]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/arm64/include/asm/cpufeature.h
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[thirdparty/kernel/stable.git] / arch / arm64 / include / asm / cpufeature.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
4 */
5
6 #ifndef __ASM_CPUFEATURE_H
7 #define __ASM_CPUFEATURE_H
8
9 #include <asm/cpucaps.h>
10 #include <asm/cputype.h>
11 #include <asm/hwcap.h>
12 #include <asm/sysreg.h>
13
14 #define MAX_CPU_FEATURES 64
15 #define cpu_feature(x) KERNEL_HWCAP_ ## x
16
17 #ifndef __ASSEMBLY__
18
19 #include <linux/bug.h>
20 #include <linux/jump_label.h>
21 #include <linux/kernel.h>
22
23 /*
24 * CPU feature register tracking
25 *
26 * The safe value of a CPUID feature field is dependent on the implications
27 * of the values assigned to it by the architecture. Based on the relationship
28 * between the values, the features are classified into 3 types - LOWER_SAFE,
29 * HIGHER_SAFE and EXACT.
30 *
31 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
32 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
33 * a field when EXACT is specified, failing which, the safe value specified
34 * in the table is chosen.
35 */
36
37 enum ftr_type {
38 FTR_EXACT, /* Use a predefined safe value */
39 FTR_LOWER_SAFE, /* Smaller value is safe */
40 FTR_HIGHER_SAFE,/* Bigger value is safe */
41 };
42
43 #define FTR_STRICT true /* SANITY check strict matching required */
44 #define FTR_NONSTRICT false /* SANITY check ignored */
45
46 #define FTR_SIGNED true /* Value should be treated as signed */
47 #define FTR_UNSIGNED false /* Value should be treated as unsigned */
48
49 #define FTR_VISIBLE true /* Feature visible to the user space */
50 #define FTR_HIDDEN false /* Feature is hidden from the user */
51
52 #define FTR_VISIBLE_IF_IS_ENABLED(config) \
53 (IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
54
55 struct arm64_ftr_bits {
56 bool sign; /* Value is signed ? */
57 bool visible;
58 bool strict; /* CPU Sanity check: strict matching required ? */
59 enum ftr_type type;
60 u8 shift;
61 u8 width;
62 s64 safe_val; /* safe value for FTR_EXACT features */
63 };
64
65 /*
66 * @arm64_ftr_reg - Feature register
67 * @strict_mask Bits which should match across all CPUs for sanity.
68 * @sys_val Safe value across the CPUs (system view)
69 */
70 struct arm64_ftr_reg {
71 const char *name;
72 u64 strict_mask;
73 u64 user_mask;
74 u64 sys_val;
75 u64 user_val;
76 const struct arm64_ftr_bits *ftr_bits;
77 };
78
79 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
80
81 /*
82 * CPU capabilities:
83 *
84 * We use arm64_cpu_capabilities to represent system features, errata work
85 * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
86 * ELF HWCAPs (which are exposed to user).
87 *
88 * To support systems with heterogeneous CPUs, we need to make sure that we
89 * detect the capabilities correctly on the system and take appropriate
90 * measures to ensure there are no incompatibilities.
91 *
92 * This comment tries to explain how we treat the capabilities.
93 * Each capability has the following list of attributes :
94 *
95 * 1) Scope of Detection : The system detects a given capability by
96 * performing some checks at runtime. This could be, e.g, checking the
97 * value of a field in CPU ID feature register or checking the cpu
98 * model. The capability provides a call back ( @matches() ) to
99 * perform the check. Scope defines how the checks should be performed.
100 * There are three cases:
101 *
102 * a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
103 * matches. This implies, we have to run the check on all the
104 * booting CPUs, until the system decides that state of the
105 * capability is finalised. (See section 2 below)
106 * Or
107 * b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
108 * matches. This implies, we run the check only once, when the
109 * system decides to finalise the state of the capability. If the
110 * capability relies on a field in one of the CPU ID feature
111 * registers, we use the sanitised value of the register from the
112 * CPU feature infrastructure to make the decision.
113 * Or
114 * c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
115 * feature. This category is for features that are "finalised"
116 * (or used) by the kernel very early even before the SMP cpus
117 * are brought up.
118 *
119 * The process of detection is usually denoted by "update" capability
120 * state in the code.
