]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/arm64/kvm/arch_timer.c
KVM: x86/mmu: Remove unnecessary ‘NULL’ values from sptep
[thirdparty/kernel/stable.git] / arch / arm64 / kvm / arch_timer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 ARM Ltd.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/irqdomain.h>
13 #include <linux/uaccess.h>
14
15 #include <clocksource/arm_arch_timer.h>
16 #include <asm/arch_timer.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_hyp.h>
19 #include <asm/kvm_nested.h>
20
21 #include <kvm/arm_vgic.h>
22 #include <kvm/arm_arch_timer.h>
23
24 #include "trace.h"
25
26 static struct timecounter *timecounter;
27 static unsigned int host_vtimer_irq;
28 static unsigned int host_ptimer_irq;
29 static u32 host_vtimer_irq_flags;
30 static u32 host_ptimer_irq_flags;
31
32 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
33
34 static const u8 default_ppi[] = {
35 [TIMER_PTIMER] = 30,
36 [TIMER_VTIMER] = 27,
37 [TIMER_HPTIMER] = 26,
38 [TIMER_HVTIMER] = 28,
39 };
40
41 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
42 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
43 struct arch_timer_context *timer_ctx);
44 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
45 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
46 struct arch_timer_context *timer,
47 enum kvm_arch_timer_regs treg,
48 u64 val);
49 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
50 struct arch_timer_context *timer,
51 enum kvm_arch_timer_regs treg);
52 static bool kvm_arch_timer_get_input_level(int vintid);
53
54 static struct irq_ops arch_timer_irq_ops = {
55 .get_input_level = kvm_arch_timer_get_input_level,
56 };
57
58 static bool has_cntpoff(void)
59 {
60 return (has_vhe() && cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF));
61 }
62
63 static int nr_timers(struct kvm_vcpu *vcpu)
64 {
65 if (!vcpu_has_nv(vcpu))
66 return NR_KVM_EL0_TIMERS;
67
68 return NR_KVM_TIMERS;
69 }
70
71 u32 timer_get_ctl(struct arch_timer_context *ctxt)
72 {
73 struct kvm_vcpu *vcpu = ctxt->vcpu;
74
75 switch(arch_timer_ctx_index(ctxt)) {
76 case TIMER_VTIMER:
77 return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
78 case TIMER_PTIMER:
79 return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
80 case TIMER_HVTIMER:
81 return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2);
82 case TIMER_HPTIMER:
83 return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2);
84 default:
85 WARN_ON(1);
86 return 0;
87 }
88 }
89
90 u64 timer_get_cval(struct arch_timer_context *ctxt)
91 {
92 struct kvm_vcpu *vcpu = ctxt->vcpu;
93
94 switch(arch_timer_ctx_index(ctxt)) {
95 case TIMER_VTIMER:
96 return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
97 case TIMER_PTIMER:
98 return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
99 case TIMER_HVTIMER:
100 return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2);
101 case TIMER_HPTIMER:
102 return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
103 default:
104 WARN_ON(1);
105 return 0;
106 }
107 }
108
109 static u64 timer_get_offset(struct arch_timer_context *ctxt)
110 {
111 u64 offset = 0;
112
113 if (!ctxt)
114 return 0;
115
116 if (ctxt->offset.vm_offset)
117 offset += *ctxt->offset.vm_offset;
118 if (ctxt->offset.vcpu_offset)
119 offset += *ctxt->offset.vcpu_offset;
120
121 return offset;
122 }
123
124 static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
125 {
126 struct kvm_vcpu *vcpu = ctxt->vcpu;
127
128 switch(arch_timer_ctx_index(ctxt)) {
129 case TIMER_VTIMER:
130 __vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
131 break;
132 case TIMER_PTIMER:
133 __vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
134 break;
135 case TIMER_HVTIMER:
136 __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl;
137 break;
138 case TIMER_HPTIMER:
139 __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl;
140 break;
141 default:
142 WARN_ON(1);
143 }
144 }
145
146 static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
147 {
148 struct kvm_vcpu *vcpu = ctxt->vcpu;
149
150 switch(arch_timer_ctx_index(ctxt)) {
151 case TIMER_VTIMER:
152 __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
153 break;
154 case TIMER_PTIMER:
155 __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
156 break;
157 case TIMER_HVTIMER:
158 __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval;
159 break;
160 case TIMER_HPTIMER:
161 __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval;
162 break;
163 default:
164 WARN_ON(1);
165 }
166 }
167
168 static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
169 {
170 if (!ctxt->offset.vm_offset) {
171 WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
172 return;
173 }
174
175 WRITE_ONCE(*ctxt->offset.vm_offset, offset);
176 }
177
178 u64 kvm_phys_timer_read(void)
179 {
180 return timecounter->cc->read(timecounter->cc);
181 }
182
183 static void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
184 {
185 if (vcpu_has_nv(vcpu)) {
186 if (is_hyp_ctxt(vcpu)) {
187 map->direct_vtimer = vcpu_hvtimer(vcpu);
188 map->direct_ptimer = vcpu_hptimer(vcpu);
189 map->emul_vtimer = vcpu_vtimer(vcpu);
190 map->emul_ptimer = vcpu_ptimer(vcpu);
191 } else {
192 map->direct_vtimer = vcpu_vtimer(vcpu);
193 map->direct_ptimer = vcpu_ptimer(vcpu);
194 map->emul_vtimer = vcpu_hvtimer(vcpu);
195 map->emul_ptimer = vcpu_hptimer(vcpu);
196 }
197 } else if (has_vhe()) {
198 map->direct_vtimer = vcpu_vtimer(vcpu);
199 map->direct_ptimer = vcpu_ptimer(vcpu);
200 map->emul_vtimer = NULL;
201 map->emul_ptimer = NULL;
202 } else {
203 map->direct_vtimer = vcpu_vtimer(vcpu);
204 map->direct_ptimer = NULL;
205 map->emul_vtimer = NULL;
206 map->emul_ptimer = vcpu_ptimer(vcpu);
207 }
208
209 trace_kvm_get_timer_map(vcpu->vcpu_id, map);
210 }
211
212 static inline bool userspace_irqchip(struct kvm *kvm)
213 {
214 return static_branch_unlikely(&userspace_irqchip_in_use) &&
215 unlikely(!irqchip_in_kernel(kvm));
216 }
217
218 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
219 {
220 hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
221 HRTIMER_MODE_ABS_HARD);
222 }
223
224 static void soft_timer_cancel(struct hrtimer *hrt)
225 {
226 hrtimer_cancel(hrt);
227 }
228
229 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
230 {
231 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
232 struct arch_timer_context *ctx;
233 struct timer_map map;
234
235 /*
236 * We may see a timer interrupt after vcpu_put() has been called which
237 * sets the CPU's vcpu pointer to NULL, because even though the timer
238 * has been disabled in timer_save_state(), the hardware interrupt
239 * signal may not have been retired from the interrupt controller yet.
