]> git.ipfire.org Git - people/arne_f/kernel.git/blob - arch/arm64/kernel/head.S
4dee51045e790283d42641c30e06e31af1ec8e54
[people/arne_f/kernel.git] / arch / arm64 / kernel / head.S
1 /*
2 * Low-level CPU initialisation
3 * Based on arch/arm/kernel/head.S
4 *
5 * Copyright (C) 1994-2002 Russell King
6 * Copyright (C) 2003-2012 ARM Ltd.
7 * Authors: Catalin Marinas <catalin.marinas@arm.com>
8 * Will Deacon <will.deacon@arm.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23 #include <linux/linkage.h>
24 #include <linux/init.h>
25 #include <linux/irqchip/arm-gic-v3.h>
26
27 #include <asm/assembler.h>
28 #include <asm/boot.h>
29 #include <asm/ptrace.h>
30 #include <asm/asm-offsets.h>
31 #include <asm/cache.h>
32 #include <asm/cputype.h>
33 #include <asm/elf.h>
34 #include <asm/kernel-pgtable.h>
35 #include <asm/kvm_arm.h>
36 #include <asm/memory.h>
37 #include <asm/pgtable-hwdef.h>
38 #include <asm/pgtable.h>
39 #include <asm/page.h>
40 #include <asm/smp.h>
41 #include <asm/sysreg.h>
42 #include <asm/thread_info.h>
43 #include <asm/virt.h>
44
45 #define __PHYS_OFFSET (KERNEL_START - TEXT_OFFSET)
46
47 #if (TEXT_OFFSET & 0xfff) != 0
48 #error TEXT_OFFSET must be at least 4KB aligned
49 #elif (PAGE_OFFSET & 0x1fffff) != 0
50 #error PAGE_OFFSET must be at least 2MB aligned
51 #elif TEXT_OFFSET > 0x1fffff
52 #error TEXT_OFFSET must be less than 2MB
53 #endif
54
55 /*
56 * Kernel startup entry point.
57 * ---------------------------
58 *
59 * The requirements are:
60 * MMU = off, D-cache = off, I-cache = on or off,
61 * x0 = physical address to the FDT blob.
62 *
63 * This code is mostly position independent so you call this at
64 * __pa(PAGE_OFFSET + TEXT_OFFSET).
65 *
66 * Note that the callee-saved registers are used for storing variables
67 * that are useful before the MMU is enabled. The allocations are described
68 * in the entry routines.
69 */
70 __HEAD
71 _head:
72 /*
73 * DO NOT MODIFY. Image header expected by Linux boot-loaders.
74 */
75 #ifdef CONFIG_EFI
76 /*
77 * This add instruction has no meaningful effect except that
78 * its opcode forms the magic "MZ" signature required by UEFI.
79 */
80 add x13, x18, #0x16
81 b stext
82 #else
83 b stext // branch to kernel start, magic
84 .long 0 // reserved
85 #endif
86 le64sym _kernel_offset_le // Image load offset from start of RAM, little-endian
87 le64sym _kernel_size_le // Effective size of kernel image, little-endian
88 le64sym _kernel_flags_le // Informative flags, little-endian
89 .quad 0 // reserved
90 .quad 0 // reserved
91 .quad 0 // reserved
92 .byte 0x41 // Magic number, "ARM\x64"
93 .byte 0x52
94 .byte 0x4d
95 .byte 0x64
96 #ifdef CONFIG_EFI
97 .long pe_header - _head // Offset to the PE header.
98 #else
99 .word 0 // reserved
100 #endif
101
102 #ifdef CONFIG_EFI
103 .align 3
104 pe_header:
105 .ascii "PE"
106 .short 0
107 coff_header:
108 .short 0xaa64 // AArch64
109 .short 2 // nr_sections
110 .long 0 // TimeDateStamp
111 .long 0 // PointerToSymbolTable
112 .long 1 // NumberOfSymbols
113 .short section_table - optional_header // SizeOfOptionalHeader
114 .short 0x206 // Characteristics.
