]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/arm64/kernel/ptrace.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 234
[thirdparty/linux.git] / arch / arm64 / kernel / ptrace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/ptrace.c
4 *
5 * By Ross Biro 1/23/92
6 * edited by Linus Torvalds
7 * ARM modifications Copyright (C) 2000 Russell King
8 * Copyright (C) 2012 ARM Ltd.
9 */
10
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/tracehook.h>
31 #include <linux/elf.h>
32
33 #include <asm/compat.h>
34 #include <asm/cpufeature.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/fpsimd.h>
37 #include <asm/pgtable.h>
38 #include <asm/pointer_auth.h>
39 #include <asm/stacktrace.h>
40 #include <asm/syscall.h>
41 #include <asm/traps.h>
42 #include <asm/system_misc.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46
47 struct pt_regs_offset {
48 const char *name;
49 int offset;
50 };
51
52 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
53 #define REG_OFFSET_END {.name = NULL, .offset = 0}
54 #define GPR_OFFSET_NAME(r) \
55 {.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
56
57 static const struct pt_regs_offset regoffset_table[] = {
58 GPR_OFFSET_NAME(0),
59 GPR_OFFSET_NAME(1),
60 GPR_OFFSET_NAME(2),
61 GPR_OFFSET_NAME(3),
62 GPR_OFFSET_NAME(4),
63 GPR_OFFSET_NAME(5),
64 GPR_OFFSET_NAME(6),
65 GPR_OFFSET_NAME(7),
66 GPR_OFFSET_NAME(8),
67 GPR_OFFSET_NAME(9),
68 GPR_OFFSET_NAME(10),
69 GPR_OFFSET_NAME(11),
70 GPR_OFFSET_NAME(12),
71 GPR_OFFSET_NAME(13),
72 GPR_OFFSET_NAME(14),
73 GPR_OFFSET_NAME(15),
74 GPR_OFFSET_NAME(16),
75 GPR_OFFSET_NAME(17),
76 GPR_OFFSET_NAME(18),
77 GPR_OFFSET_NAME(19),
78 GPR_OFFSET_NAME(20),
79 GPR_OFFSET_NAME(21),
80 GPR_OFFSET_NAME(22),
81 GPR_OFFSET_NAME(23),
82 GPR_OFFSET_NAME(24),
83 GPR_OFFSET_NAME(25),
84 GPR_OFFSET_NAME(26),
85 GPR_OFFSET_NAME(27),
86 GPR_OFFSET_NAME(28),
87 GPR_OFFSET_NAME(29),
88 GPR_OFFSET_NAME(30),
89 {.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
90 REG_OFFSET_NAME(sp),
91 REG_OFFSET_NAME(pc),
92 REG_OFFSET_NAME(pstate),
93 REG_OFFSET_END,
94 };
95
96 /**
97 * regs_query_register_offset() - query register offset from its name
98 * @name: the name of a register
99 *
100 * regs_query_register_offset() returns the offset of a register in struct
101 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
102 */
103 int regs_query_register_offset(const char *name)
104 {
105 const struct pt_regs_offset *roff;
106
107 for (roff = regoffset_table; roff->name != NULL; roff++)
108 if (!strcmp(roff->name, name))
109 return roff->offset;
110 return -EINVAL;
111 }
112
113 /**
114 * regs_within_kernel_stack() - check the address in the stack
115 * @regs: pt_regs which contains kernel stack pointer.
116 * @addr: address which is checked.
117 *
118 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
119 * If @addr is within the kernel stack, it returns true. If not, returns false.
120 */
121 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
122 {
123 return ((addr & ~(THREAD_SIZE - 1)) ==
124 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
125 on_irq_stack(addr, NULL);
126 }
127
128 /**
129 * regs_get_kernel_stack_nth() - get Nth entry of the stack
130 * @regs: pt_regs which contains kernel stack pointer.
131 * @n: stack entry number.
132 *
133 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
134 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
135 * this returns 0.
136 */
137 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
138 {
139 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
140
141 addr += n;
142 if (regs_within_kernel_stack(regs, (unsigned long)addr))
143 return *addr;
144 else
145 return 0;
146 }
147
148 /*
149 * TODO: does not yet catch signals sent when the child dies.
150 * in exit.c or in signal.c.
151 */
152
153 /*
154 * Called by kernel/ptrace.c when detaching..
155 */
156 void ptrace_disable(struct task_struct *child)
157 {
158 /*
159 * This would be better off in core code, but PTRACE_DETACH has
160 * grown its fair share of arch-specific worts and changing it
161 * is likely to cause regressions on obscure architectures.
162 */
163 user_disable_single_step(child);
164 }
165
166 #ifdef CONFIG_HAVE_HW_BREAKPOINT
167 /*
168 * Handle hitting a HW-breakpoint.
169 */
170 static void ptrace_hbptriggered(struct perf_event *bp,
171 struct perf_sample_data *data,
172 struct pt_regs *regs)
173 {
174 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
175 const char *desc = "Hardware breakpoint trap (ptrace)";
176
177 #ifdef CONFIG_COMPAT
178 if (is_compat_task()) {
179 int si_errno = 0;
180 int i;
181
182 for (i = 0; i < ARM_MAX_BRP; ++i) {
183 if (current->thread.debug.hbp_break[i] == bp) {
184 si_errno = (i << 1) + 1;
185 break;
186 }
187 }
188
189 for (i = 0; i < ARM_MAX_WRP; ++i) {
190 if (current->thread.debug.hbp_watch[i] == bp) {
191 si_errno = -((i << 1) + 1);
192 break;
193 }
194 }
195 arm64_force_sig_ptrace_errno_trap(si_errno,
196 (void __user *)bkpt->trigger,
197 desc);
198 }
199 #endif
200 arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT,
201 (void __user *)(bkpt->trigger),
202 desc);
203 }
204
205 /*
206 * Unregister breakpoints from this task and reset the pointers in
207 * the thread_struct.
