]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - arch/arm64/kernel/ptrace.c
Merge remote-tracking branch 'tip/sched/arm64' into for-next/core
[thirdparty/kernel/linux.git] / arch / arm64 / kernel / ptrace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/ptrace.c
4 *
5 * By Ross Biro 1/23/92
6 * edited by Linus Torvalds
7 * ARM modifications Copyright (C) 2000 Russell King
8 * Copyright (C) 2012 ARM Ltd.
9 */
10
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/tracehook.h>
31 #include <linux/elf.h>
32
33 #include <asm/compat.h>
34 #include <asm/cpufeature.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/fpsimd.h>
37 #include <asm/mte.h>
38 #include <asm/pointer_auth.h>
39 #include <asm/stacktrace.h>
40 #include <asm/syscall.h>
41 #include <asm/traps.h>
42 #include <asm/system_misc.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46
47 struct pt_regs_offset {
48 const char *name;
49 int offset;
50 };
51
52 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
53 #define REG_OFFSET_END {.name = NULL, .offset = 0}
54 #define GPR_OFFSET_NAME(r) \
55 {.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
56
57 static const struct pt_regs_offset regoffset_table[] = {
58 GPR_OFFSET_NAME(0),
59 GPR_OFFSET_NAME(1),
60 GPR_OFFSET_NAME(2),
61 GPR_OFFSET_NAME(3),
62 GPR_OFFSET_NAME(4),
63 GPR_OFFSET_NAME(5),
64 GPR_OFFSET_NAME(6),
65 GPR_OFFSET_NAME(7),
66 GPR_OFFSET_NAME(8),
67 GPR_OFFSET_NAME(9),
68 GPR_OFFSET_NAME(10),
69 GPR_OFFSET_NAME(11),
70 GPR_OFFSET_NAME(12),
71 GPR_OFFSET_NAME(13),
72 GPR_OFFSET_NAME(14),
73 GPR_OFFSET_NAME(15),
74 GPR_OFFSET_NAME(16),
75 GPR_OFFSET_NAME(17),
76 GPR_OFFSET_NAME(18),
77 GPR_OFFSET_NAME(19),
78 GPR_OFFSET_NAME(20),
79 GPR_OFFSET_NAME(21),
80 GPR_OFFSET_NAME(22),
81 GPR_OFFSET_NAME(23),
82 GPR_OFFSET_NAME(24),
83 GPR_OFFSET_NAME(25),
84 GPR_OFFSET_NAME(26),
85 GPR_OFFSET_NAME(27),
86 GPR_OFFSET_NAME(28),
87 GPR_OFFSET_NAME(29),
88 GPR_OFFSET_NAME(30),
89 {.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
90 REG_OFFSET_NAME(sp),
91 REG_OFFSET_NAME(pc),
92 REG_OFFSET_NAME(pstate),
93 REG_OFFSET_END,
94 };
95
96 /**
97 * regs_query_register_offset() - query register offset from its name
98 * @name: the name of a register
99 *
100 * regs_query_register_offset() returns the offset of a register in struct
101 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
102 */
103 int regs_query_register_offset(const char *name)
104 {
105 const struct pt_regs_offset *roff;
106
107 for (roff = regoffset_table; roff->name != NULL; roff++)
108 if (!strcmp(roff->name, name))
109 return roff->offset;
110 return -EINVAL;
111 }
112
113 /**
114 * regs_within_kernel_stack() - check the address in the stack
115 * @regs: pt_regs which contains kernel stack pointer.
116 * @addr: address which is checked.
117 *
118 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
119 * If @addr is within the kernel stack, it returns true. If not, returns false.
120 */
121 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
122 {
123 return ((addr & ~(THREAD_SIZE - 1)) ==
124 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
125 on_irq_stack(addr, sizeof(unsigned long), NULL);
126 }
127
128 /**
129 * regs_get_kernel_stack_nth() - get Nth entry of the stack
130 * @regs: pt_regs which contains kernel stack pointer.
131 * @n: stack entry number.
132 *
133 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
134 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
135 * this returns 0.
136 */
137 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
138 {
139 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
140
141 addr += n;
142 if (regs_within_kernel_stack(regs, (unsigned long)addr))
143 return *addr;
144 else
145 return 0;
146 }
147
148 /*
149 * TODO: does not yet catch signals sent when the child dies.
150 * in exit.c or in signal.c.
151 */
152
153 /*
154 * Called by kernel/ptrace.c when detaching..
155 */
156 void ptrace_disable(struct task_struct *child)
157 {
158 /*
159 * This would be better off in core code, but PTRACE_DETACH has
160 * grown its fair share of arch-specific worts and changing it
161 * is likely to cause regressions on obscure architectures.
162 */
163 user_disable_single_step(child);
164 }
165
166 #ifdef CONFIG_HAVE_HW_BREAKPOINT
167 /*
168 * Handle hitting a HW-breakpoint.
169 */
170 static void ptrace_hbptriggered(struct perf_event *bp,
171 struct perf_sample_data *data,
172 struct pt_regs *regs)
173 {
174 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
175 const char *desc = "Hardware breakpoint trap (ptrace)";
176
177 #ifdef CONFIG_COMPAT
178 if (is_compat_task()) {
179 int si_errno = 0;
180 int i;
181
182 for (i = 0; i < ARM_MAX_BRP; ++i) {
183 if (current->thread.debug.hbp_break[i] == bp) {
184 si_errno = (i << 1) + 1;
185 break;
186 }
187 }
188
189 for (i = 0; i < ARM_MAX_WRP; ++i) {
190 if (current->thread.debug.hbp_watch[i] == bp) {
191 si_errno = -((i << 1) + 1);
192 break;
193 }
194 }
195 arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
196 desc);
197 return;
198 }
199 #endif
200 arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
201 }
202
203 /*
204 * Unregister breakpoints from this task and reset the pointers in
205 * the thread_struct.
