]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/arm64/kvm/guest.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / arch / arm64 / kvm / guest.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/guest.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9 */
10
11 #include <linux/bits.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/nospec.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/stddef.h>
18 #include <linux/string.h>
19 #include <linux/vmalloc.h>
20 #include <linux/fs.h>
21 #include <kvm/arm_psci.h>
22 #include <asm/cputype.h>
23 #include <linux/uaccess.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_coproc.h>
28 #include <asm/sigcontext.h>
29
30 #include "trace.h"
31
32 #define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
33 #define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }
34
35 struct kvm_stats_debugfs_item debugfs_entries[] = {
36 VCPU_STAT(halt_successful_poll),
37 VCPU_STAT(halt_attempted_poll),
38 VCPU_STAT(halt_poll_invalid),
39 VCPU_STAT(halt_wakeup),
40 VCPU_STAT(hvc_exit_stat),
41 VCPU_STAT(wfe_exit_stat),
42 VCPU_STAT(wfi_exit_stat),
43 VCPU_STAT(mmio_exit_user),
44 VCPU_STAT(mmio_exit_kernel),
45 VCPU_STAT(exits),
46 { NULL }
47 };
48
49 static bool core_reg_offset_is_vreg(u64 off)
50 {
51 return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
52 off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
53 }
54
55 static u64 core_reg_offset_from_id(u64 id)
56 {
57 return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
58 }
59
60 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
61 {
62 int size;
63
64 switch (off) {
65 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
66 KVM_REG_ARM_CORE_REG(regs.regs[30]):
67 case KVM_REG_ARM_CORE_REG(regs.sp):
68 case KVM_REG_ARM_CORE_REG(regs.pc):
69 case KVM_REG_ARM_CORE_REG(regs.pstate):
70 case KVM_REG_ARM_CORE_REG(sp_el1):
71 case KVM_REG_ARM_CORE_REG(elr_el1):
72 case KVM_REG_ARM_CORE_REG(spsr[0]) ...
73 KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
74 size = sizeof(__u64);
75 break;
76
77 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
78 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
79 size = sizeof(__uint128_t);
80 break;
81
82 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
83 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
84 size = sizeof(__u32);
85 break;
86
87 default:
88 return -EINVAL;
89 }
90
91 if (!IS_ALIGNED(off, size / sizeof(__u32)))
92 return -EINVAL;
93
94 /*
95 * The KVM_REG_ARM64_SVE regs must be used instead of
96 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
97 * SVE-enabled vcpus:
98 */
99 if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
100 return -EINVAL;
101
102 return size;
103 }
104
105 static int validate_core_offset(const struct kvm_vcpu *vcpu,
106 const struct kvm_one_reg *reg)
107 {
108 u64 off = core_reg_offset_from_id(reg->id);
109 int size = core_reg_size_from_offset(vcpu, off);
110
111 if (size < 0)
112 return -EINVAL;
113
114 if (KVM_REG_SIZE(reg->id) != size)
115 return -EINVAL;
116
117 return 0;
118 }
119
120 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
121 {
122 /*
123 * Because the kvm_regs structure is a mix of 32, 64 and
124 * 128bit fields, we index it as if it was a 32bit
125 * array. Hence below, nr_regs is the number of entries, and
126 * off the index in the "array".
