]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/arm64/kernel/setup.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 234
[thirdparty/linux.git] / arch / arm64 / kernel / setup.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/setup.c
4 *
5 * Copyright (C) 1995-2001 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/initrd.h>
16 #include <linux/console.h>
17 #include <linux/cache.h>
18 #include <linux/screen_info.h>
19 #include <linux/init.h>
20 #include <linux/kexec.h>
21 #include <linux/root_dev.h>
22 #include <linux/cpu.h>
23 #include <linux/interrupt.h>
24 #include <linux/smp.h>
25 #include <linux/fs.h>
26 #include <linux/proc_fs.h>
27 #include <linux/memblock.h>
28 #include <linux/of_fdt.h>
29 #include <linux/efi.h>
30 #include <linux/psci.h>
31 #include <linux/sched/task.h>
32 #include <linux/mm.h>
33
34 #include <asm/acpi.h>
35 #include <asm/fixmap.h>
36 #include <asm/cpu.h>
37 #include <asm/cputype.h>
38 #include <asm/daifflags.h>
39 #include <asm/elf.h>
40 #include <asm/cpufeature.h>
41 #include <asm/cpu_ops.h>
42 #include <asm/kasan.h>
43 #include <asm/numa.h>
44 #include <asm/sections.h>
45 #include <asm/setup.h>
46 #include <asm/smp_plat.h>
47 #include <asm/cacheflush.h>
48 #include <asm/tlbflush.h>
49 #include <asm/traps.h>
50 #include <asm/efi.h>
51 #include <asm/xen/hypervisor.h>
52 #include <asm/mmu_context.h>
53
54 static int num_standard_resources;
55 static struct resource *standard_resources;
56
57 phys_addr_t __fdt_pointer __initdata;
58
59 /*
60 * Standard memory resources
61 */
62 static struct resource mem_res[] = {
63 {
64 .name = "Kernel code",
65 .start = 0,
66 .end = 0,
67 .flags = IORESOURCE_SYSTEM_RAM
68 },
69 {
70 .name = "Kernel data",
71 .start = 0,
72 .end = 0,
73 .flags = IORESOURCE_SYSTEM_RAM
74 }
75 };
76
77 #define kernel_code mem_res[0]
78 #define kernel_data mem_res[1]
79
80 /*
81 * The recorded values of x0 .. x3 upon kernel entry.
82 */
83 u64 __cacheline_aligned boot_args[4];
84
85 void __init smp_setup_processor_id(void)
86 {
87 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
88 cpu_logical_map(0) = mpidr;
89
90 /*
91 * clear __my_cpu_offset on boot CPU to avoid hang caused by
92 * using percpu variable early, for example, lockdep will
93 * access percpu variable inside lock_release
94 */
95 set_my_cpu_offset(0);
96 pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
97 (unsigned long)mpidr, read_cpuid_id());
98 }
99
100 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
101 {
102 return phys_id == cpu_logical_map(cpu);
103 }
104
105 struct mpidr_hash mpidr_hash;
106 /**
107 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
108 * level in order to build a linear index from an
109 * MPIDR value. Resulting algorithm is a collision
110 * free hash carried out through shifting and ORing
111 */
112 static void __init smp_build_mpidr_hash(void)
113 {
114 u32 i, affinity, fs[4], bits[4], ls;
115 u64 mask = 0;
116 /*
117 * Pre-scan the list of MPIDRS and filter out bits that do
118 * not contribute to affinity levels, ie they never toggle.
119 */
120 for_each_possible_cpu(i)
121 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
122 pr_debug("mask of set bits %#llx\n", mask);
123 /*
124 * Find and stash the last and first bit set at all affinity levels to
125 * check how many bits are required to represent them.
126 */
127 for (i = 0; i < 4; i++) {
128 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
129 /*
130 * Find the MSB bit and LSB bits position
131 * to determine how many bits are required
132 * to express the affinity level.
