]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/arm64/kernel/fpsimd.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 234
[thirdparty/linux.git] / arch / arm64 / kernel / fpsimd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * FP/SIMD context switching and fault handling
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/kernel.h>
18 #include <linux/linkage.h>
19 #include <linux/irqflags.h>
20 #include <linux/init.h>
21 #include <linux/percpu.h>
22 #include <linux/prctl.h>
23 #include <linux/preempt.h>
24 #include <linux/ptrace.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/signal.h>
28 #include <linux/slab.h>
29 #include <linux/stddef.h>
30 #include <linux/sysctl.h>
31 #include <linux/swab.h>
32
33 #include <asm/esr.h>
34 #include <asm/fpsimd.h>
35 #include <asm/cpufeature.h>
36 #include <asm/cputype.h>
37 #include <asm/processor.h>
38 #include <asm/simd.h>
39 #include <asm/sigcontext.h>
40 #include <asm/sysreg.h>
41 #include <asm/traps.h>
42 #include <asm/virt.h>
43
44 #define FPEXC_IOF (1 << 0)
45 #define FPEXC_DZF (1 << 1)
46 #define FPEXC_OFF (1 << 2)
47 #define FPEXC_UFF (1 << 3)
48 #define FPEXC_IXF (1 << 4)
49 #define FPEXC_IDF (1 << 7)
50
51 /*
52 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
53 *
54 * In order to reduce the number of times the FPSIMD state is needlessly saved
55 * and restored, we need to keep track of two things:
56 * (a) for each task, we need to remember which CPU was the last one to have
57 * the task's FPSIMD state loaded into its FPSIMD registers;
58 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
59 * been loaded into its FPSIMD registers most recently, or whether it has
60 * been used to perform kernel mode NEON in the meantime.
61 *
62 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
63 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
64 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
65 * address of the userland FPSIMD state of the task that was loaded onto the CPU
66 * the most recently, or NULL if kernel mode NEON has been performed after that.
67 *
68 * With this in place, we no longer have to restore the next FPSIMD state right
69 * when switching between tasks. Instead, we can defer this check to userland
70 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
71 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
72 * can omit the FPSIMD restore.
73 *
74 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
75 * indicate whether or not the userland FPSIMD state of the current task is
76 * present in the registers. The flag is set unless the FPSIMD registers of this
77 * CPU currently contain the most recent userland FPSIMD state of the current
78 * task.
79 *
80 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
81 * save the task's FPSIMD context back to task_struct from softirq context.
82 * To prevent this from racing with the manipulation of the task's FPSIMD state
83 * from task context and thereby corrupting the state, it is necessary to
84 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
85 * flag with local_bh_disable() unless softirqs are already masked.
86 *
87 * For a certain task, the sequence may look something like this:
88 * - the task gets scheduled in; if both the task's fpsimd_cpu field
89 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
90 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
91 * cleared, otherwise it is set;
92 *
93 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
94 * userland FPSIMD state is copied from memory to the registers, the task's
95 * fpsimd_cpu field is set to the id of the current CPU, the current
96 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
97 * TIF_FOREIGN_FPSTATE flag is cleared;
98 *
99 * - the task executes an ordinary syscall; upon return to userland, the
100 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
101 * restored;
102 *
103 * - the task executes a syscall which executes some NEON instructions; this is
104 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
105 * register contents to memory, clears the fpsimd_last_state per-cpu variable
106 * and sets the TIF_FOREIGN_FPSTATE flag;
107 *
108 * - the task gets preempted after kernel_neon_end() is called; as we have not
109 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
110 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
111 */
112 struct fpsimd_last_state_struct {
113 struct user_fpsimd_state *st;
114 void *sve_state;
115 unsigned int sve_vl;
116 };
117
118 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
119
120 /* Default VL for tasks that don't set it explicitly: */
121 static int sve_default_vl = -1;
122
123 #ifdef CONFIG_ARM64_SVE
124
125 /* Maximum supported vector length across all CPUs (initially poisoned) */
126 int __ro_after_init sve_max_vl = SVE_VL_MIN;
127 int __ro_after_init sve_max_virtualisable_vl = SVE_VL_MIN;
128
129 /*
130 * Set of available vector lengths,
131 * where length vq encoded as bit __vq_to_bit(vq):
132 */
133 __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
134 /* Set of vector lengths present on at least one cpu: */
135 static __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
136
137 static void __percpu *efi_sve_state;
138
139 #else /* ! CONFIG_ARM64_SVE */
140
141 /* Dummy declaration for code that will be optimised out: */
142 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
143 extern __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
144 extern void __percpu *efi_sve_state;
145
146 #endif /* ! CONFIG_ARM64_SVE */
147
148 /*
149 * Call __sve_free() directly only if you know task can't be scheduled
150 * or preempted.
151 */
152 static void __sve_free(struct task_struct *task)
153 {
154 kfree(task->thread.sve_state);
155 task->thread.sve_state = NULL;
156 }
157
158 static void sve_free(struct task_struct *task)
159 {
160 WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
161
162 __sve_free(task);
163 }
164
165 /*
166 * TIF_SVE controls whether a task can use SVE without trapping while
167 * in userspace, and also the way a task's FPSIMD/SVE state is stored
168 * in thread_struct.
