]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/arm64/kernel/fpsimd.c
arm64: fpsimd: Generalise context saving for non-task contexts
[thirdparty/linux.git] / arch / arm64 / kernel / fpsimd.c
1 /*
2 * FP/SIMD context switching and fault handling
3 *
4 * Copyright (C) 2012 ARM Ltd.
5 * Author: Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/bitmap.h>
21 #include <linux/bottom_half.h>
22 #include <linux/bug.h>
23 #include <linux/cache.h>
24 #include <linux/compat.h>
25 #include <linux/cpu.h>
26 #include <linux/cpu_pm.h>
27 #include <linux/kernel.h>
28 #include <linux/linkage.h>
29 #include <linux/irqflags.h>
30 #include <linux/init.h>
31 #include <linux/percpu.h>
32 #include <linux/prctl.h>
33 #include <linux/preempt.h>
34 #include <linux/prctl.h>
35 #include <linux/ptrace.h>
36 #include <linux/sched/signal.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/signal.h>
39 #include <linux/slab.h>
40 #include <linux/sysctl.h>
41
42 #include <asm/esr.h>
43 #include <asm/fpsimd.h>
44 #include <asm/cpufeature.h>
45 #include <asm/cputype.h>
46 #include <asm/simd.h>
47 #include <asm/sigcontext.h>
48 #include <asm/sysreg.h>
49 #include <asm/traps.h>
50
51 #define FPEXC_IOF (1 << 0)
52 #define FPEXC_DZF (1 << 1)
53 #define FPEXC_OFF (1 << 2)
54 #define FPEXC_UFF (1 << 3)
55 #define FPEXC_IXF (1 << 4)
56 #define FPEXC_IDF (1 << 7)
57
58 /*
59 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
60 *
61 * In order to reduce the number of times the FPSIMD state is needlessly saved
62 * and restored, we need to keep track of two things:
63 * (a) for each task, we need to remember which CPU was the last one to have
64 * the task's FPSIMD state loaded into its FPSIMD registers;
65 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
66 * been loaded into its FPSIMD registers most recently, or whether it has
67 * been used to perform kernel mode NEON in the meantime.
68 *
69 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
70 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
71 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
72 * address of the userland FPSIMD state of the task that was loaded onto the CPU
73 * the most recently, or NULL if kernel mode NEON has been performed after that.
74 *
75 * With this in place, we no longer have to restore the next FPSIMD state right
76 * when switching between tasks. Instead, we can defer this check to userland
77 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
78 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
79 * can omit the FPSIMD restore.
80 *
81 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
82 * indicate whether or not the userland FPSIMD state of the current task is
83 * present in the registers. The flag is set unless the FPSIMD registers of this
84 * CPU currently contain the most recent userland FPSIMD state of the current
85 * task.
86 *
87 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
88 * save the task's FPSIMD context back to task_struct from softirq context.
89 * To prevent this from racing with the manipulation of the task's FPSIMD state
90 * from task context and thereby corrupting the state, it is necessary to
91 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
92 * flag with local_bh_disable() unless softirqs are already masked.
93 *
94 * For a certain task, the sequence may look something like this:
95 * - the task gets scheduled in; if both the task's fpsimd_cpu field
96 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
97 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
98 * cleared, otherwise it is set;
99 *
100 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
101 * userland FPSIMD state is copied from memory to the registers, the task's
102 * fpsimd_cpu field is set to the id of the current CPU, the current
103 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
104 * TIF_FOREIGN_FPSTATE flag is cleared;
105 *
106 * - the task executes an ordinary syscall; upon return to userland, the
107 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
108 * restored;
109 *
110 * - the task executes a syscall which executes some NEON instructions; this is
111 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
112 * register contents to memory, clears the fpsimd_last_state per-cpu variable
113 * and sets the TIF_FOREIGN_FPSTATE flag;
114 *
115 * - the task gets preempted after kernel_neon_end() is called; as we have not
116 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
117 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
118 */
119 struct fpsimd_last_state_struct {
120 struct user_fpsimd_state *st;
121 bool sve_in_use;
122 };
123
124 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
125
126 /* Default VL for tasks that don't set it explicitly: */
127 static int sve_default_vl = -1;
128
129 #ifdef CONFIG_ARM64_SVE
130
131 /* Maximum supported vector length across all CPUs (initially poisoned) */
132 int __ro_after_init sve_max_vl = -1;
133 /* Set of available vector lengths, as vq_to_bit(vq): */
134 static __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
135 static void __percpu *efi_sve_state;
136
137 #else /* ! CONFIG_ARM64_SVE */
138
139 /* Dummy declaration for code that will be optimised out: */
140 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
141 extern void __percpu *efi_sve_state;
142
143 #endif /* ! CONFIG_ARM64_SVE */
144
145 /*
146 * Call __sve_free() directly only if you know task can't be scheduled
147 * or preempted.