208 */
209 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
210 {
211 int i;
212 struct thread_struct *t = &tsk->thread;
213
214 for (i = 0; i < ARM_MAX_BRP; i++) {
215 if (t->debug.hbp_break[i]) {
216 unregister_hw_breakpoint(t->debug.hbp_break[i]);
217 t->debug.hbp_break[i] = NULL;
218 }
219 }
220
221 for (i = 0; i < ARM_MAX_WRP; i++) {
222 if (t->debug.hbp_watch[i]) {
223 unregister_hw_breakpoint(t->debug.hbp_watch[i]);
224 t->debug.hbp_watch[i] = NULL;
225 }
226 }
227 }
228
229 void ptrace_hw_copy_thread(struct task_struct *tsk)
230 {
231 memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
232 }
233
234 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
235 struct task_struct *tsk,
236 unsigned long idx)
237 {
238 struct perf_event *bp = ERR_PTR(-EINVAL);
239
240 switch (note_type) {
241 case NT_ARM_HW_BREAK:
242 if (idx >= ARM_MAX_BRP)
243 goto out;
244 idx = array_index_nospec(idx, ARM_MAX_BRP);
245 bp = tsk->thread.debug.hbp_break[idx];
246 break;
247 case NT_ARM_HW_WATCH:
248 if (idx >= ARM_MAX_WRP)
249 goto out;
250 idx = array_index_nospec(idx, ARM_MAX_WRP);
251 bp = tsk->thread.debug.hbp_watch[idx];
252 break;
253 }
254
255 out:
256 return bp;
257 }
258
259 static int ptrace_hbp_set_event(unsigned int note_type,
260 struct task_struct *tsk,
261 unsigned long idx,
262 struct perf_event *bp)
263 {
264 int err = -EINVAL;
265
266 switch (note_type) {
267 case NT_ARM_HW_BREAK:
268 if (idx >= ARM_MAX_BRP)
269 goto out;
270 idx = array_index_nospec(idx, ARM_MAX_BRP);
271 tsk->thread.debug.hbp_break[idx] = bp;
272 err = 0;
273 break;
274 case NT_ARM_HW_WATCH:
275 if (idx >= ARM_MAX_WRP)
276 goto out;
277 idx = array_index_nospec(idx, ARM_MAX_WRP);
278 tsk->thread.debug.hbp_watch[idx] = bp;
279 err = 0;
280 break;
281 }
282
283 out:
284 return err;
285 }
286
287 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
288 struct task_struct *tsk,
289 unsigned long idx)
290 {
291 struct perf_event *bp;
292 struct perf_event_attr attr;
293 int err, type;
294
295 switch (note_type) {
296 case NT_ARM_HW_BREAK:
297 type = HW_BREAKPOINT_X;
298 break;
299 case NT_ARM_HW_WATCH:
300 type = HW_BREAKPOINT_RW;
301 break;
302 default:
303 return ERR_PTR(-EINVAL);
304 }
305
306 ptrace_breakpoint_init(&attr);
307
308 /*
309 * Initialise fields to sane defaults
310 * (i.e. values that will pass validation).
311 */
312 attr.bp_addr = 0;
313 attr.bp_len = HW_BREAKPOINT_LEN_4;
314 attr.bp_type = type;
315 attr.disabled = 1;
316
317 bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
318 if (IS_ERR(bp))
319 return bp;
320
321 err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
322 if (err)
323 return ERR_PTR(err);
324
325 return bp;
326 }
327
328 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
329 struct arch_hw_breakpoint_ctrl ctrl,
330 struct perf_event_attr *attr)
331 {
332 int err, len, type, offset, disabled = !ctrl.enabled;
333
334 attr->disabled = disabled;
335 if (disabled)
336 return 0;
337
338 err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
339 if (err)
340 return err;
341
342 switch (note_type) {
343 case NT_ARM_HW_BREAK:
344 if ((type & HW_BREAKPOINT_X) != type)
345 return -EINVAL;
346 break;
347 case NT_ARM_HW_WATCH:
348 if ((type & HW_BREAKPOINT_RW) != type)
349 return -EINVAL;
350 break;
351 default:
352 return -EINVAL;
353 }
354
355 attr->bp_len = len;
356 attr->bp_type = type;
357 attr->bp_addr += offset;
358
359 return 0;
360 }
361
362 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
363 {
364 u8 num;
365 u32 reg = 0;
366
367 switch (note_type) {
368 case NT_ARM_HW_BREAK:
369 num = hw_breakpoint_slots(TYPE_INST);
370 break;
371 case NT_ARM_HW_WATCH:
372 num = hw_breakpoint_slots(TYPE_DATA);
373 break;
374 default:
375 return -EINVAL;
376 }
377
378 reg |= debug_monitors_arch();
379 reg <<= 8;
380 reg |= num;
381
382 *info = reg;
383 return 0;
384 }
385
386 static int ptrace_hbp_get_ctrl(unsigned int note_type,
387 struct task_struct *tsk,
388 unsigned long idx,
389 u32 *ctrl)
390 {
391 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
392
393 if (IS_ERR(bp))
394 return PTR_ERR(bp);
395
396 *ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
397 return 0;
398 }
399
400 static int ptrace_hbp_get_addr(unsigned int note_type,
401 struct task_struct *tsk,
402 unsigned long idx,
403 u64 *addr)
404 {
405 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
406
407 if (IS_ERR(bp))
408 return PTR_ERR(bp);
409
410 *addr = bp ? counter_arch_bp(bp)->address : 0;
411 return 0;
412 }
413
414 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
415 struct task_struct *tsk,
416 unsigned long idx)
417 {
418 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
419
420 if (!bp)
421 bp = ptrace_hbp_create(note_type, tsk, idx);
422
423 return bp;
424 }
425
426 static int ptrace_hbp_set_ctrl(unsigned int note_type,
427 struct task_struct *tsk,
428 unsigned long idx,
429 u32 uctrl)
430 {
431 int err;
432 struct perf_event *bp;
433 struct perf_event_attr attr;
434 struct arch_hw_breakpoint_ctrl ctrl;
435
436 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
437 if (IS_ERR(bp)) {
438 err = PTR_ERR(bp);
439 return err;
440 }
441
442 attr = bp->attr;
443 decode_ctrl_reg(uctrl, &ctrl);
444 err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
445 if (err)
446 return err;
447
448 return modify_user_hw_breakpoint(bp, &attr);
449 }
450
451 static int ptrace_hbp_set_addr(unsigned int note_type,
452 struct task_struct *tsk,
453 unsigned long idx,
454 u64 addr)
455 {
456 int err;
457 struct perf_event *bp;
458 struct perf_event_attr attr;
459
460 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
461 if (IS_ERR(bp)) {
462 err = PTR_ERR(bp);
463 return err;
464 }
465
466 attr = bp->attr;
467 attr.bp_addr = addr;
468 err = modify_user_hw_breakpoint(bp, &attr);
469 return err;
470 }
471
472 #define PTRACE_HBP_ADDR_SZ sizeof(u64)
473 #define PTRACE_HBP_CTRL_SZ sizeof(u32)
474 #define PTRACE_HBP_PAD_SZ sizeof(u32)
475
476 static int hw_break_get(struct task_struct *target,
477 const struct user_regset *regset,
478 unsigned int pos, unsigned int count,
479 void *kbuf, void __user *ubuf)
480 {
481 unsigned int note_type = regset->core_note_type;
482 int ret, idx = 0, offset, limit;
483 u32 info, ctrl;
484 u64 addr;
485
486 /* Resource info */
487 ret = ptrace_hbp_get_resource_info(note_type, &info);
488 if (ret)
489 return ret;
490
491 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &info, 0,
492 sizeof(info));
493 if (ret)
494 return ret;
495
496 /* Pad */
497 offset = offsetof(struct user_hwdebug_state, pad);
498 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, offset,
499 offset + PTRACE_HBP_PAD_SZ);
500 if (ret)
501 return ret;
502
503 /* (address, ctrl) registers */
