]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/arm64/kernel/process.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 234
[thirdparty/linux.git] / arch / arm64 / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/process.c
4 *
5 * Original Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7 * Copyright (C) 2012 ARM Ltd.
8 */
9
10 #include <stdarg.h>
11
12 #include <linux/compat.h>
13 #include <linux/efi.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/sched/task.h>
18 #include <linux/sched/task_stack.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/user.h>
24 #include <linux/delay.h>
25 #include <linux/reboot.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/cpu.h>
29 #include <linux/elfcore.h>
30 #include <linux/pm.h>
31 #include <linux/tick.h>
32 #include <linux/utsname.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include <linux/hw_breakpoint.h>
36 #include <linux/personality.h>
37 #include <linux/notifier.h>
38 #include <trace/events/power.h>
39 #include <linux/percpu.h>
40 #include <linux/thread_info.h>
41
42 #include <asm/alternative.h>
43 #include <asm/arch_gicv3.h>
44 #include <asm/compat.h>
45 #include <asm/cacheflush.h>
46 #include <asm/exec.h>
47 #include <asm/fpsimd.h>
48 #include <asm/mmu_context.h>
49 #include <asm/processor.h>
50 #include <asm/pointer_auth.h>
51 #include <asm/stacktrace.h>
52
53 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
54 #include <linux/stackprotector.h>
55 unsigned long __stack_chk_guard __read_mostly;
56 EXPORT_SYMBOL(__stack_chk_guard);
57 #endif
58
59 /*
60 * Function pointers to optional machine specific functions
61 */
62 void (*pm_power_off)(void);
63 EXPORT_SYMBOL_GPL(pm_power_off);
64
65 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
66
67 static void __cpu_do_idle(void)
68 {
69 dsb(sy);
70 wfi();
71 }
72
73 static void __cpu_do_idle_irqprio(void)
74 {
75 unsigned long pmr;
76 unsigned long daif_bits;
77
78 daif_bits = read_sysreg(daif);
79 write_sysreg(daif_bits | PSR_I_BIT, daif);
80
81 /*
82 * Unmask PMR before going idle to make sure interrupts can
83 * be raised.
84 */
85 pmr = gic_read_pmr();
86 gic_write_pmr(GIC_PRIO_IRQON);
87
88 __cpu_do_idle();
89
90 gic_write_pmr(pmr);
91 write_sysreg(daif_bits, daif);
92 }
93
94 /*
95 * cpu_do_idle()
96 *
97 * Idle the processor (wait for interrupt).
98 *
99 * If the CPU supports priority masking we must do additional work to
100 * ensure that interrupts are not masked at the PMR (because the core will
101 * not wake up if we block the wake up signal in the interrupt controller).
102 */
103 void cpu_do_idle(void)
104 {
105 if (system_uses_irq_prio_masking())
106 __cpu_do_idle_irqprio();
107 else
108 __cpu_do_idle();
109 }
110
111 /*
112 * This is our default idle handler.
113 */
114 void arch_cpu_idle(void)
115 {
116 /*
117 * This should do all the clock switching and wait for interrupt
118 * tricks
119 */
120 trace_cpu_idle_rcuidle(1, smp_processor_id());
121 cpu_do_idle();
122 local_irq_enable();
123 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
124 }
125
126 #ifdef CONFIG_HOTPLUG_CPU
127 void arch_cpu_idle_dead(void)
128 {
129 cpu_die();
130 }
131 #endif
132
133 /*
134 * Called by kexec, immediately prior to machine_kexec().
135 *
136 * This must completely disable all secondary CPUs; simply causing those CPUs
137 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
138 * kexec'd kernel to use any and all RAM as it sees fit, without having to
139 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
140 * functionality embodied in disable_nonboot_cpus() to achieve this.
141 */
142 void machine_shutdown(void)
143 {
144 disable_nonboot_cpus();
145 }
146
147 /*
148 * Halting simply requires that the secondary CPUs stop performing any
149 * activity (executing tasks, handling interrupts). smp_send_stop()
150 * achieves this.