169 *
170 * The kernel uses this flag to track whether a user task is actively
171 * using SVE, and therefore whether full SVE register state needs to
172 * be tracked. If not, the cheaper FPSIMD context handling code can
173 * be used instead of the more costly SVE equivalents.
174 *
175 * * TIF_SVE set:
176 *
177 * The task can execute SVE instructions while in userspace without
178 * trapping to the kernel.
179 *
180 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
181 * corresponding Zn), P0-P15 and FFR are encoded in in
182 * task->thread.sve_state, formatted appropriately for vector
183 * length task->thread.sve_vl.
184 *
185 * task->thread.sve_state must point to a valid buffer at least
186 * sve_state_size(task) bytes in size.
187 *
188 * During any syscall, the kernel may optionally clear TIF_SVE and
189 * discard the vector state except for the FPSIMD subset.
190 *
191 * * TIF_SVE clear:
192 *
193 * An attempt by the user task to execute an SVE instruction causes
194 * do_sve_acc() to be called, which does some preparation and then
195 * sets TIF_SVE.
196 *
197 * When stored, FPSIMD registers V0-V31 are encoded in
198 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
199 * logically zero but not stored anywhere; P0-P15 and FFR are not
200 * stored and have unspecified values from userspace's point of
201 * view. For hygiene purposes, the kernel zeroes them on next use,
202 * but userspace is discouraged from relying on this.
203 *
204 * task->thread.sve_state does not need to be non-NULL, valid or any
205 * particular size: it must not be dereferenced.
206 *
207 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
208 * irrespective of whether TIF_SVE is clear or set, since these are
209 * not vector length dependent.
210 */
211
212 /*
213 * Update current's FPSIMD/SVE registers from thread_struct.
214 *
215 * This function should be called only when the FPSIMD/SVE state in
216 * thread_struct is known to be up to date, when preparing to enter
217 * userspace.
218 *
219 * Softirqs (and preemption) must be disabled.
220 */
221 static void task_fpsimd_load(void)
222 {
223 WARN_ON(!in_softirq() && !irqs_disabled());
224
225 if (system_supports_sve() && test_thread_flag(TIF_SVE))
226 sve_load_state(sve_pffr(&current->thread),
227 &current->thread.uw.fpsimd_state.fpsr,
228 sve_vq_from_vl(current->thread.sve_vl) - 1);
229 else
230 fpsimd_load_state(&current->thread.uw.fpsimd_state);
231 }
232
233 /*
234 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
235 * date with respect to the CPU registers.
236 *
237 * Softirqs (and preemption) must be disabled.
238 */
239 void fpsimd_save(void)
240 {
241 struct fpsimd_last_state_struct const *last =
242 this_cpu_ptr(&fpsimd_last_state);
243 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
244
245 WARN_ON(!in_softirq() && !irqs_disabled());
246
247 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
248 if (system_supports_sve() && test_thread_flag(TIF_SVE)) {
249 if (WARN_ON(sve_get_vl() != last->sve_vl)) {
250 /*
251 * Can't save the user regs, so current would
252 * re-enter user with corrupt state.
253 * There's no way to recover, so kill it:
254 */
255 force_signal_inject(SIGKILL, SI_KERNEL, 0);
256 return;
257 }
258
259 sve_save_state((char *)last->sve_state +
260 sve_ffr_offset(last->sve_vl),
261 &last->st->fpsr);
262 } else
263 fpsimd_save_state(last->st);
264 }
265 }
266
267 /*
268 * All vector length selection from userspace comes through here.
269 * We're on a slow path, so some sanity-checks are included.
270 * If things go wrong there's a bug somewhere, but try to fall back to a
271 * safe choice.
272 */
273 static unsigned int find_supported_vector_length(unsigned int vl)
274 {
275 int bit;
276 int max_vl = sve_max_vl;
277
278 if (WARN_ON(!sve_vl_valid(vl)))
279 vl = SVE_VL_MIN;
280
281 if (WARN_ON(!sve_vl_valid(max_vl)))
282 max_vl = SVE_VL_MIN;
283
284 if (vl > max_vl)
285 vl = max_vl;
286
287 bit = find_next_bit(sve_vq_map, SVE_VQ_MAX,
288 __vq_to_bit(sve_vq_from_vl(vl)));
289 return sve_vl_from_vq(__bit_to_vq(bit));
290 }
291
292 #ifdef CONFIG_SYSCTL
293
294 static int sve_proc_do_default_vl(struct ctl_table *table, int write,
295 void __user *buffer, size_t *lenp,
296 loff_t *ppos)
297 {
298 int ret;
299 int vl = sve_default_vl;
300 struct ctl_table tmp_table = {
301 .data = &vl,
302 .maxlen = sizeof(vl),
303 };
304
305 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
306 if (ret || !write)
307 return ret;
308
309 /* Writing -1 has the special meaning "set to max": */
310 if (vl == -1)
311 vl = sve_max_vl;
312
313 if (!sve_vl_valid(vl))
314 return -EINVAL;
315
316 sve_default_vl = find_supported_vector_length(vl);
317 return 0;
318 }
319
320 static struct ctl_table sve_default_vl_table[] = {
321 {
322 .procname = "sve_default_vector_length",
323 .mode = 0644,
324 .proc_handler = sve_proc_do_default_vl,
325 },
326 { }
327 };
328
329 static int __init sve_sysctl_init(void)
330 {
331 if (system_supports_sve())
332 if (!register_sysctl("abi", sve_default_vl_table))
333 return -EINVAL;
334
335 return 0;
336 }
337
338 #else /* ! CONFIG_SYSCTL */
339 static int __init sve_sysctl_init(void) { return 0; }
340 #endif /* ! CONFIG_SYSCTL */
341
342 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
343 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
344
345 #ifdef CONFIG_CPU_BIG_ENDIAN
346 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
347 {
348 u64 a = swab64(x);
349 u64 b = swab64(x >> 64);
350
351 return ((__uint128_t)a << 64) | b;
352 }
353 #else
354 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
355 {
356 return x;
357 }
358 #endif
359
360 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
361
362 /*
363 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
364 * task->thread.sve_state.