148 */
149 static void __sve_free(struct task_struct *task)
150 {
151 kfree(task->thread.sve_state);
152 task->thread.sve_state = NULL;
153 }
154
155 static void sve_free(struct task_struct *task)
156 {
157 WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
158
159 __sve_free(task);
160 }
161
162
163 /* Offset of FFR in the SVE register dump */
164 static size_t sve_ffr_offset(int vl)
165 {
166 return SVE_SIG_FFR_OFFSET(sve_vq_from_vl(vl)) - SVE_SIG_REGS_OFFSET;
167 }
168
169 static void *sve_pffr(struct task_struct *task)
170 {
171 return (char *)task->thread.sve_state +
172 sve_ffr_offset(task->thread.sve_vl);
173 }
174
175 static void change_cpacr(u64 val, u64 mask)
176 {
177 u64 cpacr = read_sysreg(CPACR_EL1);
178 u64 new = (cpacr & ~mask) | val;
179
180 if (new != cpacr)
181 write_sysreg(new, CPACR_EL1);
182 }
183
184 static void sve_user_disable(void)
185 {
186 change_cpacr(0, CPACR_EL1_ZEN_EL0EN);
187 }
188
189 static void sve_user_enable(void)
190 {
191 change_cpacr(CPACR_EL1_ZEN_EL0EN, CPACR_EL1_ZEN_EL0EN);
192 }
193
194 /*
195 * TIF_SVE controls whether a task can use SVE without trapping while
196 * in userspace, and also the way a task's FPSIMD/SVE state is stored
197 * in thread_struct.
198 *
199 * The kernel uses this flag to track whether a user task is actively
200 * using SVE, and therefore whether full SVE register state needs to
201 * be tracked. If not, the cheaper FPSIMD context handling code can
202 * be used instead of the more costly SVE equivalents.
203 *
204 * * TIF_SVE set:
205 *
206 * The task can execute SVE instructions while in userspace without
207 * trapping to the kernel.
208 *
209 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
210 * corresponding Zn), P0-P15 and FFR are encoded in in
211 * task->thread.sve_state, formatted appropriately for vector
212 * length task->thread.sve_vl.
213 *
214 * task->thread.sve_state must point to a valid buffer at least
215 * sve_state_size(task) bytes in size.
216 *
217 * During any syscall, the kernel may optionally clear TIF_SVE and
218 * discard the vector state except for the FPSIMD subset.
219 *
220 * * TIF_SVE clear:
221 *
222 * An attempt by the user task to execute an SVE instruction causes
223 * do_sve_acc() to be called, which does some preparation and then
224 * sets TIF_SVE.
225 *
226 * When stored, FPSIMD registers V0-V31 are encoded in
227 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
228 * logically zero but not stored anywhere; P0-P15 and FFR are not
229 * stored and have unspecified values from userspace's point of
230 * view. For hygiene purposes, the kernel zeroes them on next use,
231 * but userspace is discouraged from relying on this.
232 *
233 * task->thread.sve_state does not need to be non-NULL, valid or any
234 * particular size: it must not be dereferenced.
235 *
236 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
237 * irrespective of whether TIF_SVE is clear or set, since these are
238 * not vector length dependent.
239 */
240
241 /*
242 * Update current's FPSIMD/SVE registers from thread_struct.
243 *
244 * This function should be called only when the FPSIMD/SVE state in
245 * thread_struct is known to be up to date, when preparing to enter
246 * userspace.
247 *
248 * Softirqs (and preemption) must be disabled.
249 */
250 static void task_fpsimd_load(void)
251 {
252 WARN_ON(!in_softirq() && !irqs_disabled());
253
254 if (system_supports_sve() && test_thread_flag(TIF_SVE))
255 sve_load_state(sve_pffr(current),
256 &current->thread.uw.fpsimd_state.fpsr,
257 sve_vq_from_vl(current->thread.sve_vl) - 1);
258 else
259 fpsimd_load_state(&current->thread.uw.fpsimd_state);
260
261 if (system_supports_sve()) {
262 /* Toggle SVE trapping for userspace if needed */
263 if (test_thread_flag(TIF_SVE))
264 sve_user_enable();
265 else
266 sve_user_disable();
267
268 /* Serialised by exception return to user */
269 }
270 }
271
272 /*
273 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
274 * date with respect to the CPU registers.
275 *
276 * Softirqs (and preemption) must be disabled.
277 */
278 static void fpsimd_save(void)
279 {
280 struct user_fpsimd_state *st = __this_cpu_read(fpsimd_last_state.st);
281 /* set by fpsimd_bind_to_cpu() */
282
283 WARN_ON(!in_softirq() && !irqs_disabled());
284
285 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
286 if (system_supports_sve() && test_thread_flag(TIF_SVE)) {
287 if (WARN_ON(sve_get_vl() != current->thread.sve_vl)) {
288 /*
289 * Can't save the user regs, so current would
290 * re-enter user with corrupt state.
291 * There's no way to recover, so kill it:
292 */
293 force_signal_inject(SIGKILL, SI_KERNEL, 0);
294 return;
295 }
296
297 sve_save_state(sve_pffr(current), &st->fpsr);
298 } else
299 fpsimd_save_state(st);
300 }
301 }
302
303 /*
304 * Helpers to translate bit indices in sve_vq_map to VQ values (and
305 * vice versa). This allows find_next_bit() to be used to find the
306 * _maximum_ VQ not exceeding a certain value.