240 */
241 if (!vcpu)
242 return IRQ_HANDLED;
243
244 get_timer_map(vcpu, &map);
245
246 if (irq == host_vtimer_irq)
247 ctx = map.direct_vtimer;
248 else
249 ctx = map.direct_ptimer;
250
251 if (kvm_timer_should_fire(ctx))
252 kvm_timer_update_irq(vcpu, true, ctx);
253
254 if (userspace_irqchip(vcpu->kvm) &&
255 !static_branch_unlikely(&has_gic_active_state))
256 disable_percpu_irq(host_vtimer_irq);
257
258 return IRQ_HANDLED;
259 }
260
261 static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
262 u64 val)
263 {
264 u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
265
266 if (now < val) {
267 u64 ns;
268
269 ns = cyclecounter_cyc2ns(timecounter->cc,
270 val - now,
271 timecounter->mask,
272 &timer_ctx->ns_frac);
273 return ns;
274 }
275
276 return 0;
277 }
278
279 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
280 {
281 return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
282 }
283
284 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
285 {
286 WARN_ON(timer_ctx && timer_ctx->loaded);
287 return timer_ctx &&
288 ((timer_get_ctl(timer_ctx) &
289 (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
290 }
291
292 static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
293 {
294 return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
295 vcpu_get_flag(vcpu, IN_WFIT));
296 }
297
298 static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
299 {
300 u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
301 struct arch_timer_context *ctx;
302
303 ctx = (vcpu_has_nv(vcpu) && is_hyp_ctxt(vcpu)) ? vcpu_hvtimer(vcpu)
304 : vcpu_vtimer(vcpu);
305
306 return kvm_counter_compute_delta(ctx, val);
307 }
308
309 /*
310 * Returns the earliest expiration time in ns among guest timers.
311 * Note that it will return 0 if none of timers can fire.
312 */
313 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
314 {
315 u64 min_delta = ULLONG_MAX;
316 int i;
317
318 for (i = 0; i < nr_timers(vcpu); i++) {
319 struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
320
321 WARN(ctx->loaded, "timer %d loaded\n", i);
322 if (kvm_timer_irq_can_fire(ctx))
323 min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
324 }
325
326 if (vcpu_has_wfit_active(vcpu))
327 min_delta = min(min_delta, wfit_delay_ns(vcpu));
328
329 /* If none of timers can fire, then return 0 */
330 if (min_delta == ULLONG_MAX)
331 return 0;
332
333 return min_delta;
334 }
335
336 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
337 {
338 struct arch_timer_cpu *timer;
339 struct kvm_vcpu *vcpu;
340 u64 ns;
341
342 timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
343 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
344
345 /*
346 * Check that the timer has really expired from the guest's
347 * PoV (NTP on the host may have forced it to expire
348 * early). If we should have slept longer, restart it.
349 */
350 ns = kvm_timer_earliest_exp(vcpu);
351 if (unlikely(ns)) {
352 hrtimer_forward_now(hrt, ns_to_ktime(ns));
353 return HRTIMER_RESTART;
354 }
355
356 kvm_vcpu_wake_up(vcpu);
357 return HRTIMER_NORESTART;
358 }
359
360 static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
361 {
362 struct arch_timer_context *ctx;
363 struct kvm_vcpu *vcpu;
364 u64 ns;
365
366 ctx = container_of(hrt, struct arch_timer_context, hrtimer);
367 vcpu = ctx->vcpu;
368
369 trace_kvm_timer_hrtimer_expire(ctx);
370
371 /*
372 * Check that the timer has really expired from the guest's
373 * PoV (NTP on the host may have forced it to expire
374 * early). If not ready, schedule for a later time.
375 */
376 ns = kvm_timer_compute_delta(ctx);
377 if (unlikely(ns)) {
378 hrtimer_forward_now(hrt, ns_to_ktime(ns));
379 return HRTIMER_RESTART;
380 }
381
382 kvm_timer_update_irq(vcpu, true, ctx);
383 return HRTIMER_NORESTART;
384 }
385
386 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
387 {
388 enum kvm_arch_timers index;
389 u64 cval, now;
390
391 if (!timer_ctx)
392 return false;
393
394 index = arch_timer_ctx_index(timer_ctx);
395
396 if (timer_ctx->loaded) {
397 u32 cnt_ctl = 0;
398
399 switch (index) {
400 case TIMER_VTIMER:
401 case TIMER_HVTIMER:
402 cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
403 break;
404 case TIMER_PTIMER:
405 case TIMER_HPTIMER:
406 cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
407 break;
408 case NR_KVM_TIMERS:
409 /* GCC is braindead */
410 cnt_ctl = 0;
411 break;
412 }
413
414 return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
415 (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
416 !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
417 }
418
419 if (!kvm_timer_irq_can_fire(timer_ctx))
420 return false;
421
422 cval = timer_get_cval(timer_ctx);
423 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
424
425 return cval <= now;
426 }
427
428 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
429 {
430 return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
431 }
432
433 /*
434 * Reflect the timer output level into the kvm_run structure
435 */
436 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
437 {
438 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
439 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
440 struct kvm_sync_regs *regs = &vcpu->run->s.regs;
441
442 /* Populate the device bitmap with the timer states */
443 regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
444 KVM_ARM_DEV_EL1_PTIMER);
445 if (kvm_timer_should_fire(vtimer))
446 regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
447 if (kvm_timer_should_fire(ptimer))
448 regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
449 }
450
451 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
452 struct arch_timer_context *timer_ctx)
453 {
454 int ret;
455
456 timer_ctx->irq.level = new_level;
457 trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx),
458 timer_ctx->irq.level);
459
460 if (!userspace_irqchip(vcpu->kvm)) {
461 ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
462 timer_irq(timer_ctx),
463 timer_ctx->irq.level,
464 timer_ctx);
465 WARN_ON(ret);
466 }
467 }
468
469 /* Only called for a fully emulated timer */
470 static void timer_emulate(struct arch_timer_context *ctx)
471 {
472 bool should_fire = kvm_timer_should_fire(ctx);
473
474 trace_kvm_timer_emulate(ctx, should_fire);
475
476 if (should_fire != ctx->irq.level) {
477 kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
478 return;
479 }
480
481 /*
482 * If the timer can fire now, we don't need to have a soft timer
483 * scheduled for the future. If the timer cannot fire at all,
484 * then we also don't need a soft timer.