365 *
366 * Task can be a non-runnable task, or current. In the latter case,
367 * softirqs (and preemption) must be disabled.
368 * task->thread.sve_state must point to at least sve_state_size(task)
369 * bytes of allocated kernel memory.
370 * task->thread.uw.fpsimd_state must be up to date before calling this
371 * function.
372 */
373 static void fpsimd_to_sve(struct task_struct *task)
374 {
375 unsigned int vq;
376 void *sst = task->thread.sve_state;
377 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
378 unsigned int i;
379 __uint128_t *p;
380
381 if (!system_supports_sve())
382 return;
383
384 vq = sve_vq_from_vl(task->thread.sve_vl);
385 for (i = 0; i < 32; ++i) {
386 p = (__uint128_t *)ZREG(sst, vq, i);
387 *p = arm64_cpu_to_le128(fst->vregs[i]);
388 }
389 }
390
391 /*
392 * Transfer the SVE state in task->thread.sve_state to
393 * task->thread.uw.fpsimd_state.
394 *
395 * Task can be a non-runnable task, or current. In the latter case,
396 * softirqs (and preemption) must be disabled.
397 * task->thread.sve_state must point to at least sve_state_size(task)
398 * bytes of allocated kernel memory.
399 * task->thread.sve_state must be up to date before calling this function.
400 */
401 static void sve_to_fpsimd(struct task_struct *task)
402 {
403 unsigned int vq;
404 void const *sst = task->thread.sve_state;
405 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
406 unsigned int i;
407 __uint128_t const *p;
408
409 if (!system_supports_sve())
410 return;
411
412 vq = sve_vq_from_vl(task->thread.sve_vl);
413 for (i = 0; i < 32; ++i) {
414 p = (__uint128_t const *)ZREG(sst, vq, i);
415 fst->vregs[i] = arm64_le128_to_cpu(*p);
416 }
417 }
418
419 #ifdef CONFIG_ARM64_SVE
420
421 /*
422 * Return how many bytes of memory are required to store the full SVE
423 * state for task, given task's currently configured vector length.
424 */
425 size_t sve_state_size(struct task_struct const *task)
426 {
427 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
428 }
429
430 /*
431 * Ensure that task->thread.sve_state is allocated and sufficiently large.
432 *
433 * This function should be used only in preparation for replacing
434 * task->thread.sve_state with new data. The memory is always zeroed
435 * here to prevent stale data from showing through: this is done in
436 * the interest of testability and predictability: except in the
437 * do_sve_acc() case, there is no ABI requirement to hide stale data
438 * written previously be task.
439 */
440 void sve_alloc(struct task_struct *task)
441 {
442 if (task->thread.sve_state) {
443 memset(task->thread.sve_state, 0, sve_state_size(current));
444 return;
445 }
446
447 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
448 task->thread.sve_state =
449 kzalloc(sve_state_size(task), GFP_KERNEL);
450
451 /*
452 * If future SVE revisions can have larger vectors though,
453 * this may cease to be true:
454 */
455 BUG_ON(!task->thread.sve_state);
456 }
457
458
459 /*
460 * Ensure that task->thread.sve_state is up to date with respect to
461 * the user task, irrespective of when SVE is in use or not.
462 *
463 * This should only be called by ptrace. task must be non-runnable.
464 * task->thread.sve_state must point to at least sve_state_size(task)
465 * bytes of allocated kernel memory.
466 */
467 void fpsimd_sync_to_sve(struct task_struct *task)
468 {
469 if (!test_tsk_thread_flag(task, TIF_SVE))
470 fpsimd_to_sve(task);
471 }
472
473 /*
474 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
475 * the user task, irrespective of whether SVE is in use or not.
476 *
477 * This should only be called by ptrace. task must be non-runnable.
478 * task->thread.sve_state must point to at least sve_state_size(task)
479 * bytes of allocated kernel memory.
480 */
481 void sve_sync_to_fpsimd(struct task_struct *task)
482 {
483 if (test_tsk_thread_flag(task, TIF_SVE))
484 sve_to_fpsimd(task);
485 }
486
487 /*
488 * Ensure that task->thread.sve_state is up to date with respect to
489 * the task->thread.uw.fpsimd_state.