307 */
308
309 static unsigned int vq_to_bit(unsigned int vq)
310 {
311 return SVE_VQ_MAX - vq;
312 }
313
314 static unsigned int bit_to_vq(unsigned int bit)
315 {
316 if (WARN_ON(bit >= SVE_VQ_MAX))
317 bit = SVE_VQ_MAX - 1;
318
319 return SVE_VQ_MAX - bit;
320 }
321
322 /*
323 * All vector length selection from userspace comes through here.
324 * We're on a slow path, so some sanity-checks are included.
325 * If things go wrong there's a bug somewhere, but try to fall back to a
326 * safe choice.
327 */
328 static unsigned int find_supported_vector_length(unsigned int vl)
329 {
330 int bit;
331 int max_vl = sve_max_vl;
332
333 if (WARN_ON(!sve_vl_valid(vl)))
334 vl = SVE_VL_MIN;
335
336 if (WARN_ON(!sve_vl_valid(max_vl)))
337 max_vl = SVE_VL_MIN;
338
339 if (vl > max_vl)
340 vl = max_vl;
341
342 bit = find_next_bit(sve_vq_map, SVE_VQ_MAX,
343 vq_to_bit(sve_vq_from_vl(vl)));
344 return sve_vl_from_vq(bit_to_vq(bit));
345 }
346
347 #ifdef CONFIG_SYSCTL
348
349 static int sve_proc_do_default_vl(struct ctl_table *table, int write,
350 void __user *buffer, size_t *lenp,
351 loff_t *ppos)
352 {
353 int ret;
354 int vl = sve_default_vl;
355 struct ctl_table tmp_table = {
356 .data = &vl,
357 .maxlen = sizeof(vl),
358 };
359
360 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
361 if (ret || !write)
362 return ret;
363
364 /* Writing -1 has the special meaning "set to max": */
365 if (vl == -1) {
366 /* Fail safe if sve_max_vl wasn't initialised */
367 if (WARN_ON(!sve_vl_valid(sve_max_vl)))
368 vl = SVE_VL_MIN;
369 else
370 vl = sve_max_vl;
371
372 goto chosen;
373 }
374
375 if (!sve_vl_valid(vl))
376 return -EINVAL;
377
378 vl = find_supported_vector_length(vl);
379 chosen:
380 sve_default_vl = vl;
381 return 0;
382 }
383
384 static struct ctl_table sve_default_vl_table[] = {
385 {
386 .procname = "sve_default_vector_length",
387 .mode = 0644,
388 .proc_handler = sve_proc_do_default_vl,
389 },
390 { }
391 };
392
393 static int __init sve_sysctl_init(void)
394 {
395 if (system_supports_sve())
396 if (!register_sysctl("abi", sve_default_vl_table))
397 return -EINVAL;
398
399 return 0;
400 }
401
402 #else /* ! CONFIG_SYSCTL */
403 static int __init sve_sysctl_init(void) { return 0; }
404 #endif /* ! CONFIG_SYSCTL */
405
406 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
407 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
408
409 /*
410 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
411 * task->thread.sve_state.
412 *
413 * Task can be a non-runnable task, or current. In the latter case,
414 * softirqs (and preemption) must be disabled.
415 * task->thread.sve_state must point to at least sve_state_size(task)
416 * bytes of allocated kernel memory.
417 * task->thread.uw.fpsimd_state must be up to date before calling this
418 * function.
419 */
420 static void fpsimd_to_sve(struct task_struct *task)
421 {
422 unsigned int vq;
423 void *sst = task->thread.sve_state;
424 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
425 unsigned int i;
426
427 if (!system_supports_sve())
428 return;
429
430 vq = sve_vq_from_vl(task->thread.sve_vl);
431 for (i = 0; i < 32; ++i)
432 memcpy(ZREG(sst, vq, i), &fst->vregs[i],
433 sizeof(fst->vregs[i]));
434 }
435
436 /*
437 * Transfer the SVE state in task->thread.sve_state to
438 * task->thread.uw.fpsimd_state.
439 *
440 * Task can be a non-runnable task, or current. In the latter case,
441 * softirqs (and preemption) must be disabled.
442 * task->thread.sve_state must point to at least sve_state_size(task)
443 * bytes of allocated kernel memory.
444 * task->thread.sve_state must be up to date before calling this function.
445 */
446 static void sve_to_fpsimd(struct task_struct *task)
447 {
448 unsigned int vq;
449 void const *sst = task->thread.sve_state;
450 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
451 unsigned int i;
452
453 if (!system_supports_sve())
454 return;
455
456 vq = sve_vq_from_vl(task->thread.sve_vl);
457 for (i = 0; i < 32; ++i)
458 memcpy(&fst->vregs[i], ZREG(sst, vq, i),
459 sizeof(fst->vregs[i]));
460 }
461
462 #ifdef CONFIG_ARM64_SVE
463
464 /*
465 * Return how many bytes of memory are required to store the full SVE
466 * state for task, given task's currently configured vector length.
