]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/arm64/kvm/arm.c
Merge tag 'kvm-x86-generic-6.8' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_nested.h>
40 #include <asm/kvm_pkvm.h>
41 #include <asm/kvm_emulate.h>
42 #include <asm/sections.h>
43
44 #include <kvm/arm_hypercalls.h>
45 #include <kvm/arm_pmu.h>
46 #include <kvm/arm_psci.h>
47
48 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
49
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51
52 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
54
55 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
56
57 static bool vgic_present, kvm_arm_initialised;
58
59 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
61
62 bool is_kvm_arm_initialised(void)
63 {
64 return kvm_arm_initialised;
65 }
66
67 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
68 {
69 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
70 }
71
72 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
73 struct kvm_enable_cap *cap)
74 {
75 int r;
76 u64 new_cap;
77
78 if (cap->flags)
79 return -EINVAL;
80
81 switch (cap->cap) {
82 case KVM_CAP_ARM_NISV_TO_USER:
83 r = 0;
84 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
85 &kvm->arch.flags);
86 break;
87 case KVM_CAP_ARM_MTE:
88 mutex_lock(&kvm->lock);
89 if (!system_supports_mte() || kvm->created_vcpus) {
90 r = -EINVAL;
91 } else {
92 r = 0;
93 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
94 }
95 mutex_unlock(&kvm->lock);
96 break;
97 case KVM_CAP_ARM_SYSTEM_SUSPEND:
98 r = 0;
99 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
100 break;
101 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
102 new_cap = cap->args[0];
103
104 mutex_lock(&kvm->slots_lock);
105 /*
106 * To keep things simple, allow changing the chunk
107 * size only when no memory slots have been created.
108 */
109 if (!kvm_are_all_memslots_empty(kvm)) {
110 r = -EINVAL;
111 } else if (new_cap && !kvm_is_block_size_supported(new_cap)) {
112 r = -EINVAL;
113 } else {
114 r = 0;
115 kvm->arch.mmu.split_page_chunk_size = new_cap;
116 }
117 mutex_unlock(&kvm->slots_lock);
118 break;
119 default:
120 r = -EINVAL;
121 break;
122 }
123
124 return r;
125 }
126
127 static int kvm_arm_default_max_vcpus(void)
128 {
129 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
130 }
131
132 /**
133 * kvm_arch_init_vm - initializes a VM data structure
134 * @kvm: pointer to the KVM struct
135 */
136 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
137 {
138 int ret;
139
140 mutex_init(&kvm->arch.config_lock);
141
142 #ifdef CONFIG_LOCKDEP
143 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */
144 mutex_lock(&kvm->lock);
145 mutex_lock(&kvm->arch.config_lock);
146 mutex_unlock(&kvm->arch.config_lock);
147 mutex_unlock(&kvm->lock);
148 #endif
149
150 ret = kvm_share_hyp(kvm, kvm + 1);
151 if (ret)
152 return ret;
153
154 ret = pkvm_init_host_vm(kvm);
155 if (ret)
156 goto err_unshare_kvm;
157
158 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
159 ret = -ENOMEM;
160 goto err_unshare_kvm;
161 }
162 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
163
164 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
165 if (ret)
166 goto err_free_cpumask;
167
168 kvm_vgic_early_init(kvm);
169
170 kvm_timer_init_vm(kvm);
171
172 /* The maximum number of VCPUs is limited by the host's GIC model */
173 kvm->max_vcpus = kvm_arm_default_max_vcpus();
174
175 kvm_arm_init_hypercalls(kvm);
176
177 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
178
179 return 0;
180
181 err_free_cpumask:
182 free_cpumask_var(kvm->arch.supported_cpus);
183 err_unshare_kvm:
184 kvm_unshare_hyp(kvm, kvm + 1);
185 return ret;
186 }
187
188 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
189 {
190 return VM_FAULT_SIGBUS;
191 }
192
193
194 /**
195 * kvm_arch_destroy_vm - destroy the VM data structure
196 * @kvm: pointer to the KVM struct
197 */
198 void kvm_arch_destroy_vm(struct kvm *kvm)
199 {
200 bitmap_free(kvm->arch.pmu_filter);
201 free_cpumask_var(kvm->arch.supported_cpus);
202
203 kvm_vgic_destroy(kvm);
204
205 if (is_protected_kvm_enabled())
206 pkvm_destroy_hyp_vm(kvm);
207
208 kfree(kvm->arch.mpidr_data);
209 kvm_destroy_vcpus(kvm);
210
211 kvm_unshare_hyp(kvm, kvm + 1);
212
213 kvm_arm_teardown_hypercalls(kvm);
214 }
215
216 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
217 {
218 int r;
219 switch (ext) {
220 case KVM_CAP_IRQCHIP:
221 r = vgic_present;
222 break;
223 case KVM_CAP_IOEVENTFD:
224 case KVM_CAP_USER_MEMORY:
225 case KVM_CAP_SYNC_MMU:
226 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
227 case KVM_CAP_ONE_REG:
228 case KVM_CAP_ARM_PSCI:
229 case KVM_CAP_ARM_PSCI_0_2:
230 case KVM_CAP_READONLY_MEM:
231 case KVM_CAP_MP_STATE:
232 case KVM_CAP_IMMEDIATE_EXIT:
233 case KVM_CAP_VCPU_EVENTS:
234 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
235 case KVM_CAP_ARM_NISV_TO_USER:
236 case KVM_CAP_ARM_INJECT_EXT_DABT:
237 case KVM_CAP_SET_GUEST_DEBUG:
238 case KVM_CAP_VCPU_ATTRIBUTES:
239 case KVM_CAP_PTP_KVM:
240 case KVM_CAP_ARM_SYSTEM_SUSPEND:
241 case KVM_CAP_IRQFD_RESAMPLE:
242 case KVM_CAP_COUNTER_OFFSET:
243 r = 1;
244 break;
245 case KVM_CAP_SET_GUEST_DEBUG2:
246 return KVM_GUESTDBG_VALID_MASK;
247 case KVM_CAP_ARM_SET_DEVICE_ADDR:
248 r = 1;
249 break;
250 case KVM_CAP_NR_VCPUS:
251 /*
252 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
253 * architectures, as it does not always bound it to
254 * KVM_CAP_MAX_VCPUS. It should not matter much because
255 * this is just an advisory value.
256 */
257 r = min_t(unsigned int, num_online_cpus(),
258 kvm_arm_default_max_vcpus());
259 break;
260 case KVM_CAP_MAX_VCPUS:
261 case KVM_CAP_MAX_VCPU_ID:
262 if (kvm)
263 r = kvm->max_vcpus;
264 else
265 r = kvm_arm_default_max_vcpus();
266 break;
267 case KVM_CAP_MSI_DEVID:
268 if (!kvm)
269 r = -EINVAL;
270 else
271 r = kvm->arch.vgic.msis_require_devid;
272 break;
273 case KVM_CAP_ARM_USER_IRQ:
274 /*
275 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
276 * (bump this number if adding more devices)
277 */
278 r = 1;
279 break;
280 case KVM_CAP_ARM_MTE:
281 r = system_supports_mte();
282 break;
283 case KVM_CAP_STEAL_TIME:
284 r = kvm_arm_pvtime_supported();
285 break;
286 case KVM_CAP_ARM_EL1_32BIT:
287 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
288 break;
289 case KVM_CAP_GUEST_DEBUG_HW_BPS:
290 r = get_num_brps();
291 break;
292 case KVM_CAP_GUEST_DEBUG_HW_WPS:
293 r = get_num_wrps();
294 break;
295 case KVM_CAP_ARM_PMU_V3:
296 r = kvm_arm_support_pmu_v3();
297 break;
298 case KVM_CAP_ARM_INJECT_SERROR_ESR:
299 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
300 break;
301 case KVM_CAP_ARM_VM_IPA_SIZE:
302 r = get_kvm_ipa_limit();
303 break;
304 case KVM_CAP_ARM_SVE:
305 r = system_supports_sve();
306 break;
307 case KVM_CAP_ARM_PTRAUTH_ADDRESS:
308 case KVM_CAP_ARM_PTRAUTH_GENERIC:
309 r = system_has_full_ptr_auth();
310 break;
311 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
312 if (kvm)
313 r = kvm->arch.mmu.split_page_chunk_size;
314 else
315 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
316 break;
317 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
318 r = kvm_supported_block_sizes();
319 break;
320 case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
321 r = BIT(0);
322 break;
323 default:
324 r = 0;
325 }
326
327 return r;
328 }
329
330 long kvm_arch_dev_ioctl(struct file *filp,
331 unsigned int ioctl, unsigned long arg)
332 {
333 return -EINVAL;
334 }
335
336 struct kvm *kvm_arch_alloc_vm(void)
337 {
338 size_t sz = sizeof(struct kvm);
339
340 if (!has_vhe())
341 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
342
343 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
344 }
345
346 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
347 {
348 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
349 return -EBUSY;
350
351 if (id >= kvm->max_vcpus)
352 return -EINVAL;
353
354 return 0;
355 }
356
357 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
358 {
359 int err;
360
361 spin_lock_init(&vcpu->arch.mp_state_lock);
362
363 #ifdef CONFIG_LOCKDEP
364 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */
365 mutex_lock(&vcpu->mutex);
366 mutex_lock(&vcpu->kvm->arch.config_lock);
367 mutex_unlock(&vcpu->kvm->arch.config_lock);
368 mutex_unlock(&vcpu->mutex);
369 #endif
370
371 /* Force users to call KVM_ARM_VCPU_INIT */
372 vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
373
374 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
375
376 /*
377 * Default value for the FP state, will be overloaded at load
378 * time if we support FP (pretty likely)
379 */
380 vcpu->arch.fp_state = FP_STATE_FREE;
381
382 /* Set up the timer */
383 kvm_timer_vcpu_init(vcpu);
384
385 kvm_pmu_vcpu_init(vcpu);
386
387 kvm_arm_reset_debug_ptr(vcpu);
388
389 kvm_arm_pvtime_vcpu_init(&vcpu->arch);
390
391 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
392
393 err = kvm_vgic_vcpu_init(vcpu);
394 if (err)
395 return err;
396
397 return kvm_share_hyp(vcpu, vcpu + 1);
398 }
399
400 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
401 {
402 }
403
404 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
405 {
406 if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
407 static_branch_dec(&userspace_irqchip_in_use);
408
409 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
410 kvm_timer_vcpu_terminate(vcpu);
411 kvm_pmu_vcpu_destroy(vcpu);
412 kvm_vgic_vcpu_destroy(vcpu);
413 kvm_arm_vcpu_destroy(vcpu);
414 }
415
416 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
417 {
418
419 }
420
421 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
422 {
423
424 }
425
426 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
427 {
428 struct kvm_s2_mmu *mmu;
429 int *last_ran;
430
431 mmu = vcpu->arch.hw_mmu;
432 last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
433
434 /*
435 * We guarantee that both TLBs and I-cache are private to each
436 * vcpu. If detecting that a vcpu from the same VM has
437 * previously run on the same physical CPU, call into the
438 * hypervisor code to nuke the relevant contexts.