206 */
207 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
208 {
209 int i;
210 struct thread_struct *t = &tsk->thread;
211
212 for (i = 0; i < ARM_MAX_BRP; i++) {
213 if (t->debug.hbp_break[i]) {
214 unregister_hw_breakpoint(t->debug.hbp_break[i]);
215 t->debug.hbp_break[i] = NULL;
216 }
217 }
218
219 for (i = 0; i < ARM_MAX_WRP; i++) {
220 if (t->debug.hbp_watch[i]) {
221 unregister_hw_breakpoint(t->debug.hbp_watch[i]);
222 t->debug.hbp_watch[i] = NULL;
223 }
224 }
225 }
226
227 void ptrace_hw_copy_thread(struct task_struct *tsk)
228 {
229 memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
230 }
231
232 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
233 struct task_struct *tsk,
234 unsigned long idx)
235 {
236 struct perf_event *bp = ERR_PTR(-EINVAL);
237
238 switch (note_type) {
239 case NT_ARM_HW_BREAK:
240 if (idx >= ARM_MAX_BRP)
241 goto out;
242 idx = array_index_nospec(idx, ARM_MAX_BRP);
243 bp = tsk->thread.debug.hbp_break[idx];
244 break;
245 case NT_ARM_HW_WATCH:
246 if (idx >= ARM_MAX_WRP)
247 goto out;
248 idx = array_index_nospec(idx, ARM_MAX_WRP);
249 bp = tsk->thread.debug.hbp_watch[idx];
250 break;
251 }
252
253 out:
254 return bp;
255 }
256
257 static int ptrace_hbp_set_event(unsigned int note_type,
258 struct task_struct *tsk,
259 unsigned long idx,
260 struct perf_event *bp)
261 {
262 int err = -EINVAL;
263
264 switch (note_type) {
265 case NT_ARM_HW_BREAK:
266 if (idx >= ARM_MAX_BRP)
267 goto out;
268 idx = array_index_nospec(idx, ARM_MAX_BRP);
269 tsk->thread.debug.hbp_break[idx] = bp;
270 err = 0;
271 break;
272 case NT_ARM_HW_WATCH:
273 if (idx >= ARM_MAX_WRP)
274 goto out;
275 idx = array_index_nospec(idx, ARM_MAX_WRP);
276 tsk->thread.debug.hbp_watch[idx] = bp;
277 err = 0;
278 break;
279 }
280
281 out:
282 return err;
283 }
284
285 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
286 struct task_struct *tsk,
287 unsigned long idx)
288 {
289 struct perf_event *bp;
290 struct perf_event_attr attr;
291 int err, type;
292
293 switch (note_type) {
294 case NT_ARM_HW_BREAK:
295 type = HW_BREAKPOINT_X;
296 break;
297 case NT_ARM_HW_WATCH:
298 type = HW_BREAKPOINT_RW;
299 break;
300 default:
301 return ERR_PTR(-EINVAL);
302 }
303
304 ptrace_breakpoint_init(&attr);
305
306 /*
307 * Initialise fields to sane defaults
308 * (i.e. values that will pass validation).
309 */
310 attr.bp_addr = 0;
311 attr.bp_len = HW_BREAKPOINT_LEN_4;
312 attr.bp_type = type;
313 attr.disabled = 1;
314
315 bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
316 if (IS_ERR(bp))
317 return bp;
318
319 err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
320 if (err)
321 return ERR_PTR(err);
322
323 return bp;
324 }
325
326 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
327 struct arch_hw_breakpoint_ctrl ctrl,
328 struct perf_event_attr *attr)
329 {
330 int err, len, type, offset, disabled = !ctrl.enabled;
331
332 attr->disabled = disabled;
333 if (disabled)
334 return 0;
335
336 err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
337 if (err)
338 return err;
339
340 switch (note_type) {
341 case NT_ARM_HW_BREAK:
342 if ((type & HW_BREAKPOINT_X) != type)
343 return -EINVAL;
344 break;
345 case NT_ARM_HW_WATCH:
346 if ((type & HW_BREAKPOINT_RW) != type)
347 return -EINVAL;
348 break;
349 default:
350 return -EINVAL;
351 }
352
353 attr->bp_len = len;
354 attr->bp_type = type;
355 attr->bp_addr += offset;
356
357 return 0;
358 }
359
360 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
361 {
362 u8 num;
363 u32 reg = 0;
364
365 switch (note_type) {
366 case NT_ARM_HW_BREAK:
367 num = hw_breakpoint_slots(TYPE_INST);
368 break;
369 case NT_ARM_HW_WATCH:
370 num = hw_breakpoint_slots(TYPE_DATA);
371 break;
372 default:
373 return -EINVAL;
374 }
375
376 reg |= debug_monitors_arch();
377 reg <<= 8;
378 reg |= num;
379
380 *info = reg;
381 return 0;
382 }
383
384 static int ptrace_hbp_get_ctrl(unsigned int note_type,
385 struct task_struct *tsk,
386 unsigned long idx,
387 u32 *ctrl)
388 {
389 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
390
391 if (IS_ERR(bp))
392 return PTR_ERR(bp);
393
394 *ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
395 return 0;
396 }
397
398 static int ptrace_hbp_get_addr(unsigned int note_type,
399 struct task_struct *tsk,
400 unsigned long idx,
401 u64 *addr)
402 {
403 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
404
405 if (IS_ERR(bp))
406 return PTR_ERR(bp);
407
408 *addr = bp ? counter_arch_bp(bp)->address : 0;
409 return 0;
410 }
411
412 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
413 struct task_struct *tsk,
414 unsigned long idx)
415 {
416 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
417
418 if (!bp)
419 bp = ptrace_hbp_create(note_type, tsk, idx);
420
421 return bp;
422 }
423
424 static int ptrace_hbp_set_ctrl(unsigned int note_type,
425 struct task_struct *tsk,
426 unsigned long idx,
427 u32 uctrl)
428 {
429 int err;
430 struct perf_event *bp;
431 struct perf_event_attr attr;
432 struct arch_hw_breakpoint_ctrl ctrl;
433
434 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
435 if (IS_ERR(bp)) {
436 err = PTR_ERR(bp);
437 return err;
438 }
439
440 attr = bp->attr;
441 decode_ctrl_reg(uctrl, &ctrl);
442 err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
443 if (err)
444 return err;
445
446 return modify_user_hw_breakpoint(bp, &attr);
447 }
448
449 static int ptrace_hbp_set_addr(unsigned int note_type,
450 struct task_struct *tsk,
451 unsigned long idx,
452 u64 addr)
453 {
454 int err;
455 struct perf_event *bp;
456 struct perf_event_attr attr;
457
458 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
459 if (IS_ERR(bp)) {
460 err = PTR_ERR(bp);
461 return err;
462 }
463
464 attr = bp->attr;
465 attr.bp_addr = addr;
466 err = modify_user_hw_breakpoint(bp, &attr);
467 return err;
468 }
469
470 #define PTRACE_HBP_ADDR_SZ sizeof(u64)
471 #define PTRACE_HBP_CTRL_SZ sizeof(u32)
472 #define PTRACE_HBP_PAD_SZ sizeof(u32)
473
474 static int hw_break_get(struct task_struct *target,
475 const struct user_regset *regset,
476 struct membuf to)
477 {
478 unsigned int note_type = regset->core_note_type;
479 int ret, idx = 0;
480 u32 info, ctrl;
481 u64 addr;
482
483 /* Resource info */
484 ret = ptrace_hbp_get_resource_info(note_type, &info);
485 if (ret)
486 return ret;
487
488 membuf_write(&to, &info, sizeof(info));
489 membuf_zero(&to, sizeof(u32));
490 /* (address, ctrl) registers */
491 while (to.left) {
492 ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
493 if (ret)
494 return ret;
495 ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
496 if (ret)
497 return ret;
498 membuf_store(&to, addr);
499 membuf_store(&to, ctrl);
500 membuf_zero(&to, sizeof(u32));
501 idx++;
502 }
503 return 0;
504 }
505
506 static int hw_break_set(struct task_struct *target,
507 const struct user_regset *regset,
508 unsigned int pos, unsigned int count,
509 const void *kbuf, const void __user *ubuf)
510 {
511 unsigned int note_type = regset->core_note_type;
512 int ret, idx = 0, offset, limit;
513 u32 ctrl;
514 u64 addr;
515
516 /* Resource info and pad */
517 offset = offsetof(struct user_hwdebug_state, dbg_regs);
518 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
519 if (ret)
520 return ret;
521
522 /* (address, ctrl) registers */
523 limit = regset->n * regset->size;
524 while (count && offset < limit) {
525 if (count < PTRACE_HBP_ADDR_SZ)
526 return -EINVAL;
527 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
528 offset, offset + PTRACE_HBP_ADDR_SZ);
529 if (ret)
530 return ret;
531 ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
532 if (ret)
533 return ret;
534 offset += PTRACE_HBP_ADDR_SZ;
535
536 if (!count)
537 break;
538 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
539 offset, offset + PTRACE_HBP_CTRL_SZ);
540 if (ret)
541 return ret;
542 ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
543 if (ret)
544 return ret;