133 */
134 ls = fls(affinity);
135 fs[i] = affinity ? ffs(affinity) - 1 : 0;
136 bits[i] = ls - fs[i];
137 }
138 /*
139 * An index can be created from the MPIDR_EL1 by isolating the
140 * significant bits at each affinity level and by shifting
141 * them in order to compress the 32 bits values space to a
142 * compressed set of values. This is equivalent to hashing
143 * the MPIDR_EL1 through shifting and ORing. It is a collision free
144 * hash though not minimal since some levels might contain a number
145 * of CPUs that is not an exact power of 2 and their bit
146 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
147 */
148 mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
149 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
150 mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
151 (bits[1] + bits[0]);
152 mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
153 fs[3] - (bits[2] + bits[1] + bits[0]);
154 mpidr_hash.mask = mask;
155 mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
156 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
157 mpidr_hash.shift_aff[0],
158 mpidr_hash.shift_aff[1],
159 mpidr_hash.shift_aff[2],
160 mpidr_hash.shift_aff[3],
161 mpidr_hash.mask,
162 mpidr_hash.bits);
163 /*
164 * 4x is an arbitrary value used to warn on a hash table much bigger
165 * than expected on most systems.
166 */
167 if (mpidr_hash_size() > 4 * num_possible_cpus())
168 pr_warn("Large number of MPIDR hash buckets detected\n");
169 }
170
171 static void __init setup_machine_fdt(phys_addr_t dt_phys)
172 {
173 void *dt_virt = fixmap_remap_fdt(dt_phys);
174 const char *name;
175
176 if (!dt_virt || !early_init_dt_scan(dt_virt)) {
177 pr_crit("\n"
178 "Error: invalid device tree blob at physical address %pa (virtual address 0x%p)\n"
179 "The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
180 "\nPlease check your bootloader.",
181 &dt_phys, dt_virt);
182
183 while (true)
184 cpu_relax();
185 }
186
187 name = of_flat_dt_get_machine_name();
188 if (!name)
189 return;
190
191 pr_info("Machine model: %s\n", name);
192 dump_stack_set_arch_desc("%s (DT)", name);
193 }
194
195 static void __init request_standard_resources(void)
196 {
197 struct memblock_region *region;
198 struct resource *res;
199 unsigned long i = 0;
200 size_t res_size;
201
202 kernel_code.start = __pa_symbol(_text);
203 kernel_code.end = __pa_symbol(__init_begin - 1);
204 kernel_data.start = __pa_symbol(_sdata);
205 kernel_data.end = __pa_symbol(_end - 1);
206
207 num_standard_resources = memblock.memory.cnt;
208 res_size = num_standard_resources * sizeof(*standard_resources);
209 standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
210 if (!standard_resources)
211 panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
212
213 for_each_memblock(memory, region) {
214 res = &standard_resources[i++];
215 if (memblock_is_nomap(region)) {
216 res->name = "reserved";
217 res->flags = IORESOURCE_MEM;
218 } else {
219 res->name = "System RAM";
220 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
221 }
222 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
223 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
224
225 request_resource(&iomem_resource, res);
226
227 if (kernel_code.start >= res->start &&
228 kernel_code.end <= res->end)
229 request_resource(res, &kernel_code);
230 if (kernel_data.start >= res->start &&
231 kernel_data.end <= res->end)
232 request_resource(res, &kernel_data);
233 #ifdef CONFIG_KEXEC_CORE
234 /* Userspace will find "Crash kernel" region in /proc/iomem. */
235 if (crashk_res.end && crashk_res.start >= res->start &&
236 crashk_res.end <= res->end)
237 request_resource(res, &crashk_res);
238 #endif
239 }
240 }
241
242 static int __init reserve_memblock_reserved_regions(void)
243 {
244 u64 i, j;
245
246 for (i = 0; i < num_standard_resources; ++i) {
247 struct resource *mem = &standard_resources[i];
248 phys_addr_t r_start, r_end, mem_size = resource_size(mem);
249
250 if (!memblock_is_region_reserved(mem->start, mem_size))
251 continue;
252
253 for_each_reserved_mem_region(j, &r_start, &r_end) {
254 resource_size_t start, end;
255
256 start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
257 end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
258
259 if (start > mem->end || end < mem->start)
260 continue;
261
262 reserve_region_with_split(mem, start, end, "reserved");
263 }
264 }
265
266 return 0;
267 }
268 arch_initcall(reserve_memblock_reserved_regions);
269
270 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
271
272 void __init setup_arch(char **cmdline_p)
273 {
274 init_mm.start_code = (unsigned long) _text;
275 init_mm.end_code = (unsigned long) _etext;
276 init_mm.end_data = (unsigned long) _edata;
277 init_mm.brk = (unsigned long) _end;
278
279 *cmdline_p = boot_command_line;
280
281 early_fixmap_init();
282 early_ioremap_init();
283
284 setup_machine_fdt(__fdt_pointer);
285
286 parse_early_param();
287
288 /*
289 * Unmask asynchronous aborts and fiq after bringing up possible
290 * earlycon. (Report possible System Errors once we can report this
291 * occurred).