504 offset = offsetof(struct user_hwdebug_state, dbg_regs);
505 limit = regset->n * regset->size;
506 while (count && offset < limit) {
507 ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
508 if (ret)
509 return ret;
510 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &addr,
511 offset, offset + PTRACE_HBP_ADDR_SZ);
512 if (ret)
513 return ret;
514 offset += PTRACE_HBP_ADDR_SZ;
515
516 ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
517 if (ret)
518 return ret;
519 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &ctrl,
520 offset, offset + PTRACE_HBP_CTRL_SZ);
521 if (ret)
522 return ret;
523 offset += PTRACE_HBP_CTRL_SZ;
524
525 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
526 offset,
527 offset + PTRACE_HBP_PAD_SZ);
528 if (ret)
529 return ret;
530 offset += PTRACE_HBP_PAD_SZ;
531 idx++;
532 }
533
534 return 0;
535 }
536
537 static int hw_break_set(struct task_struct *target,
538 const struct user_regset *regset,
539 unsigned int pos, unsigned int count,
540 const void *kbuf, const void __user *ubuf)
541 {
542 unsigned int note_type = regset->core_note_type;
543 int ret, idx = 0, offset, limit;
544 u32 ctrl;
545 u64 addr;
546
547 /* Resource info and pad */
548 offset = offsetof(struct user_hwdebug_state, dbg_regs);
549 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
550 if (ret)
551 return ret;
552
553 /* (address, ctrl) registers */
554 limit = regset->n * regset->size;
555 while (count && offset < limit) {
556 if (count < PTRACE_HBP_ADDR_SZ)
557 return -EINVAL;
558 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
559 offset, offset + PTRACE_HBP_ADDR_SZ);
560 if (ret)
561 return ret;
562 ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
563 if (ret)
564 return ret;
565 offset += PTRACE_HBP_ADDR_SZ;
566
567 if (!count)
568 break;
569 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
570 offset, offset + PTRACE_HBP_CTRL_SZ);
571 if (ret)
572 return ret;
573 ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
574 if (ret)
575 return ret;
576 offset += PTRACE_HBP_CTRL_SZ;
577
578 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
579 offset,
580 offset + PTRACE_HBP_PAD_SZ);
581 if (ret)
582 return ret;
583 offset += PTRACE_HBP_PAD_SZ;
584 idx++;
585 }
586
587 return 0;
588 }
589 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
590
591 static int gpr_get(struct task_struct *target,
592 const struct user_regset *regset,
593 unsigned int pos, unsigned int count,
594 void *kbuf, void __user *ubuf)
595 {
596 struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
597 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0, -1);
598 }
599
600 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
601 unsigned int pos, unsigned int count,
602 const void *kbuf, const void __user *ubuf)
603 {
604 int ret;
605 struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
606
607 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
608 if (ret)
609 return ret;
610
611 if (!valid_user_regs(&newregs, target))
612 return -EINVAL;
613
614 task_pt_regs(target)->user_regs = newregs;
615 return 0;
616 }
617
618 /*
619 * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
620 */
621 static int __fpr_get(struct task_struct *target,
622 const struct user_regset *regset,
623 unsigned int pos, unsigned int count,
624 void *kbuf, void __user *ubuf, unsigned int start_pos)
625 {
626 struct user_fpsimd_state *uregs;
627
628 sve_sync_to_fpsimd(target);
629
630 uregs = &target->thread.uw.fpsimd_state;
631
632 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs,
633 start_pos, start_pos + sizeof(*uregs));
634 }
635
636 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
637 unsigned int pos, unsigned int count,
638 void *kbuf, void __user *ubuf)
639 {
640 if (target == current)
641 fpsimd_preserve_current_state();
642
643 return __fpr_get(target, regset, pos, count, kbuf, ubuf, 0);
644 }
645
646 static int __fpr_set(struct task_struct *target,
647 const struct user_regset *regset,
648 unsigned int pos, unsigned int count,
649 const void *kbuf, const void __user *ubuf,
650 unsigned int start_pos)
651 {
652 int ret;
653 struct user_fpsimd_state newstate;
654
655 /*
656 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
657 * short copyin can't resurrect stale data.
658 */
659 sve_sync_to_fpsimd(target);
660
661 newstate = target->thread.uw.fpsimd_state;
662
663 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
664 start_pos, start_pos + sizeof(newstate));
665 if (ret)
666 return ret;
667
668 target->thread.uw.fpsimd_state = newstate;
669
670 return ret;
671 }
672
673 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
674 unsigned int pos, unsigned int count,
675 const void *kbuf, const void __user *ubuf)
676 {
677 int ret;
678
679 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
680 if (ret)
681 return ret;
682
683 sve_sync_from_fpsimd_zeropad(target);
684 fpsimd_flush_task_state(target);
685
686 return ret;
687 }
688
689 static int tls_get(struct task_struct *target, const struct user_regset *regset,
690 unsigned int pos, unsigned int count,
691 void *kbuf, void __user *ubuf)
692 {
693 unsigned long *tls = &target->thread.uw.tp_value;
694
695 if (target == current)
696 tls_preserve_current_state();
697
698 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, tls, 0, -1);
699 }
700
701 static int tls_set(struct task_struct *target, const struct user_regset *regset,
702 unsigned int pos, unsigned int count,
703 const void *kbuf, const void __user *ubuf)
704 {
705 int ret;
706 unsigned long tls = target->thread.uw.tp_value;
707
708 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
709 if (ret)
710 return ret;
711
712 target->thread.uw.tp_value = tls;
713 return ret;
714 }
715
716 static int system_call_get(struct task_struct *target,
717 const struct user_regset *regset,
718 unsigned int pos, unsigned int count,
719 void *kbuf, void __user *ubuf)
720 {
721 int syscallno = task_pt_regs(target)->syscallno;
722
723 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
724 &syscallno, 0, -1);
725 }
726
727 static int system_call_set(struct task_struct *target,
728 const struct user_regset *regset,
729 unsigned int pos, unsigned int count,
730 const void *kbuf, const void __user *ubuf)
731 {
732 int syscallno = task_pt_regs(target)->syscallno;
733 int ret;
734
735 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
736 if (ret)
737 return ret;
738
739 task_pt_regs(target)->syscallno = syscallno;
740 return ret;
741 }
742
743 #ifdef CONFIG_ARM64_SVE
744
745 static void sve_init_header_from_task(struct user_sve_header *header,
746 struct task_struct *target)
747 {
748 unsigned int vq;
749
750 memset(header, 0, sizeof(*header));
751
752 header->flags = test_tsk_thread_flag(target, TIF_SVE) ?