545 offset += PTRACE_HBP_CTRL_SZ;
546
547 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
548 offset,
549 offset + PTRACE_HBP_PAD_SZ);
550 if (ret)
551 return ret;
552 offset += PTRACE_HBP_PAD_SZ;
553 idx++;
554 }
555
556 return 0;
557 }
558 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
559
560 static int gpr_get(struct task_struct *target,
561 const struct user_regset *regset,
562 struct membuf to)
563 {
564 struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
565 return membuf_write(&to, uregs, sizeof(*uregs));
566 }
567
568 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
569 unsigned int pos, unsigned int count,
570 const void *kbuf, const void __user *ubuf)
571 {
572 int ret;
573 struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
574
575 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
576 if (ret)
577 return ret;
578
579 if (!valid_user_regs(&newregs, target))
580 return -EINVAL;
581
582 task_pt_regs(target)->user_regs = newregs;
583 return 0;
584 }
585
586 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
587 {
588 if (!system_supports_fpsimd())
589 return -ENODEV;
590 return regset->n;
591 }
592
593 /*
594 * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
595 */
596 static int __fpr_get(struct task_struct *target,
597 const struct user_regset *regset,
598 struct membuf to)
599 {
600 struct user_fpsimd_state *uregs;
601
602 sve_sync_to_fpsimd(target);
603
604 uregs = &target->thread.uw.fpsimd_state;
605
606 return membuf_write(&to, uregs, sizeof(*uregs));
607 }
608
609 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
610 struct membuf to)
611 {
612 if (!system_supports_fpsimd())
613 return -EINVAL;
614
615 if (target == current)
616 fpsimd_preserve_current_state();
617
618 return __fpr_get(target, regset, to);
619 }
620
621 static int __fpr_set(struct task_struct *target,
622 const struct user_regset *regset,
623 unsigned int pos, unsigned int count,
624 const void *kbuf, const void __user *ubuf,
625 unsigned int start_pos)
626 {
627 int ret;
628 struct user_fpsimd_state newstate;
629
630 /*
631 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
632 * short copyin can't resurrect stale data.
633 */
634 sve_sync_to_fpsimd(target);
635
636 newstate = target->thread.uw.fpsimd_state;
637
638 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
639 start_pos, start_pos + sizeof(newstate));
640 if (ret)
641 return ret;
642
643 target->thread.uw.fpsimd_state = newstate;
644
645 return ret;
646 }
647
648 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
649 unsigned int pos, unsigned int count,
650 const void *kbuf, const void __user *ubuf)
651 {
652 int ret;
653
654 if (!system_supports_fpsimd())
655 return -EINVAL;
656
657 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
658 if (ret)
659 return ret;
660
661 sve_sync_from_fpsimd_zeropad(target);
662 fpsimd_flush_task_state(target);
663
664 return ret;
665 }
666
667 static int tls_get(struct task_struct *target, const struct user_regset *regset,
668 struct membuf to)
669 {
670 if (target == current)
671 tls_preserve_current_state();
672
673 return membuf_store(&to, target->thread.uw.tp_value);
674 }
675
676 static int tls_set(struct task_struct *target, const struct user_regset *regset,
677 unsigned int pos, unsigned int count,
678 const void *kbuf, const void __user *ubuf)
679 {
680 int ret;
681 unsigned long tls = target->thread.uw.tp_value;
682
683 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
684 if (ret)
685 return ret;
686
687 target->thread.uw.tp_value = tls;
688 return ret;
689 }
690
691 static int system_call_get(struct task_struct *target,
692 const struct user_regset *regset,
693 struct membuf to)
694 {
695 return membuf_store(&to, task_pt_regs(target)->syscallno);
696 }
697
698 static int system_call_set(struct task_struct *target,
699 const struct user_regset *regset,
700 unsigned int pos, unsigned int count,
701 const void *kbuf, const void __user *ubuf)
702 {
703 int syscallno = task_pt_regs(target)->syscallno;
704 int ret;
705
706 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
707 if (ret)
708 return ret;
709
710 task_pt_regs(target)->syscallno = syscallno;
711 return ret;
712 }
713
714 #ifdef CONFIG_ARM64_SVE
715
716 static void sve_init_header_from_task(struct user_sve_header *header,
717 struct task_struct *target)
718 {
719 unsigned int vq;
720
721 memset(header, 0, sizeof(*header));
722
723 header->flags = test_tsk_thread_flag(target, TIF_SVE) ?
724 SVE_PT_REGS_SVE : SVE_PT_REGS_FPSIMD;
725 if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
726 header->flags |= SVE_PT_VL_INHERIT;
727
728 header->vl = target->thread.sve_vl;
729 vq = sve_vq_from_vl(header->vl);
730
731 header->max_vl = sve_max_vl;
732 header->size = SVE_PT_SIZE(vq, header->flags);
733 header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
734 SVE_PT_REGS_SVE);
735 }
736
737 static unsigned int sve_size_from_header(struct user_sve_header const *header)
738 {
739 return ALIGN(header->size, SVE_VQ_BYTES);
740 }
741
742 static int sve_get(struct task_struct *target,
743 const struct user_regset *regset,
744 struct membuf to)
745 {
746 struct user_sve_header header;
747 unsigned int vq;
748 unsigned long start, end;
749
750 if (!system_supports_sve())
751 return -EINVAL;
752
753 /* Header */
754 sve_init_header_from_task(&header, target);
755 vq = sve_vq_from_vl(header.vl);
756
757 membuf_write(&to, &header, sizeof(header));
758
759 if (target == current)
760 fpsimd_preserve_current_state();
761
762 /* Registers: FPSIMD-only case */
763
764 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
765 if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD)
766 return __fpr_get(target, regset, to);
767
768 /* Otherwise: full SVE case */
769
770 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
771 start = SVE_PT_SVE_OFFSET;
772 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
773 membuf_write(&to, target->thread.sve_state, end - start);
774
775 start = end;
776 end = SVE_PT_SVE_FPSR_OFFSET(vq);
777 membuf_zero(&to, end - start);
778
779 /*
780 * Copy fpsr, and fpcr which must follow contiguously in
781 * struct fpsimd_state:
782 */
783 start = end;
784 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
785 membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr, end - start);
786
787 start = end;
788 end = sve_size_from_header(&header);
789 return membuf_zero(&to, end - start);
790 }
791
792 static int sve_set(struct task_struct *target,
793 const struct user_regset *regset,
794 unsigned int pos, unsigned int count,
795 const void *kbuf, const void __user *ubuf)
796 {
797 int ret;
798 struct user_sve_header header;
799 unsigned int vq;
800 unsigned long start, end;
801
802 if (!system_supports_sve())
803 return -EINVAL;
804
805 /* Header */
806 if (count < sizeof(header))
807 return -EINVAL;
808 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
809 0, sizeof(header));
810 if (ret)
811 goto out;
812
813 /*
814 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
815 * sve_set_vector_length(), which will also validate them for us:
816 */
817 ret = sve_set_vector_length(target, header.vl,
818 ((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
819 if (ret)
820 goto out;
821
822 /* Actual VL set may be less than the user asked for: */
823 vq = sve_vq_from_vl(target->thread.sve_vl);
824
825 /* Registers: FPSIMD-only case */
826
827 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
828 if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
829 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
830 SVE_PT_FPSIMD_OFFSET);
831 clear_tsk_thread_flag(target, TIF_SVE);
832 goto out;
833 }
834
835 /* Otherwise: full SVE case */
836
837 /*
838 * If setting a different VL from the requested VL and there is
839 * register data, the data layout will be wrong: don't even
840 * try to set the registers in this case.