490 *
491 * This should only be called by ptrace to merge new FPSIMD register
492 * values into a task for which SVE is currently active.
493 * task must be non-runnable.
494 * task->thread.sve_state must point to at least sve_state_size(task)
495 * bytes of allocated kernel memory.
496 * task->thread.uw.fpsimd_state must already have been initialised with
497 * the new FPSIMD register values to be merged in.
498 */
499 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
500 {
501 unsigned int vq;
502 void *sst = task->thread.sve_state;
503 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
504 unsigned int i;
505 __uint128_t *p;
506
507 if (!test_tsk_thread_flag(task, TIF_SVE))
508 return;
509
510 vq = sve_vq_from_vl(task->thread.sve_vl);
511
512 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
513
514 for (i = 0; i < 32; ++i) {
515 p = (__uint128_t *)ZREG(sst, vq, i);
516 *p = arm64_cpu_to_le128(fst->vregs[i]);
517 }
518 }
519
520 int sve_set_vector_length(struct task_struct *task,
521 unsigned long vl, unsigned long flags)
522 {
523 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
524 PR_SVE_SET_VL_ONEXEC))
525 return -EINVAL;
526
527 if (!sve_vl_valid(vl))
528 return -EINVAL;
529
530 /*
531 * Clamp to the maximum vector length that VL-agnostic SVE code can
532 * work with. A flag may be assigned in the future to allow setting
533 * of larger vector lengths without confusing older software.
534 */
535 if (vl > SVE_VL_ARCH_MAX)
536 vl = SVE_VL_ARCH_MAX;
537
538 vl = find_supported_vector_length(vl);
539
540 if (flags & (PR_SVE_VL_INHERIT |
541 PR_SVE_SET_VL_ONEXEC))
542 task->thread.sve_vl_onexec = vl;
543 else
544 /* Reset VL to system default on next exec: */
545 task->thread.sve_vl_onexec = 0;
546
547 /* Only actually set the VL if not deferred: */
548 if (flags & PR_SVE_SET_VL_ONEXEC)
549 goto out;
550
551 if (vl == task->thread.sve_vl)
552 goto out;
553
554 /*
555 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
556 * write any live register state back to task_struct, and convert to a
557 * non-SVE thread.
558 */
559 if (task == current) {
560 local_bh_disable();
561
562 fpsimd_save();
563 }
564
565 fpsimd_flush_task_state(task);
566 if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
567 sve_to_fpsimd(task);
568
569 if (task == current)
570 local_bh_enable();
571
572 /*
573 * Force reallocation of task SVE state to the correct size
574 * on next use:
575 */
576 sve_free(task);
577
578 task->thread.sve_vl = vl;
579
580 out:
581 update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT,
582 flags & PR_SVE_VL_INHERIT);
583
584 return 0;
585 }
586
587 /*
588 * Encode the current vector length and flags for return.
589 * This is only required for prctl(): ptrace has separate fields
590 *
591 * flags are as for sve_set_vector_length().
592 */
593 static int sve_prctl_status(unsigned long flags)
594 {
595 int ret;
596
597 if (flags & PR_SVE_SET_VL_ONEXEC)
598 ret = current->thread.sve_vl_onexec;
599 else
600 ret = current->thread.sve_vl;
601
602 if (test_thread_flag(TIF_SVE_VL_INHERIT))
603 ret |= PR_SVE_VL_INHERIT;
604
605 return ret;
606 }
607
608 /* PR_SVE_SET_VL */
609 int sve_set_current_vl(unsigned long arg)
610 {
611 unsigned long vl, flags;
612 int ret;
613
614 vl = arg & PR_SVE_VL_LEN_MASK;
615 flags = arg & ~vl;
616
617 if (!system_supports_sve())
618 return -EINVAL;
619
620 ret = sve_set_vector_length(current, vl, flags);
621 if (ret)
622 return ret;
623
624 return sve_prctl_status(flags);
625 }
626
627 /* PR_SVE_GET_VL */
628 int sve_get_current_vl(void)
629 {
630 if (!system_supports_sve())
631 return -EINVAL;
632
633 return sve_prctl_status(0);
634 }
635
636 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX))
637 {
638 unsigned int vq, vl;
639 unsigned long zcr;
640
641 bitmap_zero(map, SVE_VQ_MAX);
642
643 zcr = ZCR_ELx_LEN_MASK;
644 zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr;
645
646 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
647 write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */
648 vl = sve_get_vl();
649 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
650 set_bit(__vq_to_bit(vq), map);
651 }
652 }
653
654 /*
655 * Initialise the set of known supported VQs for the boot CPU.
656 * This is called during kernel boot, before secondary CPUs are brought up.
657 */
658 void __init sve_init_vq_map(void)
659 {
660 sve_probe_vqs(sve_vq_map);
661 bitmap_copy(sve_vq_partial_map, sve_vq_map, SVE_VQ_MAX);
662 }
663
664 /*
665 * If we haven't committed to the set of supported VQs yet, filter out
666 * those not supported by the current CPU.
667 * This function is called during the bring-up of early secondary CPUs only.