127 */
128 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
129 struct kvm_regs *regs = vcpu_gp_regs(vcpu);
130 int nr_regs = sizeof(*regs) / sizeof(__u32);
131 u32 off;
132
133 /* Our ID is an index into the kvm_regs struct. */
134 off = core_reg_offset_from_id(reg->id);
135 if (off >= nr_regs ||
136 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
137 return -ENOENT;
138
139 if (validate_core_offset(vcpu, reg))
140 return -EINVAL;
141
142 if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
143 return -EFAULT;
144
145 return 0;
146 }
147
148 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
149 {
150 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
151 struct kvm_regs *regs = vcpu_gp_regs(vcpu);
152 int nr_regs = sizeof(*regs) / sizeof(__u32);
153 __uint128_t tmp;
154 void *valp = &tmp;
155 u64 off;
156 int err = 0;
157
158 /* Our ID is an index into the kvm_regs struct. */
159 off = core_reg_offset_from_id(reg->id);
160 if (off >= nr_regs ||
161 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
162 return -ENOENT;
163
164 if (validate_core_offset(vcpu, reg))
165 return -EINVAL;
166
167 if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
168 return -EINVAL;
169
170 if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
171 err = -EFAULT;
172 goto out;
173 }
174
175 if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
176 u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
177 switch (mode) {
178 case PSR_AA32_MODE_USR:
179 if (!system_supports_32bit_el0())
180 return -EINVAL;
181 break;
182 case PSR_AA32_MODE_FIQ:
183 case PSR_AA32_MODE_IRQ:
184 case PSR_AA32_MODE_SVC:
185 case PSR_AA32_MODE_ABT:
186 case PSR_AA32_MODE_UND:
187 if (!vcpu_el1_is_32bit(vcpu))
188 return -EINVAL;
189 break;
190 case PSR_MODE_EL0t:
191 case PSR_MODE_EL1t:
192 case PSR_MODE_EL1h:
193 if (vcpu_el1_is_32bit(vcpu))
194 return -EINVAL;
195 break;
196 default:
197 err = -EINVAL;
198 goto out;
199 }
200 }
201
202 memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
203 out:
204 return err;
205 }
206
207 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
208 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
209 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
210
211 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
212 {
213 unsigned int max_vq, vq;
214 u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
215
216 if (!vcpu_has_sve(vcpu))
217 return -ENOENT;
218
219 if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
220 return -EINVAL;
221
222 memset(vqs, 0, sizeof(vqs));
223
224 max_vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
225 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
226 if (sve_vq_available(vq))
227 vqs[vq_word(vq)] |= vq_mask(vq);
228
229 if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
230 return -EFAULT;
231
232 return 0;
233 }
234
235 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
236 {
237 unsigned int max_vq, vq;
238 u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
239
240 if (!vcpu_has_sve(vcpu))
241 return -ENOENT;
242
243 if (kvm_arm_vcpu_sve_finalized(vcpu))
244 return -EPERM; /* too late! */
245
246 if (WARN_ON(vcpu->arch.sve_state))
247 return -EINVAL;
248
249 if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
250 return -EFAULT;
251
252 max_vq = 0;
253 for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
254 if (vq_present(vqs, vq))
255 max_vq = vq;
256
257 if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
258 return -EINVAL;
259
260 /*
261 * Vector lengths supported by the host can't currently be
262 * hidden from the guest individually: instead we can only set a
263 * maxmium via ZCR_EL2.LEN. So, make sure the available vector
264 * lengths match the set requested exactly up to the requested
265 * maximum:
266 */
267 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
268 if (vq_present(vqs, vq) != sve_vq_available(vq))
269 return -EINVAL;
270
271 /* Can't run with no vector lengths at all: */
272 if (max_vq < SVE_VQ_MIN)
273 return -EINVAL;
274
275 /* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
276 vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
277
278 return 0;
279 }
280
281 #define SVE_REG_SLICE_SHIFT 0
282 #define SVE_REG_SLICE_BITS 5
283 #define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
284 #define SVE_REG_ID_BITS 5
285
286 #define SVE_REG_SLICE_MASK \
287 GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \
288 SVE_REG_SLICE_SHIFT)
289 #define SVE_REG_ID_MASK \
290 GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
291
292 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
293
294 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
295 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
296
297 /*
298 * Number of register slices required to cover each whole SVE register.
299 * NOTE: Only the first slice every exists, for now.