841 */
842 if (count && vq != sve_vq_from_vl(header.vl)) {
843 ret = -EIO;
844 goto out;
845 }
846
847 sve_alloc(target);
848 if (!target->thread.sve_state) {
849 ret = -ENOMEM;
850 clear_tsk_thread_flag(target, TIF_SVE);
851 goto out;
852 }
853
854 /*
855 * Ensure target->thread.sve_state is up to date with target's
856 * FPSIMD regs, so that a short copyin leaves trailing registers
857 * unmodified.
858 */
859 fpsimd_sync_to_sve(target);
860 set_tsk_thread_flag(target, TIF_SVE);
861
862 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
863 start = SVE_PT_SVE_OFFSET;
864 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
865 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
866 target->thread.sve_state,
867 start, end);
868 if (ret)
869 goto out;
870
871 start = end;
872 end = SVE_PT_SVE_FPSR_OFFSET(vq);
873 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
874 start, end);
875 if (ret)
876 goto out;
877
878 /*
879 * Copy fpsr, and fpcr which must follow contiguously in
880 * struct fpsimd_state:
881 */
882 start = end;
883 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
884 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
885 &target->thread.uw.fpsimd_state.fpsr,
886 start, end);
887
888 out:
889 fpsimd_flush_task_state(target);
890 return ret;
891 }
892
893 #endif /* CONFIG_ARM64_SVE */
894
895 #ifdef CONFIG_ARM64_PTR_AUTH
896 static int pac_mask_get(struct task_struct *target,
897 const struct user_regset *regset,
898 struct membuf to)
899 {
900 /*
901 * The PAC bits can differ across data and instruction pointers
902 * depending on TCR_EL1.TBID*, which we may make use of in future, so
903 * we expose separate masks.
904 */
905 unsigned long mask = ptrauth_user_pac_mask();
906 struct user_pac_mask uregs = {
907 .data_mask = mask,
908 .insn_mask = mask,
909 };
910
911 if (!system_supports_address_auth())
912 return -EINVAL;
913
914 return membuf_write(&to, &uregs, sizeof(uregs));
915 }
916
917 static int pac_enabled_keys_get(struct task_struct *target,
918 const struct user_regset *regset,
919 struct membuf to)
920 {
921 long enabled_keys = ptrauth_get_enabled_keys(target);
922
923 if (IS_ERR_VALUE(enabled_keys))
924 return enabled_keys;
925
926 return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
927 }
928
929 static int pac_enabled_keys_set(struct task_struct *target,
930 const struct user_regset *regset,
931 unsigned int pos, unsigned int count,
932 const void *kbuf, const void __user *ubuf)
933 {
934 int ret;
935 long enabled_keys = ptrauth_get_enabled_keys(target);
936
937 if (IS_ERR_VALUE(enabled_keys))
938 return enabled_keys;
939
940 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
941 sizeof(long));
942 if (ret)
943 return ret;
944
945 return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
946 enabled_keys);
947 }
948
949 #ifdef CONFIG_CHECKPOINT_RESTORE
950 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
951 {
952 return (__uint128_t)key->hi << 64 | key->lo;
953 }
954
955 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
956 {
957 struct ptrauth_key key = {
958 .lo = (unsigned long)ukey,
959 .hi = (unsigned long)(ukey >> 64),
960 };
961
962 return key;
963 }
964
965 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
966 const struct ptrauth_keys_user *keys)
967 {
968 ukeys->apiakey = pac_key_to_user(&keys->apia);
969 ukeys->apibkey = pac_key_to_user(&keys->apib);
970 ukeys->apdakey = pac_key_to_user(&keys->apda);
971 ukeys->apdbkey = pac_key_to_user(&keys->apdb);
972 }
973
974 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
975 const struct user_pac_address_keys *ukeys)
976 {
977 keys->apia = pac_key_from_user(ukeys->apiakey);
978 keys->apib = pac_key_from_user(ukeys->apibkey);
979 keys->apda = pac_key_from_user(ukeys->apdakey);
980 keys->apdb = pac_key_from_user(ukeys->apdbkey);
981 }
982
983 static int pac_address_keys_get(struct task_struct *target,
984 const struct user_regset *regset,
985 struct membuf to)
986 {
987 struct ptrauth_keys_user *keys = &target->thread.keys_user;
988 struct user_pac_address_keys user_keys;
989
990 if (!system_supports_address_auth())
991 return -EINVAL;
992
993 pac_address_keys_to_user(&user_keys, keys);
994
995 return membuf_write(&to, &user_keys, sizeof(user_keys));
996 }
997
998 static int pac_address_keys_set(struct task_struct *target,
999 const struct user_regset *regset,
1000 unsigned int pos, unsigned int count,
1001 const void *kbuf, const void __user *ubuf)
1002 {
1003 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1004 struct user_pac_address_keys user_keys;
1005 int ret;
1006
1007 if (!system_supports_address_auth())
1008 return -EINVAL;
1009
1010 pac_address_keys_to_user(&user_keys, keys);
1011 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1012 &user_keys, 0, -1);
1013 if (ret)
1014 return ret;
1015 pac_address_keys_from_user(keys, &user_keys);
1016
1017 return 0;
1018 }
1019
1020 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1021 const struct ptrauth_keys_user *keys)
1022 {
1023 ukeys->apgakey = pac_key_to_user(&keys->apga);
1024 }
1025
1026 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1027 const struct user_pac_generic_keys *ukeys)
1028 {
1029 keys->apga = pac_key_from_user(ukeys->apgakey);
1030 }
1031
1032 static int pac_generic_keys_get(struct task_struct *target,
1033 const struct user_regset *regset,
1034 struct membuf to)
1035 {
1036 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1037 struct user_pac_generic_keys user_keys;
1038
1039 if (!system_supports_generic_auth())
1040 return -EINVAL;
1041
1042 pac_generic_keys_to_user(&user_keys, keys);
1043
1044 return membuf_write(&to, &user_keys, sizeof(user_keys));
1045 }
1046
1047 static int pac_generic_keys_set(struct task_struct *target,
1048 const struct user_regset *regset,
1049 unsigned int pos, unsigned int count,
1050 const void *kbuf, const void __user *ubuf)
1051 {
1052 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1053 struct user_pac_generic_keys user_keys;
1054 int ret;
1055
1056 if (!system_supports_generic_auth())
1057 return -EINVAL;
1058
1059 pac_generic_keys_to_user(&user_keys, keys);
1060 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1061 &user_keys, 0, -1);