485 */
486 if (should_fire || !kvm_timer_irq_can_fire(ctx))
487 return;
488
489 soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
490 }
491
492 static void set_cntvoff(u64 cntvoff)
493 {
494 kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
495 }
496
497 static void set_cntpoff(u64 cntpoff)
498 {
499 if (has_cntpoff())
500 write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2);
501 }
502
503 static void timer_save_state(struct arch_timer_context *ctx)
504 {
505 struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
506 enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
507 unsigned long flags;
508
509 if (!timer->enabled)
510 return;
511
512 local_irq_save(flags);
513
514 if (!ctx->loaded)
515 goto out;
516
517 switch (index) {
518 u64 cval;
519
520 case TIMER_VTIMER:
521 case TIMER_HVTIMER:
522 timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
523 timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
524
525 /* Disable the timer */
526 write_sysreg_el0(0, SYS_CNTV_CTL);
527 isb();
528
529 /*
530 * The kernel may decide to run userspace after
531 * calling vcpu_put, so we reset cntvoff to 0 to
532 * ensure a consistent read between user accesses to
533 * the virtual counter and kernel access to the
534 * physical counter of non-VHE case.
535 *
536 * For VHE, the virtual counter uses a fixed virtual
537 * offset of zero, so no need to zero CNTVOFF_EL2
538 * register, but this is actually useful when switching
539 * between EL1/vEL2 with NV.
540 *
541 * Do it unconditionally, as this is either unavoidable
542 * or dirt cheap.
543 */
544 set_cntvoff(0);
545 break;
546 case TIMER_PTIMER:
547 case TIMER_HPTIMER:
548 timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
549 cval = read_sysreg_el0(SYS_CNTP_CVAL);
550
551 if (!has_cntpoff())
552 cval -= timer_get_offset(ctx);
553
554 timer_set_cval(ctx, cval);
555
556 /* Disable the timer */
557 write_sysreg_el0(0, SYS_CNTP_CTL);
558 isb();
559
560 set_cntpoff(0);
561 break;
562 case NR_KVM_TIMERS:
563 BUG();
564 }
565
566 trace_kvm_timer_save_state(ctx);
567
568 ctx->loaded = false;
569 out:
570 local_irq_restore(flags);
571 }
572
573 /*
574 * Schedule the background timer before calling kvm_vcpu_halt, so that this
575 * thread is removed from its waitqueue and made runnable when there's a timer
576 * interrupt to handle.
577 */
578 static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
579 {
580 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
581 struct timer_map map;
582
583 get_timer_map(vcpu, &map);
584
585 /*
586 * If no timers are capable of raising interrupts (disabled or
587 * masked), then there's no more work for us to do.
588 */
589 if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
590 !kvm_timer_irq_can_fire(map.direct_ptimer) &&
591 !kvm_timer_irq_can_fire(map.emul_vtimer) &&
592 !kvm_timer_irq_can_fire(map.emul_ptimer) &&
593 !vcpu_has_wfit_active(vcpu))
594 return;
595
596 /*
597 * At least one guest time will expire. Schedule a background timer.
598 * Set the earliest expiration time among the guest timers.
599 */
600 soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
601 }
602
603 static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
604 {
605 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
606
607 soft_timer_cancel(&timer->bg_timer);
608 }
609
610 static void timer_restore_state(struct arch_timer_context *ctx)
611 {
612 struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
613 enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
614 unsigned long flags;
615
616 if (!timer->enabled)
617 return;
618
619 local_irq_save(flags);
620
621 if (ctx->loaded)
622 goto out;
623
624 switch (index) {
625 u64 cval, offset;
626
627 case TIMER_VTIMER:
628 case TIMER_HVTIMER:
629 set_cntvoff(timer_get_offset(ctx));
630 write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
631 isb();
632 write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
633 break;
634 case TIMER_PTIMER:
635 case TIMER_HPTIMER:
636 cval = timer_get_cval(ctx);
637 offset = timer_get_offset(ctx);
638 set_cntpoff(offset);
639 if (!has_cntpoff())
640 cval += offset;
641 write_sysreg_el0(cval, SYS_CNTP_CVAL);
642 isb();
643 write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
644 break;
645 case NR_KVM_TIMERS:
646 BUG();
647 }
648
649 trace_kvm_timer_restore_state(ctx);
650
651 ctx->loaded = true;
652 out:
653 local_irq_restore(flags);
654 }
655
656 static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
657 {
658 int r;
659 r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
660 WARN_ON(r);
661 }
662
663 static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
664 {
665 struct kvm_vcpu *vcpu = ctx->vcpu;
666 bool phys_active = false;
667
668 /*
669 * Update the timer output so that it is likely to match the
670 * state we're about to restore. If the timer expires between
671 * this point and the register restoration, we'll take the
672 * interrupt anyway.