467 */
468 size_t sve_state_size(struct task_struct const *task)
469 {
470 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
471 }
472
473 /*
474 * Ensure that task->thread.sve_state is allocated and sufficiently large.
475 *
476 * This function should be used only in preparation for replacing
477 * task->thread.sve_state with new data. The memory is always zeroed
478 * here to prevent stale data from showing through: this is done in
479 * the interest of testability and predictability: except in the
480 * do_sve_acc() case, there is no ABI requirement to hide stale data
481 * written previously be task.
482 */
483 void sve_alloc(struct task_struct *task)
484 {
485 if (task->thread.sve_state) {
486 memset(task->thread.sve_state, 0, sve_state_size(current));
487 return;
488 }
489
490 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
491 task->thread.sve_state =
492 kzalloc(sve_state_size(task), GFP_KERNEL);
493
494 /*
495 * If future SVE revisions can have larger vectors though,
496 * this may cease to be true:
497 */
498 BUG_ON(!task->thread.sve_state);
499 }
500
501
502 /*
503 * Ensure that task->thread.sve_state is up to date with respect to
504 * the user task, irrespective of when SVE is in use or not.
505 *
506 * This should only be called by ptrace. task must be non-runnable.
507 * task->thread.sve_state must point to at least sve_state_size(task)
508 * bytes of allocated kernel memory.
509 */
510 void fpsimd_sync_to_sve(struct task_struct *task)
511 {
512 if (!test_tsk_thread_flag(task, TIF_SVE))
513 fpsimd_to_sve(task);
514 }
515
516 /*
517 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
518 * the user task, irrespective of whether SVE is in use or not.
519 *
520 * This should only be called by ptrace. task must be non-runnable.
521 * task->thread.sve_state must point to at least sve_state_size(task)
522 * bytes of allocated kernel memory.
523 */
524 void sve_sync_to_fpsimd(struct task_struct *task)
525 {
526 if (test_tsk_thread_flag(task, TIF_SVE))
527 sve_to_fpsimd(task);
528 }
529
530 /*
531 * Ensure that task->thread.sve_state is up to date with respect to
532 * the task->thread.uw.fpsimd_state.
533 *
534 * This should only be called by ptrace to merge new FPSIMD register
535 * values into a task for which SVE is currently active.
536 * task must be non-runnable.
537 * task->thread.sve_state must point to at least sve_state_size(task)
538 * bytes of allocated kernel memory.
539 * task->thread.uw.fpsimd_state must already have been initialised with
540 * the new FPSIMD register values to be merged in.
541 */
542 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
543 {
544 unsigned int vq;
545 void *sst = task->thread.sve_state;
546 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
547 unsigned int i;
548
549 if (!test_tsk_thread_flag(task, TIF_SVE))
550 return;
551
552 vq = sve_vq_from_vl(task->thread.sve_vl);
553
554 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
555
556 for (i = 0; i < 32; ++i)
557 memcpy(ZREG(sst, vq, i), &fst->vregs[i],
558 sizeof(fst->vregs[i]));
559 }
560
561 int sve_set_vector_length(struct task_struct *task,
562 unsigned long vl, unsigned long flags)
563 {
564 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
565 PR_SVE_SET_VL_ONEXEC))
566 return -EINVAL;
567
568 if (!sve_vl_valid(vl))
569 return -EINVAL;
570
571 /*
572 * Clamp to the maximum vector length that VL-agnostic SVE code can
573 * work with. A flag may be assigned in the future to allow setting
574 * of larger vector lengths without confusing older software.
575 */
576 if (vl > SVE_VL_ARCH_MAX)
577 vl = SVE_VL_ARCH_MAX;
578
579 vl = find_supported_vector_length(vl);
580
581 if (flags & (PR_SVE_VL_INHERIT |
582 PR_SVE_SET_VL_ONEXEC))
583 task->thread.sve_vl_onexec = vl;
584 else
585 /* Reset VL to system default on next exec: */
586 task->thread.sve_vl_onexec = 0;
587
588 /* Only actually set the VL if not deferred: */
589 if (flags & PR_SVE_SET_VL_ONEXEC)
590 goto out;
591
592 if (vl == task->thread.sve_vl)
593 goto out;
594
595 /*
596 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
597 * write any live register state back to task_struct, and convert to a
598 * non-SVE thread.
599 */
600 if (task == current) {
601 local_bh_disable();
602
603 fpsimd_save();
604 set_thread_flag(TIF_FOREIGN_FPSTATE);
605 }
606
607 fpsimd_flush_task_state(task);
608 if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
609 sve_to_fpsimd(task);
610
611 if (task == current)
612 local_bh_enable();
613
614 /*
615 * Force reallocation of task SVE state to the correct size
616 * on next use:
617 */
618 sve_free(task);
619
620 task->thread.sve_vl = vl;
621
622 out:
623 update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT,
624 flags & PR_SVE_VL_INHERIT);
625
626 return 0;
627 }
628
629 /*
630 * Encode the current vector length and flags for return.