1062 if (ret)
1063 return ret;
1064 pac_generic_keys_from_user(keys, &user_keys);
1065
1066 return 0;
1067 }
1068 #endif /* CONFIG_CHECKPOINT_RESTORE */
1069 #endif /* CONFIG_ARM64_PTR_AUTH */
1070
1071 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1072 static int tagged_addr_ctrl_get(struct task_struct *target,
1073 const struct user_regset *regset,
1074 struct membuf to)
1075 {
1076 long ctrl = get_tagged_addr_ctrl(target);
1077
1078 if (IS_ERR_VALUE(ctrl))
1079 return ctrl;
1080
1081 return membuf_write(&to, &ctrl, sizeof(ctrl));
1082 }
1083
1084 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1085 user_regset *regset, unsigned int pos,
1086 unsigned int count, const void *kbuf, const
1087 void __user *ubuf)
1088 {
1089 int ret;
1090 long ctrl;
1091
1092 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1093 if (ret)
1094 return ret;
1095
1096 return set_tagged_addr_ctrl(target, ctrl);
1097 }
1098 #endif
1099
1100 enum aarch64_regset {
1101 REGSET_GPR,
1102 REGSET_FPR,
1103 REGSET_TLS,
1104 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1105 REGSET_HW_BREAK,
1106 REGSET_HW_WATCH,
1107 #endif
1108 REGSET_SYSTEM_CALL,
1109 #ifdef CONFIG_ARM64_SVE
1110 REGSET_SVE,
1111 #endif
1112 #ifdef CONFIG_ARM64_PTR_AUTH
1113 REGSET_PAC_MASK,
1114 REGSET_PAC_ENABLED_KEYS,
1115 #ifdef CONFIG_CHECKPOINT_RESTORE
1116 REGSET_PACA_KEYS,
1117 REGSET_PACG_KEYS,
1118 #endif
1119 #endif
1120 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1121 REGSET_TAGGED_ADDR_CTRL,
1122 #endif
1123 };
1124
1125 static const struct user_regset aarch64_regsets[] = {
1126 [REGSET_GPR] = {
1127 .core_note_type = NT_PRSTATUS,
1128 .n = sizeof(struct user_pt_regs) / sizeof(u64),
1129 .size = sizeof(u64),
1130 .align = sizeof(u64),
1131 .regset_get = gpr_get,
1132 .set = gpr_set
1133 },
1134 [REGSET_FPR] = {
1135 .core_note_type = NT_PRFPREG,
1136 .n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1137 /*
1138 * We pretend we have 32-bit registers because the fpsr and
1139 * fpcr are 32-bits wide.
1140 */
1141 .size = sizeof(u32),
1142 .align = sizeof(u32),
1143 .active = fpr_active,
1144 .regset_get = fpr_get,
1145 .set = fpr_set
1146 },
1147 [REGSET_TLS] = {
1148 .core_note_type = NT_ARM_TLS,
1149 .n = 1,
1150 .size = sizeof(void *),
1151 .align = sizeof(void *),
1152 .regset_get = tls_get,
1153 .set = tls_set,
1154 },
1155 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1156 [REGSET_HW_BREAK] = {
1157 .core_note_type = NT_ARM_HW_BREAK,
1158 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1159 .size = sizeof(u32),
1160 .align = sizeof(u32),
1161 .regset_get = hw_break_get,
1162 .set = hw_break_set,
1163 },
1164 [REGSET_HW_WATCH] = {
1165 .core_note_type = NT_ARM_HW_WATCH,
1166 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1167 .size = sizeof(u32),
1168 .align = sizeof(u32),
1169 .regset_get = hw_break_get,
1170 .set = hw_break_set,
1171 },
1172 #endif
1173 [REGSET_SYSTEM_CALL] = {
1174 .core_note_type = NT_ARM_SYSTEM_CALL,
1175 .n = 1,
1176 .size = sizeof(int),
1177 .align = sizeof(int),
1178 .regset_get = system_call_get,
1179 .set = system_call_set,
1180 },
1181 #ifdef CONFIG_ARM64_SVE
1182 [REGSET_SVE] = { /* Scalable Vector Extension */
1183 .core_note_type = NT_ARM_SVE,
1184 .n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1185 SVE_VQ_BYTES),
1186 .size = SVE_VQ_BYTES,
1187 .align = SVE_VQ_BYTES,
1188 .regset_get = sve_get,
1189 .set = sve_set,
1190 },
1191 #endif
1192 #ifdef CONFIG_ARM64_PTR_AUTH
1193 [REGSET_PAC_MASK] = {
1194 .core_note_type = NT_ARM_PAC_MASK,
1195 .n = sizeof(struct user_pac_mask) / sizeof(u64),
1196 .size = sizeof(u64),
1197 .align = sizeof(u64),
1198 .regset_get = pac_mask_get,
1199 /* this cannot be set dynamically */
1200 },
1201 [REGSET_PAC_ENABLED_KEYS] = {
1202 .core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1203 .n = 1,
1204 .size = sizeof(long),
1205 .align = sizeof(long),
1206 .regset_get = pac_enabled_keys_get,
1207 .set = pac_enabled_keys_set,
1208 },
1209 #ifdef CONFIG_CHECKPOINT_RESTORE
1210 [REGSET_PACA_KEYS] = {
1211 .core_note_type = NT_ARM_PACA_KEYS,
1212 .n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1213 .size = sizeof(__uint128_t),
1214 .align = sizeof(__uint128_t),
1215 .regset_get = pac_address_keys_get,
1216 .set = pac_address_keys_set,
1217 },
1218 [REGSET_PACG_KEYS] = {
1219 .core_note_type = NT_ARM_PACG_KEYS,
1220 .n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1221 .size = sizeof(__uint128_t),
1222 .align = sizeof(__uint128_t),
1223 .regset_get = pac_generic_keys_get,
1224 .set = pac_generic_keys_set,
1225 },
1226 #endif
1227 #endif
1228 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1229 [REGSET_TAGGED_ADDR_CTRL] = {
1230 .core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1231 .n = 1,
1232 .size = sizeof(long),
1233 .align = sizeof(long),
1234 .regset_get = tagged_addr_ctrl_get,
1235 .set = tagged_addr_ctrl_set,
1236 },
1237 #endif
1238 };
1239
1240 static const struct user_regset_view user_aarch64_view = {
1241 .name = "aarch64", .e_machine = EM_AARCH64,
1242 .regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1243 };
1244
1245 #ifdef CONFIG_COMPAT
1246 enum compat_regset {
1247 REGSET_COMPAT_GPR,
1248 REGSET_COMPAT_VFP,
1249 };
1250
1251 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1252 {
1253 struct pt_regs *regs = task_pt_regs(task);
1254
1255 switch (idx) {
1256 case 15:
1257 return regs->pc;
1258 case 16:
1259 return pstate_to_compat_psr(regs->pstate);
1260 case 17:
1261 return regs->orig_x0;
1262 default:
1263 return regs->regs[idx];
1264 }
1265 }
1266
1267 static int compat_gpr_get(struct task_struct *target,
1268 const struct user_regset *regset,
1269 struct membuf to)
1270 {
1271 int i = 0;
1272
1273 while (to.left)
1274 membuf_store(&to, compat_get_user_reg(target, i++));
1275 return 0;
1276 }
1277
1278 static int compat_gpr_set(struct task_struct *target,
1279 const struct user_regset *regset,
1280 unsigned int pos, unsigned int count,
1281 const void *kbuf, const void __user *ubuf)
1282 {
1283 struct pt_regs newregs;
1284 int ret = 0;
1285 unsigned int i, start, num_regs;
1286
1287 /* Calculate the number of AArch32 registers contained in count */
1288 num_regs = count / regset->size;