668 */
669 void sve_update_vq_map(void)
670 {
671 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
672
673 sve_probe_vqs(tmp_map);
674 bitmap_and(sve_vq_map, sve_vq_map, tmp_map, SVE_VQ_MAX);
675 bitmap_or(sve_vq_partial_map, sve_vq_partial_map, tmp_map, SVE_VQ_MAX);
676 }
677
678 /*
679 * Check whether the current CPU supports all VQs in the committed set.
680 * This function is called during the bring-up of late secondary CPUs only.
681 */
682 int sve_verify_vq_map(void)
683 {
684 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
685 unsigned long b;
686
687 sve_probe_vqs(tmp_map);
688
689 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
690 if (bitmap_intersects(tmp_map, sve_vq_map, SVE_VQ_MAX)) {
691 pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
692 smp_processor_id());
693 return -EINVAL;
694 }
695
696 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
697 return 0;
698
699 /*
700 * For KVM, it is necessary to ensure that this CPU doesn't
701 * support any vector length that guests may have probed as
702 * unsupported.
703 */
704
705 /* Recover the set of supported VQs: */
706 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
707 /* Find VQs supported that are not globally supported: */
708 bitmap_andnot(tmp_map, tmp_map, sve_vq_map, SVE_VQ_MAX);
709
710 /* Find the lowest such VQ, if any: */
711 b = find_last_bit(tmp_map, SVE_VQ_MAX);
712 if (b >= SVE_VQ_MAX)
713 return 0; /* no mismatches */
714
715 /*
716 * Mismatches above sve_max_virtualisable_vl are fine, since
717 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
718 */
719 if (sve_vl_from_vq(__bit_to_vq(b)) <= sve_max_virtualisable_vl) {
720 pr_warn("SVE: cpu%d: Unsupported vector length(s) present\n",
721 smp_processor_id());
722 return -EINVAL;
723 }
724
725 return 0;
726 }
727
728 static void __init sve_efi_setup(void)
729 {
730 if (!IS_ENABLED(CONFIG_EFI))
731 return;
732
733 /*
734 * alloc_percpu() warns and prints a backtrace if this goes wrong.
735 * This is evidence of a crippled system and we are returning void,
736 * so no attempt is made to handle this situation here.
737 */
738 if (!sve_vl_valid(sve_max_vl))
739 goto fail;
740
741 efi_sve_state = __alloc_percpu(
742 SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES);
743 if (!efi_sve_state)
744 goto fail;
745
746 return;
747
748 fail:
749 panic("Cannot allocate percpu memory for EFI SVE save/restore");
750 }
751
752 /*
753 * Enable SVE for EL1.
754 * Intended for use by the cpufeatures code during CPU boot.
755 */
756 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
757 {
758 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
759 isb();
760 }
761
762 /*
763 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
764 * vector length.
765 *
766 * Use only if SVE is present.
767 * This function clobbers the SVE vector length.
768 */
769 u64 read_zcr_features(void)
770 {
771 u64 zcr;
772 unsigned int vq_max;
773
774 /*
775 * Set the maximum possible VL, and write zeroes to all other
776 * bits to see if they stick.
777 */
778 sve_kernel_enable(NULL);
779 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
780
781 zcr = read_sysreg_s(SYS_ZCR_EL1);
782 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
783 vq_max = sve_vq_from_vl(sve_get_vl());
784 zcr |= vq_max - 1; /* set LEN field to maximum effective value */
785
786 return zcr;
787 }
788
789 void __init sve_setup(void)
790 {
791 u64 zcr;
792 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
793 unsigned long b;
794
795 if (!system_supports_sve())
796 return;
797
798 /*
799 * The SVE architecture mandates support for 128-bit vectors,
800 * so sve_vq_map must have at least SVE_VQ_MIN set.
801 * If something went wrong, at least try to patch it up:
802 */
803 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map)))
804 set_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map);
805
806 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
807 sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
808
809 /*
810 * Sanity-check that the max VL we determined through CPU features
811 * corresponds properly to sve_vq_map. If not, do our best:
812 */
813 if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl)))
814 sve_max_vl = find_supported_vector_length(sve_max_vl);
815
816 /*
817 * For the default VL, pick the maximum supported value <= 64.
818 * VL == 64 is guaranteed not to grow the signal frame.
819 */
820 sve_default_vl = find_supported_vector_length(64);
821
822 bitmap_andnot(tmp_map, sve_vq_partial_map, sve_vq_map,
823 SVE_VQ_MAX);
824
825 b = find_last_bit(tmp_map, SVE_VQ_MAX);
826 if (b >= SVE_VQ_MAX)
827 /* No non-virtualisable VLs found */
828 sve_max_virtualisable_vl = SVE_VQ_MAX;
829 else if (WARN_ON(b == SVE_VQ_MAX - 1))
830 /* No virtualisable VLs? This is architecturally forbidden. */
831 sve_max_virtualisable_vl = SVE_VQ_MIN;
832 else /* b + 1 < SVE_VQ_MAX */
833 sve_max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
834
835 if (sve_max_virtualisable_vl > sve_max_vl)
836 sve_max_virtualisable_vl = sve_max_vl;
837
838 pr_info("SVE: maximum available vector length %u bytes per vector\n",
839 sve_max_vl);
840 pr_info("SVE: default vector length %u bytes per vector\n",
841 sve_default_vl);
842
843 /* KVM decides whether to support mismatched systems. Just warn here: */
844 if (sve_max_virtualisable_vl < sve_max_vl)
845 pr_warn("SVE: unvirtualisable vector lengths present\n");
846
847 sve_efi_setup();
848 }
849
850 /*
851 * Called from the put_task_struct() path, which cannot get here
852 * unless dead_task is really dead and not schedulable.