673 */
674 kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
675
676 if (irqchip_in_kernel(vcpu->kvm))
677 phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx));
678
679 phys_active |= ctx->irq.level;
680
681 set_timer_irq_phys_active(ctx, phys_active);
682 }
683
684 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
685 {
686 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
687
688 /*
689 * Update the timer output so that it is likely to match the
690 * state we're about to restore. If the timer expires between
691 * this point and the register restoration, we'll take the
692 * interrupt anyway.
693 */
694 kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
695
696 /*
697 * When using a userspace irqchip with the architected timers and a
698 * host interrupt controller that doesn't support an active state, we
699 * must still prevent continuously exiting from the guest, and
700 * therefore mask the physical interrupt by disabling it on the host
701 * interrupt controller when the virtual level is high, such that the
702 * guest can make forward progress. Once we detect the output level
703 * being de-asserted, we unmask the interrupt again so that we exit
704 * from the guest when the timer fires.
705 */
706 if (vtimer->irq.level)
707 disable_percpu_irq(host_vtimer_irq);
708 else
709 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
710 }
711
712 /* If _pred is true, set bit in _set, otherwise set it in _clr */
713 #define assign_clear_set_bit(_pred, _bit, _clr, _set) \
714 do { \
715 if (_pred) \
716 (_set) |= (_bit); \
717 else \
718 (_clr) |= (_bit); \
719 } while (0)
720
721 static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu,
722 struct timer_map *map)
723 {
724 int hw, ret;
725
726 if (!irqchip_in_kernel(vcpu->kvm))
727 return;
728
729 /*
730 * We only ever unmap the vtimer irq on a VHE system that runs nested
731 * virtualization, in which case we have both a valid emul_vtimer,
732 * emul_ptimer, direct_vtimer, and direct_ptimer.
733 *
734 * Since this is called from kvm_timer_vcpu_load(), a change between
735 * vEL2 and vEL1/0 will have just happened, and the timer_map will
736 * represent this, and therefore we switch the emul/direct mappings
737 * below.
738 */
739 hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer));
740 if (hw < 0) {
741 kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer));
742 kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer));
743
744 ret = kvm_vgic_map_phys_irq(vcpu,
745 map->direct_vtimer->host_timer_irq,
746 timer_irq(map->direct_vtimer),
747 &arch_timer_irq_ops);
748 WARN_ON_ONCE(ret);
749 ret = kvm_vgic_map_phys_irq(vcpu,
750 map->direct_ptimer->host_timer_irq,
751 timer_irq(map->direct_ptimer),
752 &arch_timer_irq_ops);
753 WARN_ON_ONCE(ret);
754
755 /*
756 * The virtual offset behaviour is "interresting", as it
757 * always applies when HCR_EL2.E2H==0, but only when
758 * accessed from EL1 when HCR_EL2.E2H==1. So make sure we
759 * track E2H when putting the HV timer in "direct" mode.
760 */
761 if (map->direct_vtimer == vcpu_hvtimer(vcpu)) {
762 struct arch_timer_offset *offs = &map->direct_vtimer->offset;
763
764 if (vcpu_el2_e2h_is_set(vcpu))
765 offs->vcpu_offset = NULL;
766 else
767 offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
768 }
769 }
770 }
771
772 static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map)
773 {
774 bool tpt, tpc;
775 u64 clr, set;
776
777 /*
778 * No trapping gets configured here with nVHE. See
779 * __timer_enable_traps(), which is where the stuff happens.
780 */
781 if (!has_vhe())
782 return;
783
784 /*
785 * Our default policy is not to trap anything. As we progress
786 * within this function, reality kicks in and we start adding
787 * traps based on emulation requirements.
788 */
789 tpt = tpc = false;
790
791 /*
792 * We have two possibility to deal with a physical offset:
793 *
794 * - Either we have CNTPOFF (yay!) or the offset is 0:
795 * we let the guest freely access the HW
796 *
797 * - or neither of these condition apply:
798 * we trap accesses to the HW, but still use it
799 * after correcting the physical offset
800 */
801 if (!has_cntpoff() && timer_get_offset(map->direct_ptimer))
802 tpt = tpc = true;
803
804 /*
805 * Apply the enable bits that the guest hypervisor has requested for
806 * its own guest. We can only add traps that wouldn't have been set
807 * above.
808 */
809 if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
810 u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
811
812 /* Use the VHE format for mental sanity */
813 if (!vcpu_el2_e2h_is_set(vcpu))
814 val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10;
815
816 tpt |= !(val & (CNTHCTL_EL1PCEN << 10));
817 tpc |= !(val & (CNTHCTL_EL1PCTEN << 10));
818 }
819
820 /*
821 * Now that we have collected our requirements, compute the
822 * trap and enable bits.
823 */
824 set = 0;
825 clr = 0;
826
827 assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr);
828 assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr);
829
830 /* This only happens on VHE, so use the CNTHCTL_EL2 accessor. */
831 sysreg_clear_set(cnthctl_el2, clr, set);
832 }
833
834 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
835 {
836 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
837 struct timer_map map;
838
839 if (unlikely(!timer->enabled))
840 return;
841
842 get_timer_map(vcpu, &map);
843
844 if (static_branch_likely(&has_gic_active_state)) {
845 if (vcpu_has_nv(vcpu))
846 kvm_timer_vcpu_load_nested_switch(vcpu, &map);
847
848 kvm_timer_vcpu_load_gic(map.direct_vtimer);
849 if (map.direct_ptimer)
850 kvm_timer_vcpu_load_gic(map.direct_ptimer);
851 } else {
852 kvm_timer_vcpu_load_nogic(vcpu);
853 }
854
855 kvm_timer_unblocking(vcpu);
856
857 timer_restore_state(map.direct_vtimer);
858 if (map.direct_ptimer)
859 timer_restore_state(map.direct_ptimer);
860 if (map.emul_vtimer)
861 timer_emulate(map.emul_vtimer);
862 if (map.emul_ptimer)
863 timer_emulate(map.emul_ptimer);
864
865 timer_set_traps(vcpu, &map);
866 }
867
868 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
869 {
870 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
871 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
872 struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
873 bool vlevel, plevel;
874
875 if (likely(irqchip_in_kernel(vcpu->kvm)))
876 return false;
877
878 vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
879 plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
880
881 return kvm_timer_should_fire(vtimer) != vlevel ||
882 kvm_timer_should_fire(ptimer) != plevel;
883 }
884
885 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
886 {
887 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
888 struct timer_map map;
889
890 if (unlikely(!timer->enabled))
891 return;
892
893 get_timer_map(vcpu, &map);
894
895 timer_save_state(map.direct_vtimer);
896 if (map.direct_ptimer)
897 timer_save_state(map.direct_ptimer);
898
899 /*
900 * Cancel soft timer emulation, because the only case where we
901 * need it after a vcpu_put is in the context of a sleeping VCPU, and
902 * in that case we already factor in the deadline for the physical
903 * timer when scheduling the bg_timer.