1289
1290 /* Convert pos into an register number */
1291 start = pos / regset->size;
1292
1293 if (start + num_regs > regset->n)
1294 return -EIO;
1295
1296 newregs = *task_pt_regs(target);
1297
1298 for (i = 0; i < num_regs; ++i) {
1299 unsigned int idx = start + i;
1300 compat_ulong_t reg;
1301
1302 if (kbuf) {
1303 memcpy(&reg, kbuf, sizeof(reg));
1304 kbuf += sizeof(reg);
1305 } else {
1306 ret = copy_from_user(&reg, ubuf, sizeof(reg));
1307 if (ret) {
1308 ret = -EFAULT;
1309 break;
1310 }
1311
1312 ubuf += sizeof(reg);
1313 }
1314
1315 switch (idx) {
1316 case 15:
1317 newregs.pc = reg;
1318 break;
1319 case 16:
1320 reg = compat_psr_to_pstate(reg);
1321 newregs.pstate = reg;
1322 break;
1323 case 17:
1324 newregs.orig_x0 = reg;
1325 break;
1326 default:
1327 newregs.regs[idx] = reg;
1328 }
1329
1330 }
1331
1332 if (valid_user_regs(&newregs.user_regs, target))
1333 *task_pt_regs(target) = newregs;
1334 else
1335 ret = -EINVAL;
1336
1337 return ret;
1338 }
1339
1340 static int compat_vfp_get(struct task_struct *target,
1341 const struct user_regset *regset,
1342 struct membuf to)
1343 {
1344 struct user_fpsimd_state *uregs;
1345 compat_ulong_t fpscr;
1346
1347 if (!system_supports_fpsimd())
1348 return -EINVAL;
1349
1350 uregs = &target->thread.uw.fpsimd_state;
1351
1352 if (target == current)
1353 fpsimd_preserve_current_state();
1354
1355 /*
1356 * The VFP registers are packed into the fpsimd_state, so they all sit
1357 * nicely together for us. We just need to create the fpscr separately.
1358 */
1359 membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1360 fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1361 (uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1362 return membuf_store(&to, fpscr);
1363 }
1364
1365 static int compat_vfp_set(struct task_struct *target,
1366 const struct user_regset *regset,
1367 unsigned int pos, unsigned int count,
1368 const void *kbuf, const void __user *ubuf)
1369 {
1370 struct user_fpsimd_state *uregs;
1371 compat_ulong_t fpscr;
1372 int ret, vregs_end_pos;
1373
1374 if (!system_supports_fpsimd())
1375 return -EINVAL;
1376
1377 uregs = &target->thread.uw.fpsimd_state;
1378
1379 vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1380 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1381 vregs_end_pos);
1382
1383 if (count && !ret) {
1384 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1385 vregs_end_pos, VFP_STATE_SIZE);
1386 if (!ret) {
1387 uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1388 uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1389 }
1390 }
1391
1392 fpsimd_flush_task_state(target);
1393 return ret;
1394 }
1395
1396 static int compat_tls_get(struct task_struct *target,
1397 const struct user_regset *regset,
1398 struct membuf to)
1399 {
1400 return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1401 }
1402
1403 static int compat_tls_set(struct task_struct *target,
1404 const struct user_regset *regset, unsigned int pos,
1405 unsigned int count, const void *kbuf,
1406 const void __user *ubuf)
1407 {
1408 int ret;
1409 compat_ulong_t tls = target->thread.uw.tp_value;
1410
1411 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1412 if (ret)
1413 return ret;
1414
1415 target->thread.uw.tp_value = tls;
1416 return ret;
1417 }
1418
1419 static const struct user_regset aarch32_regsets[] = {
1420 [REGSET_COMPAT_GPR] = {
1421 .core_note_type = NT_PRSTATUS,
1422 .n = COMPAT_ELF_NGREG,
1423 .size = sizeof(compat_elf_greg_t),
1424 .align = sizeof(compat_elf_greg_t),
1425 .regset_get = compat_gpr_get,
1426 .set = compat_gpr_set
1427 },
1428 [REGSET_COMPAT_VFP] = {
1429 .core_note_type = NT_ARM_VFP,
1430 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1431 .size = sizeof(compat_ulong_t),
1432 .align = sizeof(compat_ulong_t),
1433 .active = fpr_active,
1434 .regset_get = compat_vfp_get,
1435 .set = compat_vfp_set
1436 },
1437 };
1438
1439 static const struct user_regset_view user_aarch32_view = {
1440 .name = "aarch32", .e_machine = EM_ARM,
1441 .regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1442 };
1443
1444 static const struct user_regset aarch32_ptrace_regsets[] = {
1445 [REGSET_GPR] = {
1446 .core_note_type = NT_PRSTATUS,
1447 .n = COMPAT_ELF_NGREG,
1448 .size = sizeof(compat_elf_greg_t),
1449 .align = sizeof(compat_elf_greg_t),
1450 .regset_get = compat_gpr_get,
1451 .set = compat_gpr_set
1452 },
1453 [REGSET_FPR] = {
1454 .core_note_type = NT_ARM_VFP,
1455 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1456 .size = sizeof(compat_ulong_t),
1457 .align = sizeof(compat_ulong_t),
1458 .regset_get = compat_vfp_get,
1459 .set = compat_vfp_set
1460 },
1461 [REGSET_TLS] = {
1462 .core_note_type = NT_ARM_TLS,
1463 .n = 1,
1464 .size = sizeof(compat_ulong_t),
1465 .align = sizeof(compat_ulong_t),
1466 .regset_get = compat_tls_get,
1467 .set = compat_tls_set,
1468 },
1469 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1470 [REGSET_HW_BREAK] = {
1471 .core_note_type = NT_ARM_HW_BREAK,
1472 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1473 .size = sizeof(u32),
1474 .align = sizeof(u32),
1475 .regset_get = hw_break_get,
1476 .set = hw_break_set,
1477 },
1478 [REGSET_HW_WATCH] = {
1479 .core_note_type = NT_ARM_HW_WATCH,
1480 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1481 .size = sizeof(u32),
1482 .align = sizeof(u32),
1483 .regset_get = hw_break_get,
1484 .set = hw_break_set,
1485 },
1486 #endif
1487 [REGSET_SYSTEM_CALL] = {
1488 .core_note_type = NT_ARM_SYSTEM_CALL,
1489 .n = 1,
1490 .size = sizeof(int),
1491 .align = sizeof(int),
1492 .regset_get = system_call_get,
1493 .set = system_call_set,
1494 },
1495 };
1496
1497 static const struct user_regset_view user_aarch32_ptrace_view = {
1498 .name = "aarch32", .e_machine = EM_ARM,
1499 .regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1500 };
1501
1502 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1503 compat_ulong_t __user *ret)
1504 {
1505 compat_ulong_t tmp;
1506
1507 if (off & 3)
1508 return -EIO;
1509
1510 if (off == COMPAT_PT_TEXT_ADDR)
1511 tmp = tsk->mm->start_code;
1512 else if (off == COMPAT_PT_DATA_ADDR)
1513 tmp = tsk->mm->start_data;
1514 else if (off == COMPAT_PT_TEXT_END_ADDR)
