]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/arm64/include/asm/pgtable.h
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 234
[thirdparty/linux.git] / arch / arm64 / include / asm / pgtable.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012 ARM Ltd.
4 */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10
11 #include <asm/memory.h>
12 #include <asm/pgtable-hwdef.h>
13 #include <asm/pgtable-prot.h>
14 #include <asm/tlbflush.h>
15
16 /*
17 * VMALLOC range.
18 *
19 * VMALLOC_START: beginning of the kernel vmalloc space
20 * VMALLOC_END: extends to the available space below vmmemmap, PCI I/O space
21 * and fixed mappings
22 */
23 #define VMALLOC_START (MODULES_END)
24 #define VMALLOC_END (PAGE_OFFSET - PUD_SIZE - VMEMMAP_SIZE - SZ_64K)
25
26 #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
27
28 #define FIRST_USER_ADDRESS 0UL
29
30 #ifndef __ASSEMBLY__
31
32 #include <asm/cmpxchg.h>
33 #include <asm/fixmap.h>
34 #include <linux/mmdebug.h>
35 #include <linux/mm_types.h>
36 #include <linux/sched.h>
37
38 extern void __pte_error(const char *file, int line, unsigned long val);
39 extern void __pmd_error(const char *file, int line, unsigned long val);
40 extern void __pud_error(const char *file, int line, unsigned long val);
41 extern void __pgd_error(const char *file, int line, unsigned long val);
42
43 /*
44 * ZERO_PAGE is a global shared page that is always zero: used
45 * for zero-mapped memory areas etc..
46 */
47 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
48 #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
49
50 #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
51
52 /*
53 * Macros to convert between a physical address and its placement in a
54 * page table entry, taking care of 52-bit addresses.
55 */
56 #ifdef CONFIG_ARM64_PA_BITS_52
57 #define __pte_to_phys(pte) \
58 ((pte_val(pte) & PTE_ADDR_LOW) | ((pte_val(pte) & PTE_ADDR_HIGH) << 36))
59 #define __phys_to_pte_val(phys) (((phys) | ((phys) >> 36)) & PTE_ADDR_MASK)
60 #else
61 #define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK)
62 #define __phys_to_pte_val(phys) (phys)
63 #endif
64
65 #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
66 #define pfn_pte(pfn,prot) \
67 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
68
69 #define pte_none(pte) (!pte_val(pte))
70 #define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0))
71 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
72
73 /*
74 * The following only work if pte_present(). Undefined behaviour otherwise.
75 */
76 #define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
77 #define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
78 #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
79 #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
80 #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
81 #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
82
83 #define pte_cont_addr_end(addr, end) \
84 ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
85 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
86 })
87
88 #define pmd_cont_addr_end(addr, end) \
89 ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
90 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
91 })
92
93 #define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY))
94 #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
95 #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
96
97 #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
98 /*
99 * Execute-only user mappings do not have the PTE_USER bit set. All valid
100 * kernel mappings have the PTE_UXN bit set.
101 */
102 #define pte_valid_not_user(pte) \
103 ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
104 #define pte_valid_young(pte) \
105 ((pte_val(pte) & (PTE_VALID | PTE_AF)) == (PTE_VALID | PTE_AF))
106 #define pte_valid_user(pte) \
107 ((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER))
108
109 /*
110 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
111 * so that we don't erroneously return false for pages that have been
112 * remapped as PROT_NONE but are yet to be flushed from the TLB.
113 */
114 #define pte_accessible(mm, pte) \
115 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid_young(pte))
116
117 /*
118 * p??_access_permitted() is true for valid user mappings (subject to the
119 * write permission check) other than user execute-only which do not have the
120 * PTE_USER bit set. PROT_NONE mappings do not have the PTE_VALID bit set.