904 *
905 * In any case, we re-schedule the hrtimer for the physical timer when
906 * coming back to the VCPU thread in kvm_timer_vcpu_load().
907 */
908 if (map.emul_vtimer)
909 soft_timer_cancel(&map.emul_vtimer->hrtimer);
910 if (map.emul_ptimer)
911 soft_timer_cancel(&map.emul_ptimer->hrtimer);
912
913 if (kvm_vcpu_is_blocking(vcpu))
914 kvm_timer_blocking(vcpu);
915 }
916
917 /*
918 * With a userspace irqchip we have to check if the guest de-asserted the
919 * timer and if so, unmask the timer irq signal on the host interrupt
920 * controller to ensure that we see future timer signals.
921 */
922 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
923 {
924 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
925
926 if (!kvm_timer_should_fire(vtimer)) {
927 kvm_timer_update_irq(vcpu, false, vtimer);
928 if (static_branch_likely(&has_gic_active_state))
929 set_timer_irq_phys_active(vtimer, false);
930 else
931 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
932 }
933 }
934
935 void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
936 {
937 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
938
939 if (unlikely(!timer->enabled))
940 return;
941
942 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
943 unmask_vtimer_irq_user(vcpu);
944 }
945
946 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
947 {
948 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
949 struct timer_map map;
950
951 get_timer_map(vcpu, &map);
952
953 /*
954 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
955 * and to 0 for ARMv7. We provide an implementation that always
956 * resets the timer to be disabled and unmasked and is compliant with
957 * the ARMv7 architecture.
958 */
959 for (int i = 0; i < nr_timers(vcpu); i++)
960 timer_set_ctl(vcpu_get_timer(vcpu, i), 0);
961
962 /*
963 * A vcpu running at EL2 is in charge of the offset applied to
964 * the virtual timer, so use the physical VM offset, and point
965 * the vcpu offset to CNTVOFF_EL2.
966 */
967 if (vcpu_has_nv(vcpu)) {
968 struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset;
969
970 offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
971 offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset;
972 }
973
974 if (timer->enabled) {
975 for (int i = 0; i < nr_timers(vcpu); i++)
976 kvm_timer_update_irq(vcpu, false,
977 vcpu_get_timer(vcpu, i));
978
979 if (irqchip_in_kernel(vcpu->kvm)) {
980 kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer));
981 if (map.direct_ptimer)
982 kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer));
983 }
984 }
985
986 if (map.emul_vtimer)
987 soft_timer_cancel(&map.emul_vtimer->hrtimer);
988 if (map.emul_ptimer)
989 soft_timer_cancel(&map.emul_ptimer->hrtimer);
990
991 return 0;
992 }
993
994 static void timer_context_init(struct kvm_vcpu *vcpu, int timerid)
995 {
996 struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid);
997 struct kvm *kvm = vcpu->kvm;
998
999 ctxt->vcpu = vcpu;
1000
1001 if (timerid == TIMER_VTIMER)
1002 ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset;
1003 else
1004 ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset;
1005
1006 hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1007 ctxt->hrtimer.function = kvm_hrtimer_expire;
1008
1009 switch (timerid) {
1010 case TIMER_PTIMER:
1011 case TIMER_HPTIMER:
1012 ctxt->host_timer_irq = host_ptimer_irq;
1013 break;
1014 case TIMER_VTIMER:
1015 case TIMER_HVTIMER:
1016 ctxt->host_timer_irq = host_vtimer_irq;
1017 break;
1018 }
1019 }
1020
1021 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
1022 {
1023 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1024
1025 for (int i = 0; i < NR_KVM_TIMERS; i++)
1026 timer_context_init(vcpu, i);
1027
1028 /* Synchronize offsets across timers of a VM if not already provided */
1029 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) {
1030 timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read());
1031 timer_set_offset(vcpu_ptimer(vcpu), 0);
1032 }
1033
1034 hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1035 timer->bg_timer.function = kvm_bg_timer_expire;
1036 }
1037
1038 void kvm_timer_init_vm(struct kvm *kvm)
1039 {
1040 for (int i = 0; i < NR_KVM_TIMERS; i++)
1041 kvm->arch.timer_data.ppi[i] = default_ppi[i];
1042 }
1043
1044 void kvm_timer_cpu_up(void)
1045 {
1046 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
1047 if (host_ptimer_irq)
1048 enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
1049 }
1050
1051 void kvm_timer_cpu_down(void)
1052 {
1053 disable_percpu_irq(host_vtimer_irq);
1054 if (host_ptimer_irq)
1055 disable_percpu_irq(host_ptimer_irq);
1056 }
1057
1058 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
1059 {
1060 struct arch_timer_context *timer;
1061
1062 switch (regid) {
1063 case KVM_REG_ARM_TIMER_CTL:
1064 timer = vcpu_vtimer(vcpu);
1065 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1066 break;
1067 case KVM_REG_ARM_TIMER_CNT:
1068 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1069 &vcpu->kvm->arch.flags)) {
1070 timer = vcpu_vtimer(vcpu);
1071 timer_set_offset(timer, kvm_phys_timer_read() - value);
1072 }
1073 break;
1074 case KVM_REG_ARM_TIMER_CVAL:
1075 timer = vcpu_vtimer(vcpu);
1076 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1077 break;
1078 case KVM_REG_ARM_PTIMER_CTL:
1079 timer = vcpu_ptimer(vcpu);
1080 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1081 break;
1082 case KVM_REG_ARM_PTIMER_CNT:
1083 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1084 &vcpu->kvm->arch.flags)) {
1085 timer = vcpu_ptimer(vcpu);
1086 timer_set_offset(timer, kvm_phys_timer_read() - value);
1087 }
1088 break;
1089 case KVM_REG_ARM_PTIMER_CVAL:
1090 timer = vcpu_ptimer(vcpu);
1091 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1092 break;
1093
1094 default:
1095 return -1;
1096 }
1097
1098 return 0;
1099 }
1100
1101 static u64 read_timer_ctl(struct arch_timer_context *timer)
1102 {
1103 /*
1104 * Set ISTATUS bit if it's expired.