121 *
122 * 2) Finalise the state : The kernel should finalise the state of a
123 * capability at some point during its execution and take necessary
124 * actions if any. Usually, this is done, after all the boot-time
125 * enabled CPUs are brought up by the kernel, so that it can make
126 * better decision based on the available set of CPUs. However, there
127 * are some special cases, where the action is taken during the early
128 * boot by the primary boot CPU. (e.g, running the kernel at EL2 with
129 * Virtualisation Host Extensions). The kernel usually disallows any
130 * changes to the state of a capability once it finalises the capability
131 * and takes any action, as it may be impossible to execute the actions
132 * safely. A CPU brought up after a capability is "finalised" is
133 * referred to as "Late CPU" w.r.t the capability. e.g, all secondary
134 * CPUs are treated "late CPUs" for capabilities determined by the boot
135 * CPU.
136 *
137 * At the moment there are two passes of finalising the capabilities.
138 * a) Boot CPU scope capabilities - Finalised by primary boot CPU via
139 * setup_boot_cpu_capabilities().
140 * b) Everything except (a) - Run via setup_system_capabilities().
141 *
142 * 3) Verification: When a CPU is brought online (e.g, by user or by the
143 * kernel), the kernel should make sure that it is safe to use the CPU,
144 * by verifying that the CPU is compliant with the state of the
145 * capabilities finalised already. This happens via :
146 *
147 * secondary_start_kernel()-> check_local_cpu_capabilities()
148 *
149 * As explained in (2) above, capabilities could be finalised at
150 * different points in the execution. Each newly booted CPU is verified
151 * against the capabilities that have been finalised by the time it
152 * boots.
153 *
154 * a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
155 * except for the primary boot CPU.
156 *
157 * b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
158 * user after the kernel boot are verified against the capability.
159 *
160 * If there is a conflict, the kernel takes an action, based on the
161 * severity (e.g, a CPU could be prevented from booting or cause a
162 * kernel panic). The CPU is allowed to "affect" the state of the
163 * capability, if it has not been finalised already. See section 5
164 * for more details on conflicts.
165 *
166 * 4) Action: As mentioned in (2), the kernel can take an action for each
167 * detected capability, on all CPUs on the system. Appropriate actions
168 * include, turning on an architectural feature, modifying the control
169 * registers (e.g, SCTLR, TCR etc.) or patching the kernel via
170 * alternatives. The kernel patching is batched and performed at later
171 * point. The actions are always initiated only after the capability
172 * is finalised. This is usally denoted by "enabling" the capability.
173 * The actions are initiated as follows :
174 * a) Action is triggered on all online CPUs, after the capability is
175 * finalised, invoked within the stop_machine() context from
176 * enable_cpu_capabilitie().
177 *
178 * b) Any late CPU, brought up after (1), the action is triggered via:
179 *
180 * check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
181 *
182 * 5) Conflicts: Based on the state of the capability on a late CPU vs.
183 * the system state, we could have the following combinations :
184 *
185 * x-----------------------------x
186 * | Type | System | Late CPU |
187 * |-----------------------------|
188 * | a | y | n |
189 * |-----------------------------|
190 * | b | n | y |
191 * x-----------------------------x
192 *
193 * Two separate flag bits are defined to indicate whether each kind of
194 * conflict can be allowed:
195 * ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
196 * ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
197 *
198 * Case (a) is not permitted for a capability that the system requires
199 * all CPUs to have in order for the capability to be enabled. This is
200 * typical for capabilities that represent enhanced functionality.
201 *
202 * Case (b) is not permitted for a capability that must be enabled
203 * during boot if any CPU in the system requires it in order to run
204 * safely. This is typical for erratum work arounds that cannot be
205 * enabled after the corresponding capability is finalised.
206 *
207 * In some non-typical cases either both (a) and (b), or neither,
208 * should be permitted. This can be described by including neither
209 * or both flags in the capability's type field.
210 */
211
212
213 /*
214 * Decide how the capability is detected.
215 * On any local CPU vs System wide vs the primary boot CPU
216 */
217 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU ((u16)BIT(0))
218 #define ARM64_CPUCAP_SCOPE_SYSTEM ((u16)BIT(1))
219 /*
220 * The capabilitiy is detected on the Boot CPU and is used by kernel
221 * during early boot. i.e, the capability should be "detected" and
222 * "enabled" as early as possibly on all booting CPUs.
