]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/arm64/include/asm/cpufeature.h
Merge remote-tracking branches 'asoc/topic/samsung', 'asoc/topic/sgtl5000', 'asoc...
[thirdparty/linux.git] / arch / arm64 / include / asm / cpufeature.h
1 /*
2 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 #ifndef __ASM_CPUFEATURE_H
10 #define __ASM_CPUFEATURE_H
11
12 #include <asm/cpucaps.h>
13 #include <asm/hwcap.h>
14 #include <asm/sysreg.h>
15
16 /*
17 * In the arm64 world (as in the ARM world), elf_hwcap is used both internally
18 * in the kernel and for user space to keep track of which optional features
19 * are supported by the current system. So let's map feature 'x' to HWCAP_x.
20 * Note that HWCAP_x constants are bit fields so we need to take the log.
21 */
22
23 #define MAX_CPU_FEATURES (8 * sizeof(elf_hwcap))
24 #define cpu_feature(x) ilog2(HWCAP_ ## x)
25
26 #ifndef __ASSEMBLY__
27
28 #include <linux/bug.h>
29 #include <linux/jump_label.h>
30 #include <linux/kernel.h>
31
32 /*
33 * CPU feature register tracking
34 *
35 * The safe value of a CPUID feature field is dependent on the implications
36 * of the values assigned to it by the architecture. Based on the relationship
37 * between the values, the features are classified into 3 types - LOWER_SAFE,
38 * HIGHER_SAFE and EXACT.
39 *
40 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
41 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
42 * a field when EXACT is specified, failing which, the safe value specified
43 * in the table is chosen.
44 */
45
46 enum ftr_type {
47 FTR_EXACT, /* Use a predefined safe value */
48 FTR_LOWER_SAFE, /* Smaller value is safe */
49 FTR_HIGHER_SAFE,/* Bigger value is safe */
50 };
51
52 #define FTR_STRICT true /* SANITY check strict matching required */
53 #define FTR_NONSTRICT false /* SANITY check ignored */
54
55 #define FTR_SIGNED true /* Value should be treated as signed */
56 #define FTR_UNSIGNED false /* Value should be treated as unsigned */
57
58 #define FTR_VISIBLE true /* Feature visible to the user space */
59 #define FTR_HIDDEN false /* Feature is hidden from the user */
60
61 struct arm64_ftr_bits {
62 bool sign; /* Value is signed ? */
63 bool visible;
64 bool strict; /* CPU Sanity check: strict matching required ? */
65 enum ftr_type type;
66 u8 shift;
67 u8 width;
68 s64 safe_val; /* safe value for FTR_EXACT features */
69 };
70
71 /*
72 * @arm64_ftr_reg - Feature register
73 * @strict_mask Bits which should match across all CPUs for sanity.
74 * @sys_val Safe value across the CPUs (system view)
75 */
76 struct arm64_ftr_reg {
77 const char *name;
78 u64 strict_mask;
79 u64 user_mask;
80 u64 sys_val;
81 u64 user_val;
82 const struct arm64_ftr_bits *ftr_bits;
83 };
84
85 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
86
87 /* scope of capability check */
88 enum {
89 SCOPE_SYSTEM,
90 SCOPE_LOCAL_CPU,
91 };
92
93 struct arm64_cpu_capabilities {
94 const char *desc;
95 u16 capability;
96 int def_scope; /* default scope */
97 bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
98 int (*enable)(void *); /* Called on all active CPUs */
99 union {
100 struct { /* To be used for erratum handling only */
101 u32 midr_model;
102 u32 midr_range_min, midr_range_max;
103 };
104
105 struct { /* Feature register checking */
106 u32 sys_reg;
107 u8 field_pos;
108 u8 min_field_value;
109 u8 hwcap_type;
110 bool sign;
111 unsigned long hwcap;
112 };
113 };
114 };
115
116 extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
117 extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
118
119 bool this_cpu_has_cap(unsigned int cap);
120
121 static inline bool cpu_have_feature(unsigned int num)
122 {
123 return elf_hwcap & (1UL << num);
124 }
125
126 /* System capability check for constant caps */
127 static inline bool cpus_have_const_cap(int num)
128 {
129 if (num >= ARM64_NCAPS)
130 return false;
131 return static_branch_unlikely(&cpu_hwcap_keys[num]);
132 }
133
134 static inline bool cpus_have_cap(unsigned int num)
135 {
136 if (num >= ARM64_NCAPS)
137 return false;
138 return test_bit(num, cpu_hwcaps);
139 }
140
141 static inline void cpus_set_cap(unsigned int num)
142 {
143 if (num >= ARM64_NCAPS) {
144 pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
145 num, ARM64_NCAPS);
146 } else {
147 __set_bit(num, cpu_hwcaps);
148 static_branch_enable(&cpu_hwcap_keys[num]);
149 }
150 }
151
152 static inline int __attribute_const__
153 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
154 {
155 return (s64)(features << (64 - width - field)) >> (64 - width);
156 }
157
158 static inline int __attribute_const__
159 cpuid_feature_extract_signed_field(u64 features, int field)
160 {
161 return cpuid_feature_extract_signed_field_width(features, field, 4);
162 }
163
164 static inline unsigned int __attribute_const__
165 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
166 {
167 return (u64)(features << (64 - width - field)) >> (64 - width);
168 }
169
170 static inline unsigned int __attribute_const__
171 cpuid_feature_extract_unsigned_field(u64 features, int field)
172 {
173 return cpuid_feature_extract_unsigned_field_width(features, field, 4);
174 }
175
176 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
177 {
178 return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
179 }
180
181 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
182 {
183 return (reg->user_val | (reg->sys_val & reg->user_mask));
184 }
185
186 static inline int __attribute_const__
187 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
188 {
189 return (sign) ?
190 cpuid_feature_extract_signed_field_width(features, field, width) :
191 cpuid_feature_extract_unsigned_field_width(features, field, width);
192 }
193
194 static inline int __attribute_const__
195 cpuid_feature_extract_field(u64 features, int field, bool sign)
196 {
197 return cpuid_feature_extract_field_width(features, field, 4, sign);
198 }
199
200 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
201 {
202 return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
203 }
204
205 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
206 {
207 return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
208 cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
209 }
210
211 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
212 {
213 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
214
215 return val == ID_AA64PFR0_EL0_32BIT_64BIT;
216 }
217
218 void __init setup_cpu_features(void);
219
220 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
221 const char *info);
222 void enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps);
223 void check_local_cpu_capabilities(void);
224
225 void update_cpu_errata_workarounds(void);
226 void __init enable_errata_workarounds(void);
227 void verify_local_cpu_errata_workarounds(void);
228
229 u64 read_system_reg(u32 id);
230
231 static inline bool cpu_supports_mixed_endian_el0(void)
232 {
233 return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
234 }
235
236 static inline bool system_supports_32bit_el0(void)
237 {
238 return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
239 }
240
241 static inline bool system_supports_mixed_endian_el0(void)
242 {
243 return id_aa64mmfr0_mixed_endian_el0(read_system_reg(SYS_ID_AA64MMFR0_EL1));
244 }
245
246 static inline bool system_supports_fpsimd(void)
247 {
248 return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
249 }
250
251 static inline bool system_uses_ttbr0_pan(void)
252 {
253 return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
254 !cpus_have_const_cap(ARM64_HAS_PAN);
255 }
256
257 #endif /* __ASSEMBLY__ */
258
259 #endif