115 // IMAGE_FILE_DEBUG_STRIPPED |
116 // IMAGE_FILE_EXECUTABLE_IMAGE |
117 // IMAGE_FILE_LINE_NUMS_STRIPPED
118 optional_header:
119 .short 0x20b // PE32+ format
120 .byte 0x02 // MajorLinkerVersion
121 .byte 0x14 // MinorLinkerVersion
122 .long _end - efi_header_end // SizeOfCode
123 .long 0 // SizeOfInitializedData
124 .long 0 // SizeOfUninitializedData
125 .long __efistub_entry - _head // AddressOfEntryPoint
126 .long efi_header_end - _head // BaseOfCode
127
128 extra_header_fields:
129 .quad 0 // ImageBase
130 .long 0x1000 // SectionAlignment
131 .long PECOFF_FILE_ALIGNMENT // FileAlignment
132 .short 0 // MajorOperatingSystemVersion
133 .short 0 // MinorOperatingSystemVersion
134 .short 0 // MajorImageVersion
135 .short 0 // MinorImageVersion
136 .short 0 // MajorSubsystemVersion
137 .short 0 // MinorSubsystemVersion
138 .long 0 // Win32VersionValue
139
140 .long _end - _head // SizeOfImage
141
142 // Everything before the kernel image is considered part of the header
143 .long efi_header_end - _head // SizeOfHeaders
144 .long 0 // CheckSum
145 .short 0xa // Subsystem (EFI application)
146 .short 0 // DllCharacteristics
147 .quad 0 // SizeOfStackReserve
148 .quad 0 // SizeOfStackCommit
149 .quad 0 // SizeOfHeapReserve
150 .quad 0 // SizeOfHeapCommit
151 .long 0 // LoaderFlags
152 .long 0x6 // NumberOfRvaAndSizes
153
154 .quad 0 // ExportTable
155 .quad 0 // ImportTable
156 .quad 0 // ResourceTable
157 .quad 0 // ExceptionTable
158 .quad 0 // CertificationTable
159 .quad 0 // BaseRelocationTable
160
161 // Section table
162 section_table:
163
164 /*
165 * The EFI application loader requires a relocation section
166 * because EFI applications must be relocatable. This is a
167 * dummy section as far as we are concerned.
168 */
169 .ascii ".reloc"
170 .byte 0
171 .byte 0 // end of 0 padding of section name
172 .long 0
173 .long 0
174 .long 0 // SizeOfRawData
175 .long 0 // PointerToRawData
176 .long 0 // PointerToRelocations
177 .long 0 // PointerToLineNumbers
178 .short 0 // NumberOfRelocations
179 .short 0 // NumberOfLineNumbers
180 .long 0x42100040 // Characteristics (section flags)
181
182
183 .ascii ".text"
184 .byte 0
185 .byte 0
186 .byte 0 // end of 0 padding of section name
187 .long _end - efi_header_end // VirtualSize
188 .long efi_header_end - _head // VirtualAddress
189 .long _edata - efi_header_end // SizeOfRawData
190 .long efi_header_end - _head // PointerToRawData
191
192 .long 0 // PointerToRelocations (0 for executables)
193 .long 0 // PointerToLineNumbers (0 for executables)
194 .short 0 // NumberOfRelocations (0 for executables)
195 .short 0 // NumberOfLineNumbers (0 for executables)
196 .long 0xe0500020 // Characteristics (section flags)
197
198 /*
199 * EFI will load .text onwards at the 4k section alignment
200 * described in the PE/COFF header. To ensure that instruction
201 * sequences using an adrp and a :lo12: immediate will function
202 * correctly at this alignment, we must ensure that .text is
203 * placed at a 4k boundary in the Image to begin with.