300 * If you are tempted to modify this, you must also rework sve_reg_to_region()
301 * to match:
302 */
303 #define vcpu_sve_slices(vcpu) 1
304
305 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
306 struct sve_state_reg_region {
307 unsigned int koffset; /* offset into sve_state in kernel memory */
308 unsigned int klen; /* length in kernel memory */
309 unsigned int upad; /* extra trailing padding in user memory */
310 };
311
312 /*
313 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
314 * register copy
315 */
316 static int sve_reg_to_region(struct sve_state_reg_region *region,
317 struct kvm_vcpu *vcpu,
318 const struct kvm_one_reg *reg)
319 {
320 /* reg ID ranges for Z- registers */
321 const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
322 const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
323 SVE_NUM_SLICES - 1);
324
325 /* reg ID ranges for P- registers and FFR (which are contiguous) */
326 const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
327 const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
328
329 unsigned int vq;
330 unsigned int reg_num;
331
332 unsigned int reqoffset, reqlen; /* User-requested offset and length */
333 unsigned int maxlen; /* Maxmimum permitted length */
334
335 size_t sve_state_size;
336
337 const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
338 SVE_NUM_SLICES - 1);
339
340 /* Verify that the P-regs and FFR really do have contiguous IDs: */
341 BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
342
343 /* Verify that we match the UAPI header: */
344 BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
345
346 reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
347
348 if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
349 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
350 return -ENOENT;
351
352 vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
353
354 reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
355 SVE_SIG_REGS_OFFSET;
356 reqlen = KVM_SVE_ZREG_SIZE;
357 maxlen = SVE_SIG_ZREG_SIZE(vq);
358 } else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
359 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
360 return -ENOENT;
361
362 vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
363
364 reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
365 SVE_SIG_REGS_OFFSET;
366 reqlen = KVM_SVE_PREG_SIZE;
367 maxlen = SVE_SIG_PREG_SIZE(vq);
368 } else {
369 return -EINVAL;
370 }
371
372 sve_state_size = vcpu_sve_state_size(vcpu);
373 if (WARN_ON(!sve_state_size))
374 return -EINVAL;
375
376 region->koffset = array_index_nospec(reqoffset, sve_state_size);
377 region->klen = min(maxlen, reqlen);
378 region->upad = reqlen - region->klen;
379
380 return 0;
381 }
382
383 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
384 {
385 int ret;
386 struct sve_state_reg_region region;
387 char __user *uptr = (char __user *)reg->addr;
388
389 /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
390 if (reg->id == KVM_REG_ARM64_SVE_VLS)
391 return get_sve_vls(vcpu, reg);
392
393 /* Try to interpret reg ID as an architectural SVE register... */
394 ret = sve_reg_to_region(&region, vcpu, reg);
395 if (ret)
396 return ret;
397
398 if (!kvm_arm_vcpu_sve_finalized(vcpu))
399 return -EPERM;
400
401 if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
402 region.klen) ||
403 clear_user(uptr + region.klen, region.upad))
404 return -EFAULT;
405
406 return 0;
407 }
408
409 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
410 {
411 int ret;
412 struct sve_state_reg_region region;
413 const char __user *uptr = (const char __user *)reg->addr;
414
415 /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
416 if (reg->id == KVM_REG_ARM64_SVE_VLS)
417 return set_sve_vls(vcpu, reg);
418
419 /* Try to interpret reg ID as an architectural SVE register... */
420 ret = sve_reg_to_region(&region, vcpu, reg);
421 if (ret)
422 return ret;
423
424 if (!kvm_arm_vcpu_sve_finalized(vcpu))
425 return -EPERM;
426
427 if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
428 region.klen))
429 return -EFAULT;
430
431 return 0;
432 }
433
434 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
435 {
436 return -EINVAL;
437 }
438