1515 tmp = tsk->mm->end_code;
1516 else if (off < sizeof(compat_elf_gregset_t))
1517 tmp = compat_get_user_reg(tsk, off >> 2);
1518 else if (off >= COMPAT_USER_SZ)
1519 return -EIO;
1520 else
1521 tmp = 0;
1522
1523 return put_user(tmp, ret);
1524 }
1525
1526 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1527 compat_ulong_t val)
1528 {
1529 struct pt_regs newregs = *task_pt_regs(tsk);
1530 unsigned int idx = off / 4;
1531
1532 if (off & 3 || off >= COMPAT_USER_SZ)
1533 return -EIO;
1534
1535 if (off >= sizeof(compat_elf_gregset_t))
1536 return 0;
1537
1538 switch (idx) {
1539 case 15:
1540 newregs.pc = val;
1541 break;
1542 case 16:
1543 newregs.pstate = compat_psr_to_pstate(val);
1544 break;
1545 case 17:
1546 newregs.orig_x0 = val;
1547 break;
1548 default:
1549 newregs.regs[idx] = val;
1550 }
1551
1552 if (!valid_user_regs(&newregs.user_regs, tsk))
1553 return -EINVAL;
1554
1555 *task_pt_regs(tsk) = newregs;
1556 return 0;
1557 }
1558
1559 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1560
1561 /*
1562 * Convert a virtual register number into an index for a thread_info
1563 * breakpoint array. Breakpoints are identified using positive numbers
1564 * whilst watchpoints are negative. The registers are laid out as pairs
1565 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1566 * Register 0 is reserved for describing resource information.
1567 */
1568 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1569 {
1570 return (abs(num) - 1) >> 1;
1571 }
1572
1573 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1574 {
1575 u8 num_brps, num_wrps, debug_arch, wp_len;
1576 u32 reg = 0;
1577
1578 num_brps = hw_breakpoint_slots(TYPE_INST);
1579 num_wrps = hw_breakpoint_slots(TYPE_DATA);
1580
1581 debug_arch = debug_monitors_arch();
1582 wp_len = 8;
1583 reg |= debug_arch;
1584 reg <<= 8;
1585 reg |= wp_len;
1586 reg <<= 8;
1587 reg |= num_wrps;
1588 reg <<= 8;
1589 reg |= num_brps;
1590
1591 *kdata = reg;
1592 return 0;
1593 }
1594
1595 static int compat_ptrace_hbp_get(unsigned int note_type,
1596 struct task_struct *tsk,
1597 compat_long_t num,
1598 u32 *kdata)
1599 {
1600 u64 addr = 0;
1601 u32 ctrl = 0;
1602
1603 int err, idx = compat_ptrace_hbp_num_to_idx(num);
1604
1605 if (num & 1) {
1606 err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1607 *kdata = (u32)addr;
1608 } else {
1609 err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1610 *kdata = ctrl;
1611 }
1612
1613 return err;
1614 }
1615
1616 static int compat_ptrace_hbp_set(unsigned int note_type,
1617 struct task_struct *tsk,
1618 compat_long_t num,
1619 u32 *kdata)
1620 {
1621 u64 addr;
1622 u32 ctrl;
1623
1624 int err, idx = compat_ptrace_hbp_num_to_idx(num);
1625
1626 if (num & 1) {
1627 addr = *kdata;
1628 err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1629 } else {
1630 ctrl = *kdata;
1631 err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1632 }
1633
1634 return err;
1635 }
1636
1637 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1638 compat_ulong_t __user *data)
1639 {
1640 int ret;
1641 u32 kdata;
1642
1643 /* Watchpoint */
1644 if (num < 0) {
1645 ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1646 /* Resource info */
1647 } else if (num == 0) {
1648 ret = compat_ptrace_hbp_get_resource_info(&kdata);
1649 /* Breakpoint */
1650 } else {
1651 ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1652 }
1653
1654 if (!ret)
1655 ret = put_user(kdata, data);
1656
1657 return ret;
1658 }
1659
1660 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1661 compat_ulong_t __user *data)
1662 {
1663 int ret;
1664 u32 kdata = 0;
1665
1666 if (num == 0)
1667 return 0;
1668
1669 ret = get_user(kdata, data);
1670 if (ret)
1671 return ret;
1672
1673 if (num < 0)
1674 ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1675 else
1676 ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1677
1678 return ret;
1679 }
1680 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1681
1682 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1683 compat_ulong_t caddr, compat_ulong_t cdata)
1684 {
1685 unsigned long addr = caddr;
1686 unsigned long data = cdata;
1687 void __user *datap = compat_ptr(data);
1688 int ret;
1689
1690 switch (request) {
1691 case PTRACE_PEEKUSR:
1692 ret = compat_ptrace_read_user(child, addr, datap);
1693 break;
1694
1695 case PTRACE_POKEUSR:
1696 ret = compat_ptrace_write_user(child, addr, data);
1697 break;
1698
1699 case COMPAT_PTRACE_GETREGS:
1700 ret = copy_regset_to_user(child,
1701 &user_aarch32_view,
1702 REGSET_COMPAT_GPR,
1703 0, sizeof(compat_elf_gregset_t),
1704 datap);
1705 break;
1706
1707 case COMPAT_PTRACE_SETREGS:
1708 ret = copy_regset_from_user(child,
1709 &user_aarch32_view,
1710 REGSET_COMPAT_GPR,
1711 0, sizeof(compat_elf_gregset_t),
1712 datap);
1713 break;
1714
1715 case COMPAT_PTRACE_GET_THREAD_AREA:
1716 ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1717 (compat_ulong_t __user *)datap);
1718 break;
1719
1720 case COMPAT_PTRACE_SET_SYSCALL:
1721 task_pt_regs(child)->syscallno = data;
1722 ret = 0;
1723 break;
1724
1725 case COMPAT_PTRACE_GETVFPREGS:
1726 ret = copy_regset_to_user(child,
1727 &user_aarch32_view,
1728 REGSET_COMPAT_VFP,
1729 0, VFP_STATE_SIZE,
1730 datap);
1731 break;
1732
1733 case COMPAT_PTRACE_SETVFPREGS:
1734 ret = copy_regset_from_user(child,
1735 &user_aarch32_view,
1736 REGSET_COMPAT_VFP,
1737 0, VFP_STATE_SIZE,
1738 datap);
1739 break;
1740
1741 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1742 case COMPAT_PTRACE_GETHBPREGS:
1743 ret = compat_ptrace_gethbpregs(child, addr, datap);
1744 break;
1745
1746 case COMPAT_PTRACE_SETHBPREGS:
1747 ret = compat_ptrace_sethbpregs(child, addr, datap);
1748 break;
1749 #endif
1750
1751 default:
1752 ret = compat_ptrace_request(child, request, addr,
1753 data);
1754 break;
1755 }
1756
1757 return ret;
1758 }
1759 #endif /* CONFIG_COMPAT */
1760
1761 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1762 {
1763 #ifdef CONFIG_COMPAT
1764 /*
1765 * Core dumping of 32-bit tasks or compat ptrace requests must use the
1766 * user_aarch32_view compatible with arm32. Native ptrace requests on
1767 * 32-bit children use an extended user_aarch32_ptrace_view to allow
1768 * access to the TLS register.