439 *
440 * We might get preempted before the vCPU actually runs, but
441 * over-invalidation doesn't affect correctness.
442 */
443 if (*last_ran != vcpu->vcpu_idx) {
444 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
445 *last_ran = vcpu->vcpu_idx;
446 }
447
448 vcpu->cpu = cpu;
449
450 kvm_vgic_load(vcpu);
451 kvm_timer_vcpu_load(vcpu);
452 if (has_vhe())
453 kvm_vcpu_load_vhe(vcpu);
454 kvm_arch_vcpu_load_fp(vcpu);
455 kvm_vcpu_pmu_restore_guest(vcpu);
456 if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
457 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
458
459 if (single_task_running())
460 vcpu_clear_wfx_traps(vcpu);
461 else
462 vcpu_set_wfx_traps(vcpu);
463
464 if (vcpu_has_ptrauth(vcpu))
465 vcpu_ptrauth_disable(vcpu);
466 kvm_arch_vcpu_load_debug_state_flags(vcpu);
467
468 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
469 vcpu_set_on_unsupported_cpu(vcpu);
470 }
471
472 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
473 {
474 kvm_arch_vcpu_put_debug_state_flags(vcpu);
475 kvm_arch_vcpu_put_fp(vcpu);
476 if (has_vhe())
477 kvm_vcpu_put_vhe(vcpu);
478 kvm_timer_vcpu_put(vcpu);
479 kvm_vgic_put(vcpu);
480 kvm_vcpu_pmu_restore_host(vcpu);
481 kvm_arm_vmid_clear_active();
482
483 vcpu_clear_on_unsupported_cpu(vcpu);
484 vcpu->cpu = -1;
485 }
486
487 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
488 {
489 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
490 kvm_make_request(KVM_REQ_SLEEP, vcpu);
491 kvm_vcpu_kick(vcpu);
492 }
493
494 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
495 {
496 spin_lock(&vcpu->arch.mp_state_lock);
497 __kvm_arm_vcpu_power_off(vcpu);
498 spin_unlock(&vcpu->arch.mp_state_lock);
499 }
500
501 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
502 {
503 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
504 }
505
506 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
507 {
508 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
509 kvm_make_request(KVM_REQ_SUSPEND, vcpu);
510 kvm_vcpu_kick(vcpu);
511 }
512
513 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
514 {
515 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
516 }
517
518 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
519 struct kvm_mp_state *mp_state)
520 {
521 *mp_state = READ_ONCE(vcpu->arch.mp_state);
522
523 return 0;
524 }
525
526 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
527 struct kvm_mp_state *mp_state)
528 {
529 int ret = 0;
530
531 spin_lock(&vcpu->arch.mp_state_lock);
532
533 switch (mp_state->mp_state) {
534 case KVM_MP_STATE_RUNNABLE:
535 WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
536 break;
537 case KVM_MP_STATE_STOPPED:
538 __kvm_arm_vcpu_power_off(vcpu);
539 break;
540 case KVM_MP_STATE_SUSPENDED:
541 kvm_arm_vcpu_suspend(vcpu);
542 break;
543 default:
544 ret = -EINVAL;
545 }
546
547 spin_unlock(&vcpu->arch.mp_state_lock);
548
549 return ret;
550 }
551
552 /**
553 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
554 * @v: The VCPU pointer
555 *
556 * If the guest CPU is not waiting for interrupts or an interrupt line is
557 * asserted, the CPU is by definition runnable.
558 */
559 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
560 {
561 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
562 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
563 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
564 }
565
566 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
567 {
568 return vcpu_mode_priv(vcpu);
569 }
570
571 #ifdef CONFIG_GUEST_PERF_EVENTS
572 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
573 {
574 return *vcpu_pc(vcpu);
575 }
576 #endif
577
578 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
579 {
580 return vcpu_get_flag(vcpu, VCPU_INITIALIZED);
581 }
582
583 static void kvm_init_mpidr_data(struct kvm *kvm)
584 {
585 struct kvm_mpidr_data *data = NULL;
586 unsigned long c, mask, nr_entries;
587 u64 aff_set = 0, aff_clr = ~0UL;
588 struct kvm_vcpu *vcpu;
589
590 mutex_lock(&kvm->arch.config_lock);
591
592 if (kvm->arch.mpidr_data || atomic_read(&kvm->online_vcpus) == 1)
593 goto out;
594
595 kvm_for_each_vcpu(c, vcpu, kvm) {
596 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
597 aff_set |= aff;
598 aff_clr &= aff;
599 }
600
601 /*
602 * A significant bit can be either 0 or 1, and will only appear in
603 * aff_set. Use aff_clr to weed out the useless stuff.
604 */
605 mask = aff_set ^ aff_clr;
606 nr_entries = BIT_ULL(hweight_long(mask));
607
608 /*
609 * Don't let userspace fool us. If we need more than a single page
610 * to describe the compressed MPIDR array, just fall back to the
611 * iterative method. Single vcpu VMs do not need this either.
612 */
613 if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
614 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
615 GFP_KERNEL_ACCOUNT);
616
617 if (!data)
618 goto out;
619
620 data->mpidr_mask = mask;
621
622 kvm_for_each_vcpu(c, vcpu, kvm) {
623 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
624 u16 index = kvm_mpidr_index(data, aff);
625
626 data->cmpidr_to_idx[index] = c;
627 }
628
629 kvm->arch.mpidr_data = data;
630 out:
631 mutex_unlock(&kvm->arch.config_lock);
632 }
633
634 /*
635 * Handle both the initialisation that is being done when the vcpu is
636 * run for the first time, as well as the updates that must be
637 * performed each time we get a new thread dealing with this vcpu.
638 */
639 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
640 {
641 struct kvm *kvm = vcpu->kvm;
642 int ret;
643
644 if (!kvm_vcpu_initialized(vcpu))
645 return -ENOEXEC;
646
647 if (!kvm_arm_vcpu_is_finalized(vcpu))
648 return -EPERM;
649
650 ret = kvm_arch_vcpu_run_map_fp(vcpu);
651 if (ret)
652 return ret;
653
654 if (likely(vcpu_has_run_once(vcpu)))
655 return 0;
656
657 kvm_init_mpidr_data(kvm);
658
659 kvm_arm_vcpu_init_debug(vcpu);
660
661 if (likely(irqchip_in_kernel(kvm))) {
662 /*
663 * Map the VGIC hardware resources before running a vcpu the
664 * first time on this VM.
665 */
666 ret = kvm_vgic_map_resources(kvm);
667 if (ret)
668 return ret;
669 }
670
671 if (vcpu_has_nv(vcpu)) {
672 ret = kvm_init_nv_sysregs(vcpu->kvm);
673 if (ret)
674 return ret;
675 }
676
677 ret = kvm_timer_enable(vcpu);
678 if (ret)
679 return ret;
680
681 ret = kvm_arm_pmu_v3_enable(vcpu);
682 if (ret)
683 return ret;
684
685 if (is_protected_kvm_enabled()) {
686 ret = pkvm_create_hyp_vm(kvm);
687 if (ret)
688 return ret;
689 }
690
691 if (!irqchip_in_kernel(kvm)) {
692 /*
693 * Tell the rest of the code that there are userspace irqchip
694 * VMs in the wild.