151 */
152 void machine_halt(void)
153 {
154 local_irq_disable();
155 smp_send_stop();
156 while (1);
157 }
158
159 /*
160 * Power-off simply requires that the secondary CPUs stop performing any
161 * activity (executing tasks, handling interrupts). smp_send_stop()
162 * achieves this. When the system power is turned off, it will take all CPUs
163 * with it.
164 */
165 void machine_power_off(void)
166 {
167 local_irq_disable();
168 smp_send_stop();
169 if (pm_power_off)
170 pm_power_off();
171 }
172
173 /*
174 * Restart requires that the secondary CPUs stop performing any activity
175 * while the primary CPU resets the system. Systems with multiple CPUs must
176 * provide a HW restart implementation, to ensure that all CPUs reset at once.
177 * This is required so that any code running after reset on the primary CPU
178 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
179 * executing pre-reset code, and using RAM that the primary CPU's code wishes
180 * to use. Implementing such co-ordination would be essentially impossible.
181 */
182 void machine_restart(char *cmd)
183 {
184 /* Disable interrupts first */
185 local_irq_disable();
186 smp_send_stop();
187
188 /*
189 * UpdateCapsule() depends on the system being reset via
190 * ResetSystem().
191 */
192 if (efi_enabled(EFI_RUNTIME_SERVICES))
193 efi_reboot(reboot_mode, NULL);
194
195 /* Now call the architecture specific reboot code. */
196 if (arm_pm_restart)
197 arm_pm_restart(reboot_mode, cmd);
198 else
199 do_kernel_restart(cmd);
200
201 /*
202 * Whoops - the architecture was unable to reboot.
203 */
204 printk("Reboot failed -- System halted\n");
205 while (1);
206 }
207
208 static void print_pstate(struct pt_regs *regs)
209 {
210 u64 pstate = regs->pstate;
211
212 if (compat_user_mode(regs)) {
213 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
214 pstate,
215 pstate & PSR_AA32_N_BIT ? 'N' : 'n',
216 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
217 pstate & PSR_AA32_C_BIT ? 'C' : 'c',
218 pstate & PSR_AA32_V_BIT ? 'V' : 'v',
219 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
220 pstate & PSR_AA32_T_BIT ? "T32" : "A32",
221 pstate & PSR_AA32_E_BIT ? "BE" : "LE",
222 pstate & PSR_AA32_A_BIT ? 'A' : 'a',
223 pstate & PSR_AA32_I_BIT ? 'I' : 'i',
224 pstate & PSR_AA32_F_BIT ? 'F' : 'f');
225 } else {
226 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n",
227 pstate,
228 pstate & PSR_N_BIT ? 'N' : 'n',
229 pstate & PSR_Z_BIT ? 'Z' : 'z',
230 pstate & PSR_C_BIT ? 'C' : 'c',
231 pstate & PSR_V_BIT ? 'V' : 'v',
232 pstate & PSR_D_BIT ? 'D' : 'd',
233 pstate & PSR_A_BIT ? 'A' : 'a',
234 pstate & PSR_I_BIT ? 'I' : 'i',
235 pstate & PSR_F_BIT ? 'F' : 'f',
236 pstate & PSR_PAN_BIT ? '+' : '-',
237 pstate & PSR_UAO_BIT ? '+' : '-');
238 }
239 }
240
241 void __show_regs(struct pt_regs *regs)
242 {
243 int i, top_reg;
244 u64 lr, sp;
245
246 if (compat_user_mode(regs)) {
247 lr = regs->compat_lr;
248 sp = regs->compat_sp;
249 top_reg = 12;
250 } else {
251 lr = regs->regs[30];
252 sp = regs->sp;
253 top_reg = 29;
254 }
255
256 show_regs_print_info(KERN_DEFAULT);
257 print_pstate(regs);
258
259 if (!user_mode(regs)) {
260 printk("pc : %pS\n", (void *)regs->pc);
261 printk("lr : %pS\n", (void *)lr);
262 } else {
263 printk("pc : %016llx\n", regs->pc);
264 printk("lr : %016llx\n", lr);
265 }
266
267 printk("sp : %016llx\n", sp);
268
269 if (system_uses_irq_prio_masking())
270 printk("pmr_save: %08llx\n", regs->pmr_save);
271
272 i = top_reg;
273
274 while (i >= 0) {
275 printk("x%-2d: %016llx ", i, regs->regs[i]);
276 i--;
277
278 if (i % 2 == 0) {
279 pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
280 i--;
281 }
282
283 pr_cont("\n");
284 }
285 }
286
287 void show_regs(struct pt_regs * regs)
288 {
289 __show_regs(regs);
290 dump_backtrace(regs, NULL);
291 }
292
293 static void tls_thread_flush(void)
294 {
295 write_sysreg(0, tpidr_el0);
296
297 if (is_compat_task()) {
298 current->thread.uw.tp_value = 0;
299
300 /*
301 * We need to ensure ordering between the shadow state and the
302 * hardware state, so that we don't corrupt the hardware state
303 * with a stale shadow state during context switch.
