused essiv_cbc_decrypt(struct skcipher_request *req)
424 {
425 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
426 struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
427 int err, rounds = 6 + ctx->key1.key_length / 4;
428 struct skcipher_walk walk;
429 unsigned int blocks;
430
431 err = skcipher_walk_virt(&walk, req, false);
432
433 blocks = walk.nbytes / AES_BLOCK_SIZE;
434 if (blocks) {
435 kernel_neon_begin();
436 aes_essiv_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
437 ctx->key1.key_dec, rounds, blocks,
438 req->iv, ctx->key2.key_enc);
439 kernel_neon_end();
440 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
441 }
442 return err ?: cbc_decrypt_walk(req, &walk);
443 }
444
445 static int ctr_encrypt(struct skcipher_request *req)
446 {
447 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
448 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
449 int err, rounds = 6 + ctx->key_length / 4;
450 struct skcipher_walk walk;
451 int blocks;
452
453 err = skcipher_walk_virt(&walk, req, false);
454
455 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
456 kernel_neon_begin();
457 aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
458 ctx->key_enc, rounds, blocks, walk.iv);
459 kernel_neon_end();
460 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
461 }
462 if (walk.nbytes) {
463 u8 __aligned(8) tail[AES_BLOCK_SIZE];
464 unsigned int nbytes = walk.nbytes;
465 u8 *tdst = walk.dst.virt.addr;
466 u8 *tsrc = walk.src.virt.addr;
467
468 /*
469 * Tell aes_ctr_encrypt() to process a tail block.
470 */
471 blocks = -1;
472
473 kernel_neon_begin();
474 aes_ctr_encrypt(tail, NULL, ctx->key_enc, rounds,
475 blocks, walk.iv);
476 kernel_neon_end();
477 crypto_xor_cpy(tdst, tsrc, tail, nbytes);
478 err = skcipher_walk_done(&walk, 0);
479 }
480
481 return err;
482 }
483
484 static void ctr_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst)
485 {
486 const struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
487 unsigned long flags;
488
489 /*
490 * Temporarily disable interrupts to avoid races where
491 * cachelines are evicted when the CPU is interrupted
492 * to do something else.
493 */
494 local_irq_save(flags);
495 aes_encrypt(ctx, dst, src);
496 local_irq_restore(flags);
497 }
498
499 static int __maybe_unused ctr_encrypt_sync(struct skcipher_request *req)
500 {
501 if (!crypto_simd_usable())
502 return crypto_ctr_encrypt_walk(req, ctr_encrypt_one);
503
504 return ctr_encrypt(req);
505 }
506
507 static int __maybe_unused xts_encrypt(struct skcipher_request *req)
508 {
509 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
510 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
511 int err, first, rounds = 6 + ctx->key1.key_length / 4;
512 int tail = req->cryptlen % AES_BLOCK_SIZE;
513 struct scatterlist sg_src[2], sg_dst[2];
514 struct skcipher_request subreq;
515 struct scatterlist *src, *dst;
516 struct skcipher_walk walk;
517
518 if (req->cryptlen < AES_BLOCK_SIZE)
519 return -EINVAL;
520
521 err = skcipher_walk_virt(&walk, req, false);
522
523 if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
524 int xts_blocks = DIV_ROUND_UP(req->cryptlen,
525 AES_BLOCK_SIZE) - 2;
526
527 skcipher_walk_abort(&walk);
528
529 skcipher_request_set_tfm(&subreq, tfm);
530 skcipher_request_set_callback(&subreq,
531 skcipher_request_flags(req),
532 NULL, NULL);
533 skcipher_request_set_crypt(&subreq, req->src, req->dst,
534 xts_blocks * AES_BLOCK_SIZE,
535 req->iv);
536 req = &subreq;
537 err = skcipher_walk_virt(&walk, req, false);
538 } else {
539 tail = 0;
540 }
541