695 */
696 static_branch_inc(&userspace_irqchip_in_use);
697 }
698
699 /*
700 * Initialize traps for protected VMs.
701 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
702 * the code is in place for first run initialization at EL2.
703 */
704 if (kvm_vm_is_protected(kvm))
705 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
706
707 mutex_lock(&kvm->arch.config_lock);
708 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
709 mutex_unlock(&kvm->arch.config_lock);
710
711 return ret;
712 }
713
714 bool kvm_arch_intc_initialized(struct kvm *kvm)
715 {
716 return vgic_initialized(kvm);
717 }
718
719 void kvm_arm_halt_guest(struct kvm *kvm)
720 {
721 unsigned long i;
722 struct kvm_vcpu *vcpu;
723
724 kvm_for_each_vcpu(i, vcpu, kvm)
725 vcpu->arch.pause = true;
726 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
727 }
728
729 void kvm_arm_resume_guest(struct kvm *kvm)
730 {
731 unsigned long i;
732 struct kvm_vcpu *vcpu;
733
734 kvm_for_each_vcpu(i, vcpu, kvm) {
735 vcpu->arch.pause = false;
736 __kvm_vcpu_wake_up(vcpu);
737 }
738 }
739
740 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
741 {
742 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
743
744 rcuwait_wait_event(wait,
745 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
746 TASK_INTERRUPTIBLE);
747
748 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
749 /* Awaken to handle a signal, request we sleep again later. */
750 kvm_make_request(KVM_REQ_SLEEP, vcpu);
751 }
752
753 /*
754 * Make sure we will observe a potential reset request if we've
755 * observed a change to the power state. Pairs with the smp_wmb() in
756 * kvm_psci_vcpu_on().
757 */
758 smp_rmb();
759 }
760
761 /**
762 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
763 * @vcpu: The VCPU pointer
764 *
765 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
766 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending
767 * on when a wake event arrives, e.g. there may already be a pending wake event.
768 */
769 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
770 {
771 /*
772 * Sync back the state of the GIC CPU interface so that we have
773 * the latest PMR and group enables. This ensures that
774 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
775 * we have pending interrupts, e.g. when determining if the
776 * vCPU should block.
777 *
778 * For the same reason, we want to tell GICv4 that we need
779 * doorbells to be signalled, should an interrupt become pending.
780 */
781 preempt_disable();
782 kvm_vgic_vmcr_sync(vcpu);
783 vcpu_set_flag(vcpu, IN_WFI);
784 vgic_v4_put(vcpu);
785 preempt_enable();
786
787 kvm_vcpu_halt(vcpu);
788 vcpu_clear_flag(vcpu, IN_WFIT);
789
790 preempt_disable();
791 vcpu_clear_flag(vcpu, IN_WFI);
792 vgic_v4_load(vcpu);
793 preempt_enable();
794 }
795
796 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
797 {
798 if (!kvm_arm_vcpu_suspended(vcpu))
799 return 1;
800
801 kvm_vcpu_wfi(vcpu);
802
803 /*
804 * The suspend state is sticky; we do not leave it until userspace
805 * explicitly marks the vCPU as runnable. Request that we suspend again
806 * later.
807 */
808 kvm_make_request(KVM_REQ_SUSPEND, vcpu);
809
810 /*
811 * Check to make sure the vCPU is actually runnable. If so, exit to
812 * userspace informing it of the wakeup condition.
813 */
814 if (kvm_arch_vcpu_runnable(vcpu)) {
815 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
816 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
817 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
818 return 0;
819 }
820
821 /*
822 * Otherwise, we were unblocked to process a different event, such as a
823 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
824 * process the event.
825 */
826 return 1;
827 }
828
829 /**
830 * check_vcpu_requests - check and handle pending vCPU requests
831 * @vcpu: the VCPU pointer
832 *
833 * Return: 1 if we should enter the guest
834 * 0 if we should exit to userspace
835 * < 0 if we should exit to userspace, where the return value indicates
836 * an error
837 */
838 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
839 {
840 if (kvm_request_pending(vcpu)) {
841 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
842 kvm_vcpu_sleep(vcpu);
843
844 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
845 kvm_reset_vcpu(vcpu);
846
847 /*
848 * Clear IRQ_PENDING requests that were made to guarantee
849 * that a VCPU sees new virtual interrupts.
850 */
851 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
852
853 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
854 kvm_update_stolen_time(vcpu);
855
856 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
857 /* The distributor enable bits were changed */
858 preempt_disable();
859 vgic_v4_put(vcpu);
860 vgic_v4_load(vcpu);
861 preempt_enable();
862 }
863
864 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
865 kvm_vcpu_reload_pmu(vcpu);
866
867 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
868 kvm_vcpu_pmu_restore_guest(vcpu);
869
870 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
871 return kvm_vcpu_suspend(vcpu);
872
873 if (kvm_dirty_ring_check_request(vcpu))
874 return 0;
875 }
876
877 return 1;
878 }
879
880 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
881 {
882 if (likely(!vcpu_mode_is_32bit(vcpu)))
883 return false;
884
885 if (vcpu_has_nv(vcpu))
886 return true;
887
888 return !kvm_supports_32bit_el0();
889 }
890
891 /**
892 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
893 * @vcpu: The VCPU pointer
894 * @ret: Pointer to write optional return code
895 *
896 * Returns: true if the VCPU needs to return to a preemptible + interruptible
897 * and skip guest entry.
898 *
899 * This function disambiguates between two different types of exits: exits to a
900 * preemptible + interruptible kernel context and exits to userspace. For an
901 * exit to userspace, this function will write the return code to ret and return
902 * true. For an exit to preemptible + interruptible kernel context (i.e. check
903 * for pending work and re-enter), return true without writing to ret.
904 */
905 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
906 {
907 struct kvm_run *run = vcpu->run;
908
909 /*
910 * If we're using a userspace irqchip, then check if we need
911 * to tell a userspace irqchip about timer or PMU level
912 * changes and if so, exit to userspace (the actual level
913 * state gets updated in kvm_timer_update_run and
914 * kvm_pmu_update_run below).
915 */
916 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
917 if (kvm_timer_should_notify_user(vcpu) ||
918 kvm_pmu_should_notify_user(vcpu)) {
919 *ret = -EINTR;
920 run->exit_reason = KVM_EXIT_INTR;
921 return true;
922 }
923 }
924
925 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
926 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
927 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
928 run->fail_entry.cpu = smp_processor_id();
929 *ret = 0;
930 return true;
931 }
932
933 return kvm_request_pending(vcpu) ||
934 xfer_to_guest_mode_work_pending();
935 }
936
937 /*
938 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
939 * the vCPU is running.
940 *
941 * This must be noinstr as instrumentation may make use of RCU, and this is not
942 * safe during the EQS.
943 */
944 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
945 {
946 int ret;
947
948 guest_state_enter_irqoff();
949 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
950 guest_state_exit_irqoff();
951
952 return ret;
953 }
954
955 /**
956 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
957 * @vcpu: The VCPU pointer
958 *
959 * This function is called through the VCPU_RUN ioctl called from user space. It
960 * will execute VM code in a loop until the time slice for the process is used
961 * or some emulation is needed from user space in which case the function will
962 * return with return value 0 and with the kvm_run structure filled in with the
963 * required data for the requested emulation.
964 */
965 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
966 {
967 struct kvm_run *run = vcpu->run;
968 int ret;
969
970 if (run->exit_reason == KVM_EXIT_MMIO) {
971 ret = kvm_handle_mmio_return(vcpu);
972 if (ret)
973 return ret;
974 }
975
976 vcpu_load(vcpu);
977
978 if (run->immediate_exit) {
979 ret = -EINTR;
980 goto out;
981 }
982
983 kvm_sigset_activate(vcpu);
984
985 ret = 1;
986 run->exit_reason = KVM_EXIT_UNKNOWN;
987 run->flags = 0;
988 while (ret > 0) {
989 /*
990 * Check conditions before entering the guest
991 */
992 ret = xfer_to_guest_mode_handle_work(vcpu);
993 if (!ret)
994 ret = 1;
995
996 if (ret > 0)
997 ret = check_vcpu_requests(vcpu);
998
999 /*
1000 * Preparing the interrupts to be injected also
1001 * involves poking the GIC, which must be done in a
1002 * non-preemptible context.
1003 */
1004 preempt_disable();
1005
1006 /*
1007 * The VMID allocator only tracks active VMIDs per
1008 * physical CPU, and therefore the VMID allocated may not be
1009 * preserved on VMID roll-over if the task was preempted,
1010 * making a thread's VMID inactive. So we need to call
1011 * kvm_arm_vmid_update() in non-premptible context.