439 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
440 {
441 return -EINVAL;
442 }
443
444 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
445 u64 __user *uindices)
446 {
447 unsigned int i;
448 int n = 0;
449
450 for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
451 u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
452 int size = core_reg_size_from_offset(vcpu, i);
453
454 if (size < 0)
455 continue;
456
457 switch (size) {
458 case sizeof(__u32):
459 reg |= KVM_REG_SIZE_U32;
460 break;
461
462 case sizeof(__u64):
463 reg |= KVM_REG_SIZE_U64;
464 break;
465
466 case sizeof(__uint128_t):
467 reg |= KVM_REG_SIZE_U128;
468 break;
469
470 default:
471 WARN_ON(1);
472 continue;
473 }
474
475 if (uindices) {
476 if (put_user(reg, uindices))
477 return -EFAULT;
478 uindices++;
479 }
480
481 n++;
482 }
483
484 return n;
485 }
486
487 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
488 {
489 return copy_core_reg_indices(vcpu, NULL);
490 }
491
492 /**
493 * ARM64 versions of the TIMER registers, always available on arm64
494 */
495
496 #define NUM_TIMER_REGS 3
497
498 static bool is_timer_reg(u64 index)
499 {
500 switch (index) {
501 case KVM_REG_ARM_TIMER_CTL:
502 case KVM_REG_ARM_TIMER_CNT:
503 case KVM_REG_ARM_TIMER_CVAL:
504 return true;
505 }
506 return false;
507 }
508
509 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
510 {
511 if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
512 return -EFAULT;
513 uindices++;
514 if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
515 return -EFAULT;
516 uindices++;
517 if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
518 return -EFAULT;
519
520 return 0;
521 }
522
523 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
524 {
525 void __user *uaddr = (void __user *)(long)reg->addr;
526 u64 val;
527 int ret;
528
529 ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
530 if (ret != 0)
531 return -EFAULT;
532
533 return kvm_arm_timer_set_reg(vcpu, reg->id, val);
534 }
535
536 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
537 {
538 void __user *uaddr = (void __user *)(long)reg->addr;
539 u64 val;
540
541 val = kvm_arm_timer_get_reg(vcpu, reg->id);
542 return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
543 }
544
545 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
546 {
547 const unsigned int slices = vcpu_sve_slices(vcpu);
548
549 if (!vcpu_has_sve(vcpu))
550 return 0;
551
552 /* Policed by KVM_GET_REG_LIST: */
553 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
554
555 return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
556 + 1; /* KVM_REG_ARM64_SVE_VLS */
557 }
558
559 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
560 u64 __user *uindices)
561 {
562 const unsigned int slices = vcpu_sve_slices(vcpu);
563 u64 reg;
564 unsigned int i, n;
565 int num_regs = 0;
566
567 if (!vcpu_has_sve(vcpu))
568 return 0;
569
570 /* Policed by KVM_GET_REG_LIST: */
571 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
572
573 /*
574 * Enumerate this first, so that userspace can save/restore in
575 * the order reported by KVM_GET_REG_LIST:
576 */
577 reg = KVM_REG_ARM64_SVE_VLS;
578 if (put_user(reg, uindices++))
579 return -EFAULT;
580 ++num_regs;
581
582 for (i = 0; i < slices; i++) {
583 for (n = 0; n < SVE_NUM_ZREGS; n++) {
584 reg = KVM_REG_ARM64_SVE_ZREG(n, i);
585 if (put_user(reg, uindices++))
586 return -EFAULT;
587 num_regs++;
588 }
589
590 for (n = 0; n < SVE_NUM_PREGS; n++) {
591 reg = KVM_REG_ARM64_SVE_PREG(n, i);
592 if (put_user(reg, uindices++))
593 return -EFAULT;
594 num_regs++;
595 }
596
597 reg = KVM_REG_ARM64_SVE_FFR(i);
598 if (put_user(reg, uindices++))
599 return -EFAULT;
600 num_regs++;
601 }
602
603 return num_regs;
604 }
605
606 /**
607 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
608 *
609 * This is for all registers.
610 */
611 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
612 {
613 unsigned long res = 0;
614
615 res += num_core_regs(vcpu);
616 res += num_sve_regs(vcpu);
617 res += kvm_arm_num_sys_reg_descs(vcpu);
618 res += kvm_arm_get_fw_num_regs(vcpu);
619 res += NUM_TIMER_REGS;
620
621 return res;
622 }
623
624 /**
625 * kvm_arm_copy_reg_indices - get indices of all registers.