204 */
205 .align 12
206 efi_header_end:
207 #endif
208
209 __INIT
210
211 ENTRY(stext)
212 bl preserve_boot_args
213 bl el2_setup // Drop to EL1, w0=cpu_boot_mode
214 adrp x23, __PHYS_OFFSET
215 and x23, x23, MIN_KIMG_ALIGN - 1 // KASLR offset, defaults to 0
216 bl set_cpu_boot_mode_flag
217 bl __create_page_tables
218 /*
219 * The following calls CPU setup code, see arch/arm64/mm/proc.S for
220 * details.
221 * On return, the CPU will be ready for the MMU to be turned on and
222 * the TCR will have been set.
223 */
224 bl __cpu_setup // initialise processor
225 b __primary_switch
226 ENDPROC(stext)
227
228 /*
229 * Preserve the arguments passed by the bootloader in x0 .. x3
230 */
231 preserve_boot_args:
232 mov x21, x0 // x21=FDT
233
234 adr_l x0, boot_args // record the contents of
235 stp x21, x1, [x0] // x0 .. x3 at kernel entry
236 stp x2, x3, [x0, #16]
237
238 dmb sy // needed before dc ivac with
239 // MMU off
240
241 add x1, x0, #0x20 // 4 x 8 bytes
242 b __inval_cache_range // tail call
243 ENDPROC(preserve_boot_args)
244
245 /*
246 * Macro to create a table entry to the next page.
247 *
248 * tbl: page table address
249 * virt: virtual address
250 * shift: #imm page table shift
251 * ptrs: #imm pointers per table page
252 *
253 * Preserves: virt
254 * Corrupts: tmp1, tmp2
255 * Returns: tbl -> next level table page address
256 */
257 .macro create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2
258 lsr \tmp1, \virt, #\shift
259 and \tmp1, \tmp1, #\ptrs - 1 // table index
260 add \tmp2, \tbl, #PAGE_SIZE
261 orr \tmp2, \tmp2, #PMD_TYPE_TABLE // address of next table and entry type
262 str \tmp2, [\tbl, \tmp1, lsl #3]
263 add \tbl, \tbl, #PAGE_SIZE // next level table page
264 .endm
265
266 /*
267 * Macro to populate the PGD (and possibily PUD) for the corresponding
268 * block entry in the next level (tbl) for the given virtual address.
269 *
270 * Preserves: tbl, next, virt
271 * Corrupts: tmp1, tmp2
272 */
273 .macro create_pgd_entry, tbl, virt, tmp1, tmp2
274 create_table_entry \tbl, \virt, PGDIR_SHIFT, PTRS_PER_PGD, \tmp1, \tmp2
275 #if SWAPPER_PGTABLE_LEVELS > 3
276 create_table_entry \tbl, \virt, PUD_SHIFT, PTRS_PER_PUD, \tmp1, \tmp2
277 #endif
278 #if SWAPPER_PGTABLE_LEVELS > 2
279 create_table_entry \tbl, \virt, SWAPPER_TABLE_SHIFT, PTRS_PER_PTE, \tmp1, \tmp2
280 #endif
281 .endm
282
283 /*
284 * Macro to populate block entries in the page table for the start..end
285 * virtual range (inclusive).
286 *
287 * Preserves: tbl, flags
288 * Corrupts: phys, start, end, pstate
289 */
290 .macro create_block_map, tbl, flags, phys, start, end
291 lsr \phys, \phys, #SWAPPER_BLOCK_SHIFT
292 lsr \start, \start, #SWAPPER_BLOCK_SHIFT
293 and \start, \start, #PTRS_PER_PTE - 1 // table index
294 orr \phys, \flags, \phys, lsl #SWAPPER_BLOCK_SHIFT // table entry
295 lsr \end, \end, #SWAPPER_BLOCK_SHIFT
296 and \end, \end, #PTRS_PER_PTE - 1 // table end index
297 9999: str \phys, [\tbl, \start, lsl #3] // store the entry
298 add \start, \start, #1 // next entry
299 add \phys, \phys, #SWAPPER_BLOCK_SIZE // next block
300 cmp \start, \end
301 b.ls 9999b
302 .endm
303
304 /*
305 * Setup the initial page tables. We only setup the barest amount which is
306 * required to get the kernel running. The following sections are required:
307 * - identity mapping to enable the MMU (low address, TTBR0)
308 * - first few MB of the kernel linear mapping to jump to once the MMU has
309 * been enabled
310 */
311 __create_page_tables:
312 mov x28, lr
313
314 /*
315 * Invalidate the idmap and swapper page tables to avoid potential
316 * dirty cache lines being evicted.