1012 */
1013 if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) &&
1014 has_vhe())
1015 __load_stage2(vcpu->arch.hw_mmu,
1016 vcpu->arch.hw_mmu->arch);
1017
1018 kvm_pmu_flush_hwstate(vcpu);
1019
1020 local_irq_disable();
1021
1022 kvm_vgic_flush_hwstate(vcpu);
1023
1024 kvm_pmu_update_vcpu_events(vcpu);
1025
1026 /*
1027 * Ensure we set mode to IN_GUEST_MODE after we disable
1028 * interrupts and before the final VCPU requests check.
1029 * See the comment in kvm_vcpu_exiting_guest_mode() and
1030 * Documentation/virt/kvm/vcpu-requests.rst
1031 */
1032 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1033
1034 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1035 vcpu->mode = OUTSIDE_GUEST_MODE;
1036 isb(); /* Ensure work in x_flush_hwstate is committed */
1037 kvm_pmu_sync_hwstate(vcpu);
1038 if (static_branch_unlikely(&userspace_irqchip_in_use))
1039 kvm_timer_sync_user(vcpu);
1040 kvm_vgic_sync_hwstate(vcpu);
1041 local_irq_enable();
1042 preempt_enable();
1043 continue;
1044 }
1045
1046 kvm_arm_setup_debug(vcpu);
1047 kvm_arch_vcpu_ctxflush_fp(vcpu);
1048
1049 /**************************************************************
1050 * Enter the guest
1051 */
1052 trace_kvm_entry(*vcpu_pc(vcpu));
1053 guest_timing_enter_irqoff();
1054
1055 ret = kvm_arm_vcpu_enter_exit(vcpu);
1056
1057 vcpu->mode = OUTSIDE_GUEST_MODE;
1058 vcpu->stat.exits++;
1059 /*
1060 * Back from guest
1061 *************************************************************/
1062
1063 kvm_arm_clear_debug(vcpu);
1064
1065 /*
1066 * We must sync the PMU state before the vgic state so
1067 * that the vgic can properly sample the updated state of the
1068 * interrupt line.
1069 */
1070 kvm_pmu_sync_hwstate(vcpu);
1071
1072 /*
1073 * Sync the vgic state before syncing the timer state because
1074 * the timer code needs to know if the virtual timer
1075 * interrupts are active.
1076 */
1077 kvm_vgic_sync_hwstate(vcpu);
1078
1079 /*
1080 * Sync the timer hardware state before enabling interrupts as
1081 * we don't want vtimer interrupts to race with syncing the
1082 * timer virtual interrupt state.
1083 */
1084 if (static_branch_unlikely(&userspace_irqchip_in_use))
1085 kvm_timer_sync_user(vcpu);
1086
1087 kvm_arch_vcpu_ctxsync_fp(vcpu);
1088
1089 /*
1090 * We must ensure that any pending interrupts are taken before
1091 * we exit guest timing so that timer ticks are accounted as
1092 * guest time. Transiently unmask interrupts so that any
1093 * pending interrupts are taken.
1094 *
1095 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1096 * context synchronization event) is necessary to ensure that
1097 * pending interrupts are taken.
1098 */
1099 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1100 local_irq_enable();
1101 isb();
1102 local_irq_disable();
1103 }
1104
1105 guest_timing_exit_irqoff();
1106
1107 local_irq_enable();
1108
1109 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1110
1111 /* Exit types that need handling before we can be preempted */
1112 handle_exit_early(vcpu, ret);
1113
1114 preempt_enable();
1115
1116 /*
1117 * The ARMv8 architecture doesn't give the hypervisor
1118 * a mechanism to prevent a guest from dropping to AArch32 EL0
1119 * if implemented by the CPU. If we spot the guest in such
1120 * state and that we decided it wasn't supposed to do so (like
1121 * with the asymmetric AArch32 case), return to userspace with
1122 * a fatal error.
1123 */
1124 if (vcpu_mode_is_bad_32bit(vcpu)) {
1125 /*
1126 * As we have caught the guest red-handed, decide that
1127 * it isn't fit for purpose anymore by making the vcpu
1128 * invalid. The VMM can try and fix it by issuing a
1129 * KVM_ARM_VCPU_INIT if it really wants to.
1130 */
1131 vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1132 ret = ARM_EXCEPTION_IL;
1133 }
1134
1135 ret = handle_exit(vcpu, ret);
1136 }
1137
1138 /* Tell userspace about in-kernel device output levels */
1139 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1140 kvm_timer_update_run(vcpu);
1141 kvm_pmu_update_run(vcpu);
1142 }
1143
1144 kvm_sigset_deactivate(vcpu);
1145
1146 out:
1147 /*
1148 * In the unlikely event that we are returning to userspace
1149 * with pending exceptions or PC adjustment, commit these
1150 * adjustments in order to give userspace a consistent view of
1151 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1152 * being preempt-safe on VHE.
1153 */
1154 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1155 vcpu_get_flag(vcpu, INCREMENT_PC)))
1156 kvm_call_hyp(__kvm_adjust_pc, vcpu);
1157
1158 vcpu_put(vcpu);
1159 return ret;
1160 }
1161
1162 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1163 {
1164 int bit_index;
1165 bool set;
1166 unsigned long *hcr;
1167
1168 if (number == KVM_ARM_IRQ_CPU_IRQ)
1169 bit_index = __ffs(HCR_VI);
1170 else /* KVM_ARM_IRQ_CPU_FIQ */
1171 bit_index = __ffs(HCR_VF);
1172
1173 hcr = vcpu_hcr(vcpu);
1174 if (level)
1175 set = test_and_set_bit(bit_index, hcr);
1176 else
1177 set = test_and_clear_bit(bit_index, hcr);
1178
1179 /*
1180 * If we didn't change anything, no need to wake up or kick other CPUs
1181 */
1182 if (set == level)
1183 return 0;
1184
1185 /*
1186 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1187 * trigger a world-switch round on the running physical CPU to set the
1188 * virtual IRQ/FIQ fields in the HCR appropriately.
1189 */
1190 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1191 kvm_vcpu_kick(vcpu);
1192
1193 return 0;
1194 }
1195
1196 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1197 bool line_status)
1198 {
1199 u32 irq = irq_level->irq;
1200 unsigned int irq_type, vcpu_id, irq_num;
1201 struct kvm_vcpu *vcpu = NULL;
1202 bool level = irq_level->level;
1203
1204 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1205 vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1206 vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1207 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1208
1209 trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1210
1211 switch (irq_type) {
1212 case KVM_ARM_IRQ_TYPE_CPU:
1213 if (irqchip_in_kernel(kvm))
1214 return -ENXIO;
1215
1216 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1217 if (!vcpu)
1218 return -EINVAL;
1219
1220 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1221 return -EINVAL;
1222
1223 return vcpu_interrupt_line(vcpu, irq_num, level);
1224 case KVM_ARM_IRQ_TYPE_PPI:
1225 if (!irqchip_in_kernel(kvm))
1226 return -ENXIO;
1227
1228 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1229 if (!vcpu)
1230 return -EINVAL;
1231
1232 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1233 return -EINVAL;
1234
1235 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1236 case KVM_ARM_IRQ_TYPE_SPI:
1237 if (!irqchip_in_kernel(kvm))
1238 return -ENXIO;
1239
1240 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1241 return -EINVAL;
1242
1243 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1244 }
1245
1246 return -EINVAL;
1247 }
1248
1249 static unsigned long system_supported_vcpu_features(void)
1250 {
1251 unsigned long features = KVM_VCPU_VALID_FEATURES;
1252
1253 if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1254 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1255
1256 if (!kvm_arm_support_pmu_v3())
1257 clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1258
1259 if (!system_supports_sve())
1260 clear_bit(KVM_ARM_VCPU_SVE, &features);
1261
1262 if (!system_has_full_ptr_auth()) {
1263 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1264 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1265 }
1266
1267 if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1268 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1269
1270 return features;
1271 }
1272
1273 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1274 const struct kvm_vcpu_init *init)
1275 {
1276 unsigned long features = init->features[0];
1277 int i;
1278
1279 if (features & ~KVM_VCPU_VALID_FEATURES)
1280 return -ENOENT;
1281
1282 for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1283 if (init->features[i])
1284 return -ENOENT;
1285 }
1286
1287 if (features & ~system_supported_vcpu_features())
1288 return -EINVAL;
1289
1290 /*
1291 * For now make sure that both address/generic pointer authentication
1292 * features are requested by the userspace together.
1293 */
1294 if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1295 test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1296 return -EINVAL;
1297
1298 /* Disallow NV+SVE for the time being */
1299 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features) &&
1300 test_bit(KVM_ARM_VCPU_SVE, &features))
1301 return -EINVAL;
1302
1303 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1304 return 0;
1305
1306 /* MTE is incompatible with AArch32 */
1307 if (kvm_has_mte(vcpu->kvm))
1308 return -EINVAL;
1309
1310 /* NV is incompatible with AArch32 */
1311 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1312 return -EINVAL;
1313
1314 return 0;
1315 }
1316
1317 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1318 const struct kvm_vcpu_init *init)
1319 {
1320 unsigned long features = init->features[0];
1321
1322 return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1323 KVM_VCPU_MAX_FEATURES);
1324 }
1325
1326 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1327 {
1328 struct kvm *kvm = vcpu->kvm;
1329 int ret = 0;
1330
1331 /*
1332 * When the vCPU has a PMU, but no PMU is set for the guest
1333 * yet, set the default one.