1105 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
1106 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
1107 * regardless of ENABLE bit for our implementation convenience.
1108 */
1109 u32 ctl = timer_get_ctl(timer);
1110
1111 if (!kvm_timer_compute_delta(timer))
1112 ctl |= ARCH_TIMER_CTRL_IT_STAT;
1113
1114 return ctl;
1115 }
1116
1117 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
1118 {
1119 switch (regid) {
1120 case KVM_REG_ARM_TIMER_CTL:
1121 return kvm_arm_timer_read(vcpu,
1122 vcpu_vtimer(vcpu), TIMER_REG_CTL);
1123 case KVM_REG_ARM_TIMER_CNT:
1124 return kvm_arm_timer_read(vcpu,
1125 vcpu_vtimer(vcpu), TIMER_REG_CNT);
1126 case KVM_REG_ARM_TIMER_CVAL:
1127 return kvm_arm_timer_read(vcpu,
1128 vcpu_vtimer(vcpu), TIMER_REG_CVAL);
1129 case KVM_REG_ARM_PTIMER_CTL:
1130 return kvm_arm_timer_read(vcpu,
1131 vcpu_ptimer(vcpu), TIMER_REG_CTL);
1132 case KVM_REG_ARM_PTIMER_CNT:
1133 return kvm_arm_timer_read(vcpu,
1134 vcpu_ptimer(vcpu), TIMER_REG_CNT);
1135 case KVM_REG_ARM_PTIMER_CVAL:
1136 return kvm_arm_timer_read(vcpu,
1137 vcpu_ptimer(vcpu), TIMER_REG_CVAL);
1138 }
1139 return (u64)-1;
1140 }
1141
1142 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
1143 struct arch_timer_context *timer,
1144 enum kvm_arch_timer_regs treg)
1145 {
1146 u64 val;
1147
1148 switch (treg) {
1149 case TIMER_REG_TVAL:
1150 val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
1151 val = lower_32_bits(val);
1152 break;
1153
1154 case TIMER_REG_CTL:
1155 val = read_timer_ctl(timer);
1156 break;
1157
1158 case TIMER_REG_CVAL:
1159 val = timer_get_cval(timer);
1160 break;
1161
1162 case TIMER_REG_CNT:
1163 val = kvm_phys_timer_read() - timer_get_offset(timer);
1164 break;
1165
1166 case TIMER_REG_VOFF:
1167 val = *timer->offset.vcpu_offset;
1168 break;
1169
1170 default:
1171 BUG();
1172 }
1173
1174 return val;
1175 }
1176
1177 u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
1178 enum kvm_arch_timers tmr,
1179 enum kvm_arch_timer_regs treg)
1180 {
1181 struct arch_timer_context *timer;
1182 struct timer_map map;
1183 u64 val;
1184
1185 get_timer_map(vcpu, &map);
1186 timer = vcpu_get_timer(vcpu, tmr);
1187
1188 if (timer == map.emul_vtimer || timer == map.emul_ptimer)
1189 return kvm_arm_timer_read(vcpu, timer, treg);
1190
1191 preempt_disable();
1192 timer_save_state(timer);
1193
1194 val = kvm_arm_timer_read(vcpu, timer, treg);
1195
1196 timer_restore_state(timer);
1197 preempt_enable();
1198
1199 return val;
1200 }
1201
1202 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
1203 struct arch_timer_context *timer,
1204 enum kvm_arch_timer_regs treg,
1205 u64 val)
1206 {
1207 switch (treg) {
1208 case TIMER_REG_TVAL:
1209 timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
1210 break;
1211
1212 case TIMER_REG_CTL:
1213 timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
1214 break;
1215
1216 case TIMER_REG_CVAL:
1217 timer_set_cval(timer, val);
1218 break;
1219
1220 case TIMER_REG_VOFF:
1221 *timer->offset.vcpu_offset = val;
1222 break;
1223
1224 default:
1225 BUG();
1226 }
1227 }
1228
1229 void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
1230 enum kvm_arch_timers tmr,
1231 enum kvm_arch_timer_regs treg,
1232 u64 val)
1233 {
1234 struct arch_timer_context *timer;
1235 struct timer_map map;
1236
1237 get_timer_map(vcpu, &map);
1238 timer = vcpu_get_timer(vcpu, tmr);
1239 if (timer == map.emul_vtimer || timer == map.emul_ptimer) {
1240 soft_timer_cancel(&timer->hrtimer);
1241 kvm_arm_timer_write(vcpu, timer, treg, val);
1242 timer_emulate(timer);
1243 } else {
1244 preempt_disable();
1245 timer_save_state(timer);
1246 kvm_arm_timer_write(vcpu, timer, treg, val);
1247 timer_restore_state(timer);
1248 preempt_enable();
1249 }
1250 }
1251
1252 static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
1253 {
1254 if (vcpu)
1255 irqd_set_forwarded_to_vcpu(d);
1256 else
1257 irqd_clr_forwarded_to_vcpu(d);
1258
1259 return 0;
1260 }
1261
1262 static int timer_irq_set_irqchip_state(struct irq_data *d,
1263 enum irqchip_irq_state which, bool val)
1264 {
1265 if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
1266 return irq_chip_set_parent_state(d, which, val);
1267
1268 if (val)
1269 irq_chip_mask_parent(d);
1270 else
1271 irq_chip_unmask_parent(d);
1272
1273 return 0;
1274 }
1275
1276 static void timer_irq_eoi(struct irq_data *d)
1277 {
1278 if (!irqd_is_forwarded_to_vcpu(d))
1279 irq_chip_eoi_parent(d);
1280 }
1281
1282 static void timer_irq_ack(struct irq_data *d)
1283 {
1284 d = d->parent_data;
1285 if (d->chip->irq_ack)
1286 d->chip->irq_ack(d);
1287 }
1288
1289 static struct irq_chip timer_chip = {
1290 .name = "KVM",
1291 .irq_ack = timer_irq_ack,
1292 .irq_mask = irq_chip_mask_parent,
1293 .irq_unmask = irq_chip_unmask_parent,
1294 .irq_eoi = timer_irq_eoi,
1295 .irq_set_type = irq_chip_set_type_parent,
1296 .irq_set_vcpu_affinity = timer_irq_set_vcpu_affinity,
1297 .irq_set_irqchip_state = timer_irq_set_irqchip_state,