317 */
318 adrp x0, idmap_pg_dir
319 adrp x1, swapper_pg_dir + SWAPPER_DIR_SIZE
320 bl __inval_cache_range
321
322 /*
323 * Clear the idmap and swapper page tables.
324 */
325 adrp x0, idmap_pg_dir
326 adrp x6, swapper_pg_dir + SWAPPER_DIR_SIZE
327 1: stp xzr, xzr, [x0], #16
328 stp xzr, xzr, [x0], #16
329 stp xzr, xzr, [x0], #16
330 stp xzr, xzr, [x0], #16
331 cmp x0, x6
332 b.lo 1b
333
334 mov x7, SWAPPER_MM_MMUFLAGS
335
336 /*
337 * Create the identity mapping.
338 */
339 adrp x0, idmap_pg_dir
340 adrp x3, __idmap_text_start // __pa(__idmap_text_start)
341
342 #ifndef CONFIG_ARM64_VA_BITS_48
343 #define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3)
344 #define EXTRA_PTRS (1 << (48 - EXTRA_SHIFT))
345
346 /*
347 * If VA_BITS < 48, it may be too small to allow for an ID mapping to be
348 * created that covers system RAM if that is located sufficiently high
349 * in the physical address space. So for the ID map, use an extended
350 * virtual range in that case, by configuring an additional translation
351 * level.
352 * First, we have to verify our assumption that the current value of
353 * VA_BITS was chosen such that all translation levels are fully
354 * utilised, and that lowering T0SZ will always result in an additional
355 * translation level to be configured.
356 */
357 #if VA_BITS != EXTRA_SHIFT
358 #error "Mismatch between VA_BITS and page size/number of translation levels"
359 #endif
360
361 /*
362 * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the
363 * entire ID map region can be mapped. As T0SZ == (64 - #bits used),
364 * this number conveniently equals the number of leading zeroes in
365 * the physical address of __idmap_text_end.
366 */
367 adrp x5, __idmap_text_end
368 clz x5, x5
369 cmp x5, TCR_T0SZ(VA_BITS) // default T0SZ small enough?
370 b.ge 1f // .. then skip additional level
371
372 adr_l x6, idmap_t0sz
373 str x5, [x6]
374 dmb sy
375 dc ivac, x6 // Invalidate potentially stale cache line
376
377 create_table_entry x0, x3, EXTRA_SHIFT, EXTRA_PTRS, x5, x6
378 1:
379 #endif
380
381 create_pgd_entry x0, x3, x5, x6
382 mov x5, x3 // __pa(__idmap_text_start)
383 adr_l x6, __idmap_text_end // __pa(__idmap_text_end)
384 create_block_map x0, x7, x3, x5, x6
385
386 /*
387 * Map the kernel image (starting with PHYS_OFFSET).
388 */
389 adrp x0, swapper_pg_dir
390 mov_q x5, KIMAGE_VADDR + TEXT_OFFSET // compile time __va(_text)
391 add x5, x5, x23 // add KASLR displacement
392 create_pgd_entry x0, x5, x3, x6
393 adrp x6, _end // runtime __pa(_end)
394 adrp x3, _text // runtime __pa(_text)
395 sub x6, x6, x3 // _end - _text
396 add x6, x6, x5 // runtime __va(_end)
397 create_block_map x0, x7, x3, x5, x6
398
399 /*
400 * Since the page tables have been populated with non-cacheable
401 * accesses (MMU disabled), invalidate the idmap and swapper page
402 * tables again to remove any speculatively loaded cache lines.