542 for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
543 int nbytes = walk.nbytes;
544
545 if (walk.nbytes < walk.total)
546 nbytes &= ~(AES_BLOCK_SIZE - 1);
547
548 kernel_neon_begin();
549 aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
550 ctx->key1.key_enc, rounds, nbytes,
551 ctx->key2.key_enc, walk.iv, first);
552 kernel_neon_end();
553 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
554 }
555
556 if (err || likely(!tail))
557 return err;
558
559 dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
560 if (req->dst != req->src)
561 dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
562
563 skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
564 req->iv);
565
566 err = skcipher_walk_virt(&walk, &subreq, false);
567 if (err)
568 return err;
569
570 kernel_neon_begin();
571 aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
572 ctx->key1.key_enc, rounds, walk.nbytes,
573 ctx->key2.key_enc, walk.iv, first);
574 kernel_neon_end();
575
576 return skcipher_walk_done(&walk, 0);
577 }
578
579 static int __maybe_unused xts_decrypt(struct skcipher_request *req)
580 {
581 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
582 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
583 int err, first, rounds = 6 + ctx->key1.key_length / 4;
584 int tail = req->cryptlen % AES_BLOCK_SIZE;
585 struct scatterlist sg_src[2], sg_dst[2];
586 struct skcipher_request subreq;
587 struct scatterlist *src, *dst;
588 struct skcipher_walk walk;
589
590 if (req->cryptlen < AES_BLOCK_SIZE)
591 return -EINVAL;
592
593 err = skcipher_walk_virt(&walk, req, false);
594
595 if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
596 int xts_blocks = DIV_ROUND_UP(req->cryptlen,
597 AES_BLOCK_SIZE) - 2;
598
599 skcipher_walk_abort(&walk);
600
601 skcipher_request_set_tfm(&subreq, tfm);
602 skcipher_request_set_callback(&subreq,
603 skcipher_request_flags(req),
604 NULL, NULL);
605 skcipher_request_set_crypt(&subreq, req->src, req->dst,
606 xts_blocks * AES_BLOCK_SIZE,
607 req->iv);
608 req = &subreq;
609 err = skcipher_walk_virt(&walk, req, false);
610 } else {
611 tail = 0;
612 }
613
614 for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
615 int nbytes = walk.nbytes;
616
617 if (walk.nbytes < walk.total)
618 nbytes &= ~(AES_BLOCK_SIZE - 1);
619
620 kernel_neon_begin();
621 aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
622 ctx->key1.key_dec, rounds, nbytes,
623 ctx->key2.key_enc, walk.iv, first);
624 kernel_neon_end();
625 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
626 }
627
628 if (err || likely(!tail))
629 return err;
630
631 dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
632 if (req->dst != req->src)
633 dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
634
635 skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
636 req->iv);
637
638 err = skcipher_walk_virt(&walk, &subreq, false);
639 if (err)
640 return err;
641
642
643 kernel_neon_begin();
644 aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
645 ctx->key1.key_dec, rounds, walk.nbytes,
646 ctx->key2.key_enc, walk.iv, first);
647 kernel_neon_end();
648
649 return skcipher_walk_done(&walk, 0);
650 }
651
652 static struct skcipher_alg aes_algs[] = { {
653 #if defined(USE_V8_CRYPTO_EXTENSIONS) || !defined(CONFIG_CRYPTO_AES_ARM64_BS)
654 .base = {
655 .cra_name = "__ecb(aes)",
656 .cra_driver_name = "__ecb-aes-" MODE,
657 .cra_priority = PRIO,
658 .cra_flags = CRYPTO_ALG_INTERNAL,
659 .cra_blocksize = AES_BLOCK_SIZE,
660 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
661 .cra_module = THIS_MODULE,
662 },
663 .min_keysize = AES_MIN_KEY_SIZE,