121 */
122 #define pte_access_permitted(pte, write) \
123 (pte_valid_user(pte) && (!(write) || pte_write(pte)))
124 #define pmd_access_permitted(pmd, write) \
125 (pte_access_permitted(pmd_pte(pmd), (write)))
126 #define pud_access_permitted(pud, write) \
127 (pte_access_permitted(pud_pte(pud), (write)))
128
129 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
130 {
131 pte_val(pte) &= ~pgprot_val(prot);
132 return pte;
133 }
134
135 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
136 {
137 pte_val(pte) |= pgprot_val(prot);
138 return pte;
139 }
140
141 static inline pte_t pte_wrprotect(pte_t pte)
142 {
143 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
144 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
145 return pte;
146 }
147
148 static inline pte_t pte_mkwrite(pte_t pte)
149 {
150 pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
151 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
152 return pte;
153 }
154
155 static inline pte_t pte_mkclean(pte_t pte)
156 {
157 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
158 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
159
160 return pte;
161 }
162
163 static inline pte_t pte_mkdirty(pte_t pte)
164 {
165 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
166
167 if (pte_write(pte))
168 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
169
170 return pte;
171 }
172
173 static inline pte_t pte_mkold(pte_t pte)
174 {
175 return clear_pte_bit(pte, __pgprot(PTE_AF));
176 }
177
178 static inline pte_t pte_mkyoung(pte_t pte)
179 {
180 return set_pte_bit(pte, __pgprot(PTE_AF));
181 }
182
183 static inline pte_t pte_mkspecial(pte_t pte)
184 {
185 return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
186 }
187
188 static inline pte_t pte_mkcont(pte_t pte)
189 {
190 pte = set_pte_bit(pte, __pgprot(PTE_CONT));
191 return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
192 }
193
194 static inline pte_t pte_mknoncont(pte_t pte)
195 {
196 return clear_pte_bit(pte, __pgprot(PTE_CONT));
197 }
198
199 static inline pte_t pte_mkpresent(pte_t pte)
200 {
201 return set_pte_bit(pte, __pgprot(PTE_VALID));
202 }
203
204 static inline pmd_t pmd_mkcont(pmd_t pmd)
205 {
206 return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
207 }
208
209 static inline void set_pte(pte_t *ptep, pte_t pte)
210 {
211 WRITE_ONCE(*ptep, pte);
212
213 /*
214 * Only if the new pte is valid and kernel, otherwise TLB maintenance
215 * or update_mmu_cache() have the necessary barriers.
216 */
217 if (pte_valid_not_user(pte))
218 dsb(ishst);
219 }
220
221 extern void __sync_icache_dcache(pte_t pteval);
222
223 /*
224 * PTE bits configuration in the presence of hardware Dirty Bit Management
225 * (PTE_WRITE == PTE_DBM):
226 *
227 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
228 * 0 0 | 1 0 0
229 * 0 1 | 1 1 0
230 * 1 0 | 1 0 1
231 * 1 1 | 0 1 x
232 *
233 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
234 * the page fault mechanism. Checking the dirty status of a pte becomes:
235 *
236 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
237 */
238 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
239 pte_t *ptep, pte_t pte)
240 {
241 pte_t old_pte;
242
243 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
244 __sync_icache_dcache(pte);
245
246 /*
247 * If the existing pte is valid, check for potential race with
248 * hardware updates of the pte (ptep_set_access_flags safely changes
249 * valid ptes without going through an invalid entry).
250 */
251 old_pte = READ_ONCE(*ptep);
252 if (IS_ENABLED(CONFIG_DEBUG_VM) && pte_valid(old_pte) && pte_valid(pte) &&
253 (mm == current->active_mm || atomic_read(&mm->mm_users) > 1)) {
254 VM_WARN_ONCE(!pte_young(pte),
255 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
256 __func__, pte_val(old_pte), pte_val(pte));
257 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
258 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
259 __func__, pte_val(old_pte), pte_val(pte));
260 }
261
262 set_pte(ptep, pte);
263 }
264
265 #define __HAVE_ARCH_PTE_SAME
266 static inline int pte_same(pte_t pte_a, pte_t pte_b)
267 {
268 pteval_t lhs, rhs;
269
270 lhs = pte_val(pte_a);
271 rhs = pte_val(pte_b);
272
273 if (pte_present(pte_a))
274 lhs &= ~PTE_RDONLY;
275
276 if (pte_present(pte_b))
277 rhs &= ~PTE_RDONLY;
278
279 return (lhs == rhs);
280 }
281
282 /*
283 * Huge pte definitions.
284 */
285 #define pte_huge(pte) (!(pte_val(pte) & PTE_TABLE_BIT))
286 #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
287
288 /*
289 * Hugetlb definitions.