403 */
404 adrp x0, idmap_pg_dir
405 adrp x1, swapper_pg_dir + SWAPPER_DIR_SIZE
406 dmb sy
407 bl __inval_cache_range
408
409 ret x28
410 ENDPROC(__create_page_tables)
411 .ltorg
412
413 /*
414 * The following fragment of code is executed with the MMU enabled.
415 *
416 * x0 = __PHYS_OFFSET
417 */
418 .set initial_sp, init_thread_union + THREAD_START_SP
419 __primary_switched:
420 mov x28, lr // preserve LR
421 adr_l x8, vectors // load VBAR_EL1 with virtual
422 msr vbar_el1, x8 // vector table address
423 isb
424
425 str_l x21, __fdt_pointer, x5 // Save FDT pointer
426
427 ldr_l x4, kimage_vaddr // Save the offset between
428 sub x4, x4, x0 // the kernel virtual and
429 str_l x4, kimage_voffset, x5 // physical mappings
430
431 // Clear BSS
432 adr_l x0, __bss_start
433 mov x1, xzr
434 adr_l x2, __bss_stop
435 sub x2, x2, x0
436 bl __pi_memset
437 dsb ishst // Make zero page visible to PTW
438
439 adr_l sp, initial_sp, x4
440 mov x4, sp
441 and x4, x4, #~(THREAD_SIZE - 1)
442 msr sp_el0, x4 // Save thread_info
443 mov x29, #0
444 #ifdef CONFIG_KASAN
445 bl kasan_early_init
446 #endif
447 #ifdef CONFIG_RANDOMIZE_BASE
448 tst x23, ~(MIN_KIMG_ALIGN - 1) // already running randomized?
449 b.ne 0f
450 mov x0, x21 // pass FDT address in x0
451 mov x1, x23 // pass modulo offset in x1
452 bl kaslr_early_init // parse FDT for KASLR options
453 cbz x0, 0f // KASLR disabled? just proceed
454 orr x23, x23, x0 // record KASLR offset
455 ret x28 // we must enable KASLR, return
456 // to __primary_switch()
457 0:
458 #endif
459 b start_kernel
460 ENDPROC(__primary_switched)
461
462 /*
463 * end early head section, begin head code that is also used for
464 * hotplug and needs to have the same protections as the text region
465 */
466 .section ".idmap.text","ax"
467
468 ENTRY(kimage_vaddr)
469 .quad _text - TEXT_OFFSET
470
471 /*
472 * If we're fortunate enough to boot at EL2, ensure that the world is
473 * sane before dropping to EL1.
474 *
475 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in x20 if
476 * booted in EL1 or EL2 respectively.
477 */
478 ENTRY(el2_setup)
479 mrs x0, CurrentEL
480 cmp x0, #CurrentEL_EL2
481 b.ne 1f
482 mrs x0, sctlr_el2
483 CPU_BE( orr x0, x0, #(1 << 25) ) // Set the EE bit for EL2
484 CPU_LE( bic x0, x0, #(1 << 25) ) // Clear the EE bit for EL2
485 msr sctlr_el2, x0
486 b 2f
487 1: mrs x0, sctlr_el1
488 CPU_BE( orr x0, x0, #(3 << 24) ) // Set the EE and E0E bits for EL1
489 CPU_LE( bic x0, x0, #(3 << 24) ) // Clear the EE and E0E bits for EL1
490 msr sctlr_el1, x0
491 mov w0, #BOOT_CPU_MODE_EL1 // This cpu booted in EL1
492 isb
493 ret
494
495 2:
496 #ifdef CONFIG_ARM64_VHE
497 /*
498 * Check for VHE being present. For the rest of the EL2 setup,
499 * x2 being non-zero indicates that we do have VHE, and that the
500 * kernel is intended to run at EL2.