664 .max_keysize = AES_MAX_KEY_SIZE,
665 .setkey = skcipher_aes_setkey,
666 .encrypt = ecb_encrypt,
667 .decrypt = ecb_decrypt,
668 }, {
669 .base = {
670 .cra_name = "__cbc(aes)",
671 .cra_driver_name = "__cbc-aes-" MODE,
672 .cra_priority = PRIO,
673 .cra_flags = CRYPTO_ALG_INTERNAL,
674 .cra_blocksize = AES_BLOCK_SIZE,
675 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
676 .cra_module = THIS_MODULE,
677 },
678 .min_keysize = AES_MIN_KEY_SIZE,
679 .max_keysize = AES_MAX_KEY_SIZE,
680 .ivsize = AES_BLOCK_SIZE,
681 .setkey = skcipher_aes_setkey,
682 .encrypt = cbc_encrypt,
683 .decrypt = cbc_decrypt,
684 }, {
685 .base = {
686 .cra_name = "__ctr(aes)",
687 .cra_driver_name = "__ctr-aes-" MODE,
688 .cra_priority = PRIO,
689 .cra_flags = CRYPTO_ALG_INTERNAL,
690 .cra_blocksize = 1,
691 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
692 .cra_module = THIS_MODULE,
693 },
694 .min_keysize = AES_MIN_KEY_SIZE,
695 .max_keysize = AES_MAX_KEY_SIZE,
696 .ivsize = AES_BLOCK_SIZE,
697 .chunksize = AES_BLOCK_SIZE,
698 .setkey = skcipher_aes_setkey,
699 .encrypt = ctr_encrypt,
700 .decrypt = ctr_encrypt,
701 }, {
702 .base = {
703 .cra_name = "ctr(aes)",
704 .cra_driver_name = "ctr-aes-" MODE,
705 .cra_priority = PRIO - 1,
706 .cra_blocksize = 1,
707 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
708 .cra_module = THIS_MODULE,
709 },
710 .min_keysize = AES_MIN_KEY_SIZE,
711 .max_keysize = AES_MAX_KEY_SIZE,
712 .ivsize = AES_BLOCK_SIZE,
713 .chunksize = AES_BLOCK_SIZE,
714 .setkey = skcipher_aes_setkey,
715 .encrypt = ctr_encrypt_sync,
716 .decrypt = ctr_encrypt_sync,
717 }, {
718 .base = {
719 .cra_name = "__xts(aes)",
720 .cra_driver_name = "__xts-aes-" MODE,
721 .cra_priority = PRIO,
722 .cra_flags = CRYPTO_ALG_INTERNAL,
723 .cra_blocksize = AES_BLOCK_SIZE,
724 .cra_ctxsize = sizeof(struct crypto_aes_xts_ctx),
725 .cra_module = THIS_MODULE,
726 },
727 .min_keysize = 2 * AES_MIN_KEY_SIZE,
728 .max_keysize = 2 * AES_MAX_KEY_SIZE,
729 .ivsize = AES_BLOCK_SIZE,
730 .walksize = 2 * AES_BLOCK_SIZE,
731 .setkey = xts_set_key,
732 .encrypt = xts_encrypt,
733 .decrypt = xts_decrypt,
734 }, {
735 #endif
736 .base = {
737 .cra_name = "__cts(cbc(aes))",
738 .cra_driver_name = "__cts-cbc-aes-" MODE,
739 .cra_priority = PRIO,
740 .cra_flags = CRYPTO_ALG_INTERNAL,
741 .cra_blocksize = AES_BLOCK_SIZE,
742 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
743 .cra_module = THIS_MODULE,
744 },
745 .min_keysize = AES_MIN_KEY_SIZE,
746 .max_keysize = AES_MAX_KEY_SIZE,
747 .ivsize = AES_BLOCK_SIZE,
748 .walksize = 2 * AES_BLOCK_SIZE,
749 .setkey = skcipher_aes_setkey,
750 .encrypt = cts_cbc_encrypt,
751 .decrypt = cts_cbc_decrypt,
752 }, {
753 .base = {
754 .cra_name = "__essiv(cbc(aes),sha256)",
755 .cra_driver_name = "__essiv-cbc-aes-sha256-" MODE,
756 .cra_priority = PRIO + 1,
757 .cra_flags = CRYPTO_ALG_INTERNAL,
758 .cra_blocksize = AES_BLOCK_SIZE,
759 .cra_ctxsize = sizeof(struct crypto_aes_essiv_cbc_ctx),
760 .cra_module = THIS_MODULE,
761 },
762 .min_keysize = AES_MIN_KEY_SIZE,
763 .max_keysize = AES_MAX_KEY_SIZE,
764 .ivsize = AES_BLOCK_SIZE,
765 .setkey = essiv_cbc_set_key,
766 .encrypt = essiv_cbc_encrypt,
767 .decrypt = essiv_cbc_decrypt,
768 .init = essiv_cbc_init_tfm,
769 .exit = essiv_cbc_exit_tfm,
770 } };
771
772 static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
773 unsigned int key_len)
774 {
775 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
776
777 return aes_expandkey(&ctx->key, in_key, key_len);
778 }
779
780 static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
781 {