304 */
305 barrier();
306 write_sysreg(0, tpidrro_el0);
307 }
308 }
309
310 void flush_thread(void)
311 {
312 fpsimd_flush_thread();
313 tls_thread_flush();
314 flush_ptrace_hw_breakpoint(current);
315 }
316
317 void release_thread(struct task_struct *dead_task)
318 {
319 }
320
321 void arch_release_task_struct(struct task_struct *tsk)
322 {
323 fpsimd_release_task(tsk);
324 }
325
326 /*
327 * src and dst may temporarily have aliased sve_state after task_struct
328 * is copied. We cannot fix this properly here, because src may have
329 * live SVE state and dst's thread_info may not exist yet, so tweaking
330 * either src's or dst's TIF_SVE is not safe.
331 *
332 * The unaliasing is done in copy_thread() instead. This works because
333 * dst is not schedulable or traceable until both of these functions
334 * have been called.
335 */
336 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
337 {
338 if (current->mm)
339 fpsimd_preserve_current_state();
340 *dst = *src;
341
342 return 0;
343 }
344
345 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
346
347 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
348 unsigned long stk_sz, struct task_struct *p)
349 {
350 struct pt_regs *childregs = task_pt_regs(p);
351
352 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
353
354 /*
355 * Unalias p->thread.sve_state (if any) from the parent task
356 * and disable discard SVE state for p:
357 */
358 clear_tsk_thread_flag(p, TIF_SVE);
359 p->thread.sve_state = NULL;
360
361 /*
362 * In case p was allocated the same task_struct pointer as some
363 * other recently-exited task, make sure p is disassociated from
364 * any cpu that may have run that now-exited task recently.
365 * Otherwise we could erroneously skip reloading the FPSIMD
366 * registers for p.
367 */
368 fpsimd_flush_task_state(p);
369
370 if (likely(!(p->flags & PF_KTHREAD))) {
371 *childregs = *current_pt_regs();
372 childregs->regs[0] = 0;
373
374 /*
375 * Read the current TLS pointer from tpidr_el0 as it may be
376 * out-of-sync with the saved value.
377 */
378 *task_user_tls(p) = read_sysreg(tpidr_el0);
379
380 if (stack_start) {
381 if (is_compat_thread(task_thread_info(p)))
382 childregs->compat_sp = stack_start;
383 else
384 childregs->sp = stack_start;
385 }
386
387 /*
388 * If a TLS pointer was passed to clone (4th argument), use it
389 * for the new thread.