501 */
502 mrs x2, id_aa64mmfr1_el1
503 ubfx x2, x2, #8, #4
504 #else
505 mov x2, xzr
506 #endif
507
508 /* Hyp configuration. */
509 mov x0, #HCR_RW // 64-bit EL1
510 cbz x2, set_hcr
511 orr x0, x0, #HCR_TGE // Enable Host Extensions
512 orr x0, x0, #HCR_E2H
513 set_hcr:
514 msr hcr_el2, x0
515 isb
516
517 /* Generic timers. */
518 mrs x0, cnthctl_el2
519 orr x0, x0, #3 // Enable EL1 physical timers
520 msr cnthctl_el2, x0
521 msr cntvoff_el2, xzr // Clear virtual offset
522
523 #ifdef CONFIG_ARM_GIC_V3
524 /* GICv3 system register access */
525 mrs x0, id_aa64pfr0_el1
526 ubfx x0, x0, #24, #4
527 cmp x0, #1
528 b.ne 3f
529
530 mrs_s x0, ICC_SRE_EL2
531 orr x0, x0, #ICC_SRE_EL2_SRE // Set ICC_SRE_EL2.SRE==1
532 orr x0, x0, #ICC_SRE_EL2_ENABLE // Set ICC_SRE_EL2.Enable==1
533 msr_s ICC_SRE_EL2, x0
534 isb // Make sure SRE is now set
535 mrs_s x0, ICC_SRE_EL2 // Read SRE back,
536 tbz x0, #0, 3f // and check that it sticks
537 msr_s ICH_HCR_EL2, xzr // Reset ICC_HCR_EL2 to defaults
538
539 3:
540 #endif
541
542 /* Populate ID registers. */
543 mrs x0, midr_el1
544 mrs x1, mpidr_el1
545 msr vpidr_el2, x0
546 msr vmpidr_el2, x1
547
548 /*
549 * When VHE is not in use, early init of EL2 and EL1 needs to be
550 * done here.
551 * When VHE _is_ in use, EL1 will not be used in the host and
552 * requires no configuration, and all non-hyp-specific EL2 setup
553 * will be done via the _EL1 system register aliases in __cpu_setup.
554 */
555 cbnz x2, 1f
556
557 /* sctlr_el1 */
558 mov x0, #0x0800 // Set/clear RES{1,0} bits
559 CPU_BE( movk x0, #0x33d0, lsl #16 ) // Set EE and E0E on BE systems
560 CPU_LE( movk x0, #0x30d0, lsl #16 ) // Clear EE and E0E on LE systems
561 msr sctlr_el1, x0
562
563 /* Coprocessor traps. */
564 mov x0, #0x33ff
565 msr cptr_el2, x0 // Disable copro. traps to EL2
566 1:
567
568 #ifdef CONFIG_COMPAT
569 msr hstr_el2, xzr // Disable CP15 traps to EL2
570 #endif
571
572 /* EL2 debug */
573 mrs x0, id_aa64dfr0_el1 // Check ID_AA64DFR0_EL1 PMUVer
574 sbfx x0, x0, #8, #4
575 cmp x0, #1
576 b.lt 4f // Skip if no PMU present
577 mrs x0, pmcr_el0 // Disable debug access traps
578 ubfx x0, x0, #11, #5 // to EL2 and allow access to
579 msr mdcr_el2, x0 // all PMU counters from EL1
580 4:
581
582 /* Stage-2 translation */
583 msr vttbr_el2, xzr
584
585 cbz x2, install_el2_stub
586
587 mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2
588 isb
589 ret
590
591 install_el2_stub:
592 /* Hypervisor stub */
593 adrp x0, __hyp_stub_vectors
594 add x0, x0, #:lo12:__hyp_stub_vectors
595 msr vbar_el2, x0
596
597 /* spsr */
598 mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\
599 PSR_MODE_EL1h)
600 msr spsr_el2, x0
601 msr elr_el2, lr
602 mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2
603 eret
604 ENDPROC(el2_setup)
605
606 /*
607 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
608 * in x20. See arch/arm64/include/asm/virt.h for more info.