1334 */
1335 if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1336 ret = kvm_arm_set_default_pmu(kvm);
1337
1338 return ret;
1339 }
1340
1341 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1342 const struct kvm_vcpu_init *init)
1343 {
1344 unsigned long features = init->features[0];
1345 struct kvm *kvm = vcpu->kvm;
1346 int ret = -EINVAL;
1347
1348 mutex_lock(&kvm->arch.config_lock);
1349
1350 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1351 kvm_vcpu_init_changed(vcpu, init))
1352 goto out_unlock;
1353
1354 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1355
1356 ret = kvm_setup_vcpu(vcpu);
1357 if (ret)
1358 goto out_unlock;
1359
1360 /* Now we know what it is, we can reset it. */
1361 kvm_reset_vcpu(vcpu);
1362
1363 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1364 vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1365 ret = 0;
1366 out_unlock:
1367 mutex_unlock(&kvm->arch.config_lock);
1368 return ret;
1369 }
1370
1371 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1372 const struct kvm_vcpu_init *init)
1373 {
1374 int ret;
1375
1376 if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1377 init->target != kvm_target_cpu())
1378 return -EINVAL;
1379
1380 ret = kvm_vcpu_init_check_features(vcpu, init);
1381 if (ret)
1382 return ret;
1383
1384 if (!kvm_vcpu_initialized(vcpu))
1385 return __kvm_vcpu_set_target(vcpu, init);
1386
1387 if (kvm_vcpu_init_changed(vcpu, init))
1388 return -EINVAL;
1389
1390 kvm_reset_vcpu(vcpu);
1391 return 0;
1392 }
1393
1394 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1395 struct kvm_vcpu_init *init)
1396 {
1397 bool power_off = false;
1398 int ret;
1399
1400 /*
1401 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1402 * reflecting it in the finalized feature set, thus limiting its scope
1403 * to a single KVM_ARM_VCPU_INIT call.
1404 */
1405 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1406 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1407 power_off = true;
1408 }
1409
1410 ret = kvm_vcpu_set_target(vcpu, init);
1411 if (ret)
1412 return ret;
1413
1414 /*
1415 * Ensure a rebooted VM will fault in RAM pages and detect if the
1416 * guest MMU is turned off and flush the caches as needed.
1417 *
1418 * S2FWB enforces all memory accesses to RAM being cacheable,
1419 * ensuring that the data side is always coherent. We still
1420 * need to invalidate the I-cache though, as FWB does *not*
1421 * imply CTR_EL0.DIC.
1422 */
1423 if (vcpu_has_run_once(vcpu)) {
1424 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1425 stage2_unmap_vm(vcpu->kvm);
1426 else
1427 icache_inval_all_pou();
1428 }
1429
1430 vcpu_reset_hcr(vcpu);
1431 vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu);
1432
1433 /*
1434 * Handle the "start in power-off" case.
1435 */
1436 spin_lock(&vcpu->arch.mp_state_lock);
1437
1438 if (power_off)
1439 __kvm_arm_vcpu_power_off(vcpu);
1440 else
1441 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1442
1443 spin_unlock(&vcpu->arch.mp_state_lock);
1444
1445 return 0;
1446 }
1447
1448 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1449 struct kvm_device_attr *attr)
1450 {
1451 int ret = -ENXIO;
1452
1453 switch (attr->group) {
1454 default:
1455 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1456 break;
1457 }
1458
1459 return ret;
1460 }
1461
1462 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1463 struct kvm_device_attr *attr)
1464 {
1465 int ret = -ENXIO;
1466
1467 switch (attr->group) {
1468 default:
1469 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1470 break;
1471 }
1472
1473 return ret;
1474 }
1475
1476 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1477 struct kvm_device_attr *attr)
1478 {
1479 int ret = -ENXIO;
1480
1481 switch (attr->group) {
1482 default:
1483 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1484 break;
1485 }
1486
1487 return ret;
1488 }
1489
1490 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1491 struct kvm_vcpu_events *events)
1492 {
1493 memset(events, 0, sizeof(*events));
1494
1495 return __kvm_arm_vcpu_get_events(vcpu, events);
1496 }
1497
1498 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1499 struct kvm_vcpu_events *events)
1500 {
1501 int i;
1502
1503 /* check whether the reserved field is zero */
1504 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1505 if (events->reserved[i])
1506 return -EINVAL;
1507
1508 /* check whether the pad field is zero */
1509 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1510 if (events->exception.pad[i])
1511 return -EINVAL;
1512
1513 return __kvm_arm_vcpu_set_events(vcpu, events);
1514 }
1515
1516 long kvm_arch_vcpu_ioctl(struct file *filp,
1517 unsigned int ioctl, unsigned long arg)
1518 {
1519 struct kvm_vcpu *vcpu = filp->private_data;
1520 void __user *argp = (void __user *)arg;
1521 struct kvm_device_attr attr;
1522 long r;
1523
1524 switch (ioctl) {
1525 case KVM_ARM_VCPU_INIT: {
1526 struct kvm_vcpu_init init;
1527
1528 r = -EFAULT;
1529 if (copy_from_user(&init, argp, sizeof(init)))
1530 break;
1531
1532 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1533 break;
1534 }
1535 case KVM_SET_ONE_REG:
1536 case KVM_GET_ONE_REG: {
1537 struct kvm_one_reg reg;
1538
1539 r = -ENOEXEC;
1540 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1541 break;
1542
1543 r = -EFAULT;
1544 if (copy_from_user(&reg, argp, sizeof(reg)))
1545 break;
1546
1547 /*
1548 * We could owe a reset due to PSCI. Handle the pending reset
1549 * here to ensure userspace register accesses are ordered after
1550 * the reset.
1551 */
1552 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1553 kvm_reset_vcpu(vcpu);
1554
1555 if (ioctl == KVM_SET_ONE_REG)
1556 r = kvm_arm_set_reg(vcpu, &reg);
1557 else
1558 r = kvm_arm_get_reg(vcpu, &reg);
1559 break;
1560 }
1561 case KVM_GET_REG_LIST: {
1562 struct kvm_reg_list __user *user_list = argp;
1563 struct kvm_reg_list reg_list;
1564 unsigned n;
1565
1566 r = -ENOEXEC;
1567 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1568 break;
1569
1570 r = -EPERM;
1571 if (!kvm_arm_vcpu_is_finalized(vcpu))
1572 break;
1573
1574 r = -EFAULT;
1575 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1576 break;
1577 n = reg_list.n;
1578 reg_list.n = kvm_arm_num_regs(vcpu);
1579 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1580 break;
1581 r = -E2BIG;
1582 if (n < reg_list.n)
1583 break;
1584 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1585 break;
1586 }
1587 case KVM_SET_DEVICE_ATTR: {
1588 r = -EFAULT;
1589 if (copy_from_user(&attr, argp, sizeof(attr)))
1590 break;
1591 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1592 break;
1593 }
1594 case KVM_GET_DEVICE_ATTR: {
1595 r = -EFAULT;
1596 if (copy_from_user(&attr, argp, sizeof(attr)))
1597 break;
1598 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1599 break;
1600 }
1601 case KVM_HAS_DEVICE_ATTR: {
1602 r = -EFAULT;
1603 if (copy_from_user(&attr, argp, sizeof(attr)))
1604 break;
1605 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1606 break;
1607 }
1608 case KVM_GET_VCPU_EVENTS: {
1609 struct kvm_vcpu_events events;
1610
1611 if (kvm_arm_vcpu_get_events(vcpu, &events))
1612 return -EINVAL;
1613
1614 if (copy_to_user(argp, &events, sizeof(events)))
1615 return -EFAULT;
1616
1617 return 0;
1618 }
1619 case KVM_SET_VCPU_EVENTS: {
1620 struct kvm_vcpu_events events;
1621
1622 if (copy_from_user(&events, argp, sizeof(events)))
1623 return -EFAULT;
1624
1625 return kvm_arm_vcpu_set_events(vcpu, &events);
1626 }
1627 case KVM_ARM_VCPU_FINALIZE: {
1628 int what;
1629
1630 if (!kvm_vcpu_initialized(vcpu))
1631 return -ENOEXEC;
1632
1633 if (get_user(what, (const int __user *)argp))
1634 return -EFAULT;
1635
1636 return kvm_arm_vcpu_finalize(vcpu, what);
1637 }
1638 default:
1639 r = -EINVAL;
1640 }
1641
1642 return r;
1643 }
1644
1645 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1646 {
1647
1648 }
1649
1650 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1651 struct kvm_arm_device_addr *dev_addr)
1652 {
1653 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1654 case KVM_ARM_DEVICE_VGIC_V2:
1655 if (!vgic_present)
1656 return -ENXIO;
1657 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1658 default:
1659 return -ENODEV;
1660 }
1661 }
1662
1663 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1664 {
1665 switch (attr->group) {
1666 case KVM_ARM_VM_SMCCC_CTRL:
1667 return kvm_vm_smccc_has_attr(kvm, attr);
1668 default:
1669 return -ENXIO;