223 */
224 #define ARM64_CPUCAP_SCOPE_BOOT_CPU ((u16)BIT(2))
225 #define ARM64_CPUCAP_SCOPE_MASK \
226 (ARM64_CPUCAP_SCOPE_SYSTEM | \
227 ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
228 ARM64_CPUCAP_SCOPE_BOOT_CPU)
229
230 #define SCOPE_SYSTEM ARM64_CPUCAP_SCOPE_SYSTEM
231 #define SCOPE_LOCAL_CPU ARM64_CPUCAP_SCOPE_LOCAL_CPU
232 #define SCOPE_BOOT_CPU ARM64_CPUCAP_SCOPE_BOOT_CPU
233 #define SCOPE_ALL ARM64_CPUCAP_SCOPE_MASK
234
235 /*
236 * Is it permitted for a late CPU to have this capability when system
237 * hasn't already enabled it ?
238 */
239 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU ((u16)BIT(4))
240 /* Is it safe for a late CPU to miss this capability when system has it */
241 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU ((u16)BIT(5))
242
243 /*
244 * CPU errata workarounds that need to be enabled at boot time if one or
245 * more CPUs in the system requires it. When one of these capabilities
246 * has been enabled, it is safe to allow any CPU to boot that doesn't
247 * require the workaround. However, it is not safe if a "late" CPU
248 * requires a workaround and the system hasn't enabled it already.
249 */
250 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM \
251 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
252 /*
253 * CPU feature detected at boot time based on system-wide value of a
254 * feature. It is safe for a late CPU to have this feature even though
255 * the system hasn't enabled it, although the feature will not be used
256 * by Linux in this case. If the system has enabled this feature already,
257 * then every late CPU must have it.
258 */
259 #define ARM64_CPUCAP_SYSTEM_FEATURE \
260 (ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
261 /*
262 * CPU feature detected at boot time based on feature of one or more CPUs.
263 * All possible conflicts for a late CPU are ignored.
264 */
265 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE \
266 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
267 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU | \
268 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
269
270 /*
271 * CPU feature detected at boot time, on one or more CPUs. A late CPU
272 * is not allowed to have the capability when the system doesn't have it.
273 * It is Ok for a late CPU to miss the feature.
274 */
275 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE \
276 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
277 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
278
279 /*
280 * CPU feature used early in the boot based on the boot CPU. All secondary
281 * CPUs must match the state of the capability as detected by the boot CPU.
282 */
283 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE ARM64_CPUCAP_SCOPE_BOOT_CPU
284
285 struct arm64_cpu_capabilities {
286 const char *desc;
287 u16 capability;
288 u16 type;
289 bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
290 /*
291 * Take the appropriate actions to enable this capability for this CPU.
292 * For each successfully booted CPU, this method is called for each
293 * globally detected capability.
294 */
295 void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
296 union {
297 struct { /* To be used for erratum handling only */
298 struct midr_range midr_range;
299 const struct arm64_midr_revidr {
300 u32 midr_rv; /* revision/variant */
301 u32 revidr_mask;
302 } * const fixed_revs;
303 };
304
305 const struct midr_range *midr_range_list;
306 struct { /* Feature register checking */
307 u32 sys_reg;
308 u8 field_pos;
309 u8 min_field_value;
310 u8 hwcap_type;
311 bool sign;
312 unsigned long hwcap;
313 };
314 };
315
316 /*
317 * An optional list of "matches/cpu_enable" pair for the same
318 * "capability" of the same "type" as described by the parent.
319 * Only matches(), cpu_enable() and fields relevant to these
320 * methods are significant in the list. The cpu_enable is
321 * invoked only if the corresponding entry "matches()".
322 * However, if a cpu_enable() method is associated
323 * with multiple matches(), care should be taken that either
324 * the match criteria are mutually exclusive, or that the
325 * method is robust against being called multiple times.
326 */
327 const struct arm64_cpu_capabilities *match_list;
328 };
329
330 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
331 {
332 return cap->type & ARM64_CPUCAP_SCOPE_MASK;
333 }
334
335 static inline bool
336 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
337 {
338 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
339 }
340
341 static inline bool
342 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
343 {
344 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
345 }
346
347 /*
348 * Generic helper for handling capabilties with multiple (match,enable) pairs
349 * of call backs, sharing the same capability bit.
350 * Iterate over each entry to see if at least one matches.