626 *
627 * We do core registers right here, then we append system regs.
628 */
629 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
630 {
631 int ret;
632
633 ret = copy_core_reg_indices(vcpu, uindices);
634 if (ret < 0)
635 return ret;
636 uindices += ret;
637
638 ret = copy_sve_reg_indices(vcpu, uindices);
639 if (ret < 0)
640 return ret;
641 uindices += ret;
642
643 ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
644 if (ret < 0)
645 return ret;
646 uindices += kvm_arm_get_fw_num_regs(vcpu);
647
648 ret = copy_timer_indices(vcpu, uindices);
649 if (ret < 0)
650 return ret;
651 uindices += NUM_TIMER_REGS;
652
653 return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
654 }
655
656 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
657 {
658 /* We currently use nothing arch-specific in upper 32 bits */
659 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
660 return -EINVAL;
661
662 switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
663 case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg);
664 case KVM_REG_ARM_FW: return kvm_arm_get_fw_reg(vcpu, reg);
665 case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg);
666 }
667
668 if (is_timer_reg(reg->id))
669 return get_timer_reg(vcpu, reg);
670
671 return kvm_arm_sys_reg_get_reg(vcpu, reg);
672 }
673
674 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
675 {
676 /* We currently use nothing arch-specific in upper 32 bits */
677 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
678 return -EINVAL;
679
680 switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
681 case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg);
682 case KVM_REG_ARM_FW: return kvm_arm_set_fw_reg(vcpu, reg);
683 case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg);
684 }
685
686 if (is_timer_reg(reg->id))
687 return set_timer_reg(vcpu, reg);
688
689 return kvm_arm_sys_reg_set_reg(vcpu, reg);
690 }
691
692 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
693 struct kvm_sregs *sregs)
694 {
695 return -EINVAL;
696 }
697
698 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
699 struct kvm_sregs *sregs)
700 {
701 return -EINVAL;
702 }
703
704 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
705 struct kvm_vcpu_events *events)
706 {
707 events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
708 events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
709
710 if (events->exception.serror_pending && events->exception.serror_has_esr)
711 events->exception.serror_esr = vcpu_get_vsesr(vcpu);
712
713 /*
714 * We never return a pending ext_dabt here because we deliver it to
715 * the virtual CPU directly when setting the event and it's no longer
716 * 'pending' at this point.
717 */
718
719 return 0;
720 }
721
722 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
723 struct kvm_vcpu_events *events)
724 {
725 bool serror_pending = events->exception.serror_pending;
726 bool has_esr = events->exception.serror_has_esr;
727 bool ext_dabt_pending = events->exception.ext_dabt_pending;
728
729 if (serror_pending && has_esr) {
730 if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
731 return -EINVAL;
732
733 if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
734 kvm_set_sei_esr(vcpu, events->exception.serror_esr);
735 else
736 return -EINVAL;
737 } else if (serror_pending) {
738 kvm_inject_vabt(vcpu);
739 }
740
741 if (ext_dabt_pending)
742 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
743
744 return 0;
745 }
746
747 int __attribute_const__ kvm_target_cpu(void)
748 {
749 unsigned long implementor = read_cpuid_implementor();
750 unsigned long part_number = read_cpuid_part_number();
751
752 switch (implementor) {
753 case ARM_CPU_IMP_ARM:
754 switch (part_number) {
755 case ARM_CPU_PART_AEM_V8:
756 return KVM_ARM_TARGET_AEM_V8;
757 case ARM_CPU_PART_FOUNDATION:
758 return KVM_ARM_TARGET_FOUNDATION_V8;
759 case ARM_CPU_PART_CORTEX_A53:
760 return KVM_ARM_TARGET_CORTEX_A53;
761 case ARM_CPU_PART_CORTEX_A57:
762 return KVM_ARM_TARGET_CORTEX_A57;
763 }
764 break;
765 case ARM_CPU_IMP_APM:
766 switch (part_number) {
767 case APM_CPU_PART_POTENZA:
768 return KVM_ARM_TARGET_XGENE_POTENZA;
769 }
770 break;
771 }
772
773 /* Return a default generic target */
774 return KVM_ARM_TARGET_GENERIC_V8;
775 }
776
777 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
778 {
779 int target = kvm_target_cpu();
780
781 if (target < 0)
782 return -ENODEV;
783
784 memset(init, 0, sizeof(*init));
785
786 /*
787 * For now, we don't return any features.