609 */
610 set_cpu_boot_mode_flag:
611 adr_l x1, __boot_cpu_mode
612 cmp w0, #BOOT_CPU_MODE_EL2
613 b.ne 1f
614 add x1, x1, #4
615 1: str w0, [x1] // This CPU has booted in EL1
616 dmb sy
617 dc ivac, x1 // Invalidate potentially stale cache line
618 ret
619 ENDPROC(set_cpu_boot_mode_flag)
620
621 /*
622 * These values are written with the MMU off, but read with the MMU on.
623 * Writers will invalidate the corresponding address, discarding up to a
624 * 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures
625 * sufficient alignment that the CWG doesn't overlap another section.
626 */
627 .pushsection ".mmuoff.data.write", "aw"
628 /*
629 * We need to find out the CPU boot mode long after boot, so we need to
630 * store it in a writable variable.
631 *
632 * This is not in .bss, because we set it sufficiently early that the boot-time
633 * zeroing of .bss would clobber it.
634 */
635 ENTRY(__boot_cpu_mode)
636 .long BOOT_CPU_MODE_EL2
637 .long BOOT_CPU_MODE_EL1
638 /*
639 * The booting CPU updates the failed status @__early_cpu_boot_status,
640 * with MMU turned off.
641 */
642 ENTRY(__early_cpu_boot_status)
643 .long 0
644
645 .popsection
646
647 /*
648 * This provides a "holding pen" for platforms to hold all secondary
649 * cores are held until we're ready for them to initialise.
650 */
651 ENTRY(secondary_holding_pen)
652 bl el2_setup // Drop to EL1, w0=cpu_boot_mode
653 bl set_cpu_boot_mode_flag
654 mrs x0, mpidr_el1
655 mov_q x1, MPIDR_HWID_BITMASK
656 and x0, x0, x1
657 adr_l x3, secondary_holding_pen_release
658 pen: ldr x4, [x3]
659 cmp x4, x0
660 b.eq secondary_startup
661 wfe
662 b pen
663 ENDPROC(secondary_holding_pen)
664
665 /*
666 * Secondary entry point that jumps straight into the kernel. Only to
667 * be used where CPUs are brought online dynamically by the kernel.
668 */
669 ENTRY(secondary_entry)
670 bl el2_setup // Drop to EL1
671 bl set_cpu_boot_mode_flag
672 b secondary_startup
673 ENDPROC(secondary_entry)
674
675 secondary_startup:
676 /*
677 * Common entry point for secondary CPUs.
678 */
679 bl __cpu_setup // initialise processor
680 bl __enable_mmu
681 ldr x8, =__secondary_switched
682 br x8
683 ENDPROC(secondary_startup)
684
685 __secondary_switched:
686 adr_l x5, vectors
687 msr vbar_el1, x5
688 isb
689
690 adr_l x0, secondary_data
691 ldr x0, [x0, #CPU_BOOT_STACK] // get secondary_data.stack
692 mov sp, x0
693 and x0, x0, #~(THREAD_SIZE - 1)
694 msr sp_el0, x0 // save thread_info
695 mov x29, #0
696 b secondary_start_kernel
697 ENDPROC(__secondary_switched)
698
699 /*
700 * The booting CPU updates the failed status @__early_cpu_boot_status,
701 * with MMU turned off.
702 *
703 * update_early_cpu_boot_status tmp, status
704 * - Corrupts tmp1, tmp2
705 * - Writes 'status' to __early_cpu_boot_status and makes sure
706 * it is committed to memory.
707 */
708
709 .macro update_early_cpu_boot_status status, tmp1, tmp2
710 mov \tmp2, #\status
711 adr_l \tmp1, __early_cpu_boot_status
712 str \tmp2, [\tmp1]
713 dmb sy
714 dc ivac, \tmp1 // Invalidate potentially stale cache line
715 .endm
716
717 /*
718 * Enable the MMU.