1670 }
1671 }
1672
1673 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1674 {
1675 switch (attr->group) {
1676 case KVM_ARM_VM_SMCCC_CTRL:
1677 return kvm_vm_smccc_set_attr(kvm, attr);
1678 default:
1679 return -ENXIO;
1680 }
1681 }
1682
1683 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1684 {
1685 struct kvm *kvm = filp->private_data;
1686 void __user *argp = (void __user *)arg;
1687 struct kvm_device_attr attr;
1688
1689 switch (ioctl) {
1690 case KVM_CREATE_IRQCHIP: {
1691 int ret;
1692 if (!vgic_present)
1693 return -ENXIO;
1694 mutex_lock(&kvm->lock);
1695 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1696 mutex_unlock(&kvm->lock);
1697 return ret;
1698 }
1699 case KVM_ARM_SET_DEVICE_ADDR: {
1700 struct kvm_arm_device_addr dev_addr;
1701
1702 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1703 return -EFAULT;
1704 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1705 }
1706 case KVM_ARM_PREFERRED_TARGET: {
1707 struct kvm_vcpu_init init = {
1708 .target = KVM_ARM_TARGET_GENERIC_V8,
1709 };
1710
1711 if (copy_to_user(argp, &init, sizeof(init)))
1712 return -EFAULT;
1713
1714 return 0;
1715 }
1716 case KVM_ARM_MTE_COPY_TAGS: {
1717 struct kvm_arm_copy_mte_tags copy_tags;
1718
1719 if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1720 return -EFAULT;
1721 return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1722 }
1723 case KVM_ARM_SET_COUNTER_OFFSET: {
1724 struct kvm_arm_counter_offset offset;
1725
1726 if (copy_from_user(&offset, argp, sizeof(offset)))
1727 return -EFAULT;
1728 return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1729 }
1730 case KVM_HAS_DEVICE_ATTR: {
1731 if (copy_from_user(&attr, argp, sizeof(attr)))
1732 return -EFAULT;
1733
1734 return kvm_vm_has_attr(kvm, &attr);
1735 }
1736 case KVM_SET_DEVICE_ATTR: {
1737 if (copy_from_user(&attr, argp, sizeof(attr)))
1738 return -EFAULT;
1739
1740 return kvm_vm_set_attr(kvm, &attr);
1741 }
1742 case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1743 struct reg_mask_range range;
1744
1745 if (copy_from_user(&range, argp, sizeof(range)))
1746 return -EFAULT;
1747 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1748 }
1749 default:
1750 return -EINVAL;
1751 }
1752 }
1753
1754 /* unlocks vcpus from @vcpu_lock_idx and smaller */
1755 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1756 {
1757 struct kvm_vcpu *tmp_vcpu;
1758
1759 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1760 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1761 mutex_unlock(&tmp_vcpu->mutex);
1762 }
1763 }
1764
1765 void unlock_all_vcpus(struct kvm *kvm)
1766 {
1767 lockdep_assert_held(&kvm->lock);
1768
1769 unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1770 }
1771
1772 /* Returns true if all vcpus were locked, false otherwise */
1773 bool lock_all_vcpus(struct kvm *kvm)
1774 {
1775 struct kvm_vcpu *tmp_vcpu;
1776 unsigned long c;
1777
1778 lockdep_assert_held(&kvm->lock);
1779
1780 /*
1781 * Any time a vcpu is in an ioctl (including running), the
1782 * core KVM code tries to grab the vcpu->mutex.
1783 *
1784 * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1785 * other VCPUs can fiddle with the state while we access it.
1786 */
1787 kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1788 if (!mutex_trylock(&tmp_vcpu->mutex)) {
1789 unlock_vcpus(kvm, c - 1);
1790 return false;
1791 }
1792 }
1793
1794 return true;
1795 }
1796
1797 static unsigned long nvhe_percpu_size(void)
1798 {
1799 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1800 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1801 }
1802
1803 static unsigned long nvhe_percpu_order(void)
1804 {
1805 unsigned long size = nvhe_percpu_size();
1806
1807 return size ? get_order(size) : 0;
1808 }
1809
1810 /* A lookup table holding the hypervisor VA for each vector slot */
1811 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1812
1813 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1814 {
1815 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1816 }
1817
1818 static int kvm_init_vector_slots(void)
1819 {
1820 int err;
1821 void *base;
1822
1823 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1824 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1825
1826 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1827 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1828
1829 if (kvm_system_needs_idmapped_vectors() &&
1830 !is_protected_kvm_enabled()) {
1831 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1832 __BP_HARDEN_HYP_VECS_SZ, &base);
1833 if (err)
1834 return err;
1835 }
1836
1837 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1838 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1839 return 0;
1840 }
1841
1842 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1843 {
1844 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1845 u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1846 unsigned long tcr;
1847
1848 /*
1849 * Calculate the raw per-cpu offset without a translation from the
1850 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1851 * so that we can use adr_l to access per-cpu variables in EL2.
1852 * Also drop the KASAN tag which gets in the way...
1853 */
1854 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1855 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1856
1857 params->mair_el2 = read_sysreg(mair_el1);
1858
1859 tcr = read_sysreg(tcr_el1);
1860 if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
1861 tcr |= TCR_EPD1_MASK;
1862 } else {
1863 tcr &= TCR_EL2_MASK;
1864 tcr |= TCR_EL2_RES1;
1865 }
1866 tcr &= ~TCR_T0SZ_MASK;
1867 tcr |= TCR_T0SZ(hyp_va_bits);
1868 tcr &= ~TCR_EL2_PS_MASK;
1869 tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0));
1870 if (kvm_lpa2_is_enabled())
1871 tcr |= TCR_EL2_DS;
1872 params->tcr_el2 = tcr;
1873
1874 params->pgd_pa = kvm_mmu_get_httbr();
1875 if (is_protected_kvm_enabled())
1876 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1877 else
1878 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1879 if (cpus_have_final_cap(ARM64_KVM_HVHE))
1880 params->hcr_el2 |= HCR_E2H;
1881 params->vttbr = params->vtcr = 0;
1882
1883 /*
1884 * Flush the init params from the data cache because the struct will
1885 * be read while the MMU is off.
1886 */
1887 kvm_flush_dcache_to_poc(params, sizeof(*params));
1888 }
1889
1890 static void hyp_install_host_vector(void)
1891 {
1892 struct kvm_nvhe_init_params *params;
1893 struct arm_smccc_res res;
1894
1895 /* Switch from the HYP stub to our own HYP init vector */
1896 __hyp_set_vectors(kvm_get_idmap_vector());
1897
1898 /*
1899 * Call initialization code, and switch to the full blown HYP code.
1900 * If the cpucaps haven't been finalized yet, something has gone very
1901 * wrong, and hyp will crash and burn when it uses any
1902 * cpus_have_*_cap() wrapper.
1903 */
1904 BUG_ON(!system_capabilities_finalized());
1905 params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1906 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1907 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1908 }
1909
1910 static void cpu_init_hyp_mode(void)
1911 {
1912 hyp_install_host_vector();
1913
1914 /*
1915 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1916 * at EL2.
1917 */
1918 if (this_cpu_has_cap(ARM64_SSBS) &&
1919 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1920 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1921 }
1922 }
1923
1924 static void cpu_hyp_reset(void)
1925 {
1926 if (!is_kernel_in_hyp_mode())
1927 __hyp_reset_vectors();
1928 }
1929
1930 /*
1931 * EL2 vectors can be mapped and rerouted in a number of ways,
1932 * depending on the kernel configuration and CPU present:
1933 *
1934 * - If the CPU is affected by Spectre-v2, the hardening sequence is
1935 * placed in one of the vector slots, which is executed before jumping
1936 * to the real vectors.
1937 *
1938 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1939 * containing the hardening sequence is mapped next to the idmap page,
1940 * and executed before jumping to the real vectors.
1941 *
1942 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1943 * empty slot is selected, mapped next to the idmap page, and
1944 * executed before jumping to the real vectors.
1945 *
1946 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1947 * VHE, as we don't have hypervisor-specific mappings. If the system
1948 * is VHE and yet selects this capability, it will be ignored.