853 */
854 void fpsimd_release_task(struct task_struct *dead_task)
855 {
856 __sve_free(dead_task);
857 }
858
859 #endif /* CONFIG_ARM64_SVE */
860
861 /*
862 * Trapped SVE access
863 *
864 * Storage is allocated for the full SVE state, the current FPSIMD
865 * register contents are migrated across, and TIF_SVE is set so that
866 * the SVE access trap will be disabled the next time this task
867 * reaches ret_to_user.
868 *
869 * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load()
870 * would have disabled the SVE access trap for userspace during
871 * ret_to_user, making an SVE access trap impossible in that case.
872 */
873 asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs)
874 {
875 /* Even if we chose not to use SVE, the hardware could still trap: */
876 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
877 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
878 return;
879 }
880
881 sve_alloc(current);
882
883 local_bh_disable();
884
885 fpsimd_save();
886
887 /* Force ret_to_user to reload the registers: */
888 fpsimd_flush_task_state(current);
889
890 fpsimd_to_sve(current);
891 if (test_and_set_thread_flag(TIF_SVE))
892 WARN_ON(1); /* SVE access shouldn't have trapped */
893
894 local_bh_enable();
895 }
896
897 /*
898 * Trapped FP/ASIMD access.
899 */
900 asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
901 {
902 /* TODO: implement lazy context saving/restoring */
903 WARN_ON(1);
904 }
905
906 /*
907 * Raise a SIGFPE for the current process.
908 */
909 asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
910 {
911 unsigned int si_code = FPE_FLTUNK;
912
913 if (esr & ESR_ELx_FP_EXC_TFV) {
914 if (esr & FPEXC_IOF)
915 si_code = FPE_FLTINV;
916 else if (esr & FPEXC_DZF)
917 si_code = FPE_FLTDIV;
918 else if (esr & FPEXC_OFF)
919 si_code = FPE_FLTOVF;
920 else if (esr & FPEXC_UFF)
921 si_code = FPE_FLTUND;
922 else if (esr & FPEXC_IXF)
923 si_code = FPE_FLTRES;
924 }
925
926 send_sig_fault(SIGFPE, si_code,
927 (void __user *)instruction_pointer(regs),
928 current);
929 }
930
931 void fpsimd_thread_switch(struct task_struct *next)
932 {
933 bool wrong_task, wrong_cpu;
934
935 if (!system_supports_fpsimd())
936 return;
937
938 /* Save unsaved fpsimd state, if any: */
939 fpsimd_save();
940
941 /*
942 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
943 * state. For kernel threads, FPSIMD registers are never loaded
944 * and wrong_task and wrong_cpu will always be true.
945 */
946 wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
947 &next->thread.uw.fpsimd_state;
948 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
949
950 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
951 wrong_task || wrong_cpu);
952 }
953
954 void fpsimd_flush_thread(void)
955 {
956 int vl, supported_vl;
957
958 if (!system_supports_fpsimd())
959 return;
960
961 local_bh_disable();
962
963 fpsimd_flush_task_state(current);
964 memset(&current->thread.uw.fpsimd_state, 0,
965 sizeof(current->thread.uw.fpsimd_state));
966
967 if (system_supports_sve()) {
968 clear_thread_flag(TIF_SVE);
969 sve_free(current);
970
971 /*
972 * Reset the task vector length as required.
973 * This is where we ensure that all user tasks have a valid
974 * vector length configured: no kernel task can become a user
975 * task without an exec and hence a call to this function.
976 * By the time the first call to this function is made, all
977 * early hardware probing is complete, so sve_default_vl
978 * should be valid.
979 * If a bug causes this to go wrong, we make some noise and
980 * try to fudge thread.sve_vl to a safe value here.
981 */
982 vl = current->thread.sve_vl_onexec ?
983 current->thread.sve_vl_onexec : sve_default_vl;
984
985 if (WARN_ON(!sve_vl_valid(vl)))
986 vl = SVE_VL_MIN;
987
988 supported_vl = find_supported_vector_length(vl);
989 if (WARN_ON(supported_vl != vl))
990 vl = supported_vl;
991
992 current->thread.sve_vl = vl;
993
994 /*
995 * If the task is not set to inherit, ensure that the vector
996 * length will be reset by a subsequent exec:
997 */
998 if (!test_thread_flag(TIF_SVE_VL_INHERIT))
999 current->thread.sve_vl_onexec = 0;
1000 }
1001
1002 local_bh_enable();
1003 }
1004
1005 /*
1006 * Save the userland FPSIMD state of 'current' to memory, but only if the state
1007 * currently held in the registers does in fact belong to 'current'
1008 */
1009 void fpsimd_preserve_current_state(void)
1010 {
1011 if (!system_supports_fpsimd())
1012 return;
1013
1014 local_bh_disable();
1015 fpsimd_save();
1016 local_bh_enable();
1017 }
1018
1019 /*
1020 * Like fpsimd_preserve_current_state(), but ensure that
1021 * current->thread.uw.fpsimd_state is updated so that it can be copied to
1022 * the signal frame.