1298 };
1299
1300 static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1301 unsigned int nr_irqs, void *arg)
1302 {
1303 irq_hw_number_t hwirq = (uintptr_t)arg;
1304
1305 return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1306 &timer_chip, NULL);
1307 }
1308
1309 static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1310 unsigned int nr_irqs)
1311 {
1312 }
1313
1314 static const struct irq_domain_ops timer_domain_ops = {
1315 .alloc = timer_irq_domain_alloc,
1316 .free = timer_irq_domain_free,
1317 };
1318
1319 static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1320 {
1321 *flags = irq_get_trigger_type(virq);
1322 if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1323 kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1324 virq);
1325 *flags = IRQF_TRIGGER_LOW;
1326 }
1327 }
1328
1329 static int kvm_irq_init(struct arch_timer_kvm_info *info)
1330 {
1331 struct irq_domain *domain = NULL;
1332
1333 if (info->virtual_irq <= 0) {
1334 kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1335 info->virtual_irq);
1336 return -ENODEV;
1337 }
1338
1339 host_vtimer_irq = info->virtual_irq;
1340 kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
1341
1342 if (kvm_vgic_global_state.no_hw_deactivation) {
1343 struct fwnode_handle *fwnode;
1344 struct irq_data *data;
1345
1346 fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1347 if (!fwnode)
1348 return -ENOMEM;
1349
1350 /* Assume both vtimer and ptimer in the same parent */
1351 data = irq_get_irq_data(host_vtimer_irq);
1352 domain = irq_domain_create_hierarchy(data->domain, 0,
1353 NR_KVM_TIMERS, fwnode,
1354 &timer_domain_ops, NULL);
1355 if (!domain) {
1356 irq_domain_free_fwnode(fwnode);
1357 return -ENOMEM;
1358 }
1359
1360 arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
1361 WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1362 (void *)TIMER_VTIMER));
1363 }
1364
1365 if (info->physical_irq > 0) {
1366 host_ptimer_irq = info->physical_irq;
1367 kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
1368
1369 if (domain)
1370 WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1371 (void *)TIMER_PTIMER));
1372 }
1373
1374 return 0;
1375 }
1376
1377 int __init kvm_timer_hyp_init(bool has_gic)
1378 {
1379 struct arch_timer_kvm_info *info;
1380 int err;
1381
1382 info = arch_timer_get_kvm_info();
1383 timecounter = &info->timecounter;
1384
1385 if (!timecounter->cc) {
1386 kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1387 return -ENODEV;
1388 }
1389
1390 err = kvm_irq_init(info);
1391 if (err)
1392 return err;
1393
1394 /* First, do the virtual EL1 timer irq */
1395
1396 err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1397 "kvm guest vtimer", kvm_get_running_vcpus());
1398 if (err) {
1399 kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1400 host_vtimer_irq, err);
1401 return err;
1402 }
1403
1404 if (has_gic) {
1405 err = irq_set_vcpu_affinity(host_vtimer_irq,
1406 kvm_get_running_vcpus());
1407 if (err) {
1408 kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1409 goto out_free_vtimer_irq;
1410 }
1411
1412 static_branch_enable(&has_gic_active_state);
1413 }
1414
1415 kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1416
1417 /* Now let's do the physical EL1 timer irq */
1418
1419 if (info->physical_irq > 0) {
1420 err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1421 "kvm guest ptimer", kvm_get_running_vcpus());
1422 if (err) {
1423 kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1424 host_ptimer_irq, err);
1425 goto out_free_vtimer_irq;
1426 }
1427
1428 if (has_gic) {
1429 err = irq_set_vcpu_affinity(host_ptimer_irq,
1430 kvm_get_running_vcpus());
1431 if (err) {
1432 kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1433 goto out_free_ptimer_irq;
1434 }
1435 }
1436
1437 kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1438 } else if (has_vhe()) {
1439 kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1440 info->physical_irq);
1441 err = -ENODEV;
1442 goto out_free_vtimer_irq;
1443 }
1444
1445 return 0;
1446
1447 out_free_ptimer_irq:
1448 if (info->physical_irq > 0)
1449 free_percpu_irq(host_ptimer_irq, kvm_get_running_vcpus());
1450 out_free_vtimer_irq:
1451 free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1452 return err;
1453 }
1454
1455 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1456 {
1457 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1458
1459 soft_timer_cancel(&timer->bg_timer);
1460 }
1461
1462 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1463 {
1464 u32 ppis = 0;
1465 bool valid;
1466
1467 mutex_lock(&vcpu->kvm->arch.config_lock);
1468
1469 for (int i = 0; i < nr_timers(vcpu); i++) {
1470 struct arch_timer_context *ctx;
1471 int irq;
1472
1473 ctx = vcpu_get_timer(vcpu, i);
1474 irq = timer_irq(ctx);
1475 if (kvm_vgic_set_owner(vcpu, irq, ctx))
1476 break;
1477
1478 /*
1479 * We know by construction that we only have PPIs, so
1480 * all values are less than 32.