1949 */
1950 static void cpu_set_hyp_vector(void)
1951 {
1952 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1953 void *vector = hyp_spectre_vector_selector[data->slot];
1954
1955 if (!is_protected_kvm_enabled())
1956 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1957 else
1958 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1959 }
1960
1961 static void cpu_hyp_init_context(void)
1962 {
1963 kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1964
1965 if (!is_kernel_in_hyp_mode())
1966 cpu_init_hyp_mode();
1967 }
1968
1969 static void cpu_hyp_init_features(void)
1970 {
1971 cpu_set_hyp_vector();
1972 kvm_arm_init_debug();
1973
1974 if (is_kernel_in_hyp_mode())
1975 kvm_timer_init_vhe();
1976
1977 if (vgic_present)
1978 kvm_vgic_init_cpu_hardware();
1979 }
1980
1981 static void cpu_hyp_reinit(void)
1982 {
1983 cpu_hyp_reset();
1984 cpu_hyp_init_context();
1985 cpu_hyp_init_features();
1986 }
1987
1988 static void cpu_hyp_init(void *discard)
1989 {
1990 if (!__this_cpu_read(kvm_hyp_initialized)) {
1991 cpu_hyp_reinit();
1992 __this_cpu_write(kvm_hyp_initialized, 1);
1993 }
1994 }
1995
1996 static void cpu_hyp_uninit(void *discard)
1997 {
1998 if (__this_cpu_read(kvm_hyp_initialized)) {
1999 cpu_hyp_reset();
2000 __this_cpu_write(kvm_hyp_initialized, 0);
2001 }
2002 }
2003
2004 int kvm_arch_hardware_enable(void)
2005 {
2006 /*
2007 * Most calls to this function are made with migration
2008 * disabled, but not with preemption disabled. The former is
2009 * enough to ensure correctness, but most of the helpers
2010 * expect the later and will throw a tantrum otherwise.
2011 */
2012 preempt_disable();
2013
2014 cpu_hyp_init(NULL);
2015
2016 kvm_vgic_cpu_up();
2017 kvm_timer_cpu_up();
2018
2019 preempt_enable();
2020
2021 return 0;
2022 }
2023
2024 void kvm_arch_hardware_disable(void)
2025 {
2026 kvm_timer_cpu_down();
2027 kvm_vgic_cpu_down();
2028
2029 if (!is_protected_kvm_enabled())
2030 cpu_hyp_uninit(NULL);
2031 }
2032
2033 #ifdef CONFIG_CPU_PM
2034 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2035 unsigned long cmd,
2036 void *v)
2037 {
2038 /*
2039 * kvm_hyp_initialized is left with its old value over
2040 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2041 * re-enable hyp.
2042 */
2043 switch (cmd) {
2044 case CPU_PM_ENTER:
2045 if (__this_cpu_read(kvm_hyp_initialized))
2046 /*
2047 * don't update kvm_hyp_initialized here
2048 * so that the hyp will be re-enabled
2049 * when we resume. See below.
2050 */
2051 cpu_hyp_reset();
2052
2053 return NOTIFY_OK;
2054 case CPU_PM_ENTER_FAILED:
2055 case CPU_PM_EXIT:
2056 if (__this_cpu_read(kvm_hyp_initialized))
2057 /* The hyp was enabled before suspend. */
2058 cpu_hyp_reinit();
2059
2060 return NOTIFY_OK;
2061
2062 default:
2063 return NOTIFY_DONE;
2064 }
2065 }
2066
2067 static struct notifier_block hyp_init_cpu_pm_nb = {
2068 .notifier_call = hyp_init_cpu_pm_notifier,
2069 };
2070
2071 static void __init hyp_cpu_pm_init(void)
2072 {
2073 if (!is_protected_kvm_enabled())
2074 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2075 }
2076 static void __init hyp_cpu_pm_exit(void)
2077 {
2078 if (!is_protected_kvm_enabled())
2079 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2080 }
2081 #else
2082 static inline void __init hyp_cpu_pm_init(void)
2083 {
2084 }
2085 static inline void __init hyp_cpu_pm_exit(void)
2086 {
2087 }
2088 #endif
2089
2090 static void __init init_cpu_logical_map(void)
2091 {
2092 unsigned int cpu;
2093
2094 /*
2095 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
2096 * Only copy the set of online CPUs whose features have been checked
2097 * against the finalized system capabilities. The hypervisor will not
2098 * allow any other CPUs from the `possible` set to boot.
2099 */
2100 for_each_online_cpu(cpu)
2101 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2102 }
2103
2104 #define init_psci_0_1_impl_state(config, what) \
2105 config.psci_0_1_ ## what ## _implemented = psci_ops.what
2106
2107 static bool __init init_psci_relay(void)
2108 {
2109 /*
2110 * If PSCI has not been initialized, protected KVM cannot install
2111 * itself on newly booted CPUs.
2112 */
2113 if (!psci_ops.get_version) {
2114 kvm_err("Cannot initialize protected mode without PSCI\n");
2115 return false;
2116 }
2117
2118 kvm_host_psci_config.version = psci_ops.get_version();
2119 kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2120
2121 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2122 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2123 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2124 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2125 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2126 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2127 }
2128 return true;
2129 }
2130
2131 static int __init init_subsystems(void)
2132 {
2133 int err = 0;
2134
2135 /*
2136 * Enable hardware so that subsystem initialisation can access EL2.
2137 */
2138 on_each_cpu(cpu_hyp_init, NULL, 1);
2139
2140 /*
2141 * Register CPU lower-power notifier
2142 */
2143 hyp_cpu_pm_init();
2144
2145 /*
2146 * Init HYP view of VGIC
2147 */
2148 err = kvm_vgic_hyp_init();
2149 switch (err) {
2150 case 0:
2151 vgic_present = true;
2152 break;
2153 case -ENODEV:
2154 case -ENXIO:
2155 vgic_present = false;
2156 err = 0;
2157 break;
2158 default:
2159 goto out;
2160 }
2161
2162 /*
2163 * Init HYP architected timer support
2164 */
2165 err = kvm_timer_hyp_init(vgic_present);
2166 if (err)
2167 goto out;
2168
2169 kvm_register_perf_callbacks(NULL);
2170
2171 out:
2172 if (err)
2173 hyp_cpu_pm_exit();
2174
2175 if (err || !is_protected_kvm_enabled())
2176 on_each_cpu(cpu_hyp_uninit, NULL, 1);
2177
2178 return err;
2179 }
2180
2181 static void __init teardown_subsystems(void)
2182 {
2183 kvm_unregister_perf_callbacks();
2184 hyp_cpu_pm_exit();
2185 }
2186
2187 static void __init teardown_hyp_mode(void)
2188 {
2189 int cpu;
2190
2191 free_hyp_pgds();
2192 for_each_possible_cpu(cpu) {
2193 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
2194 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2195 }
2196 }
2197
2198 static int __init do_pkvm_init(u32 hyp_va_bits)
2199 {
2200 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2201 int ret;
2202
2203 preempt_disable();
2204 cpu_hyp_init_context();
2205 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2206 num_possible_cpus(), kern_hyp_va(per_cpu_base),
2207 hyp_va_bits);
2208 cpu_hyp_init_features();
2209
2210 /*
2211 * The stub hypercalls are now disabled, so set our local flag to
2212 * prevent a later re-init attempt in kvm_arch_hardware_enable().
2213 */
2214 __this_cpu_write(kvm_hyp_initialized, 1);
2215 preempt_enable();
2216
2217 return ret;
2218 }
2219
2220 static u64 get_hyp_id_aa64pfr0_el1(void)
2221 {
2222 /*
2223 * Track whether the system isn't affected by spectre/meltdown in the
2224 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2225 * Although this is per-CPU, we make it global for simplicity, e.g., not
2226 * to have to worry about vcpu migration.
2227 *
2228 * Unlike for non-protected VMs, userspace cannot override this for
2229 * protected VMs.
2230 */
2231 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2232
2233 val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2234 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2235
2236 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2237 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2238 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2239 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2240
2241 return val;
2242 }
2243
2244 static void kvm_hyp_init_symbols(void)
2245 {
2246 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2247 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2248 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2249 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2250 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2251 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2252 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2253 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2254 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2255 kvm_nvhe_sym(__icache_flags) = __icache_flags;
2256 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2257 }
2258
2259 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2260 {
2261 void *addr = phys_to_virt(hyp_mem_base);
2262 int ret;
2263
2264 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2265 if (ret)
2266 return ret;
2267
2268 ret = do_pkvm_init(hyp_va_bits);
2269 if (ret)
2270 return ret;
2271
2272 free_hyp_pgds();
2273
2274 return 0;
2275 }
2276
2277 static void pkvm_hyp_init_ptrauth(void)
2278 {
2279 struct kvm_cpu_context *hyp_ctxt;
2280 int cpu;
2281
2282 for_each_possible_cpu(cpu) {
2283 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2284 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2285 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2286 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2287 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2288 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2289 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2290 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2291 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2292 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2293 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2294 }
2295 }
2296
2297 /* Inits Hyp-mode on all online CPUs */
2298 static int __init init_hyp_mode(void)
2299 {
2300 u32 hyp_va_bits;
2301 int cpu;
2302 int err = -ENOMEM;
2303
2304 /*
2305 * The protected Hyp-mode cannot be initialized if the memory pool
2306 * allocation has failed.