292 */
293 local_daif_restore(DAIF_PROCCTX_NOIRQ);
294
295 /*
296 * TTBR0 is only used for the identity mapping at this stage. Make it
297 * point to zero page to avoid speculatively fetching new entries.
298 */
299 cpu_uninstall_idmap();
300
301 xen_early_init();
302 efi_init();
303 arm64_memblock_init();
304
305 paging_init();
306
307 acpi_table_upgrade();
308
309 /* Parse the ACPI tables for possible boot-time configuration */
310 acpi_boot_table_init();
311
312 if (acpi_disabled)
313 unflatten_device_tree();
314
315 bootmem_init();
316
317 kasan_init();
318
319 request_standard_resources();
320
321 early_ioremap_reset();
322
323 if (acpi_disabled)
324 psci_dt_init();
325 else
326 psci_acpi_init();
327
328 cpu_read_bootcpu_ops();
329 smp_init_cpus();
330 smp_build_mpidr_hash();
331
332 /* Init percpu seeds for random tags after cpus are set up. */
333 kasan_init_tags();
334
335 #ifdef CONFIG_ARM64_SW_TTBR0_PAN
336 /*
337 * Make sure init_thread_info.ttbr0 always generates translation
338 * faults in case uaccess_enable() is inadvertently called by the init
339 * thread.
340 */
341 init_task.thread_info.ttbr0 = __pa_symbol(empty_zero_page);
342 #endif
343
344 #ifdef CONFIG_VT
345 conswitchp = &dummy_con;
346 #endif
347 if (boot_args[1] || boot_args[2] || boot_args[3]) {
348 pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
349 "\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
350 "This indicates a broken bootloader or old kernel\n",
351 boot_args[1], boot_args[2], boot_args[3]);
352 }
353 }
354
355 static int __init topology_init(void)
356 {
357 int i;
358
359 for_each_online_node(i)
360 register_one_node(i);
361
362 for_each_possible_cpu(i) {
363 struct cpu *cpu = &per_cpu(cpu_data.cpu, i);
364 cpu->hotpluggable = 1;
365 register_cpu(cpu, i);
366 }
367
368 return 0;
369 }
370 subsys_initcall(topology_init);
371
372 /*
373 * Dump out kernel offset information on panic.
374 */
375 static int dump_kernel_offset(struct notifier_block *self, unsigned long v,
376 void *p)
377 {
378 const unsigned long offset = kaslr_offset();
379
380 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
381 pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
382 offset, KIMAGE_VADDR);
383 pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
384 } else {
385 pr_emerg("Kernel Offset: disabled\n");
386 }
387 return 0;
388 }
389
390 static struct notifier_block kernel_offset_notifier = {
391 .notifier_call = dump_kernel_offset
392 };
393
394 static int __init register_kernel_offset_dumper(void)
395 {
396 atomic_notifier_chain_register(&panic_notifier_list,
397 &kernel_offset_notifier);
398 return 0;
399 }
400 __initcall(register_kernel_offset_dumper);