631 * This is only required for prctl(): ptrace has separate fields
632 *
633 * flags are as for sve_set_vector_length().
634 */
635 static int sve_prctl_status(unsigned long flags)
636 {
637 int ret;
638
639 if (flags & PR_SVE_SET_VL_ONEXEC)
640 ret = current->thread.sve_vl_onexec;
641 else
642 ret = current->thread.sve_vl;
643
644 if (test_thread_flag(TIF_SVE_VL_INHERIT))
645 ret |= PR_SVE_VL_INHERIT;
646
647 return ret;
648 }
649
650 /* PR_SVE_SET_VL */
651 int sve_set_current_vl(unsigned long arg)
652 {
653 unsigned long vl, flags;
654 int ret;
655
656 vl = arg & PR_SVE_VL_LEN_MASK;
657 flags = arg & ~vl;
658
659 if (!system_supports_sve())
660 return -EINVAL;
661
662 ret = sve_set_vector_length(current, vl, flags);
663 if (ret)
664 return ret;
665
666 return sve_prctl_status(flags);
667 }
668
669 /* PR_SVE_GET_VL */
670 int sve_get_current_vl(void)
671 {
672 if (!system_supports_sve())
673 return -EINVAL;
674
675 return sve_prctl_status(0);
676 }
677
678 /*
679 * Bitmap for temporary storage of the per-CPU set of supported vector lengths
680 * during secondary boot.
681 */
682 static DECLARE_BITMAP(sve_secondary_vq_map, SVE_VQ_MAX);
683
684 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX))
685 {
686 unsigned int vq, vl;
687 unsigned long zcr;
688
689 bitmap_zero(map, SVE_VQ_MAX);
690
691 zcr = ZCR_ELx_LEN_MASK;
692 zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr;
693
694 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
695 write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */
696 vl = sve_get_vl();
697 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
698 set_bit(vq_to_bit(vq), map);
699 }
700 }
701
702 void __init sve_init_vq_map(void)
703 {
704 sve_probe_vqs(sve_vq_map);
705 }
706
707 /*
708 * If we haven't committed to the set of supported VQs yet, filter out
709 * those not supported by the current CPU.
710 */
711 void sve_update_vq_map(void)
712 {
713 sve_probe_vqs(sve_secondary_vq_map);
714 bitmap_and(sve_vq_map, sve_vq_map, sve_secondary_vq_map, SVE_VQ_MAX);
715 }
716
717 /* Check whether the current CPU supports all VQs in the committed set */
718 int sve_verify_vq_map(void)
719 {
720 int ret = 0;
721
722 sve_probe_vqs(sve_secondary_vq_map);
723 bitmap_andnot(sve_secondary_vq_map, sve_vq_map, sve_secondary_vq_map,
724 SVE_VQ_MAX);
725 if (!bitmap_empty(sve_secondary_vq_map, SVE_VQ_MAX)) {
726 pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
727 smp_processor_id());
728 ret = -EINVAL;
729 }
730
731 return ret;
732 }
733
734 static void __init sve_efi_setup(void)
735 {
736 if (!IS_ENABLED(CONFIG_EFI))
737 return;
738
739 /*
740 * alloc_percpu() warns and prints a backtrace if this goes wrong.
741 * This is evidence of a crippled system and we are returning void,
742 * so no attempt is made to handle this situation here.
743 */
744 if (!sve_vl_valid(sve_max_vl))
745 goto fail;
746
747 efi_sve_state = __alloc_percpu(
748 SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES);
749 if (!efi_sve_state)
750 goto fail;
751
752 return;
753
754 fail:
755 panic("Cannot allocate percpu memory for EFI SVE save/restore");
756 }
757
758 /*
759 * Enable SVE for EL1.
760 * Intended for use by the cpufeatures code during CPU boot.
761 */
762 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
763 {
764 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
765 isb();
766 }
767
768 void __init sve_setup(void)
769 {
770 u64 zcr;
771
772 if (!system_supports_sve())
773 return;
774
775 /*
776 * The SVE architecture mandates support for 128-bit vectors,
777 * so sve_vq_map must have at least SVE_VQ_MIN set.
778 * If something went wrong, at least try to patch it up:
779 */
780 if (WARN_ON(!test_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map)))
781 set_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map);
782
783 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
784 sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
785
786 /*
787 * Sanity-check that the max VL we determined through CPU features
788 * corresponds properly to sve_vq_map. If not, do our best:
789 */
790 if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl)))
791 sve_max_vl = find_supported_vector_length(sve_max_vl);
792
793 /*
794 * For the default VL, pick the maximum supported value <= 64.
795 * VL == 64 is guaranteed not to grow the signal frame.
796 */
797 sve_default_vl = find_supported_vector_length(64);
798
799 pr_info("SVE: maximum available vector length %u bytes per vector\n",
800 sve_max_vl);
801 pr_info("SVE: default vector length %u bytes per vector\n",
802 sve_default_vl);
803
804 sve_efi_setup();
805 }
806
807 /*
808 * Called from the put_task_struct() path, which cannot get here
809 * unless dead_task is really dead and not schedulable.