719 *
720 * x0 = SCTLR_EL1 value for turning on the MMU.
721 *
722 * Returns to the caller via x30/lr. This requires the caller to be covered
723 * by the .idmap.text section.
724 *
725 * Checks if the selected granule size is supported by the CPU.
726 * If it isn't, park the CPU
727 */
728 ENTRY(__enable_mmu)
729 mrs x1, ID_AA64MMFR0_EL1
730 ubfx x2, x1, #ID_AA64MMFR0_TGRAN_SHIFT, 4
731 cmp x2, #ID_AA64MMFR0_TGRAN_SUPPORTED
732 b.ne __no_granule_support
733 update_early_cpu_boot_status 0, x1, x2
734 adrp x1, idmap_pg_dir
735 adrp x2, swapper_pg_dir
736 msr ttbr0_el1, x1 // load TTBR0
737 msr ttbr1_el1, x2 // load TTBR1
738 isb
739 msr sctlr_el1, x0
740 isb
741 /*
742 * Invalidate the local I-cache so that any instructions fetched
743 * speculatively from the PoC are discarded, since they may have
744 * been dynamically patched at the PoU.
745 */
746 ic iallu
747 dsb nsh
748 isb
749 ret
750 ENDPROC(__enable_mmu)
751
752 __no_granule_support:
753 /* Indicate that this CPU can't boot and is stuck in the kernel */
754 update_early_cpu_boot_status CPU_STUCK_IN_KERNEL, x1, x2
755 1:
756 wfe
757 wfi
758 b 1b
759 ENDPROC(__no_granule_support)
760
761 #ifdef CONFIG_RELOCATABLE
762 __relocate_kernel:
763 /*
764 * Iterate over each entry in the relocation table, and apply the
765 * relocations in place.
766 */
767 ldr w9, =__rela_offset // offset to reloc table
768 ldr w10, =__rela_size // size of reloc table
769
770 mov_q x11, KIMAGE_VADDR // default virtual offset
771 add x11, x11, x23 // actual virtual offset
772 add x9, x9, x11 // __va(.rela)
773 add x10, x9, x10 // __va(.rela) + sizeof(.rela)
774
775 0: cmp x9, x10
776 b.hs 1f
777 ldp x11, x12, [x9], #24
778 ldr x13, [x9, #-8]
779 cmp w12, #R_AARCH64_RELATIVE
780 b.ne 0b
781 add x13, x13, x23 // relocate
782 str x13, [x11, x23]
783 b 0b
784 1: ret
785 ENDPROC(__relocate_kernel)
786 #endif
787
788 __primary_switch:
789 #ifdef CONFIG_RANDOMIZE_BASE
790 mov x19, x0 // preserve new SCTLR_EL1 value
791 mrs x20, sctlr_el1 // preserve old SCTLR_EL1 value
792 #endif
793
794 bl __enable_mmu
795 #ifdef CONFIG_RELOCATABLE
796 bl __relocate_kernel
797 #ifdef CONFIG_RANDOMIZE_BASE
798 ldr x8, =__primary_switched
799 adrp x0, __PHYS_OFFSET
800 blr x8
801
802 /*
803 * If we return here, we have a KASLR displacement in x23 which we need
804 * to take into account by discarding the current kernel mapping and
805 * creating a new one.
806 */
807 msr sctlr_el1, x20 // disable the MMU
808 isb
809 bl __create_page_tables // recreate kernel mapping
810
811 tlbi vmalle1 // Remove any stale TLB entries
812 dsb nsh
813
814 msr sctlr_el1, x19 // re-enable the MMU
815 isb
816 ic iallu // flush instructions fetched
817 dsb nsh // via old mapping
818 isb
819
820 bl __relocate_kernel
821 #endif
822 #endif
823 ldr x8, =__primary_switched
824 adrp x0, __PHYS_OFFSET
825 br x8
826 ENDPROC(__primary_switch)