390 */
391 if (clone_flags & CLONE_SETTLS)
392 p->thread.uw.tp_value = childregs->regs[3];
393 } else {
394 memset(childregs, 0, sizeof(struct pt_regs));
395 childregs->pstate = PSR_MODE_EL1h;
396 if (IS_ENABLED(CONFIG_ARM64_UAO) &&
397 cpus_have_const_cap(ARM64_HAS_UAO))
398 childregs->pstate |= PSR_UAO_BIT;
399
400 if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
401 childregs->pstate |= PSR_SSBS_BIT;
402
403 if (system_uses_irq_prio_masking())
404 childregs->pmr_save = GIC_PRIO_IRQON;
405
406 p->thread.cpu_context.x19 = stack_start;
407 p->thread.cpu_context.x20 = stk_sz;
408 }
409 p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
410 p->thread.cpu_context.sp = (unsigned long)childregs;
411
412 ptrace_hw_copy_thread(p);
413
414 return 0;
415 }
416
417 void tls_preserve_current_state(void)
418 {
419 *task_user_tls(current) = read_sysreg(tpidr_el0);
420 }
421
422 static void tls_thread_switch(struct task_struct *next)
423 {
424 tls_preserve_current_state();
425
426 if (is_compat_thread(task_thread_info(next)))
427 write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
428 else if (!arm64_kernel_unmapped_at_el0())
429 write_sysreg(0, tpidrro_el0);
430
431 write_sysreg(*task_user_tls(next), tpidr_el0);
432 }
433
434 /* Restore the UAO state depending on next's addr_limit */
435 void uao_thread_switch(struct task_struct *next)
436 {
437 if (IS_ENABLED(CONFIG_ARM64_UAO)) {
438 if (task_thread_info(next)->addr_limit == KERNEL_DS)
439 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
440 else
441 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
442 }
443 }
444
445 /*
446 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
447 * shadow copy so that we can restore this upon entry from userspace.
448 *
449 * This is *only* for exception entry from EL0, and is not valid until we
450 * __switch_to() a user task.
451 */
452 DEFINE_PER_CPU(struct task_struct *, __entry_task);
453
454 static void entry_task_switch(struct task_struct *next)
455 {
456 __this_cpu_write(__entry_task, next);
457 }
458
459 /*
460 * Thread switching.
461 */
462 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
463 struct task_struct *next)
464 {
465 struct task_struct *last;
466
467 fpsimd_thread_switch(next);
468 tls_thread_switch(next);
469 hw_breakpoint_thread_switch(next);
470 contextidr_thread_switch(next);
471 entry_task_switch(next);
472 uao_thread_switch(next);
473 ptrauth_thread_switch(next);
474
475 /*
476 * Complete any pending TLB or cache maintenance on this CPU in case
477 * the thread migrates to a different CPU.
478 * This full barrier is also required by the membarrier system
479 * call.
480 */
481 dsb(ish);
482
483 /* the actual thread switch */
484 last = cpu_switch_to(prev, next);
485
486 return last;
487 }
488
489 unsigned long get_wchan(struct task_struct *p)
490 {
491 struct stackframe frame;
492 unsigned long stack_page, ret = 0;
493 int count = 0;
494 if (!p || p == current || p->state == TASK_RUNNING)
495 return 0;
496
497 stack_page = (unsigned long)try_get_task_stack(p);
498 if (!stack_page)
499 return 0;
500
501 frame.fp = thread_saved_fp(p);
502 frame.pc = thread_saved_pc(p);
503 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
504 frame.graph = 0;
505 #endif
506 do {
507 if (unwind_frame(p, &frame))
508 goto out;
509 if (!in_sched_functions(frame.pc)) {
510 ret = frame.pc;
511 goto out;
512 }
513 } while (count ++ < 16);
514
515 out:
516 put_task_stack(p);
517 return ret;
518 }
519
520 unsigned long arch_align_stack(unsigned long sp)
521 {
522 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
523 sp -= get_random_int() & ~PAGE_MASK;
524 return sp & ~0xf;
525 }
526
527 unsigned long arch_randomize_brk(struct mm_struct *mm)
528 {
529 if (is_compat_task())
530 return randomize_page(mm->brk, SZ_32M);
531 else
532 return randomize_page(mm->brk, SZ_1G);
533 }
534
535 /*
536 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
537 */
538 void arch_setup_new_exec(void)
539 {
540 current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
541
542 ptrauth_thread_init_user(current);
543 }