810 */
811 void fpsimd_release_task(struct task_struct *dead_task)
812 {
813 __sve_free(dead_task);
814 }
815
816 #endif /* CONFIG_ARM64_SVE */
817
818 /*
819 * Trapped SVE access
820 *
821 * Storage is allocated for the full SVE state, the current FPSIMD
822 * register contents are migrated across, and TIF_SVE is set so that
823 * the SVE access trap will be disabled the next time this task
824 * reaches ret_to_user.
825 *
826 * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load()
827 * would have disabled the SVE access trap for userspace during
828 * ret_to_user, making an SVE access trap impossible in that case.
829 */
830 asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs)
831 {
832 /* Even if we chose not to use SVE, the hardware could still trap: */
833 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
834 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
835 return;
836 }
837
838 sve_alloc(current);
839
840 local_bh_disable();
841
842 fpsimd_save();
843 fpsimd_to_sve(current);
844
845 /* Force ret_to_user to reload the registers: */
846 fpsimd_flush_task_state(current);
847 set_thread_flag(TIF_FOREIGN_FPSTATE);
848
849 if (test_and_set_thread_flag(TIF_SVE))
850 WARN_ON(1); /* SVE access shouldn't have trapped */
851
852 local_bh_enable();
853 }
854
855 /*
856 * Trapped FP/ASIMD access.
857 */
858 asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
859 {
860 /* TODO: implement lazy context saving/restoring */
861 WARN_ON(1);
862 }
863
864 /*
865 * Raise a SIGFPE for the current process.
866 */
867 asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
868 {
869 siginfo_t info;
870 unsigned int si_code = FPE_FLTUNK;
871
872 if (esr & ESR_ELx_FP_EXC_TFV) {
873 if (esr & FPEXC_IOF)
874 si_code = FPE_FLTINV;
875 else if (esr & FPEXC_DZF)
876 si_code = FPE_FLTDIV;
877 else if (esr & FPEXC_OFF)
878 si_code = FPE_FLTOVF;
879 else if (esr & FPEXC_UFF)
880 si_code = FPE_FLTUND;
881 else if (esr & FPEXC_IXF)
882 si_code = FPE_FLTRES;
883 }
884
885 memset(&info, 0, sizeof(info));
886 info.si_signo = SIGFPE;
887 info.si_code = si_code;
888 info.si_addr = (void __user *)instruction_pointer(regs);
889
890 send_sig_info(SIGFPE, &info, current);
891 }
892
893 void fpsimd_thread_switch(struct task_struct *next)
894 {
895 if (!system_supports_fpsimd())
896 return;
897 /*
898 * Save the current FPSIMD state to memory, but only if whatever is in
899 * the registers is in fact the most recent userland FPSIMD state of
900 * 'current'.
901 */
902 if (current->mm)
903 fpsimd_save();
904
905 if (next->mm) {
906 /*
907 * If we are switching to a task whose most recent userland
908 * FPSIMD state is already in the registers of *this* cpu,
909 * we can skip loading the state from memory. Otherwise, set
910 * the TIF_FOREIGN_FPSTATE flag so the state will be loaded
911 * upon the next return to userland.
912 */
913 bool wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
914 &next->thread.uw.fpsimd_state;
915 bool wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
916
917 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
918 wrong_task || wrong_cpu);
919 }
920 }
921
922 void fpsimd_flush_thread(void)
923 {
924 int vl, supported_vl;
925
926 if (!system_supports_fpsimd())
927 return;
928
929 local_bh_disable();
930
931 memset(&current->thread.uw.fpsimd_state, 0,
932 sizeof(current->thread.uw.fpsimd_state));
933 fpsimd_flush_task_state(current);
934
935 if (system_supports_sve()) {
936 clear_thread_flag(TIF_SVE);
937 sve_free(current);
938
939 /*
940 * Reset the task vector length as required.
941 * This is where we ensure that all user tasks have a valid
942 * vector length configured: no kernel task can become a user
943 * task without an exec and hence a call to this function.
944 * By the time the first call to this function is made, all
945 * early hardware probing is complete, so sve_default_vl
946 * should be valid.
947 * If a bug causes this to go wrong, we make some noise and
948 * try to fudge thread.sve_vl to a safe value here.
949 */
950 vl = current->thread.sve_vl_onexec ?
951 current->thread.sve_vl_onexec : sve_default_vl;
952
953 if (WARN_ON(!sve_vl_valid(vl)))
954 vl = SVE_VL_MIN;
955
956 supported_vl = find_supported_vector_length(vl);
957 if (WARN_ON(supported_vl != vl))
958 vl = supported_vl;
959
960 current->thread.sve_vl = vl;
961
962 /*
963 * If the task is not set to inherit, ensure that the vector
964 * length will be reset by a subsequent exec:
965 */
966 if (!test_thread_flag(TIF_SVE_VL_INHERIT))
967 current->thread.sve_vl_onexec = 0;
968 }
969
970 set_thread_flag(TIF_FOREIGN_FPSTATE);
971
972 local_bh_enable();
973 }
974
975 /*
976 * Save the userland FPSIMD state of 'current' to memory, but only if the state
977 * currently held in the registers does in fact belong to 'current'
978 */
979 void fpsimd_preserve_current_state(void)
980 {
981 if (!system_supports_fpsimd())
982 return;
983
984 local_bh_disable();
985 fpsimd_save();
986 local_bh_enable();
987 }
988
989 /*
990 * Like fpsimd_preserve_current_state(), but ensure that
991 * current->thread.uw.fpsimd_state is updated so that it can be copied to
992 * the signal frame.