290 */
291 #define HUGE_MAX_HSTATE 4
292 #define HPAGE_SHIFT PMD_SHIFT
293 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
294 #define HPAGE_MASK (~(HPAGE_SIZE - 1))
295 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
296
297 static inline pte_t pgd_pte(pgd_t pgd)
298 {
299 return __pte(pgd_val(pgd));
300 }
301
302 static inline pte_t pud_pte(pud_t pud)
303 {
304 return __pte(pud_val(pud));
305 }
306
307 static inline pud_t pte_pud(pte_t pte)
308 {
309 return __pud(pte_val(pte));
310 }
311
312 static inline pmd_t pud_pmd(pud_t pud)
313 {
314 return __pmd(pud_val(pud));
315 }
316
317 static inline pte_t pmd_pte(pmd_t pmd)
318 {
319 return __pte(pmd_val(pmd));
320 }
321
322 static inline pmd_t pte_pmd(pte_t pte)
323 {
324 return __pmd(pte_val(pte));
325 }
326
327 static inline pgprot_t mk_sect_prot(pgprot_t prot)
328 {
329 return __pgprot(pgprot_val(prot) & ~PTE_TABLE_BIT);
330 }
331
332 #ifdef CONFIG_NUMA_BALANCING
333 /*
334 * See the comment in include/asm-generic/pgtable.h
335 */
336 static inline int pte_protnone(pte_t pte)
337 {
338 return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
339 }
340
341 static inline int pmd_protnone(pmd_t pmd)
342 {
343 return pte_protnone(pmd_pte(pmd));
344 }
345 #endif
346
347 /*
348 * THP definitions.
349 */
350
351 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
352 #define pmd_trans_huge(pmd) (pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT))
353 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
354
355 #define pmd_present(pmd) pte_present(pmd_pte(pmd))
356 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
357 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
358 #define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
359 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
360 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
361 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
362 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
363 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
364 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
365 #define pmd_mknotpresent(pmd) (__pmd(pmd_val(pmd) & ~PMD_SECT_VALID))
366
367 #define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd))
368
369 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
370
371 #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
372
373 #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
374 #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
375 #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
376 #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
377 #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
378
379 #define pud_young(pud) pte_young(pud_pte(pud))
380 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
381 #define pud_write(pud) pte_write(pud_pte(pud))
382
383 #define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT))
384
385 #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
386 #define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
387 #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
388 #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
389
390 #define set_pmd_at(mm, addr, pmdp, pmd) set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd))
391
392 #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
393 #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
394
395 #define __pgprot_modify(prot,mask,bits) \
396 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
397
398 /*
399 * Mark the prot value as uncacheable and unbufferable.
400 */
401 #define pgprot_noncached(prot) \
402 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
403 #define pgprot_writecombine(prot) \
404 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
405 #define pgprot_device(prot) \
406 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
407 #define __HAVE_PHYS_MEM_ACCESS_PROT
408 struct file;
409 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
410 unsigned long size, pgprot_t vma_prot);
411
412 #define pmd_none(pmd) (!pmd_val(pmd))
413
414 #define pmd_bad(pmd) (!(pmd_val(pmd) & PMD_TABLE_BIT))
415
416 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
417 PMD_TYPE_TABLE)
418 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
419 PMD_TYPE_SECT)
420
421 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
422 #define pud_sect(pud) (0)
423 #define pud_table(pud) (1)
424 #else
425 #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
426 PUD_TYPE_SECT)
427 #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
428 PUD_TYPE_TABLE)
429 #endif
430
431 extern pgd_t init_pg_dir[PTRS_PER_PGD];
432 extern pgd_t init_pg_end[];
433 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
434 extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
435 extern pgd_t tramp_pg_dir[PTRS_PER_PGD];
436
437 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
438
439 static inline bool in_swapper_pgdir(void *addr)
440 {
441 return ((unsigned long)addr & PAGE_MASK) ==
442 ((unsigned long)swapper_pg_dir & PAGE_MASK);
443 }
444
445 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
446 {
447 #ifdef __PAGETABLE_PMD_FOLDED
448 if (in_swapper_pgdir(pmdp)) {
449 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
450 return;
451 }
452 #endif /* __PAGETABLE_PMD_FOLDED */
453
454 WRITE_ONCE(*pmdp, pmd);
455
456 if (pmd_valid(pmd))
457 dsb(ishst);
458 }
459
460 static inline void pmd_clear(pmd_t *pmdp)
461 {
462 set_pmd(pmdp, __pmd(0));
463 }
464
465 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
466 {
467 return __pmd_to_phys(pmd);
468 }
469
470 static inline void pte_unmap(pte_t *pte) { }
471
472 /* Find an entry in the third-level page table. */
473 #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
474
475 #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
476 #define pte_offset_kernel(dir,addr) ((pte_t *)__va(pte_offset_phys((dir), (addr))))
477
478 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
479
480 #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
481 #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
482 #define pte_clear_fixmap() clear_fixmap(FIX_PTE)
483
484 #define pmd_page(pmd) pfn_to_page(__phys_to_pfn(__pmd_to_phys(pmd)))
485
486 /* use ONLY for statically allocated translation tables */
487 #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
488
489 /*
490 * Conversion functions: convert a page and protection to a page entry,
491 * and a page entry and page directory to the page they refer to.