753 SVE_PT_REGS_SVE : SVE_PT_REGS_FPSIMD;
754 if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
755 header->flags |= SVE_PT_VL_INHERIT;
756
757 header->vl = target->thread.sve_vl;
758 vq = sve_vq_from_vl(header->vl);
759
760 header->max_vl = sve_max_vl;
761 header->size = SVE_PT_SIZE(vq, header->flags);
762 header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
763 SVE_PT_REGS_SVE);
764 }
765
766 static unsigned int sve_size_from_header(struct user_sve_header const *header)
767 {
768 return ALIGN(header->size, SVE_VQ_BYTES);
769 }
770
771 static unsigned int sve_get_size(struct task_struct *target,
772 const struct user_regset *regset)
773 {
774 struct user_sve_header header;
775
776 if (!system_supports_sve())
777 return 0;
778
779 sve_init_header_from_task(&header, target);
780 return sve_size_from_header(&header);
781 }
782
783 static int sve_get(struct task_struct *target,
784 const struct user_regset *regset,
785 unsigned int pos, unsigned int count,
786 void *kbuf, void __user *ubuf)
787 {
788 int ret;
789 struct user_sve_header header;
790 unsigned int vq;
791 unsigned long start, end;
792
793 if (!system_supports_sve())
794 return -EINVAL;
795
796 /* Header */
797 sve_init_header_from_task(&header, target);
798 vq = sve_vq_from_vl(header.vl);
799
800 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &header,
801 0, sizeof(header));
802 if (ret)
803 return ret;
804
805 if (target == current)
806 fpsimd_preserve_current_state();
807
808 /* Registers: FPSIMD-only case */
809
810 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
811 if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD)
812 return __fpr_get(target, regset, pos, count, kbuf, ubuf,
813 SVE_PT_FPSIMD_OFFSET);
814
815 /* Otherwise: full SVE case */
816
817 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
818 start = SVE_PT_SVE_OFFSET;
819 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
820 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
821 target->thread.sve_state,
822 start, end);
823 if (ret)
824 return ret;
825
826 start = end;
827 end = SVE_PT_SVE_FPSR_OFFSET(vq);
828 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
829 start, end);
830 if (ret)
831 return ret;
832
833 /*
834 * Copy fpsr, and fpcr which must follow contiguously in
835 * struct fpsimd_state:
836 */
837 start = end;
838 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
839 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
840 &target->thread.uw.fpsimd_state.fpsr,
841 start, end);
842 if (ret)
843 return ret;
844
845 start = end;
846 end = sve_size_from_header(&header);
847 return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
848 start, end);
849 }
850
851 static int sve_set(struct task_struct *target,
852 const struct user_regset *regset,
853 unsigned int pos, unsigned int count,
854 const void *kbuf, const void __user *ubuf)
855 {
856 int ret;
857 struct user_sve_header header;
858 unsigned int vq;
859 unsigned long start, end;
860
861 if (!system_supports_sve())
862 return -EINVAL;
863
864 /* Header */
865 if (count < sizeof(header))
866 return -EINVAL;
867 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
868 0, sizeof(header));
869 if (ret)
870 goto out;
871
872 /*
873 * Apart from PT_SVE_REGS_MASK, all PT_SVE_* flags are consumed by
874 * sve_set_vector_length(), which will also validate them for us:
875 */
876 ret = sve_set_vector_length(target, header.vl,
877 ((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
878 if (ret)
879 goto out;
880
881 /* Actual VL set may be less than the user asked for: */
882 vq = sve_vq_from_vl(target->thread.sve_vl);
883
884 /* Registers: FPSIMD-only case */
885
886 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
887 if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
888 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
889 SVE_PT_FPSIMD_OFFSET);
890 clear_tsk_thread_flag(target, TIF_SVE);
891 goto out;
892 }
893
894 /* Otherwise: full SVE case */
895
896 /*
897 * If setting a different VL from the requested VL and there is
898 * register data, the data layout will be wrong: don't even
899 * try to set the registers in this case.
900 */
901 if (count && vq != sve_vq_from_vl(header.vl)) {
902 ret = -EIO;
903 goto out;
904 }
905
906 sve_alloc(target);
907
908 /*
909 * Ensure target->thread.sve_state is up to date with target's
910 * FPSIMD regs, so that a short copyin leaves trailing registers
911 * unmodified.
912 */
913 fpsimd_sync_to_sve(target);
914 set_tsk_thread_flag(target, TIF_SVE);
915
916 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
917 start = SVE_PT_SVE_OFFSET;
918 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
919 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
920 target->thread.sve_state,
921 start, end);
922 if (ret)
923 goto out;
924
925 start = end;
926 end = SVE_PT_SVE_FPSR_OFFSET(vq);
927 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
928 start, end);
929 if (ret)
930 goto out;
931
932 /*
933 * Copy fpsr, and fpcr which must follow contiguously in
934 * struct fpsimd_state:
935 */
936 start = end;
937 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
938 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
939 &target->thread.uw.fpsimd_state.fpsr,
940 start, end);
941
942 out:
943 fpsimd_flush_task_state(target);
944 return ret;
945 }
946
947 #endif /* CONFIG_ARM64_SVE */
948
949 #ifdef CONFIG_ARM64_PTR_AUTH
950 static int pac_mask_get(struct task_struct *target,
951 const struct user_regset *regset,
952 unsigned int pos, unsigned int count,
953 void *kbuf, void __user *ubuf)
954 {
955 /*
956 * The PAC bits can differ across data and instruction pointers
957 * depending on TCR_EL1.TBID*, which we may make use of in future, so
958 * we expose separate masks.
959 */
960 unsigned long mask = ptrauth_user_pac_mask();
961 struct user_pac_mask uregs = {
962 .data_mask = mask,
963 .insn_mask = mask,
964 };
965
966 if (!system_supports_address_auth())
967 return -EINVAL;
968
969 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &uregs, 0, -1);
970 }
971
972 #ifdef CONFIG_CHECKPOINT_RESTORE
973 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
974 {
975 return (__uint128_t)key->hi << 64 | key->lo;
976 }
977
978 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
979 {
980 struct ptrauth_key key = {
981 .lo = (unsigned long)ukey,
982 .hi = (unsigned long)(ukey >> 64),
983 };
984
985 return key;
986 }
987
988 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
989 const struct ptrauth_keys *keys)
990 {
991 ukeys->apiakey = pac_key_to_user(&keys->apia);
992 ukeys->apibkey = pac_key_to_user(&keys->apib);
993 ukeys->apdakey = pac_key_to_user(&keys->apda);
994 ukeys->apdbkey = pac_key_to_user(&keys->apdb);
995 }
996
997 static void pac_address_keys_from_user(struct ptrauth_keys *keys,
998 const struct user_pac_address_keys *ukeys)
999 {