351 */
352 static inline bool
353 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
354 int scope)
355 {
356 const struct arm64_cpu_capabilities *caps;
357
358 for (caps = entry->match_list; caps->matches; caps++)
359 if (caps->matches(caps, scope))
360 return true;
361
362 return false;
363 }
364
365 /*
366 * Take appropriate action for all matching entries in the shared capability
367 * entry.
368 */
369 static inline void
370 cpucap_multi_entry_cap_cpu_enable(const struct arm64_cpu_capabilities *entry)
371 {
372 const struct arm64_cpu_capabilities *caps;
373
374 for (caps = entry->match_list; caps->matches; caps++)
375 if (caps->matches(caps, SCOPE_LOCAL_CPU) &&
376 caps->cpu_enable)
377 caps->cpu_enable(caps);
378 }
379
380 extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
381 extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
382 extern struct static_key_false arm64_const_caps_ready;
383
384 /* ARM64 CAPS + alternative_cb */
385 #define ARM64_NPATCHABLE (ARM64_NCAPS + 1)
386 extern DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
387
388 #define for_each_available_cap(cap) \
389 for_each_set_bit(cap, cpu_hwcaps, ARM64_NCAPS)
390
391 bool this_cpu_has_cap(unsigned int cap);
392 void cpu_set_feature(unsigned int num);
393 bool cpu_have_feature(unsigned int num);
394 unsigned long cpu_get_elf_hwcap(void);
395 unsigned long cpu_get_elf_hwcap2(void);
396
397 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
398 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
399
400 /* System capability check for constant caps */
401 static __always_inline bool __cpus_have_const_cap(int num)
402 {
403 if (num >= ARM64_NCAPS)
404 return false;
405 return static_branch_unlikely(&cpu_hwcap_keys[num]);
406 }
407
408 static inline bool cpus_have_cap(unsigned int num)
409 {
410 if (num >= ARM64_NCAPS)
411 return false;
412 return test_bit(num, cpu_hwcaps);
413 }
414
415 static __always_inline bool cpus_have_const_cap(int num)
416 {
417 if (static_branch_likely(&arm64_const_caps_ready))
418 return __cpus_have_const_cap(num);
419 else
420 return cpus_have_cap(num);
421 }
422
423 static inline void cpus_set_cap(unsigned int num)
424 {
425 if (num >= ARM64_NCAPS) {
426 pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
427 num, ARM64_NCAPS);
428 } else {
429 __set_bit(num, cpu_hwcaps);
430 }
431 }
432
433 static inline int __attribute_const__
434 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
435 {
436 return (s64)(features << (64 - width - field)) >> (64 - width);
437 }
438
439 static inline int __attribute_const__
440 cpuid_feature_extract_signed_field(u64 features, int field)
441 {
442 return cpuid_feature_extract_signed_field_width(features, field, 4);
443 }
444
445 static inline unsigned int __attribute_const__
446 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
447 {
448 return (u64)(features << (64 - width - field)) >> (64 - width);
449 }
450
451 static inline unsigned int __attribute_const__
452 cpuid_feature_extract_unsigned_field(u64 features, int field)
453 {
454 return cpuid_feature_extract_unsigned_field_width(features, field, 4);
455 }
456
457 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
458 {
459 return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
460 }
461
462 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
463 {
464 return (reg->user_val | (reg->sys_val & reg->user_mask));
465 }
466
467 static inline int __attribute_const__
468 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
469 {
470 return (sign) ?