1023 */
1024 void fpsimd_signal_preserve_current_state(void)
1025 {
1026 fpsimd_preserve_current_state();
1027 if (system_supports_sve() && test_thread_flag(TIF_SVE))
1028 sve_to_fpsimd(current);
1029 }
1030
1031 /*
1032 * Associate current's FPSIMD context with this cpu
1033 * Preemption must be disabled when calling this function.
1034 */
1035 void fpsimd_bind_task_to_cpu(void)
1036 {
1037 struct fpsimd_last_state_struct *last =
1038 this_cpu_ptr(&fpsimd_last_state);
1039
1040 last->st = &current->thread.uw.fpsimd_state;
1041 last->sve_state = current->thread.sve_state;
1042 last->sve_vl = current->thread.sve_vl;
1043 current->thread.fpsimd_cpu = smp_processor_id();
1044
1045 if (system_supports_sve()) {
1046 /* Toggle SVE trapping for userspace if needed */
1047 if (test_thread_flag(TIF_SVE))
1048 sve_user_enable();
1049 else
1050 sve_user_disable();
1051
1052 /* Serialised by exception return to user */
1053 }
1054 }
1055
1056 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
1057 unsigned int sve_vl)
1058 {
1059 struct fpsimd_last_state_struct *last =
1060 this_cpu_ptr(&fpsimd_last_state);
1061
1062 WARN_ON(!in_softirq() && !irqs_disabled());
1063
1064 last->st = st;
1065 last->sve_state = sve_state;
1066 last->sve_vl = sve_vl;
1067 }
1068
1069 /*
1070 * Load the userland FPSIMD state of 'current' from memory, but only if the
1071 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1072 * state of 'current'
1073 */
1074 void fpsimd_restore_current_state(void)
1075 {
1076 if (!system_supports_fpsimd())
1077 return;
1078
1079 local_bh_disable();
1080
1081 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1082 task_fpsimd_load();
1083 fpsimd_bind_task_to_cpu();
1084 }
1085
1086 local_bh_enable();
1087 }
1088
1089 /*
1090 * Load an updated userland FPSIMD state for 'current' from memory and set the
1091 * flag that indicates that the FPSIMD register contents are the most recent
1092 * FPSIMD state of 'current'
1093 */
1094 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1095 {
1096 if (!system_supports_fpsimd())
1097 return;
1098
1099 local_bh_disable();
1100
1101 current->thread.uw.fpsimd_state = *state;
1102 if (system_supports_sve() && test_thread_flag(TIF_SVE))
1103 fpsimd_to_sve(current);
1104
1105 task_fpsimd_load();
1106 fpsimd_bind_task_to_cpu();
1107
1108 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1109
1110 local_bh_enable();
1111 }
1112
1113 /*
1114 * Invalidate live CPU copies of task t's FPSIMD state
1115 *
1116 * This function may be called with preemption enabled. The barrier()
1117 * ensures that the assignment to fpsimd_cpu is visible to any
1118 * preemption/softirq that could race with set_tsk_thread_flag(), so
1119 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1120 *
1121 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1122 * subsequent code.
1123 */
1124 void fpsimd_flush_task_state(struct task_struct *t)
1125 {
1126 t->thread.fpsimd_cpu = NR_CPUS;
1127
1128 barrier();
1129 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1130
1131 barrier();
1132 }
1133
1134 /*
1135 * Invalidate any task's FPSIMD state that is present on this cpu.
1136 * This function must be called with softirqs disabled.
1137 */
1138 void fpsimd_flush_cpu_state(void)
1139 {
1140 __this_cpu_write(fpsimd_last_state.st, NULL);
1141 set_thread_flag(TIF_FOREIGN_FPSTATE);
1142 }
1143
1144 #ifdef CONFIG_KERNEL_MODE_NEON
1145
1146 DEFINE_PER_CPU(bool, kernel_neon_busy);
1147 EXPORT_PER_CPU_SYMBOL(kernel_neon_busy);
1148
1149 /*
1150 * Kernel-side NEON support functions
1151 */
1152
1153 /*
1154 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1155 * context
1156 *
1157 * Must not be called unless may_use_simd() returns true.
1158 * Task context in the FPSIMD registers is saved back to memory as necessary.
1159 *
1160 * A matching call to kernel_neon_end() must be made before returning from the
1161 * calling context.
1162 *
1163 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1164 * called.