993 */
994 void fpsimd_signal_preserve_current_state(void)
995 {
996 fpsimd_preserve_current_state();
997 if (system_supports_sve() && test_thread_flag(TIF_SVE))
998 sve_to_fpsimd(current);
999 }
1000
1001 /*
1002 * Associate current's FPSIMD context with this cpu
1003 * Preemption must be disabled when calling this function.
1004 */
1005 static void fpsimd_bind_to_cpu(void)
1006 {
1007 struct fpsimd_last_state_struct *last =
1008 this_cpu_ptr(&fpsimd_last_state);
1009
1010 last->st = &current->thread.uw.fpsimd_state;
1011 last->sve_in_use = test_thread_flag(TIF_SVE);
1012 current->thread.fpsimd_cpu = smp_processor_id();
1013 }
1014
1015 /*
1016 * Load the userland FPSIMD state of 'current' from memory, but only if the
1017 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1018 * state of 'current'
1019 */
1020 void fpsimd_restore_current_state(void)
1021 {
1022 if (!system_supports_fpsimd())
1023 return;
1024
1025 local_bh_disable();
1026
1027 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1028 task_fpsimd_load();
1029 fpsimd_bind_to_cpu();
1030 }
1031
1032 local_bh_enable();
1033 }
1034
1035 /*
1036 * Load an updated userland FPSIMD state for 'current' from memory and set the
1037 * flag that indicates that the FPSIMD register contents are the most recent
1038 * FPSIMD state of 'current'
1039 */
1040 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1041 {
1042 if (!system_supports_fpsimd())
1043 return;
1044
1045 local_bh_disable();
1046
1047 current->thread.uw.fpsimd_state = *state;
1048 if (system_supports_sve() && test_thread_flag(TIF_SVE))
1049 fpsimd_to_sve(current);
1050
1051 task_fpsimd_load();
1052
1053 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE))
1054 fpsimd_bind_to_cpu();
1055
1056 local_bh_enable();
1057 }
1058
1059 /*
1060 * Invalidate live CPU copies of task t's FPSIMD state
1061 */
1062 void fpsimd_flush_task_state(struct task_struct *t)
1063 {
1064 t->thread.fpsimd_cpu = NR_CPUS;
1065 }
1066
1067 static inline void fpsimd_flush_cpu_state(void)
1068 {
1069 __this_cpu_write(fpsimd_last_state.st, NULL);
1070 set_thread_flag(TIF_FOREIGN_FPSTATE);
1071 }
1072
1073 /*
1074 * Invalidate any task SVE state currently held in this CPU's regs.
1075 *
1076 * This is used to prevent the kernel from trying to reuse SVE register data
1077 * that is detroyed by KVM guest enter/exit. This function should go away when
1078 * KVM SVE support is implemented. Don't use it for anything else.
1079 */
1080 #ifdef CONFIG_ARM64_SVE
1081 void sve_flush_cpu_state(void)
1082 {
1083 struct fpsimd_last_state_struct const *last =
1084 this_cpu_ptr(&fpsimd_last_state);
1085
1086 if (last->st && last->sve_in_use)
1087 fpsimd_flush_cpu_state();
1088 }
1089 #endif /* CONFIG_ARM64_SVE */
1090
1091 #ifdef CONFIG_KERNEL_MODE_NEON
1092
1093 DEFINE_PER_CPU(bool, kernel_neon_busy);
1094 EXPORT_PER_CPU_SYMBOL(kernel_neon_busy);
1095
1096 /*
1097 * Kernel-side NEON support functions
1098 */
1099
1100 /*
1101 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1102 * context
1103 *
1104 * Must not be called unless may_use_simd() returns true.
1105 * Task context in the FPSIMD registers is saved back to memory as necessary.
1106 *
1107 * A matching call to kernel_neon_end() must be made before returning from the
1108 * calling context.
1109 *
1110 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1111 * called.
1112 */
1113 void kernel_neon_begin(void)
1114 {
1115 if (WARN_ON(!system_supports_fpsimd()))
1116 return;
1117
1118 BUG_ON(!may_use_simd());
1119
1120 local_bh_disable();
1121
1122 __this_cpu_write(kernel_neon_busy, true);
1123
1124 /* Save unsaved task fpsimd state, if any: */
1125 if (current->mm)
1126 fpsimd_save();
1127
1128 /* Invalidate any task state remaining in the fpsimd regs: */
1129 fpsimd_flush_cpu_state();
1130
1131 preempt_disable();
1132
1133 local_bh_enable();
1134 }
1135 EXPORT_SYMBOL(kernel_neon_begin);
1136
1137 /*
1138 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1139 *
1140 * Must be called from a context in which kernel_neon_begin() was previously
1141 * called, with no call to kernel_neon_end() in the meantime.