492 */
493 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
494
495 #if CONFIG_PGTABLE_LEVELS > 2
496
497 #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
498
499 #define pud_none(pud) (!pud_val(pud))
500 #define pud_bad(pud) (!(pud_val(pud) & PUD_TABLE_BIT))
501 #define pud_present(pud) pte_present(pud_pte(pud))
502 #define pud_valid(pud) pte_valid(pud_pte(pud))
503
504 static inline void set_pud(pud_t *pudp, pud_t pud)
505 {
506 #ifdef __PAGETABLE_PUD_FOLDED
507 if (in_swapper_pgdir(pudp)) {
508 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
509 return;
510 }
511 #endif /* __PAGETABLE_PUD_FOLDED */
512
513 WRITE_ONCE(*pudp, pud);
514
515 if (pud_valid(pud))
516 dsb(ishst);
517 }
518
519 static inline void pud_clear(pud_t *pudp)
520 {
521 set_pud(pudp, __pud(0));
522 }
523
524 static inline phys_addr_t pud_page_paddr(pud_t pud)
525 {
526 return __pud_to_phys(pud);
527 }
528
529 /* Find an entry in the second-level page table. */
530 #define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
531
532 #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
533 #define pmd_offset(dir, addr) ((pmd_t *)__va(pmd_offset_phys((dir), (addr))))
534
535 #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
536 #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
537 #define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
538
539 #define pud_page(pud) pfn_to_page(__phys_to_pfn(__pud_to_phys(pud)))
540
541 /* use ONLY for statically allocated translation tables */
542 #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
543
544 #else
545
546 #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
547
548 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
549 #define pmd_set_fixmap(addr) NULL
550 #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
551 #define pmd_clear_fixmap()
552
553 #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
554
555 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
556
557 #if CONFIG_PGTABLE_LEVELS > 3
558
559 #define pud_ERROR(pud) __pud_error(__FILE__, __LINE__, pud_val(pud))
560
561 #define pgd_none(pgd) (!pgd_val(pgd))
562 #define pgd_bad(pgd) (!(pgd_val(pgd) & 2))
563 #define pgd_present(pgd) (pgd_val(pgd))
564
565 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
566 {
567 if (in_swapper_pgdir(pgdp)) {
568 set_swapper_pgd(pgdp, pgd);
569 return;
570 }
571
572 WRITE_ONCE(*pgdp, pgd);
573 dsb(ishst);
574 }
575
576 static inline void pgd_clear(pgd_t *pgdp)
577 {
578 set_pgd(pgdp, __pgd(0));
579 }
580
581 static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
582 {
583 return __pgd_to_phys(pgd);
584 }
585
586 /* Find an entry in the frst-level page table. */
587 #define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
588
589 #define pud_offset_phys(dir, addr) (pgd_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))
590 #define pud_offset(dir, addr) ((pud_t *)__va(pud_offset_phys((dir), (addr))))
591
592 #define pud_set_fixmap(addr) ((pud_t *)set_fixmap_offset(FIX_PUD, addr))
593 #define pud_set_fixmap_offset(pgd, addr) pud_set_fixmap(pud_offset_phys(pgd, addr))
594 #define pud_clear_fixmap() clear_fixmap(FIX_PUD)
595
596 #define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
597
598 /* use ONLY for statically allocated translation tables */
599 #define pud_offset_kimg(dir,addr) ((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr))))
600
601 #else
602
603 #define pgd_page_paddr(pgd) ({ BUILD_BUG(); 0;})
604
605 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
606 #define pud_set_fixmap(addr) NULL
607 #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
608 #define pud_clear_fixmap()
609
610 #define pud_offset_kimg(dir,addr) ((pud_t *)dir)
611
612 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
613
614 #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
615
616 /* to find an entry in a page-table-directory */
617 #define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
618
619 #define pgd_offset_raw(pgd, addr) ((pgd) + pgd_index(addr))
620
621 #define pgd_offset(mm, addr) (pgd_offset_raw((mm)->pgd, (addr)))
622
623 /* to find an entry in a kernel page-table-directory */
624 #define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
625
626 #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
627 #define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
628
629 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
630 {
631 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
632 PTE_PROT_NONE | PTE_VALID | PTE_WRITE;
633 /* preserve the hardware dirty information */
634 if (pte_hw_dirty(pte))
635 pte = pte_mkdirty(pte);
636 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
637 return pte;
638 }
639
640 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
641 {
642 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
643 }
644
645 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
646 extern int ptep_set_access_flags(struct vm_area_struct *vma,
647 unsigned long address, pte_t *ptep,
648 pte_t entry, int dirty);
649
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
651 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
652 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
653 unsigned long address, pmd_t *pmdp,
654 pmd_t entry, int dirty)
655 {
656 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
657 }
658 #endif
659
660 /*
661 * Atomic pte/pmd modifications.