1000 keys->apia = pac_key_from_user(ukeys->apiakey);
1001 keys->apib = pac_key_from_user(ukeys->apibkey);
1002 keys->apda = pac_key_from_user(ukeys->apdakey);
1003 keys->apdb = pac_key_from_user(ukeys->apdbkey);
1004 }
1005
1006 static int pac_address_keys_get(struct task_struct *target,
1007 const struct user_regset *regset,
1008 unsigned int pos, unsigned int count,
1009 void *kbuf, void __user *ubuf)
1010 {
1011 struct ptrauth_keys *keys = &target->thread.keys_user;
1012 struct user_pac_address_keys user_keys;
1013
1014 if (!system_supports_address_auth())
1015 return -EINVAL;
1016
1017 pac_address_keys_to_user(&user_keys, keys);
1018
1019 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1020 &user_keys, 0, -1);
1021 }
1022
1023 static int pac_address_keys_set(struct task_struct *target,
1024 const struct user_regset *regset,
1025 unsigned int pos, unsigned int count,
1026 const void *kbuf, const void __user *ubuf)
1027 {
1028 struct ptrauth_keys *keys = &target->thread.keys_user;
1029 struct user_pac_address_keys user_keys;
1030 int ret;
1031
1032 if (!system_supports_address_auth())
1033 return -EINVAL;
1034
1035 pac_address_keys_to_user(&user_keys, keys);
1036 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1037 &user_keys, 0, -1);
1038 if (ret)
1039 return ret;
1040 pac_address_keys_from_user(keys, &user_keys);
1041
1042 return 0;
1043 }
1044
1045 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1046 const struct ptrauth_keys *keys)
1047 {
1048 ukeys->apgakey = pac_key_to_user(&keys->apga);
1049 }
1050
1051 static void pac_generic_keys_from_user(struct ptrauth_keys *keys,
1052 const struct user_pac_generic_keys *ukeys)
1053 {
1054 keys->apga = pac_key_from_user(ukeys->apgakey);
1055 }
1056
1057 static int pac_generic_keys_get(struct task_struct *target,
1058 const struct user_regset *regset,
1059 unsigned int pos, unsigned int count,
1060 void *kbuf, void __user *ubuf)
1061 {
1062 struct ptrauth_keys *keys = &target->thread.keys_user;
1063 struct user_pac_generic_keys user_keys;
1064
1065 if (!system_supports_generic_auth())
1066 return -EINVAL;
1067
1068 pac_generic_keys_to_user(&user_keys, keys);
1069
1070 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1071 &user_keys, 0, -1);
1072 }
1073
1074 static int pac_generic_keys_set(struct task_struct *target,
1075 const struct user_regset *regset,
1076 unsigned int pos, unsigned int count,
1077 const void *kbuf, const void __user *ubuf)
1078 {
1079 struct ptrauth_keys *keys = &target->thread.keys_user;
1080 struct user_pac_generic_keys user_keys;
1081 int ret;
1082
1083 if (!system_supports_generic_auth())
1084 return -EINVAL;
1085
1086 pac_generic_keys_to_user(&user_keys, keys);
1087 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1088 &user_keys, 0, -1);
1089 if (ret)
1090 return ret;
1091 pac_generic_keys_from_user(keys, &user_keys);
1092
1093 return 0;
1094 }
1095 #endif /* CONFIG_CHECKPOINT_RESTORE */
1096 #endif /* CONFIG_ARM64_PTR_AUTH */
1097
1098 enum aarch64_regset {
1099 REGSET_GPR,
1100 REGSET_FPR,
1101 REGSET_TLS,
1102 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1103 REGSET_HW_BREAK,
1104 REGSET_HW_WATCH,
1105 #endif
1106 REGSET_SYSTEM_CALL,
1107 #ifdef CONFIG_ARM64_SVE
1108 REGSET_SVE,
1109 #endif
1110 #ifdef CONFIG_ARM64_PTR_AUTH
1111 REGSET_PAC_MASK,
1112 #ifdef CONFIG_CHECKPOINT_RESTORE
1113 REGSET_PACA_KEYS,
1114 REGSET_PACG_KEYS,
1115 #endif
1116 #endif
1117 };
1118
1119 static const struct user_regset aarch64_regsets[] = {
1120 [REGSET_GPR] = {
1121 .core_note_type = NT_PRSTATUS,
1122 .n = sizeof(struct user_pt_regs) / sizeof(u64),
1123 .size = sizeof(u64),
1124 .align = sizeof(u64),
1125 .get = gpr_get,
1126 .set = gpr_set
1127 },
1128 [REGSET_FPR] = {
1129 .core_note_type = NT_PRFPREG,
1130 .n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1131 /*
1132 * We pretend we have 32-bit registers because the fpsr and
1133 * fpcr are 32-bits wide.
1134 */
1135 .size = sizeof(u32),
1136 .align = sizeof(u32),
1137 .get = fpr_get,
1138 .set = fpr_set
1139 },
1140 [REGSET_TLS] = {
1141 .core_note_type = NT_ARM_TLS,
1142 .n = 1,
1143 .size = sizeof(void *),
1144 .align = sizeof(void *),
1145 .get = tls_get,
1146 .set = tls_set,
1147 },
1148 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1149 [REGSET_HW_BREAK] = {
1150 .core_note_type = NT_ARM_HW_BREAK,
1151 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1152 .size = sizeof(u32),
1153 .align = sizeof(u32),
1154 .get = hw_break_get,
1155 .set = hw_break_set,
1156 },
1157 [REGSET_HW_WATCH] = {
1158 .core_note_type = NT_ARM_HW_WATCH,
1159 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1160 .size = sizeof(u32),
1161 .align = sizeof(u32),
1162 .get = hw_break_get,
1163 .set = hw_break_set,
1164 },
1165 #endif
1166 [REGSET_SYSTEM_CALL] = {
1167 .core_note_type = NT_ARM_SYSTEM_CALL,
1168 .n = 1,
1169 .size = sizeof(int),
1170 .align = sizeof(int),
1171 .get = system_call_get,
1172 .set = system_call_set,
1173 },
1174 #ifdef CONFIG_ARM64_SVE
1175 [REGSET_SVE] = { /* Scalable Vector Extension */
1176 .core_note_type = NT_ARM_SVE,
1177 .n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1178 SVE_VQ_BYTES),
1179 .size = SVE_VQ_BYTES,
1180 .align = SVE_VQ_BYTES,
1181 .get = sve_get,
1182 .set = sve_set,
1183 .get_size = sve_get_size,
1184 },
1185 #endif
1186 #ifdef CONFIG_ARM64_PTR_AUTH
1187 [REGSET_PAC_MASK] = {
1188 .core_note_type = NT_ARM_PAC_MASK,
1189 .n = sizeof(struct user_pac_mask) / sizeof(u64),
1190 .size = sizeof(u64),
1191 .align = sizeof(u64),
1192 .get = pac_mask_get,
1193 /* this cannot be set dynamically */
1194 },
1195 #ifdef CONFIG_CHECKPOINT_RESTORE
1196 [REGSET_PACA_KEYS] = {
1197 .core_note_type = NT_ARM_PACA_KEYS,
1198 .n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1199 .size = sizeof(__uint128_t),
1200 .align = sizeof(__uint128_t),
1201 .get = pac_address_keys_get,
1202 .set = pac_address_keys_set,
1203 },
1204 [REGSET_PACG_KEYS] = {
1205 .core_note_type = NT_ARM_PACG_KEYS,
1206 .n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1207 .size = sizeof(__uint128_t),
1208 .align = sizeof(__uint128_t),
1209 .get = pac_generic_keys_get,
1210 .set = pac_generic_keys_set,
1211 },
1212 #endif
1213 #endif
1214 };
1215
1216 static const struct user_regset_view user_aarch64_view = {
1217 .name = "aarch64", .e_machine = EM_AARCH64,
1218 .regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1219 };
1220
1221 #ifdef CONFIG_COMPAT
1222 enum compat_regset {
1223 REGSET_COMPAT_GPR,
1224 REGSET_COMPAT_VFP,
1225 };
1226
1227 static int compat_gpr_get(struct task_struct *target,
1228 const struct user_regset *regset,
1229 unsigned int pos, unsigned int count,
1230 void *kbuf, void __user *ubuf)
1231 {
1232 int ret = 0;
1233 unsigned int i, start, num_regs;
1234
1235 /* Calculate the number of AArch32 registers contained in count */
1236 num_regs = count / regset->size;