1165 */
1166 void kernel_neon_begin(void)
1167 {
1168 if (WARN_ON(!system_supports_fpsimd()))
1169 return;
1170
1171 BUG_ON(!may_use_simd());
1172
1173 local_bh_disable();
1174
1175 __this_cpu_write(kernel_neon_busy, true);
1176
1177 /* Save unsaved fpsimd state, if any: */
1178 fpsimd_save();
1179
1180 /* Invalidate any task state remaining in the fpsimd regs: */
1181 fpsimd_flush_cpu_state();
1182
1183 preempt_disable();
1184
1185 local_bh_enable();
1186 }
1187 EXPORT_SYMBOL(kernel_neon_begin);
1188
1189 /*
1190 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1191 *
1192 * Must be called from a context in which kernel_neon_begin() was previously
1193 * called, with no call to kernel_neon_end() in the meantime.
1194 *
1195 * The caller must not use the FPSIMD registers after this function is called,
1196 * unless kernel_neon_begin() is called again in the meantime.
1197 */
1198 void kernel_neon_end(void)
1199 {
1200 bool busy;
1201
1202 if (!system_supports_fpsimd())
1203 return;
1204
1205 busy = __this_cpu_xchg(kernel_neon_busy, false);
1206 WARN_ON(!busy); /* No matching kernel_neon_begin()? */
1207
1208 preempt_enable();
1209 }
1210 EXPORT_SYMBOL(kernel_neon_end);
1211
1212 #ifdef CONFIG_EFI
1213
1214 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1215 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1216 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1217
1218 /*
1219 * EFI runtime services support functions
1220 *
1221 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1222 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1223 * is always used rather than being an optional accelerator.
1224 *
1225 * These functions provide the necessary support for ensuring FPSIMD
1226 * save/restore in the contexts from which EFI is used.
1227 *
1228 * Do not use them for any other purpose -- if tempted to do so, you are
1229 * either doing something wrong or you need to propose some refactoring.
1230 */
1231
1232 /*
1233 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1234 */
1235 void __efi_fpsimd_begin(void)
1236 {
1237 if (!system_supports_fpsimd())
1238 return;
1239
1240 WARN_ON(preemptible());
1241
1242 if (may_use_simd()) {
1243 kernel_neon_begin();
1244 } else {
1245 /*
1246 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1247 * preserving:
1248 */
1249 if (system_supports_sve() && likely(efi_sve_state)) {
1250 char *sve_state = this_cpu_ptr(efi_sve_state);
1251
1252 __this_cpu_write(efi_sve_state_used, true);
1253
1254 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl),
1255 &this_cpu_ptr(&efi_fpsimd_state)->fpsr);
1256 } else {
1257 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1258 }
1259
1260 __this_cpu_write(efi_fpsimd_state_used, true);
1261 }
1262 }
1263
1264 /*
1265 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1266 */
1267 void __efi_fpsimd_end(void)
1268 {
1269 if (!system_supports_fpsimd())
1270 return;
1271
1272 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1273 kernel_neon_end();
1274 } else {
1275 if (system_supports_sve() &&
1276 likely(__this_cpu_read(efi_sve_state_used))) {
1277 char const *sve_state = this_cpu_ptr(efi_sve_state);
1278
1279 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl),
1280 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1281 sve_vq_from_vl(sve_get_vl()) - 1);
1282
1283 __this_cpu_write(efi_sve_state_used, false);
1284 } else {
1285 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1286 }
1287 }
1288 }
1289
1290 #endif /* CONFIG_EFI */
1291
1292 #endif /* CONFIG_KERNEL_MODE_NEON */
1293
1294 #ifdef CONFIG_CPU_PM
1295 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1296 unsigned long cmd, void *v)
1297 {
1298 switch (cmd) {
1299 case CPU_PM_ENTER:
1300 fpsimd_save();
1301 fpsimd_flush_cpu_state();
1302 break;
1303 case CPU_PM_EXIT:
1304 break;
1305 case CPU_PM_ENTER_FAILED:
1306 default:
1307 return NOTIFY_DONE;
1308 }
1309 return NOTIFY_OK;
1310 }
1311
1312 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1313 .notifier_call = fpsimd_cpu_pm_notifier,
1314 };
1315
1316 static void __init fpsimd_pm_init(void)
1317 {
1318 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
1319 }
1320
1321 #else
1322 static inline void fpsimd_pm_init(void) { }
1323 #endif /* CONFIG_CPU_PM */
1324
1325 #ifdef CONFIG_HOTPLUG_CPU
1326 static int fpsimd_cpu_dead(unsigned int cpu)
1327 {
1328 per_cpu(fpsimd_last_state.st, cpu) = NULL;
1329 return 0;
1330 }
1331
1332 static inline void fpsimd_hotplug_init(void)
1333 {
1334 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
1335 NULL, fpsimd_cpu_dead);
1336 }
1337
1338 #else
1339 static inline void fpsimd_hotplug_init(void) { }
1340 #endif
1341
1342 /*
1343 * FP/SIMD support code initialisation.
1344 */
1345 static int __init fpsimd_init(void)
1346 {
1347 if (cpu_have_named_feature(FP)) {
1348 fpsimd_pm_init();
1349 fpsimd_hotplug_init();
1350 } else {
1351 pr_notice("Floating-point is not implemented\n");
1352 }
1353
1354 if (!cpu_have_named_feature(ASIMD))
1355 pr_notice("Advanced SIMD is not implemented\n");
1356
1357 return sve_sysctl_init();
1358 }
1359 core_initcall(fpsimd_init);