782 u64 a = be64_to_cpu(x->a);
783 u64 b = be64_to_cpu(x->b);
784
785 y->a = cpu_to_be64((a << 1) | (b >> 63));
786 y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
787 }
788
789 static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
790 unsigned int key_len)
791 {
792 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
793 be128 *consts = (be128 *)ctx->consts;
794 int rounds = 6 + key_len / 4;
795 int err;
796
797 err = cbcmac_setkey(tfm, in_key, key_len);
798 if (err)
799 return err;
800
801 /* encrypt the zero vector */
802 kernel_neon_begin();
803 aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, ctx->key.key_enc,
804 rounds, 1);
805 kernel_neon_end();
806
807 cmac_gf128_mul_by_x(consts, consts);
808 cmac_gf128_mul_by_x(consts + 1, consts);
809
810 return 0;
811 }
812
813 static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
814 unsigned int key_len)
815 {
816 static u8 const ks[3][AES_BLOCK_SIZE] = {
817 { [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
818 { [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
819 { [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
820 };
821
822 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
823 int rounds = 6 + key_len / 4;
824 u8 key[AES_BLOCK_SIZE];
825 int err;
826
827 err = cbcmac_setkey(tfm, in_key, key_len);
828 if (err)
829 return err;
830
831 kernel_neon_begin();
832 aes_ecb_encrypt(key, ks[0], ctx->key.key_enc, rounds, 1);
833 aes_ecb_encrypt(ctx->consts, ks[1], ctx->key.key_enc, rounds, 2);
834 kernel_neon_end();
835
836 return cbcmac_setkey(tfm, key, sizeof(key));
837 }
838
839 static int mac_init(struct shash_desc *desc)
840 {
841 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
842
843 memset(ctx->dg, 0, AES_BLOCK_SIZE);
844 ctx->len = 0;
845
846 return 0;
847 }
848
849 static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
850 u8 dg[], int enc_before, int enc_after)
851 {
852 int rounds = 6 + ctx->key_length / 4;
853
854 if (crypto_simd_usable()) {
855 kernel_neon_begin();
856 aes_mac_update(in, ctx->key_enc, rounds, blocks, dg, enc_before,
857 enc_after);
858 kernel_neon_end();
859 } else {
860 if (enc_before)
861 aes_encrypt(ctx, dg, dg);
862
863 while (blocks--) {
864 crypto_xor(dg, in, AES_BLOCK_SIZE);
865 in += AES_BLOCK_SIZE;
866
867 if (blocks || enc_after)
868 aes_encrypt(ctx, dg, dg);
869 }
870 }
871 }
872
873 static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
874 {
875 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
876 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
877
878 while (len > 0) {
879 unsigned int l;
880
881 if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
882 (ctx->len + len) > AES_BLOCK_SIZE) {
883
884 int blocks = len / AES_BLOCK_SIZE;
885
886 len %= AES_BLOCK_SIZE;
887
888 mac_do_update(&tctx->key, p, blocks, ctx->dg,
889 (ctx->len != 0), (len != 0));
890
891 p += blocks * AES_BLOCK_SIZE;
892
893 if (!len) {
894 ctx->len = AES_BLOCK_SIZE;
895 break;
896 }
897 ctx->len = 0;
898 }
899
900 l = min(len, AES_BLOCK_SIZE - ctx->len);
901
902 if (l <= AES_BLOCK_SIZE) {
903 crypto_xor(ctx->dg + ctx->len, p, l);
904 ctx->len += l;
905 len -= l;
906 p += l;
907 }
908 }
909
910 return 0;
911 }
912
913 static int cbcmac_final(struct shash_desc *desc, u8 *out)
914 {
915 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
916 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
917
918 mac_do_update(&tctx->key, NULL, 0, ctx->dg, (ctx->len != 0), 0);
919
920 memcpy(out, ctx->dg, AES_BLOCK_SIZE);
921
922 return 0;
923 }
924
925 static int cmac_final(struct shash_desc *desc, u8 *out)
926 {