1237
1238 /* Convert pos into an register number */
1239 start = pos / regset->size;
1240
1241 if (start + num_regs > regset->n)
1242 return -EIO;
1243
1244 for (i = 0; i < num_regs; ++i) {
1245 unsigned int idx = start + i;
1246 compat_ulong_t reg;
1247
1248 switch (idx) {
1249 case 15:
1250 reg = task_pt_regs(target)->pc;
1251 break;
1252 case 16:
1253 reg = task_pt_regs(target)->pstate;
1254 reg = pstate_to_compat_psr(reg);
1255 break;
1256 case 17:
1257 reg = task_pt_regs(target)->orig_x0;
1258 break;
1259 default:
1260 reg = task_pt_regs(target)->regs[idx];
1261 }
1262
1263 if (kbuf) {
1264 memcpy(kbuf, &reg, sizeof(reg));
1265 kbuf += sizeof(reg);
1266 } else {
1267 ret = copy_to_user(ubuf, &reg, sizeof(reg));
1268 if (ret) {
1269 ret = -EFAULT;
1270 break;
1271 }
1272
1273 ubuf += sizeof(reg);
1274 }
1275 }
1276
1277 return ret;
1278 }
1279
1280 static int compat_gpr_set(struct task_struct *target,
1281 const struct user_regset *regset,
1282 unsigned int pos, unsigned int count,
1283 const void *kbuf, const void __user *ubuf)
1284 {
1285 struct pt_regs newregs;
1286 int ret = 0;
1287 unsigned int i, start, num_regs;
1288
1289 /* Calculate the number of AArch32 registers contained in count */
1290 num_regs = count / regset->size;
1291
1292 /* Convert pos into an register number */
1293 start = pos / regset->size;
1294
1295 if (start + num_regs > regset->n)
1296 return -EIO;
1297
1298 newregs = *task_pt_regs(target);
1299
1300 for (i = 0; i < num_regs; ++i) {
1301 unsigned int idx = start + i;
1302 compat_ulong_t reg;
1303
1304 if (kbuf) {
1305 memcpy(&reg, kbuf, sizeof(reg));
1306 kbuf += sizeof(reg);
1307 } else {
1308 ret = copy_from_user(&reg, ubuf, sizeof(reg));
1309 if (ret) {
1310 ret = -EFAULT;
1311 break;
1312 }
1313
1314 ubuf += sizeof(reg);
1315 }
1316
1317 switch (idx) {
1318 case 15:
1319 newregs.pc = reg;
1320 break;
1321 case 16:
1322 reg = compat_psr_to_pstate(reg);
1323 newregs.pstate = reg;
1324 break;
1325 case 17:
1326 newregs.orig_x0 = reg;
1327 break;
1328 default:
1329 newregs.regs[idx] = reg;
1330 }
1331
1332 }
1333
1334 if (valid_user_regs(&newregs.user_regs, target))
1335 *task_pt_regs(target) = newregs;
1336 else
1337 ret = -EINVAL;
1338
1339 return ret;
1340 }
1341
1342 static int compat_vfp_get(struct task_struct *target,
1343 const struct user_regset *regset,
1344 unsigned int pos, unsigned int count,
1345 void *kbuf, void __user *ubuf)
1346 {
1347 struct user_fpsimd_state *uregs;
1348 compat_ulong_t fpscr;
1349 int ret, vregs_end_pos;
1350
1351 uregs = &target->thread.uw.fpsimd_state;
1352
1353 if (target == current)
1354 fpsimd_preserve_current_state();
1355
1356 /*
1357 * The VFP registers are packed into the fpsimd_state, so they all sit
1358 * nicely together for us. We just need to create the fpscr separately.
1359 */
1360 vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1361 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs,
1362 0, vregs_end_pos);
1363
1364 if (count && !ret) {
1365 fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1366 (uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1367
1368 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &fpscr,
1369 vregs_end_pos, VFP_STATE_SIZE);
1370 }
1371
1372 return ret;
1373 }
1374
1375 static int compat_vfp_set(struct task_struct *target,
1376 const struct user_regset *regset,
1377 unsigned int pos, unsigned int count,
1378 const void *kbuf, const void __user *ubuf)
1379 {
1380 struct user_fpsimd_state *uregs;
1381 compat_ulong_t fpscr;
1382 int ret, vregs_end_pos;
1383
1384 uregs = &target->thread.uw.fpsimd_state;
1385
1386 vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1387 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1388 vregs_end_pos);
1389
1390 if (count && !ret) {
1391 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1392 vregs_end_pos, VFP_STATE_SIZE);
1393 if (!ret) {
1394 uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1395 uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1396 }
1397 }
1398
1399 fpsimd_flush_task_state(target);
1400 return ret;
1401 }
1402
1403 static int compat_tls_get(struct task_struct *target,
1404 const struct user_regset *regset, unsigned int pos,
1405 unsigned int count, void *kbuf, void __user *ubuf)
1406 {
1407 compat_ulong_t tls = (compat_ulong_t)target->thread.uw.tp_value;
1408 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1409 }
1410
1411 static int compat_tls_set(struct task_struct *target,
1412 const struct user_regset *regset, unsigned int pos,
1413 unsigned int count, const void *kbuf,
1414 const void __user *ubuf)
1415 {
1416 int ret;
1417 compat_ulong_t tls = target->thread.uw.tp_value;
1418
1419 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1420 if (ret)
1421 return ret;
1422
1423 target->thread.uw.tp_value = tls;
1424 return ret;
1425 }
1426
1427 static const struct user_regset aarch32_regsets[] = {
1428 [REGSET_COMPAT_GPR] = {
1429 .core_note_type = NT_PRSTATUS,
1430 .n = COMPAT_ELF_NGREG,
1431 .size = sizeof(compat_elf_greg_t),
1432 .align = sizeof(compat_elf_greg_t),
1433 .get = compat_gpr_get,
1434 .set = compat_gpr_set
1435 },
1436 [REGSET_COMPAT_VFP] = {
1437 .core_note_type = NT_ARM_VFP,
1438 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1439 .size = sizeof(compat_ulong_t),
1440 .align = sizeof(compat_ulong_t),
1441 .get = compat_vfp_get,
1442 .set = compat_vfp_set
1443 },
1444 };
1445
1446 static const struct user_regset_view user_aarch32_view = {
1447 .name = "aarch32", .e_machine = EM_ARM,
1448 .regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1449 };
1450
1451 static const struct user_regset aarch32_ptrace_regsets[] = {
1452 [REGSET_GPR] = {
1453 .core_note_type = NT_PRSTATUS,
1454 .n = COMPAT_ELF_NGREG,
1455 .size = sizeof(compat_elf_greg_t),
1456 .align = sizeof(compat_elf_greg_t),
1457 .get = compat_gpr_get,
1458 .set = compat_gpr_set
1459 },
1460 [REGSET_FPR] = {
1461 .core_note_type = NT_ARM_VFP,
1462 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1463 .size = sizeof(compat_ulong_t),
1464 .align = sizeof(compat_ulong_t),
1465 .get = compat_vfp_get,
1466 .set = compat_vfp_set
1467 },
1468 [REGSET_TLS] = {
1469 .core_note_type = NT_ARM_TLS,
1470 .n = 1,
1471 .size = sizeof(compat_ulong_t),
1472 .align = sizeof(compat_ulong_t),
1473 .get = compat_tls_get,
1474 .set = compat_tls_set,
1475 },
1476 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1477 [REGSET_HW_BREAK] = {
1478 .core_note_type = NT_ARM_HW_BREAK,
1479 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1480 .size = sizeof(u32),
1481 .align = sizeof(u32),
1482 .get = hw_break_get,
1483 .set = hw_break_set,
1484 },
1485 [REGSET_HW_WATCH] = {
1486 .core_note_type = NT_ARM_HW_WATCH,
1487 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1488 .size = sizeof(u32),
1489 .align = sizeof(u32),
1490 .get = hw_break_get,
1491 .set = hw_break_set,