1481 */
1482 ppis |= BIT(irq);
1483 }
1484
1485 valid = hweight32(ppis) == nr_timers(vcpu);
1486
1487 if (valid)
1488 set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags);
1489
1490 mutex_unlock(&vcpu->kvm->arch.config_lock);
1491
1492 return valid;
1493 }
1494
1495 static bool kvm_arch_timer_get_input_level(int vintid)
1496 {
1497 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1498
1499 if (WARN(!vcpu, "No vcpu context!\n"))
1500 return false;
1501
1502 for (int i = 0; i < nr_timers(vcpu); i++) {
1503 struct arch_timer_context *ctx;
1504
1505 ctx = vcpu_get_timer(vcpu, i);
1506 if (timer_irq(ctx) == vintid)
1507 return kvm_timer_should_fire(ctx);
1508 }
1509
1510 /* A timer IRQ has fired, but no matching timer was found? */
1511 WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid);
1512
1513 return false;
1514 }
1515
1516 int kvm_timer_enable(struct kvm_vcpu *vcpu)
1517 {
1518 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1519 struct timer_map map;
1520 int ret;
1521
1522 if (timer->enabled)
1523 return 0;
1524
1525 /* Without a VGIC we do not map virtual IRQs to physical IRQs */
1526 if (!irqchip_in_kernel(vcpu->kvm))
1527 goto no_vgic;
1528
1529 /*
1530 * At this stage, we have the guarantee that the vgic is both
1531 * available and initialized.
1532 */
1533 if (!timer_irqs_are_valid(vcpu)) {
1534 kvm_debug("incorrectly configured timer irqs\n");
1535 return -EINVAL;
1536 }
1537
1538 get_timer_map(vcpu, &map);
1539
1540 ret = kvm_vgic_map_phys_irq(vcpu,
1541 map.direct_vtimer->host_timer_irq,
1542 timer_irq(map.direct_vtimer),
1543 &arch_timer_irq_ops);
1544 if (ret)
1545 return ret;
1546
1547 if (map.direct_ptimer) {
1548 ret = kvm_vgic_map_phys_irq(vcpu,
1549 map.direct_ptimer->host_timer_irq,
1550 timer_irq(map.direct_ptimer),
1551 &arch_timer_irq_ops);
1552 }
1553
1554 if (ret)
1555 return ret;
1556
1557 no_vgic:
1558 timer->enabled = 1;
1559 return 0;
1560 }
1561
1562 /* If we have CNTPOFF, permanently set ECV to enable it */
1563 void kvm_timer_init_vhe(void)
1564 {
1565 if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF))
1566 sysreg_clear_set(cnthctl_el2, 0, CNTHCTL_ECV);
1567 }
1568
1569 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1570 {
1571 int __user *uaddr = (int __user *)(long)attr->addr;
1572 int irq, idx, ret = 0;
1573
1574 if (!irqchip_in_kernel(vcpu->kvm))
1575 return -EINVAL;
1576
1577 if (get_user(irq, uaddr))
1578 return -EFAULT;
1579
1580 if (!(irq_is_ppi(irq)))
1581 return -EINVAL;
1582
1583 mutex_lock(&vcpu->kvm->arch.config_lock);
1584
1585 if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE,
1586 &vcpu->kvm->arch.flags)) {
1587 ret = -EBUSY;
1588 goto out;
1589 }
1590
1591 switch (attr->attr) {
1592 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1593 idx = TIMER_VTIMER;
1594 break;
1595 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1596 idx = TIMER_PTIMER;
1597 break;
1598 case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1599 idx = TIMER_HVTIMER;
1600 break;
1601 case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1602 idx = TIMER_HPTIMER;
1603 break;
1604 default:
1605 ret = -ENXIO;
1606 goto out;
1607 }
1608
1609 /*
1610 * We cannot validate the IRQ unicity before we run, so take it at
1611 * face value. The verdict will be given on first vcpu run, for each
1612 * vcpu. Yes this is late. Blame it on the stupid API.
1613 */
1614 vcpu->kvm->arch.timer_data.ppi[idx] = irq;
1615
1616 out:
1617 mutex_unlock(&vcpu->kvm->arch.config_lock);
1618 return ret;
1619 }
1620
1621 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1622 {
1623 int __user *uaddr = (int __user *)(long)attr->addr;
1624 struct arch_timer_context *timer;
1625 int irq;
1626
1627 switch (attr->attr) {
1628 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1629 timer = vcpu_vtimer(vcpu);
1630 break;
1631 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1632 timer = vcpu_ptimer(vcpu);
1633 break;
1634 case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1635 timer = vcpu_hvtimer(vcpu);
1636 break;
1637 case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1638 timer = vcpu_hptimer(vcpu);
1639 break;
1640 default:
1641 return -ENXIO;
1642 }
1643
1644 irq = timer_irq(timer);
1645 return put_user(irq, uaddr);
1646 }
1647
1648 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1649 {
1650 switch (attr->attr) {
1651 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1652 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1653 case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1654 case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1655 return 0;
1656 }
1657
1658 return -ENXIO;
1659 }
1660
1661 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1662 struct kvm_arm_counter_offset *offset)
1663 {
1664 int ret = 0;
1665
1666 if (offset->reserved)
1667 return -EINVAL;
1668
1669 mutex_lock(&kvm->lock);
1670
1671 if (lock_all_vcpus(kvm)) {
1672 set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags);
1673
1674 /*
1675 * If userspace decides to set the offset using this
1676 * API rather than merely restoring the counter
1677 * values, the offset applies to both the virtual and
1678 * physical views.
1679 */
1680 kvm->arch.timer_data.voffset = offset->counter_offset;
1681 kvm->arch.timer_data.poffset = offset->counter_offset;
1682
1683 unlock_all_vcpus(kvm);
1684 } else {
1685 ret = -EBUSY;
1686 }
1687
1688 mutex_unlock(&kvm->lock);
1689
1690 return ret;
1691 }