1769 */
1770 if (is_compat_task())
1771 return &user_aarch32_view;
1772 else if (is_compat_thread(task_thread_info(task)))
1773 return &user_aarch32_ptrace_view;
1774 #endif
1775 return &user_aarch64_view;
1776 }
1777
1778 long arch_ptrace(struct task_struct *child, long request,
1779 unsigned long addr, unsigned long data)
1780 {
1781 switch (request) {
1782 case PTRACE_PEEKMTETAGS:
1783 case PTRACE_POKEMTETAGS:
1784 return mte_ptrace_copy_tags(child, request, addr, data);
1785 }
1786
1787 return ptrace_request(child, request, addr, data);
1788 }
1789
1790 enum ptrace_syscall_dir {
1791 PTRACE_SYSCALL_ENTER = 0,
1792 PTRACE_SYSCALL_EXIT,
1793 };
1794
1795 static void tracehook_report_syscall(struct pt_regs *regs,
1796 enum ptrace_syscall_dir dir)
1797 {
1798 int regno;
1799 unsigned long saved_reg;
1800
1801 /*
1802 * We have some ABI weirdness here in the way that we handle syscall
1803 * exit stops because we indicate whether or not the stop has been
1804 * signalled from syscall entry or syscall exit by clobbering a general
1805 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
1806 * and restoring its old value after the stop. This means that:
1807 *
1808 * - Any writes by the tracer to this register during the stop are
1809 * ignored/discarded.
1810 *
1811 * - The actual value of the register is not available during the stop,
1812 * so the tracer cannot save it and restore it later.
1813 *
1814 * - Syscall stops behave differently to seccomp and pseudo-step traps
1815 * (the latter do not nobble any registers).
1816 */
1817 regno = (is_compat_task() ? 12 : 7);
1818 saved_reg = regs->regs[regno];
1819 regs->regs[regno] = dir;
1820
1821 if (dir == PTRACE_SYSCALL_ENTER) {
1822 if (tracehook_report_syscall_entry(regs))
1823 forget_syscall(regs);
1824 regs->regs[regno] = saved_reg;
1825 } else if (!test_thread_flag(TIF_SINGLESTEP)) {
1826 tracehook_report_syscall_exit(regs, 0);
1827 regs->regs[regno] = saved_reg;
1828 } else {
1829 regs->regs[regno] = saved_reg;
1830
1831 /*
1832 * Signal a pseudo-step exception since we are stepping but
1833 * tracer modifications to the registers may have rewound the
1834 * state machine.
1835 */
1836 tracehook_report_syscall_exit(regs, 1);
1837 }
1838 }
1839
1840 int syscall_trace_enter(struct pt_regs *regs)
1841 {
1842 unsigned long flags = READ_ONCE(current_thread_info()->flags);
1843
1844 if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
1845 tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
1846 if (flags & _TIF_SYSCALL_EMU)
1847 return NO_SYSCALL;
1848 }
1849
1850 /* Do the secure computing after ptrace; failures should be fast. */
1851 if (secure_computing() == -1)
1852 return NO_SYSCALL;
1853
1854 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1855 trace_sys_enter(regs, regs->syscallno);
1856
1857 audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
1858 regs->regs[2], regs->regs[3]);
1859
1860 return regs->syscallno;
1861 }
1862
1863 void syscall_trace_exit(struct pt_regs *regs)
1864 {
1865 unsigned long flags = READ_ONCE(current_thread_info()->flags);
1866
1867 audit_syscall_exit(regs);
1868
1869 if (flags & _TIF_SYSCALL_TRACEPOINT)
1870 trace_sys_exit(regs, syscall_get_return_value(current, regs));
1871
1872 if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
1873 tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
1874
1875 rseq_syscall(regs);
1876 }
1877
1878 /*
1879 * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
1880 * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
1881 * not described in ARM DDI 0487D.a.
1882 * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
1883 * be allocated an EL0 meaning in future.
1884 * Userspace cannot use these until they have an architectural meaning.
1885 * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
1886 * We also reserve IL for the kernel; SS is handled dynamically.
1887 */
1888 #define SPSR_EL1_AARCH64_RES0_BITS \
1889 (GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
1890 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
1891 #define SPSR_EL1_AARCH32_RES0_BITS \
1892 (GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
1893
1894 static int valid_compat_regs(struct user_pt_regs *regs)
1895 {
1896 regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
1897
1898 if (!system_supports_mixed_endian_el0()) {
1899 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
1900 regs->pstate |= PSR_AA32_E_BIT;
1901 else
1902 regs->pstate &= ~PSR_AA32_E_BIT;
1903 }
1904
1905 if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
1906 (regs->pstate & PSR_AA32_A_BIT) == 0 &&
1907 (regs->pstate & PSR_AA32_I_BIT) == 0 &&
1908 (regs->pstate & PSR_AA32_F_BIT) == 0) {
1909 return 1;
1910 }
1911
1912 /*
1913 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
1914 * arch/arm.
1915 */
1916 regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
1917 PSR_AA32_C_BIT | PSR_AA32_V_BIT |
1918 PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
1919 PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
1920 PSR_AA32_T_BIT;
1921 regs->pstate |= PSR_MODE32_BIT;
1922
1923 return 0;
1924 }
1925
1926 static int valid_native_regs(struct user_pt_regs *regs)
1927 {
1928 regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
1929
1930 if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
1931 (regs->pstate & PSR_D_BIT) == 0 &&
1932 (regs->pstate & PSR_A_BIT) == 0 &&
1933 (regs->pstate & PSR_I_BIT) == 0 &&
1934 (regs->pstate & PSR_F_BIT) == 0) {
1935 return 1;
1936 }
1937
1938 /* Force PSR to a valid 64-bit EL0t */
1939 regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
1940
1941 return 0;
1942 }
1943
1944 /*
1945 * Are the current registers suitable for user mode? (used to maintain
1946 * security in signal handlers)
1947 */
1948 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
1949 {
1950 /* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
1951 user_regs_reset_single_step(regs, task);
1952
1953 if (is_compat_thread(task_thread_info(task)))
1954 return valid_compat_regs(regs);
1955 else
1956 return valid_native_regs(regs);
1957 }