1492 },
1493 #endif
1494 [REGSET_SYSTEM_CALL] = {
1495 .core_note_type = NT_ARM_SYSTEM_CALL,
1496 .n = 1,
1497 .size = sizeof(int),
1498 .align = sizeof(int),
1499 .get = system_call_get,
1500 .set = system_call_set,
1501 },
1502 };
1503
1504 static const struct user_regset_view user_aarch32_ptrace_view = {
1505 .name = "aarch32", .e_machine = EM_ARM,
1506 .regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1507 };
1508
1509 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1510 compat_ulong_t __user *ret)
1511 {
1512 compat_ulong_t tmp;
1513
1514 if (off & 3)
1515 return -EIO;
1516
1517 if (off == COMPAT_PT_TEXT_ADDR)
1518 tmp = tsk->mm->start_code;
1519 else if (off == COMPAT_PT_DATA_ADDR)
1520 tmp = tsk->mm->start_data;
1521 else if (off == COMPAT_PT_TEXT_END_ADDR)
1522 tmp = tsk->mm->end_code;
1523 else if (off < sizeof(compat_elf_gregset_t))
1524 return copy_regset_to_user(tsk, &user_aarch32_view,
1525 REGSET_COMPAT_GPR, off,
1526 sizeof(compat_ulong_t), ret);
1527 else if (off >= COMPAT_USER_SZ)
1528 return -EIO;
1529 else
1530 tmp = 0;
1531
1532 return put_user(tmp, ret);
1533 }
1534
1535 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1536 compat_ulong_t val)
1537 {
1538 int ret;
1539 mm_segment_t old_fs = get_fs();
1540
1541 if (off & 3 || off >= COMPAT_USER_SZ)
1542 return -EIO;
1543
1544 if (off >= sizeof(compat_elf_gregset_t))
1545 return 0;
1546
1547 set_fs(KERNEL_DS);
1548 ret = copy_regset_from_user(tsk, &user_aarch32_view,
1549 REGSET_COMPAT_GPR, off,
1550 sizeof(compat_ulong_t),
1551 &val);
1552 set_fs(old_fs);
1553
1554 return ret;
1555 }
1556
1557 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1558
1559 /*
1560 * Convert a virtual register number into an index for a thread_info
1561 * breakpoint array. Breakpoints are identified using positive numbers
1562 * whilst watchpoints are negative. The registers are laid out as pairs
1563 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1564 * Register 0 is reserved for describing resource information.
1565 */
1566 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1567 {
1568 return (abs(num) - 1) >> 1;
1569 }
1570
1571 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1572 {
1573 u8 num_brps, num_wrps, debug_arch, wp_len;
1574 u32 reg = 0;
1575
1576 num_brps = hw_breakpoint_slots(TYPE_INST);
1577 num_wrps = hw_breakpoint_slots(TYPE_DATA);
1578
1579 debug_arch = debug_monitors_arch();
1580 wp_len = 8;
1581 reg |= debug_arch;
1582 reg <<= 8;
1583 reg |= wp_len;
1584 reg <<= 8;
1585 reg |= num_wrps;
1586 reg <<= 8;
1587 reg |= num_brps;
1588
1589 *kdata = reg;
1590 return 0;
1591 }
1592
1593 static int compat_ptrace_hbp_get(unsigned int note_type,
1594 struct task_struct *tsk,
1595 compat_long_t num,
1596 u32 *kdata)
1597 {
1598 u64 addr = 0;
1599 u32 ctrl = 0;
1600
1601 int err, idx = compat_ptrace_hbp_num_to_idx(num);
1602
1603 if (num & 1) {
1604 err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1605 *kdata = (u32)addr;
1606 } else {
1607 err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1608 *kdata = ctrl;
1609 }
1610
1611 return err;
1612 }
1613
1614 static int compat_ptrace_hbp_set(unsigned int note_type,
1615 struct task_struct *tsk,
1616 compat_long_t num,
1617 u32 *kdata)
1618 {
1619 u64 addr;
1620 u32 ctrl;
1621
1622 int err, idx = compat_ptrace_hbp_num_to_idx(num);
1623
1624 if (num & 1) {
1625 addr = *kdata;
1626 err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1627 } else {
1628 ctrl = *kdata;
1629 err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1630 }
1631
1632 return err;
1633 }
1634
1635 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1636 compat_ulong_t __user *data)
1637 {
1638 int ret;
1639 u32 kdata;
1640
1641 /* Watchpoint */
1642 if (num < 0) {
1643 ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1644 /* Resource info */
1645 } else if (num == 0) {
1646 ret = compat_ptrace_hbp_get_resource_info(&kdata);
1647 /* Breakpoint */
1648 } else {
1649 ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1650 }
1651
1652 if (!ret)
1653 ret = put_user(kdata, data);
1654
1655 return ret;
1656 }
1657
1658 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1659 compat_ulong_t __user *data)
1660 {
1661 int ret;
1662 u32 kdata = 0;
1663
1664 if (num == 0)
1665 return 0;
1666
1667 ret = get_user(kdata, data);
1668 if (ret)
1669 return ret;
1670
1671 if (num < 0)
1672 ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1673 else
1674 ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1675
1676 return ret;
1677 }
1678 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1679
1680 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1681 compat_ulong_t caddr, compat_ulong_t cdata)
1682 {
1683 unsigned long addr = caddr;
1684 unsigned long data = cdata;
1685 void __user *datap = compat_ptr(data);
1686 int ret;
1687
1688 switch (request) {
1689 case PTRACE_PEEKUSR:
1690 ret = compat_ptrace_read_user(child, addr, datap);
1691 break;
1692
1693 case PTRACE_POKEUSR:
1694 ret = compat_ptrace_write_user(child, addr, data);
1695 break;
1696
1697 case COMPAT_PTRACE_GETREGS:
1698 ret = copy_regset_to_user(child,
1699 &user_aarch32_view,
1700 REGSET_COMPAT_GPR,
1701 0, sizeof(compat_elf_gregset_t),
1702 datap);
1703 break;
1704
1705 case COMPAT_PTRACE_SETREGS:
1706 ret = copy_regset_from_user(child,
1707 &user_aarch32_view,
1708 REGSET_COMPAT_GPR,
1709 0, sizeof(compat_elf_gregset_t),
1710 datap);
1711 break;
1712
1713 case COMPAT_PTRACE_GET_THREAD_AREA:
1714 ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1715 (compat_ulong_t __user *)datap);
1716 break;
1717
1718 case COMPAT_PTRACE_SET_SYSCALL:
1719 task_pt_regs(child)->syscallno = data;
1720 ret = 0;
1721 break;
1722
1723 case COMPAT_PTRACE_GETVFPREGS:
1724 ret = copy_regset_to_user(child,
1725 &user_aarch32_view,
1726 REGSET_COMPAT_VFP,
1727 0, VFP_STATE_SIZE,
1728 datap);
1729 break;
1730
1731 case COMPAT_PTRACE_SETVFPREGS:
1732 ret = copy_regset_from_user(child,
1733 &user_aarch32_view,
1734 REGSET_COMPAT_VFP,
1735 0, VFP_STATE_SIZE,
1736 datap);
1737 break;
1738
1739 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1740 case COMPAT_PTRACE_GETHBPREGS:
1741 ret = compat_ptrace_gethbpregs(child, addr, datap);
1742 break;
1743
1744 case COMPAT_PTRACE_SETHBPREGS:
1745 ret = compat_ptrace_sethbpregs(child, addr, datap);
1746 break;
1747 #endif
1748
1749 default:
1750 ret = compat_ptrace_request(child, request, addr,
1751 data);
1752 break;
1753 }
1754
1755 return ret;
1756 }
1757 #endif /* CONFIG_COMPAT */
1758
1759 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1760 {
1761 #ifdef CONFIG_COMPAT
1762 /*
1763 * Core dumping of 32-bit tasks or compat ptrace requests must use the
1764 * user_aarch32_view compatible with arm32. Native ptrace requests on
1765 * 32-bit children use an extended user_aarch32_ptrace_view to allow
1766 * access to the TLS register.