662 */
663 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
664 static inline int __ptep_test_and_clear_young(pte_t *ptep)
665 {
666 pte_t old_pte, pte;
667
668 pte = READ_ONCE(*ptep);
669 do {
670 old_pte = pte;
671 pte = pte_mkold(pte);
672 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
673 pte_val(old_pte), pte_val(pte));
674 } while (pte_val(pte) != pte_val(old_pte));
675
676 return pte_young(pte);
677 }
678
679 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
680 unsigned long address,
681 pte_t *ptep)
682 {
683 return __ptep_test_and_clear_young(ptep);
684 }
685
686 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
687 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
688 unsigned long address, pte_t *ptep)
689 {
690 int young = ptep_test_and_clear_young(vma, address, ptep);
691
692 if (young) {
693 /*
694 * We can elide the trailing DSB here since the worst that can
695 * happen is that a CPU continues to use the young entry in its
696 * TLB and we mistakenly reclaim the associated page. The
697 * window for such an event is bounded by the next
698 * context-switch, which provides a DSB to complete the TLB
699 * invalidation.
700 */
701 flush_tlb_page_nosync(vma, address);
702 }
703
704 return young;
705 }
706
707 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
708 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
709 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
710 unsigned long address,
711 pmd_t *pmdp)
712 {
713 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
714 }
715 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
716
717 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
718 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
719 unsigned long address, pte_t *ptep)
720 {
721 return __pte(xchg_relaxed(&pte_val(*ptep), 0));
722 }
723
724 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
725 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
726 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
727 unsigned long address, pmd_t *pmdp)
728 {
729 return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp));
730 }
731 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
732
733 /*
734 * ptep_set_wrprotect - mark read-only while trasferring potential hardware
735 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
736 */
737 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
738 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
739 {
740 pte_t old_pte, pte;
741
742 pte = READ_ONCE(*ptep);
743 do {
744 old_pte = pte;
745 /*
746 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
747 * clear), set the PTE_DIRTY bit.
748 */
749 if (pte_hw_dirty(pte))
750 pte = pte_mkdirty(pte);
751 pte = pte_wrprotect(pte);
752 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
753 pte_val(old_pte), pte_val(pte));
754 } while (pte_val(pte) != pte_val(old_pte));
755 }
756
757 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
758 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
759 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
760 unsigned long address, pmd_t *pmdp)
761 {
762 ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
763 }
764
765 #define pmdp_establish pmdp_establish
766 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
767 unsigned long address, pmd_t *pmdp, pmd_t pmd)
768 {
769 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
770 }
771 #endif
772
773 /*
774 * Encode and decode a swap entry:
775 * bits 0-1: present (must be zero)
776 * bits 2-7: swap type
777 * bits 8-57: swap offset
778 * bit 58: PTE_PROT_NONE (must be zero)
779 */
780 #define __SWP_TYPE_SHIFT 2
781 #define __SWP_TYPE_BITS 6
782 #define __SWP_OFFSET_BITS 50
783 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
784 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
785 #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
786
787 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
788 #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
789 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
790
791 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
792 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
793
794 /*
795 * Ensure that there are not more swap files than can be encoded in the kernel
796 * PTEs.
797 */
798 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
799
800 extern int kern_addr_valid(unsigned long addr);
801
802 #include <asm-generic/pgtable.h>
803
804 void pgd_cache_init(void);
805 #define pgtable_cache_init pgd_cache_init
806
807 /*
808 * On AArch64, the cache coherency is handled via the set_pte_at() function.
809 */
810 static inline void update_mmu_cache(struct vm_area_struct *vma,
811 unsigned long addr, pte_t *ptep)
812 {
813 /*
814 * We don't do anything here, so there's a very small chance of
815 * us retaking a user fault which we just fixed up. The alternative
816 * is doing a dsb(ishst), but that penalises the fastpath.
817 */
818 }
819
820 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
821
822 #define kc_vaddr_to_offset(v) ((v) & ~VA_START)
823 #define kc_offset_to_vaddr(o) ((o) | VA_START)
824
825 #ifdef CONFIG_ARM64_PA_BITS_52
826 #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
827 #else
828 #define phys_to_ttbr(addr) (addr)
829 #endif
830
831 #endif /* !__ASSEMBLY__ */
832
833 #endif /* __ASM_PGTABLE_H */