1142 *
1143 * The caller must not use the FPSIMD registers after this function is called,
1144 * unless kernel_neon_begin() is called again in the meantime.
1145 */
1146 void kernel_neon_end(void)
1147 {
1148 bool busy;
1149
1150 if (!system_supports_fpsimd())
1151 return;
1152
1153 busy = __this_cpu_xchg(kernel_neon_busy, false);
1154 WARN_ON(!busy); /* No matching kernel_neon_begin()? */
1155
1156 preempt_enable();
1157 }
1158 EXPORT_SYMBOL(kernel_neon_end);
1159
1160 #ifdef CONFIG_EFI
1161
1162 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1163 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1164 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1165
1166 /*
1167 * EFI runtime services support functions
1168 *
1169 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1170 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1171 * is always used rather than being an optional accelerator.
1172 *
1173 * These functions provide the necessary support for ensuring FPSIMD
1174 * save/restore in the contexts from which EFI is used.
1175 *
1176 * Do not use them for any other purpose -- if tempted to do so, you are
1177 * either doing something wrong or you need to propose some refactoring.
1178 */
1179
1180 /*
1181 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1182 */
1183 void __efi_fpsimd_begin(void)
1184 {
1185 if (!system_supports_fpsimd())
1186 return;
1187
1188 WARN_ON(preemptible());
1189
1190 if (may_use_simd()) {
1191 kernel_neon_begin();
1192 } else {
1193 /*
1194 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1195 * preserving:
1196 */
1197 if (system_supports_sve() && likely(efi_sve_state)) {
1198 char *sve_state = this_cpu_ptr(efi_sve_state);
1199
1200 __this_cpu_write(efi_sve_state_used, true);
1201
1202 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl),
1203 &this_cpu_ptr(&efi_fpsimd_state)->fpsr);
1204 } else {
1205 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1206 }
1207
1208 __this_cpu_write(efi_fpsimd_state_used, true);
1209 }
1210 }
1211
1212 /*
1213 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1214 */
1215 void __efi_fpsimd_end(void)
1216 {
1217 if (!system_supports_fpsimd())
1218 return;
1219
1220 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1221 kernel_neon_end();
1222 } else {
1223 if (system_supports_sve() &&
1224 likely(__this_cpu_read(efi_sve_state_used))) {
1225 char const *sve_state = this_cpu_ptr(efi_sve_state);
1226
1227 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl),
1228 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1229 sve_vq_from_vl(sve_get_vl()) - 1);
1230
1231 __this_cpu_write(efi_sve_state_used, false);
1232 } else {
1233 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1234 }
1235 }
1236 }
1237
1238 #endif /* CONFIG_EFI */
1239
1240 #endif /* CONFIG_KERNEL_MODE_NEON */
1241
1242 #ifdef CONFIG_CPU_PM
1243 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1244 unsigned long cmd, void *v)
1245 {
1246 switch (cmd) {
1247 case CPU_PM_ENTER:
1248 if (current->mm)
1249 fpsimd_save();
1250 fpsimd_flush_cpu_state();
1251 break;
1252 case CPU_PM_EXIT:
1253 break;
1254 case CPU_PM_ENTER_FAILED:
1255 default:
1256 return NOTIFY_DONE;
1257 }
1258 return NOTIFY_OK;
1259 }
1260
1261 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1262 .notifier_call = fpsimd_cpu_pm_notifier,
1263 };
1264
1265 static void __init fpsimd_pm_init(void)
1266 {
1267 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
1268 }
1269
1270 #else
1271 static inline void fpsimd_pm_init(void) { }
1272 #endif /* CONFIG_CPU_PM */
1273
1274 #ifdef CONFIG_HOTPLUG_CPU
1275 static int fpsimd_cpu_dead(unsigned int cpu)
1276 {
1277 per_cpu(fpsimd_last_state.st, cpu) = NULL;
1278 return 0;
1279 }
1280
1281 static inline void fpsimd_hotplug_init(void)
1282 {
1283 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
1284 NULL, fpsimd_cpu_dead);
1285 }
1286
1287 #else
1288 static inline void fpsimd_hotplug_init(void) { }
1289 #endif
1290
1291 /*
1292 * FP/SIMD support code initialisation.
1293 */
1294 static int __init fpsimd_init(void)
1295 {
1296 if (elf_hwcap & HWCAP_FP) {
1297 fpsimd_pm_init();
1298 fpsimd_hotplug_init();
1299 } else {
1300 pr_notice("Floating-point is not implemented\n");
1301 }
1302
1303 if (!(elf_hwcap & HWCAP_ASIMD))
1304 pr_notice("Advanced SIMD is not implemented\n");
1305
1306 return sve_sysctl_init();
1307 }
1308 core_initcall(fpsimd_init);