1767 */
1768 if (is_compat_task())
1769 return &user_aarch32_view;
1770 else if (is_compat_thread(task_thread_info(task)))
1771 return &user_aarch32_ptrace_view;
1772 #endif
1773 return &user_aarch64_view;
1774 }
1775
1776 long arch_ptrace(struct task_struct *child, long request,
1777 unsigned long addr, unsigned long data)
1778 {
1779 return ptrace_request(child, request, addr, data);
1780 }
1781
1782 enum ptrace_syscall_dir {
1783 PTRACE_SYSCALL_ENTER = 0,
1784 PTRACE_SYSCALL_EXIT,
1785 };
1786
1787 static void tracehook_report_syscall(struct pt_regs *regs,
1788 enum ptrace_syscall_dir dir)
1789 {
1790 int regno;
1791 unsigned long saved_reg;
1792
1793 /*
1794 * A scratch register (ip(r12) on AArch32, x7 on AArch64) is
1795 * used to denote syscall entry/exit:
1796 */
1797 regno = (is_compat_task() ? 12 : 7);
1798 saved_reg = regs->regs[regno];
1799 regs->regs[regno] = dir;
1800
1801 if (dir == PTRACE_SYSCALL_EXIT)
1802 tracehook_report_syscall_exit(regs, 0);
1803 else if (tracehook_report_syscall_entry(regs))
1804 forget_syscall(regs);
1805
1806 regs->regs[regno] = saved_reg;
1807 }
1808
1809 int syscall_trace_enter(struct pt_regs *regs)
1810 {
1811 if (test_thread_flag(TIF_SYSCALL_TRACE))
1812 tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
1813
1814 /* Do the secure computing after ptrace; failures should be fast. */
1815 if (secure_computing(NULL) == -1)
1816 return -1;
1817
1818 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1819 trace_sys_enter(regs, regs->syscallno);
1820
1821 audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
1822 regs->regs[2], regs->regs[3]);
1823
1824 return regs->syscallno;
1825 }
1826
1827 void syscall_trace_exit(struct pt_regs *regs)
1828 {
1829 audit_syscall_exit(regs);
1830
1831 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1832 trace_sys_exit(regs, regs_return_value(regs));
1833
1834 if (test_thread_flag(TIF_SYSCALL_TRACE))
1835 tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
1836
1837 rseq_syscall(regs);
1838 }
1839
1840 /*
1841 * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
1842 * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
1843 * not described in ARM DDI 0487D.a.
1844 * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
1845 * be allocated an EL0 meaning in future.
1846 * Userspace cannot use these until they have an architectural meaning.
1847 * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
1848 * We also reserve IL for the kernel; SS is handled dynamically.
1849 */
1850 #define SPSR_EL1_AARCH64_RES0_BITS \
1851 (GENMASK_ULL(63, 32) | GENMASK_ULL(27, 25) | GENMASK_ULL(23, 22) | \
1852 GENMASK_ULL(20, 13) | GENMASK_ULL(11, 10) | GENMASK_ULL(5, 5))
1853 #define SPSR_EL1_AARCH32_RES0_BITS \
1854 (GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
1855
1856 static int valid_compat_regs(struct user_pt_regs *regs)
1857 {
1858 regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
1859
1860 if (!system_supports_mixed_endian_el0()) {
1861 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
1862 regs->pstate |= PSR_AA32_E_BIT;
1863 else
1864 regs->pstate &= ~PSR_AA32_E_BIT;
1865 }
1866
1867 if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
1868 (regs->pstate & PSR_AA32_A_BIT) == 0 &&
1869 (regs->pstate & PSR_AA32_I_BIT) == 0 &&
1870 (regs->pstate & PSR_AA32_F_BIT) == 0) {
1871 return 1;
1872 }
1873
1874 /*
1875 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
1876 * arch/arm.
1877 */
1878 regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
1879 PSR_AA32_C_BIT | PSR_AA32_V_BIT |
1880 PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
1881 PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
1882 PSR_AA32_T_BIT;
1883 regs->pstate |= PSR_MODE32_BIT;
1884
1885 return 0;
1886 }
1887
1888 static int valid_native_regs(struct user_pt_regs *regs)
1889 {
1890 regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
1891
1892 if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
1893 (regs->pstate & PSR_D_BIT) == 0 &&
1894 (regs->pstate & PSR_A_BIT) == 0 &&
1895 (regs->pstate & PSR_I_BIT) == 0 &&
1896 (regs->pstate & PSR_F_BIT) == 0) {
1897 return 1;
1898 }
1899
1900 /* Force PSR to a valid 64-bit EL0t */
1901 regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
1902
1903 return 0;
1904 }
1905
1906 /*
1907 * Are the current registers suitable for user mode? (used to maintain
1908 * security in signal handlers)
1909 */
1910 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
1911 {
1912 if (!test_tsk_thread_flag(task, TIF_SINGLESTEP))
1913 regs->pstate &= ~DBG_SPSR_SS;
1914
1915 if (is_compat_thread(task_thread_info(task)))
1916 return valid_compat_regs(regs);
1917 else
1918 return valid_native_regs(regs);
1919 }