2307 */
2308 if (is_protected_kvm_enabled() && !hyp_mem_base)
2309 goto out_err;
2310
2311 /*
2312 * Allocate Hyp PGD and setup Hyp identity mapping
2313 */
2314 err = kvm_mmu_init(&hyp_va_bits);
2315 if (err)
2316 goto out_err;
2317
2318 /*
2319 * Allocate stack pages for Hypervisor-mode
2320 */
2321 for_each_possible_cpu(cpu) {
2322 unsigned long stack_page;
2323
2324 stack_page = __get_free_page(GFP_KERNEL);
2325 if (!stack_page) {
2326 err = -ENOMEM;
2327 goto out_err;
2328 }
2329
2330 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2331 }
2332
2333 /*
2334 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2335 */
2336 for_each_possible_cpu(cpu) {
2337 struct page *page;
2338 void *page_addr;
2339
2340 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2341 if (!page) {
2342 err = -ENOMEM;
2343 goto out_err;
2344 }
2345
2346 page_addr = page_address(page);
2347 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2348 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2349 }
2350
2351 /*
2352 * Map the Hyp-code called directly from the host
2353 */
2354 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2355 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2356 if (err) {
2357 kvm_err("Cannot map world-switch code\n");
2358 goto out_err;
2359 }
2360
2361 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2362 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2363 if (err) {
2364 kvm_err("Cannot map .hyp.rodata section\n");
2365 goto out_err;
2366 }
2367
2368 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2369 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2370 if (err) {
2371 kvm_err("Cannot map rodata section\n");
2372 goto out_err;
2373 }
2374
2375 /*
2376 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2377 * section thanks to an assertion in the linker script. Map it RW and
2378 * the rest of .bss RO.
2379 */
2380 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2381 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2382 if (err) {
2383 kvm_err("Cannot map hyp bss section: %d\n", err);
2384 goto out_err;
2385 }
2386
2387 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2388 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2389 if (err) {
2390 kvm_err("Cannot map bss section\n");
2391 goto out_err;
2392 }
2393
2394 /*
2395 * Map the Hyp stack pages
2396 */
2397 for_each_possible_cpu(cpu) {
2398 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2399 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2400
2401 err = create_hyp_stack(__pa(stack_page), &params->stack_hyp_va);
2402 if (err) {
2403 kvm_err("Cannot map hyp stack\n");
2404 goto out_err;
2405 }
2406
2407 /*
2408 * Save the stack PA in nvhe_init_params. This will be needed
2409 * to recreate the stack mapping in protected nVHE mode.
2410 * __hyp_pa() won't do the right thing there, since the stack
2411 * has been mapped in the flexible private VA space.
2412 */
2413 params->stack_pa = __pa(stack_page);
2414 }
2415
2416 for_each_possible_cpu(cpu) {
2417 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2418 char *percpu_end = percpu_begin + nvhe_percpu_size();
2419
2420 /* Map Hyp percpu pages */
2421 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2422 if (err) {
2423 kvm_err("Cannot map hyp percpu region\n");
2424 goto out_err;
2425 }
2426
2427 /* Prepare the CPU initialization parameters */
2428 cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2429 }
2430
2431 kvm_hyp_init_symbols();
2432
2433 if (is_protected_kvm_enabled()) {
2434 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2435 cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2436 pkvm_hyp_init_ptrauth();
2437
2438 init_cpu_logical_map();
2439
2440 if (!init_psci_relay()) {
2441 err = -ENODEV;
2442 goto out_err;
2443 }
2444
2445 err = kvm_hyp_init_protection(hyp_va_bits);
2446 if (err) {
2447 kvm_err("Failed to init hyp memory protection\n");
2448 goto out_err;
2449 }
2450 }
2451
2452 return 0;
2453
2454 out_err:
2455 teardown_hyp_mode();
2456 kvm_err("error initializing Hyp mode: %d\n", err);
2457 return err;
2458 }
2459
2460 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2461 {
2462 struct kvm_vcpu *vcpu;
2463 unsigned long i;
2464
2465 mpidr &= MPIDR_HWID_BITMASK;
2466
2467 if (kvm->arch.mpidr_data) {
2468 u16 idx = kvm_mpidr_index(kvm->arch.mpidr_data, mpidr);
2469
2470 vcpu = kvm_get_vcpu(kvm,
2471 kvm->arch.mpidr_data->cmpidr_to_idx[idx]);
2472 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2473 vcpu = NULL;
2474
2475 return vcpu;
2476 }
2477
2478 kvm_for_each_vcpu(i, vcpu, kvm) {
2479 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2480 return vcpu;
2481 }
2482 return NULL;
2483 }
2484
2485 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2486 {
2487 return irqchip_in_kernel(kvm);
2488 }
2489
2490 bool kvm_arch_has_irq_bypass(void)
2491 {
2492 return true;
2493 }
2494
2495 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2496 struct irq_bypass_producer *prod)
2497 {
2498 struct kvm_kernel_irqfd *irqfd =
2499 container_of(cons, struct kvm_kernel_irqfd, consumer);
2500
2501 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2502 &irqfd->irq_entry);
2503 }
2504 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2505 struct irq_bypass_producer *prod)
2506 {
2507 struct kvm_kernel_irqfd *irqfd =
2508 container_of(cons, struct kvm_kernel_irqfd, consumer);
2509
2510 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2511 &irqfd->irq_entry);
2512 }
2513
2514 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2515 {
2516 struct kvm_kernel_irqfd *irqfd =
2517 container_of(cons, struct kvm_kernel_irqfd, consumer);
2518
2519 kvm_arm_halt_guest(irqfd->kvm);
2520 }
2521
2522 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2523 {
2524 struct kvm_kernel_irqfd *irqfd =
2525 container_of(cons, struct kvm_kernel_irqfd, consumer);
2526
2527 kvm_arm_resume_guest(irqfd->kvm);
2528 }
2529
2530 /* Initialize Hyp-mode and memory mappings on all CPUs */
2531 static __init int kvm_arm_init(void)
2532 {
2533 int err;
2534 bool in_hyp_mode;
2535
2536 if (!is_hyp_mode_available()) {
2537 kvm_info("HYP mode not available\n");
2538 return -ENODEV;
2539 }
2540
2541 if (kvm_get_mode() == KVM_MODE_NONE) {
2542 kvm_info("KVM disabled from command line\n");
2543 return -ENODEV;
2544 }
2545
2546 err = kvm_sys_reg_table_init();
2547 if (err) {
2548 kvm_info("Error initializing system register tables");
2549 return err;
2550 }
2551
2552 in_hyp_mode = is_kernel_in_hyp_mode();
2553
2554 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2555 cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2556 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2557 "Only trusted guests should be used on this system.\n");
2558
2559 err = kvm_set_ipa_limit();
2560 if (err)
2561 return err;
2562
2563 err = kvm_arm_init_sve();
2564 if (err)
2565 return err;
2566
2567 err = kvm_arm_vmid_alloc_init();
2568 if (err) {
2569 kvm_err("Failed to initialize VMID allocator.\n");
2570 return err;
2571 }
2572
2573 if (!in_hyp_mode) {
2574 err = init_hyp_mode();
2575 if (err)
2576 goto out_err;
2577 }
2578
2579 err = kvm_init_vector_slots();
2580 if (err) {
2581 kvm_err("Cannot initialise vector slots\n");
2582 goto out_hyp;
2583 }
2584
2585 err = init_subsystems();
2586 if (err)
2587 goto out_hyp;
2588
2589 if (is_protected_kvm_enabled()) {
2590 kvm_info("Protected nVHE mode initialized successfully\n");
2591 } else if (in_hyp_mode) {
2592 kvm_info("VHE mode initialized successfully\n");
2593 } else {
2594 kvm_info("Hyp mode initialized successfully\n");
2595 }
2596
2597 /*
2598 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2599 * hypervisor protection is finalized.
2600 */
2601 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2602 if (err)
2603 goto out_subs;
2604
2605 kvm_arm_initialised = true;
2606
2607 return 0;
2608
2609 out_subs:
2610 teardown_subsystems();
2611 out_hyp:
2612 if (!in_hyp_mode)
2613 teardown_hyp_mode();
2614 out_err:
2615 kvm_arm_vmid_alloc_free();
2616 return err;
2617 }
2618
2619 static int __init early_kvm_mode_cfg(char *arg)
2620 {
2621 if (!arg)
2622 return -EINVAL;
2623
2624 if (strcmp(arg, "none") == 0) {
2625 kvm_mode = KVM_MODE_NONE;
2626 return 0;
2627 }
2628
2629 if (!is_hyp_mode_available()) {
2630 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2631 return 0;
2632 }
2633
2634 if (strcmp(arg, "protected") == 0) {
2635 if (!is_kernel_in_hyp_mode())
2636 kvm_mode = KVM_MODE_PROTECTED;
2637 else
2638 pr_warn_once("Protected KVM not available with VHE\n");
2639
2640 return 0;
2641 }
2642
2643 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2644 kvm_mode = KVM_MODE_DEFAULT;
2645 return 0;
2646 }
2647
2648 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2649 kvm_mode = KVM_MODE_NV;
2650 return 0;
2651 }
2652
2653 return -EINVAL;
2654 }
2655 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2656
2657 enum kvm_mode kvm_get_mode(void)
2658 {
2659 return kvm_mode;
2660 }
2661
2662 module_init(kvm_arm_init);