471 cpuid_feature_extract_signed_field_width(features, field, width) :
472 cpuid_feature_extract_unsigned_field_width(features, field, width);
473 }
474
475 static inline int __attribute_const__
476 cpuid_feature_extract_field(u64 features, int field, bool sign)
477 {
478 return cpuid_feature_extract_field_width(features, field, 4, sign);
479 }
480
481 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
482 {
483 return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
484 }
485
486 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
487 {
488 return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
489 cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
490 }
491
492 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
493 {
494 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
495
496 return val == ID_AA64PFR0_EL0_32BIT_64BIT;
497 }
498
499 static inline bool id_aa64pfr0_sve(u64 pfr0)
500 {
501 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);
502
503 return val > 0;
504 }
505
506 void __init setup_cpu_features(void);
507 void check_local_cpu_capabilities(void);
508
509 u64 read_sanitised_ftr_reg(u32 id);
510
511 static inline bool cpu_supports_mixed_endian_el0(void)
512 {
513 return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
514 }
515
516 static inline bool system_supports_32bit_el0(void)
517 {
518 return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
519 }
520
521 static inline bool system_supports_4kb_granule(void)
522 {
523 u64 mmfr0;
524 u32 val;
525
526 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
527 val = cpuid_feature_extract_unsigned_field(mmfr0,
528 ID_AA64MMFR0_TGRAN4_SHIFT);
529
530 return val == ID_AA64MMFR0_TGRAN4_SUPPORTED;
531 }
532
533 static inline bool system_supports_64kb_granule(void)
534 {
535 u64 mmfr0;
536 u32 val;
537
538 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
539 val = cpuid_feature_extract_unsigned_field(mmfr0,
540 ID_AA64MMFR0_TGRAN64_SHIFT);
541
542 return val == ID_AA64MMFR0_TGRAN64_SUPPORTED;
543 }
544
545 static inline bool system_supports_16kb_granule(void)
546 {
547 u64 mmfr0;
548 u32 val;
549
550 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
551 val = cpuid_feature_extract_unsigned_field(mmfr0,
552 ID_AA64MMFR0_TGRAN16_SHIFT);
553
554 return val == ID_AA64MMFR0_TGRAN16_SUPPORTED;
555 }
556
557 static inline bool system_supports_mixed_endian_el0(void)
558 {
559 return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
560 }
561
562 static inline bool system_supports_mixed_endian(void)
563 {
564 u64 mmfr0;
565 u32 val;
566
567 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
568 val = cpuid_feature_extract_unsigned_field(mmfr0,
569 ID_AA64MMFR0_BIGENDEL_SHIFT);
570
571 return val == 0x1;
572 }
573
574 static inline bool system_supports_fpsimd(void)
575 {
576 return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
577 }
578
579 static inline bool system_uses_ttbr0_pan(void)
580 {
581 return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
582 !cpus_have_const_cap(ARM64_HAS_PAN);
583 }
584
585 static inline bool system_supports_sve(void)
586 {
587 return IS_ENABLED(CONFIG_ARM64_SVE) &&
588 cpus_have_const_cap(ARM64_SVE);
589 }
590
591 static inline bool system_supports_cnp(void)
592 {
593 return IS_ENABLED(CONFIG_ARM64_CNP) &&
594 cpus_have_const_cap(ARM64_HAS_CNP);
595 }
596
597 static inline bool system_supports_address_auth(void)
598 {
599 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
600 (cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_ARCH) ||
601 cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_IMP_DEF));
602 }
603
604 static inline bool system_supports_generic_auth(void)
605 {
606 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
607 (cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
608 cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF));
609 }
610
611 static inline bool system_uses_irq_prio_masking(void)
612 {
613 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
614 cpus_have_const_cap(ARM64_HAS_IRQ_PRIO_MASKING);
615 }
616
617 #define ARM64_SSBD_UNKNOWN -1
618 #define ARM64_SSBD_FORCE_DISABLE 0
619 #define ARM64_SSBD_KERNEL 1
620 #define ARM64_SSBD_FORCE_ENABLE 2
621 #define ARM64_SSBD_MITIGATED 3
622
623 static inline int arm64_get_ssbd_state(void)
624 {
625 #ifdef CONFIG_ARM64_SSBD
626 extern int ssbd_state;
627 return ssbd_state;
628 #else
629 return ARM64_SSBD_UNKNOWN;
630 #endif
631 }
632
633 void arm64_set_ssbd_mitigation(bool state);
634
635 extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
636
637 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
638 {
639 switch (parange) {
640 case 0: return 32;
641 case 1: return 36;
642 case 2: return 40;
643 case 3: return 42;
644 case 4: return 44;
645 case 5: return 48;
646 case 6: return 52;
647 /*
648 * A future PE could use a value unknown to the kernel.
649 * However, by the "D10.1.4 Principles of the ID scheme
650 * for fields in ID registers", ARM DDI 0487C.a, any new
651 * value is guaranteed to be higher than what we know already.
652 * As a safe limit, we return the limit supported by the kernel.
653 */
654 default: return CONFIG_ARM64_PA_BITS;
655 }
656 }
657 #endif /* __ASSEMBLY__ */
658
659 #endif