788 * In future, we might use features to return target
789 * specific features available for the preferred
790 * target type.
791 */
792 init->target = (__u32)target;
793
794 return 0;
795 }
796
797 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
798 {
799 return -EINVAL;
800 }
801
802 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
803 {
804 return -EINVAL;
805 }
806
807 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
808 struct kvm_translation *tr)
809 {
810 return -EINVAL;
811 }
812
813 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
814 KVM_GUESTDBG_USE_SW_BP | \
815 KVM_GUESTDBG_USE_HW | \
816 KVM_GUESTDBG_SINGLESTEP)
817
818 /**
819 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
820 * @kvm: pointer to the KVM struct
821 * @kvm_guest_debug: the ioctl data buffer
822 *
823 * This sets up and enables the VM for guest debugging. Userspace
824 * passes in a control flag to enable different debug types and
825 * potentially other architecture specific information in the rest of
826 * the structure.
827 */
828 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
829 struct kvm_guest_debug *dbg)
830 {
831 int ret = 0;
832
833 trace_kvm_set_guest_debug(vcpu, dbg->control);
834
835 if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
836 ret = -EINVAL;
837 goto out;
838 }
839
840 if (dbg->control & KVM_GUESTDBG_ENABLE) {
841 vcpu->guest_debug = dbg->control;
842
843 /* Hardware assisted Break and Watch points */
844 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
845 vcpu->arch.external_debug_state = dbg->arch;
846 }
847
848 } else {
849 /* If not enabled clear all flags */
850 vcpu->guest_debug = 0;
851 }
852
853 out:
854 return ret;
855 }
856
857 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
858 struct kvm_device_attr *attr)
859 {
860 int ret;
861
862 switch (attr->group) {
863 case KVM_ARM_VCPU_PMU_V3_CTRL:
864 ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
865 break;
866 case KVM_ARM_VCPU_TIMER_CTRL:
867 ret = kvm_arm_timer_set_attr(vcpu, attr);
868 break;
869 case KVM_ARM_VCPU_PVTIME_CTRL:
870 ret = kvm_arm_pvtime_set_attr(vcpu, attr);
871 break;
872 default:
873 ret = -ENXIO;
874 break;
875 }
876
877 return ret;
878 }
879
880 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
881 struct kvm_device_attr *attr)
882 {
883 int ret;
884
885 switch (attr->group) {
886 case KVM_ARM_VCPU_PMU_V3_CTRL:
887 ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
888 break;
889 case KVM_ARM_VCPU_TIMER_CTRL:
890 ret = kvm_arm_timer_get_attr(vcpu, attr);
891 break;
892 case KVM_ARM_VCPU_PVTIME_CTRL:
893 ret = kvm_arm_pvtime_get_attr(vcpu, attr);
894 break;
895 default:
896 ret = -ENXIO;
897 break;
898 }
899
900 return ret;
901 }
902
903 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
904 struct kvm_device_attr *attr)
905 {
906 int ret;
907
908 switch (attr->group) {
909 case KVM_ARM_VCPU_PMU_V3_CTRL:
910 ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
911 break;
912 case KVM_ARM_VCPU_TIMER_CTRL:
913 ret = kvm_arm_timer_has_attr(vcpu, attr);
914 break;
915 case KVM_ARM_VCPU_PVTIME_CTRL:
916 ret = kvm_arm_pvtime_has_attr(vcpu, attr);
917 break;
918 default:
919 ret = -ENXIO;
920 break;
921 }
922
923 return ret;
924 }