927 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
928 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
929 u8 *consts = tctx->consts;
930
931 if (ctx->len != AES_BLOCK_SIZE) {
932 ctx->dg[ctx->len] ^= 0x80;
933 consts += AES_BLOCK_SIZE;
934 }
935
936 mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
937
938 memcpy(out, ctx->dg, AES_BLOCK_SIZE);
939
940 return 0;
941 }
942
943 static struct shash_alg mac_algs[] = { {
944 .base.cra_name = "cmac(aes)",
945 .base.cra_driver_name = "cmac-aes-" MODE,
946 .base.cra_priority = PRIO,
947 .base.cra_blocksize = AES_BLOCK_SIZE,
948 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
949 2 * AES_BLOCK_SIZE,
950 .base.cra_module = THIS_MODULE,
951
952 .digestsize = AES_BLOCK_SIZE,
953 .init = mac_init,
954 .update = mac_update,
955 .final = cmac_final,
956 .setkey = cmac_setkey,
957 .descsize = sizeof(struct mac_desc_ctx),
958 }, {
959 .base.cra_name = "xcbc(aes)",
960 .base.cra_driver_name = "xcbc-aes-" MODE,
961 .base.cra_priority = PRIO,
962 .base.cra_blocksize = AES_BLOCK_SIZE,
963 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
964 2 * AES_BLOCK_SIZE,
965 .base.cra_module = THIS_MODULE,
966
967 .digestsize = AES_BLOCK_SIZE,
968 .init = mac_init,
969 .update = mac_update,
970 .final = cmac_final,
971 .setkey = xcbc_setkey,
972 .descsize = sizeof(struct mac_desc_ctx),
973 }, {
974 .base.cra_name = "cbcmac(aes)",
975 .base.cra_driver_name = "cbcmac-aes-" MODE,
976 .base.cra_priority = PRIO,
977 .base.cra_blocksize = 1,
978 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx),
979 .base.cra_module = THIS_MODULE,
980
981 .digestsize = AES_BLOCK_SIZE,
982 .init = mac_init,
983 .update = mac_update,
984 .final = cbcmac_final,
985 .setkey = cbcmac_setkey,
986 .descsize = sizeof(struct mac_desc_ctx),
987 } };
988
989 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
990
991 static void aes_exit(void)
992 {
993 int i;
994
995 for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
996 if (aes_simd_algs[i])
997 simd_skcipher_free(aes_simd_algs[i]);
998
999 crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
1000 crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
1001 }
1002
1003 static int __init aes_init(void)
1004 {
1005 struct simd_skcipher_alg *simd;
1006 const char *basename;
1007 const char *algname;
1008 const char *drvname;
1009 int err;
1010 int i;
1011
1012 err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
1013 if (err)
1014 return err;
1015
1016 err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
1017 if (err)
1018 goto unregister_ciphers;
1019
1020 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
1021 if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
1022 continue;
1023
1024 algname = aes_algs[i].base.cra_name + 2;
1025 drvname = aes_algs[i].base.cra_driver_name + 2;
1026 basename = aes_algs[i].base.cra_driver_name;
1027 simd = simd_skcipher_create_compat(algname, drvname, basename);
1028 err = PTR_ERR(simd);
1029 if (IS_ERR(simd))
1030 goto unregister_simds;
1031
1032 aes_simd_algs[i] = simd;
1033 }
1034
1035 return 0;
1036
1037 unregister_simds:
1038 aes_exit();
1039 return err;
1040 unregister_ciphers:
1041 crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
1042 return err;
1043 }
1044
1045 #ifdef USE_V8_CRYPTO_EXTENSIONS
1046 module_cpu_feature_match(AES, aes_init);
1047 #else
1048 module_init(aes_init);
1049 EXPORT_SYMBOL(neon_aes_ecb_encrypt);
1050 EXPORT_SYMBOL(neon_aes_cbc_encrypt);
1051 EXPORT_SYMBOL(neon_aes_xts_encrypt);
1052 EXPORT_SYMBOL(neon_aes_xts_decrypt);
1053 #endif
1054 module_exit(aes_exit);